Compare commits

...

224 Commits

Author SHA1 Message Date
Мария Ш
bc33af764d shestakova_maria_lab_1 is ready 2023-11-28 20:52:20 +03:00
a8c58683dd kutygin_andrey_lab_3_ready 2023-11-13 20:53:33 +04:00
b3e1e38eeb Merge pull request 'shadaev_anton_lab_7' (#137) from shadaev_anton_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/137
2023-11-06 22:08:36 +04:00
6de7179b7d Merge pull request 'madyshev_egor_lab_7 is ready' (#124) from madyshev_egor_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/124
2023-11-06 22:08:19 +04:00
c0ead13d82 Merge pull request 'gusev_vladislav_lab_7 is ready' (#121) from gusev_vladislav_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/121
2023-11-06 22:05:18 +04:00
357f26d992 Merge pull request 'belyaeva lab 7 ready' (#118) from belyaeva_ekaterina_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/118
2023-11-06 22:03:08 +04:00
f2f5d16974 Merge pull request 'abanin_daniil_lab_7' (#113) from abanin_daniil_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/113
2023-11-06 22:02:17 +04:00
cab38b4f27 Merge pull request 'senkin_alexander_lab_7 is ready' (#138) from senkin_alexander_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/138
2023-11-06 21:52:27 +04:00
c813e16f55 Merge pull request 'belyaeva lab 6 ready' (#117) from belyaeva_ekaterina_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/117
2023-11-06 21:51:52 +04:00
9142e612f8 Merge pull request 'madyshev_egor_lab_6 is ready' (#123) from madyshev_egor_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/123
2023-11-06 21:50:53 +04:00
7c92d143e0 Merge pull request 'senkin_alexander_lab_6 is ready' (#134) from senkin_alexander_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/134
2023-11-06 21:48:39 +04:00
52431a867c Merge pull request 'shadaev_anton_lab_6' (#136) from shadaev_anton_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/136
2023-11-06 21:45:02 +04:00
666a34b483 Merge pull request 'podkorytova_yulia_lab_6 is ready' (#141) from podkorytova_yulia_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/141
2023-11-06 21:44:46 +04:00
57bb7a90cd Merge pull request 'kurmyza_pavel_lab_6 is ready' (#143) from kurmyza_pavel_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/143
2023-11-06 21:44:24 +04:00
da2b5dacb8 Merge pull request 'abanin_daniil_lab_6' (#105) from abanin_daniil_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/105
2023-11-06 21:38:34 +04:00
0acf59f77f Merge pull request 'senkin_alexander_lab_5 is ready' (#133) from senkin_alexander_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/133
2023-11-06 21:36:55 +04:00
40f7706378 Merge pull request 'madyshev_egor_lab_5 is ready' (#122) from madyshev_egor_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/122
2023-11-06 21:36:38 +04:00
2881070bf0 Merge pull request 'belyaeva lab 5 ready' (#116) from belyaeva_ekaterina_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/116
2023-11-06 21:36:19 +04:00
02422f4eff Merge pull request 'kurmyza_pavel_lab_5 is ready' (#104) from kurmyza_pavel_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/104
2023-11-06 21:35:33 +04:00
831912d692 Merge pull request 'lipatov_ilya_lab_5' (#103) from lipatov_ilya_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/103
2023-11-06 21:30:42 +04:00
70c0f7a0e1 Merge pull request 'shadaev_anton_lab_5' (#135) from shadaev_anton_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/135
2023-11-06 21:25:29 +04:00
8592ba88a4 Merge pull request 'podkorytova_yulia_lab_5 is ready' (#140) from podkorytova_yulia_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/140
2023-11-06 21:25:08 +04:00
4973adb1f2 Merge pull request 'podkorytova_yulia_lab_4 is ready' (#139) from podkorytova_yulia_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/139
2023-11-06 21:22:56 +04:00
388c9e64cf Merge pull request 'shadaev_anton_lab_4' (#130) from shadaev_anton_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/130
2023-11-06 21:22:24 +04:00
1f8bc49d17 Merge pull request 'belyaeva lab 4 ready' (#115) from belyaeva_ekaterina_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/115
2023-11-06 21:22:02 +04:00
d4dbce9b09 Merge pull request 'senkin_alexander_lab_4 is ready' (#112) from senkin_alexander_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/112
2023-11-06 21:20:46 +04:00
931d8de854 Merge pull request 'lipatov_ilya_lab_4' (#102) from lipatov_ilya_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/102
2023-11-06 21:20:29 +04:00
ec42e21a1d Merge pull request 'shadaev_anton_lab_3' (#129) from shadaev_anton_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/129
2023-11-06 21:18:36 +04:00
02147c3d5f Merge pull request 'senkin_alexander_lab_2 is ready' (#110) from senkin_alexander_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/110
2023-11-06 21:18:14 +04:00
d388cd8442 Merge pull request 'basharin_sevastyan_lab_3' (#107) from basharin_sevastyan_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/107
2023-11-06 21:17:17 +04:00
7f45d87074 Merge pull request 'belyaeva lab3 ready' (#108) from belyaeva_ekaterina_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/108
2023-11-06 21:16:59 +04:00
fe77447993 Merge pull request 'senkin_alexander_lab_3 is ready' (#111) from senkin_alexander_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/111
2023-11-06 21:16:37 +04:00
9ce5af1aea Merge pull request 'Лабораторная 3' (#119) from almukhammetov_bulat_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/119
2023-11-06 21:16:15 +04:00
278b85e66a Merge pull request 'podkorytova_yulia_lab_3 is ready' (#125) from podkorytova_yulia_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/125
2023-11-06 21:15:46 +04:00
2885277f6c Merge pull request 'simonov_nikita_lab_1' (#132) from simonov_nikita_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/132
2023-11-06 21:14:57 +04:00
58b1009367 Merge pull request 'shadaev_anton_lab_2' (#128) from shadaev_anton_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/128
2023-11-06 21:14:18 +04:00
9755697671 Merge pull request 'simonov_nikita_lab_2' (#142) from simonov_nikita_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/142
2023-11-06 21:14:01 +04:00
d6bdc5893a Merge pull request 'basharin_sevastyan_lab_2' (#106) from basharin_sevastyan_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/106
2023-11-06 21:12:28 +04:00
28056f94bd Merge pull request 'malkova_anastasia_lab_1 ready' (#120) from malkova_anastasia_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/120
2023-11-06 21:08:34 +04:00
1aef95a6d9 Merge pull request 'shadaev_anton_lab_1' (#127) from shadaev_anton_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/127
2023-11-06 21:08:09 +04:00
95519adc5a kurmyza_pavel_lab_6 is ready 2023-11-06 17:45:17 +04:00
5746fc2084 simonov_nikita_lab_2 2023-11-06 17:19:53 +04:00
yulia
c92f833265 podkorytova_yulia_lab_6 2023-11-06 03:12:31 +04:00
yulia
1d2c86f568 podkorytova_yulia_lab_5 2023-11-06 01:53:55 +04:00
yulia
b27537157a podkorytova_yulia_lab_4 2023-11-05 23:01:59 +04:00
ee70ec67ba senkin_alexander_lab_6 is ready 2023-11-05 21:45:57 +04:00
dde432a16b senkin_alexander_lab_7 is ready 2023-11-05 21:44:12 +04:00
def334a1f4 senkin_alexander_lab_6 is ready 2023-11-05 15:25:21 +04:00
f6a9dc6a74 senkin_alexander_lab_4 is ready 2023-11-05 14:51:45 +04:00
d8ea68139d lab1 2023-11-05 13:31:50 +04:00
37d75cda32 Add lab7 2023-11-05 07:03:26 +04:00
2383a997b1 Initial commit 2023-11-04 21:23:54 +04:00
e8ff2392da Add lab6 2023-11-04 21:18:36 +04:00
de79db46c0 Initial commit 2023-11-04 21:11:51 +04:00
82829a15a2 Add lab5 2023-11-04 20:32:30 +04:00
c9fa1b2d60 Initial commit 2023-11-04 19:18:41 +04:00
d5cd684a98 Add lab4 2023-11-04 19:10:52 +04:00
a9af6c3c37 Initial commit 2023-11-03 19:52:06 +04:00
e1bba9b13c Update README.md 2023-11-03 19:48:45 +04:00
aa543e057e Update README.md && Add result images 2023-11-03 19:39:53 +04:00
72b717d7ae Add lab3 part #2 2023-11-03 18:11:03 +04:00
3007207ade Add shadaev_anton_lab_3/.gitignore 2023-11-03 16:03:24 +04:00
4838c6dbeb Delete 'shadaev_anton_lab_3/.DS_Store' 2023-11-03 15:55:25 +04:00
4949686542 Add lab3 part #1 2023-11-03 15:50:54 +04:00
4f16492ad7 Initial commit 2023-11-03 15:49:41 +04:00
565b4f171f Add lab2 2023-11-03 14:17:51 +04:00
a87330830b Initial commit 2023-11-03 13:16:07 +04:00
a8f3b6c692 Update main.py 2023-11-03 13:11:00 +04:00
ce7cfa4365 Add lab1 2023-11-02 23:09:40 +04:00
yulia
a492e2a6df podkorytova_yulia_lab_3 2023-11-02 20:02:38 +04:00
462c0ea3e0 madyshev_egor_lab_7 is ready 2023-11-02 19:12:30 +04:00
4eb8cfabd1 madyshev_egor_lab_6 is ready 2023-11-02 19:08:29 +04:00
e65543a5fc madyshev_egor_lab_5 is ready 2023-11-02 19:03:28 +04:00
vladg
f0e16a20d4 gusev_vladislav_lab_7 is ready 2023-11-02 16:38:27 +04:00
08ed6413b9 Merge branch 'main' into malkova_anastasia_lab_1 2023-11-01 23:59:43 +04:00
1f35af8f8f lab1 ready 2023-11-01 23:53:45 +04:00
BulatReznik
63198665cc Лабораторная 3 2023-11-01 23:05:45 +04:00
10761e96bb belyaeva lab 7 ready 2023-11-01 16:49:59 +04:00
f61aea2ee2 lab 6 ready 2023-11-01 16:08:27 +04:00
be664b513c lab 5 ready 2023-11-01 16:01:28 +04:00
5d250948b5 lab 4 ready 2023-11-01 15:55:34 +04:00
BossMouseFire
c344eb7300 lab7 2023-10-31 00:50:28 +04:00
8a51aacfb2 senkin_alexander_lab_4 is ready 2023-10-30 21:20:17 +04:00
017623e084 senkin_alexander_lab_3 is ready 2023-10-30 21:13:41 +04:00
09b9bfc730 senkin_alexander_lab_2 is ready 2023-10-30 21:10:46 +04:00
fee881b4b4 lab3 ready 2023-10-30 20:52:01 +04:00
7bd06eb002 basharin_sevastyan_lab_3 is ready 2023-10-29 21:38:54 +04:00
13a2641aa2 first commit 2023-10-29 17:12:59 +04:00
5e0058b82e basharin_sevastyan_lab_2 is ready 2023-10-29 17:07:56 +04:00
faeeecf1ef fix ignore 2023-10-29 15:26:49 +04:00
dab82f11ee fix ingore 2023-10-29 15:23:51 +04:00
55b79c339e start work 2023-10-29 14:03:33 +04:00
BossMouseFire
0e5a5ad282 lab6 2023-10-29 00:29:45 +04:00
a9e95110c1 kurmyza_pavel_lab_5 is ready 2023-10-28 17:58:50 +04:00
0fa8db9c5d lipatov_ilya_lab_5 2023-10-28 17:39:01 +04:00
e8a3914840 lipatov_ilya_lab_5 2023-10-28 17:37:41 +04:00
63c40e202e lipatov_ilya_lab_5 2023-10-28 17:37:18 +04:00
b8af0044a0 lipatov_ilya_lab_4 2023-10-28 16:52:13 +04:00
b26c54a7e4 Merge pull request 'lipatov_ilya_lab_1' (#45) from lipatov_ilya_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/45
2023-10-28 12:43:49 +04:00
9e6286a3a4 Merge pull request 'ilbekov_dmitriy_lab_7' (#100) from ilbekov_dmitriy_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/100
2023-10-28 12:43:34 +04:00
4a6bb8139e Merge pull request 'savenkov_alexander_lab_5 is done' (#88) from savenkov_alexander_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/88
2023-10-28 12:43:15 +04:00
8b9050cce3 Merge pull request 'gusev_vladislav_lab_6 is ready' (#95) from gusev_vladislav_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/95
2023-10-28 12:42:51 +04:00
3e08abf42b Merge pull request 'zavrazhnova_svetlana_lab_6' (#97) from zavrazhnova_svetlana_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/97
2023-10-28 12:42:31 +04:00
c6d41e1157 Merge pull request 'savenkov_alexander_lab_3 is done' (#86) from savenkov_alexander_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/86
2023-10-28 12:31:19 +04:00
6a9310501a Merge pull request 'abanin_daniil_lab_5' (#85) from abanin_daniil_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/85
2023-10-28 12:29:26 +04:00
bed476a27b Merge pull request 'kurmyza_pavel_lab_3 is ready' (#81) from kurmyza_pavel_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/81
2023-10-28 12:28:53 +04:00
2607c0dbfd Merge pull request 'ilbekov_dmitriy_lab_6' (#98) from ilbekov_dmitriy_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/98
2023-10-28 12:22:00 +04:00
be253bf939 Merge pull request 'zavrazhnova_svetlana_lab_7 is ready' (#99) from zavrazhnova_svetlana_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/99
2023-10-28 12:20:08 +04:00
9ab1a0f1ca Merge pull request 'ilbekov_dmitriy_lab_5' (#80) from ilbekov_dmitriy_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/80
2023-10-28 12:13:03 +04:00
8bd93ee83e Merge pull request 'alexandrov_dmitrii_lab_7 is ready' (#78) from alexandrov_dmitrii_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/78
2023-10-28 12:12:25 +04:00
1fddfd2362 Merge pull request 'alexandrov_dmitrii_lab_6 ready' (#72) from alexandrov_dmitrii_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/72
2023-10-28 12:11:47 +04:00
994129b8a9 Merge pull request 'gusev_vladislav_lab_4 is ready' (#63) from gusev_vladislav_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/63
2023-10-28 12:09:45 +04:00
79b5e5bb12 Merge pull request 'ilbekov_dmitriy_lab_4' (#79) from ilbekov_dmitriy_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/79
2023-10-28 12:02:13 +04:00
08aa85abbc Merge pull request 'abanin_daniil_lab_4' (#84) from abanin_daniil_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/84
2023-10-28 11:58:05 +04:00
de50a5f08d Merge pull request 'savenkov_alexander_lab_4 is done' (#87) from savenkov_alexander_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/87
2023-10-28 11:56:58 +04:00
c37eca50a6 Merge pull request 'zavrazhnova_svetlana_lab_4' (#96) from zavrazhnova_svetlana_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/96
2023-10-28 11:49:04 +04:00
2906d3886f Merge pull request 'kurmyza_pavel_lab_4 is ready' (#101) from kurmyza_pavel_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/101
2023-10-28 11:48:33 +04:00
e034d93062 kurmyza_pavel_lab_4 is ready 2023-10-28 10:00:04 +04:00
d19941c6ec lipatov_ilya_lab_1 2023-10-28 08:41:10 +04:00
2a51665e61 lipatov_ilya_lab_1 2023-10-28 08:39:59 +04:00
879a1c5730 lab7 done 2023-10-28 01:43:58 +04:00
Svetlnkk
78bec04c10 zavrazhnova_svetlana_lab_7 is ready 2023-10-27 22:44:30 +04:00
c212c98a90 lab6 done 2023-10-27 19:58:08 +04:00
Svetlnkk
25acce2c79 zavrazhnova_svetlana_lab_6 is ready 2023-10-27 14:17:35 +04:00
vladg
db918284b5 gusev_vladislav_lab_6 is ready 2023-10-27 12:00:37 +04:00
71cad406c2 Merge pull request 'gusev_vladislav_lab_5 is ready' (#90) from gusev_vladislav_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/90
2023-10-27 11:38:00 +04:00
a076fd78ae Merge pull request 'gusev_vladislav_lab_2 is ready' (#89) from gusev_vladislav_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/89
2023-10-27 11:37:46 +04:00
124f682c8b Merge pull request 'zavrazhnova_svetlana_lab_5' (#91) from zavrazhnova_svetlana_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/91
2023-10-27 11:29:37 +04:00
8834f99ecf Merge pull request 'podkorytova_yulia_lab1 is ready' (#92) from podkorytova_yulia_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/92
2023-10-27 11:19:18 +04:00
dd0d45ef93 Merge pull request 'podkorytova_yulia_lab2 is ready' (#93) from podkorytova_yulia_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/93
2023-10-27 11:19:01 +04:00
c7060e6719 Merge pull request 'sergeev_evgenii_lab_2_is_done' (#94) from sergeev_evgenii_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/94
2023-10-27 11:17:36 +04:00
yulia
23bc64c816 podkorytova_yulia_lab2 2023-10-27 05:35:21 +04:00
yulia
be1b6a74ae podkorytova_yulia_lab1 2023-10-27 01:23:28 +04:00
Евгений Сергеев
32821e551a Done lab2 2023-10-27 01:16:35 +04:00
Svetlnkk
231aa0d062 fix conflict 2023-10-26 21:10:02 +04:00
Svetlnkk
10799cb639 fix conflict 2023-10-26 21:06:18 +04:00
vladg
0f61b37f8b gusev_vladislav_lab_5 is ready 2023-10-26 17:31:14 +04:00
vladg
3a68c16a44 gusev_vladislav_lab_2 is ready 2023-10-26 11:49:09 +04:00
Svetlnkk
481361b7e0 lal 2023-10-26 11:27:02 +04:00
0c414d7ab4 savenkov_alexander_lab_5 is done 2023-10-24 19:01:33 +04:00
d61b7c24f2 savenkov_alexander_lab_4 is done 2023-10-24 18:59:32 +04:00
b5fa7754bb savenkov_alexander_lab_3 is done 2023-10-24 18:56:05 +04:00
d575910860 Merge pull request 'gusev_vladislav_lab_3' (#62) from gusev_vladislav_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/62
2023-10-24 16:48:23 +04:00
5894881f24 Merge pull request 'abanin_daniil_lab_3' (#74) from abanin_daniil_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/74
2023-10-24 16:48:10 +04:00
92ec657bcd Merge pull request 'ilbekov_dmitriy_lab_3' (#76) from ilbekov_dmitriy_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/76
2023-10-24 16:47:50 +04:00
346241253f Merge pull request 'zhukova_alina_lab_1 is ready' (#64) from zhukova_alina_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/64
2023-10-24 16:38:21 +04:00
BossMouseFire
ed5c549a0b lab5 2023-10-24 13:57:35 +04:00
65b47c7d0e Merge pull request 'kurmyza_pavel_lab_2 is ready' (#77) from kurmyza_pavel_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/77
2023-10-24 12:47:55 +04:00
f7af263316 Merge pull request 'belyaeva lab2 ready' (#68) from belyaeva_ekaterina_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/68
2023-10-24 12:32:43 +04:00
c45de91019 Merge pull request 'kurmyza_pavel_lab_1 is ready' (#75) from kurmyza_pavel_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/75
2023-10-24 11:36:28 +04:00
4fad5585c1 Merge pull request 'basharin_sevastyan_lab_1 is ready' (#73) from basharin_sevastyan_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/73
2023-10-24 11:36:11 +04:00
c9d485daca Merge pull request 'senkin_alexander_lab_1 is ready' (#66) from senkin_alexander_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/66
2023-10-24 11:27:59 +04:00
BossMouseFire
1638a80b4a lab4 2023-10-24 01:14:04 +04:00
6a9602359c kurmyza_pavel_lab_3 is ready 2023-10-23 00:34:57 +04:00
cee99b90a5 lab5 done 2023-10-22 21:41:29 +04:00
bb7b8e6ac0 lab4 done 2023-10-22 20:34:25 +04:00
18ea7ee729 Седьмая лабораторная 2023-10-22 20:09:37 +04:00
200d8dee7e kurmyza_pavel_lab_2 is ready 2023-10-22 19:15:28 +04:00
4e1980e638 lab3 done 2023-10-22 18:42:36 +04:00
a43eb72079 kurmyza_pavel_lab_1 is ready 2023-10-22 16:37:16 +04:00
BossMouseFire
464b437c69 lab3 2023-10-22 11:51:04 +04:00
0b422e70f9 basharin_sevastyan_lab_1 is ready 2023-10-20 22:11:35 +04:00
b0accdaf06 Шестая лабораторная готова 2023-10-20 18:59:51 +04:00
Svetlnkk
716e7b7ee6 zavrazhnova_svetlana_lab_5 is ready 2023-10-20 17:51:44 +04:00
145b7336b8 belyaeva lab2 ready 2023-10-20 16:12:55 +04:00
bea977d84c Lab1 2023-10-19 23:39:38 +04:00
Svetlnkk
1e03e8b1d2 zavrazhnova_svetlana_lab_4 is ready 2023-10-19 21:51:39 +04:00
ad5ed23a4c zhukova_alina_lab_1 is ready 2023-10-18 20:09:27 +04:00
vladg
1e1a73de10 gusev_vladislav_lab_4 is ready 2023-10-18 14:36:57 +04:00
vladg
226dd4efe9 gusev_vladislav_lab_3 is ready 2023-10-18 13:48:11 +04:00
vladg
c0217ad0d3 gusev_vladislav_lab_3 is ready 2023-10-18 13:47:11 +04:00
vladg
caab9f2f8b gusev_vladislav_lab_3 is ready 2023-10-18 13:46:28 +04:00
vladg
d2580ffa9e gusev_vladislav_lab_3 is ready 2023-10-18 13:14:11 +04:00
a98d914e7c Merge pull request 'arutunyan_dmitry_lab_6 is ready' (#59) from arutunyan_dmitry_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/59
2023-10-17 17:34:32 +04:00
a4985e4d76 Merge pull request 'antonov_dmitry_lab_7' (#43) from antonov_dmitry_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/43
2023-10-17 17:34:01 +04:00
3bb04b059b Merge pull request 'alexandrov_dmitrii_lab_5 is ready' (#51) from alexandrov_dmitrii_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/51
2023-10-17 17:33:26 +04:00
a9e1145b0e Merge pull request 'arutunyan_dmitry_lab_5' (#56) from arutunyan_dmitry_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/56
2023-10-17 17:33:06 +04:00
f44ba0d0a2 Merge pull request 'alexandrov_dmitrii_lab_4 ready' (#44) from alexandrov_dmitrii_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/44
2023-10-17 17:32:38 +04:00
ccf3bfb561 Merge pull request 'arutunyan_dmitry_lab_4 is ready' (#55) from arutunyan_dmitry_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/55
2023-10-17 17:32:23 +04:00
4f349a1d49 Merge pull request 'madyshev_egor_lab_4 is ready' (#58) from madyshev_egor_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/58
2023-10-17 17:32:02 +04:00
f8075403a3 Merge pull request 'madyshev_egor_lab_3 is ready' (#57) from madyshev_egor_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/57
2023-10-17 17:27:54 +04:00
c20695af79 Merge pull request 'arutunyan_dmitry_lab_3 is ready' (#54) from arutunyan_dmitry_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/54
2023-10-17 17:27:35 +04:00
33dba33cc4 Merge pull request 'lipatov_ilya_lab_3' (#47) from lipatov_ilya_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/47
2023-10-17 17:26:20 +04:00
41e0e8598f Merge pull request 'gordeeva_anna_lab_2' (#42) from gordeeva_anna_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/42
2023-10-17 17:25:29 +04:00
53a25975f9 Merge pull request 'lipatov_ilya_lab_2' (#46) from lipatov_ilya_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/46
2023-10-17 17:25:09 +04:00
5e00a83340 Merge pull request 'abanin_daniil_lab_2' (#50) from abanin_daniil_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/50
2023-10-17 17:21:19 +04:00
2239c15572 Merge pull request 'ilbekov_dmitriy_lab_2' (#52) from ilbekov_dmitriy_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/52
2023-10-17 17:20:59 +04:00
07333219ed Merge pull request 'arutunyan_dmitry_lab_2 is ready' (#41) from arutunyan_dmitry_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/41
2023-10-17 17:20:37 +04:00
5891b16f9d Merge pull request 'sergeev_evgenii_lab_1_ready' (#53) from sergeev_evgenii_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/53
2023-10-17 17:19:58 +04:00
81874f0f84 Merge pull request 'abanin_daniil_lab_1' (#48) from abanin_daniil_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/48
2023-10-17 17:18:46 +04:00
ce6105bee6 Merge pull request 'ilbekov_dmitriy_lab_1' (#49) from ilbekov_dmitriy_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/49
2023-10-17 17:18:26 +04:00
ca3b734361 arutunyan_dmitry_lab_6 is ready 2023-10-17 16:16:59 +04:00
2f1d67dc8f Merge pull request 'savenkov_alexander_lab_2 is done' (#39) from savenkov_alexander_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/39
2023-10-16 12:10:31 +04:00
b9ec1fd145 Merge pull request 'savenkov_alexander_lab_1 is done' (#38) from savenkov_alexander_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/38
2023-10-16 11:50:21 +04:00
f84f7abaa9 arutunyan_dmitry_lab_5 is ready 2023-10-16 01:23:28 +04:00
5445cef67d arutunyan_dmitry_lab_1 is ready 2023-10-16 01:21:35 +04:00
b967af636c arutunyan_dmitry_lab_4 is ready 2023-10-16 01:19:01 +04:00
ad60c6221e arutunyan_dmitry_lab_3 is ready 2023-10-16 01:16:02 +04:00
Евгений Сергеев
8942f824d5 lab1 is done 2023-10-16 00:55:14 +04:00
106e02f76b lab2 done 2023-10-15 21:40:08 +04:00
81479f5221 Пятая лабораторная готова 2023-10-15 20:20:22 +04:00
BossMouseFire
abd650a641 Lab2 2023-10-15 19:33:03 +04:00
15936c6996 lab1 done 2023-10-15 19:15:47 +04:00
BossMouseFire
c03b5e3a94 Lab1 2023-10-15 17:58:47 +04:00
16db685d3d lipatov_ilya_lab_3 2023-10-15 17:18:00 +04:00
84fe84a15a lipatov_ilya_lab_2 2023-10-15 13:15:18 +04:00
406315ddf7 lipatov_ilya_lab_1 2023-10-15 11:51:32 +04:00
d592186245 lipatov_ilya_lab_1 2023-10-15 11:48:51 +04:00
1f70bc7eb8 lipatov_ilya_lab_1 2023-10-15 11:46:22 +04:00
7ccd400417 Четвёртая лабораторная готова 2023-10-14 19:48:18 +04:00
DmitriyAntonov
c15ab42cd4 реади3 2023-10-14 14:43:47 +04:00
5eb35fe26d itog 2023-10-14 14:26:32 +04:00
DmitriyAntonov
ef485bf514 реади2 2023-10-12 21:20:23 +04:00
DmitriyAntonov
3a868e5545 реади1 2023-10-12 21:19:26 +04:00
35826f2461 savenkov_alexander_lab_2 is done 2023-10-12 15:29:03 +04:00
7781a379c3 savenkov_alexander_lab_2 is done 2023-10-12 15:28:53 +04:00
adca415462 savenkov_alexander_lab_1 is done 2023-10-12 15:17:22 +04:00
72507eb3af madyshev_egor_lab_4 is ready 2023-10-09 10:22:50 +04:00
516c7aea4f madyshev_egor_lab_3 is ready 2023-10-09 10:18:50 +04:00
e36a729776 Initial commit 2023-09-22 16:05:42 +04:00
bbd6aea496 init 2023-09-22 10:49:36 +04:00
Евгений Сергеев
f11ba4d365 init 2023-09-21 20:15:20 +04:00
born
16b36dce9b Updated branch moving file into the correct branch. 2023-09-18 20:19:16 +04:00
born
0d865a6160 Test lab 1 2023-09-18 20:15:16 +04:00
482 changed files with 1505428 additions and 13 deletions

141
.gitignore vendored Normal file
View File

@@ -0,0 +1,141 @@
### Python template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
.idea

6
.idea/IIS_2023_1.iml generated
View File

@@ -1,8 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.8 (venv)" jdkType="Python SDK" />
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.9 (PyCharmProjects)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

7
.idea/discord.xml generated Normal file
View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="DiscordProjectSettings">
<option name="show" value="ASK" />
<option name="description" value="" />
</component>
</project>

8
.idea/misc.xml generated
View File

@@ -1,4 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (venv)" project-jdk-type="Python SDK" />
<component name="Black">
<option name="sdkName" value="Python 3.9 (PyCharmProjects)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9 (PyCharmProjects)" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
</project>

72
.idea/workspace.xml generated
View File

@@ -1,7 +1,14 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="AutoImportSettings">
<option name="autoReloadType" value="SELECTIVE" />
</component>
<component name="ChangeListManager">
<list default="true" id="0ceb130e-88da-4a20-aad6-17f5ab4226ac" name="Changes" comment="" />
<list default="true" id="0ceb130e-88da-4a20-aad6-17f5ab4226ac" name="Changes" comment="">
<change beforePath="$PROJECT_DIR$/.idea/IIS_2023_1.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/IIS_2023_1.iml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/misc.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
</list>
<option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" />
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
@@ -15,30 +22,50 @@
</option>
</component>
<component name="Git.Settings">
<option name="RECENT_BRANCH_BY_REPOSITORY">
<map>
<entry key="$PROJECT_DIR$" value="main" />
</map>
</option>
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
</component>
<component name="MarkdownSettingsMigration">
<option name="stateVersion" value="1" />
</component>
<component name="ProjectColorInfo">{
&quot;associatedIndex&quot;: 2
}</component>
<component name="ProjectId" id="2VlZqWiOX68aCf0o2y0AtYJWURS" />
<component name="ProjectLevelVcsManager">
<ConfirmationsSetting value="1" id="Add" />
</component>
<component name="ProjectViewState">
<option name="hideEmptyMiddlePackages" value="true" />
<option name="showLibraryContents" value="true" />
</component>
<component name="PropertiesComponent"><![CDATA[{
"keyToString": {
"RunOnceActivity.OpenProjectViewOnStart": "true",
"RunOnceActivity.ShowReadmeOnStart": "true",
"last_opened_file_path": "D:/ulstukek/Course4/IIS/labs"
<component name="PropertiesComponent">{
&quot;keyToString&quot;: {
&quot;RunOnceActivity.OpenProjectViewOnStart&quot;: &quot;true&quot;,
&quot;RunOnceActivity.ShowReadmeOnStart&quot;: &quot;true&quot;,
&quot;WebServerToolWindowFactoryState&quot;: &quot;false&quot;,
&quot;git-widget-placeholder&quot;: &quot;senkin__alexander__lab__1&quot;,
&quot;last_opened_file_path&quot;: &quot;D:/ulstukek/Course4/IIS/labs&quot;,
&quot;node.js.detected.package.eslint&quot;: &quot;true&quot;,
&quot;node.js.detected.package.tslint&quot;: &quot;true&quot;,
&quot;node.js.selected.package.eslint&quot;: &quot;(autodetect)&quot;,
&quot;node.js.selected.package.tslint&quot;: &quot;(autodetect)&quot;,
&quot;nodejs_package_manager_path&quot;: &quot;npm&quot;,
&quot;settings.editor.selected.configurable&quot;: &quot;reference.settings.ide.settings.new.ui&quot;,
&quot;vue.rearranger.settings.migration&quot;: &quot;true&quot;
}
}]]></component>
}</component>
<component name="RecentsManager">
<key name="CopyFile.RECENT_KEYS">
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_3" />
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_1" />
</key>
</component>
<component name="RunManager" selected="Python.zavrazhnova_svetlana_lab3_2">
<component name="RunManager">
<configuration name="zavrazhnova_svetlana_lab3_2" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<module name="IIS_2023_1" />
<option name="INTERPRETER_OPTIONS" value="" />
@@ -51,6 +78,7 @@
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3/zavrazhnova_svetlana_lab3_2.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
@@ -72,6 +100,7 @@
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_2/zavrazhnova_svetlana_lab_2.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
@@ -93,6 +122,7 @@
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3/zavrazhnova_svetlana_lab_3_1.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
@@ -104,9 +134,11 @@
</configuration>
<recent_temporary>
<list>
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab_3_1" />
<item itemvalue="Python.zavrazhnova_svetlana_lab_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab_3_1" />
</list>
</recent_temporary>
</component>
@@ -118,18 +150,38 @@
<option name="number" value="Default" />
<option name="presentableId" value="Default" />
<updated>1695412818437</updated>
<workItem from="1697735437405" duration="1706000" />
<workItem from="1697740229646" duration="3802000" />
</task>
<servers />
</component>
<component name="TypeScriptGeneratedFilesManager">
<option name="version" value="3" />
</component>
<component name="Vcs.Log.Tabs.Properties">
<option name="TAB_STATES">
<map>
<entry key="MAIN">
<value>
<State />
<State>
<option name="FILTERS">
<map>
<entry key="branch">
<value>
<list>
<option value="HEAD" />
</list>
</value>
</entry>
</map>
</option>
</State>
</value>
</entry>
</map>
</option>
</component>
<component name="com.intellij.coverage.CoverageDataManagerImpl">
<SUITE FILE_PATH="coverage/PyCharmProjects$senkin_alexander_lab_1.coverage" NAME="senkin_alexander_lab_1 Coverage Results" MODIFIED="1697744262965" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/senkin_alexander_lab_1" />
</component>
</project>

View File

@@ -0,0 +1,47 @@
## Лабораторная работа №1
### Работа с типовыми наборами данных и различными моделями
### ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (стартовая точка класс lab1)
### Какие технологии использовались:
* Язык программирования `Python`,
* Библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* Программа гененерирует данные с make_moonsmake_moons (noise=0.3, random_state=rs)
* Сравнивает три типа моделей: инейная, полиномиальная, гребневая полиномиальная регрессии
### Примеры работы:
#### Результаты:
MAE - средняя абсолютная ошибка, измеряет среднюю абсолютную разницу между прогнозируемыми значениями модели и фактическими значениями целевой переменной
MSE - средняя квадратическая ошибка, измеряет среднюю квадратичную разницу между прогнозируемыми значениями модели и фактическими значениями целевой переменной
Чем меньше значения показателей, тем лучше модель справляется с предсказанием
Линейная регрессия
MAE 0.2959889435199454
MSE 0.13997968555679302
Полиномиальная регрессия
MAE 0.21662135861071705
MSE 0.08198825629271855
Гребневая полиномиальная регрессия
MAE 0.2102788716636562
MSE 0.07440133949387796
Лучший результат показала модель **Гребневая полиномиальная регрессия**
![Lin](lin_reg.jpg)
![Pol](pol_reg.jpg)
![Greb](greb_reg.jpg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

View File

@@ -0,0 +1,66 @@
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.datasets import make_moons
from sklearn import metrics
cm_bright = ListedColormap(['#8B0000', '#FF0000'])
cm_bright1 = ListedColormap(['#FF4500', '#FFA500'])
def create_moons():
x, y = make_moons(noise=0.3, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.4, random_state=42)
linear_regretion(X_train, X_test, y_train, y_test)
polynomial_regretion(X_train, X_test, y_train, y_test)
ridge_regretion(X_train, X_test, y_train, y_test)
def linear_regretion(x_train, x_test, y_train, y_test):
model = LinearRegression().fit(x_train, y_train)
y_predict = model.intercept_ + model.coef_ * x_test
plt.title('Линейная регрессия')
print('Линейная регрессия')
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(x_test, y_predict, color='red')
print('MAE', metrics.mean_absolute_error(y_test, y_predict[:, 1]))
print('MSE', metrics.mean_squared_error(y_test, y_predict[:, 1]))
plt.show()
def polynomial_regretion(x_train, x_test, y_train, y_test):
polynomial_features = PolynomialFeatures(degree=3)
X_polynomial = polynomial_features.fit_transform(x_train, y_train)
base_model = LinearRegression()
base_model.fit(X_polynomial, y_train)
y_predict = base_model.predict(X_polynomial)
plt.title('Полиномиальная регрессия')
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(x_train, y_predict, color='blue')
plt.show()
print('Полиномиальная регрессия')
print('MAE', metrics.mean_absolute_error(y_train, y_predict))
print('MSE', metrics.mean_squared_error(y_train, y_predict))
def ridge_regretion(X_train, X_test, y_train, y_test):
model = Pipeline([('poly', PolynomialFeatures(degree=3)), ('ridge', Ridge(alpha=1.0))])
model.fit(X_train, y_train)
y_predict = model.predict(X_test)
plt.title('Гребневая полиномиальная регрессия')
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(X_test, y_predict, color='blue')
plt.show()
print('Гребневая полиномиальная регрессия')
print('MAE', metrics.mean_absolute_error(y_test, y_predict))
print('MSE', metrics.mean_squared_error(y_test, y_predict))
create_moons()

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

View File

@@ -0,0 +1,41 @@
## Лабораторная работа №2
### Ранжирование признаков
## ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (стартовая точка lab2)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* Генерирует данные и обучает такие модели, как: LinearRegression, RandomizedLasso, Recursive Feature Elimination (RFE)
* Производиться ранжирование признаков с помощью моделей LinearRegression, RandomizedLasso, Recursive Feature Elimination (RFE)
* Отображение получившихся результатов: 4 самых важных признака по среднему значению, значения признаков для каждой модели
### 4 самых важных признака по среднему значению
* Параметр - x4, значение - 0.56
* Параметр - x1, значение - 0.45
* Параметр - x2, значение - 0.33
* Параметр - x9, значение - 0.33
####Linear Regression
[('x1', 1.0), ('x4', 0.69), ('x2', 0.61), ('x11', 0.59), ('x3', 0.51), ('x13', 0.48), ('x5', 0.19), ('x12', 0.19), ('x14', 0.12), ('x8', 0.03), ('x6', 0.02), ('x10', 0.01), ('x7', 0.0), ('x9', 0.0)]
####Recursive Feature Elimination
[('x9', 1.0), ('x7', 0.86), ('x10', 0.71), ('x6', 0.57), ('x8', 0.43), ('x14', 0.29), ('x12', 0.14), ('x1', 0.0), ('x2', 0.0), ('x3', 0.0), ('x4', 0.0), ('x5', 0.0), ('x11', 0.0), ('x13', 0.0)]
####Randomize Lasso
[('x4', 1.0), ('x2', 0.37), ('x1', 0.36), ('x5', 0.32), ('x6', 0.02), ('x8', 0.02), ('x3', 0.01), ('x7', 0.0), ('x9', 0.0), ('x10', 0.0), ('x11', 0.0), ('x12', 0.0), ('x13', 0.0), ('x14', 0.0)]
#### Результаты:
![Result](result.png)

View File

@@ -0,0 +1,76 @@
from sklearn.utils import check_X_y, check_random_state
from sklearn.linear_model import Lasso
from scipy.sparse import issparse
from scipy import sparse
def _rescale_data(x, weights):
if issparse(x):
size = weights.shape[0]
weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size))
x_rescaled = x * weight_dia
else:
x_rescaled = x * (1 - weights)
return x_rescaled
class RandomizedLasso(Lasso):
"""
Randomized version of scikit-learns Lasso class.
Randomized LASSO is a generalization of the LASSO. The LASSO penalises
the absolute value of the coefficients with a penalty term proportional
to `alpha`, but the randomized LASSO changes the penalty to a randomly
chosen value in the range `[alpha, alpha/weakness]`.
Parameters
----------
weakness : float
Weakness value for randomized LASSO. Must be in (0, 1].
See also
--------
sklearn.linear_model.LogisticRegression : learns logistic regression models
using the same algorithm.
"""
def __init__(self, weakness=0.5, alpha=1.0, fit_intercept=True,
precompute=False, copy_X=True, max_iter=1000,
tol=1e-4, warm_start=False, positive=False,
random_state=None, selection='cyclic'):
self.weakness = weakness
super(RandomizedLasso, self).__init__(
alpha=alpha, fit_intercept=fit_intercept, precompute=precompute, copy_X=copy_X,
max_iter=max_iter, tol=tol, warm_start=warm_start,
positive=positive, random_state=random_state,
selection=selection)
def fit(self, X, y):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
The training input samples.
y : array-like, shape = [n_samples]
The target values.
"""
if not isinstance(self.weakness, float) or not (0.0 < self.weakness <= 1.0):
raise ValueError('weakness should be a float in (0, 1], got %s' % self.weakness)
X, y = check_X_y(X, y, accept_sparse=True)
n_features = X.shape[1]
weakness = 1. - self.weakness
random_state = check_random_state(self.random_state)
weights = weakness * random_state.randint(0, 1 + 1, size=(n_features,))
# TODO: I am afraid this will do double normalization if set to true
#X, y, _, _ = _preprocess_data(X, y, self.fit_intercept, normalize=self.normalize, copy=False,
# sample_weight=None, return_mean=False)
# TODO: Check if this is a problem if it happens before standardization
X_rescaled = _rescale_data(X, weights)
return super(RandomizedLasso, self).fit(X_rescaled, y)

View File

@@ -0,0 +1,81 @@
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
from RadomizedLasso import RandomizedLasso
from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler
import numpy as np
names = ["x%s" % i for i in range(1, 15)]
def start_point():
X,Y = generation_data()
# Линейная модель
lr = LinearRegression()
lr.fit(X, Y)
# Рекурсивное сокращение признаков
rfe = RFE(lr)
rfe.fit(X, Y)
# Случайное Лассо
randomized_lasso = RandomizedLasso(alpha=.01)
randomized_lasso.fit(X, Y)
ranks = {"Linear Regression": rank_to_dict(lr.coef_), "Recursive Feature Elimination": rank_to_dict(rfe.ranking_),
"Randomize Lasso": rank_to_dict(randomized_lasso.coef_)}
get_estimation(ranks)
print_sorted_data(ranks)
def generation_data():
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
return X, Y
def rank_to_dict(ranks):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
def get_estimation(ranks: {}):
mean = {}
#«Бежим» по списку ranks
for key, value in ranks.items():
for item in value.items():
if(item[0] not in mean):
mean[item[0]] = 0
mean[item[0]] += item[1]
for key, value in mean.items():
res = value/len(ranks)
mean[key] = round(res, 2)
mean_sorted = sorted(mean.items(), key=lambda item: item[1], reverse=True)
print("Средние значения")
print(mean_sorted)
print("4 самых важных признака по среднему значению")
for item in mean_sorted[:4]:
print('Параметр - {0}, значение - {1}'.format(item[0], item[1]))
def print_sorted_data(ranks: {}):
print()
for key, value in ranks.items():
ranks[key] = sorted(value.items(), key=lambda item: item[1], reverse=True)
for key, value in ranks.items():
print(key)
print(value)
start_point()

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

View File

@@ -0,0 +1,27 @@
## Лабораторная работа №3
### Деревья решений
## Cтудент группы ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (lab3)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* Выполняет ранжирование признаков для регрессионной модели
* По данным "Eligibility Prediction for Loan" решает задачу классификации (с помощью дерева решений), в которой необходимо выявить риски выдачи кредита и определить его статус (выдан или отказ). В качестве исходных данных используются три признака: Credit_History - соответствие кредитной истории стандартам банка, ApplicantIncome - доход заявителя, LoanAmount - сумма кредита.
### Примеры работы:
#### Результаты:
* Наиболее важным параметром при выдачи кредита оказался доход заявителя - ApplicantIncome, затем LoanAmount - сумма выдаваемого кредита
![Result](result.png)

View File

@@ -0,0 +1,33 @@
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
import pandas as pd
import numpy as np
pd.options.mode.chained_assignment = None
FILE_PATH = "loan.csv"
REQUIRED_COLUMNS = ['Credit_History', 'LoanAmount', 'ApplicantIncome']
TARGET_COLUMN = 'Loan_Status'
def print_classifier_info(feature_importance):
feature_names = REQUIRED_COLUMNS
embarked_score = feature_importance[-3:].sum()
scores = np.append(feature_importance[:2], embarked_score)
scores = map(lambda score: round(score, 2), scores)
print(dict(zip(feature_names, scores)))
if __name__ == '__main__':
data = pd.read_csv(FILE_PATH)
X = data[REQUIRED_COLUMNS]
y = data[TARGET_COLUMN]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier_tree = DecisionTreeClassifier(random_state=42)
classifier_tree.fit(X_train, y_train)
print_classifier_info(classifier_tree.feature_importances_)
print("Оценка качества (задача классификации) - ", classifier_tree.score(X_test, y_test))

View File

@@ -0,0 +1,615 @@
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
LP001002,Male,No,0,1,No,5849,0.0,360.0,1.0,0,Y,0.0
LP001003,Male,Yes,1,1,No,4583,1508.0,128.0,360.0,1,Rural,0.0
LP001005,Male,Yes,0,1,Yes,3000,0.0,66.0,360.0,1,Urban,1.0
LP001006,Male,Yes,0,0,No,2583,2358.0,120.0,360.0,1,Urban,1.0
LP001008,Male,No,0,1,No,6000,0.0,141.0,360.0,1,Urban,1.0
LP001011,Male,Yes,2,1,Yes,5417,4196.0,267.0,360.0,1,Urban,1.0
LP001013,Male,Yes,0,0,No,2333,1516.0,95.0,360.0,1,Urban,1.0
LP001014,Male,Yes,3+,1,No,3036,2504.0,158.0,360.0,0,Semiurban,0.0
LP001018,Male,Yes,2,1,No,4006,1526.0,168.0,360.0,1,Urban,1.0
LP001020,Male,Yes,1,1,No,12841,10968.0,349.0,360.0,1,Semiurban,0.0
LP001024,Male,Yes,2,1,No,3200,700.0,70.0,360.0,1,Urban,1.0
LP001027,Male,Yes,2,1,,2500,1840.0,109.0,360.0,1,Urban,1.0
LP001028,Male,Yes,2,1,No,3073,8106.0,200.0,360.0,1,Urban,1.0
LP001029,Male,No,0,1,No,1853,2840.0,114.0,360.0,1,Rural,0.0
LP001030,Male,Yes,2,1,No,1299,1086.0,17.0,120.0,1,Urban,1.0
LP001032,Male,No,0,1,No,4950,0.0,125.0,360.0,1,Urban,1.0
LP001034,Male,No,1,0,No,3596,0.0,100.0,240.0,0,Urban,1.0
LP001036,Female,No,0,1,No,3510,0.0,76.0,360.0,0,Urban,0.0
LP001038,Male,Yes,0,0,No,4887,0.0,133.0,360.0,1,Rural,0.0
LP001041,Male,Yes,0,1,,2600,3500.0,115.0,,1,Urban,1.0
LP001043,Male,Yes,0,0,No,7660,0.0,104.0,360.0,0,Urban,0.0
LP001046,Male,Yes,1,1,No,5955,5625.0,315.0,360.0,1,Urban,1.0
LP001047,Male,Yes,0,0,No,2600,1911.0,116.0,360.0,0,Semiurban,0.0
LP001050,,Yes,2,0,No,3365,1917.0,112.0,360.0,0,Rural,0.0
LP001052,Male,Yes,1,1,,3717,2925.0,151.0,360.0,0,Semiurban,0.0
LP001066,Male,Yes,0,1,Yes,9560,0.0,191.0,360.0,1,Semiurban,1.0
LP001068,Male,Yes,0,1,No,2799,2253.0,122.0,360.0,1,Semiurban,1.0
LP001073,Male,Yes,2,0,No,4226,1040.0,110.0,360.0,1,Urban,1.0
LP001086,Male,No,0,0,No,1442,0.0,35.0,360.0,1,Urban,0.0
LP001087,Female,No,2,1,,3750,2083.0,120.0,360.0,1,Semiurban,1.0
LP001091,Male,Yes,1,1,,4166,3369.0,201.0,360.0,0,Urban,0.0
LP001095,Male,No,0,1,No,3167,0.0,74.0,360.0,1,Urban,0.0
LP001097,Male,No,1,1,Yes,4692,0.0,106.0,360.0,1,Rural,0.0
LP001098,Male,Yes,0,1,No,3500,1667.0,114.0,360.0,1,Semiurban,1.0
LP001100,Male,No,3+,1,No,12500,3000.0,320.0,360.0,1,Rural,0.0
LP001106,Male,Yes,0,1,No,2275,2067.0,0.0,360.0,1,Urban,1.0
LP001109,Male,Yes,0,1,No,1828,1330.0,100.0,,0,Urban,0.0
LP001112,Female,Yes,0,1,No,3667,1459.0,144.0,360.0,1,Semiurban,1.0
LP001114,Male,No,0,1,No,4166,7210.0,184.0,360.0,1,Urban,1.0
LP001116,Male,No,0,0,No,3748,1668.0,110.0,360.0,1,Semiurban,1.0
LP001119,Male,No,0,1,No,3600,0.0,80.0,360.0,1,Urban,0.0
LP001120,Male,No,0,1,No,1800,1213.0,47.0,360.0,1,Urban,1.0
LP001123,Male,Yes,0,1,No,2400,0.0,75.0,360.0,0,Urban,1.0
LP001131,Male,Yes,0,1,No,3941,2336.0,134.0,360.0,1,Semiurban,1.0
LP001136,Male,Yes,0,0,Yes,4695,0.0,96.0,,1,Urban,1.0
LP001137,Female,No,0,1,No,3410,0.0,88.0,,1,Urban,1.0
LP001138,Male,Yes,1,1,No,5649,0.0,44.0,360.0,1,Urban,1.0
LP001144,Male,Yes,0,1,No,5821,0.0,144.0,360.0,1,Urban,1.0
LP001146,Female,Yes,0,1,No,2645,3440.0,120.0,360.0,0,Urban,0.0
LP001151,Female,No,0,1,No,4000,2275.0,144.0,360.0,1,Semiurban,1.0
LP001155,Female,Yes,0,0,No,1928,1644.0,100.0,360.0,1,Semiurban,1.0
LP001157,Female,No,0,1,No,3086,0.0,120.0,360.0,1,Semiurban,1.0
LP001164,Female,No,0,1,No,4230,0.0,112.0,360.0,1,Semiurban,0.0
LP001179,Male,Yes,2,1,No,4616,0.0,134.0,360.0,1,Urban,0.0
LP001186,Female,Yes,1,1,Yes,11500,0.0,286.0,360.0,0,Urban,0.0
LP001194,Male,Yes,2,1,No,2708,1167.0,97.0,360.0,1,Semiurban,1.0
LP001195,Male,Yes,0,1,No,2132,1591.0,96.0,360.0,1,Semiurban,1.0
LP001197,Male,Yes,0,1,No,3366,2200.0,135.0,360.0,1,Rural,0.0
LP001198,Male,Yes,1,1,No,8080,2250.0,180.0,360.0,1,Urban,1.0
LP001199,Male,Yes,2,0,No,3357,2859.0,144.0,360.0,1,Urban,1.0
LP001205,Male,Yes,0,1,No,2500,3796.0,120.0,360.0,1,Urban,1.0
LP001206,Male,Yes,3+,1,No,3029,0.0,99.0,360.0,1,Urban,1.0
LP001207,Male,Yes,0,0,Yes,2609,3449.0,165.0,180.0,0,Rural,0.0
LP001213,Male,Yes,1,1,No,4945,0.0,0.0,360.0,0,Rural,0.0
LP001222,Female,No,0,1,No,4166,0.0,116.0,360.0,0,Semiurban,0.0
LP001225,Male,Yes,0,1,No,5726,4595.0,258.0,360.0,1,Semiurban,0.0
LP001228,Male,No,0,0,No,3200,2254.0,126.0,180.0,0,Urban,0.0
LP001233,Male,Yes,1,1,No,10750,0.0,312.0,360.0,1,Urban,1.0
LP001238,Male,Yes,3+,0,Yes,7100,0.0,125.0,60.0,1,Urban,1.0
LP001241,Female,No,0,1,No,4300,0.0,136.0,360.0,0,Semiurban,0.0
LP001243,Male,Yes,0,1,No,3208,3066.0,172.0,360.0,1,Urban,1.0
LP001245,Male,Yes,2,0,Yes,1875,1875.0,97.0,360.0,1,Semiurban,1.0
LP001248,Male,No,0,1,No,3500,0.0,81.0,300.0,1,Semiurban,1.0
LP001250,Male,Yes,3+,0,No,4755,0.0,95.0,,0,Semiurban,0.0
LP001253,Male,Yes,3+,1,Yes,5266,1774.0,187.0,360.0,1,Semiurban,1.0
LP001255,Male,No,0,1,No,3750,0.0,113.0,480.0,1,Urban,0.0
LP001256,Male,No,0,1,No,3750,4750.0,176.0,360.0,1,Urban,0.0
LP001259,Male,Yes,1,1,Yes,1000,3022.0,110.0,360.0,1,Urban,0.0
LP001263,Male,Yes,3+,1,No,3167,4000.0,180.0,300.0,0,Semiurban,0.0
LP001264,Male,Yes,3+,0,Yes,3333,2166.0,130.0,360.0,0,Semiurban,1.0
LP001265,Female,No,0,1,No,3846,0.0,111.0,360.0,1,Semiurban,1.0
LP001266,Male,Yes,1,1,Yes,2395,0.0,0.0,360.0,1,Semiurban,1.0
LP001267,Female,Yes,2,1,No,1378,1881.0,167.0,360.0,1,Urban,0.0
LP001273,Male,Yes,0,1,No,6000,2250.0,265.0,360.0,0,Semiurban,0.0
LP001275,Male,Yes,1,1,No,3988,0.0,50.0,240.0,1,Urban,1.0
LP001279,Male,No,0,1,No,2366,2531.0,136.0,360.0,1,Semiurban,1.0
LP001280,Male,Yes,2,0,No,3333,2000.0,99.0,360.0,0,Semiurban,1.0
LP001282,Male,Yes,0,1,No,2500,2118.0,104.0,360.0,1,Semiurban,1.0
LP001289,Male,No,0,1,No,8566,0.0,210.0,360.0,1,Urban,1.0
LP001310,Male,Yes,0,1,No,5695,4167.0,175.0,360.0,1,Semiurban,1.0
LP001316,Male,Yes,0,1,No,2958,2900.0,131.0,360.0,1,Semiurban,1.0
LP001318,Male,Yes,2,1,No,6250,5654.0,188.0,180.0,1,Semiurban,1.0
LP001319,Male,Yes,2,0,No,3273,1820.0,81.0,360.0,1,Urban,1.0
LP001322,Male,No,0,1,No,4133,0.0,122.0,360.0,1,Semiurban,1.0
LP001325,Male,No,0,0,No,3620,0.0,25.0,120.0,1,Semiurban,1.0
LP001326,Male,No,0,1,,6782,0.0,0.0,360.0,0,Urban,0.0
LP001327,Female,Yes,0,1,No,2484,2302.0,137.0,360.0,1,Semiurban,1.0
LP001333,Male,Yes,0,1,No,1977,997.0,50.0,360.0,1,Semiurban,1.0
LP001334,Male,Yes,0,0,No,4188,0.0,115.0,180.0,1,Semiurban,1.0
LP001343,Male,Yes,0,1,No,1759,3541.0,131.0,360.0,1,Semiurban,1.0
LP001345,Male,Yes,2,0,No,4288,3263.0,133.0,180.0,1,Urban,1.0
LP001349,Male,No,0,1,No,4843,3806.0,151.0,360.0,1,Semiurban,1.0
LP001350,Male,Yes,,1,No,13650,0.0,0.0,360.0,1,Urban,1.0
LP001356,Male,Yes,0,1,No,4652,3583.0,0.0,360.0,1,Semiurban,1.0
LP001357,Male,,,1,No,3816,754.0,160.0,360.0,1,Urban,1.0
LP001367,Male,Yes,1,1,No,3052,1030.0,100.0,360.0,1,Urban,1.0
LP001369,Male,Yes,2,1,No,11417,1126.0,225.0,360.0,1,Urban,1.0
LP001370,Male,No,0,0,,7333,0.0,120.0,360.0,1,Rural,0.0
LP001379,Male,Yes,2,1,No,3800,3600.0,216.0,360.0,0,Urban,0.0
LP001384,Male,Yes,3+,0,No,2071,754.0,94.0,480.0,1,Semiurban,1.0
LP001385,Male,No,0,1,No,5316,0.0,136.0,360.0,1,Urban,1.0
LP001387,Female,Yes,0,1,,2929,2333.0,139.0,360.0,1,Semiurban,1.0
LP001391,Male,Yes,0,0,No,3572,4114.0,152.0,,0,Rural,0.0
LP001392,Female,No,1,1,Yes,7451,0.0,0.0,360.0,1,Semiurban,1.0
LP001398,Male,No,0,1,,5050,0.0,118.0,360.0,1,Semiurban,1.0
LP001401,Male,Yes,1,1,No,14583,0.0,185.0,180.0,1,Rural,1.0
LP001404,Female,Yes,0,1,No,3167,2283.0,154.0,360.0,1,Semiurban,1.0
LP001405,Male,Yes,1,1,No,2214,1398.0,85.0,360.0,0,Urban,1.0
LP001421,Male,Yes,0,1,No,5568,2142.0,175.0,360.0,1,Rural,0.0
LP001422,Female,No,0,1,No,10408,0.0,259.0,360.0,1,Urban,1.0
LP001426,Male,Yes,,1,No,5667,2667.0,180.0,360.0,1,Rural,1.0
LP001430,Female,No,0,1,No,4166,0.0,44.0,360.0,1,Semiurban,1.0
LP001431,Female,No,0,1,No,2137,8980.0,137.0,360.0,0,Semiurban,1.0
LP001432,Male,Yes,2,1,No,2957,0.0,81.0,360.0,1,Semiurban,1.0
LP001439,Male,Yes,0,0,No,4300,2014.0,194.0,360.0,1,Rural,1.0
LP001443,Female,No,0,1,No,3692,0.0,93.0,360.0,0,Rural,1.0
LP001448,,Yes,3+,1,No,23803,0.0,370.0,360.0,1,Rural,1.0
LP001449,Male,No,0,1,No,3865,1640.0,0.0,360.0,1,Rural,1.0
LP001451,Male,Yes,1,1,Yes,10513,3850.0,160.0,180.0,0,Urban,0.0
LP001465,Male,Yes,0,1,No,6080,2569.0,182.0,360.0,0,Rural,0.0
LP001469,Male,No,0,1,Yes,20166,0.0,650.0,480.0,0,Urban,1.0
LP001473,Male,No,0,1,No,2014,1929.0,74.0,360.0,1,Urban,1.0
LP001478,Male,No,0,1,No,2718,0.0,70.0,360.0,1,Semiurban,1.0
LP001482,Male,Yes,0,1,Yes,3459,0.0,25.0,120.0,1,Semiurban,1.0
LP001487,Male,No,0,1,No,4895,0.0,102.0,360.0,1,Semiurban,1.0
LP001488,Male,Yes,3+,1,No,4000,7750.0,290.0,360.0,1,Semiurban,0.0
LP001489,Female,Yes,0,1,No,4583,0.0,84.0,360.0,1,Rural,0.0
LP001491,Male,Yes,2,1,Yes,3316,3500.0,88.0,360.0,1,Urban,1.0
LP001492,Male,No,0,1,No,14999,0.0,242.0,360.0,0,Semiurban,0.0
LP001493,Male,Yes,2,0,No,4200,1430.0,129.0,360.0,1,Rural,0.0
LP001497,Male,Yes,2,1,No,5042,2083.0,185.0,360.0,1,Rural,0.0
LP001498,Male,No,0,1,No,5417,0.0,168.0,360.0,1,Urban,1.0
LP001504,Male,No,0,1,Yes,6950,0.0,175.0,180.0,1,Semiurban,1.0
LP001507,Male,Yes,0,1,No,2698,2034.0,122.0,360.0,1,Semiurban,1.0
LP001508,Male,Yes,2,1,No,11757,0.0,187.0,180.0,1,Urban,1.0
LP001514,Female,Yes,0,1,No,2330,4486.0,100.0,360.0,1,Semiurban,1.0
LP001516,Female,Yes,2,1,No,14866,0.0,70.0,360.0,1,Urban,1.0
LP001518,Male,Yes,1,1,No,1538,1425.0,30.0,360.0,1,Urban,1.0
LP001519,Female,No,0,1,No,10000,1666.0,225.0,360.0,1,Rural,0.0
LP001520,Male,Yes,0,1,No,4860,830.0,125.0,360.0,1,Semiurban,1.0
LP001528,Male,No,0,1,No,6277,0.0,118.0,360.0,0,Rural,0.0
LP001529,Male,Yes,0,1,Yes,2577,3750.0,152.0,360.0,1,Rural,1.0
LP001531,Male,No,0,1,No,9166,0.0,244.0,360.0,1,Urban,0.0
LP001532,Male,Yes,2,0,No,2281,0.0,113.0,360.0,1,Rural,0.0
LP001535,Male,No,0,1,No,3254,0.0,50.0,360.0,1,Urban,1.0
LP001536,Male,Yes,3+,1,No,39999,0.0,600.0,180.0,0,Semiurban,1.0
LP001541,Male,Yes,1,1,No,6000,0.0,160.0,360.0,0,Rural,1.0
LP001543,Male,Yes,1,1,No,9538,0.0,187.0,360.0,1,Urban,1.0
LP001546,Male,No,0,1,,2980,2083.0,120.0,360.0,1,Rural,1.0
LP001552,Male,Yes,0,1,No,4583,5625.0,255.0,360.0,1,Semiurban,1.0
LP001560,Male,Yes,0,0,No,1863,1041.0,98.0,360.0,1,Semiurban,1.0
LP001562,Male,Yes,0,1,No,7933,0.0,275.0,360.0,1,Urban,0.0
LP001565,Male,Yes,1,1,No,3089,1280.0,121.0,360.0,0,Semiurban,0.0
LP001570,Male,Yes,2,1,No,4167,1447.0,158.0,360.0,1,Rural,1.0
LP001572,Male,Yes,0,1,No,9323,0.0,75.0,180.0,1,Urban,1.0
LP001574,Male,Yes,0,1,No,3707,3166.0,182.0,,1,Rural,1.0
LP001577,Female,Yes,0,1,No,4583,0.0,112.0,360.0,1,Rural,0.0
LP001578,Male,Yes,0,1,No,2439,3333.0,129.0,360.0,1,Rural,1.0
LP001579,Male,No,0,1,No,2237,0.0,63.0,480.0,0,Semiurban,0.0
LP001580,Male,Yes,2,1,No,8000,0.0,200.0,360.0,1,Semiurban,1.0
LP001581,Male,Yes,0,0,,1820,1769.0,95.0,360.0,1,Rural,1.0
LP001585,,Yes,3+,1,No,51763,0.0,700.0,300.0,1,Urban,1.0
LP001586,Male,Yes,3+,0,No,3522,0.0,81.0,180.0,1,Rural,0.0
LP001594,Male,Yes,0,1,No,5708,5625.0,187.0,360.0,1,Semiurban,1.0
LP001603,Male,Yes,0,0,Yes,4344,736.0,87.0,360.0,1,Semiurban,0.0
LP001606,Male,Yes,0,1,No,3497,1964.0,116.0,360.0,1,Rural,1.0
LP001608,Male,Yes,2,1,No,2045,1619.0,101.0,360.0,1,Rural,1.0
LP001610,Male,Yes,3+,1,No,5516,11300.0,495.0,360.0,0,Semiurban,0.0
LP001616,Male,Yes,1,1,No,3750,0.0,116.0,360.0,1,Semiurban,1.0
LP001630,Male,No,0,0,No,2333,1451.0,102.0,480.0,0,Urban,0.0
LP001633,Male,Yes,1,1,No,6400,7250.0,180.0,360.0,0,Urban,0.0
LP001634,Male,No,0,1,No,1916,5063.0,67.0,360.0,0,Rural,0.0
LP001636,Male,Yes,0,1,No,4600,0.0,73.0,180.0,1,Semiurban,1.0
LP001637,Male,Yes,1,1,No,33846,0.0,260.0,360.0,1,Semiurban,0.0
LP001639,Female,Yes,0,1,No,3625,0.0,108.0,360.0,1,Semiurban,1.0
LP001640,Male,Yes,0,1,Yes,39147,4750.0,120.0,360.0,1,Semiurban,1.0
LP001641,Male,Yes,1,1,Yes,2178,0.0,66.0,300.0,0,Rural,0.0
LP001643,Male,Yes,0,1,No,2383,2138.0,58.0,360.0,0,Rural,1.0
LP001644,,Yes,0,1,Yes,674,5296.0,168.0,360.0,1,Rural,1.0
LP001647,Male,Yes,0,1,No,9328,0.0,188.0,180.0,1,Rural,1.0
LP001653,Male,No,0,0,No,4885,0.0,48.0,360.0,1,Rural,1.0
LP001656,Male,No,0,1,No,12000,0.0,164.0,360.0,1,Semiurban,0.0
LP001657,Male,Yes,0,0,No,6033,0.0,160.0,360.0,1,Urban,0.0
LP001658,Male,No,0,1,No,3858,0.0,76.0,360.0,1,Semiurban,1.0
LP001664,Male,No,0,1,No,4191,0.0,120.0,360.0,1,Rural,1.0
LP001665,Male,Yes,1,1,No,3125,2583.0,170.0,360.0,1,Semiurban,0.0
LP001666,Male,No,0,1,No,8333,3750.0,187.0,360.0,1,Rural,1.0
LP001669,Female,No,0,0,No,1907,2365.0,120.0,,1,Urban,1.0
LP001671,Female,Yes,0,1,No,3416,2816.0,113.0,360.0,0,Semiurban,1.0
LP001673,Male,No,0,1,Yes,11000,0.0,83.0,360.0,1,Urban,0.0
LP001674,Male,Yes,1,0,No,2600,2500.0,90.0,360.0,1,Semiurban,1.0
LP001677,Male,No,2,1,No,4923,0.0,166.0,360.0,0,Semiurban,1.0
LP001682,Male,Yes,3+,0,No,3992,0.0,0.0,180.0,1,Urban,0.0
LP001688,Male,Yes,1,0,No,3500,1083.0,135.0,360.0,1,Urban,1.0
LP001691,Male,Yes,2,0,No,3917,0.0,124.0,360.0,1,Semiurban,1.0
LP001692,Female,No,0,0,No,4408,0.0,120.0,360.0,1,Semiurban,1.0
LP001693,Female,No,0,1,No,3244,0.0,80.0,360.0,1,Urban,1.0
LP001698,Male,No,0,0,No,3975,2531.0,55.0,360.0,1,Rural,1.0
LP001699,Male,No,0,1,No,2479,0.0,59.0,360.0,1,Urban,1.0
LP001702,Male,No,0,1,No,3418,0.0,127.0,360.0,1,Semiurban,0.0
LP001708,Female,No,0,1,No,10000,0.0,214.0,360.0,1,Semiurban,0.0
LP001711,Male,Yes,3+,1,No,3430,1250.0,128.0,360.0,0,Semiurban,0.0
LP001713,Male,Yes,1,1,Yes,7787,0.0,240.0,360.0,1,Urban,1.0
LP001715,Male,Yes,3+,0,Yes,5703,0.0,130.0,360.0,1,Rural,1.0
LP001716,Male,Yes,0,1,No,3173,3021.0,137.0,360.0,1,Urban,1.0
LP001720,Male,Yes,3+,0,No,3850,983.0,100.0,360.0,1,Semiurban,1.0
LP001722,Male,Yes,0,1,No,150,1800.0,135.0,360.0,1,Rural,0.0
LP001726,Male,Yes,0,1,No,3727,1775.0,131.0,360.0,1,Semiurban,1.0
LP001732,Male,Yes,2,1,,5000,0.0,72.0,360.0,0,Semiurban,0.0
LP001734,Female,Yes,2,1,No,4283,2383.0,127.0,360.0,0,Semiurban,1.0
LP001736,Male,Yes,0,1,No,2221,0.0,60.0,360.0,0,Urban,0.0
LP001743,Male,Yes,2,1,No,4009,1717.0,116.0,360.0,1,Semiurban,1.0
LP001744,Male,No,0,1,No,2971,2791.0,144.0,360.0,1,Semiurban,1.0
LP001749,Male,Yes,0,1,No,7578,1010.0,175.0,,1,Semiurban,1.0
LP001750,Male,Yes,0,1,No,6250,0.0,128.0,360.0,1,Semiurban,1.0
LP001751,Male,Yes,0,1,No,3250,0.0,170.0,360.0,1,Rural,0.0
LP001754,Male,Yes,,0,Yes,4735,0.0,138.0,360.0,1,Urban,0.0
LP001758,Male,Yes,2,1,No,6250,1695.0,210.0,360.0,1,Semiurban,1.0
LP001760,Male,,,1,No,4758,0.0,158.0,480.0,1,Semiurban,1.0
LP001761,Male,No,0,1,Yes,6400,0.0,200.0,360.0,1,Rural,1.0
LP001765,Male,Yes,1,1,No,2491,2054.0,104.0,360.0,1,Semiurban,1.0
LP001768,Male,Yes,0,1,,3716,0.0,42.0,180.0,1,Rural,1.0
LP001770,Male,No,0,0,No,3189,2598.0,120.0,,1,Rural,1.0
LP001776,Female,No,0,1,No,8333,0.0,280.0,360.0,1,Semiurban,1.0
LP001778,Male,Yes,1,1,No,3155,1779.0,140.0,360.0,1,Semiurban,1.0
LP001784,Male,Yes,1,1,No,5500,1260.0,170.0,360.0,1,Rural,1.0
LP001786,Male,Yes,0,1,,5746,0.0,255.0,360.0,0,Urban,0.0
LP001788,Female,No,0,1,Yes,3463,0.0,122.0,360.0,0,Urban,1.0
LP001790,Female,No,1,1,No,3812,0.0,112.0,360.0,1,Rural,1.0
LP001792,Male,Yes,1,1,No,3315,0.0,96.0,360.0,1,Semiurban,1.0
LP001798,Male,Yes,2,1,No,5819,5000.0,120.0,360.0,1,Rural,1.0
LP001800,Male,Yes,1,0,No,2510,1983.0,140.0,180.0,1,Urban,0.0
LP001806,Male,No,0,1,No,2965,5701.0,155.0,60.0,1,Urban,1.0
LP001807,Male,Yes,2,1,Yes,6250,1300.0,108.0,360.0,1,Rural,1.0
LP001811,Male,Yes,0,0,No,3406,4417.0,123.0,360.0,1,Semiurban,1.0
LP001813,Male,No,0,1,Yes,6050,4333.0,120.0,180.0,1,Urban,0.0
LP001814,Male,Yes,2,1,No,9703,0.0,112.0,360.0,1,Urban,1.0
LP001819,Male,Yes,1,0,No,6608,0.0,137.0,180.0,1,Urban,1.0
LP001824,Male,Yes,1,1,No,2882,1843.0,123.0,480.0,1,Semiurban,1.0
LP001825,Male,Yes,0,1,No,1809,1868.0,90.0,360.0,1,Urban,1.0
LP001835,Male,Yes,0,0,No,1668,3890.0,201.0,360.0,0,Semiurban,0.0
LP001836,Female,No,2,1,No,3427,0.0,138.0,360.0,1,Urban,0.0
LP001841,Male,No,0,0,Yes,2583,2167.0,104.0,360.0,1,Rural,1.0
LP001843,Male,Yes,1,0,No,2661,7101.0,279.0,180.0,1,Semiurban,1.0
LP001844,Male,No,0,1,Yes,16250,0.0,192.0,360.0,0,Urban,0.0
LP001846,Female,No,3+,1,No,3083,0.0,255.0,360.0,1,Rural,1.0
LP001849,Male,No,0,0,No,6045,0.0,115.0,360.0,0,Rural,0.0
LP001854,Male,Yes,3+,1,No,5250,0.0,94.0,360.0,1,Urban,0.0
LP001859,Male,Yes,0,1,No,14683,2100.0,304.0,360.0,1,Rural,0.0
LP001864,Male,Yes,3+,0,No,4931,0.0,128.0,360.0,0,Semiurban,0.0
LP001865,Male,Yes,1,1,No,6083,4250.0,330.0,360.0,0,Urban,1.0
LP001868,Male,No,0,1,No,2060,2209.0,134.0,360.0,1,Semiurban,1.0
LP001870,Female,No,1,1,No,3481,0.0,155.0,36.0,1,Semiurban,0.0
LP001871,Female,No,0,1,No,7200,0.0,120.0,360.0,1,Rural,1.0
LP001872,Male,No,0,1,Yes,5166,0.0,128.0,360.0,1,Semiurban,1.0
LP001875,Male,No,0,1,No,4095,3447.0,151.0,360.0,1,Rural,1.0
LP001877,Male,Yes,2,1,No,4708,1387.0,150.0,360.0,1,Semiurban,1.0
LP001882,Male,Yes,3+,1,No,4333,1811.0,160.0,360.0,0,Urban,1.0
LP001883,Female,No,0,1,,3418,0.0,135.0,360.0,1,Rural,0.0
LP001884,Female,No,1,1,No,2876,1560.0,90.0,360.0,1,Urban,1.0
LP001888,Female,No,0,1,No,3237,0.0,30.0,360.0,1,Urban,1.0
LP001891,Male,Yes,0,1,No,11146,0.0,136.0,360.0,1,Urban,1.0
LP001892,Male,No,0,1,No,2833,1857.0,126.0,360.0,1,Rural,1.0
LP001894,Male,Yes,0,1,No,2620,2223.0,150.0,360.0,1,Semiurban,1.0
LP001896,Male,Yes,2,1,No,3900,0.0,90.0,360.0,1,Semiurban,1.0
LP001900,Male,Yes,1,1,No,2750,1842.0,115.0,360.0,1,Semiurban,1.0
LP001903,Male,Yes,0,1,No,3993,3274.0,207.0,360.0,1,Semiurban,1.0
LP001904,Male,Yes,0,1,No,3103,1300.0,80.0,360.0,1,Urban,1.0
LP001907,Male,Yes,0,1,No,14583,0.0,436.0,360.0,1,Semiurban,1.0
LP001908,Female,Yes,0,0,No,4100,0.0,124.0,360.0,0,Rural,1.0
LP001910,Male,No,1,0,Yes,4053,2426.0,158.0,360.0,0,Urban,0.0
LP001914,Male,Yes,0,1,No,3927,800.0,112.0,360.0,1,Semiurban,1.0
LP001915,Male,Yes,2,1,No,2301,985.7999878,78.0,180.0,1,Urban,1.0
LP001917,Female,No,0,1,No,1811,1666.0,54.0,360.0,1,Urban,1.0
LP001922,Male,Yes,0,1,No,20667,0.0,0.0,360.0,1,Rural,0.0
LP001924,Male,No,0,1,No,3158,3053.0,89.0,360.0,1,Rural,1.0
LP001925,Female,No,0,1,Yes,2600,1717.0,99.0,300.0,1,Semiurban,0.0
LP001926,Male,Yes,0,1,No,3704,2000.0,120.0,360.0,1,Rural,1.0
LP001931,Female,No,0,1,No,4124,0.0,115.0,360.0,1,Semiurban,1.0
LP001935,Male,No,0,1,No,9508,0.0,187.0,360.0,1,Rural,1.0
LP001936,Male,Yes,0,1,No,3075,2416.0,139.0,360.0,1,Rural,1.0
LP001938,Male,Yes,2,1,No,4400,0.0,127.0,360.0,0,Semiurban,0.0
LP001940,Male,Yes,2,1,No,3153,1560.0,134.0,360.0,1,Urban,1.0
LP001945,Female,No,,1,No,5417,0.0,143.0,480.0,0,Urban,0.0
LP001947,Male,Yes,0,1,No,2383,3334.0,172.0,360.0,1,Semiurban,1.0
LP001949,Male,Yes,3+,1,,4416,1250.0,110.0,360.0,1,Urban,1.0
LP001953,Male,Yes,1,1,No,6875,0.0,200.0,360.0,1,Semiurban,1.0
LP001954,Female,Yes,1,1,No,4666,0.0,135.0,360.0,1,Urban,1.0
LP001955,Female,No,0,1,No,5000,2541.0,151.0,480.0,1,Rural,0.0
LP001963,Male,Yes,1,1,No,2014,2925.0,113.0,360.0,1,Urban,0.0
LP001964,Male,Yes,0,0,No,1800,2934.0,93.0,360.0,0,Urban,0.0
LP001972,Male,Yes,,0,No,2875,1750.0,105.0,360.0,1,Semiurban,1.0
LP001974,Female,No,0,1,No,5000,0.0,132.0,360.0,1,Rural,1.0
LP001977,Male,Yes,1,1,No,1625,1803.0,96.0,360.0,1,Urban,1.0
LP001978,Male,No,0,1,No,4000,2500.0,140.0,360.0,1,Rural,1.0
LP001990,Male,No,0,0,No,2000,0.0,0.0,360.0,1,Urban,0.0
LP001993,Female,No,0,1,No,3762,1666.0,135.0,360.0,1,Rural,1.0
LP001994,Female,No,0,1,No,2400,1863.0,104.0,360.0,0,Urban,0.0
LP001996,Male,No,0,1,No,20233,0.0,480.0,360.0,1,Rural,0.0
LP001998,Male,Yes,2,0,No,7667,0.0,185.0,360.0,0,Rural,1.0
LP002002,Female,No,0,1,No,2917,0.0,84.0,360.0,1,Semiurban,1.0
LP002004,Male,No,0,0,No,2927,2405.0,111.0,360.0,1,Semiurban,1.0
LP002006,Female,No,0,1,No,2507,0.0,56.0,360.0,1,Rural,1.0
LP002008,Male,Yes,2,1,Yes,5746,0.0,144.0,84.0,0,Rural,1.0
LP002024,,Yes,0,1,No,2473,1843.0,159.0,360.0,1,Rural,0.0
LP002031,Male,Yes,1,0,No,3399,1640.0,111.0,180.0,1,Urban,1.0
LP002035,Male,Yes,2,1,No,3717,0.0,120.0,360.0,1,Semiurban,1.0
LP002036,Male,Yes,0,1,No,2058,2134.0,88.0,360.0,0,Urban,1.0
LP002043,Female,No,1,1,No,3541,0.0,112.0,360.0,0,Semiurban,1.0
LP002050,Male,Yes,1,1,Yes,10000,0.0,155.0,360.0,1,Rural,0.0
LP002051,Male,Yes,0,1,No,2400,2167.0,115.0,360.0,1,Semiurban,1.0
LP002053,Male,Yes,3+,1,No,4342,189.0,124.0,360.0,1,Semiurban,1.0
LP002054,Male,Yes,2,0,No,3601,1590.0,0.0,360.0,1,Rural,1.0
LP002055,Female,No,0,1,No,3166,2985.0,132.0,360.0,0,Rural,1.0
LP002065,Male,Yes,3+,1,No,15000,0.0,300.0,360.0,1,Rural,1.0
LP002067,Male,Yes,1,1,Yes,8666,4983.0,376.0,360.0,0,Rural,0.0
LP002068,Male,No,0,1,No,4917,0.0,130.0,360.0,0,Rural,1.0
LP002082,Male,Yes,0,1,Yes,5818,2160.0,184.0,360.0,1,Semiurban,1.0
LP002086,Female,Yes,0,1,No,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002087,Female,No,0,1,No,2500,0.0,67.0,360.0,1,Urban,1.0
LP002097,Male,No,1,1,No,4384,1793.0,117.0,360.0,1,Urban,1.0
LP002098,Male,No,0,1,No,2935,0.0,98.0,360.0,1,Semiurban,1.0
LP002100,Male,No,,1,No,2833,0.0,71.0,360.0,1,Urban,1.0
LP002101,Male,Yes,0,1,,63337,0.0,490.0,180.0,1,Urban,1.0
LP002103,,Yes,1,1,Yes,9833,1833.0,182.0,180.0,1,Urban,1.0
LP002106,Male,Yes,,1,Yes,5503,4490.0,70.0,,1,Semiurban,1.0
LP002110,Male,Yes,1,1,,5250,688.0,160.0,360.0,1,Rural,1.0
LP002112,Male,Yes,2,1,Yes,2500,4600.0,176.0,360.0,1,Rural,1.0
LP002113,Female,No,3+,0,No,1830,0.0,0.0,360.0,0,Urban,0.0
LP002114,Female,No,0,1,No,4160,0.0,71.0,360.0,1,Semiurban,1.0
LP002115,Male,Yes,3+,0,No,2647,1587.0,173.0,360.0,1,Rural,0.0
LP002116,Female,No,0,1,No,2378,0.0,46.0,360.0,1,Rural,0.0
LP002119,Male,Yes,1,0,No,4554,1229.0,158.0,360.0,1,Urban,1.0
LP002126,Male,Yes,3+,0,No,3173,0.0,74.0,360.0,1,Semiurban,1.0
LP002128,Male,Yes,2,1,,2583,2330.0,125.0,360.0,1,Rural,1.0
LP002129,Male,Yes,0,1,No,2499,2458.0,160.0,360.0,1,Semiurban,1.0
LP002130,Male,Yes,,0,No,3523,3230.0,152.0,360.0,0,Rural,0.0
LP002131,Male,Yes,2,0,No,3083,2168.0,126.0,360.0,1,Urban,1.0
LP002137,Male,Yes,0,1,No,6333,4583.0,259.0,360.0,0,Semiurban,1.0
LP002138,Male,Yes,0,1,No,2625,6250.0,187.0,360.0,1,Rural,1.0
LP002139,Male,Yes,0,1,No,9083,0.0,228.0,360.0,1,Semiurban,1.0
LP002140,Male,No,0,1,No,8750,4167.0,308.0,360.0,1,Rural,0.0
LP002141,Male,Yes,3+,1,No,2666,2083.0,95.0,360.0,1,Rural,1.0
LP002142,Female,Yes,0,1,Yes,5500,0.0,105.0,360.0,0,Rural,0.0
LP002143,Female,Yes,0,1,No,2423,505.0,130.0,360.0,1,Semiurban,1.0
LP002144,Female,No,,1,No,3813,0.0,116.0,180.0,1,Urban,1.0
LP002149,Male,Yes,2,1,No,8333,3167.0,165.0,360.0,1,Rural,1.0
LP002151,Male,Yes,1,1,No,3875,0.0,67.0,360.0,1,Urban,0.0
LP002158,Male,Yes,0,0,No,3000,1666.0,100.0,480.0,0,Urban,0.0
LP002160,Male,Yes,3+,1,No,5167,3167.0,200.0,360.0,1,Semiurban,1.0
LP002161,Female,No,1,1,No,4723,0.0,81.0,360.0,1,Semiurban,0.0
LP002170,Male,Yes,2,1,No,5000,3667.0,236.0,360.0,1,Semiurban,1.0
LP002175,Male,Yes,0,1,No,4750,2333.0,130.0,360.0,1,Urban,1.0
LP002178,Male,Yes,0,1,No,3013,3033.0,95.0,300.0,0,Urban,1.0
LP002180,Male,No,0,1,Yes,6822,0.0,141.0,360.0,1,Rural,1.0
LP002181,Male,No,0,0,No,6216,0.0,133.0,360.0,1,Rural,0.0
LP002187,Male,No,0,1,No,2500,0.0,96.0,480.0,1,Semiurban,0.0
LP002188,Male,No,0,1,No,5124,0.0,124.0,,0,Rural,0.0
LP002190,Male,Yes,1,1,No,6325,0.0,175.0,360.0,1,Semiurban,1.0
LP002191,Male,Yes,0,1,No,19730,5266.0,570.0,360.0,1,Rural,0.0
LP002194,Female,No,0,1,Yes,15759,0.0,55.0,360.0,1,Semiurban,1.0
LP002197,Male,Yes,2,1,No,5185,0.0,155.0,360.0,1,Semiurban,1.0
LP002201,Male,Yes,2,1,Yes,9323,7873.0,380.0,300.0,1,Rural,1.0
LP002205,Male,No,1,1,No,3062,1987.0,111.0,180.0,0,Urban,0.0
LP002209,Female,No,0,1,,2764,1459.0,110.0,360.0,1,Urban,1.0
LP002211,Male,Yes,0,1,No,4817,923.0,120.0,180.0,1,Urban,1.0
LP002219,Male,Yes,3+,1,No,8750,4996.0,130.0,360.0,1,Rural,1.0
LP002223,Male,Yes,0,1,No,4310,0.0,130.0,360.0,0,Semiurban,1.0
LP002224,Male,No,0,1,No,3069,0.0,71.0,480.0,1,Urban,0.0
LP002225,Male,Yes,2,1,No,5391,0.0,130.0,360.0,1,Urban,1.0
LP002226,Male,Yes,0,1,,3333,2500.0,128.0,360.0,1,Semiurban,1.0
LP002229,Male,No,0,1,No,5941,4232.0,296.0,360.0,1,Semiurban,1.0
LP002231,Female,No,0,1,No,6000,0.0,156.0,360.0,1,Urban,1.0
LP002234,Male,No,0,1,Yes,7167,0.0,128.0,360.0,1,Urban,1.0
LP002236,Male,Yes,2,1,No,4566,0.0,100.0,360.0,1,Urban,0.0
LP002237,Male,No,1,1,,3667,0.0,113.0,180.0,1,Urban,1.0
LP002239,Male,No,0,0,No,2346,1600.0,132.0,360.0,1,Semiurban,1.0
LP002243,Male,Yes,0,0,No,3010,3136.0,0.0,360.0,0,Urban,0.0
LP002244,Male,Yes,0,1,No,2333,2417.0,136.0,360.0,1,Urban,1.0
LP002250,Male,Yes,0,1,No,5488,0.0,125.0,360.0,1,Rural,1.0
LP002255,Male,No,3+,1,No,9167,0.0,185.0,360.0,1,Rural,1.0
LP002262,Male,Yes,3+,1,No,9504,0.0,275.0,360.0,1,Rural,1.0
LP002263,Male,Yes,0,1,No,2583,2115.0,120.0,360.0,0,Urban,1.0
LP002265,Male,Yes,2,0,No,1993,1625.0,113.0,180.0,1,Semiurban,1.0
LP002266,Male,Yes,2,1,No,3100,1400.0,113.0,360.0,1,Urban,1.0
LP002272,Male,Yes,2,1,No,3276,484.0,135.0,360.0,0,Semiurban,1.0
LP002277,Female,No,0,1,No,3180,0.0,71.0,360.0,0,Urban,0.0
LP002281,Male,Yes,0,1,No,3033,1459.0,95.0,360.0,1,Urban,1.0
LP002284,Male,No,0,0,No,3902,1666.0,109.0,360.0,1,Rural,1.0
LP002287,Female,No,0,1,No,1500,1800.0,103.0,360.0,0,Semiurban,0.0
LP002288,Male,Yes,2,0,No,2889,0.0,45.0,180.0,0,Urban,0.0
LP002296,Male,No,0,0,No,2755,0.0,65.0,300.0,1,Rural,0.0
LP002297,Male,No,0,1,No,2500,20000.0,103.0,360.0,1,Semiurban,1.0
LP002300,Female,No,0,0,No,1963,0.0,53.0,360.0,1,Semiurban,1.0
LP002301,Female,No,0,1,Yes,7441,0.0,194.0,360.0,1,Rural,0.0
LP002305,Female,No,0,1,No,4547,0.0,115.0,360.0,1,Semiurban,1.0
LP002308,Male,Yes,0,0,No,2167,2400.0,115.0,360.0,1,Urban,1.0
LP002314,Female,No,0,0,No,2213,0.0,66.0,360.0,1,Rural,1.0
LP002315,Male,Yes,1,1,No,8300,0.0,152.0,300.0,0,Semiurban,0.0
LP002317,Male,Yes,3+,1,No,81000,0.0,360.0,360.0,0,Rural,0.0
LP002318,Female,No,1,0,Yes,3867,0.0,62.0,360.0,1,Semiurban,0.0
LP002319,Male,Yes,0,1,,6256,0.0,160.0,360.0,0,Urban,1.0
LP002328,Male,Yes,0,0,No,6096,0.0,218.0,360.0,0,Rural,0.0
LP002332,Male,Yes,0,0,No,2253,2033.0,110.0,360.0,1,Rural,1.0
LP002335,Female,Yes,0,0,No,2149,3237.0,178.0,360.0,0,Semiurban,0.0
LP002337,Female,No,0,1,No,2995,0.0,60.0,360.0,1,Urban,1.0
LP002341,Female,No,1,1,No,2600,0.0,160.0,360.0,1,Urban,0.0
LP002342,Male,Yes,2,1,Yes,1600,20000.0,239.0,360.0,1,Urban,0.0
LP002345,Male,Yes,0,1,No,1025,2773.0,112.0,360.0,1,Rural,1.0
LP002347,Male,Yes,0,1,No,3246,1417.0,138.0,360.0,1,Semiurban,1.0
LP002348,Male,Yes,0,1,No,5829,0.0,138.0,360.0,1,Rural,1.0
LP002357,Female,No,0,0,No,2720,0.0,80.0,,0,Urban,0.0
LP002361,Male,Yes,0,1,No,1820,1719.0,100.0,360.0,1,Urban,1.0
LP002362,Male,Yes,1,1,No,7250,1667.0,110.0,,0,Urban,0.0
LP002364,Male,Yes,0,1,No,14880,0.0,96.0,360.0,1,Semiurban,1.0
LP002366,Male,Yes,0,1,No,2666,4300.0,121.0,360.0,1,Rural,1.0
LP002367,Female,No,1,0,No,4606,0.0,81.0,360.0,1,Rural,0.0
LP002368,Male,Yes,2,1,No,5935,0.0,133.0,360.0,1,Semiurban,1.0
LP002369,Male,Yes,0,1,No,2920,16.12000084,87.0,360.0,1,Rural,1.0
LP002370,Male,No,0,0,No,2717,0.0,60.0,180.0,1,Urban,1.0
LP002377,Female,No,1,1,Yes,8624,0.0,150.0,360.0,1,Semiurban,1.0
LP002379,Male,No,0,1,No,6500,0.0,105.0,360.0,0,Rural,0.0
LP002386,Male,No,0,1,,12876,0.0,405.0,360.0,1,Semiurban,1.0
LP002387,Male,Yes,0,1,No,2425,2340.0,143.0,360.0,1,Semiurban,1.0
LP002390,Male,No,0,1,No,3750,0.0,100.0,360.0,1,Urban,1.0
LP002393,Female,,,1,No,10047,0.0,0.0,240.0,1,Semiurban,1.0
LP002398,Male,No,0,1,No,1926,1851.0,50.0,360.0,1,Semiurban,1.0
LP002401,Male,Yes,0,1,No,2213,1125.0,0.0,360.0,1,Urban,1.0
LP002403,Male,No,0,1,Yes,10416,0.0,187.0,360.0,0,Urban,0.0
LP002407,Female,Yes,0,0,Yes,7142,0.0,138.0,360.0,1,Rural,1.0
LP002408,Male,No,0,1,No,3660,5064.0,187.0,360.0,1,Semiurban,1.0
LP002409,Male,Yes,0,1,No,7901,1833.0,180.0,360.0,1,Rural,1.0
LP002418,Male,No,3+,0,No,4707,1993.0,148.0,360.0,1,Semiurban,1.0
LP002422,Male,No,1,1,No,37719,0.0,152.0,360.0,1,Semiurban,1.0
LP002424,Male,Yes,0,1,No,7333,8333.0,175.0,300.0,0,Rural,1.0
LP002429,Male,Yes,1,1,Yes,3466,1210.0,130.0,360.0,1,Rural,1.0
LP002434,Male,Yes,2,0,No,4652,0.0,110.0,360.0,1,Rural,1.0
LP002435,Male,Yes,0,1,,3539,1376.0,55.0,360.0,1,Rural,0.0
LP002443,Male,Yes,2,1,No,3340,1710.0,150.0,360.0,0,Rural,0.0
LP002444,Male,No,1,0,Yes,2769,1542.0,190.0,360.0,0,Semiurban,0.0
LP002446,Male,Yes,2,0,No,2309,1255.0,125.0,360.0,0,Rural,0.0
LP002447,Male,Yes,2,0,No,1958,1456.0,60.0,300.0,0,Urban,1.0
LP002448,Male,Yes,0,1,No,3948,1733.0,149.0,360.0,0,Rural,0.0
LP002449,Male,Yes,0,1,No,2483,2466.0,90.0,180.0,0,Rural,1.0
LP002453,Male,No,0,1,Yes,7085,0.0,84.0,360.0,1,Semiurban,1.0
LP002455,Male,Yes,2,1,No,3859,0.0,96.0,360.0,1,Semiurban,1.0
LP002459,Male,Yes,0,1,No,4301,0.0,118.0,360.0,1,Urban,1.0
LP002467,Male,Yes,0,1,No,3708,2569.0,173.0,360.0,1,Urban,0.0
LP002472,Male,No,2,1,No,4354,0.0,136.0,360.0,1,Rural,1.0
LP002473,Male,Yes,0,1,No,8334,0.0,160.0,360.0,1,Semiurban,0.0
LP002478,,Yes,0,1,Yes,2083,4083.0,160.0,360.0,0,Semiurban,1.0
LP002484,Male,Yes,3+,1,No,7740,0.0,128.0,180.0,1,Urban,1.0
LP002487,Male,Yes,0,1,No,3015,2188.0,153.0,360.0,1,Rural,1.0
LP002489,Female,No,1,0,,5191,0.0,132.0,360.0,1,Semiurban,1.0
LP002493,Male,No,0,1,No,4166,0.0,98.0,360.0,0,Semiurban,0.0
LP002494,Male,No,0,1,No,6000,0.0,140.0,360.0,1,Rural,1.0
LP002500,Male,Yes,3+,0,No,2947,1664.0,70.0,180.0,0,Urban,0.0
LP002501,,Yes,0,1,No,16692,0.0,110.0,360.0,1,Semiurban,1.0
LP002502,Female,Yes,2,0,,210,2917.0,98.0,360.0,1,Semiurban,1.0
LP002505,Male,Yes,0,1,No,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002515,Male,Yes,1,1,Yes,3450,2079.0,162.0,360.0,1,Semiurban,1.0
LP002517,Male,Yes,1,0,No,2653,1500.0,113.0,180.0,0,Rural,0.0
LP002519,Male,Yes,3+,1,No,4691,0.0,100.0,360.0,1,Semiurban,1.0
LP002522,Female,No,0,1,Yes,2500,0.0,93.0,360.0,0,Urban,1.0
LP002524,Male,No,2,1,No,5532,4648.0,162.0,360.0,1,Rural,1.0
LP002527,Male,Yes,2,1,Yes,16525,1014.0,150.0,360.0,1,Rural,1.0
LP002529,Male,Yes,2,1,No,6700,1750.0,230.0,300.0,1,Semiurban,1.0
LP002530,,Yes,2,1,No,2873,1872.0,132.0,360.0,0,Semiurban,0.0
LP002531,Male,Yes,1,1,Yes,16667,2250.0,86.0,360.0,1,Semiurban,1.0
LP002533,Male,Yes,2,1,No,2947,1603.0,0.0,360.0,1,Urban,0.0
LP002534,Female,No,0,0,No,4350,0.0,154.0,360.0,1,Rural,1.0
LP002536,Male,Yes,3+,0,No,3095,0.0,113.0,360.0,1,Rural,1.0
LP002537,Male,Yes,0,1,No,2083,3150.0,128.0,360.0,1,Semiurban,1.0
LP002541,Male,Yes,0,1,No,10833,0.0,234.0,360.0,1,Semiurban,1.0
LP002543,Male,Yes,2,1,No,8333,0.0,246.0,360.0,1,Semiurban,1.0
LP002544,Male,Yes,1,0,No,1958,2436.0,131.0,360.0,1,Rural,1.0
LP002545,Male,No,2,1,No,3547,0.0,80.0,360.0,0,Rural,0.0
LP002547,Male,Yes,1,1,No,18333,0.0,500.0,360.0,1,Urban,0.0
LP002555,Male,Yes,2,1,Yes,4583,2083.0,160.0,360.0,1,Semiurban,1.0
LP002556,Male,No,0,1,No,2435,0.0,75.0,360.0,1,Urban,0.0
LP002560,Male,No,0,0,No,2699,2785.0,96.0,360.0,0,Semiurban,1.0
LP002562,Male,Yes,1,0,No,5333,1131.0,186.0,360.0,0,Urban,1.0
LP002571,Male,No,0,0,No,3691,0.0,110.0,360.0,1,Rural,1.0
LP002582,Female,No,0,0,Yes,17263,0.0,225.0,360.0,1,Semiurban,1.0
LP002585,Male,Yes,0,1,No,3597,2157.0,119.0,360.0,0,Rural,0.0
LP002586,Female,Yes,1,1,No,3326,913.0,105.0,84.0,1,Semiurban,1.0
LP002587,Male,Yes,0,0,No,2600,1700.0,107.0,360.0,1,Rural,1.0
LP002588,Male,Yes,0,1,No,4625,2857.0,111.0,12.0,0,Urban,1.0
LP002600,Male,Yes,1,1,Yes,2895,0.0,95.0,360.0,1,Semiurban,1.0
LP002602,Male,No,0,1,No,6283,4416.0,209.0,360.0,0,Rural,0.0
LP002603,Female,No,0,1,No,645,3683.0,113.0,480.0,1,Rural,1.0
LP002606,Female,No,0,1,No,3159,0.0,100.0,360.0,1,Semiurban,1.0
LP002615,Male,Yes,2,1,No,4865,5624.0,208.0,360.0,1,Semiurban,1.0
LP002618,Male,Yes,1,0,No,4050,5302.0,138.0,360.0,0,Rural,0.0
LP002619,Male,Yes,0,0,No,3814,1483.0,124.0,300.0,1,Semiurban,1.0
LP002622,Male,Yes,2,1,No,3510,4416.0,243.0,360.0,1,Rural,1.0
LP002624,Male,Yes,0,1,No,20833,6667.0,480.0,360.0,0,Urban,1.0
LP002625,,No,0,1,No,3583,0.0,96.0,360.0,1,Urban,0.0
LP002626,Male,Yes,0,1,Yes,2479,3013.0,188.0,360.0,1,Urban,1.0
LP002634,Female,No,1,1,No,13262,0.0,40.0,360.0,1,Urban,1.0
LP002637,Male,No,0,0,No,3598,1287.0,100.0,360.0,1,Rural,0.0
LP002640,Male,Yes,1,1,No,6065,2004.0,250.0,360.0,1,Semiurban,1.0
LP002643,Male,Yes,2,1,No,3283,2035.0,148.0,360.0,1,Urban,1.0
LP002648,Male,Yes,0,1,No,2130,6666.0,70.0,180.0,1,Semiurban,0.0
LP002652,Male,No,0,1,No,5815,3666.0,311.0,360.0,1,Rural,0.0
LP002659,Male,Yes,3+,1,No,3466,3428.0,150.0,360.0,1,Rural,1.0
LP002670,Female,Yes,2,1,No,2031,1632.0,113.0,480.0,1,Semiurban,1.0
LP002682,Male,Yes,,0,No,3074,1800.0,123.0,360.0,0,Semiurban,0.0
LP002683,Male,No,0,1,No,4683,1915.0,185.0,360.0,1,Semiurban,0.0
LP002684,Female,No,0,0,No,3400,0.0,95.0,360.0,1,Rural,0.0
LP002689,Male,Yes,2,0,No,2192,1742.0,45.0,360.0,1,Semiurban,1.0
LP002690,Male,No,0,1,No,2500,0.0,55.0,360.0,1,Semiurban,1.0
LP002692,Male,Yes,3+,1,Yes,5677,1424.0,100.0,360.0,1,Rural,1.0
LP002693,Male,Yes,2,1,Yes,7948,7166.0,480.0,360.0,1,Rural,1.0
LP002697,Male,No,0,1,No,4680,2087.0,0.0,360.0,1,Semiurban,0.0
LP002699,Male,Yes,2,1,Yes,17500,0.0,400.0,360.0,1,Rural,1.0
LP002705,Male,Yes,0,1,No,3775,0.0,110.0,360.0,1,Semiurban,1.0
LP002706,Male,Yes,1,0,No,5285,1430.0,161.0,360.0,0,Semiurban,1.0
LP002714,Male,No,1,0,No,2679,1302.0,94.0,360.0,1,Semiurban,1.0
LP002716,Male,No,0,0,No,6783,0.0,130.0,360.0,1,Semiurban,1.0
LP002717,Male,Yes,0,1,No,1025,5500.0,216.0,360.0,0,Rural,1.0
LP002720,Male,Yes,3+,1,No,4281,0.0,100.0,360.0,1,Urban,1.0
LP002723,Male,No,2,1,No,3588,0.0,110.0,360.0,0,Rural,0.0
LP002729,Male,No,1,1,No,11250,0.0,196.0,360.0,0,Semiurban,0.0
LP002731,Female,No,0,0,Yes,18165,0.0,125.0,360.0,1,Urban,1.0
LP002732,Male,No,0,0,,2550,2042.0,126.0,360.0,1,Rural,1.0
LP002734,Male,Yes,0,1,No,6133,3906.0,324.0,360.0,1,Urban,1.0
LP002738,Male,No,2,1,No,3617,0.0,107.0,360.0,1,Semiurban,1.0
LP002739,Male,Yes,0,0,No,2917,536.0,66.0,360.0,1,Rural,0.0
LP002740,Male,Yes,3+,1,No,6417,0.0,157.0,180.0,1,Rural,1.0
LP002741,Female,Yes,1,1,No,4608,2845.0,140.0,180.0,1,Semiurban,1.0
LP002743,Female,No,0,1,No,2138,0.0,99.0,360.0,0,Semiurban,0.0
LP002753,Female,No,1,1,,3652,0.0,95.0,360.0,1,Semiurban,1.0
LP002755,Male,Yes,1,0,No,2239,2524.0,128.0,360.0,1,Urban,1.0
LP002757,Female,Yes,0,0,No,3017,663.0,102.0,360.0,0,Semiurban,1.0
LP002767,Male,Yes,0,1,No,2768,1950.0,155.0,360.0,1,Rural,1.0
LP002768,Male,No,0,0,No,3358,0.0,80.0,36.0,1,Semiurban,0.0
LP002772,Male,No,0,1,No,2526,1783.0,145.0,360.0,1,Rural,1.0
LP002776,Female,No,0,1,No,5000,0.0,103.0,360.0,0,Semiurban,0.0
LP002777,Male,Yes,0,1,No,2785,2016.0,110.0,360.0,1,Rural,1.0
LP002778,Male,Yes,2,1,Yes,6633,0.0,0.0,360.0,0,Rural,0.0
LP002784,Male,Yes,1,0,No,2492,2375.0,0.0,360.0,1,Rural,1.0
LP002785,Male,Yes,1,1,No,3333,3250.0,158.0,360.0,1,Urban,1.0
LP002788,Male,Yes,0,0,No,2454,2333.0,181.0,360.0,0,Urban,0.0
LP002789,Male,Yes,0,1,No,3593,4266.0,132.0,180.0,0,Rural,0.0
LP002792,Male,Yes,1,1,No,5468,1032.0,26.0,360.0,1,Semiurban,1.0
LP002794,Female,No,0,1,No,2667,1625.0,84.0,360.0,0,Urban,1.0
LP002795,Male,Yes,3+,1,Yes,10139,0.0,260.0,360.0,1,Semiurban,1.0
LP002798,Male,Yes,0,1,No,3887,2669.0,162.0,360.0,1,Semiurban,1.0
LP002804,Female,Yes,0,1,No,4180,2306.0,182.0,360.0,1,Semiurban,1.0
LP002807,Male,Yes,2,0,No,3675,242.0,108.0,360.0,1,Semiurban,1.0
LP002813,Female,Yes,1,1,Yes,19484,0.0,600.0,360.0,1,Semiurban,1.0
LP002820,Male,Yes,0,1,No,5923,2054.0,211.0,360.0,1,Rural,1.0
LP002821,Male,No,0,0,Yes,5800,0.0,132.0,360.0,1,Semiurban,1.0
LP002832,Male,Yes,2,1,No,8799,0.0,258.0,360.0,0,Urban,0.0
LP002833,Male,Yes,0,0,No,4467,0.0,120.0,360.0,0,Rural,1.0
LP002836,Male,No,0,1,No,3333,0.0,70.0,360.0,1,Urban,1.0
LP002837,Male,Yes,3+,1,No,3400,2500.0,123.0,360.0,0,Rural,0.0
LP002840,Female,No,0,1,No,2378,0.0,9.0,360.0,1,Urban,0.0
LP002841,Male,Yes,0,1,No,3166,2064.0,104.0,360.0,0,Urban,0.0
LP002842,Male,Yes,1,1,No,3417,1750.0,186.0,360.0,1,Urban,1.0
LP002847,Male,Yes,,1,No,5116,1451.0,165.0,360.0,0,Urban,0.0
LP002855,Male,Yes,2,1,No,16666,0.0,275.0,360.0,1,Urban,1.0
LP002862,Male,Yes,2,0,No,6125,1625.0,187.0,480.0,1,Semiurban,0.0
LP002863,Male,Yes,3+,1,No,6406,0.0,150.0,360.0,1,Semiurban,0.0
LP002868,Male,Yes,2,1,No,3159,461.0,108.0,84.0,1,Urban,1.0
LP002872,,Yes,0,1,No,3087,2210.0,136.0,360.0,0,Semiurban,0.0
LP002874,Male,No,0,1,No,3229,2739.0,110.0,360.0,1,Urban,1.0
LP002877,Male,Yes,1,1,No,1782,2232.0,107.0,360.0,1,Rural,1.0
LP002888,Male,No,0,1,,3182,2917.0,161.0,360.0,1,Urban,1.0
LP002892,Male,Yes,2,1,No,6540,0.0,205.0,360.0,1,Semiurban,1.0
LP002893,Male,No,0,1,No,1836,33837.0,90.0,360.0,1,Urban,0.0
LP002894,Female,Yes,0,1,No,3166,0.0,36.0,360.0,1,Semiurban,1.0
LP002898,Male,Yes,1,1,No,1880,0.0,61.0,360.0,0,Rural,0.0
LP002911,Male,Yes,1,1,No,2787,1917.0,146.0,360.0,0,Rural,0.0
LP002912,Male,Yes,1,1,No,4283,3000.0,172.0,84.0,1,Rural,0.0
LP002916,Male,Yes,0,1,No,2297,1522.0,104.0,360.0,1,Urban,1.0
LP002917,Female,No,0,0,No,2165,0.0,70.0,360.0,1,Semiurban,1.0
LP002925,,No,0,1,No,4750,0.0,94.0,360.0,1,Semiurban,1.0
LP002926,Male,Yes,2,1,Yes,2726,0.0,106.0,360.0,0,Semiurban,0.0
LP002928,Male,Yes,0,1,No,3000,3416.0,56.0,180.0,1,Semiurban,1.0
LP002931,Male,Yes,2,1,Yes,6000,0.0,205.0,240.0,1,Semiurban,0.0
LP002933,,No,3+,1,Yes,9357,0.0,292.0,360.0,1,Semiurban,1.0
LP002936,Male,Yes,0,1,No,3859,3300.0,142.0,180.0,1,Rural,1.0
LP002938,Male,Yes,0,1,Yes,16120,0.0,260.0,360.0,1,Urban,1.0
LP002940,Male,No,0,0,No,3833,0.0,110.0,360.0,1,Rural,1.0
LP002941,Male,Yes,2,0,Yes,6383,1000.0,187.0,360.0,1,Rural,0.0
LP002943,Male,No,,1,No,2987,0.0,88.0,360.0,0,Semiurban,0.0
LP002945,Male,Yes,0,1,Yes,9963,0.0,180.0,360.0,1,Rural,1.0
LP002948,Male,Yes,2,1,No,5780,0.0,192.0,360.0,1,Urban,1.0
LP002949,Female,No,3+,1,,416,41667.0,350.0,180.0,0,Urban,0.0
LP002950,Male,Yes,0,0,,2894,2792.0,155.0,360.0,1,Rural,1.0
LP002953,Male,Yes,3+,1,No,5703,0.0,128.0,360.0,1,Urban,1.0
LP002958,Male,No,0,1,No,3676,4301.0,172.0,360.0,1,Rural,1.0
LP002959,Female,Yes,1,1,No,12000,0.0,496.0,360.0,1,Semiurban,1.0
LP002960,Male,Yes,0,0,No,2400,3800.0,0.0,180.0,1,Urban,0.0
LP002961,Male,Yes,1,1,No,3400,2500.0,173.0,360.0,1,Semiurban,1.0
LP002964,Male,Yes,2,0,No,3987,1411.0,157.0,360.0,1,Rural,1.0
LP002974,Male,Yes,0,1,No,3232,1950.0,108.0,360.0,1,Rural,1.0
LP002978,Female,No,0,1,No,2900,0.0,71.0,360.0,1,Rural,1.0
LP002979,Male,Yes,3+,1,No,4106,0.0,40.0,180.0,1,Rural,1.0
LP002983,Male,Yes,1,1,No,8072,240.0,253.0,360.0,1,Urban,1.0
LP002984,Male,Yes,2,1,No,7583,0.0,187.0,360.0,1,Urban,1.0
LP002990,Female,No,0,1,Yes,4583,0.0,133.0,360.0,0,Semiurban,0.0
1 Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
2 LP001002 Male No 0 1 No 5849 0.0 360.0 1.0 0 Y 0.0
3 LP001003 Male Yes 1 1 No 4583 1508.0 128.0 360.0 1 Rural 0.0
4 LP001005 Male Yes 0 1 Yes 3000 0.0 66.0 360.0 1 Urban 1.0
5 LP001006 Male Yes 0 0 No 2583 2358.0 120.0 360.0 1 Urban 1.0
6 LP001008 Male No 0 1 No 6000 0.0 141.0 360.0 1 Urban 1.0
7 LP001011 Male Yes 2 1 Yes 5417 4196.0 267.0 360.0 1 Urban 1.0
8 LP001013 Male Yes 0 0 No 2333 1516.0 95.0 360.0 1 Urban 1.0
9 LP001014 Male Yes 3+ 1 No 3036 2504.0 158.0 360.0 0 Semiurban 0.0
10 LP001018 Male Yes 2 1 No 4006 1526.0 168.0 360.0 1 Urban 1.0
11 LP001020 Male Yes 1 1 No 12841 10968.0 349.0 360.0 1 Semiurban 0.0
12 LP001024 Male Yes 2 1 No 3200 700.0 70.0 360.0 1 Urban 1.0
13 LP001027 Male Yes 2 1 2500 1840.0 109.0 360.0 1 Urban 1.0
14 LP001028 Male Yes 2 1 No 3073 8106.0 200.0 360.0 1 Urban 1.0
15 LP001029 Male No 0 1 No 1853 2840.0 114.0 360.0 1 Rural 0.0
16 LP001030 Male Yes 2 1 No 1299 1086.0 17.0 120.0 1 Urban 1.0
17 LP001032 Male No 0 1 No 4950 0.0 125.0 360.0 1 Urban 1.0
18 LP001034 Male No 1 0 No 3596 0.0 100.0 240.0 0 Urban 1.0
19 LP001036 Female No 0 1 No 3510 0.0 76.0 360.0 0 Urban 0.0
20 LP001038 Male Yes 0 0 No 4887 0.0 133.0 360.0 1 Rural 0.0
21 LP001041 Male Yes 0 1 2600 3500.0 115.0 1 Urban 1.0
22 LP001043 Male Yes 0 0 No 7660 0.0 104.0 360.0 0 Urban 0.0
23 LP001046 Male Yes 1 1 No 5955 5625.0 315.0 360.0 1 Urban 1.0
24 LP001047 Male Yes 0 0 No 2600 1911.0 116.0 360.0 0 Semiurban 0.0
25 LP001050 Yes 2 0 No 3365 1917.0 112.0 360.0 0 Rural 0.0
26 LP001052 Male Yes 1 1 3717 2925.0 151.0 360.0 0 Semiurban 0.0
27 LP001066 Male Yes 0 1 Yes 9560 0.0 191.0 360.0 1 Semiurban 1.0
28 LP001068 Male Yes 0 1 No 2799 2253.0 122.0 360.0 1 Semiurban 1.0
29 LP001073 Male Yes 2 0 No 4226 1040.0 110.0 360.0 1 Urban 1.0
30 LP001086 Male No 0 0 No 1442 0.0 35.0 360.0 1 Urban 0.0
31 LP001087 Female No 2 1 3750 2083.0 120.0 360.0 1 Semiurban 1.0
32 LP001091 Male Yes 1 1 4166 3369.0 201.0 360.0 0 Urban 0.0
33 LP001095 Male No 0 1 No 3167 0.0 74.0 360.0 1 Urban 0.0
34 LP001097 Male No 1 1 Yes 4692 0.0 106.0 360.0 1 Rural 0.0
35 LP001098 Male Yes 0 1 No 3500 1667.0 114.0 360.0 1 Semiurban 1.0
36 LP001100 Male No 3+ 1 No 12500 3000.0 320.0 360.0 1 Rural 0.0
37 LP001106 Male Yes 0 1 No 2275 2067.0 0.0 360.0 1 Urban 1.0
38 LP001109 Male Yes 0 1 No 1828 1330.0 100.0 0 Urban 0.0
39 LP001112 Female Yes 0 1 No 3667 1459.0 144.0 360.0 1 Semiurban 1.0
40 LP001114 Male No 0 1 No 4166 7210.0 184.0 360.0 1 Urban 1.0
41 LP001116 Male No 0 0 No 3748 1668.0 110.0 360.0 1 Semiurban 1.0
42 LP001119 Male No 0 1 No 3600 0.0 80.0 360.0 1 Urban 0.0
43 LP001120 Male No 0 1 No 1800 1213.0 47.0 360.0 1 Urban 1.0
44 LP001123 Male Yes 0 1 No 2400 0.0 75.0 360.0 0 Urban 1.0
45 LP001131 Male Yes 0 1 No 3941 2336.0 134.0 360.0 1 Semiurban 1.0
46 LP001136 Male Yes 0 0 Yes 4695 0.0 96.0 1 Urban 1.0
47 LP001137 Female No 0 1 No 3410 0.0 88.0 1 Urban 1.0
48 LP001138 Male Yes 1 1 No 5649 0.0 44.0 360.0 1 Urban 1.0
49 LP001144 Male Yes 0 1 No 5821 0.0 144.0 360.0 1 Urban 1.0
50 LP001146 Female Yes 0 1 No 2645 3440.0 120.0 360.0 0 Urban 0.0
51 LP001151 Female No 0 1 No 4000 2275.0 144.0 360.0 1 Semiurban 1.0
52 LP001155 Female Yes 0 0 No 1928 1644.0 100.0 360.0 1 Semiurban 1.0
53 LP001157 Female No 0 1 No 3086 0.0 120.0 360.0 1 Semiurban 1.0
54 LP001164 Female No 0 1 No 4230 0.0 112.0 360.0 1 Semiurban 0.0
55 LP001179 Male Yes 2 1 No 4616 0.0 134.0 360.0 1 Urban 0.0
56 LP001186 Female Yes 1 1 Yes 11500 0.0 286.0 360.0 0 Urban 0.0
57 LP001194 Male Yes 2 1 No 2708 1167.0 97.0 360.0 1 Semiurban 1.0
58 LP001195 Male Yes 0 1 No 2132 1591.0 96.0 360.0 1 Semiurban 1.0
59 LP001197 Male Yes 0 1 No 3366 2200.0 135.0 360.0 1 Rural 0.0
60 LP001198 Male Yes 1 1 No 8080 2250.0 180.0 360.0 1 Urban 1.0
61 LP001199 Male Yes 2 0 No 3357 2859.0 144.0 360.0 1 Urban 1.0
62 LP001205 Male Yes 0 1 No 2500 3796.0 120.0 360.0 1 Urban 1.0
63 LP001206 Male Yes 3+ 1 No 3029 0.0 99.0 360.0 1 Urban 1.0
64 LP001207 Male Yes 0 0 Yes 2609 3449.0 165.0 180.0 0 Rural 0.0
65 LP001213 Male Yes 1 1 No 4945 0.0 0.0 360.0 0 Rural 0.0
66 LP001222 Female No 0 1 No 4166 0.0 116.0 360.0 0 Semiurban 0.0
67 LP001225 Male Yes 0 1 No 5726 4595.0 258.0 360.0 1 Semiurban 0.0
68 LP001228 Male No 0 0 No 3200 2254.0 126.0 180.0 0 Urban 0.0
69 LP001233 Male Yes 1 1 No 10750 0.0 312.0 360.0 1 Urban 1.0
70 LP001238 Male Yes 3+ 0 Yes 7100 0.0 125.0 60.0 1 Urban 1.0
71 LP001241 Female No 0 1 No 4300 0.0 136.0 360.0 0 Semiurban 0.0
72 LP001243 Male Yes 0 1 No 3208 3066.0 172.0 360.0 1 Urban 1.0
73 LP001245 Male Yes 2 0 Yes 1875 1875.0 97.0 360.0 1 Semiurban 1.0
74 LP001248 Male No 0 1 No 3500 0.0 81.0 300.0 1 Semiurban 1.0
75 LP001250 Male Yes 3+ 0 No 4755 0.0 95.0 0 Semiurban 0.0
76 LP001253 Male Yes 3+ 1 Yes 5266 1774.0 187.0 360.0 1 Semiurban 1.0
77 LP001255 Male No 0 1 No 3750 0.0 113.0 480.0 1 Urban 0.0
78 LP001256 Male No 0 1 No 3750 4750.0 176.0 360.0 1 Urban 0.0
79 LP001259 Male Yes 1 1 Yes 1000 3022.0 110.0 360.0 1 Urban 0.0
80 LP001263 Male Yes 3+ 1 No 3167 4000.0 180.0 300.0 0 Semiurban 0.0
81 LP001264 Male Yes 3+ 0 Yes 3333 2166.0 130.0 360.0 0 Semiurban 1.0
82 LP001265 Female No 0 1 No 3846 0.0 111.0 360.0 1 Semiurban 1.0
83 LP001266 Male Yes 1 1 Yes 2395 0.0 0.0 360.0 1 Semiurban 1.0
84 LP001267 Female Yes 2 1 No 1378 1881.0 167.0 360.0 1 Urban 0.0
85 LP001273 Male Yes 0 1 No 6000 2250.0 265.0 360.0 0 Semiurban 0.0
86 LP001275 Male Yes 1 1 No 3988 0.0 50.0 240.0 1 Urban 1.0
87 LP001279 Male No 0 1 No 2366 2531.0 136.0 360.0 1 Semiurban 1.0
88 LP001280 Male Yes 2 0 No 3333 2000.0 99.0 360.0 0 Semiurban 1.0
89 LP001282 Male Yes 0 1 No 2500 2118.0 104.0 360.0 1 Semiurban 1.0
90 LP001289 Male No 0 1 No 8566 0.0 210.0 360.0 1 Urban 1.0
91 LP001310 Male Yes 0 1 No 5695 4167.0 175.0 360.0 1 Semiurban 1.0
92 LP001316 Male Yes 0 1 No 2958 2900.0 131.0 360.0 1 Semiurban 1.0
93 LP001318 Male Yes 2 1 No 6250 5654.0 188.0 180.0 1 Semiurban 1.0
94 LP001319 Male Yes 2 0 No 3273 1820.0 81.0 360.0 1 Urban 1.0
95 LP001322 Male No 0 1 No 4133 0.0 122.0 360.0 1 Semiurban 1.0
96 LP001325 Male No 0 0 No 3620 0.0 25.0 120.0 1 Semiurban 1.0
97 LP001326 Male No 0 1 6782 0.0 0.0 360.0 0 Urban 0.0
98 LP001327 Female Yes 0 1 No 2484 2302.0 137.0 360.0 1 Semiurban 1.0
99 LP001333 Male Yes 0 1 No 1977 997.0 50.0 360.0 1 Semiurban 1.0
100 LP001334 Male Yes 0 0 No 4188 0.0 115.0 180.0 1 Semiurban 1.0
101 LP001343 Male Yes 0 1 No 1759 3541.0 131.0 360.0 1 Semiurban 1.0
102 LP001345 Male Yes 2 0 No 4288 3263.0 133.0 180.0 1 Urban 1.0
103 LP001349 Male No 0 1 No 4843 3806.0 151.0 360.0 1 Semiurban 1.0
104 LP001350 Male Yes 1 No 13650 0.0 0.0 360.0 1 Urban 1.0
105 LP001356 Male Yes 0 1 No 4652 3583.0 0.0 360.0 1 Semiurban 1.0
106 LP001357 Male 1 No 3816 754.0 160.0 360.0 1 Urban 1.0
107 LP001367 Male Yes 1 1 No 3052 1030.0 100.0 360.0 1 Urban 1.0
108 LP001369 Male Yes 2 1 No 11417 1126.0 225.0 360.0 1 Urban 1.0
109 LP001370 Male No 0 0 7333 0.0 120.0 360.0 1 Rural 0.0
110 LP001379 Male Yes 2 1 No 3800 3600.0 216.0 360.0 0 Urban 0.0
111 LP001384 Male Yes 3+ 0 No 2071 754.0 94.0 480.0 1 Semiurban 1.0
112 LP001385 Male No 0 1 No 5316 0.0 136.0 360.0 1 Urban 1.0
113 LP001387 Female Yes 0 1 2929 2333.0 139.0 360.0 1 Semiurban 1.0
114 LP001391 Male Yes 0 0 No 3572 4114.0 152.0 0 Rural 0.0
115 LP001392 Female No 1 1 Yes 7451 0.0 0.0 360.0 1 Semiurban 1.0
116 LP001398 Male No 0 1 5050 0.0 118.0 360.0 1 Semiurban 1.0
117 LP001401 Male Yes 1 1 No 14583 0.0 185.0 180.0 1 Rural 1.0
118 LP001404 Female Yes 0 1 No 3167 2283.0 154.0 360.0 1 Semiurban 1.0
119 LP001405 Male Yes 1 1 No 2214 1398.0 85.0 360.0 0 Urban 1.0
120 LP001421 Male Yes 0 1 No 5568 2142.0 175.0 360.0 1 Rural 0.0
121 LP001422 Female No 0 1 No 10408 0.0 259.0 360.0 1 Urban 1.0
122 LP001426 Male Yes 1 No 5667 2667.0 180.0 360.0 1 Rural 1.0
123 LP001430 Female No 0 1 No 4166 0.0 44.0 360.0 1 Semiurban 1.0
124 LP001431 Female No 0 1 No 2137 8980.0 137.0 360.0 0 Semiurban 1.0
125 LP001432 Male Yes 2 1 No 2957 0.0 81.0 360.0 1 Semiurban 1.0
126 LP001439 Male Yes 0 0 No 4300 2014.0 194.0 360.0 1 Rural 1.0
127 LP001443 Female No 0 1 No 3692 0.0 93.0 360.0 0 Rural 1.0
128 LP001448 Yes 3+ 1 No 23803 0.0 370.0 360.0 1 Rural 1.0
129 LP001449 Male No 0 1 No 3865 1640.0 0.0 360.0 1 Rural 1.0
130 LP001451 Male Yes 1 1 Yes 10513 3850.0 160.0 180.0 0 Urban 0.0
131 LP001465 Male Yes 0 1 No 6080 2569.0 182.0 360.0 0 Rural 0.0
132 LP001469 Male No 0 1 Yes 20166 0.0 650.0 480.0 0 Urban 1.0
133 LP001473 Male No 0 1 No 2014 1929.0 74.0 360.0 1 Urban 1.0
134 LP001478 Male No 0 1 No 2718 0.0 70.0 360.0 1 Semiurban 1.0
135 LP001482 Male Yes 0 1 Yes 3459 0.0 25.0 120.0 1 Semiurban 1.0
136 LP001487 Male No 0 1 No 4895 0.0 102.0 360.0 1 Semiurban 1.0
137 LP001488 Male Yes 3+ 1 No 4000 7750.0 290.0 360.0 1 Semiurban 0.0
138 LP001489 Female Yes 0 1 No 4583 0.0 84.0 360.0 1 Rural 0.0
139 LP001491 Male Yes 2 1 Yes 3316 3500.0 88.0 360.0 1 Urban 1.0
140 LP001492 Male No 0 1 No 14999 0.0 242.0 360.0 0 Semiurban 0.0
141 LP001493 Male Yes 2 0 No 4200 1430.0 129.0 360.0 1 Rural 0.0
142 LP001497 Male Yes 2 1 No 5042 2083.0 185.0 360.0 1 Rural 0.0
143 LP001498 Male No 0 1 No 5417 0.0 168.0 360.0 1 Urban 1.0
144 LP001504 Male No 0 1 Yes 6950 0.0 175.0 180.0 1 Semiurban 1.0
145 LP001507 Male Yes 0 1 No 2698 2034.0 122.0 360.0 1 Semiurban 1.0
146 LP001508 Male Yes 2 1 No 11757 0.0 187.0 180.0 1 Urban 1.0
147 LP001514 Female Yes 0 1 No 2330 4486.0 100.0 360.0 1 Semiurban 1.0
148 LP001516 Female Yes 2 1 No 14866 0.0 70.0 360.0 1 Urban 1.0
149 LP001518 Male Yes 1 1 No 1538 1425.0 30.0 360.0 1 Urban 1.0
150 LP001519 Female No 0 1 No 10000 1666.0 225.0 360.0 1 Rural 0.0
151 LP001520 Male Yes 0 1 No 4860 830.0 125.0 360.0 1 Semiurban 1.0
152 LP001528 Male No 0 1 No 6277 0.0 118.0 360.0 0 Rural 0.0
153 LP001529 Male Yes 0 1 Yes 2577 3750.0 152.0 360.0 1 Rural 1.0
154 LP001531 Male No 0 1 No 9166 0.0 244.0 360.0 1 Urban 0.0
155 LP001532 Male Yes 2 0 No 2281 0.0 113.0 360.0 1 Rural 0.0
156 LP001535 Male No 0 1 No 3254 0.0 50.0 360.0 1 Urban 1.0
157 LP001536 Male Yes 3+ 1 No 39999 0.0 600.0 180.0 0 Semiurban 1.0
158 LP001541 Male Yes 1 1 No 6000 0.0 160.0 360.0 0 Rural 1.0
159 LP001543 Male Yes 1 1 No 9538 0.0 187.0 360.0 1 Urban 1.0
160 LP001546 Male No 0 1 2980 2083.0 120.0 360.0 1 Rural 1.0
161 LP001552 Male Yes 0 1 No 4583 5625.0 255.0 360.0 1 Semiurban 1.0
162 LP001560 Male Yes 0 0 No 1863 1041.0 98.0 360.0 1 Semiurban 1.0
163 LP001562 Male Yes 0 1 No 7933 0.0 275.0 360.0 1 Urban 0.0
164 LP001565 Male Yes 1 1 No 3089 1280.0 121.0 360.0 0 Semiurban 0.0
165 LP001570 Male Yes 2 1 No 4167 1447.0 158.0 360.0 1 Rural 1.0
166 LP001572 Male Yes 0 1 No 9323 0.0 75.0 180.0 1 Urban 1.0
167 LP001574 Male Yes 0 1 No 3707 3166.0 182.0 1 Rural 1.0
168 LP001577 Female Yes 0 1 No 4583 0.0 112.0 360.0 1 Rural 0.0
169 LP001578 Male Yes 0 1 No 2439 3333.0 129.0 360.0 1 Rural 1.0
170 LP001579 Male No 0 1 No 2237 0.0 63.0 480.0 0 Semiurban 0.0
171 LP001580 Male Yes 2 1 No 8000 0.0 200.0 360.0 1 Semiurban 1.0
172 LP001581 Male Yes 0 0 1820 1769.0 95.0 360.0 1 Rural 1.0
173 LP001585 Yes 3+ 1 No 51763 0.0 700.0 300.0 1 Urban 1.0
174 LP001586 Male Yes 3+ 0 No 3522 0.0 81.0 180.0 1 Rural 0.0
175 LP001594 Male Yes 0 1 No 5708 5625.0 187.0 360.0 1 Semiurban 1.0
176 LP001603 Male Yes 0 0 Yes 4344 736.0 87.0 360.0 1 Semiurban 0.0
177 LP001606 Male Yes 0 1 No 3497 1964.0 116.0 360.0 1 Rural 1.0
178 LP001608 Male Yes 2 1 No 2045 1619.0 101.0 360.0 1 Rural 1.0
179 LP001610 Male Yes 3+ 1 No 5516 11300.0 495.0 360.0 0 Semiurban 0.0
180 LP001616 Male Yes 1 1 No 3750 0.0 116.0 360.0 1 Semiurban 1.0
181 LP001630 Male No 0 0 No 2333 1451.0 102.0 480.0 0 Urban 0.0
182 LP001633 Male Yes 1 1 No 6400 7250.0 180.0 360.0 0 Urban 0.0
183 LP001634 Male No 0 1 No 1916 5063.0 67.0 360.0 0 Rural 0.0
184 LP001636 Male Yes 0 1 No 4600 0.0 73.0 180.0 1 Semiurban 1.0
185 LP001637 Male Yes 1 1 No 33846 0.0 260.0 360.0 1 Semiurban 0.0
186 LP001639 Female Yes 0 1 No 3625 0.0 108.0 360.0 1 Semiurban 1.0
187 LP001640 Male Yes 0 1 Yes 39147 4750.0 120.0 360.0 1 Semiurban 1.0
188 LP001641 Male Yes 1 1 Yes 2178 0.0 66.0 300.0 0 Rural 0.0
189 LP001643 Male Yes 0 1 No 2383 2138.0 58.0 360.0 0 Rural 1.0
190 LP001644 Yes 0 1 Yes 674 5296.0 168.0 360.0 1 Rural 1.0
191 LP001647 Male Yes 0 1 No 9328 0.0 188.0 180.0 1 Rural 1.0
192 LP001653 Male No 0 0 No 4885 0.0 48.0 360.0 1 Rural 1.0
193 LP001656 Male No 0 1 No 12000 0.0 164.0 360.0 1 Semiurban 0.0
194 LP001657 Male Yes 0 0 No 6033 0.0 160.0 360.0 1 Urban 0.0
195 LP001658 Male No 0 1 No 3858 0.0 76.0 360.0 1 Semiurban 1.0
196 LP001664 Male No 0 1 No 4191 0.0 120.0 360.0 1 Rural 1.0
197 LP001665 Male Yes 1 1 No 3125 2583.0 170.0 360.0 1 Semiurban 0.0
198 LP001666 Male No 0 1 No 8333 3750.0 187.0 360.0 1 Rural 1.0
199 LP001669 Female No 0 0 No 1907 2365.0 120.0 1 Urban 1.0
200 LP001671 Female Yes 0 1 No 3416 2816.0 113.0 360.0 0 Semiurban 1.0
201 LP001673 Male No 0 1 Yes 11000 0.0 83.0 360.0 1 Urban 0.0
202 LP001674 Male Yes 1 0 No 2600 2500.0 90.0 360.0 1 Semiurban 1.0
203 LP001677 Male No 2 1 No 4923 0.0 166.0 360.0 0 Semiurban 1.0
204 LP001682 Male Yes 3+ 0 No 3992 0.0 0.0 180.0 1 Urban 0.0
205 LP001688 Male Yes 1 0 No 3500 1083.0 135.0 360.0 1 Urban 1.0
206 LP001691 Male Yes 2 0 No 3917 0.0 124.0 360.0 1 Semiurban 1.0
207 LP001692 Female No 0 0 No 4408 0.0 120.0 360.0 1 Semiurban 1.0
208 LP001693 Female No 0 1 No 3244 0.0 80.0 360.0 1 Urban 1.0
209 LP001698 Male No 0 0 No 3975 2531.0 55.0 360.0 1 Rural 1.0
210 LP001699 Male No 0 1 No 2479 0.0 59.0 360.0 1 Urban 1.0
211 LP001702 Male No 0 1 No 3418 0.0 127.0 360.0 1 Semiurban 0.0
212 LP001708 Female No 0 1 No 10000 0.0 214.0 360.0 1 Semiurban 0.0
213 LP001711 Male Yes 3+ 1 No 3430 1250.0 128.0 360.0 0 Semiurban 0.0
214 LP001713 Male Yes 1 1 Yes 7787 0.0 240.0 360.0 1 Urban 1.0
215 LP001715 Male Yes 3+ 0 Yes 5703 0.0 130.0 360.0 1 Rural 1.0
216 LP001716 Male Yes 0 1 No 3173 3021.0 137.0 360.0 1 Urban 1.0
217 LP001720 Male Yes 3+ 0 No 3850 983.0 100.0 360.0 1 Semiurban 1.0
218 LP001722 Male Yes 0 1 No 150 1800.0 135.0 360.0 1 Rural 0.0
219 LP001726 Male Yes 0 1 No 3727 1775.0 131.0 360.0 1 Semiurban 1.0
220 LP001732 Male Yes 2 1 5000 0.0 72.0 360.0 0 Semiurban 0.0
221 LP001734 Female Yes 2 1 No 4283 2383.0 127.0 360.0 0 Semiurban 1.0
222 LP001736 Male Yes 0 1 No 2221 0.0 60.0 360.0 0 Urban 0.0
223 LP001743 Male Yes 2 1 No 4009 1717.0 116.0 360.0 1 Semiurban 1.0
224 LP001744 Male No 0 1 No 2971 2791.0 144.0 360.0 1 Semiurban 1.0
225 LP001749 Male Yes 0 1 No 7578 1010.0 175.0 1 Semiurban 1.0
226 LP001750 Male Yes 0 1 No 6250 0.0 128.0 360.0 1 Semiurban 1.0
227 LP001751 Male Yes 0 1 No 3250 0.0 170.0 360.0 1 Rural 0.0
228 LP001754 Male Yes 0 Yes 4735 0.0 138.0 360.0 1 Urban 0.0
229 LP001758 Male Yes 2 1 No 6250 1695.0 210.0 360.0 1 Semiurban 1.0
230 LP001760 Male 1 No 4758 0.0 158.0 480.0 1 Semiurban 1.0
231 LP001761 Male No 0 1 Yes 6400 0.0 200.0 360.0 1 Rural 1.0
232 LP001765 Male Yes 1 1 No 2491 2054.0 104.0 360.0 1 Semiurban 1.0
233 LP001768 Male Yes 0 1 3716 0.0 42.0 180.0 1 Rural 1.0
234 LP001770 Male No 0 0 No 3189 2598.0 120.0 1 Rural 1.0
235 LP001776 Female No 0 1 No 8333 0.0 280.0 360.0 1 Semiurban 1.0
236 LP001778 Male Yes 1 1 No 3155 1779.0 140.0 360.0 1 Semiurban 1.0
237 LP001784 Male Yes 1 1 No 5500 1260.0 170.0 360.0 1 Rural 1.0
238 LP001786 Male Yes 0 1 5746 0.0 255.0 360.0 0 Urban 0.0
239 LP001788 Female No 0 1 Yes 3463 0.0 122.0 360.0 0 Urban 1.0
240 LP001790 Female No 1 1 No 3812 0.0 112.0 360.0 1 Rural 1.0
241 LP001792 Male Yes 1 1 No 3315 0.0 96.0 360.0 1 Semiurban 1.0
242 LP001798 Male Yes 2 1 No 5819 5000.0 120.0 360.0 1 Rural 1.0
243 LP001800 Male Yes 1 0 No 2510 1983.0 140.0 180.0 1 Urban 0.0
244 LP001806 Male No 0 1 No 2965 5701.0 155.0 60.0 1 Urban 1.0
245 LP001807 Male Yes 2 1 Yes 6250 1300.0 108.0 360.0 1 Rural 1.0
246 LP001811 Male Yes 0 0 No 3406 4417.0 123.0 360.0 1 Semiurban 1.0
247 LP001813 Male No 0 1 Yes 6050 4333.0 120.0 180.0 1 Urban 0.0
248 LP001814 Male Yes 2 1 No 9703 0.0 112.0 360.0 1 Urban 1.0
249 LP001819 Male Yes 1 0 No 6608 0.0 137.0 180.0 1 Urban 1.0
250 LP001824 Male Yes 1 1 No 2882 1843.0 123.0 480.0 1 Semiurban 1.0
251 LP001825 Male Yes 0 1 No 1809 1868.0 90.0 360.0 1 Urban 1.0
252 LP001835 Male Yes 0 0 No 1668 3890.0 201.0 360.0 0 Semiurban 0.0
253 LP001836 Female No 2 1 No 3427 0.0 138.0 360.0 1 Urban 0.0
254 LP001841 Male No 0 0 Yes 2583 2167.0 104.0 360.0 1 Rural 1.0
255 LP001843 Male Yes 1 0 No 2661 7101.0 279.0 180.0 1 Semiurban 1.0
256 LP001844 Male No 0 1 Yes 16250 0.0 192.0 360.0 0 Urban 0.0
257 LP001846 Female No 3+ 1 No 3083 0.0 255.0 360.0 1 Rural 1.0
258 LP001849 Male No 0 0 No 6045 0.0 115.0 360.0 0 Rural 0.0
259 LP001854 Male Yes 3+ 1 No 5250 0.0 94.0 360.0 1 Urban 0.0
260 LP001859 Male Yes 0 1 No 14683 2100.0 304.0 360.0 1 Rural 0.0
261 LP001864 Male Yes 3+ 0 No 4931 0.0 128.0 360.0 0 Semiurban 0.0
262 LP001865 Male Yes 1 1 No 6083 4250.0 330.0 360.0 0 Urban 1.0
263 LP001868 Male No 0 1 No 2060 2209.0 134.0 360.0 1 Semiurban 1.0
264 LP001870 Female No 1 1 No 3481 0.0 155.0 36.0 1 Semiurban 0.0
265 LP001871 Female No 0 1 No 7200 0.0 120.0 360.0 1 Rural 1.0
266 LP001872 Male No 0 1 Yes 5166 0.0 128.0 360.0 1 Semiurban 1.0
267 LP001875 Male No 0 1 No 4095 3447.0 151.0 360.0 1 Rural 1.0
268 LP001877 Male Yes 2 1 No 4708 1387.0 150.0 360.0 1 Semiurban 1.0
269 LP001882 Male Yes 3+ 1 No 4333 1811.0 160.0 360.0 0 Urban 1.0
270 LP001883 Female No 0 1 3418 0.0 135.0 360.0 1 Rural 0.0
271 LP001884 Female No 1 1 No 2876 1560.0 90.0 360.0 1 Urban 1.0
272 LP001888 Female No 0 1 No 3237 0.0 30.0 360.0 1 Urban 1.0
273 LP001891 Male Yes 0 1 No 11146 0.0 136.0 360.0 1 Urban 1.0
274 LP001892 Male No 0 1 No 2833 1857.0 126.0 360.0 1 Rural 1.0
275 LP001894 Male Yes 0 1 No 2620 2223.0 150.0 360.0 1 Semiurban 1.0
276 LP001896 Male Yes 2 1 No 3900 0.0 90.0 360.0 1 Semiurban 1.0
277 LP001900 Male Yes 1 1 No 2750 1842.0 115.0 360.0 1 Semiurban 1.0
278 LP001903 Male Yes 0 1 No 3993 3274.0 207.0 360.0 1 Semiurban 1.0
279 LP001904 Male Yes 0 1 No 3103 1300.0 80.0 360.0 1 Urban 1.0
280 LP001907 Male Yes 0 1 No 14583 0.0 436.0 360.0 1 Semiurban 1.0
281 LP001908 Female Yes 0 0 No 4100 0.0 124.0 360.0 0 Rural 1.0
282 LP001910 Male No 1 0 Yes 4053 2426.0 158.0 360.0 0 Urban 0.0
283 LP001914 Male Yes 0 1 No 3927 800.0 112.0 360.0 1 Semiurban 1.0
284 LP001915 Male Yes 2 1 No 2301 985.7999878 78.0 180.0 1 Urban 1.0
285 LP001917 Female No 0 1 No 1811 1666.0 54.0 360.0 1 Urban 1.0
286 LP001922 Male Yes 0 1 No 20667 0.0 0.0 360.0 1 Rural 0.0
287 LP001924 Male No 0 1 No 3158 3053.0 89.0 360.0 1 Rural 1.0
288 LP001925 Female No 0 1 Yes 2600 1717.0 99.0 300.0 1 Semiurban 0.0
289 LP001926 Male Yes 0 1 No 3704 2000.0 120.0 360.0 1 Rural 1.0
290 LP001931 Female No 0 1 No 4124 0.0 115.0 360.0 1 Semiurban 1.0
291 LP001935 Male No 0 1 No 9508 0.0 187.0 360.0 1 Rural 1.0
292 LP001936 Male Yes 0 1 No 3075 2416.0 139.0 360.0 1 Rural 1.0
293 LP001938 Male Yes 2 1 No 4400 0.0 127.0 360.0 0 Semiurban 0.0
294 LP001940 Male Yes 2 1 No 3153 1560.0 134.0 360.0 1 Urban 1.0
295 LP001945 Female No 1 No 5417 0.0 143.0 480.0 0 Urban 0.0
296 LP001947 Male Yes 0 1 No 2383 3334.0 172.0 360.0 1 Semiurban 1.0
297 LP001949 Male Yes 3+ 1 4416 1250.0 110.0 360.0 1 Urban 1.0
298 LP001953 Male Yes 1 1 No 6875 0.0 200.0 360.0 1 Semiurban 1.0
299 LP001954 Female Yes 1 1 No 4666 0.0 135.0 360.0 1 Urban 1.0
300 LP001955 Female No 0 1 No 5000 2541.0 151.0 480.0 1 Rural 0.0
301 LP001963 Male Yes 1 1 No 2014 2925.0 113.0 360.0 1 Urban 0.0
302 LP001964 Male Yes 0 0 No 1800 2934.0 93.0 360.0 0 Urban 0.0
303 LP001972 Male Yes 0 No 2875 1750.0 105.0 360.0 1 Semiurban 1.0
304 LP001974 Female No 0 1 No 5000 0.0 132.0 360.0 1 Rural 1.0
305 LP001977 Male Yes 1 1 No 1625 1803.0 96.0 360.0 1 Urban 1.0
306 LP001978 Male No 0 1 No 4000 2500.0 140.0 360.0 1 Rural 1.0
307 LP001990 Male No 0 0 No 2000 0.0 0.0 360.0 1 Urban 0.0
308 LP001993 Female No 0 1 No 3762 1666.0 135.0 360.0 1 Rural 1.0
309 LP001994 Female No 0 1 No 2400 1863.0 104.0 360.0 0 Urban 0.0
310 LP001996 Male No 0 1 No 20233 0.0 480.0 360.0 1 Rural 0.0
311 LP001998 Male Yes 2 0 No 7667 0.0 185.0 360.0 0 Rural 1.0
312 LP002002 Female No 0 1 No 2917 0.0 84.0 360.0 1 Semiurban 1.0
313 LP002004 Male No 0 0 No 2927 2405.0 111.0 360.0 1 Semiurban 1.0
314 LP002006 Female No 0 1 No 2507 0.0 56.0 360.0 1 Rural 1.0
315 LP002008 Male Yes 2 1 Yes 5746 0.0 144.0 84.0 0 Rural 1.0
316 LP002024 Yes 0 1 No 2473 1843.0 159.0 360.0 1 Rural 0.0
317 LP002031 Male Yes 1 0 No 3399 1640.0 111.0 180.0 1 Urban 1.0
318 LP002035 Male Yes 2 1 No 3717 0.0 120.0 360.0 1 Semiurban 1.0
319 LP002036 Male Yes 0 1 No 2058 2134.0 88.0 360.0 0 Urban 1.0
320 LP002043 Female No 1 1 No 3541 0.0 112.0 360.0 0 Semiurban 1.0
321 LP002050 Male Yes 1 1 Yes 10000 0.0 155.0 360.0 1 Rural 0.0
322 LP002051 Male Yes 0 1 No 2400 2167.0 115.0 360.0 1 Semiurban 1.0
323 LP002053 Male Yes 3+ 1 No 4342 189.0 124.0 360.0 1 Semiurban 1.0
324 LP002054 Male Yes 2 0 No 3601 1590.0 0.0 360.0 1 Rural 1.0
325 LP002055 Female No 0 1 No 3166 2985.0 132.0 360.0 0 Rural 1.0
326 LP002065 Male Yes 3+ 1 No 15000 0.0 300.0 360.0 1 Rural 1.0
327 LP002067 Male Yes 1 1 Yes 8666 4983.0 376.0 360.0 0 Rural 0.0
328 LP002068 Male No 0 1 No 4917 0.0 130.0 360.0 0 Rural 1.0
329 LP002082 Male Yes 0 1 Yes 5818 2160.0 184.0 360.0 1 Semiurban 1.0
330 LP002086 Female Yes 0 1 No 4333 2451.0 110.0 360.0 1 Urban 0.0
331 LP002087 Female No 0 1 No 2500 0.0 67.0 360.0 1 Urban 1.0
332 LP002097 Male No 1 1 No 4384 1793.0 117.0 360.0 1 Urban 1.0
333 LP002098 Male No 0 1 No 2935 0.0 98.0 360.0 1 Semiurban 1.0
334 LP002100 Male No 1 No 2833 0.0 71.0 360.0 1 Urban 1.0
335 LP002101 Male Yes 0 1 63337 0.0 490.0 180.0 1 Urban 1.0
336 LP002103 Yes 1 1 Yes 9833 1833.0 182.0 180.0 1 Urban 1.0
337 LP002106 Male Yes 1 Yes 5503 4490.0 70.0 1 Semiurban 1.0
338 LP002110 Male Yes 1 1 5250 688.0 160.0 360.0 1 Rural 1.0
339 LP002112 Male Yes 2 1 Yes 2500 4600.0 176.0 360.0 1 Rural 1.0
340 LP002113 Female No 3+ 0 No 1830 0.0 0.0 360.0 0 Urban 0.0
341 LP002114 Female No 0 1 No 4160 0.0 71.0 360.0 1 Semiurban 1.0
342 LP002115 Male Yes 3+ 0 No 2647 1587.0 173.0 360.0 1 Rural 0.0
343 LP002116 Female No 0 1 No 2378 0.0 46.0 360.0 1 Rural 0.0
344 LP002119 Male Yes 1 0 No 4554 1229.0 158.0 360.0 1 Urban 1.0
345 LP002126 Male Yes 3+ 0 No 3173 0.0 74.0 360.0 1 Semiurban 1.0
346 LP002128 Male Yes 2 1 2583 2330.0 125.0 360.0 1 Rural 1.0
347 LP002129 Male Yes 0 1 No 2499 2458.0 160.0 360.0 1 Semiurban 1.0
348 LP002130 Male Yes 0 No 3523 3230.0 152.0 360.0 0 Rural 0.0
349 LP002131 Male Yes 2 0 No 3083 2168.0 126.0 360.0 1 Urban 1.0
350 LP002137 Male Yes 0 1 No 6333 4583.0 259.0 360.0 0 Semiurban 1.0
351 LP002138 Male Yes 0 1 No 2625 6250.0 187.0 360.0 1 Rural 1.0
352 LP002139 Male Yes 0 1 No 9083 0.0 228.0 360.0 1 Semiurban 1.0
353 LP002140 Male No 0 1 No 8750 4167.0 308.0 360.0 1 Rural 0.0
354 LP002141 Male Yes 3+ 1 No 2666 2083.0 95.0 360.0 1 Rural 1.0
355 LP002142 Female Yes 0 1 Yes 5500 0.0 105.0 360.0 0 Rural 0.0
356 LP002143 Female Yes 0 1 No 2423 505.0 130.0 360.0 1 Semiurban 1.0
357 LP002144 Female No 1 No 3813 0.0 116.0 180.0 1 Urban 1.0
358 LP002149 Male Yes 2 1 No 8333 3167.0 165.0 360.0 1 Rural 1.0
359 LP002151 Male Yes 1 1 No 3875 0.0 67.0 360.0 1 Urban 0.0
360 LP002158 Male Yes 0 0 No 3000 1666.0 100.0 480.0 0 Urban 0.0
361 LP002160 Male Yes 3+ 1 No 5167 3167.0 200.0 360.0 1 Semiurban 1.0
362 LP002161 Female No 1 1 No 4723 0.0 81.0 360.0 1 Semiurban 0.0
363 LP002170 Male Yes 2 1 No 5000 3667.0 236.0 360.0 1 Semiurban 1.0
364 LP002175 Male Yes 0 1 No 4750 2333.0 130.0 360.0 1 Urban 1.0
365 LP002178 Male Yes 0 1 No 3013 3033.0 95.0 300.0 0 Urban 1.0
366 LP002180 Male No 0 1 Yes 6822 0.0 141.0 360.0 1 Rural 1.0
367 LP002181 Male No 0 0 No 6216 0.0 133.0 360.0 1 Rural 0.0
368 LP002187 Male No 0 1 No 2500 0.0 96.0 480.0 1 Semiurban 0.0
369 LP002188 Male No 0 1 No 5124 0.0 124.0 0 Rural 0.0
370 LP002190 Male Yes 1 1 No 6325 0.0 175.0 360.0 1 Semiurban 1.0
371 LP002191 Male Yes 0 1 No 19730 5266.0 570.0 360.0 1 Rural 0.0
372 LP002194 Female No 0 1 Yes 15759 0.0 55.0 360.0 1 Semiurban 1.0
373 LP002197 Male Yes 2 1 No 5185 0.0 155.0 360.0 1 Semiurban 1.0
374 LP002201 Male Yes 2 1 Yes 9323 7873.0 380.0 300.0 1 Rural 1.0
375 LP002205 Male No 1 1 No 3062 1987.0 111.0 180.0 0 Urban 0.0
376 LP002209 Female No 0 1 2764 1459.0 110.0 360.0 1 Urban 1.0
377 LP002211 Male Yes 0 1 No 4817 923.0 120.0 180.0 1 Urban 1.0
378 LP002219 Male Yes 3+ 1 No 8750 4996.0 130.0 360.0 1 Rural 1.0
379 LP002223 Male Yes 0 1 No 4310 0.0 130.0 360.0 0 Semiurban 1.0
380 LP002224 Male No 0 1 No 3069 0.0 71.0 480.0 1 Urban 0.0
381 LP002225 Male Yes 2 1 No 5391 0.0 130.0 360.0 1 Urban 1.0
382 LP002226 Male Yes 0 1 3333 2500.0 128.0 360.0 1 Semiurban 1.0
383 LP002229 Male No 0 1 No 5941 4232.0 296.0 360.0 1 Semiurban 1.0
384 LP002231 Female No 0 1 No 6000 0.0 156.0 360.0 1 Urban 1.0
385 LP002234 Male No 0 1 Yes 7167 0.0 128.0 360.0 1 Urban 1.0
386 LP002236 Male Yes 2 1 No 4566 0.0 100.0 360.0 1 Urban 0.0
387 LP002237 Male No 1 1 3667 0.0 113.0 180.0 1 Urban 1.0
388 LP002239 Male No 0 0 No 2346 1600.0 132.0 360.0 1 Semiurban 1.0
389 LP002243 Male Yes 0 0 No 3010 3136.0 0.0 360.0 0 Urban 0.0
390 LP002244 Male Yes 0 1 No 2333 2417.0 136.0 360.0 1 Urban 1.0
391 LP002250 Male Yes 0 1 No 5488 0.0 125.0 360.0 1 Rural 1.0
392 LP002255 Male No 3+ 1 No 9167 0.0 185.0 360.0 1 Rural 1.0
393 LP002262 Male Yes 3+ 1 No 9504 0.0 275.0 360.0 1 Rural 1.0
394 LP002263 Male Yes 0 1 No 2583 2115.0 120.0 360.0 0 Urban 1.0
395 LP002265 Male Yes 2 0 No 1993 1625.0 113.0 180.0 1 Semiurban 1.0
396 LP002266 Male Yes 2 1 No 3100 1400.0 113.0 360.0 1 Urban 1.0
397 LP002272 Male Yes 2 1 No 3276 484.0 135.0 360.0 0 Semiurban 1.0
398 LP002277 Female No 0 1 No 3180 0.0 71.0 360.0 0 Urban 0.0
399 LP002281 Male Yes 0 1 No 3033 1459.0 95.0 360.0 1 Urban 1.0
400 LP002284 Male No 0 0 No 3902 1666.0 109.0 360.0 1 Rural 1.0
401 LP002287 Female No 0 1 No 1500 1800.0 103.0 360.0 0 Semiurban 0.0
402 LP002288 Male Yes 2 0 No 2889 0.0 45.0 180.0 0 Urban 0.0
403 LP002296 Male No 0 0 No 2755 0.0 65.0 300.0 1 Rural 0.0
404 LP002297 Male No 0 1 No 2500 20000.0 103.0 360.0 1 Semiurban 1.0
405 LP002300 Female No 0 0 No 1963 0.0 53.0 360.0 1 Semiurban 1.0
406 LP002301 Female No 0 1 Yes 7441 0.0 194.0 360.0 1 Rural 0.0
407 LP002305 Female No 0 1 No 4547 0.0 115.0 360.0 1 Semiurban 1.0
408 LP002308 Male Yes 0 0 No 2167 2400.0 115.0 360.0 1 Urban 1.0
409 LP002314 Female No 0 0 No 2213 0.0 66.0 360.0 1 Rural 1.0
410 LP002315 Male Yes 1 1 No 8300 0.0 152.0 300.0 0 Semiurban 0.0
411 LP002317 Male Yes 3+ 1 No 81000 0.0 360.0 360.0 0 Rural 0.0
412 LP002318 Female No 1 0 Yes 3867 0.0 62.0 360.0 1 Semiurban 0.0
413 LP002319 Male Yes 0 1 6256 0.0 160.0 360.0 0 Urban 1.0
414 LP002328 Male Yes 0 0 No 6096 0.0 218.0 360.0 0 Rural 0.0
415 LP002332 Male Yes 0 0 No 2253 2033.0 110.0 360.0 1 Rural 1.0
416 LP002335 Female Yes 0 0 No 2149 3237.0 178.0 360.0 0 Semiurban 0.0
417 LP002337 Female No 0 1 No 2995 0.0 60.0 360.0 1 Urban 1.0
418 LP002341 Female No 1 1 No 2600 0.0 160.0 360.0 1 Urban 0.0
419 LP002342 Male Yes 2 1 Yes 1600 20000.0 239.0 360.0 1 Urban 0.0
420 LP002345 Male Yes 0 1 No 1025 2773.0 112.0 360.0 1 Rural 1.0
421 LP002347 Male Yes 0 1 No 3246 1417.0 138.0 360.0 1 Semiurban 1.0
422 LP002348 Male Yes 0 1 No 5829 0.0 138.0 360.0 1 Rural 1.0
423 LP002357 Female No 0 0 No 2720 0.0 80.0 0 Urban 0.0
424 LP002361 Male Yes 0 1 No 1820 1719.0 100.0 360.0 1 Urban 1.0
425 LP002362 Male Yes 1 1 No 7250 1667.0 110.0 0 Urban 0.0
426 LP002364 Male Yes 0 1 No 14880 0.0 96.0 360.0 1 Semiurban 1.0
427 LP002366 Male Yes 0 1 No 2666 4300.0 121.0 360.0 1 Rural 1.0
428 LP002367 Female No 1 0 No 4606 0.0 81.0 360.0 1 Rural 0.0
429 LP002368 Male Yes 2 1 No 5935 0.0 133.0 360.0 1 Semiurban 1.0
430 LP002369 Male Yes 0 1 No 2920 16.12000084 87.0 360.0 1 Rural 1.0
431 LP002370 Male No 0 0 No 2717 0.0 60.0 180.0 1 Urban 1.0
432 LP002377 Female No 1 1 Yes 8624 0.0 150.0 360.0 1 Semiurban 1.0
433 LP002379 Male No 0 1 No 6500 0.0 105.0 360.0 0 Rural 0.0
434 LP002386 Male No 0 1 12876 0.0 405.0 360.0 1 Semiurban 1.0
435 LP002387 Male Yes 0 1 No 2425 2340.0 143.0 360.0 1 Semiurban 1.0
436 LP002390 Male No 0 1 No 3750 0.0 100.0 360.0 1 Urban 1.0
437 LP002393 Female 1 No 10047 0.0 0.0 240.0 1 Semiurban 1.0
438 LP002398 Male No 0 1 No 1926 1851.0 50.0 360.0 1 Semiurban 1.0
439 LP002401 Male Yes 0 1 No 2213 1125.0 0.0 360.0 1 Urban 1.0
440 LP002403 Male No 0 1 Yes 10416 0.0 187.0 360.0 0 Urban 0.0
441 LP002407 Female Yes 0 0 Yes 7142 0.0 138.0 360.0 1 Rural 1.0
442 LP002408 Male No 0 1 No 3660 5064.0 187.0 360.0 1 Semiurban 1.0
443 LP002409 Male Yes 0 1 No 7901 1833.0 180.0 360.0 1 Rural 1.0
444 LP002418 Male No 3+ 0 No 4707 1993.0 148.0 360.0 1 Semiurban 1.0
445 LP002422 Male No 1 1 No 37719 0.0 152.0 360.0 1 Semiurban 1.0
446 LP002424 Male Yes 0 1 No 7333 8333.0 175.0 300.0 0 Rural 1.0
447 LP002429 Male Yes 1 1 Yes 3466 1210.0 130.0 360.0 1 Rural 1.0
448 LP002434 Male Yes 2 0 No 4652 0.0 110.0 360.0 1 Rural 1.0
449 LP002435 Male Yes 0 1 3539 1376.0 55.0 360.0 1 Rural 0.0
450 LP002443 Male Yes 2 1 No 3340 1710.0 150.0 360.0 0 Rural 0.0
451 LP002444 Male No 1 0 Yes 2769 1542.0 190.0 360.0 0 Semiurban 0.0
452 LP002446 Male Yes 2 0 No 2309 1255.0 125.0 360.0 0 Rural 0.0
453 LP002447 Male Yes 2 0 No 1958 1456.0 60.0 300.0 0 Urban 1.0
454 LP002448 Male Yes 0 1 No 3948 1733.0 149.0 360.0 0 Rural 0.0
455 LP002449 Male Yes 0 1 No 2483 2466.0 90.0 180.0 0 Rural 1.0
456 LP002453 Male No 0 1 Yes 7085 0.0 84.0 360.0 1 Semiurban 1.0
457 LP002455 Male Yes 2 1 No 3859 0.0 96.0 360.0 1 Semiurban 1.0
458 LP002459 Male Yes 0 1 No 4301 0.0 118.0 360.0 1 Urban 1.0
459 LP002467 Male Yes 0 1 No 3708 2569.0 173.0 360.0 1 Urban 0.0
460 LP002472 Male No 2 1 No 4354 0.0 136.0 360.0 1 Rural 1.0
461 LP002473 Male Yes 0 1 No 8334 0.0 160.0 360.0 1 Semiurban 0.0
462 LP002478 Yes 0 1 Yes 2083 4083.0 160.0 360.0 0 Semiurban 1.0
463 LP002484 Male Yes 3+ 1 No 7740 0.0 128.0 180.0 1 Urban 1.0
464 LP002487 Male Yes 0 1 No 3015 2188.0 153.0 360.0 1 Rural 1.0
465 LP002489 Female No 1 0 5191 0.0 132.0 360.0 1 Semiurban 1.0
466 LP002493 Male No 0 1 No 4166 0.0 98.0 360.0 0 Semiurban 0.0
467 LP002494 Male No 0 1 No 6000 0.0 140.0 360.0 1 Rural 1.0
468 LP002500 Male Yes 3+ 0 No 2947 1664.0 70.0 180.0 0 Urban 0.0
469 LP002501 Yes 0 1 No 16692 0.0 110.0 360.0 1 Semiurban 1.0
470 LP002502 Female Yes 2 0 210 2917.0 98.0 360.0 1 Semiurban 1.0
471 LP002505 Male Yes 0 1 No 4333 2451.0 110.0 360.0 1 Urban 0.0
472 LP002515 Male Yes 1 1 Yes 3450 2079.0 162.0 360.0 1 Semiurban 1.0
473 LP002517 Male Yes 1 0 No 2653 1500.0 113.0 180.0 0 Rural 0.0
474 LP002519 Male Yes 3+ 1 No 4691 0.0 100.0 360.0 1 Semiurban 1.0
475 LP002522 Female No 0 1 Yes 2500 0.0 93.0 360.0 0 Urban 1.0
476 LP002524 Male No 2 1 No 5532 4648.0 162.0 360.0 1 Rural 1.0
477 LP002527 Male Yes 2 1 Yes 16525 1014.0 150.0 360.0 1 Rural 1.0
478 LP002529 Male Yes 2 1 No 6700 1750.0 230.0 300.0 1 Semiurban 1.0
479 LP002530 Yes 2 1 No 2873 1872.0 132.0 360.0 0 Semiurban 0.0
480 LP002531 Male Yes 1 1 Yes 16667 2250.0 86.0 360.0 1 Semiurban 1.0
481 LP002533 Male Yes 2 1 No 2947 1603.0 0.0 360.0 1 Urban 0.0
482 LP002534 Female No 0 0 No 4350 0.0 154.0 360.0 1 Rural 1.0
483 LP002536 Male Yes 3+ 0 No 3095 0.0 113.0 360.0 1 Rural 1.0
484 LP002537 Male Yes 0 1 No 2083 3150.0 128.0 360.0 1 Semiurban 1.0
485 LP002541 Male Yes 0 1 No 10833 0.0 234.0 360.0 1 Semiurban 1.0
486 LP002543 Male Yes 2 1 No 8333 0.0 246.0 360.0 1 Semiurban 1.0
487 LP002544 Male Yes 1 0 No 1958 2436.0 131.0 360.0 1 Rural 1.0
488 LP002545 Male No 2 1 No 3547 0.0 80.0 360.0 0 Rural 0.0
489 LP002547 Male Yes 1 1 No 18333 0.0 500.0 360.0 1 Urban 0.0
490 LP002555 Male Yes 2 1 Yes 4583 2083.0 160.0 360.0 1 Semiurban 1.0
491 LP002556 Male No 0 1 No 2435 0.0 75.0 360.0 1 Urban 0.0
492 LP002560 Male No 0 0 No 2699 2785.0 96.0 360.0 0 Semiurban 1.0
493 LP002562 Male Yes 1 0 No 5333 1131.0 186.0 360.0 0 Urban 1.0
494 LP002571 Male No 0 0 No 3691 0.0 110.0 360.0 1 Rural 1.0
495 LP002582 Female No 0 0 Yes 17263 0.0 225.0 360.0 1 Semiurban 1.0
496 LP002585 Male Yes 0 1 No 3597 2157.0 119.0 360.0 0 Rural 0.0
497 LP002586 Female Yes 1 1 No 3326 913.0 105.0 84.0 1 Semiurban 1.0
498 LP002587 Male Yes 0 0 No 2600 1700.0 107.0 360.0 1 Rural 1.0
499 LP002588 Male Yes 0 1 No 4625 2857.0 111.0 12.0 0 Urban 1.0
500 LP002600 Male Yes 1 1 Yes 2895 0.0 95.0 360.0 1 Semiurban 1.0
501 LP002602 Male No 0 1 No 6283 4416.0 209.0 360.0 0 Rural 0.0
502 LP002603 Female No 0 1 No 645 3683.0 113.0 480.0 1 Rural 1.0
503 LP002606 Female No 0 1 No 3159 0.0 100.0 360.0 1 Semiurban 1.0
504 LP002615 Male Yes 2 1 No 4865 5624.0 208.0 360.0 1 Semiurban 1.0
505 LP002618 Male Yes 1 0 No 4050 5302.0 138.0 360.0 0 Rural 0.0
506 LP002619 Male Yes 0 0 No 3814 1483.0 124.0 300.0 1 Semiurban 1.0
507 LP002622 Male Yes 2 1 No 3510 4416.0 243.0 360.0 1 Rural 1.0
508 LP002624 Male Yes 0 1 No 20833 6667.0 480.0 360.0 0 Urban 1.0
509 LP002625 No 0 1 No 3583 0.0 96.0 360.0 1 Urban 0.0
510 LP002626 Male Yes 0 1 Yes 2479 3013.0 188.0 360.0 1 Urban 1.0
511 LP002634 Female No 1 1 No 13262 0.0 40.0 360.0 1 Urban 1.0
512 LP002637 Male No 0 0 No 3598 1287.0 100.0 360.0 1 Rural 0.0
513 LP002640 Male Yes 1 1 No 6065 2004.0 250.0 360.0 1 Semiurban 1.0
514 LP002643 Male Yes 2 1 No 3283 2035.0 148.0 360.0 1 Urban 1.0
515 LP002648 Male Yes 0 1 No 2130 6666.0 70.0 180.0 1 Semiurban 0.0
516 LP002652 Male No 0 1 No 5815 3666.0 311.0 360.0 1 Rural 0.0
517 LP002659 Male Yes 3+ 1 No 3466 3428.0 150.0 360.0 1 Rural 1.0
518 LP002670 Female Yes 2 1 No 2031 1632.0 113.0 480.0 1 Semiurban 1.0
519 LP002682 Male Yes 0 No 3074 1800.0 123.0 360.0 0 Semiurban 0.0
520 LP002683 Male No 0 1 No 4683 1915.0 185.0 360.0 1 Semiurban 0.0
521 LP002684 Female No 0 0 No 3400 0.0 95.0 360.0 1 Rural 0.0
522 LP002689 Male Yes 2 0 No 2192 1742.0 45.0 360.0 1 Semiurban 1.0
523 LP002690 Male No 0 1 No 2500 0.0 55.0 360.0 1 Semiurban 1.0
524 LP002692 Male Yes 3+ 1 Yes 5677 1424.0 100.0 360.0 1 Rural 1.0
525 LP002693 Male Yes 2 1 Yes 7948 7166.0 480.0 360.0 1 Rural 1.0
526 LP002697 Male No 0 1 No 4680 2087.0 0.0 360.0 1 Semiurban 0.0
527 LP002699 Male Yes 2 1 Yes 17500 0.0 400.0 360.0 1 Rural 1.0
528 LP002705 Male Yes 0 1 No 3775 0.0 110.0 360.0 1 Semiurban 1.0
529 LP002706 Male Yes 1 0 No 5285 1430.0 161.0 360.0 0 Semiurban 1.0
530 LP002714 Male No 1 0 No 2679 1302.0 94.0 360.0 1 Semiurban 1.0
531 LP002716 Male No 0 0 No 6783 0.0 130.0 360.0 1 Semiurban 1.0
532 LP002717 Male Yes 0 1 No 1025 5500.0 216.0 360.0 0 Rural 1.0
533 LP002720 Male Yes 3+ 1 No 4281 0.0 100.0 360.0 1 Urban 1.0
534 LP002723 Male No 2 1 No 3588 0.0 110.0 360.0 0 Rural 0.0
535 LP002729 Male No 1 1 No 11250 0.0 196.0 360.0 0 Semiurban 0.0
536 LP002731 Female No 0 0 Yes 18165 0.0 125.0 360.0 1 Urban 1.0
537 LP002732 Male No 0 0 2550 2042.0 126.0 360.0 1 Rural 1.0
538 LP002734 Male Yes 0 1 No 6133 3906.0 324.0 360.0 1 Urban 1.0
539 LP002738 Male No 2 1 No 3617 0.0 107.0 360.0 1 Semiurban 1.0
540 LP002739 Male Yes 0 0 No 2917 536.0 66.0 360.0 1 Rural 0.0
541 LP002740 Male Yes 3+ 1 No 6417 0.0 157.0 180.0 1 Rural 1.0
542 LP002741 Female Yes 1 1 No 4608 2845.0 140.0 180.0 1 Semiurban 1.0
543 LP002743 Female No 0 1 No 2138 0.0 99.0 360.0 0 Semiurban 0.0
544 LP002753 Female No 1 1 3652 0.0 95.0 360.0 1 Semiurban 1.0
545 LP002755 Male Yes 1 0 No 2239 2524.0 128.0 360.0 1 Urban 1.0
546 LP002757 Female Yes 0 0 No 3017 663.0 102.0 360.0 0 Semiurban 1.0
547 LP002767 Male Yes 0 1 No 2768 1950.0 155.0 360.0 1 Rural 1.0
548 LP002768 Male No 0 0 No 3358 0.0 80.0 36.0 1 Semiurban 0.0
549 LP002772 Male No 0 1 No 2526 1783.0 145.0 360.0 1 Rural 1.0
550 LP002776 Female No 0 1 No 5000 0.0 103.0 360.0 0 Semiurban 0.0
551 LP002777 Male Yes 0 1 No 2785 2016.0 110.0 360.0 1 Rural 1.0
552 LP002778 Male Yes 2 1 Yes 6633 0.0 0.0 360.0 0 Rural 0.0
553 LP002784 Male Yes 1 0 No 2492 2375.0 0.0 360.0 1 Rural 1.0
554 LP002785 Male Yes 1 1 No 3333 3250.0 158.0 360.0 1 Urban 1.0
555 LP002788 Male Yes 0 0 No 2454 2333.0 181.0 360.0 0 Urban 0.0
556 LP002789 Male Yes 0 1 No 3593 4266.0 132.0 180.0 0 Rural 0.0
557 LP002792 Male Yes 1 1 No 5468 1032.0 26.0 360.0 1 Semiurban 1.0
558 LP002794 Female No 0 1 No 2667 1625.0 84.0 360.0 0 Urban 1.0
559 LP002795 Male Yes 3+ 1 Yes 10139 0.0 260.0 360.0 1 Semiurban 1.0
560 LP002798 Male Yes 0 1 No 3887 2669.0 162.0 360.0 1 Semiurban 1.0
561 LP002804 Female Yes 0 1 No 4180 2306.0 182.0 360.0 1 Semiurban 1.0
562 LP002807 Male Yes 2 0 No 3675 242.0 108.0 360.0 1 Semiurban 1.0
563 LP002813 Female Yes 1 1 Yes 19484 0.0 600.0 360.0 1 Semiurban 1.0
564 LP002820 Male Yes 0 1 No 5923 2054.0 211.0 360.0 1 Rural 1.0
565 LP002821 Male No 0 0 Yes 5800 0.0 132.0 360.0 1 Semiurban 1.0
566 LP002832 Male Yes 2 1 No 8799 0.0 258.0 360.0 0 Urban 0.0
567 LP002833 Male Yes 0 0 No 4467 0.0 120.0 360.0 0 Rural 1.0
568 LP002836 Male No 0 1 No 3333 0.0 70.0 360.0 1 Urban 1.0
569 LP002837 Male Yes 3+ 1 No 3400 2500.0 123.0 360.0 0 Rural 0.0
570 LP002840 Female No 0 1 No 2378 0.0 9.0 360.0 1 Urban 0.0
571 LP002841 Male Yes 0 1 No 3166 2064.0 104.0 360.0 0 Urban 0.0
572 LP002842 Male Yes 1 1 No 3417 1750.0 186.0 360.0 1 Urban 1.0
573 LP002847 Male Yes 1 No 5116 1451.0 165.0 360.0 0 Urban 0.0
574 LP002855 Male Yes 2 1 No 16666 0.0 275.0 360.0 1 Urban 1.0
575 LP002862 Male Yes 2 0 No 6125 1625.0 187.0 480.0 1 Semiurban 0.0
576 LP002863 Male Yes 3+ 1 No 6406 0.0 150.0 360.0 1 Semiurban 0.0
577 LP002868 Male Yes 2 1 No 3159 461.0 108.0 84.0 1 Urban 1.0
578 LP002872 Yes 0 1 No 3087 2210.0 136.0 360.0 0 Semiurban 0.0
579 LP002874 Male No 0 1 No 3229 2739.0 110.0 360.0 1 Urban 1.0
580 LP002877 Male Yes 1 1 No 1782 2232.0 107.0 360.0 1 Rural 1.0
581 LP002888 Male No 0 1 3182 2917.0 161.0 360.0 1 Urban 1.0
582 LP002892 Male Yes 2 1 No 6540 0.0 205.0 360.0 1 Semiurban 1.0
583 LP002893 Male No 0 1 No 1836 33837.0 90.0 360.0 1 Urban 0.0
584 LP002894 Female Yes 0 1 No 3166 0.0 36.0 360.0 1 Semiurban 1.0
585 LP002898 Male Yes 1 1 No 1880 0.0 61.0 360.0 0 Rural 0.0
586 LP002911 Male Yes 1 1 No 2787 1917.0 146.0 360.0 0 Rural 0.0
587 LP002912 Male Yes 1 1 No 4283 3000.0 172.0 84.0 1 Rural 0.0
588 LP002916 Male Yes 0 1 No 2297 1522.0 104.0 360.0 1 Urban 1.0
589 LP002917 Female No 0 0 No 2165 0.0 70.0 360.0 1 Semiurban 1.0
590 LP002925 No 0 1 No 4750 0.0 94.0 360.0 1 Semiurban 1.0
591 LP002926 Male Yes 2 1 Yes 2726 0.0 106.0 360.0 0 Semiurban 0.0
592 LP002928 Male Yes 0 1 No 3000 3416.0 56.0 180.0 1 Semiurban 1.0
593 LP002931 Male Yes 2 1 Yes 6000 0.0 205.0 240.0 1 Semiurban 0.0
594 LP002933 No 3+ 1 Yes 9357 0.0 292.0 360.0 1 Semiurban 1.0
595 LP002936 Male Yes 0 1 No 3859 3300.0 142.0 180.0 1 Rural 1.0
596 LP002938 Male Yes 0 1 Yes 16120 0.0 260.0 360.0 1 Urban 1.0
597 LP002940 Male No 0 0 No 3833 0.0 110.0 360.0 1 Rural 1.0
598 LP002941 Male Yes 2 0 Yes 6383 1000.0 187.0 360.0 1 Rural 0.0
599 LP002943 Male No 1 No 2987 0.0 88.0 360.0 0 Semiurban 0.0
600 LP002945 Male Yes 0 1 Yes 9963 0.0 180.0 360.0 1 Rural 1.0
601 LP002948 Male Yes 2 1 No 5780 0.0 192.0 360.0 1 Urban 1.0
602 LP002949 Female No 3+ 1 416 41667.0 350.0 180.0 0 Urban 0.0
603 LP002950 Male Yes 0 0 2894 2792.0 155.0 360.0 1 Rural 1.0
604 LP002953 Male Yes 3+ 1 No 5703 0.0 128.0 360.0 1 Urban 1.0
605 LP002958 Male No 0 1 No 3676 4301.0 172.0 360.0 1 Rural 1.0
606 LP002959 Female Yes 1 1 No 12000 0.0 496.0 360.0 1 Semiurban 1.0
607 LP002960 Male Yes 0 0 No 2400 3800.0 0.0 180.0 1 Urban 0.0
608 LP002961 Male Yes 1 1 No 3400 2500.0 173.0 360.0 1 Semiurban 1.0
609 LP002964 Male Yes 2 0 No 3987 1411.0 157.0 360.0 1 Rural 1.0
610 LP002974 Male Yes 0 1 No 3232 1950.0 108.0 360.0 1 Rural 1.0
611 LP002978 Female No 0 1 No 2900 0.0 71.0 360.0 1 Rural 1.0
612 LP002979 Male Yes 3+ 1 No 4106 0.0 40.0 180.0 1 Rural 1.0
613 LP002983 Male Yes 1 1 No 8072 240.0 253.0 360.0 1 Urban 1.0
614 LP002984 Male Yes 2 1 No 7583 0.0 187.0 360.0 1 Urban 1.0
615 LP002990 Female No 0 1 Yes 4583 0.0 133.0 360.0 0 Semiurban 0.0

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

View File

@@ -0,0 +1,26 @@
## Лабораторная работа №4
### Ранжирование признаков
## ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, pandas, matplotlib, scipy
* запустить проект (стартовая точка lab4)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки pandas, matplotlib, scipy
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
Программа читает данные из csv файла. На основе имеющейся информации кластеризует заявителей на различные группы по риску выдачи кредита.
При кластеризации используются такие признаки, как: ApplicantIncome - доход заявителя, LoanAmount - сумма займа в тысячах, Credit_History -
статус кредитной истории заявителя (соответствие рекомендациям), Self_Employed - самозанятость (Да/Нет), Education - наличие образования
### Тест
![Result](result.png)
По результатам кластеризации дендрограммой видно, что было проведено эффективное разбиение данных. На диаграмме показаны различные группы заявителей по рискам выдачи кредита

View File

@@ -0,0 +1,23 @@
from scipy.cluster import hierarchy
import pandas as pd
from matplotlib import pyplot as plt
def start():
data = pd.read_csv('loan.csv')
x = data[['ApplicantIncome', 'LoanAmount', 'Credit_History', 'Self_Employed', 'Education']]
plt.figure(1, figsize=(16, 9))
plt.title('Дендрограмма кластеризации заявителей')
hierarchy.dendrogram(hierarchy.linkage(x, method='single'),
truncate_mode='lastp',
p=20,
orientation='top',
leaf_rotation=90,
leaf_font_size=8,
show_contracted=True)
plt.show()
start()

View File

@@ -0,0 +1,615 @@
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
LP001002,Male,No,0,1,0.0,5849,0.0,360.0,1.0,0,Y,0.0
LP001003,Male,Yes,1,1,0.0,4583,1508.0,128.0,360.0,1,Rural,0.0
LP001005,Male,Yes,0,1,1.0,3000,0.0,66.0,360.0,1,Urban,1.0
LP001006,Male,Yes,0,0,0.0,2583,2358.0,120.0,360.0,1,Urban,1.0
LP001008,Male,No,0,1,0.0,6000,0.0,141.0,360.0,1,Urban,1.0
LP001011,Male,Yes,2,1,1.0,5417,4196.0,267.0,360.0,1,Urban,1.0
LP001013,Male,Yes,0,0,0.0,2333,1516.0,95.0,360.0,1,Urban,1.0
LP001014,Male,Yes,3+,1,0.0,3036,2504.0,158.0,360.0,0,Semiurban,0.0
LP001018,Male,Yes,2,1,0.0,4006,1526.0,168.0,360.0,1,Urban,1.0
LP001020,Male,Yes,1,1,0.0,12841,10968.0,349.0,360.0,1,Semiurban,0.0
LP001024,Male,Yes,2,1,0.0,3200,700.0,70.0,360.0,1,Urban,1.0
LP001027,Male,Yes,2,1,0.0,2500,1840.0,109.0,360.0,1,Urban,1.0
LP001028,Male,Yes,2,1,0.0,3073,8106.0,200.0,360.0,1,Urban,1.0
LP001029,Male,No,0,1,0.0,1853,2840.0,114.0,360.0,1,Rural,0.0
LP001030,Male,Yes,2,1,0.0,1299,1086.0,17.0,120.0,1,Urban,1.0
LP001032,Male,No,0,1,0.0,4950,0.0,125.0,360.0,1,Urban,1.0
LP001034,Male,No,1,0,0.0,3596,0.0,100.0,240.0,0,Urban,1.0
LP001036,Female,No,0,1,0.0,3510,0.0,76.0,360.0,0,Urban,0.0
LP001038,Male,Yes,0,0,0.0,4887,0.0,133.0,360.0,1,Rural,0.0
LP001041,Male,Yes,0,1,0.0,2600,3500.0,115.0,,1,Urban,1.0
LP001043,Male,Yes,0,0,0.0,7660,0.0,104.0,360.0,0,Urban,0.0
LP001046,Male,Yes,1,1,0.0,5955,5625.0,315.0,360.0,1,Urban,1.0
LP001047,Male,Yes,0,0,0.0,2600,1911.0,116.0,360.0,0,Semiurban,0.0
LP001050,,Yes,2,0,0.0,3365,1917.0,112.0,360.0,0,Rural,0.0
LP001052,Male,Yes,1,1,0.0,3717,2925.0,151.0,360.0,0,Semiurban,0.0
LP001066,Male,Yes,0,1,1.0,9560,0.0,191.0,360.0,1,Semiurban,1.0
LP001068,Male,Yes,0,1,0.0,2799,2253.0,122.0,360.0,1,Semiurban,1.0
LP001073,Male,Yes,2,0,0.0,4226,1040.0,110.0,360.0,1,Urban,1.0
LP001086,Male,No,0,0,0.0,1442,0.0,35.0,360.0,1,Urban,0.0
LP001087,Female,No,2,1,0.0,3750,2083.0,120.0,360.0,1,Semiurban,1.0
LP001091,Male,Yes,1,1,0.0,4166,3369.0,201.0,360.0,0,Urban,0.0
LP001095,Male,No,0,1,0.0,3167,0.0,74.0,360.0,1,Urban,0.0
LP001097,Male,No,1,1,1.0,4692,0.0,106.0,360.0,1,Rural,0.0
LP001098,Male,Yes,0,1,0.0,3500,1667.0,114.0,360.0,1,Semiurban,1.0
LP001100,Male,No,3+,1,0.0,12500,3000.0,320.0,360.0,1,Rural,0.0
LP001106,Male,Yes,0,1,0.0,2275,2067.0,0.0,360.0,1,Urban,1.0
LP001109,Male,Yes,0,1,0.0,1828,1330.0,100.0,,0,Urban,0.0
LP001112,Female,Yes,0,1,0.0,3667,1459.0,144.0,360.0,1,Semiurban,1.0
LP001114,Male,No,0,1,0.0,4166,7210.0,184.0,360.0,1,Urban,1.0
LP001116,Male,No,0,0,0.0,3748,1668.0,110.0,360.0,1,Semiurban,1.0
LP001119,Male,No,0,1,0.0,3600,0.0,80.0,360.0,1,Urban,0.0
LP001120,Male,No,0,1,0.0,1800,1213.0,47.0,360.0,1,Urban,1.0
LP001123,Male,Yes,0,1,0.0,2400,0.0,75.0,360.0,0,Urban,1.0
LP001131,Male,Yes,0,1,0.0,3941,2336.0,134.0,360.0,1,Semiurban,1.0
LP001136,Male,Yes,0,0,1.0,4695,0.0,96.0,,1,Urban,1.0
LP001137,Female,No,0,1,0.0,3410,0.0,88.0,,1,Urban,1.0
LP001138,Male,Yes,1,1,0.0,5649,0.0,44.0,360.0,1,Urban,1.0
LP001144,Male,Yes,0,1,0.0,5821,0.0,144.0,360.0,1,Urban,1.0
LP001146,Female,Yes,0,1,0.0,2645,3440.0,120.0,360.0,0,Urban,0.0
LP001151,Female,No,0,1,0.0,4000,2275.0,144.0,360.0,1,Semiurban,1.0
LP001155,Female,Yes,0,0,0.0,1928,1644.0,100.0,360.0,1,Semiurban,1.0
LP001157,Female,No,0,1,0.0,3086,0.0,120.0,360.0,1,Semiurban,1.0
LP001164,Female,No,0,1,0.0,4230,0.0,112.0,360.0,1,Semiurban,0.0
LP001179,Male,Yes,2,1,0.0,4616,0.0,134.0,360.0,1,Urban,0.0
LP001186,Female,Yes,1,1,1.0,11500,0.0,286.0,360.0,0,Urban,0.0
LP001194,Male,Yes,2,1,0.0,2708,1167.0,97.0,360.0,1,Semiurban,1.0
LP001195,Male,Yes,0,1,0.0,2132,1591.0,96.0,360.0,1,Semiurban,1.0
LP001197,Male,Yes,0,1,0.0,3366,2200.0,135.0,360.0,1,Rural,0.0
LP001198,Male,Yes,1,1,0.0,8080,2250.0,180.0,360.0,1,Urban,1.0
LP001199,Male,Yes,2,0,0.0,3357,2859.0,144.0,360.0,1,Urban,1.0
LP001205,Male,Yes,0,1,0.0,2500,3796.0,120.0,360.0,1,Urban,1.0
LP001206,Male,Yes,3+,1,0.0,3029,0.0,99.0,360.0,1,Urban,1.0
LP001207,Male,Yes,0,0,1.0,2609,3449.0,165.0,180.0,0,Rural,0.0
LP001213,Male,Yes,1,1,0.0,4945,0.0,0.0,360.0,0,Rural,0.0
LP001222,Female,No,0,1,0.0,4166,0.0,116.0,360.0,0,Semiurban,0.0
LP001225,Male,Yes,0,1,0.0,5726,4595.0,258.0,360.0,1,Semiurban,0.0
LP001228,Male,No,0,0,0.0,3200,2254.0,126.0,180.0,0,Urban,0.0
LP001233,Male,Yes,1,1,0.0,10750,0.0,312.0,360.0,1,Urban,1.0
LP001238,Male,Yes,3+,0,1.0,7100,0.0,125.0,60.0,1,Urban,1.0
LP001241,Female,No,0,1,0.0,4300,0.0,136.0,360.0,0,Semiurban,0.0
LP001243,Male,Yes,0,1,0.0,3208,3066.0,172.0,360.0,1,Urban,1.0
LP001245,Male,Yes,2,0,1.0,1875,1875.0,97.0,360.0,1,Semiurban,1.0
LP001248,Male,No,0,1,0.0,3500,0.0,81.0,300.0,1,Semiurban,1.0
LP001250,Male,Yes,3+,0,0.0,4755,0.0,95.0,,0,Semiurban,0.0
LP001253,Male,Yes,3+,1,1.0,5266,1774.0,187.0,360.0,1,Semiurban,1.0
LP001255,Male,No,0,1,0.0,3750,0.0,113.0,480.0,1,Urban,0.0
LP001256,Male,No,0,1,0.0,3750,4750.0,176.0,360.0,1,Urban,0.0
LP001259,Male,Yes,1,1,1.0,1000,3022.0,110.0,360.0,1,Urban,0.0
LP001263,Male,Yes,3+,1,0.0,3167,4000.0,180.0,300.0,0,Semiurban,0.0
LP001264,Male,Yes,3+,0,1.0,3333,2166.0,130.0,360.0,0,Semiurban,1.0
LP001265,Female,No,0,1,0.0,3846,0.0,111.0,360.0,1,Semiurban,1.0
LP001266,Male,Yes,1,1,1.0,2395,0.0,0.0,360.0,1,Semiurban,1.0
LP001267,Female,Yes,2,1,0.0,1378,1881.0,167.0,360.0,1,Urban,0.0
LP001273,Male,Yes,0,1,0.0,6000,2250.0,265.0,360.0,0,Semiurban,0.0
LP001275,Male,Yes,1,1,0.0,3988,0.0,50.0,240.0,1,Urban,1.0
LP001279,Male,No,0,1,0.0,2366,2531.0,136.0,360.0,1,Semiurban,1.0
LP001280,Male,Yes,2,0,0.0,3333,2000.0,99.0,360.0,0,Semiurban,1.0
LP001282,Male,Yes,0,1,0.0,2500,2118.0,104.0,360.0,1,Semiurban,1.0
LP001289,Male,No,0,1,0.0,8566,0.0,210.0,360.0,1,Urban,1.0
LP001310,Male,Yes,0,1,0.0,5695,4167.0,175.0,360.0,1,Semiurban,1.0
LP001316,Male,Yes,0,1,0.0,2958,2900.0,131.0,360.0,1,Semiurban,1.0
LP001318,Male,Yes,2,1,0.0,6250,5654.0,188.0,180.0,1,Semiurban,1.0
LP001319,Male,Yes,2,0,0.0,3273,1820.0,81.0,360.0,1,Urban,1.0
LP001322,Male,No,0,1,0.0,4133,0.0,122.0,360.0,1,Semiurban,1.0
LP001325,Male,No,0,0,0.0,3620,0.0,25.0,120.0,1,Semiurban,1.0
LP001326,Male,No,0,1,0.0,6782,0.0,0.0,360.0,0,Urban,0.0
LP001327,Female,Yes,0,1,0.0,2484,2302.0,137.0,360.0,1,Semiurban,1.0
LP001333,Male,Yes,0,1,0.0,1977,997.0,50.0,360.0,1,Semiurban,1.0
LP001334,Male,Yes,0,0,0.0,4188,0.0,115.0,180.0,1,Semiurban,1.0
LP001343,Male,Yes,0,1,0.0,1759,3541.0,131.0,360.0,1,Semiurban,1.0
LP001345,Male,Yes,2,0,0.0,4288,3263.0,133.0,180.0,1,Urban,1.0
LP001349,Male,No,0,1,0.0,4843,3806.0,151.0,360.0,1,Semiurban,1.0
LP001350,Male,Yes,,1,0.0,13650,0.0,0.0,360.0,1,Urban,1.0
LP001356,Male,Yes,0,1,0.0,4652,3583.0,0.0,360.0,1,Semiurban,1.0
LP001357,Male,,,1,0.0,3816,754.0,160.0,360.0,1,Urban,1.0
LP001367,Male,Yes,1,1,0.0,3052,1030.0,100.0,360.0,1,Urban,1.0
LP001369,Male,Yes,2,1,0.0,11417,1126.0,225.0,360.0,1,Urban,1.0
LP001370,Male,No,0,0,0.0,7333,0.0,120.0,360.0,1,Rural,0.0
LP001379,Male,Yes,2,1,0.0,3800,3600.0,216.0,360.0,0,Urban,0.0
LP001384,Male,Yes,3+,0,0.0,2071,754.0,94.0,480.0,1,Semiurban,1.0
LP001385,Male,No,0,1,0.0,5316,0.0,136.0,360.0,1,Urban,1.0
LP001387,Female,Yes,0,1,0.0,2929,2333.0,139.0,360.0,1,Semiurban,1.0
LP001391,Male,Yes,0,0,0.0,3572,4114.0,152.0,,0,Rural,0.0
LP001392,Female,No,1,1,1.0,7451,0.0,0.0,360.0,1,Semiurban,1.0
LP001398,Male,No,0,1,0.0,5050,0.0,118.0,360.0,1,Semiurban,1.0
LP001401,Male,Yes,1,1,0.0,14583,0.0,185.0,180.0,1,Rural,1.0
LP001404,Female,Yes,0,1,0.0,3167,2283.0,154.0,360.0,1,Semiurban,1.0
LP001405,Male,Yes,1,1,0.0,2214,1398.0,85.0,360.0,0,Urban,1.0
LP001421,Male,Yes,0,1,0.0,5568,2142.0,175.0,360.0,1,Rural,0.0
LP001422,Female,No,0,1,0.0,10408,0.0,259.0,360.0,1,Urban,1.0
LP001426,Male,Yes,,1,0.0,5667,2667.0,180.0,360.0,1,Rural,1.0
LP001430,Female,No,0,1,0.0,4166,0.0,44.0,360.0,1,Semiurban,1.0
LP001431,Female,No,0,1,0.0,2137,8980.0,137.0,360.0,0,Semiurban,1.0
LP001432,Male,Yes,2,1,0.0,2957,0.0,81.0,360.0,1,Semiurban,1.0
LP001439,Male,Yes,0,0,0.0,4300,2014.0,194.0,360.0,1,Rural,1.0
LP001443,Female,No,0,1,0.0,3692,0.0,93.0,360.0,0,Rural,1.0
LP001448,,Yes,3+,1,0.0,23803,0.0,370.0,360.0,1,Rural,1.0
LP001449,Male,No,0,1,0.0,3865,1640.0,0.0,360.0,1,Rural,1.0
LP001451,Male,Yes,1,1,1.0,10513,3850.0,160.0,180.0,0,Urban,0.0
LP001465,Male,Yes,0,1,0.0,6080,2569.0,182.0,360.0,0,Rural,0.0
LP001469,Male,No,0,1,1.0,20166,0.0,650.0,480.0,0,Urban,1.0
LP001473,Male,No,0,1,0.0,2014,1929.0,74.0,360.0,1,Urban,1.0
LP001478,Male,No,0,1,0.0,2718,0.0,70.0,360.0,1,Semiurban,1.0
LP001482,Male,Yes,0,1,1.0,3459,0.0,25.0,120.0,1,Semiurban,1.0
LP001487,Male,No,0,1,0.0,4895,0.0,102.0,360.0,1,Semiurban,1.0
LP001488,Male,Yes,3+,1,0.0,4000,7750.0,290.0,360.0,1,Semiurban,0.0
LP001489,Female,Yes,0,1,0.0,4583,0.0,84.0,360.0,1,Rural,0.0
LP001491,Male,Yes,2,1,1.0,3316,3500.0,88.0,360.0,1,Urban,1.0
LP001492,Male,No,0,1,0.0,14999,0.0,242.0,360.0,0,Semiurban,0.0
LP001493,Male,Yes,2,0,0.0,4200,1430.0,129.0,360.0,1,Rural,0.0
LP001497,Male,Yes,2,1,0.0,5042,2083.0,185.0,360.0,1,Rural,0.0
LP001498,Male,No,0,1,0.0,5417,0.0,168.0,360.0,1,Urban,1.0
LP001504,Male,No,0,1,1.0,6950,0.0,175.0,180.0,1,Semiurban,1.0
LP001507,Male,Yes,0,1,0.0,2698,2034.0,122.0,360.0,1,Semiurban,1.0
LP001508,Male,Yes,2,1,0.0,11757,0.0,187.0,180.0,1,Urban,1.0
LP001514,Female,Yes,0,1,0.0,2330,4486.0,100.0,360.0,1,Semiurban,1.0
LP001516,Female,Yes,2,1,0.0,14866,0.0,70.0,360.0,1,Urban,1.0
LP001518,Male,Yes,1,1,0.0,1538,1425.0,30.0,360.0,1,Urban,1.0
LP001519,Female,No,0,1,0.0,10000,1666.0,225.0,360.0,1,Rural,0.0
LP001520,Male,Yes,0,1,0.0,4860,830.0,125.0,360.0,1,Semiurban,1.0
LP001528,Male,No,0,1,0.0,6277,0.0,118.0,360.0,0,Rural,0.0
LP001529,Male,Yes,0,1,1.0,2577,3750.0,152.0,360.0,1,Rural,1.0
LP001531,Male,No,0,1,0.0,9166,0.0,244.0,360.0,1,Urban,0.0
LP001532,Male,Yes,2,0,0.0,2281,0.0,113.0,360.0,1,Rural,0.0
LP001535,Male,No,0,1,0.0,3254,0.0,50.0,360.0,1,Urban,1.0
LP001536,Male,Yes,3+,1,0.0,39999,0.0,600.0,180.0,0,Semiurban,1.0
LP001541,Male,Yes,1,1,0.0,6000,0.0,160.0,360.0,0,Rural,1.0
LP001543,Male,Yes,1,1,0.0,9538,0.0,187.0,360.0,1,Urban,1.0
LP001546,Male,No,0,1,0.0,2980,2083.0,120.0,360.0,1,Rural,1.0
LP001552,Male,Yes,0,1,0.0,4583,5625.0,255.0,360.0,1,Semiurban,1.0
LP001560,Male,Yes,0,0,0.0,1863,1041.0,98.0,360.0,1,Semiurban,1.0
LP001562,Male,Yes,0,1,0.0,7933,0.0,275.0,360.0,1,Urban,0.0
LP001565,Male,Yes,1,1,0.0,3089,1280.0,121.0,360.0,0,Semiurban,0.0
LP001570,Male,Yes,2,1,0.0,4167,1447.0,158.0,360.0,1,Rural,1.0
LP001572,Male,Yes,0,1,0.0,9323,0.0,75.0,180.0,1,Urban,1.0
LP001574,Male,Yes,0,1,0.0,3707,3166.0,182.0,,1,Rural,1.0
LP001577,Female,Yes,0,1,0.0,4583,0.0,112.0,360.0,1,Rural,0.0
LP001578,Male,Yes,0,1,0.0,2439,3333.0,129.0,360.0,1,Rural,1.0
LP001579,Male,No,0,1,0.0,2237,0.0,63.0,480.0,0,Semiurban,0.0
LP001580,Male,Yes,2,1,0.0,8000,0.0,200.0,360.0,1,Semiurban,1.0
LP001581,Male,Yes,0,0,0.0,1820,1769.0,95.0,360.0,1,Rural,1.0
LP001585,,Yes,3+,1,0.0,51763,0.0,700.0,300.0,1,Urban,1.0
LP001586,Male,Yes,3+,0,0.0,3522,0.0,81.0,180.0,1,Rural,0.0
LP001594,Male,Yes,0,1,0.0,5708,5625.0,187.0,360.0,1,Semiurban,1.0
LP001603,Male,Yes,0,0,1.0,4344,736.0,87.0,360.0,1,Semiurban,0.0
LP001606,Male,Yes,0,1,0.0,3497,1964.0,116.0,360.0,1,Rural,1.0
LP001608,Male,Yes,2,1,0.0,2045,1619.0,101.0,360.0,1,Rural,1.0
LP001610,Male,Yes,3+,1,0.0,5516,11300.0,495.0,360.0,0,Semiurban,0.0
LP001616,Male,Yes,1,1,0.0,3750,0.0,116.0,360.0,1,Semiurban,1.0
LP001630,Male,No,0,0,0.0,2333,1451.0,102.0,480.0,0,Urban,0.0
LP001633,Male,Yes,1,1,0.0,6400,7250.0,180.0,360.0,0,Urban,0.0
LP001634,Male,No,0,1,0.0,1916,5063.0,67.0,360.0,0,Rural,0.0
LP001636,Male,Yes,0,1,0.0,4600,0.0,73.0,180.0,1,Semiurban,1.0
LP001637,Male,Yes,1,1,0.0,33846,0.0,260.0,360.0,1,Semiurban,0.0
LP001639,Female,Yes,0,1,0.0,3625,0.0,108.0,360.0,1,Semiurban,1.0
LP001640,Male,Yes,0,1,1.0,39147,4750.0,120.0,360.0,1,Semiurban,1.0
LP001641,Male,Yes,1,1,1.0,2178,0.0,66.0,300.0,0,Rural,0.0
LP001643,Male,Yes,0,1,0.0,2383,2138.0,58.0,360.0,0,Rural,1.0
LP001644,,Yes,0,1,1.0,674,5296.0,168.0,360.0,1,Rural,1.0
LP001647,Male,Yes,0,1,0.0,9328,0.0,188.0,180.0,1,Rural,1.0
LP001653,Male,No,0,0,0.0,4885,0.0,48.0,360.0,1,Rural,1.0
LP001656,Male,No,0,1,0.0,12000,0.0,164.0,360.0,1,Semiurban,0.0
LP001657,Male,Yes,0,0,0.0,6033,0.0,160.0,360.0,1,Urban,0.0
LP001658,Male,No,0,1,0.0,3858,0.0,76.0,360.0,1,Semiurban,1.0
LP001664,Male,No,0,1,0.0,4191,0.0,120.0,360.0,1,Rural,1.0
LP001665,Male,Yes,1,1,0.0,3125,2583.0,170.0,360.0,1,Semiurban,0.0
LP001666,Male,No,0,1,0.0,8333,3750.0,187.0,360.0,1,Rural,1.0
LP001669,Female,No,0,0,0.0,1907,2365.0,120.0,,1,Urban,1.0
LP001671,Female,Yes,0,1,0.0,3416,2816.0,113.0,360.0,0,Semiurban,1.0
LP001673,Male,No,0,1,1.0,11000,0.0,83.0,360.0,1,Urban,0.0
LP001674,Male,Yes,1,0,0.0,2600,2500.0,90.0,360.0,1,Semiurban,1.0
LP001677,Male,No,2,1,0.0,4923,0.0,166.0,360.0,0,Semiurban,1.0
LP001682,Male,Yes,3+,0,0.0,3992,0.0,0.0,180.0,1,Urban,0.0
LP001688,Male,Yes,1,0,0.0,3500,1083.0,135.0,360.0,1,Urban,1.0
LP001691,Male,Yes,2,0,0.0,3917,0.0,124.0,360.0,1,Semiurban,1.0
LP001692,Female,No,0,0,0.0,4408,0.0,120.0,360.0,1,Semiurban,1.0
LP001693,Female,No,0,1,0.0,3244,0.0,80.0,360.0,1,Urban,1.0
LP001698,Male,No,0,0,0.0,3975,2531.0,55.0,360.0,1,Rural,1.0
LP001699,Male,No,0,1,0.0,2479,0.0,59.0,360.0,1,Urban,1.0
LP001702,Male,No,0,1,0.0,3418,0.0,127.0,360.0,1,Semiurban,0.0
LP001708,Female,No,0,1,0.0,10000,0.0,214.0,360.0,1,Semiurban,0.0
LP001711,Male,Yes,3+,1,0.0,3430,1250.0,128.0,360.0,0,Semiurban,0.0
LP001713,Male,Yes,1,1,1.0,7787,0.0,240.0,360.0,1,Urban,1.0
LP001715,Male,Yes,3+,0,1.0,5703,0.0,130.0,360.0,1,Rural,1.0
LP001716,Male,Yes,0,1,0.0,3173,3021.0,137.0,360.0,1,Urban,1.0
LP001720,Male,Yes,3+,0,0.0,3850,983.0,100.0,360.0,1,Semiurban,1.0
LP001722,Male,Yes,0,1,0.0,150,1800.0,135.0,360.0,1,Rural,0.0
LP001726,Male,Yes,0,1,0.0,3727,1775.0,131.0,360.0,1,Semiurban,1.0
LP001732,Male,Yes,2,1,0.0,5000,0.0,72.0,360.0,0,Semiurban,0.0
LP001734,Female,Yes,2,1,0.0,4283,2383.0,127.0,360.0,0,Semiurban,1.0
LP001736,Male,Yes,0,1,0.0,2221,0.0,60.0,360.0,0,Urban,0.0
LP001743,Male,Yes,2,1,0.0,4009,1717.0,116.0,360.0,1,Semiurban,1.0
LP001744,Male,No,0,1,0.0,2971,2791.0,144.0,360.0,1,Semiurban,1.0
LP001749,Male,Yes,0,1,0.0,7578,1010.0,175.0,,1,Semiurban,1.0
LP001750,Male,Yes,0,1,0.0,6250,0.0,128.0,360.0,1,Semiurban,1.0
LP001751,Male,Yes,0,1,0.0,3250,0.0,170.0,360.0,1,Rural,0.0
LP001754,Male,Yes,,0,1.0,4735,0.0,138.0,360.0,1,Urban,0.0
LP001758,Male,Yes,2,1,0.0,6250,1695.0,210.0,360.0,1,Semiurban,1.0
LP001760,Male,,,1,0.0,4758,0.0,158.0,480.0,1,Semiurban,1.0
LP001761,Male,No,0,1,1.0,6400,0.0,200.0,360.0,1,Rural,1.0
LP001765,Male,Yes,1,1,0.0,2491,2054.0,104.0,360.0,1,Semiurban,1.0
LP001768,Male,Yes,0,1,0.0,3716,0.0,42.0,180.0,1,Rural,1.0
LP001770,Male,No,0,0,0.0,3189,2598.0,120.0,,1,Rural,1.0
LP001776,Female,No,0,1,0.0,8333,0.0,280.0,360.0,1,Semiurban,1.0
LP001778,Male,Yes,1,1,0.0,3155,1779.0,140.0,360.0,1,Semiurban,1.0
LP001784,Male,Yes,1,1,0.0,5500,1260.0,170.0,360.0,1,Rural,1.0
LP001786,Male,Yes,0,1,0.0,5746,0.0,255.0,360.0,0,Urban,0.0
LP001788,Female,No,0,1,1.0,3463,0.0,122.0,360.0,0,Urban,1.0
LP001790,Female,No,1,1,0.0,3812,0.0,112.0,360.0,1,Rural,1.0
LP001792,Male,Yes,1,1,0.0,3315,0.0,96.0,360.0,1,Semiurban,1.0
LP001798,Male,Yes,2,1,0.0,5819,5000.0,120.0,360.0,1,Rural,1.0
LP001800,Male,Yes,1,0,0.0,2510,1983.0,140.0,180.0,1,Urban,0.0
LP001806,Male,No,0,1,0.0,2965,5701.0,155.0,60.0,1,Urban,1.0
LP001807,Male,Yes,2,1,1.0,6250,1300.0,108.0,360.0,1,Rural,1.0
LP001811,Male,Yes,0,0,0.0,3406,4417.0,123.0,360.0,1,Semiurban,1.0
LP001813,Male,No,0,1,1.0,6050,4333.0,120.0,180.0,1,Urban,0.0
LP001814,Male,Yes,2,1,0.0,9703,0.0,112.0,360.0,1,Urban,1.0
LP001819,Male,Yes,1,0,0.0,6608,0.0,137.0,180.0,1,Urban,1.0
LP001824,Male,Yes,1,1,0.0,2882,1843.0,123.0,480.0,1,Semiurban,1.0
LP001825,Male,Yes,0,1,0.0,1809,1868.0,90.0,360.0,1,Urban,1.0
LP001835,Male,Yes,0,0,0.0,1668,3890.0,201.0,360.0,0,Semiurban,0.0
LP001836,Female,No,2,1,0.0,3427,0.0,138.0,360.0,1,Urban,0.0
LP001841,Male,No,0,0,1.0,2583,2167.0,104.0,360.0,1,Rural,1.0
LP001843,Male,Yes,1,0,0.0,2661,7101.0,279.0,180.0,1,Semiurban,1.0
LP001844,Male,No,0,1,1.0,16250,0.0,192.0,360.0,0,Urban,0.0
LP001846,Female,No,3+,1,0.0,3083,0.0,255.0,360.0,1,Rural,1.0
LP001849,Male,No,0,0,0.0,6045,0.0,115.0,360.0,0,Rural,0.0
LP001854,Male,Yes,3+,1,0.0,5250,0.0,94.0,360.0,1,Urban,0.0
LP001859,Male,Yes,0,1,0.0,14683,2100.0,304.0,360.0,1,Rural,0.0
LP001864,Male,Yes,3+,0,0.0,4931,0.0,128.0,360.0,0,Semiurban,0.0
LP001865,Male,Yes,1,1,0.0,6083,4250.0,330.0,360.0,0,Urban,1.0
LP001868,Male,No,0,1,0.0,2060,2209.0,134.0,360.0,1,Semiurban,1.0
LP001870,Female,No,1,1,0.0,3481,0.0,155.0,36.0,1,Semiurban,0.0
LP001871,Female,No,0,1,0.0,7200,0.0,120.0,360.0,1,Rural,1.0
LP001872,Male,No,0,1,1.0,5166,0.0,128.0,360.0,1,Semiurban,1.0
LP001875,Male,No,0,1,0.0,4095,3447.0,151.0,360.0,1,Rural,1.0
LP001877,Male,Yes,2,1,0.0,4708,1387.0,150.0,360.0,1,Semiurban,1.0
LP001882,Male,Yes,3+,1,0.0,4333,1811.0,160.0,360.0,0,Urban,1.0
LP001883,Female,No,0,1,0.0,3418,0.0,135.0,360.0,1,Rural,0.0
LP001884,Female,No,1,1,0.0,2876,1560.0,90.0,360.0,1,Urban,1.0
LP001888,Female,No,0,1,0.0,3237,0.0,30.0,360.0,1,Urban,1.0
LP001891,Male,Yes,0,1,0.0,11146,0.0,136.0,360.0,1,Urban,1.0
LP001892,Male,No,0,1,0.0,2833,1857.0,126.0,360.0,1,Rural,1.0
LP001894,Male,Yes,0,1,0.0,2620,2223.0,150.0,360.0,1,Semiurban,1.0
LP001896,Male,Yes,2,1,0.0,3900,0.0,90.0,360.0,1,Semiurban,1.0
LP001900,Male,Yes,1,1,0.0,2750,1842.0,115.0,360.0,1,Semiurban,1.0
LP001903,Male,Yes,0,1,0.0,3993,3274.0,207.0,360.0,1,Semiurban,1.0
LP001904,Male,Yes,0,1,0.0,3103,1300.0,80.0,360.0,1,Urban,1.0
LP001907,Male,Yes,0,1,0.0,14583,0.0,436.0,360.0,1,Semiurban,1.0
LP001908,Female,Yes,0,0,0.0,4100,0.0,124.0,360.0,0,Rural,1.0
LP001910,Male,No,1,0,1.0,4053,2426.0,158.0,360.0,0,Urban,0.0
LP001914,Male,Yes,0,1,0.0,3927,800.0,112.0,360.0,1,Semiurban,1.0
LP001915,Male,Yes,2,1,0.0,2301,985.7999878,78.0,180.0,1,Urban,1.0
LP001917,Female,No,0,1,0.0,1811,1666.0,54.0,360.0,1,Urban,1.0
LP001922,Male,Yes,0,1,0.0,20667,0.0,0.0,360.0,1,Rural,0.0
LP001924,Male,No,0,1,0.0,3158,3053.0,89.0,360.0,1,Rural,1.0
LP001925,Female,No,0,1,1.0,2600,1717.0,99.0,300.0,1,Semiurban,0.0
LP001926,Male,Yes,0,1,0.0,3704,2000.0,120.0,360.0,1,Rural,1.0
LP001931,Female,No,0,1,0.0,4124,0.0,115.0,360.0,1,Semiurban,1.0
LP001935,Male,No,0,1,0.0,9508,0.0,187.0,360.0,1,Rural,1.0
LP001936,Male,Yes,0,1,0.0,3075,2416.0,139.0,360.0,1,Rural,1.0
LP001938,Male,Yes,2,1,0.0,4400,0.0,127.0,360.0,0,Semiurban,0.0
LP001940,Male,Yes,2,1,0.0,3153,1560.0,134.0,360.0,1,Urban,1.0
LP001945,Female,No,,1,0.0,5417,0.0,143.0,480.0,0,Urban,0.0
LP001947,Male,Yes,0,1,0.0,2383,3334.0,172.0,360.0,1,Semiurban,1.0
LP001949,Male,Yes,3+,1,0.0,4416,1250.0,110.0,360.0,1,Urban,1.0
LP001953,Male,Yes,1,1,0.0,6875,0.0,200.0,360.0,1,Semiurban,1.0
LP001954,Female,Yes,1,1,0.0,4666,0.0,135.0,360.0,1,Urban,1.0
LP001955,Female,No,0,1,0.0,5000,2541.0,151.0,480.0,1,Rural,0.0
LP001963,Male,Yes,1,1,0.0,2014,2925.0,113.0,360.0,1,Urban,0.0
LP001964,Male,Yes,0,0,0.0,1800,2934.0,93.0,360.0,0,Urban,0.0
LP001972,Male,Yes,,0,0.0,2875,1750.0,105.0,360.0,1,Semiurban,1.0
LP001974,Female,No,0,1,0.0,5000,0.0,132.0,360.0,1,Rural,1.0
LP001977,Male,Yes,1,1,0.0,1625,1803.0,96.0,360.0,1,Urban,1.0
LP001978,Male,No,0,1,0.0,4000,2500.0,140.0,360.0,1,Rural,1.0
LP001990,Male,No,0,0,0.0,2000,0.0,0.0,360.0,1,Urban,0.0
LP001993,Female,No,0,1,0.0,3762,1666.0,135.0,360.0,1,Rural,1.0
LP001994,Female,No,0,1,0.0,2400,1863.0,104.0,360.0,0,Urban,0.0
LP001996,Male,No,0,1,0.0,20233,0.0,480.0,360.0,1,Rural,0.0
LP001998,Male,Yes,2,0,0.0,7667,0.0,185.0,360.0,0,Rural,1.0
LP002002,Female,No,0,1,0.0,2917,0.0,84.0,360.0,1,Semiurban,1.0
LP002004,Male,No,0,0,0.0,2927,2405.0,111.0,360.0,1,Semiurban,1.0
LP002006,Female,No,0,1,0.0,2507,0.0,56.0,360.0,1,Rural,1.0
LP002008,Male,Yes,2,1,1.0,5746,0.0,144.0,84.0,0,Rural,1.0
LP002024,,Yes,0,1,0.0,2473,1843.0,159.0,360.0,1,Rural,0.0
LP002031,Male,Yes,1,0,0.0,3399,1640.0,111.0,180.0,1,Urban,1.0
LP002035,Male,Yes,2,1,0.0,3717,0.0,120.0,360.0,1,Semiurban,1.0
LP002036,Male,Yes,0,1,0.0,2058,2134.0,88.0,360.0,0,Urban,1.0
LP002043,Female,No,1,1,0.0,3541,0.0,112.0,360.0,0,Semiurban,1.0
LP002050,Male,Yes,1,1,1.0,10000,0.0,155.0,360.0,1,Rural,0.0
LP002051,Male,Yes,0,1,0.0,2400,2167.0,115.0,360.0,1,Semiurban,1.0
LP002053,Male,Yes,3+,1,0.0,4342,189.0,124.0,360.0,1,Semiurban,1.0
LP002054,Male,Yes,2,0,0.0,3601,1590.0,0.0,360.0,1,Rural,1.0
LP002055,Female,No,0,1,0.0,3166,2985.0,132.0,360.0,0,Rural,1.0
LP002065,Male,Yes,3+,1,0.0,15000,0.0,300.0,360.0,1,Rural,1.0
LP002067,Male,Yes,1,1,1.0,8666,4983.0,376.0,360.0,0,Rural,0.0
LP002068,Male,No,0,1,0.0,4917,0.0,130.0,360.0,0,Rural,1.0
LP002082,Male,Yes,0,1,1.0,5818,2160.0,184.0,360.0,1,Semiurban,1.0
LP002086,Female,Yes,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002087,Female,No,0,1,0.0,2500,0.0,67.0,360.0,1,Urban,1.0
LP002097,Male,No,1,1,0.0,4384,1793.0,117.0,360.0,1,Urban,1.0
LP002098,Male,No,0,1,0.0,2935,0.0,98.0,360.0,1,Semiurban,1.0
LP002100,Male,No,,1,0.0,2833,0.0,71.0,360.0,1,Urban,1.0
LP002101,Male,Yes,0,1,0.0,63337,0.0,490.0,180.0,1,Urban,1.0
LP002103,,Yes,1,1,1.0,9833,1833.0,182.0,180.0,1,Urban,1.0
LP002106,Male,Yes,,1,1.0,5503,4490.0,70.0,,1,Semiurban,1.0
LP002110,Male,Yes,1,1,0.0,5250,688.0,160.0,360.0,1,Rural,1.0
LP002112,Male,Yes,2,1,1.0,2500,4600.0,176.0,360.0,1,Rural,1.0
LP002113,Female,No,3+,0,0.0,1830,0.0,0.0,360.0,0,Urban,0.0
LP002114,Female,No,0,1,0.0,4160,0.0,71.0,360.0,1,Semiurban,1.0
LP002115,Male,Yes,3+,0,0.0,2647,1587.0,173.0,360.0,1,Rural,0.0
LP002116,Female,No,0,1,0.0,2378,0.0,46.0,360.0,1,Rural,0.0
LP002119,Male,Yes,1,0,0.0,4554,1229.0,158.0,360.0,1,Urban,1.0
LP002126,Male,Yes,3+,0,0.0,3173,0.0,74.0,360.0,1,Semiurban,1.0
LP002128,Male,Yes,2,1,0.0,2583,2330.0,125.0,360.0,1,Rural,1.0
LP002129,Male,Yes,0,1,0.0,2499,2458.0,160.0,360.0,1,Semiurban,1.0
LP002130,Male,Yes,,0,0.0,3523,3230.0,152.0,360.0,0,Rural,0.0
LP002131,Male,Yes,2,0,0.0,3083,2168.0,126.0,360.0,1,Urban,1.0
LP002137,Male,Yes,0,1,0.0,6333,4583.0,259.0,360.0,0,Semiurban,1.0
LP002138,Male,Yes,0,1,0.0,2625,6250.0,187.0,360.0,1,Rural,1.0
LP002139,Male,Yes,0,1,0.0,9083,0.0,228.0,360.0,1,Semiurban,1.0
LP002140,Male,No,0,1,0.0,8750,4167.0,308.0,360.0,1,Rural,0.0
LP002141,Male,Yes,3+,1,0.0,2666,2083.0,95.0,360.0,1,Rural,1.0
LP002142,Female,Yes,0,1,1.0,5500,0.0,105.0,360.0,0,Rural,0.0
LP002143,Female,Yes,0,1,0.0,2423,505.0,130.0,360.0,1,Semiurban,1.0
LP002144,Female,No,,1,0.0,3813,0.0,116.0,180.0,1,Urban,1.0
LP002149,Male,Yes,2,1,0.0,8333,3167.0,165.0,360.0,1,Rural,1.0
LP002151,Male,Yes,1,1,0.0,3875,0.0,67.0,360.0,1,Urban,0.0
LP002158,Male,Yes,0,0,0.0,3000,1666.0,100.0,480.0,0,Urban,0.0
LP002160,Male,Yes,3+,1,0.0,5167,3167.0,200.0,360.0,1,Semiurban,1.0
LP002161,Female,No,1,1,0.0,4723,0.0,81.0,360.0,1,Semiurban,0.0
LP002170,Male,Yes,2,1,0.0,5000,3667.0,236.0,360.0,1,Semiurban,1.0
LP002175,Male,Yes,0,1,0.0,4750,2333.0,130.0,360.0,1,Urban,1.0
LP002178,Male,Yes,0,1,0.0,3013,3033.0,95.0,300.0,0,Urban,1.0
LP002180,Male,No,0,1,1.0,6822,0.0,141.0,360.0,1,Rural,1.0
LP002181,Male,No,0,0,0.0,6216,0.0,133.0,360.0,1,Rural,0.0
LP002187,Male,No,0,1,0.0,2500,0.0,96.0,480.0,1,Semiurban,0.0
LP002188,Male,No,0,1,0.0,5124,0.0,124.0,,0,Rural,0.0
LP002190,Male,Yes,1,1,0.0,6325,0.0,175.0,360.0,1,Semiurban,1.0
LP002191,Male,Yes,0,1,0.0,19730,5266.0,570.0,360.0,1,Rural,0.0
LP002194,Female,No,0,1,1.0,15759,0.0,55.0,360.0,1,Semiurban,1.0
LP002197,Male,Yes,2,1,0.0,5185,0.0,155.0,360.0,1,Semiurban,1.0
LP002201,Male,Yes,2,1,1.0,9323,7873.0,380.0,300.0,1,Rural,1.0
LP002205,Male,No,1,1,0.0,3062,1987.0,111.0,180.0,0,Urban,0.0
LP002209,Female,No,0,1,0.0,2764,1459.0,110.0,360.0,1,Urban,1.0
LP002211,Male,Yes,0,1,0.0,4817,923.0,120.0,180.0,1,Urban,1.0
LP002219,Male,Yes,3+,1,0.0,8750,4996.0,130.0,360.0,1,Rural,1.0
LP002223,Male,Yes,0,1,0.0,4310,0.0,130.0,360.0,0,Semiurban,1.0
LP002224,Male,No,0,1,0.0,3069,0.0,71.0,480.0,1,Urban,0.0
LP002225,Male,Yes,2,1,0.0,5391,0.0,130.0,360.0,1,Urban,1.0
LP002226,Male,Yes,0,1,0.0,3333,2500.0,128.0,360.0,1,Semiurban,1.0
LP002229,Male,No,0,1,0.0,5941,4232.0,296.0,360.0,1,Semiurban,1.0
LP002231,Female,No,0,1,0.0,6000,0.0,156.0,360.0,1,Urban,1.0
LP002234,Male,No,0,1,1.0,7167,0.0,128.0,360.0,1,Urban,1.0
LP002236,Male,Yes,2,1,0.0,4566,0.0,100.0,360.0,1,Urban,0.0
LP002237,Male,No,1,1,0.0,3667,0.0,113.0,180.0,1,Urban,1.0
LP002239,Male,No,0,0,0.0,2346,1600.0,132.0,360.0,1,Semiurban,1.0
LP002243,Male,Yes,0,0,0.0,3010,3136.0,0.0,360.0,0,Urban,0.0
LP002244,Male,Yes,0,1,0.0,2333,2417.0,136.0,360.0,1,Urban,1.0
LP002250,Male,Yes,0,1,0.0,5488,0.0,125.0,360.0,1,Rural,1.0
LP002255,Male,No,3+,1,0.0,9167,0.0,185.0,360.0,1,Rural,1.0
LP002262,Male,Yes,3+,1,0.0,9504,0.0,275.0,360.0,1,Rural,1.0
LP002263,Male,Yes,0,1,0.0,2583,2115.0,120.0,360.0,0,Urban,1.0
LP002265,Male,Yes,2,0,0.0,1993,1625.0,113.0,180.0,1,Semiurban,1.0
LP002266,Male,Yes,2,1,0.0,3100,1400.0,113.0,360.0,1,Urban,1.0
LP002272,Male,Yes,2,1,0.0,3276,484.0,135.0,360.0,0,Semiurban,1.0
LP002277,Female,No,0,1,0.0,3180,0.0,71.0,360.0,0,Urban,0.0
LP002281,Male,Yes,0,1,0.0,3033,1459.0,95.0,360.0,1,Urban,1.0
LP002284,Male,No,0,0,0.0,3902,1666.0,109.0,360.0,1,Rural,1.0
LP002287,Female,No,0,1,0.0,1500,1800.0,103.0,360.0,0,Semiurban,0.0
LP002288,Male,Yes,2,0,0.0,2889,0.0,45.0,180.0,0,Urban,0.0
LP002296,Male,No,0,0,0.0,2755,0.0,65.0,300.0,1,Rural,0.0
LP002297,Male,No,0,1,0.0,2500,20000.0,103.0,360.0,1,Semiurban,1.0
LP002300,Female,No,0,0,0.0,1963,0.0,53.0,360.0,1,Semiurban,1.0
LP002301,Female,No,0,1,1.0,7441,0.0,194.0,360.0,1,Rural,0.0
LP002305,Female,No,0,1,0.0,4547,0.0,115.0,360.0,1,Semiurban,1.0
LP002308,Male,Yes,0,0,0.0,2167,2400.0,115.0,360.0,1,Urban,1.0
LP002314,Female,No,0,0,0.0,2213,0.0,66.0,360.0,1,Rural,1.0
LP002315,Male,Yes,1,1,0.0,8300,0.0,152.0,300.0,0,Semiurban,0.0
LP002317,Male,Yes,3+,1,0.0,81000,0.0,360.0,360.0,0,Rural,0.0
LP002318,Female,No,1,0,1.0,3867,0.0,62.0,360.0,1,Semiurban,0.0
LP002319,Male,Yes,0,1,0.0,6256,0.0,160.0,360.0,0,Urban,1.0
LP002328,Male,Yes,0,0,0.0,6096,0.0,218.0,360.0,0,Rural,0.0
LP002332,Male,Yes,0,0,0.0,2253,2033.0,110.0,360.0,1,Rural,1.0
LP002335,Female,Yes,0,0,0.0,2149,3237.0,178.0,360.0,0,Semiurban,0.0
LP002337,Female,No,0,1,0.0,2995,0.0,60.0,360.0,1,Urban,1.0
LP002341,Female,No,1,1,0.0,2600,0.0,160.0,360.0,1,Urban,0.0
LP002342,Male,Yes,2,1,1.0,1600,20000.0,239.0,360.0,1,Urban,0.0
LP002345,Male,Yes,0,1,0.0,1025,2773.0,112.0,360.0,1,Rural,1.0
LP002347,Male,Yes,0,1,0.0,3246,1417.0,138.0,360.0,1,Semiurban,1.0
LP002348,Male,Yes,0,1,0.0,5829,0.0,138.0,360.0,1,Rural,1.0
LP002357,Female,No,0,0,0.0,2720,0.0,80.0,,0,Urban,0.0
LP002361,Male,Yes,0,1,0.0,1820,1719.0,100.0,360.0,1,Urban,1.0
LP002362,Male,Yes,1,1,0.0,7250,1667.0,110.0,,0,Urban,0.0
LP002364,Male,Yes,0,1,0.0,14880,0.0,96.0,360.0,1,Semiurban,1.0
LP002366,Male,Yes,0,1,0.0,2666,4300.0,121.0,360.0,1,Rural,1.0
LP002367,Female,No,1,0,0.0,4606,0.0,81.0,360.0,1,Rural,0.0
LP002368,Male,Yes,2,1,0.0,5935,0.0,133.0,360.0,1,Semiurban,1.0
LP002369,Male,Yes,0,1,0.0,2920,16.12000084,87.0,360.0,1,Rural,1.0
LP002370,Male,No,0,0,0.0,2717,0.0,60.0,180.0,1,Urban,1.0
LP002377,Female,No,1,1,1.0,8624,0.0,150.0,360.0,1,Semiurban,1.0
LP002379,Male,No,0,1,0.0,6500,0.0,105.0,360.0,0,Rural,0.0
LP002386,Male,No,0,1,0.0,12876,0.0,405.0,360.0,1,Semiurban,1.0
LP002387,Male,Yes,0,1,0.0,2425,2340.0,143.0,360.0,1,Semiurban,1.0
LP002390,Male,No,0,1,0.0,3750,0.0,100.0,360.0,1,Urban,1.0
LP002393,Female,,,1,0.0,10047,0.0,0.0,240.0,1,Semiurban,1.0
LP002398,Male,No,0,1,0.0,1926,1851.0,50.0,360.0,1,Semiurban,1.0
LP002401,Male,Yes,0,1,0.0,2213,1125.0,0.0,360.0,1,Urban,1.0
LP002403,Male,No,0,1,1.0,10416,0.0,187.0,360.0,0,Urban,0.0
LP002407,Female,Yes,0,0,1.0,7142,0.0,138.0,360.0,1,Rural,1.0
LP002408,Male,No,0,1,0.0,3660,5064.0,187.0,360.0,1,Semiurban,1.0
LP002409,Male,Yes,0,1,0.0,7901,1833.0,180.0,360.0,1,Rural,1.0
LP002418,Male,No,3+,0,0.0,4707,1993.0,148.0,360.0,1,Semiurban,1.0
LP002422,Male,No,1,1,0.0,37719,0.0,152.0,360.0,1,Semiurban,1.0
LP002424,Male,Yes,0,1,0.0,7333,8333.0,175.0,300.0,0,Rural,1.0
LP002429,Male,Yes,1,1,1.0,3466,1210.0,130.0,360.0,1,Rural,1.0
LP002434,Male,Yes,2,0,0.0,4652,0.0,110.0,360.0,1,Rural,1.0
LP002435,Male,Yes,0,1,0.0,3539,1376.0,55.0,360.0,1,Rural,0.0
LP002443,Male,Yes,2,1,0.0,3340,1710.0,150.0,360.0,0,Rural,0.0
LP002444,Male,No,1,0,1.0,2769,1542.0,190.0,360.0,0,Semiurban,0.0
LP002446,Male,Yes,2,0,0.0,2309,1255.0,125.0,360.0,0,Rural,0.0
LP002447,Male,Yes,2,0,0.0,1958,1456.0,60.0,300.0,0,Urban,1.0
LP002448,Male,Yes,0,1,0.0,3948,1733.0,149.0,360.0,0,Rural,0.0
LP002449,Male,Yes,0,1,0.0,2483,2466.0,90.0,180.0,0,Rural,1.0
LP002453,Male,No,0,1,1.0,7085,0.0,84.0,360.0,1,Semiurban,1.0
LP002455,Male,Yes,2,1,0.0,3859,0.0,96.0,360.0,1,Semiurban,1.0
LP002459,Male,Yes,0,1,0.0,4301,0.0,118.0,360.0,1,Urban,1.0
LP002467,Male,Yes,0,1,0.0,3708,2569.0,173.0,360.0,1,Urban,0.0
LP002472,Male,No,2,1,0.0,4354,0.0,136.0,360.0,1,Rural,1.0
LP002473,Male,Yes,0,1,0.0,8334,0.0,160.0,360.0,1,Semiurban,0.0
LP002478,,Yes,0,1,1.0,2083,4083.0,160.0,360.0,0,Semiurban,1.0
LP002484,Male,Yes,3+,1,0.0,7740,0.0,128.0,180.0,1,Urban,1.0
LP002487,Male,Yes,0,1,0.0,3015,2188.0,153.0,360.0,1,Rural,1.0
LP002489,Female,No,1,0,0.0,5191,0.0,132.0,360.0,1,Semiurban,1.0
LP002493,Male,No,0,1,0.0,4166,0.0,98.0,360.0,0,Semiurban,0.0
LP002494,Male,No,0,1,0.0,6000,0.0,140.0,360.0,1,Rural,1.0
LP002500,Male,Yes,3+,0,0.0,2947,1664.0,70.0,180.0,0,Urban,0.0
LP002501,,Yes,0,1,0.0,16692,0.0,110.0,360.0,1,Semiurban,1.0
LP002502,Female,Yes,2,0,0.0,210,2917.0,98.0,360.0,1,Semiurban,1.0
LP002505,Male,Yes,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002515,Male,Yes,1,1,1.0,3450,2079.0,162.0,360.0,1,Semiurban,1.0
LP002517,Male,Yes,1,0,0.0,2653,1500.0,113.0,180.0,0,Rural,0.0
LP002519,Male,Yes,3+,1,0.0,4691,0.0,100.0,360.0,1,Semiurban,1.0
LP002522,Female,No,0,1,1.0,2500,0.0,93.0,360.0,0,Urban,1.0
LP002524,Male,No,2,1,0.0,5532,4648.0,162.0,360.0,1,Rural,1.0
LP002527,Male,Yes,2,1,1.0,16525,1014.0,150.0,360.0,1,Rural,1.0
LP002529,Male,Yes,2,1,0.0,6700,1750.0,230.0,300.0,1,Semiurban,1.0
LP002530,,Yes,2,1,0.0,2873,1872.0,132.0,360.0,0,Semiurban,0.0
LP002531,Male,Yes,1,1,1.0,16667,2250.0,86.0,360.0,1,Semiurban,1.0
LP002533,Male,Yes,2,1,0.0,2947,1603.0,0.0,360.0,1,Urban,0.0
LP002534,Female,No,0,0,0.0,4350,0.0,154.0,360.0,1,Rural,1.0
LP002536,Male,Yes,3+,0,0.0,3095,0.0,113.0,360.0,1,Rural,1.0
LP002537,Male,Yes,0,1,0.0,2083,3150.0,128.0,360.0,1,Semiurban,1.0
LP002541,Male,Yes,0,1,0.0,10833,0.0,234.0,360.0,1,Semiurban,1.0
LP002543,Male,Yes,2,1,0.0,8333,0.0,246.0,360.0,1,Semiurban,1.0
LP002544,Male,Yes,1,0,0.0,1958,2436.0,131.0,360.0,1,Rural,1.0
LP002545,Male,No,2,1,0.0,3547,0.0,80.0,360.0,0,Rural,0.0
LP002547,Male,Yes,1,1,0.0,18333,0.0,500.0,360.0,1,Urban,0.0
LP002555,Male,Yes,2,1,1.0,4583,2083.0,160.0,360.0,1,Semiurban,1.0
LP002556,Male,No,0,1,0.0,2435,0.0,75.0,360.0,1,Urban,0.0
LP002560,Male,No,0,0,0.0,2699,2785.0,96.0,360.0,0,Semiurban,1.0
LP002562,Male,Yes,1,0,0.0,5333,1131.0,186.0,360.0,0,Urban,1.0
LP002571,Male,No,0,0,0.0,3691,0.0,110.0,360.0,1,Rural,1.0
LP002582,Female,No,0,0,1.0,17263,0.0,225.0,360.0,1,Semiurban,1.0
LP002585,Male,Yes,0,1,0.0,3597,2157.0,119.0,360.0,0,Rural,0.0
LP002586,Female,Yes,1,1,0.0,3326,913.0,105.0,84.0,1,Semiurban,1.0
LP002587,Male,Yes,0,0,0.0,2600,1700.0,107.0,360.0,1,Rural,1.0
LP002588,Male,Yes,0,1,0.0,4625,2857.0,111.0,12.0,0,Urban,1.0
LP002600,Male,Yes,1,1,1.0,2895,0.0,95.0,360.0,1,Semiurban,1.0
LP002602,Male,No,0,1,0.0,6283,4416.0,209.0,360.0,0,Rural,0.0
LP002603,Female,No,0,1,0.0,645,3683.0,113.0,480.0,1,Rural,1.0
LP002606,Female,No,0,1,0.0,3159,0.0,100.0,360.0,1,Semiurban,1.0
LP002615,Male,Yes,2,1,0.0,4865,5624.0,208.0,360.0,1,Semiurban,1.0
LP002618,Male,Yes,1,0,0.0,4050,5302.0,138.0,360.0,0,Rural,0.0
LP002619,Male,Yes,0,0,0.0,3814,1483.0,124.0,300.0,1,Semiurban,1.0
LP002622,Male,Yes,2,1,0.0,3510,4416.0,243.0,360.0,1,Rural,1.0
LP002624,Male,Yes,0,1,0.0,20833,6667.0,480.0,360.0,0,Urban,1.0
LP002625,,No,0,1,0.0,3583,0.0,96.0,360.0,1,Urban,0.0
LP002626,Male,Yes,0,1,1.0,2479,3013.0,188.0,360.0,1,Urban,1.0
LP002634,Female,No,1,1,0.0,13262,0.0,40.0,360.0,1,Urban,1.0
LP002637,Male,No,0,0,0.0,3598,1287.0,100.0,360.0,1,Rural,0.0
LP002640,Male,Yes,1,1,0.0,6065,2004.0,250.0,360.0,1,Semiurban,1.0
LP002643,Male,Yes,2,1,0.0,3283,2035.0,148.0,360.0,1,Urban,1.0
LP002648,Male,Yes,0,1,0.0,2130,6666.0,70.0,180.0,1,Semiurban,0.0
LP002652,Male,No,0,1,0.0,5815,3666.0,311.0,360.0,1,Rural,0.0
LP002659,Male,Yes,3+,1,0.0,3466,3428.0,150.0,360.0,1,Rural,1.0
LP002670,Female,Yes,2,1,0.0,2031,1632.0,113.0,480.0,1,Semiurban,1.0
LP002682,Male,Yes,,0,0.0,3074,1800.0,123.0,360.0,0,Semiurban,0.0
LP002683,Male,No,0,1,0.0,4683,1915.0,185.0,360.0,1,Semiurban,0.0
LP002684,Female,No,0,0,0.0,3400,0.0,95.0,360.0,1,Rural,0.0
LP002689,Male,Yes,2,0,0.0,2192,1742.0,45.0,360.0,1,Semiurban,1.0
LP002690,Male,No,0,1,0.0,2500,0.0,55.0,360.0,1,Semiurban,1.0
LP002692,Male,Yes,3+,1,1.0,5677,1424.0,100.0,360.0,1,Rural,1.0
LP002693,Male,Yes,2,1,1.0,7948,7166.0,480.0,360.0,1,Rural,1.0
LP002697,Male,No,0,1,0.0,4680,2087.0,0.0,360.0,1,Semiurban,0.0
LP002699,Male,Yes,2,1,1.0,17500,0.0,400.0,360.0,1,Rural,1.0
LP002705,Male,Yes,0,1,0.0,3775,0.0,110.0,360.0,1,Semiurban,1.0
LP002706,Male,Yes,1,0,0.0,5285,1430.0,161.0,360.0,0,Semiurban,1.0
LP002714,Male,No,1,0,0.0,2679,1302.0,94.0,360.0,1,Semiurban,1.0
LP002716,Male,No,0,0,0.0,6783,0.0,130.0,360.0,1,Semiurban,1.0
LP002717,Male,Yes,0,1,0.0,1025,5500.0,216.0,360.0,0,Rural,1.0
LP002720,Male,Yes,3+,1,0.0,4281,0.0,100.0,360.0,1,Urban,1.0
LP002723,Male,No,2,1,0.0,3588,0.0,110.0,360.0,0,Rural,0.0
LP002729,Male,No,1,1,0.0,11250,0.0,196.0,360.0,0,Semiurban,0.0
LP002731,Female,No,0,0,1.0,18165,0.0,125.0,360.0,1,Urban,1.0
LP002732,Male,No,0,0,0.0,2550,2042.0,126.0,360.0,1,Rural,1.0
LP002734,Male,Yes,0,1,0.0,6133,3906.0,324.0,360.0,1,Urban,1.0
LP002738,Male,No,2,1,0.0,3617,0.0,107.0,360.0,1,Semiurban,1.0
LP002739,Male,Yes,0,0,0.0,2917,536.0,66.0,360.0,1,Rural,0.0
LP002740,Male,Yes,3+,1,0.0,6417,0.0,157.0,180.0,1,Rural,1.0
LP002741,Female,Yes,1,1,0.0,4608,2845.0,140.0,180.0,1,Semiurban,1.0
LP002743,Female,No,0,1,0.0,2138,0.0,99.0,360.0,0,Semiurban,0.0
LP002753,Female,No,1,1,0.0,3652,0.0,95.0,360.0,1,Semiurban,1.0
LP002755,Male,Yes,1,0,0.0,2239,2524.0,128.0,360.0,1,Urban,1.0
LP002757,Female,Yes,0,0,0.0,3017,663.0,102.0,360.0,0,Semiurban,1.0
LP002767,Male,Yes,0,1,0.0,2768,1950.0,155.0,360.0,1,Rural,1.0
LP002768,Male,No,0,0,0.0,3358,0.0,80.0,36.0,1,Semiurban,0.0
LP002772,Male,No,0,1,0.0,2526,1783.0,145.0,360.0,1,Rural,1.0
LP002776,Female,No,0,1,0.0,5000,0.0,103.0,360.0,0,Semiurban,0.0
LP002777,Male,Yes,0,1,0.0,2785,2016.0,110.0,360.0,1,Rural,1.0
LP002778,Male,Yes,2,1,1.0,6633,0.0,0.0,360.0,0,Rural,0.0
LP002784,Male,Yes,1,0,0.0,2492,2375.0,0.0,360.0,1,Rural,1.0
LP002785,Male,Yes,1,1,0.0,3333,3250.0,158.0,360.0,1,Urban,1.0
LP002788,Male,Yes,0,0,0.0,2454,2333.0,181.0,360.0,0,Urban,0.0
LP002789,Male,Yes,0,1,0.0,3593,4266.0,132.0,180.0,0,Rural,0.0
LP002792,Male,Yes,1,1,0.0,5468,1032.0,26.0,360.0,1,Semiurban,1.0
LP002794,Female,No,0,1,0.0,2667,1625.0,84.0,360.0,0,Urban,1.0
LP002795,Male,Yes,3+,1,1.0,10139,0.0,260.0,360.0,1,Semiurban,1.0
LP002798,Male,Yes,0,1,0.0,3887,2669.0,162.0,360.0,1,Semiurban,1.0
LP002804,Female,Yes,0,1,0.0,4180,2306.0,182.0,360.0,1,Semiurban,1.0
LP002807,Male,Yes,2,0,0.0,3675,242.0,108.0,360.0,1,Semiurban,1.0
LP002813,Female,Yes,1,1,1.0,19484,0.0,600.0,360.0,1,Semiurban,1.0
LP002820,Male,Yes,0,1,0.0,5923,2054.0,211.0,360.0,1,Rural,1.0
LP002821,Male,No,0,0,1.0,5800,0.0,132.0,360.0,1,Semiurban,1.0
LP002832,Male,Yes,2,1,0.0,8799,0.0,258.0,360.0,0,Urban,0.0
LP002833,Male,Yes,0,0,0.0,4467,0.0,120.0,360.0,0,Rural,1.0
LP002836,Male,No,0,1,0.0,3333,0.0,70.0,360.0,1,Urban,1.0
LP002837,Male,Yes,3+,1,0.0,3400,2500.0,123.0,360.0,0,Rural,0.0
LP002840,Female,No,0,1,0.0,2378,0.0,9.0,360.0,1,Urban,0.0
LP002841,Male,Yes,0,1,0.0,3166,2064.0,104.0,360.0,0,Urban,0.0
LP002842,Male,Yes,1,1,0.0,3417,1750.0,186.0,360.0,1,Urban,1.0
LP002847,Male,Yes,,1,0.0,5116,1451.0,165.0,360.0,0,Urban,0.0
LP002855,Male,Yes,2,1,0.0,16666,0.0,275.0,360.0,1,Urban,1.0
LP002862,Male,Yes,2,0,0.0,6125,1625.0,187.0,480.0,1,Semiurban,0.0
LP002863,Male,Yes,3+,1,0.0,6406,0.0,150.0,360.0,1,Semiurban,0.0
LP002868,Male,Yes,2,1,0.0,3159,461.0,108.0,84.0,1,Urban,1.0
LP002872,,Yes,0,1,0.0,3087,2210.0,136.0,360.0,0,Semiurban,0.0
LP002874,Male,No,0,1,0.0,3229,2739.0,110.0,360.0,1,Urban,1.0
LP002877,Male,Yes,1,1,0.0,1782,2232.0,107.0,360.0,1,Rural,1.0
LP002888,Male,No,0,1,0.0,3182,2917.0,161.0,360.0,1,Urban,1.0
LP002892,Male,Yes,2,1,0.0,6540,0.0,205.0,360.0,1,Semiurban,1.0
LP002893,Male,No,0,1,0.0,1836,33837.0,90.0,360.0,1,Urban,0.0
LP002894,Female,Yes,0,1,0.0,3166,0.0,36.0,360.0,1,Semiurban,1.0
LP002898,Male,Yes,1,1,0.0,1880,0.0,61.0,360.0,0,Rural,0.0
LP002911,Male,Yes,1,1,0.0,2787,1917.0,146.0,360.0,0,Rural,0.0
LP002912,Male,Yes,1,1,0.0,4283,3000.0,172.0,84.0,1,Rural,0.0
LP002916,Male,Yes,0,1,0.0,2297,1522.0,104.0,360.0,1,Urban,1.0
LP002917,Female,No,0,0,0.0,2165,0.0,70.0,360.0,1,Semiurban,1.0
LP002925,,No,0,1,0.0,4750,0.0,94.0,360.0,1,Semiurban,1.0
LP002926,Male,Yes,2,1,1.0,2726,0.0,106.0,360.0,0,Semiurban,0.0
LP002928,Male,Yes,0,1,0.0,3000,3416.0,56.0,180.0,1,Semiurban,1.0
LP002931,Male,Yes,2,1,1.0,6000,0.0,205.0,240.0,1,Semiurban,0.0
LP002933,,No,3+,1,1.0,9357,0.0,292.0,360.0,1,Semiurban,1.0
LP002936,Male,Yes,0,1,0.0,3859,3300.0,142.0,180.0,1,Rural,1.0
LP002938,Male,Yes,0,1,1.0,16120,0.0,260.0,360.0,1,Urban,1.0
LP002940,Male,No,0,0,0.0,3833,0.0,110.0,360.0,1,Rural,1.0
LP002941,Male,Yes,2,0,1.0,6383,1000.0,187.0,360.0,1,Rural,0.0
LP002943,Male,No,,1,0.0,2987,0.0,88.0,360.0,0,Semiurban,0.0
LP002945,Male,Yes,0,1,1.0,9963,0.0,180.0,360.0,1,Rural,1.0
LP002948,Male,Yes,2,1,0.0,5780,0.0,192.0,360.0,1,Urban,1.0
LP002949,Female,No,3+,1,0.0,416,41667.0,350.0,180.0,0,Urban,0.0
LP002950,Male,Yes,0,0,0.0,2894,2792.0,155.0,360.0,1,Rural,1.0
LP002953,Male,Yes,3+,1,0.0,5703,0.0,128.0,360.0,1,Urban,1.0
LP002958,Male,No,0,1,0.0,3676,4301.0,172.0,360.0,1,Rural,1.0
LP002959,Female,Yes,1,1,0.0,12000,0.0,496.0,360.0,1,Semiurban,1.0
LP002960,Male,Yes,0,0,0.0,2400,3800.0,0.0,180.0,1,Urban,0.0
LP002961,Male,Yes,1,1,0.0,3400,2500.0,173.0,360.0,1,Semiurban,1.0
LP002964,Male,Yes,2,0,0.0,3987,1411.0,157.0,360.0,1,Rural,1.0
LP002974,Male,Yes,0,1,0.0,3232,1950.0,108.0,360.0,1,Rural,1.0
LP002978,Female,No,0,1,0.0,2900,0.0,71.0,360.0,1,Rural,1.0
LP002979,Male,Yes,3+,1,0.0,4106,0.0,40.0,180.0,1,Rural,1.0
LP002983,Male,Yes,1,1,0.0,8072,240.0,253.0,360.0,1,Urban,1.0
LP002984,Male,Yes,2,1,0.0,7583,0.0,187.0,360.0,1,Urban,1.0
LP002990,Female,No,0,1,1.0,4583,0.0,133.0,360.0,0,Semiurban,0.0
1 Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
2 LP001002 Male No 0 1 0.0 5849 0.0 360.0 1.0 0 Y 0.0
3 LP001003 Male Yes 1 1 0.0 4583 1508.0 128.0 360.0 1 Rural 0.0
4 LP001005 Male Yes 0 1 1.0 3000 0.0 66.0 360.0 1 Urban 1.0
5 LP001006 Male Yes 0 0 0.0 2583 2358.0 120.0 360.0 1 Urban 1.0
6 LP001008 Male No 0 1 0.0 6000 0.0 141.0 360.0 1 Urban 1.0
7 LP001011 Male Yes 2 1 1.0 5417 4196.0 267.0 360.0 1 Urban 1.0
8 LP001013 Male Yes 0 0 0.0 2333 1516.0 95.0 360.0 1 Urban 1.0
9 LP001014 Male Yes 3+ 1 0.0 3036 2504.0 158.0 360.0 0 Semiurban 0.0
10 LP001018 Male Yes 2 1 0.0 4006 1526.0 168.0 360.0 1 Urban 1.0
11 LP001020 Male Yes 1 1 0.0 12841 10968.0 349.0 360.0 1 Semiurban 0.0
12 LP001024 Male Yes 2 1 0.0 3200 700.0 70.0 360.0 1 Urban 1.0
13 LP001027 Male Yes 2 1 0.0 2500 1840.0 109.0 360.0 1 Urban 1.0
14 LP001028 Male Yes 2 1 0.0 3073 8106.0 200.0 360.0 1 Urban 1.0
15 LP001029 Male No 0 1 0.0 1853 2840.0 114.0 360.0 1 Rural 0.0
16 LP001030 Male Yes 2 1 0.0 1299 1086.0 17.0 120.0 1 Urban 1.0
17 LP001032 Male No 0 1 0.0 4950 0.0 125.0 360.0 1 Urban 1.0
18 LP001034 Male No 1 0 0.0 3596 0.0 100.0 240.0 0 Urban 1.0
19 LP001036 Female No 0 1 0.0 3510 0.0 76.0 360.0 0 Urban 0.0
20 LP001038 Male Yes 0 0 0.0 4887 0.0 133.0 360.0 1 Rural 0.0
21 LP001041 Male Yes 0 1 0.0 2600 3500.0 115.0 1 Urban 1.0
22 LP001043 Male Yes 0 0 0.0 7660 0.0 104.0 360.0 0 Urban 0.0
23 LP001046 Male Yes 1 1 0.0 5955 5625.0 315.0 360.0 1 Urban 1.0
24 LP001047 Male Yes 0 0 0.0 2600 1911.0 116.0 360.0 0 Semiurban 0.0
25 LP001050 Yes 2 0 0.0 3365 1917.0 112.0 360.0 0 Rural 0.0
26 LP001052 Male Yes 1 1 0.0 3717 2925.0 151.0 360.0 0 Semiurban 0.0
27 LP001066 Male Yes 0 1 1.0 9560 0.0 191.0 360.0 1 Semiurban 1.0
28 LP001068 Male Yes 0 1 0.0 2799 2253.0 122.0 360.0 1 Semiurban 1.0
29 LP001073 Male Yes 2 0 0.0 4226 1040.0 110.0 360.0 1 Urban 1.0
30 LP001086 Male No 0 0 0.0 1442 0.0 35.0 360.0 1 Urban 0.0
31 LP001087 Female No 2 1 0.0 3750 2083.0 120.0 360.0 1 Semiurban 1.0
32 LP001091 Male Yes 1 1 0.0 4166 3369.0 201.0 360.0 0 Urban 0.0
33 LP001095 Male No 0 1 0.0 3167 0.0 74.0 360.0 1 Urban 0.0
34 LP001097 Male No 1 1 1.0 4692 0.0 106.0 360.0 1 Rural 0.0
35 LP001098 Male Yes 0 1 0.0 3500 1667.0 114.0 360.0 1 Semiurban 1.0
36 LP001100 Male No 3+ 1 0.0 12500 3000.0 320.0 360.0 1 Rural 0.0
37 LP001106 Male Yes 0 1 0.0 2275 2067.0 0.0 360.0 1 Urban 1.0
38 LP001109 Male Yes 0 1 0.0 1828 1330.0 100.0 0 Urban 0.0
39 LP001112 Female Yes 0 1 0.0 3667 1459.0 144.0 360.0 1 Semiurban 1.0
40 LP001114 Male No 0 1 0.0 4166 7210.0 184.0 360.0 1 Urban 1.0
41 LP001116 Male No 0 0 0.0 3748 1668.0 110.0 360.0 1 Semiurban 1.0
42 LP001119 Male No 0 1 0.0 3600 0.0 80.0 360.0 1 Urban 0.0
43 LP001120 Male No 0 1 0.0 1800 1213.0 47.0 360.0 1 Urban 1.0
44 LP001123 Male Yes 0 1 0.0 2400 0.0 75.0 360.0 0 Urban 1.0
45 LP001131 Male Yes 0 1 0.0 3941 2336.0 134.0 360.0 1 Semiurban 1.0
46 LP001136 Male Yes 0 0 1.0 4695 0.0 96.0 1 Urban 1.0
47 LP001137 Female No 0 1 0.0 3410 0.0 88.0 1 Urban 1.0
48 LP001138 Male Yes 1 1 0.0 5649 0.0 44.0 360.0 1 Urban 1.0
49 LP001144 Male Yes 0 1 0.0 5821 0.0 144.0 360.0 1 Urban 1.0
50 LP001146 Female Yes 0 1 0.0 2645 3440.0 120.0 360.0 0 Urban 0.0
51 LP001151 Female No 0 1 0.0 4000 2275.0 144.0 360.0 1 Semiurban 1.0
52 LP001155 Female Yes 0 0 0.0 1928 1644.0 100.0 360.0 1 Semiurban 1.0
53 LP001157 Female No 0 1 0.0 3086 0.0 120.0 360.0 1 Semiurban 1.0
54 LP001164 Female No 0 1 0.0 4230 0.0 112.0 360.0 1 Semiurban 0.0
55 LP001179 Male Yes 2 1 0.0 4616 0.0 134.0 360.0 1 Urban 0.0
56 LP001186 Female Yes 1 1 1.0 11500 0.0 286.0 360.0 0 Urban 0.0
57 LP001194 Male Yes 2 1 0.0 2708 1167.0 97.0 360.0 1 Semiurban 1.0
58 LP001195 Male Yes 0 1 0.0 2132 1591.0 96.0 360.0 1 Semiurban 1.0
59 LP001197 Male Yes 0 1 0.0 3366 2200.0 135.0 360.0 1 Rural 0.0
60 LP001198 Male Yes 1 1 0.0 8080 2250.0 180.0 360.0 1 Urban 1.0
61 LP001199 Male Yes 2 0 0.0 3357 2859.0 144.0 360.0 1 Urban 1.0
62 LP001205 Male Yes 0 1 0.0 2500 3796.0 120.0 360.0 1 Urban 1.0
63 LP001206 Male Yes 3+ 1 0.0 3029 0.0 99.0 360.0 1 Urban 1.0
64 LP001207 Male Yes 0 0 1.0 2609 3449.0 165.0 180.0 0 Rural 0.0
65 LP001213 Male Yes 1 1 0.0 4945 0.0 0.0 360.0 0 Rural 0.0
66 LP001222 Female No 0 1 0.0 4166 0.0 116.0 360.0 0 Semiurban 0.0
67 LP001225 Male Yes 0 1 0.0 5726 4595.0 258.0 360.0 1 Semiurban 0.0
68 LP001228 Male No 0 0 0.0 3200 2254.0 126.0 180.0 0 Urban 0.0
69 LP001233 Male Yes 1 1 0.0 10750 0.0 312.0 360.0 1 Urban 1.0
70 LP001238 Male Yes 3+ 0 1.0 7100 0.0 125.0 60.0 1 Urban 1.0
71 LP001241 Female No 0 1 0.0 4300 0.0 136.0 360.0 0 Semiurban 0.0
72 LP001243 Male Yes 0 1 0.0 3208 3066.0 172.0 360.0 1 Urban 1.0
73 LP001245 Male Yes 2 0 1.0 1875 1875.0 97.0 360.0 1 Semiurban 1.0
74 LP001248 Male No 0 1 0.0 3500 0.0 81.0 300.0 1 Semiurban 1.0
75 LP001250 Male Yes 3+ 0 0.0 4755 0.0 95.0 0 Semiurban 0.0
76 LP001253 Male Yes 3+ 1 1.0 5266 1774.0 187.0 360.0 1 Semiurban 1.0
77 LP001255 Male No 0 1 0.0 3750 0.0 113.0 480.0 1 Urban 0.0
78 LP001256 Male No 0 1 0.0 3750 4750.0 176.0 360.0 1 Urban 0.0
79 LP001259 Male Yes 1 1 1.0 1000 3022.0 110.0 360.0 1 Urban 0.0
80 LP001263 Male Yes 3+ 1 0.0 3167 4000.0 180.0 300.0 0 Semiurban 0.0
81 LP001264 Male Yes 3+ 0 1.0 3333 2166.0 130.0 360.0 0 Semiurban 1.0
82 LP001265 Female No 0 1 0.0 3846 0.0 111.0 360.0 1 Semiurban 1.0
83 LP001266 Male Yes 1 1 1.0 2395 0.0 0.0 360.0 1 Semiurban 1.0
84 LP001267 Female Yes 2 1 0.0 1378 1881.0 167.0 360.0 1 Urban 0.0
85 LP001273 Male Yes 0 1 0.0 6000 2250.0 265.0 360.0 0 Semiurban 0.0
86 LP001275 Male Yes 1 1 0.0 3988 0.0 50.0 240.0 1 Urban 1.0
87 LP001279 Male No 0 1 0.0 2366 2531.0 136.0 360.0 1 Semiurban 1.0
88 LP001280 Male Yes 2 0 0.0 3333 2000.0 99.0 360.0 0 Semiurban 1.0
89 LP001282 Male Yes 0 1 0.0 2500 2118.0 104.0 360.0 1 Semiurban 1.0
90 LP001289 Male No 0 1 0.0 8566 0.0 210.0 360.0 1 Urban 1.0
91 LP001310 Male Yes 0 1 0.0 5695 4167.0 175.0 360.0 1 Semiurban 1.0
92 LP001316 Male Yes 0 1 0.0 2958 2900.0 131.0 360.0 1 Semiurban 1.0
93 LP001318 Male Yes 2 1 0.0 6250 5654.0 188.0 180.0 1 Semiurban 1.0
94 LP001319 Male Yes 2 0 0.0 3273 1820.0 81.0 360.0 1 Urban 1.0
95 LP001322 Male No 0 1 0.0 4133 0.0 122.0 360.0 1 Semiurban 1.0
96 LP001325 Male No 0 0 0.0 3620 0.0 25.0 120.0 1 Semiurban 1.0
97 LP001326 Male No 0 1 0.0 6782 0.0 0.0 360.0 0 Urban 0.0
98 LP001327 Female Yes 0 1 0.0 2484 2302.0 137.0 360.0 1 Semiurban 1.0
99 LP001333 Male Yes 0 1 0.0 1977 997.0 50.0 360.0 1 Semiurban 1.0
100 LP001334 Male Yes 0 0 0.0 4188 0.0 115.0 180.0 1 Semiurban 1.0
101 LP001343 Male Yes 0 1 0.0 1759 3541.0 131.0 360.0 1 Semiurban 1.0
102 LP001345 Male Yes 2 0 0.0 4288 3263.0 133.0 180.0 1 Urban 1.0
103 LP001349 Male No 0 1 0.0 4843 3806.0 151.0 360.0 1 Semiurban 1.0
104 LP001350 Male Yes 1 0.0 13650 0.0 0.0 360.0 1 Urban 1.0
105 LP001356 Male Yes 0 1 0.0 4652 3583.0 0.0 360.0 1 Semiurban 1.0
106 LP001357 Male 1 0.0 3816 754.0 160.0 360.0 1 Urban 1.0
107 LP001367 Male Yes 1 1 0.0 3052 1030.0 100.0 360.0 1 Urban 1.0
108 LP001369 Male Yes 2 1 0.0 11417 1126.0 225.0 360.0 1 Urban 1.0
109 LP001370 Male No 0 0 0.0 7333 0.0 120.0 360.0 1 Rural 0.0
110 LP001379 Male Yes 2 1 0.0 3800 3600.0 216.0 360.0 0 Urban 0.0
111 LP001384 Male Yes 3+ 0 0.0 2071 754.0 94.0 480.0 1 Semiurban 1.0
112 LP001385 Male No 0 1 0.0 5316 0.0 136.0 360.0 1 Urban 1.0
113 LP001387 Female Yes 0 1 0.0 2929 2333.0 139.0 360.0 1 Semiurban 1.0
114 LP001391 Male Yes 0 0 0.0 3572 4114.0 152.0 0 Rural 0.0
115 LP001392 Female No 1 1 1.0 7451 0.0 0.0 360.0 1 Semiurban 1.0
116 LP001398 Male No 0 1 0.0 5050 0.0 118.0 360.0 1 Semiurban 1.0
117 LP001401 Male Yes 1 1 0.0 14583 0.0 185.0 180.0 1 Rural 1.0
118 LP001404 Female Yes 0 1 0.0 3167 2283.0 154.0 360.0 1 Semiurban 1.0
119 LP001405 Male Yes 1 1 0.0 2214 1398.0 85.0 360.0 0 Urban 1.0
120 LP001421 Male Yes 0 1 0.0 5568 2142.0 175.0 360.0 1 Rural 0.0
121 LP001422 Female No 0 1 0.0 10408 0.0 259.0 360.0 1 Urban 1.0
122 LP001426 Male Yes 1 0.0 5667 2667.0 180.0 360.0 1 Rural 1.0
123 LP001430 Female No 0 1 0.0 4166 0.0 44.0 360.0 1 Semiurban 1.0
124 LP001431 Female No 0 1 0.0 2137 8980.0 137.0 360.0 0 Semiurban 1.0
125 LP001432 Male Yes 2 1 0.0 2957 0.0 81.0 360.0 1 Semiurban 1.0
126 LP001439 Male Yes 0 0 0.0 4300 2014.0 194.0 360.0 1 Rural 1.0
127 LP001443 Female No 0 1 0.0 3692 0.0 93.0 360.0 0 Rural 1.0
128 LP001448 Yes 3+ 1 0.0 23803 0.0 370.0 360.0 1 Rural 1.0
129 LP001449 Male No 0 1 0.0 3865 1640.0 0.0 360.0 1 Rural 1.0
130 LP001451 Male Yes 1 1 1.0 10513 3850.0 160.0 180.0 0 Urban 0.0
131 LP001465 Male Yes 0 1 0.0 6080 2569.0 182.0 360.0 0 Rural 0.0
132 LP001469 Male No 0 1 1.0 20166 0.0 650.0 480.0 0 Urban 1.0
133 LP001473 Male No 0 1 0.0 2014 1929.0 74.0 360.0 1 Urban 1.0
134 LP001478 Male No 0 1 0.0 2718 0.0 70.0 360.0 1 Semiurban 1.0
135 LP001482 Male Yes 0 1 1.0 3459 0.0 25.0 120.0 1 Semiurban 1.0
136 LP001487 Male No 0 1 0.0 4895 0.0 102.0 360.0 1 Semiurban 1.0
137 LP001488 Male Yes 3+ 1 0.0 4000 7750.0 290.0 360.0 1 Semiurban 0.0
138 LP001489 Female Yes 0 1 0.0 4583 0.0 84.0 360.0 1 Rural 0.0
139 LP001491 Male Yes 2 1 1.0 3316 3500.0 88.0 360.0 1 Urban 1.0
140 LP001492 Male No 0 1 0.0 14999 0.0 242.0 360.0 0 Semiurban 0.0
141 LP001493 Male Yes 2 0 0.0 4200 1430.0 129.0 360.0 1 Rural 0.0
142 LP001497 Male Yes 2 1 0.0 5042 2083.0 185.0 360.0 1 Rural 0.0
143 LP001498 Male No 0 1 0.0 5417 0.0 168.0 360.0 1 Urban 1.0
144 LP001504 Male No 0 1 1.0 6950 0.0 175.0 180.0 1 Semiurban 1.0
145 LP001507 Male Yes 0 1 0.0 2698 2034.0 122.0 360.0 1 Semiurban 1.0
146 LP001508 Male Yes 2 1 0.0 11757 0.0 187.0 180.0 1 Urban 1.0
147 LP001514 Female Yes 0 1 0.0 2330 4486.0 100.0 360.0 1 Semiurban 1.0
148 LP001516 Female Yes 2 1 0.0 14866 0.0 70.0 360.0 1 Urban 1.0
149 LP001518 Male Yes 1 1 0.0 1538 1425.0 30.0 360.0 1 Urban 1.0
150 LP001519 Female No 0 1 0.0 10000 1666.0 225.0 360.0 1 Rural 0.0
151 LP001520 Male Yes 0 1 0.0 4860 830.0 125.0 360.0 1 Semiurban 1.0
152 LP001528 Male No 0 1 0.0 6277 0.0 118.0 360.0 0 Rural 0.0
153 LP001529 Male Yes 0 1 1.0 2577 3750.0 152.0 360.0 1 Rural 1.0
154 LP001531 Male No 0 1 0.0 9166 0.0 244.0 360.0 1 Urban 0.0
155 LP001532 Male Yes 2 0 0.0 2281 0.0 113.0 360.0 1 Rural 0.0
156 LP001535 Male No 0 1 0.0 3254 0.0 50.0 360.0 1 Urban 1.0
157 LP001536 Male Yes 3+ 1 0.0 39999 0.0 600.0 180.0 0 Semiurban 1.0
158 LP001541 Male Yes 1 1 0.0 6000 0.0 160.0 360.0 0 Rural 1.0
159 LP001543 Male Yes 1 1 0.0 9538 0.0 187.0 360.0 1 Urban 1.0
160 LP001546 Male No 0 1 0.0 2980 2083.0 120.0 360.0 1 Rural 1.0
161 LP001552 Male Yes 0 1 0.0 4583 5625.0 255.0 360.0 1 Semiurban 1.0
162 LP001560 Male Yes 0 0 0.0 1863 1041.0 98.0 360.0 1 Semiurban 1.0
163 LP001562 Male Yes 0 1 0.0 7933 0.0 275.0 360.0 1 Urban 0.0
164 LP001565 Male Yes 1 1 0.0 3089 1280.0 121.0 360.0 0 Semiurban 0.0
165 LP001570 Male Yes 2 1 0.0 4167 1447.0 158.0 360.0 1 Rural 1.0
166 LP001572 Male Yes 0 1 0.0 9323 0.0 75.0 180.0 1 Urban 1.0
167 LP001574 Male Yes 0 1 0.0 3707 3166.0 182.0 1 Rural 1.0
168 LP001577 Female Yes 0 1 0.0 4583 0.0 112.0 360.0 1 Rural 0.0
169 LP001578 Male Yes 0 1 0.0 2439 3333.0 129.0 360.0 1 Rural 1.0
170 LP001579 Male No 0 1 0.0 2237 0.0 63.0 480.0 0 Semiurban 0.0
171 LP001580 Male Yes 2 1 0.0 8000 0.0 200.0 360.0 1 Semiurban 1.0
172 LP001581 Male Yes 0 0 0.0 1820 1769.0 95.0 360.0 1 Rural 1.0
173 LP001585 Yes 3+ 1 0.0 51763 0.0 700.0 300.0 1 Urban 1.0
174 LP001586 Male Yes 3+ 0 0.0 3522 0.0 81.0 180.0 1 Rural 0.0
175 LP001594 Male Yes 0 1 0.0 5708 5625.0 187.0 360.0 1 Semiurban 1.0
176 LP001603 Male Yes 0 0 1.0 4344 736.0 87.0 360.0 1 Semiurban 0.0
177 LP001606 Male Yes 0 1 0.0 3497 1964.0 116.0 360.0 1 Rural 1.0
178 LP001608 Male Yes 2 1 0.0 2045 1619.0 101.0 360.0 1 Rural 1.0
179 LP001610 Male Yes 3+ 1 0.0 5516 11300.0 495.0 360.0 0 Semiurban 0.0
180 LP001616 Male Yes 1 1 0.0 3750 0.0 116.0 360.0 1 Semiurban 1.0
181 LP001630 Male No 0 0 0.0 2333 1451.0 102.0 480.0 0 Urban 0.0
182 LP001633 Male Yes 1 1 0.0 6400 7250.0 180.0 360.0 0 Urban 0.0
183 LP001634 Male No 0 1 0.0 1916 5063.0 67.0 360.0 0 Rural 0.0
184 LP001636 Male Yes 0 1 0.0 4600 0.0 73.0 180.0 1 Semiurban 1.0
185 LP001637 Male Yes 1 1 0.0 33846 0.0 260.0 360.0 1 Semiurban 0.0
186 LP001639 Female Yes 0 1 0.0 3625 0.0 108.0 360.0 1 Semiurban 1.0
187 LP001640 Male Yes 0 1 1.0 39147 4750.0 120.0 360.0 1 Semiurban 1.0
188 LP001641 Male Yes 1 1 1.0 2178 0.0 66.0 300.0 0 Rural 0.0
189 LP001643 Male Yes 0 1 0.0 2383 2138.0 58.0 360.0 0 Rural 1.0
190 LP001644 Yes 0 1 1.0 674 5296.0 168.0 360.0 1 Rural 1.0
191 LP001647 Male Yes 0 1 0.0 9328 0.0 188.0 180.0 1 Rural 1.0
192 LP001653 Male No 0 0 0.0 4885 0.0 48.0 360.0 1 Rural 1.0
193 LP001656 Male No 0 1 0.0 12000 0.0 164.0 360.0 1 Semiurban 0.0
194 LP001657 Male Yes 0 0 0.0 6033 0.0 160.0 360.0 1 Urban 0.0
195 LP001658 Male No 0 1 0.0 3858 0.0 76.0 360.0 1 Semiurban 1.0
196 LP001664 Male No 0 1 0.0 4191 0.0 120.0 360.0 1 Rural 1.0
197 LP001665 Male Yes 1 1 0.0 3125 2583.0 170.0 360.0 1 Semiurban 0.0
198 LP001666 Male No 0 1 0.0 8333 3750.0 187.0 360.0 1 Rural 1.0
199 LP001669 Female No 0 0 0.0 1907 2365.0 120.0 1 Urban 1.0
200 LP001671 Female Yes 0 1 0.0 3416 2816.0 113.0 360.0 0 Semiurban 1.0
201 LP001673 Male No 0 1 1.0 11000 0.0 83.0 360.0 1 Urban 0.0
202 LP001674 Male Yes 1 0 0.0 2600 2500.0 90.0 360.0 1 Semiurban 1.0
203 LP001677 Male No 2 1 0.0 4923 0.0 166.0 360.0 0 Semiurban 1.0
204 LP001682 Male Yes 3+ 0 0.0 3992 0.0 0.0 180.0 1 Urban 0.0
205 LP001688 Male Yes 1 0 0.0 3500 1083.0 135.0 360.0 1 Urban 1.0
206 LP001691 Male Yes 2 0 0.0 3917 0.0 124.0 360.0 1 Semiurban 1.0
207 LP001692 Female No 0 0 0.0 4408 0.0 120.0 360.0 1 Semiurban 1.0
208 LP001693 Female No 0 1 0.0 3244 0.0 80.0 360.0 1 Urban 1.0
209 LP001698 Male No 0 0 0.0 3975 2531.0 55.0 360.0 1 Rural 1.0
210 LP001699 Male No 0 1 0.0 2479 0.0 59.0 360.0 1 Urban 1.0
211 LP001702 Male No 0 1 0.0 3418 0.0 127.0 360.0 1 Semiurban 0.0
212 LP001708 Female No 0 1 0.0 10000 0.0 214.0 360.0 1 Semiurban 0.0
213 LP001711 Male Yes 3+ 1 0.0 3430 1250.0 128.0 360.0 0 Semiurban 0.0
214 LP001713 Male Yes 1 1 1.0 7787 0.0 240.0 360.0 1 Urban 1.0
215 LP001715 Male Yes 3+ 0 1.0 5703 0.0 130.0 360.0 1 Rural 1.0
216 LP001716 Male Yes 0 1 0.0 3173 3021.0 137.0 360.0 1 Urban 1.0
217 LP001720 Male Yes 3+ 0 0.0 3850 983.0 100.0 360.0 1 Semiurban 1.0
218 LP001722 Male Yes 0 1 0.0 150 1800.0 135.0 360.0 1 Rural 0.0
219 LP001726 Male Yes 0 1 0.0 3727 1775.0 131.0 360.0 1 Semiurban 1.0
220 LP001732 Male Yes 2 1 0.0 5000 0.0 72.0 360.0 0 Semiurban 0.0
221 LP001734 Female Yes 2 1 0.0 4283 2383.0 127.0 360.0 0 Semiurban 1.0
222 LP001736 Male Yes 0 1 0.0 2221 0.0 60.0 360.0 0 Urban 0.0
223 LP001743 Male Yes 2 1 0.0 4009 1717.0 116.0 360.0 1 Semiurban 1.0
224 LP001744 Male No 0 1 0.0 2971 2791.0 144.0 360.0 1 Semiurban 1.0
225 LP001749 Male Yes 0 1 0.0 7578 1010.0 175.0 1 Semiurban 1.0
226 LP001750 Male Yes 0 1 0.0 6250 0.0 128.0 360.0 1 Semiurban 1.0
227 LP001751 Male Yes 0 1 0.0 3250 0.0 170.0 360.0 1 Rural 0.0
228 LP001754 Male Yes 0 1.0 4735 0.0 138.0 360.0 1 Urban 0.0
229 LP001758 Male Yes 2 1 0.0 6250 1695.0 210.0 360.0 1 Semiurban 1.0
230 LP001760 Male 1 0.0 4758 0.0 158.0 480.0 1 Semiurban 1.0
231 LP001761 Male No 0 1 1.0 6400 0.0 200.0 360.0 1 Rural 1.0
232 LP001765 Male Yes 1 1 0.0 2491 2054.0 104.0 360.0 1 Semiurban 1.0
233 LP001768 Male Yes 0 1 0.0 3716 0.0 42.0 180.0 1 Rural 1.0
234 LP001770 Male No 0 0 0.0 3189 2598.0 120.0 1 Rural 1.0
235 LP001776 Female No 0 1 0.0 8333 0.0 280.0 360.0 1 Semiurban 1.0
236 LP001778 Male Yes 1 1 0.0 3155 1779.0 140.0 360.0 1 Semiurban 1.0
237 LP001784 Male Yes 1 1 0.0 5500 1260.0 170.0 360.0 1 Rural 1.0
238 LP001786 Male Yes 0 1 0.0 5746 0.0 255.0 360.0 0 Urban 0.0
239 LP001788 Female No 0 1 1.0 3463 0.0 122.0 360.0 0 Urban 1.0
240 LP001790 Female No 1 1 0.0 3812 0.0 112.0 360.0 1 Rural 1.0
241 LP001792 Male Yes 1 1 0.0 3315 0.0 96.0 360.0 1 Semiurban 1.0
242 LP001798 Male Yes 2 1 0.0 5819 5000.0 120.0 360.0 1 Rural 1.0
243 LP001800 Male Yes 1 0 0.0 2510 1983.0 140.0 180.0 1 Urban 0.0
244 LP001806 Male No 0 1 0.0 2965 5701.0 155.0 60.0 1 Urban 1.0
245 LP001807 Male Yes 2 1 1.0 6250 1300.0 108.0 360.0 1 Rural 1.0
246 LP001811 Male Yes 0 0 0.0 3406 4417.0 123.0 360.0 1 Semiurban 1.0
247 LP001813 Male No 0 1 1.0 6050 4333.0 120.0 180.0 1 Urban 0.0
248 LP001814 Male Yes 2 1 0.0 9703 0.0 112.0 360.0 1 Urban 1.0
249 LP001819 Male Yes 1 0 0.0 6608 0.0 137.0 180.0 1 Urban 1.0
250 LP001824 Male Yes 1 1 0.0 2882 1843.0 123.0 480.0 1 Semiurban 1.0
251 LP001825 Male Yes 0 1 0.0 1809 1868.0 90.0 360.0 1 Urban 1.0
252 LP001835 Male Yes 0 0 0.0 1668 3890.0 201.0 360.0 0 Semiurban 0.0
253 LP001836 Female No 2 1 0.0 3427 0.0 138.0 360.0 1 Urban 0.0
254 LP001841 Male No 0 0 1.0 2583 2167.0 104.0 360.0 1 Rural 1.0
255 LP001843 Male Yes 1 0 0.0 2661 7101.0 279.0 180.0 1 Semiurban 1.0
256 LP001844 Male No 0 1 1.0 16250 0.0 192.0 360.0 0 Urban 0.0
257 LP001846 Female No 3+ 1 0.0 3083 0.0 255.0 360.0 1 Rural 1.0
258 LP001849 Male No 0 0 0.0 6045 0.0 115.0 360.0 0 Rural 0.0
259 LP001854 Male Yes 3+ 1 0.0 5250 0.0 94.0 360.0 1 Urban 0.0
260 LP001859 Male Yes 0 1 0.0 14683 2100.0 304.0 360.0 1 Rural 0.0
261 LP001864 Male Yes 3+ 0 0.0 4931 0.0 128.0 360.0 0 Semiurban 0.0
262 LP001865 Male Yes 1 1 0.0 6083 4250.0 330.0 360.0 0 Urban 1.0
263 LP001868 Male No 0 1 0.0 2060 2209.0 134.0 360.0 1 Semiurban 1.0
264 LP001870 Female No 1 1 0.0 3481 0.0 155.0 36.0 1 Semiurban 0.0
265 LP001871 Female No 0 1 0.0 7200 0.0 120.0 360.0 1 Rural 1.0
266 LP001872 Male No 0 1 1.0 5166 0.0 128.0 360.0 1 Semiurban 1.0
267 LP001875 Male No 0 1 0.0 4095 3447.0 151.0 360.0 1 Rural 1.0
268 LP001877 Male Yes 2 1 0.0 4708 1387.0 150.0 360.0 1 Semiurban 1.0
269 LP001882 Male Yes 3+ 1 0.0 4333 1811.0 160.0 360.0 0 Urban 1.0
270 LP001883 Female No 0 1 0.0 3418 0.0 135.0 360.0 1 Rural 0.0
271 LP001884 Female No 1 1 0.0 2876 1560.0 90.0 360.0 1 Urban 1.0
272 LP001888 Female No 0 1 0.0 3237 0.0 30.0 360.0 1 Urban 1.0
273 LP001891 Male Yes 0 1 0.0 11146 0.0 136.0 360.0 1 Urban 1.0
274 LP001892 Male No 0 1 0.0 2833 1857.0 126.0 360.0 1 Rural 1.0
275 LP001894 Male Yes 0 1 0.0 2620 2223.0 150.0 360.0 1 Semiurban 1.0
276 LP001896 Male Yes 2 1 0.0 3900 0.0 90.0 360.0 1 Semiurban 1.0
277 LP001900 Male Yes 1 1 0.0 2750 1842.0 115.0 360.0 1 Semiurban 1.0
278 LP001903 Male Yes 0 1 0.0 3993 3274.0 207.0 360.0 1 Semiurban 1.0
279 LP001904 Male Yes 0 1 0.0 3103 1300.0 80.0 360.0 1 Urban 1.0
280 LP001907 Male Yes 0 1 0.0 14583 0.0 436.0 360.0 1 Semiurban 1.0
281 LP001908 Female Yes 0 0 0.0 4100 0.0 124.0 360.0 0 Rural 1.0
282 LP001910 Male No 1 0 1.0 4053 2426.0 158.0 360.0 0 Urban 0.0
283 LP001914 Male Yes 0 1 0.0 3927 800.0 112.0 360.0 1 Semiurban 1.0
284 LP001915 Male Yes 2 1 0.0 2301 985.7999878 78.0 180.0 1 Urban 1.0
285 LP001917 Female No 0 1 0.0 1811 1666.0 54.0 360.0 1 Urban 1.0
286 LP001922 Male Yes 0 1 0.0 20667 0.0 0.0 360.0 1 Rural 0.0
287 LP001924 Male No 0 1 0.0 3158 3053.0 89.0 360.0 1 Rural 1.0
288 LP001925 Female No 0 1 1.0 2600 1717.0 99.0 300.0 1 Semiurban 0.0
289 LP001926 Male Yes 0 1 0.0 3704 2000.0 120.0 360.0 1 Rural 1.0
290 LP001931 Female No 0 1 0.0 4124 0.0 115.0 360.0 1 Semiurban 1.0
291 LP001935 Male No 0 1 0.0 9508 0.0 187.0 360.0 1 Rural 1.0
292 LP001936 Male Yes 0 1 0.0 3075 2416.0 139.0 360.0 1 Rural 1.0
293 LP001938 Male Yes 2 1 0.0 4400 0.0 127.0 360.0 0 Semiurban 0.0
294 LP001940 Male Yes 2 1 0.0 3153 1560.0 134.0 360.0 1 Urban 1.0
295 LP001945 Female No 1 0.0 5417 0.0 143.0 480.0 0 Urban 0.0
296 LP001947 Male Yes 0 1 0.0 2383 3334.0 172.0 360.0 1 Semiurban 1.0
297 LP001949 Male Yes 3+ 1 0.0 4416 1250.0 110.0 360.0 1 Urban 1.0
298 LP001953 Male Yes 1 1 0.0 6875 0.0 200.0 360.0 1 Semiurban 1.0
299 LP001954 Female Yes 1 1 0.0 4666 0.0 135.0 360.0 1 Urban 1.0
300 LP001955 Female No 0 1 0.0 5000 2541.0 151.0 480.0 1 Rural 0.0
301 LP001963 Male Yes 1 1 0.0 2014 2925.0 113.0 360.0 1 Urban 0.0
302 LP001964 Male Yes 0 0 0.0 1800 2934.0 93.0 360.0 0 Urban 0.0
303 LP001972 Male Yes 0 0.0 2875 1750.0 105.0 360.0 1 Semiurban 1.0
304 LP001974 Female No 0 1 0.0 5000 0.0 132.0 360.0 1 Rural 1.0
305 LP001977 Male Yes 1 1 0.0 1625 1803.0 96.0 360.0 1 Urban 1.0
306 LP001978 Male No 0 1 0.0 4000 2500.0 140.0 360.0 1 Rural 1.0
307 LP001990 Male No 0 0 0.0 2000 0.0 0.0 360.0 1 Urban 0.0
308 LP001993 Female No 0 1 0.0 3762 1666.0 135.0 360.0 1 Rural 1.0
309 LP001994 Female No 0 1 0.0 2400 1863.0 104.0 360.0 0 Urban 0.0
310 LP001996 Male No 0 1 0.0 20233 0.0 480.0 360.0 1 Rural 0.0
311 LP001998 Male Yes 2 0 0.0 7667 0.0 185.0 360.0 0 Rural 1.0
312 LP002002 Female No 0 1 0.0 2917 0.0 84.0 360.0 1 Semiurban 1.0
313 LP002004 Male No 0 0 0.0 2927 2405.0 111.0 360.0 1 Semiurban 1.0
314 LP002006 Female No 0 1 0.0 2507 0.0 56.0 360.0 1 Rural 1.0
315 LP002008 Male Yes 2 1 1.0 5746 0.0 144.0 84.0 0 Rural 1.0
316 LP002024 Yes 0 1 0.0 2473 1843.0 159.0 360.0 1 Rural 0.0
317 LP002031 Male Yes 1 0 0.0 3399 1640.0 111.0 180.0 1 Urban 1.0
318 LP002035 Male Yes 2 1 0.0 3717 0.0 120.0 360.0 1 Semiurban 1.0
319 LP002036 Male Yes 0 1 0.0 2058 2134.0 88.0 360.0 0 Urban 1.0
320 LP002043 Female No 1 1 0.0 3541 0.0 112.0 360.0 0 Semiurban 1.0
321 LP002050 Male Yes 1 1 1.0 10000 0.0 155.0 360.0 1 Rural 0.0
322 LP002051 Male Yes 0 1 0.0 2400 2167.0 115.0 360.0 1 Semiurban 1.0
323 LP002053 Male Yes 3+ 1 0.0 4342 189.0 124.0 360.0 1 Semiurban 1.0
324 LP002054 Male Yes 2 0 0.0 3601 1590.0 0.0 360.0 1 Rural 1.0
325 LP002055 Female No 0 1 0.0 3166 2985.0 132.0 360.0 0 Rural 1.0
326 LP002065 Male Yes 3+ 1 0.0 15000 0.0 300.0 360.0 1 Rural 1.0
327 LP002067 Male Yes 1 1 1.0 8666 4983.0 376.0 360.0 0 Rural 0.0
328 LP002068 Male No 0 1 0.0 4917 0.0 130.0 360.0 0 Rural 1.0
329 LP002082 Male Yes 0 1 1.0 5818 2160.0 184.0 360.0 1 Semiurban 1.0
330 LP002086 Female Yes 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
331 LP002087 Female No 0 1 0.0 2500 0.0 67.0 360.0 1 Urban 1.0
332 LP002097 Male No 1 1 0.0 4384 1793.0 117.0 360.0 1 Urban 1.0
333 LP002098 Male No 0 1 0.0 2935 0.0 98.0 360.0 1 Semiurban 1.0
334 LP002100 Male No 1 0.0 2833 0.0 71.0 360.0 1 Urban 1.0
335 LP002101 Male Yes 0 1 0.0 63337 0.0 490.0 180.0 1 Urban 1.0
336 LP002103 Yes 1 1 1.0 9833 1833.0 182.0 180.0 1 Urban 1.0
337 LP002106 Male Yes 1 1.0 5503 4490.0 70.0 1 Semiurban 1.0
338 LP002110 Male Yes 1 1 0.0 5250 688.0 160.0 360.0 1 Rural 1.0
339 LP002112 Male Yes 2 1 1.0 2500 4600.0 176.0 360.0 1 Rural 1.0
340 LP002113 Female No 3+ 0 0.0 1830 0.0 0.0 360.0 0 Urban 0.0
341 LP002114 Female No 0 1 0.0 4160 0.0 71.0 360.0 1 Semiurban 1.0
342 LP002115 Male Yes 3+ 0 0.0 2647 1587.0 173.0 360.0 1 Rural 0.0
343 LP002116 Female No 0 1 0.0 2378 0.0 46.0 360.0 1 Rural 0.0
344 LP002119 Male Yes 1 0 0.0 4554 1229.0 158.0 360.0 1 Urban 1.0
345 LP002126 Male Yes 3+ 0 0.0 3173 0.0 74.0 360.0 1 Semiurban 1.0
346 LP002128 Male Yes 2 1 0.0 2583 2330.0 125.0 360.0 1 Rural 1.0
347 LP002129 Male Yes 0 1 0.0 2499 2458.0 160.0 360.0 1 Semiurban 1.0
348 LP002130 Male Yes 0 0.0 3523 3230.0 152.0 360.0 0 Rural 0.0
349 LP002131 Male Yes 2 0 0.0 3083 2168.0 126.0 360.0 1 Urban 1.0
350 LP002137 Male Yes 0 1 0.0 6333 4583.0 259.0 360.0 0 Semiurban 1.0
351 LP002138 Male Yes 0 1 0.0 2625 6250.0 187.0 360.0 1 Rural 1.0
352 LP002139 Male Yes 0 1 0.0 9083 0.0 228.0 360.0 1 Semiurban 1.0
353 LP002140 Male No 0 1 0.0 8750 4167.0 308.0 360.0 1 Rural 0.0
354 LP002141 Male Yes 3+ 1 0.0 2666 2083.0 95.0 360.0 1 Rural 1.0
355 LP002142 Female Yes 0 1 1.0 5500 0.0 105.0 360.0 0 Rural 0.0
356 LP002143 Female Yes 0 1 0.0 2423 505.0 130.0 360.0 1 Semiurban 1.0
357 LP002144 Female No 1 0.0 3813 0.0 116.0 180.0 1 Urban 1.0
358 LP002149 Male Yes 2 1 0.0 8333 3167.0 165.0 360.0 1 Rural 1.0
359 LP002151 Male Yes 1 1 0.0 3875 0.0 67.0 360.0 1 Urban 0.0
360 LP002158 Male Yes 0 0 0.0 3000 1666.0 100.0 480.0 0 Urban 0.0
361 LP002160 Male Yes 3+ 1 0.0 5167 3167.0 200.0 360.0 1 Semiurban 1.0
362 LP002161 Female No 1 1 0.0 4723 0.0 81.0 360.0 1 Semiurban 0.0
363 LP002170 Male Yes 2 1 0.0 5000 3667.0 236.0 360.0 1 Semiurban 1.0
364 LP002175 Male Yes 0 1 0.0 4750 2333.0 130.0 360.0 1 Urban 1.0
365 LP002178 Male Yes 0 1 0.0 3013 3033.0 95.0 300.0 0 Urban 1.0
366 LP002180 Male No 0 1 1.0 6822 0.0 141.0 360.0 1 Rural 1.0
367 LP002181 Male No 0 0 0.0 6216 0.0 133.0 360.0 1 Rural 0.0
368 LP002187 Male No 0 1 0.0 2500 0.0 96.0 480.0 1 Semiurban 0.0
369 LP002188 Male No 0 1 0.0 5124 0.0 124.0 0 Rural 0.0
370 LP002190 Male Yes 1 1 0.0 6325 0.0 175.0 360.0 1 Semiurban 1.0
371 LP002191 Male Yes 0 1 0.0 19730 5266.0 570.0 360.0 1 Rural 0.0
372 LP002194 Female No 0 1 1.0 15759 0.0 55.0 360.0 1 Semiurban 1.0
373 LP002197 Male Yes 2 1 0.0 5185 0.0 155.0 360.0 1 Semiurban 1.0
374 LP002201 Male Yes 2 1 1.0 9323 7873.0 380.0 300.0 1 Rural 1.0
375 LP002205 Male No 1 1 0.0 3062 1987.0 111.0 180.0 0 Urban 0.0
376 LP002209 Female No 0 1 0.0 2764 1459.0 110.0 360.0 1 Urban 1.0
377 LP002211 Male Yes 0 1 0.0 4817 923.0 120.0 180.0 1 Urban 1.0
378 LP002219 Male Yes 3+ 1 0.0 8750 4996.0 130.0 360.0 1 Rural 1.0
379 LP002223 Male Yes 0 1 0.0 4310 0.0 130.0 360.0 0 Semiurban 1.0
380 LP002224 Male No 0 1 0.0 3069 0.0 71.0 480.0 1 Urban 0.0
381 LP002225 Male Yes 2 1 0.0 5391 0.0 130.0 360.0 1 Urban 1.0
382 LP002226 Male Yes 0 1 0.0 3333 2500.0 128.0 360.0 1 Semiurban 1.0
383 LP002229 Male No 0 1 0.0 5941 4232.0 296.0 360.0 1 Semiurban 1.0
384 LP002231 Female No 0 1 0.0 6000 0.0 156.0 360.0 1 Urban 1.0
385 LP002234 Male No 0 1 1.0 7167 0.0 128.0 360.0 1 Urban 1.0
386 LP002236 Male Yes 2 1 0.0 4566 0.0 100.0 360.0 1 Urban 0.0
387 LP002237 Male No 1 1 0.0 3667 0.0 113.0 180.0 1 Urban 1.0
388 LP002239 Male No 0 0 0.0 2346 1600.0 132.0 360.0 1 Semiurban 1.0
389 LP002243 Male Yes 0 0 0.0 3010 3136.0 0.0 360.0 0 Urban 0.0
390 LP002244 Male Yes 0 1 0.0 2333 2417.0 136.0 360.0 1 Urban 1.0
391 LP002250 Male Yes 0 1 0.0 5488 0.0 125.0 360.0 1 Rural 1.0
392 LP002255 Male No 3+ 1 0.0 9167 0.0 185.0 360.0 1 Rural 1.0
393 LP002262 Male Yes 3+ 1 0.0 9504 0.0 275.0 360.0 1 Rural 1.0
394 LP002263 Male Yes 0 1 0.0 2583 2115.0 120.0 360.0 0 Urban 1.0
395 LP002265 Male Yes 2 0 0.0 1993 1625.0 113.0 180.0 1 Semiurban 1.0
396 LP002266 Male Yes 2 1 0.0 3100 1400.0 113.0 360.0 1 Urban 1.0
397 LP002272 Male Yes 2 1 0.0 3276 484.0 135.0 360.0 0 Semiurban 1.0
398 LP002277 Female No 0 1 0.0 3180 0.0 71.0 360.0 0 Urban 0.0
399 LP002281 Male Yes 0 1 0.0 3033 1459.0 95.0 360.0 1 Urban 1.0
400 LP002284 Male No 0 0 0.0 3902 1666.0 109.0 360.0 1 Rural 1.0
401 LP002287 Female No 0 1 0.0 1500 1800.0 103.0 360.0 0 Semiurban 0.0
402 LP002288 Male Yes 2 0 0.0 2889 0.0 45.0 180.0 0 Urban 0.0
403 LP002296 Male No 0 0 0.0 2755 0.0 65.0 300.0 1 Rural 0.0
404 LP002297 Male No 0 1 0.0 2500 20000.0 103.0 360.0 1 Semiurban 1.0
405 LP002300 Female No 0 0 0.0 1963 0.0 53.0 360.0 1 Semiurban 1.0
406 LP002301 Female No 0 1 1.0 7441 0.0 194.0 360.0 1 Rural 0.0
407 LP002305 Female No 0 1 0.0 4547 0.0 115.0 360.0 1 Semiurban 1.0
408 LP002308 Male Yes 0 0 0.0 2167 2400.0 115.0 360.0 1 Urban 1.0
409 LP002314 Female No 0 0 0.0 2213 0.0 66.0 360.0 1 Rural 1.0
410 LP002315 Male Yes 1 1 0.0 8300 0.0 152.0 300.0 0 Semiurban 0.0
411 LP002317 Male Yes 3+ 1 0.0 81000 0.0 360.0 360.0 0 Rural 0.0
412 LP002318 Female No 1 0 1.0 3867 0.0 62.0 360.0 1 Semiurban 0.0
413 LP002319 Male Yes 0 1 0.0 6256 0.0 160.0 360.0 0 Urban 1.0
414 LP002328 Male Yes 0 0 0.0 6096 0.0 218.0 360.0 0 Rural 0.0
415 LP002332 Male Yes 0 0 0.0 2253 2033.0 110.0 360.0 1 Rural 1.0
416 LP002335 Female Yes 0 0 0.0 2149 3237.0 178.0 360.0 0 Semiurban 0.0
417 LP002337 Female No 0 1 0.0 2995 0.0 60.0 360.0 1 Urban 1.0
418 LP002341 Female No 1 1 0.0 2600 0.0 160.0 360.0 1 Urban 0.0
419 LP002342 Male Yes 2 1 1.0 1600 20000.0 239.0 360.0 1 Urban 0.0
420 LP002345 Male Yes 0 1 0.0 1025 2773.0 112.0 360.0 1 Rural 1.0
421 LP002347 Male Yes 0 1 0.0 3246 1417.0 138.0 360.0 1 Semiurban 1.0
422 LP002348 Male Yes 0 1 0.0 5829 0.0 138.0 360.0 1 Rural 1.0
423 LP002357 Female No 0 0 0.0 2720 0.0 80.0 0 Urban 0.0
424 LP002361 Male Yes 0 1 0.0 1820 1719.0 100.0 360.0 1 Urban 1.0
425 LP002362 Male Yes 1 1 0.0 7250 1667.0 110.0 0 Urban 0.0
426 LP002364 Male Yes 0 1 0.0 14880 0.0 96.0 360.0 1 Semiurban 1.0
427 LP002366 Male Yes 0 1 0.0 2666 4300.0 121.0 360.0 1 Rural 1.0
428 LP002367 Female No 1 0 0.0 4606 0.0 81.0 360.0 1 Rural 0.0
429 LP002368 Male Yes 2 1 0.0 5935 0.0 133.0 360.0 1 Semiurban 1.0
430 LP002369 Male Yes 0 1 0.0 2920 16.12000084 87.0 360.0 1 Rural 1.0
431 LP002370 Male No 0 0 0.0 2717 0.0 60.0 180.0 1 Urban 1.0
432 LP002377 Female No 1 1 1.0 8624 0.0 150.0 360.0 1 Semiurban 1.0
433 LP002379 Male No 0 1 0.0 6500 0.0 105.0 360.0 0 Rural 0.0
434 LP002386 Male No 0 1 0.0 12876 0.0 405.0 360.0 1 Semiurban 1.0
435 LP002387 Male Yes 0 1 0.0 2425 2340.0 143.0 360.0 1 Semiurban 1.0
436 LP002390 Male No 0 1 0.0 3750 0.0 100.0 360.0 1 Urban 1.0
437 LP002393 Female 1 0.0 10047 0.0 0.0 240.0 1 Semiurban 1.0
438 LP002398 Male No 0 1 0.0 1926 1851.0 50.0 360.0 1 Semiurban 1.0
439 LP002401 Male Yes 0 1 0.0 2213 1125.0 0.0 360.0 1 Urban 1.0
440 LP002403 Male No 0 1 1.0 10416 0.0 187.0 360.0 0 Urban 0.0
441 LP002407 Female Yes 0 0 1.0 7142 0.0 138.0 360.0 1 Rural 1.0
442 LP002408 Male No 0 1 0.0 3660 5064.0 187.0 360.0 1 Semiurban 1.0
443 LP002409 Male Yes 0 1 0.0 7901 1833.0 180.0 360.0 1 Rural 1.0
444 LP002418 Male No 3+ 0 0.0 4707 1993.0 148.0 360.0 1 Semiurban 1.0
445 LP002422 Male No 1 1 0.0 37719 0.0 152.0 360.0 1 Semiurban 1.0
446 LP002424 Male Yes 0 1 0.0 7333 8333.0 175.0 300.0 0 Rural 1.0
447 LP002429 Male Yes 1 1 1.0 3466 1210.0 130.0 360.0 1 Rural 1.0
448 LP002434 Male Yes 2 0 0.0 4652 0.0 110.0 360.0 1 Rural 1.0
449 LP002435 Male Yes 0 1 0.0 3539 1376.0 55.0 360.0 1 Rural 0.0
450 LP002443 Male Yes 2 1 0.0 3340 1710.0 150.0 360.0 0 Rural 0.0
451 LP002444 Male No 1 0 1.0 2769 1542.0 190.0 360.0 0 Semiurban 0.0
452 LP002446 Male Yes 2 0 0.0 2309 1255.0 125.0 360.0 0 Rural 0.0
453 LP002447 Male Yes 2 0 0.0 1958 1456.0 60.0 300.0 0 Urban 1.0
454 LP002448 Male Yes 0 1 0.0 3948 1733.0 149.0 360.0 0 Rural 0.0
455 LP002449 Male Yes 0 1 0.0 2483 2466.0 90.0 180.0 0 Rural 1.0
456 LP002453 Male No 0 1 1.0 7085 0.0 84.0 360.0 1 Semiurban 1.0
457 LP002455 Male Yes 2 1 0.0 3859 0.0 96.0 360.0 1 Semiurban 1.0
458 LP002459 Male Yes 0 1 0.0 4301 0.0 118.0 360.0 1 Urban 1.0
459 LP002467 Male Yes 0 1 0.0 3708 2569.0 173.0 360.0 1 Urban 0.0
460 LP002472 Male No 2 1 0.0 4354 0.0 136.0 360.0 1 Rural 1.0
461 LP002473 Male Yes 0 1 0.0 8334 0.0 160.0 360.0 1 Semiurban 0.0
462 LP002478 Yes 0 1 1.0 2083 4083.0 160.0 360.0 0 Semiurban 1.0
463 LP002484 Male Yes 3+ 1 0.0 7740 0.0 128.0 180.0 1 Urban 1.0
464 LP002487 Male Yes 0 1 0.0 3015 2188.0 153.0 360.0 1 Rural 1.0
465 LP002489 Female No 1 0 0.0 5191 0.0 132.0 360.0 1 Semiurban 1.0
466 LP002493 Male No 0 1 0.0 4166 0.0 98.0 360.0 0 Semiurban 0.0
467 LP002494 Male No 0 1 0.0 6000 0.0 140.0 360.0 1 Rural 1.0
468 LP002500 Male Yes 3+ 0 0.0 2947 1664.0 70.0 180.0 0 Urban 0.0
469 LP002501 Yes 0 1 0.0 16692 0.0 110.0 360.0 1 Semiurban 1.0
470 LP002502 Female Yes 2 0 0.0 210 2917.0 98.0 360.0 1 Semiurban 1.0
471 LP002505 Male Yes 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
472 LP002515 Male Yes 1 1 1.0 3450 2079.0 162.0 360.0 1 Semiurban 1.0
473 LP002517 Male Yes 1 0 0.0 2653 1500.0 113.0 180.0 0 Rural 0.0
474 LP002519 Male Yes 3+ 1 0.0 4691 0.0 100.0 360.0 1 Semiurban 1.0
475 LP002522 Female No 0 1 1.0 2500 0.0 93.0 360.0 0 Urban 1.0
476 LP002524 Male No 2 1 0.0 5532 4648.0 162.0 360.0 1 Rural 1.0
477 LP002527 Male Yes 2 1 1.0 16525 1014.0 150.0 360.0 1 Rural 1.0
478 LP002529 Male Yes 2 1 0.0 6700 1750.0 230.0 300.0 1 Semiurban 1.0
479 LP002530 Yes 2 1 0.0 2873 1872.0 132.0 360.0 0 Semiurban 0.0
480 LP002531 Male Yes 1 1 1.0 16667 2250.0 86.0 360.0 1 Semiurban 1.0
481 LP002533 Male Yes 2 1 0.0 2947 1603.0 0.0 360.0 1 Urban 0.0
482 LP002534 Female No 0 0 0.0 4350 0.0 154.0 360.0 1 Rural 1.0
483 LP002536 Male Yes 3+ 0 0.0 3095 0.0 113.0 360.0 1 Rural 1.0
484 LP002537 Male Yes 0 1 0.0 2083 3150.0 128.0 360.0 1 Semiurban 1.0
485 LP002541 Male Yes 0 1 0.0 10833 0.0 234.0 360.0 1 Semiurban 1.0
486 LP002543 Male Yes 2 1 0.0 8333 0.0 246.0 360.0 1 Semiurban 1.0
487 LP002544 Male Yes 1 0 0.0 1958 2436.0 131.0 360.0 1 Rural 1.0
488 LP002545 Male No 2 1 0.0 3547 0.0 80.0 360.0 0 Rural 0.0
489 LP002547 Male Yes 1 1 0.0 18333 0.0 500.0 360.0 1 Urban 0.0
490 LP002555 Male Yes 2 1 1.0 4583 2083.0 160.0 360.0 1 Semiurban 1.0
491 LP002556 Male No 0 1 0.0 2435 0.0 75.0 360.0 1 Urban 0.0
492 LP002560 Male No 0 0 0.0 2699 2785.0 96.0 360.0 0 Semiurban 1.0
493 LP002562 Male Yes 1 0 0.0 5333 1131.0 186.0 360.0 0 Urban 1.0
494 LP002571 Male No 0 0 0.0 3691 0.0 110.0 360.0 1 Rural 1.0
495 LP002582 Female No 0 0 1.0 17263 0.0 225.0 360.0 1 Semiurban 1.0
496 LP002585 Male Yes 0 1 0.0 3597 2157.0 119.0 360.0 0 Rural 0.0
497 LP002586 Female Yes 1 1 0.0 3326 913.0 105.0 84.0 1 Semiurban 1.0
498 LP002587 Male Yes 0 0 0.0 2600 1700.0 107.0 360.0 1 Rural 1.0
499 LP002588 Male Yes 0 1 0.0 4625 2857.0 111.0 12.0 0 Urban 1.0
500 LP002600 Male Yes 1 1 1.0 2895 0.0 95.0 360.0 1 Semiurban 1.0
501 LP002602 Male No 0 1 0.0 6283 4416.0 209.0 360.0 0 Rural 0.0
502 LP002603 Female No 0 1 0.0 645 3683.0 113.0 480.0 1 Rural 1.0
503 LP002606 Female No 0 1 0.0 3159 0.0 100.0 360.0 1 Semiurban 1.0
504 LP002615 Male Yes 2 1 0.0 4865 5624.0 208.0 360.0 1 Semiurban 1.0
505 LP002618 Male Yes 1 0 0.0 4050 5302.0 138.0 360.0 0 Rural 0.0
506 LP002619 Male Yes 0 0 0.0 3814 1483.0 124.0 300.0 1 Semiurban 1.0
507 LP002622 Male Yes 2 1 0.0 3510 4416.0 243.0 360.0 1 Rural 1.0
508 LP002624 Male Yes 0 1 0.0 20833 6667.0 480.0 360.0 0 Urban 1.0
509 LP002625 No 0 1 0.0 3583 0.0 96.0 360.0 1 Urban 0.0
510 LP002626 Male Yes 0 1 1.0 2479 3013.0 188.0 360.0 1 Urban 1.0
511 LP002634 Female No 1 1 0.0 13262 0.0 40.0 360.0 1 Urban 1.0
512 LP002637 Male No 0 0 0.0 3598 1287.0 100.0 360.0 1 Rural 0.0
513 LP002640 Male Yes 1 1 0.0 6065 2004.0 250.0 360.0 1 Semiurban 1.0
514 LP002643 Male Yes 2 1 0.0 3283 2035.0 148.0 360.0 1 Urban 1.0
515 LP002648 Male Yes 0 1 0.0 2130 6666.0 70.0 180.0 1 Semiurban 0.0
516 LP002652 Male No 0 1 0.0 5815 3666.0 311.0 360.0 1 Rural 0.0
517 LP002659 Male Yes 3+ 1 0.0 3466 3428.0 150.0 360.0 1 Rural 1.0
518 LP002670 Female Yes 2 1 0.0 2031 1632.0 113.0 480.0 1 Semiurban 1.0
519 LP002682 Male Yes 0 0.0 3074 1800.0 123.0 360.0 0 Semiurban 0.0
520 LP002683 Male No 0 1 0.0 4683 1915.0 185.0 360.0 1 Semiurban 0.0
521 LP002684 Female No 0 0 0.0 3400 0.0 95.0 360.0 1 Rural 0.0
522 LP002689 Male Yes 2 0 0.0 2192 1742.0 45.0 360.0 1 Semiurban 1.0
523 LP002690 Male No 0 1 0.0 2500 0.0 55.0 360.0 1 Semiurban 1.0
524 LP002692 Male Yes 3+ 1 1.0 5677 1424.0 100.0 360.0 1 Rural 1.0
525 LP002693 Male Yes 2 1 1.0 7948 7166.0 480.0 360.0 1 Rural 1.0
526 LP002697 Male No 0 1 0.0 4680 2087.0 0.0 360.0 1 Semiurban 0.0
527 LP002699 Male Yes 2 1 1.0 17500 0.0 400.0 360.0 1 Rural 1.0
528 LP002705 Male Yes 0 1 0.0 3775 0.0 110.0 360.0 1 Semiurban 1.0
529 LP002706 Male Yes 1 0 0.0 5285 1430.0 161.0 360.0 0 Semiurban 1.0
530 LP002714 Male No 1 0 0.0 2679 1302.0 94.0 360.0 1 Semiurban 1.0
531 LP002716 Male No 0 0 0.0 6783 0.0 130.0 360.0 1 Semiurban 1.0
532 LP002717 Male Yes 0 1 0.0 1025 5500.0 216.0 360.0 0 Rural 1.0
533 LP002720 Male Yes 3+ 1 0.0 4281 0.0 100.0 360.0 1 Urban 1.0
534 LP002723 Male No 2 1 0.0 3588 0.0 110.0 360.0 0 Rural 0.0
535 LP002729 Male No 1 1 0.0 11250 0.0 196.0 360.0 0 Semiurban 0.0
536 LP002731 Female No 0 0 1.0 18165 0.0 125.0 360.0 1 Urban 1.0
537 LP002732 Male No 0 0 0.0 2550 2042.0 126.0 360.0 1 Rural 1.0
538 LP002734 Male Yes 0 1 0.0 6133 3906.0 324.0 360.0 1 Urban 1.0
539 LP002738 Male No 2 1 0.0 3617 0.0 107.0 360.0 1 Semiurban 1.0
540 LP002739 Male Yes 0 0 0.0 2917 536.0 66.0 360.0 1 Rural 0.0
541 LP002740 Male Yes 3+ 1 0.0 6417 0.0 157.0 180.0 1 Rural 1.0
542 LP002741 Female Yes 1 1 0.0 4608 2845.0 140.0 180.0 1 Semiurban 1.0
543 LP002743 Female No 0 1 0.0 2138 0.0 99.0 360.0 0 Semiurban 0.0
544 LP002753 Female No 1 1 0.0 3652 0.0 95.0 360.0 1 Semiurban 1.0
545 LP002755 Male Yes 1 0 0.0 2239 2524.0 128.0 360.0 1 Urban 1.0
546 LP002757 Female Yes 0 0 0.0 3017 663.0 102.0 360.0 0 Semiurban 1.0
547 LP002767 Male Yes 0 1 0.0 2768 1950.0 155.0 360.0 1 Rural 1.0
548 LP002768 Male No 0 0 0.0 3358 0.0 80.0 36.0 1 Semiurban 0.0
549 LP002772 Male No 0 1 0.0 2526 1783.0 145.0 360.0 1 Rural 1.0
550 LP002776 Female No 0 1 0.0 5000 0.0 103.0 360.0 0 Semiurban 0.0
551 LP002777 Male Yes 0 1 0.0 2785 2016.0 110.0 360.0 1 Rural 1.0
552 LP002778 Male Yes 2 1 1.0 6633 0.0 0.0 360.0 0 Rural 0.0
553 LP002784 Male Yes 1 0 0.0 2492 2375.0 0.0 360.0 1 Rural 1.0
554 LP002785 Male Yes 1 1 0.0 3333 3250.0 158.0 360.0 1 Urban 1.0
555 LP002788 Male Yes 0 0 0.0 2454 2333.0 181.0 360.0 0 Urban 0.0
556 LP002789 Male Yes 0 1 0.0 3593 4266.0 132.0 180.0 0 Rural 0.0
557 LP002792 Male Yes 1 1 0.0 5468 1032.0 26.0 360.0 1 Semiurban 1.0
558 LP002794 Female No 0 1 0.0 2667 1625.0 84.0 360.0 0 Urban 1.0
559 LP002795 Male Yes 3+ 1 1.0 10139 0.0 260.0 360.0 1 Semiurban 1.0
560 LP002798 Male Yes 0 1 0.0 3887 2669.0 162.0 360.0 1 Semiurban 1.0
561 LP002804 Female Yes 0 1 0.0 4180 2306.0 182.0 360.0 1 Semiurban 1.0
562 LP002807 Male Yes 2 0 0.0 3675 242.0 108.0 360.0 1 Semiurban 1.0
563 LP002813 Female Yes 1 1 1.0 19484 0.0 600.0 360.0 1 Semiurban 1.0
564 LP002820 Male Yes 0 1 0.0 5923 2054.0 211.0 360.0 1 Rural 1.0
565 LP002821 Male No 0 0 1.0 5800 0.0 132.0 360.0 1 Semiurban 1.0
566 LP002832 Male Yes 2 1 0.0 8799 0.0 258.0 360.0 0 Urban 0.0
567 LP002833 Male Yes 0 0 0.0 4467 0.0 120.0 360.0 0 Rural 1.0
568 LP002836 Male No 0 1 0.0 3333 0.0 70.0 360.0 1 Urban 1.0
569 LP002837 Male Yes 3+ 1 0.0 3400 2500.0 123.0 360.0 0 Rural 0.0
570 LP002840 Female No 0 1 0.0 2378 0.0 9.0 360.0 1 Urban 0.0
571 LP002841 Male Yes 0 1 0.0 3166 2064.0 104.0 360.0 0 Urban 0.0
572 LP002842 Male Yes 1 1 0.0 3417 1750.0 186.0 360.0 1 Urban 1.0
573 LP002847 Male Yes 1 0.0 5116 1451.0 165.0 360.0 0 Urban 0.0
574 LP002855 Male Yes 2 1 0.0 16666 0.0 275.0 360.0 1 Urban 1.0
575 LP002862 Male Yes 2 0 0.0 6125 1625.0 187.0 480.0 1 Semiurban 0.0
576 LP002863 Male Yes 3+ 1 0.0 6406 0.0 150.0 360.0 1 Semiurban 0.0
577 LP002868 Male Yes 2 1 0.0 3159 461.0 108.0 84.0 1 Urban 1.0
578 LP002872 Yes 0 1 0.0 3087 2210.0 136.0 360.0 0 Semiurban 0.0
579 LP002874 Male No 0 1 0.0 3229 2739.0 110.0 360.0 1 Urban 1.0
580 LP002877 Male Yes 1 1 0.0 1782 2232.0 107.0 360.0 1 Rural 1.0
581 LP002888 Male No 0 1 0.0 3182 2917.0 161.0 360.0 1 Urban 1.0
582 LP002892 Male Yes 2 1 0.0 6540 0.0 205.0 360.0 1 Semiurban 1.0
583 LP002893 Male No 0 1 0.0 1836 33837.0 90.0 360.0 1 Urban 0.0
584 LP002894 Female Yes 0 1 0.0 3166 0.0 36.0 360.0 1 Semiurban 1.0
585 LP002898 Male Yes 1 1 0.0 1880 0.0 61.0 360.0 0 Rural 0.0
586 LP002911 Male Yes 1 1 0.0 2787 1917.0 146.0 360.0 0 Rural 0.0
587 LP002912 Male Yes 1 1 0.0 4283 3000.0 172.0 84.0 1 Rural 0.0
588 LP002916 Male Yes 0 1 0.0 2297 1522.0 104.0 360.0 1 Urban 1.0
589 LP002917 Female No 0 0 0.0 2165 0.0 70.0 360.0 1 Semiurban 1.0
590 LP002925 No 0 1 0.0 4750 0.0 94.0 360.0 1 Semiurban 1.0
591 LP002926 Male Yes 2 1 1.0 2726 0.0 106.0 360.0 0 Semiurban 0.0
592 LP002928 Male Yes 0 1 0.0 3000 3416.0 56.0 180.0 1 Semiurban 1.0
593 LP002931 Male Yes 2 1 1.0 6000 0.0 205.0 240.0 1 Semiurban 0.0
594 LP002933 No 3+ 1 1.0 9357 0.0 292.0 360.0 1 Semiurban 1.0
595 LP002936 Male Yes 0 1 0.0 3859 3300.0 142.0 180.0 1 Rural 1.0
596 LP002938 Male Yes 0 1 1.0 16120 0.0 260.0 360.0 1 Urban 1.0
597 LP002940 Male No 0 0 0.0 3833 0.0 110.0 360.0 1 Rural 1.0
598 LP002941 Male Yes 2 0 1.0 6383 1000.0 187.0 360.0 1 Rural 0.0
599 LP002943 Male No 1 0.0 2987 0.0 88.0 360.0 0 Semiurban 0.0
600 LP002945 Male Yes 0 1 1.0 9963 0.0 180.0 360.0 1 Rural 1.0
601 LP002948 Male Yes 2 1 0.0 5780 0.0 192.0 360.0 1 Urban 1.0
602 LP002949 Female No 3+ 1 0.0 416 41667.0 350.0 180.0 0 Urban 0.0
603 LP002950 Male Yes 0 0 0.0 2894 2792.0 155.0 360.0 1 Rural 1.0
604 LP002953 Male Yes 3+ 1 0.0 5703 0.0 128.0 360.0 1 Urban 1.0
605 LP002958 Male No 0 1 0.0 3676 4301.0 172.0 360.0 1 Rural 1.0
606 LP002959 Female Yes 1 1 0.0 12000 0.0 496.0 360.0 1 Semiurban 1.0
607 LP002960 Male Yes 0 0 0.0 2400 3800.0 0.0 180.0 1 Urban 0.0
608 LP002961 Male Yes 1 1 0.0 3400 2500.0 173.0 360.0 1 Semiurban 1.0
609 LP002964 Male Yes 2 0 0.0 3987 1411.0 157.0 360.0 1 Rural 1.0
610 LP002974 Male Yes 0 1 0.0 3232 1950.0 108.0 360.0 1 Rural 1.0
611 LP002978 Female No 0 1 0.0 2900 0.0 71.0 360.0 1 Rural 1.0
612 LP002979 Male Yes 3+ 1 0.0 4106 0.0 40.0 180.0 1 Rural 1.0
613 LP002983 Male Yes 1 1 0.0 8072 240.0 253.0 360.0 1 Urban 1.0
614 LP002984 Male Yes 2 1 0.0 7583 0.0 187.0 360.0 1 Urban 1.0
615 LP002990 Female No 0 1 1.0 4583 0.0 133.0 360.0 0 Semiurban 0.0

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

View File

@@ -0,0 +1,38 @@
## Лабораторная работа №5
### Ранжирование признаков
## ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, pandas, matplotlib, sklearn
* запустить проект (стартовая точка lab4)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки pandas, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
Программа решает задачу регрессии, используя полиномиальную регрессию.
Цель - предсказать сумму займа (LoanAmount), используя имеющиеся признаки: ApplicantIncome - доход заявителя, Credit_History - статус соответствия кредитной истории стандартам банка,
Education - наличие образования, Married - заявитель женат/замужем (Да/Нет), Self_Employed - самозанятый (Да/Нет)
### Тест
Зелёные маркеры на графике - тестовые результаты
Красные маркеры на графике - предсказанные результаты
При небольшом объёме тестовых данных, алгоритм показывает неплохие результаты обучения
![Result](grade_1.png)
![Result](result_1.png)
Но при увеличении объёма данных, алгоритм теряет свою эффективность
![Result](grade_2.png)
![Result](result_2.png)
Вывод: На малых объёмах данных алгоритм показывает свою эффективность. Но при большем объём стоит использовать другие методы для данного набора информации

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -0,0 +1,33 @@
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
import pandas as pd
def start():
data = pd.read_csv('loan.csv')
x = data[['ApplicantIncome', 'Credit_History', 'Education', 'Married', 'Self_Employed']]
y = data[['LoanAmount']]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42)
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
('linear', LinearRegression())])
poly.fit(x_train, y_train)
y_predicted = poly.predict(x_test)
print('Оценка обучения:')
print(metrics.r2_score(y_test, y_predicted))
plt.figure(1, figsize=(16, 9))
plt.title('Сравнение результатов обучения')
plt.scatter(x=[i for i in range(len(x_test))], y=y_test, c='green', s=5)
plt.scatter(x=[i for i in range(len(x_test))], y=y_predicted, c='red', s=5)
plt.show()
start()

View File

@@ -0,0 +1,615 @@
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
LP001002,Male,0.0,0,1,0.0,5849,0.0,360.0,1.0,0,Y,0.0
LP001003,Male,1.0,1,1,0.0,4583,1508.0,128.0,360.0,1,Rural,0.0
LP001005,Male,1.0,0,1,1.0,3000,0.0,66.0,360.0,1,Urban,1.0
LP001006,Male,1.0,0,0,0.0,2583,2358.0,120.0,360.0,1,Urban,1.0
LP001008,Male,0.0,0,1,0.0,6000,0.0,141.0,360.0,1,Urban,1.0
LP001011,Male,1.0,2,1,1.0,5417,4196.0,267.0,360.0,1,Urban,1.0
LP001013,Male,1.0,0,0,0.0,2333,1516.0,95.0,360.0,1,Urban,1.0
LP001014,Male,1.0,3+,1,0.0,3036,2504.0,158.0,360.0,0,Semiurban,0.0
LP001018,Male,1.0,2,1,0.0,4006,1526.0,168.0,360.0,1,Urban,1.0
LP001020,Male,1.0,1,1,0.0,12841,10968.0,349.0,360.0,1,Semiurban,0.0
LP001024,Male,1.0,2,1,0.0,3200,700.0,70.0,360.0,1,Urban,1.0
LP001027,Male,1.0,2,1,0.0,2500,1840.0,109.0,360.0,1,Urban,1.0
LP001028,Male,1.0,2,1,0.0,3073,8106.0,200.0,360.0,1,Urban,1.0
LP001029,Male,0.0,0,1,0.0,1853,2840.0,114.0,360.0,1,Rural,0.0
LP001030,Male,1.0,2,1,0.0,1299,1086.0,17.0,120.0,1,Urban,1.0
LP001032,Male,0.0,0,1,0.0,4950,0.0,125.0,360.0,1,Urban,1.0
LP001034,Male,0.0,1,0,0.0,3596,0.0,100.0,240.0,0,Urban,1.0
LP001036,Female,0.0,0,1,0.0,3510,0.0,76.0,360.0,0,Urban,0.0
LP001038,Male,1.0,0,0,0.0,4887,0.0,133.0,360.0,1,Rural,0.0
LP001041,Male,1.0,0,1,0.0,2600,3500.0,115.0,,1,Urban,1.0
LP001043,Male,1.0,0,0,0.0,7660,0.0,104.0,360.0,0,Urban,0.0
LP001046,Male,1.0,1,1,0.0,5955,5625.0,315.0,360.0,1,Urban,1.0
LP001047,Male,1.0,0,0,0.0,2600,1911.0,116.0,360.0,0,Semiurban,0.0
LP001050,,1.0,2,0,0.0,3365,1917.0,112.0,360.0,0,Rural,0.0
LP001052,Male,1.0,1,1,0.0,3717,2925.0,151.0,360.0,0,Semiurban,0.0
LP001066,Male,1.0,0,1,1.0,9560,0.0,191.0,360.0,1,Semiurban,1.0
LP001068,Male,1.0,0,1,0.0,2799,2253.0,122.0,360.0,1,Semiurban,1.0
LP001073,Male,1.0,2,0,0.0,4226,1040.0,110.0,360.0,1,Urban,1.0
LP001086,Male,0.0,0,0,0.0,1442,0.0,35.0,360.0,1,Urban,0.0
LP001087,Female,0.0,2,1,0.0,3750,2083.0,120.0,360.0,1,Semiurban,1.0
LP001091,Male,1.0,1,1,0.0,4166,3369.0,201.0,360.0,0,Urban,0.0
LP001095,Male,0.0,0,1,0.0,3167,0.0,74.0,360.0,1,Urban,0.0
LP001097,Male,0.0,1,1,1.0,4692,0.0,106.0,360.0,1,Rural,0.0
LP001098,Male,1.0,0,1,0.0,3500,1667.0,114.0,360.0,1,Semiurban,1.0
LP001100,Male,0.0,3+,1,0.0,12500,3000.0,320.0,360.0,1,Rural,0.0
LP001106,Male,1.0,0,1,0.0,2275,2067.0,0.0,360.0,1,Urban,1.0
LP001109,Male,1.0,0,1,0.0,1828,1330.0,100.0,,0,Urban,0.0
LP001112,Female,1.0,0,1,0.0,3667,1459.0,144.0,360.0,1,Semiurban,1.0
LP001114,Male,0.0,0,1,0.0,4166,7210.0,184.0,360.0,1,Urban,1.0
LP001116,Male,0.0,0,0,0.0,3748,1668.0,110.0,360.0,1,Semiurban,1.0
LP001119,Male,0.0,0,1,0.0,3600,0.0,80.0,360.0,1,Urban,0.0
LP001120,Male,0.0,0,1,0.0,1800,1213.0,47.0,360.0,1,Urban,1.0
LP001123,Male,1.0,0,1,0.0,2400,0.0,75.0,360.0,0,Urban,1.0
LP001131,Male,1.0,0,1,0.0,3941,2336.0,134.0,360.0,1,Semiurban,1.0
LP001136,Male,1.0,0,0,1.0,4695,0.0,96.0,,1,Urban,1.0
LP001137,Female,0.0,0,1,0.0,3410,0.0,88.0,,1,Urban,1.0
LP001138,Male,1.0,1,1,0.0,5649,0.0,44.0,360.0,1,Urban,1.0
LP001144,Male,1.0,0,1,0.0,5821,0.0,144.0,360.0,1,Urban,1.0
LP001146,Female,1.0,0,1,0.0,2645,3440.0,120.0,360.0,0,Urban,0.0
LP001151,Female,0.0,0,1,0.0,4000,2275.0,144.0,360.0,1,Semiurban,1.0
LP001155,Female,1.0,0,0,0.0,1928,1644.0,100.0,360.0,1,Semiurban,1.0
LP001157,Female,0.0,0,1,0.0,3086,0.0,120.0,360.0,1,Semiurban,1.0
LP001164,Female,0.0,0,1,0.0,4230,0.0,112.0,360.0,1,Semiurban,0.0
LP001179,Male,1.0,2,1,0.0,4616,0.0,134.0,360.0,1,Urban,0.0
LP001186,Female,1.0,1,1,1.0,11500,0.0,286.0,360.0,0,Urban,0.0
LP001194,Male,1.0,2,1,0.0,2708,1167.0,97.0,360.0,1,Semiurban,1.0
LP001195,Male,1.0,0,1,0.0,2132,1591.0,96.0,360.0,1,Semiurban,1.0
LP001197,Male,1.0,0,1,0.0,3366,2200.0,135.0,360.0,1,Rural,0.0
LP001198,Male,1.0,1,1,0.0,8080,2250.0,180.0,360.0,1,Urban,1.0
LP001199,Male,1.0,2,0,0.0,3357,2859.0,144.0,360.0,1,Urban,1.0
LP001205,Male,1.0,0,1,0.0,2500,3796.0,120.0,360.0,1,Urban,1.0
LP001206,Male,1.0,3+,1,0.0,3029,0.0,99.0,360.0,1,Urban,1.0
LP001207,Male,1.0,0,0,1.0,2609,3449.0,165.0,180.0,0,Rural,0.0
LP001213,Male,1.0,1,1,0.0,4945,0.0,0.0,360.0,0,Rural,0.0
LP001222,Female,0.0,0,1,0.0,4166,0.0,116.0,360.0,0,Semiurban,0.0
LP001225,Male,1.0,0,1,0.0,5726,4595.0,258.0,360.0,1,Semiurban,0.0
LP001228,Male,0.0,0,0,0.0,3200,2254.0,126.0,180.0,0,Urban,0.0
LP001233,Male,1.0,1,1,0.0,10750,0.0,312.0,360.0,1,Urban,1.0
LP001238,Male,1.0,3+,0,1.0,7100,0.0,125.0,60.0,1,Urban,1.0
LP001241,Female,0.0,0,1,0.0,4300,0.0,136.0,360.0,0,Semiurban,0.0
LP001243,Male,1.0,0,1,0.0,3208,3066.0,172.0,360.0,1,Urban,1.0
LP001245,Male,1.0,2,0,1.0,1875,1875.0,97.0,360.0,1,Semiurban,1.0
LP001248,Male,0.0,0,1,0.0,3500,0.0,81.0,300.0,1,Semiurban,1.0
LP001250,Male,1.0,3+,0,0.0,4755,0.0,95.0,,0,Semiurban,0.0
LP001253,Male,1.0,3+,1,1.0,5266,1774.0,187.0,360.0,1,Semiurban,1.0
LP001255,Male,0.0,0,1,0.0,3750,0.0,113.0,480.0,1,Urban,0.0
LP001256,Male,0.0,0,1,0.0,3750,4750.0,176.0,360.0,1,Urban,0.0
LP001259,Male,1.0,1,1,1.0,1000,3022.0,110.0,360.0,1,Urban,0.0
LP001263,Male,1.0,3+,1,0.0,3167,4000.0,180.0,300.0,0,Semiurban,0.0
LP001264,Male,1.0,3+,0,1.0,3333,2166.0,130.0,360.0,0,Semiurban,1.0
LP001265,Female,0.0,0,1,0.0,3846,0.0,111.0,360.0,1,Semiurban,1.0
LP001266,Male,1.0,1,1,1.0,2395,0.0,0.0,360.0,1,Semiurban,1.0
LP001267,Female,1.0,2,1,0.0,1378,1881.0,167.0,360.0,1,Urban,0.0
LP001273,Male,1.0,0,1,0.0,6000,2250.0,265.0,360.0,0,Semiurban,0.0
LP001275,Male,1.0,1,1,0.0,3988,0.0,50.0,240.0,1,Urban,1.0
LP001279,Male,0.0,0,1,0.0,2366,2531.0,136.0,360.0,1,Semiurban,1.0
LP001280,Male,1.0,2,0,0.0,3333,2000.0,99.0,360.0,0,Semiurban,1.0
LP001282,Male,1.0,0,1,0.0,2500,2118.0,104.0,360.0,1,Semiurban,1.0
LP001289,Male,0.0,0,1,0.0,8566,0.0,210.0,360.0,1,Urban,1.0
LP001310,Male,1.0,0,1,0.0,5695,4167.0,175.0,360.0,1,Semiurban,1.0
LP001316,Male,1.0,0,1,0.0,2958,2900.0,131.0,360.0,1,Semiurban,1.0
LP001318,Male,1.0,2,1,0.0,6250,5654.0,188.0,180.0,1,Semiurban,1.0
LP001319,Male,1.0,2,0,0.0,3273,1820.0,81.0,360.0,1,Urban,1.0
LP001322,Male,0.0,0,1,0.0,4133,0.0,122.0,360.0,1,Semiurban,1.0
LP001325,Male,0.0,0,0,0.0,3620,0.0,25.0,120.0,1,Semiurban,1.0
LP001326,Male,0.0,0,1,0.0,6782,0.0,0.0,360.0,0,Urban,0.0
LP001327,Female,1.0,0,1,0.0,2484,2302.0,137.0,360.0,1,Semiurban,1.0
LP001333,Male,1.0,0,1,0.0,1977,997.0,50.0,360.0,1,Semiurban,1.0
LP001334,Male,1.0,0,0,0.0,4188,0.0,115.0,180.0,1,Semiurban,1.0
LP001343,Male,1.0,0,1,0.0,1759,3541.0,131.0,360.0,1,Semiurban,1.0
LP001345,Male,1.0,2,0,0.0,4288,3263.0,133.0,180.0,1,Urban,1.0
LP001349,Male,0.0,0,1,0.0,4843,3806.0,151.0,360.0,1,Semiurban,1.0
LP001350,Male,1.0,,1,0.0,13650,0.0,0.0,360.0,1,Urban,1.0
LP001356,Male,1.0,0,1,0.0,4652,3583.0,0.0,360.0,1,Semiurban,1.0
LP001357,Male,0.0,,1,0.0,3816,754.0,160.0,360.0,1,Urban,1.0
LP001367,Male,1.0,1,1,0.0,3052,1030.0,100.0,360.0,1,Urban,1.0
LP001369,Male,1.0,2,1,0.0,11417,1126.0,225.0,360.0,1,Urban,1.0
LP001370,Male,0.0,0,0,0.0,7333,0.0,120.0,360.0,1,Rural,0.0
LP001379,Male,1.0,2,1,0.0,3800,3600.0,216.0,360.0,0,Urban,0.0
LP001384,Male,1.0,3+,0,0.0,2071,754.0,94.0,480.0,1,Semiurban,1.0
LP001385,Male,0.0,0,1,0.0,5316,0.0,136.0,360.0,1,Urban,1.0
LP001387,Female,1.0,0,1,0.0,2929,2333.0,139.0,360.0,1,Semiurban,1.0
LP001391,Male,1.0,0,0,0.0,3572,4114.0,152.0,,0,Rural,0.0
LP001392,Female,0.0,1,1,1.0,7451,0.0,0.0,360.0,1,Semiurban,1.0
LP001398,Male,0.0,0,1,0.0,5050,0.0,118.0,360.0,1,Semiurban,1.0
LP001401,Male,1.0,1,1,0.0,14583,0.0,185.0,180.0,1,Rural,1.0
LP001404,Female,1.0,0,1,0.0,3167,2283.0,154.0,360.0,1,Semiurban,1.0
LP001405,Male,1.0,1,1,0.0,2214,1398.0,85.0,360.0,0,Urban,1.0
LP001421,Male,1.0,0,1,0.0,5568,2142.0,175.0,360.0,1,Rural,0.0
LP001422,Female,0.0,0,1,0.0,10408,0.0,259.0,360.0,1,Urban,1.0
LP001426,Male,1.0,,1,0.0,5667,2667.0,180.0,360.0,1,Rural,1.0
LP001430,Female,0.0,0,1,0.0,4166,0.0,44.0,360.0,1,Semiurban,1.0
LP001431,Female,0.0,0,1,0.0,2137,8980.0,137.0,360.0,0,Semiurban,1.0
LP001432,Male,1.0,2,1,0.0,2957,0.0,81.0,360.0,1,Semiurban,1.0
LP001439,Male,1.0,0,0,0.0,4300,2014.0,194.0,360.0,1,Rural,1.0
LP001443,Female,0.0,0,1,0.0,3692,0.0,93.0,360.0,0,Rural,1.0
LP001448,,1.0,3+,1,0.0,23803,0.0,370.0,360.0,1,Rural,1.0
LP001449,Male,0.0,0,1,0.0,3865,1640.0,0.0,360.0,1,Rural,1.0
LP001451,Male,1.0,1,1,1.0,10513,3850.0,160.0,180.0,0,Urban,0.0
LP001465,Male,1.0,0,1,0.0,6080,2569.0,182.0,360.0,0,Rural,0.0
LP001469,Male,0.0,0,1,1.0,20166,0.0,650.0,480.0,0,Urban,1.0
LP001473,Male,0.0,0,1,0.0,2014,1929.0,74.0,360.0,1,Urban,1.0
LP001478,Male,0.0,0,1,0.0,2718,0.0,70.0,360.0,1,Semiurban,1.0
LP001482,Male,1.0,0,1,1.0,3459,0.0,25.0,120.0,1,Semiurban,1.0
LP001487,Male,0.0,0,1,0.0,4895,0.0,102.0,360.0,1,Semiurban,1.0
LP001488,Male,1.0,3+,1,0.0,4000,7750.0,290.0,360.0,1,Semiurban,0.0
LP001489,Female,1.0,0,1,0.0,4583,0.0,84.0,360.0,1,Rural,0.0
LP001491,Male,1.0,2,1,1.0,3316,3500.0,88.0,360.0,1,Urban,1.0
LP001492,Male,0.0,0,1,0.0,14999,0.0,242.0,360.0,0,Semiurban,0.0
LP001493,Male,1.0,2,0,0.0,4200,1430.0,129.0,360.0,1,Rural,0.0
LP001497,Male,1.0,2,1,0.0,5042,2083.0,185.0,360.0,1,Rural,0.0
LP001498,Male,0.0,0,1,0.0,5417,0.0,168.0,360.0,1,Urban,1.0
LP001504,Male,0.0,0,1,1.0,6950,0.0,175.0,180.0,1,Semiurban,1.0
LP001507,Male,1.0,0,1,0.0,2698,2034.0,122.0,360.0,1,Semiurban,1.0
LP001508,Male,1.0,2,1,0.0,11757,0.0,187.0,180.0,1,Urban,1.0
LP001514,Female,1.0,0,1,0.0,2330,4486.0,100.0,360.0,1,Semiurban,1.0
LP001516,Female,1.0,2,1,0.0,14866,0.0,70.0,360.0,1,Urban,1.0
LP001518,Male,1.0,1,1,0.0,1538,1425.0,30.0,360.0,1,Urban,1.0
LP001519,Female,0.0,0,1,0.0,10000,1666.0,225.0,360.0,1,Rural,0.0
LP001520,Male,1.0,0,1,0.0,4860,830.0,125.0,360.0,1,Semiurban,1.0
LP001528,Male,0.0,0,1,0.0,6277,0.0,118.0,360.0,0,Rural,0.0
LP001529,Male,1.0,0,1,1.0,2577,3750.0,152.0,360.0,1,Rural,1.0
LP001531,Male,0.0,0,1,0.0,9166,0.0,244.0,360.0,1,Urban,0.0
LP001532,Male,1.0,2,0,0.0,2281,0.0,113.0,360.0,1,Rural,0.0
LP001535,Male,0.0,0,1,0.0,3254,0.0,50.0,360.0,1,Urban,1.0
LP001536,Male,1.0,3+,1,0.0,39999,0.0,600.0,180.0,0,Semiurban,1.0
LP001541,Male,1.0,1,1,0.0,6000,0.0,160.0,360.0,0,Rural,1.0
LP001543,Male,1.0,1,1,0.0,9538,0.0,187.0,360.0,1,Urban,1.0
LP001546,Male,0.0,0,1,0.0,2980,2083.0,120.0,360.0,1,Rural,1.0
LP001552,Male,1.0,0,1,0.0,4583,5625.0,255.0,360.0,1,Semiurban,1.0
LP001560,Male,1.0,0,0,0.0,1863,1041.0,98.0,360.0,1,Semiurban,1.0
LP001562,Male,1.0,0,1,0.0,7933,0.0,275.0,360.0,1,Urban,0.0
LP001565,Male,1.0,1,1,0.0,3089,1280.0,121.0,360.0,0,Semiurban,0.0
LP001570,Male,1.0,2,1,0.0,4167,1447.0,158.0,360.0,1,Rural,1.0
LP001572,Male,1.0,0,1,0.0,9323,0.0,75.0,180.0,1,Urban,1.0
LP001574,Male,1.0,0,1,0.0,3707,3166.0,182.0,,1,Rural,1.0
LP001577,Female,1.0,0,1,0.0,4583,0.0,112.0,360.0,1,Rural,0.0
LP001578,Male,1.0,0,1,0.0,2439,3333.0,129.0,360.0,1,Rural,1.0
LP001579,Male,0.0,0,1,0.0,2237,0.0,63.0,480.0,0,Semiurban,0.0
LP001580,Male,1.0,2,1,0.0,8000,0.0,200.0,360.0,1,Semiurban,1.0
LP001581,Male,1.0,0,0,0.0,1820,1769.0,95.0,360.0,1,Rural,1.0
LP001585,,1.0,3+,1,0.0,51763,0.0,700.0,300.0,1,Urban,1.0
LP001586,Male,1.0,3+,0,0.0,3522,0.0,81.0,180.0,1,Rural,0.0
LP001594,Male,1.0,0,1,0.0,5708,5625.0,187.0,360.0,1,Semiurban,1.0
LP001603,Male,1.0,0,0,1.0,4344,736.0,87.0,360.0,1,Semiurban,0.0
LP001606,Male,1.0,0,1,0.0,3497,1964.0,116.0,360.0,1,Rural,1.0
LP001608,Male,1.0,2,1,0.0,2045,1619.0,101.0,360.0,1,Rural,1.0
LP001610,Male,1.0,3+,1,0.0,5516,11300.0,495.0,360.0,0,Semiurban,0.0
LP001616,Male,1.0,1,1,0.0,3750,0.0,116.0,360.0,1,Semiurban,1.0
LP001630,Male,0.0,0,0,0.0,2333,1451.0,102.0,480.0,0,Urban,0.0
LP001633,Male,1.0,1,1,0.0,6400,7250.0,180.0,360.0,0,Urban,0.0
LP001634,Male,0.0,0,1,0.0,1916,5063.0,67.0,360.0,0,Rural,0.0
LP001636,Male,1.0,0,1,0.0,4600,0.0,73.0,180.0,1,Semiurban,1.0
LP001637,Male,1.0,1,1,0.0,33846,0.0,260.0,360.0,1,Semiurban,0.0
LP001639,Female,1.0,0,1,0.0,3625,0.0,108.0,360.0,1,Semiurban,1.0
LP001640,Male,1.0,0,1,1.0,39147,4750.0,120.0,360.0,1,Semiurban,1.0
LP001641,Male,1.0,1,1,1.0,2178,0.0,66.0,300.0,0,Rural,0.0
LP001643,Male,1.0,0,1,0.0,2383,2138.0,58.0,360.0,0,Rural,1.0
LP001644,,1.0,0,1,1.0,674,5296.0,168.0,360.0,1,Rural,1.0
LP001647,Male,1.0,0,1,0.0,9328,0.0,188.0,180.0,1,Rural,1.0
LP001653,Male,0.0,0,0,0.0,4885,0.0,48.0,360.0,1,Rural,1.0
LP001656,Male,0.0,0,1,0.0,12000,0.0,164.0,360.0,1,Semiurban,0.0
LP001657,Male,1.0,0,0,0.0,6033,0.0,160.0,360.0,1,Urban,0.0
LP001658,Male,0.0,0,1,0.0,3858,0.0,76.0,360.0,1,Semiurban,1.0
LP001664,Male,0.0,0,1,0.0,4191,0.0,120.0,360.0,1,Rural,1.0
LP001665,Male,1.0,1,1,0.0,3125,2583.0,170.0,360.0,1,Semiurban,0.0
LP001666,Male,0.0,0,1,0.0,8333,3750.0,187.0,360.0,1,Rural,1.0
LP001669,Female,0.0,0,0,0.0,1907,2365.0,120.0,,1,Urban,1.0
LP001671,Female,1.0,0,1,0.0,3416,2816.0,113.0,360.0,0,Semiurban,1.0
LP001673,Male,0.0,0,1,1.0,11000,0.0,83.0,360.0,1,Urban,0.0
LP001674,Male,1.0,1,0,0.0,2600,2500.0,90.0,360.0,1,Semiurban,1.0
LP001677,Male,0.0,2,1,0.0,4923,0.0,166.0,360.0,0,Semiurban,1.0
LP001682,Male,1.0,3+,0,0.0,3992,0.0,0.0,180.0,1,Urban,0.0
LP001688,Male,1.0,1,0,0.0,3500,1083.0,135.0,360.0,1,Urban,1.0
LP001691,Male,1.0,2,0,0.0,3917,0.0,124.0,360.0,1,Semiurban,1.0
LP001692,Female,0.0,0,0,0.0,4408,0.0,120.0,360.0,1,Semiurban,1.0
LP001693,Female,0.0,0,1,0.0,3244,0.0,80.0,360.0,1,Urban,1.0
LP001698,Male,0.0,0,0,0.0,3975,2531.0,55.0,360.0,1,Rural,1.0
LP001699,Male,0.0,0,1,0.0,2479,0.0,59.0,360.0,1,Urban,1.0
LP001702,Male,0.0,0,1,0.0,3418,0.0,127.0,360.0,1,Semiurban,0.0
LP001708,Female,0.0,0,1,0.0,10000,0.0,214.0,360.0,1,Semiurban,0.0
LP001711,Male,1.0,3+,1,0.0,3430,1250.0,128.0,360.0,0,Semiurban,0.0
LP001713,Male,1.0,1,1,1.0,7787,0.0,240.0,360.0,1,Urban,1.0
LP001715,Male,1.0,3+,0,1.0,5703,0.0,130.0,360.0,1,Rural,1.0
LP001716,Male,1.0,0,1,0.0,3173,3021.0,137.0,360.0,1,Urban,1.0
LP001720,Male,1.0,3+,0,0.0,3850,983.0,100.0,360.0,1,Semiurban,1.0
LP001722,Male,1.0,0,1,0.0,150,1800.0,135.0,360.0,1,Rural,0.0
LP001726,Male,1.0,0,1,0.0,3727,1775.0,131.0,360.0,1,Semiurban,1.0
LP001732,Male,1.0,2,1,0.0,5000,0.0,72.0,360.0,0,Semiurban,0.0
LP001734,Female,1.0,2,1,0.0,4283,2383.0,127.0,360.0,0,Semiurban,1.0
LP001736,Male,1.0,0,1,0.0,2221,0.0,60.0,360.0,0,Urban,0.0
LP001743,Male,1.0,2,1,0.0,4009,1717.0,116.0,360.0,1,Semiurban,1.0
LP001744,Male,0.0,0,1,0.0,2971,2791.0,144.0,360.0,1,Semiurban,1.0
LP001749,Male,1.0,0,1,0.0,7578,1010.0,175.0,,1,Semiurban,1.0
LP001750,Male,1.0,0,1,0.0,6250,0.0,128.0,360.0,1,Semiurban,1.0
LP001751,Male,1.0,0,1,0.0,3250,0.0,170.0,360.0,1,Rural,0.0
LP001754,Male,1.0,,0,1.0,4735,0.0,138.0,360.0,1,Urban,0.0
LP001758,Male,1.0,2,1,0.0,6250,1695.0,210.0,360.0,1,Semiurban,1.0
LP001760,Male,0.0,,1,0.0,4758,0.0,158.0,480.0,1,Semiurban,1.0
LP001761,Male,0.0,0,1,1.0,6400,0.0,200.0,360.0,1,Rural,1.0
LP001765,Male,1.0,1,1,0.0,2491,2054.0,104.0,360.0,1,Semiurban,1.0
LP001768,Male,1.0,0,1,0.0,3716,0.0,42.0,180.0,1,Rural,1.0
LP001770,Male,0.0,0,0,0.0,3189,2598.0,120.0,,1,Rural,1.0
LP001776,Female,0.0,0,1,0.0,8333,0.0,280.0,360.0,1,Semiurban,1.0
LP001778,Male,1.0,1,1,0.0,3155,1779.0,140.0,360.0,1,Semiurban,1.0
LP001784,Male,1.0,1,1,0.0,5500,1260.0,170.0,360.0,1,Rural,1.0
LP001786,Male,1.0,0,1,0.0,5746,0.0,255.0,360.0,0,Urban,0.0
LP001788,Female,0.0,0,1,1.0,3463,0.0,122.0,360.0,0,Urban,1.0
LP001790,Female,0.0,1,1,0.0,3812,0.0,112.0,360.0,1,Rural,1.0
LP001792,Male,1.0,1,1,0.0,3315,0.0,96.0,360.0,1,Semiurban,1.0
LP001798,Male,1.0,2,1,0.0,5819,5000.0,120.0,360.0,1,Rural,1.0
LP001800,Male,1.0,1,0,0.0,2510,1983.0,140.0,180.0,1,Urban,0.0
LP001806,Male,0.0,0,1,0.0,2965,5701.0,155.0,60.0,1,Urban,1.0
LP001807,Male,1.0,2,1,1.0,6250,1300.0,108.0,360.0,1,Rural,1.0
LP001811,Male,1.0,0,0,0.0,3406,4417.0,123.0,360.0,1,Semiurban,1.0
LP001813,Male,0.0,0,1,1.0,6050,4333.0,120.0,180.0,1,Urban,0.0
LP001814,Male,1.0,2,1,0.0,9703,0.0,112.0,360.0,1,Urban,1.0
LP001819,Male,1.0,1,0,0.0,6608,0.0,137.0,180.0,1,Urban,1.0
LP001824,Male,1.0,1,1,0.0,2882,1843.0,123.0,480.0,1,Semiurban,1.0
LP001825,Male,1.0,0,1,0.0,1809,1868.0,90.0,360.0,1,Urban,1.0
LP001835,Male,1.0,0,0,0.0,1668,3890.0,201.0,360.0,0,Semiurban,0.0
LP001836,Female,0.0,2,1,0.0,3427,0.0,138.0,360.0,1,Urban,0.0
LP001841,Male,0.0,0,0,1.0,2583,2167.0,104.0,360.0,1,Rural,1.0
LP001843,Male,1.0,1,0,0.0,2661,7101.0,279.0,180.0,1,Semiurban,1.0
LP001844,Male,0.0,0,1,1.0,16250,0.0,192.0,360.0,0,Urban,0.0
LP001846,Female,0.0,3+,1,0.0,3083,0.0,255.0,360.0,1,Rural,1.0
LP001849,Male,0.0,0,0,0.0,6045,0.0,115.0,360.0,0,Rural,0.0
LP001854,Male,1.0,3+,1,0.0,5250,0.0,94.0,360.0,1,Urban,0.0
LP001859,Male,1.0,0,1,0.0,14683,2100.0,304.0,360.0,1,Rural,0.0
LP001864,Male,1.0,3+,0,0.0,4931,0.0,128.0,360.0,0,Semiurban,0.0
LP001865,Male,1.0,1,1,0.0,6083,4250.0,330.0,360.0,0,Urban,1.0
LP001868,Male,0.0,0,1,0.0,2060,2209.0,134.0,360.0,1,Semiurban,1.0
LP001870,Female,0.0,1,1,0.0,3481,0.0,155.0,36.0,1,Semiurban,0.0
LP001871,Female,0.0,0,1,0.0,7200,0.0,120.0,360.0,1,Rural,1.0
LP001872,Male,0.0,0,1,1.0,5166,0.0,128.0,360.0,1,Semiurban,1.0
LP001875,Male,0.0,0,1,0.0,4095,3447.0,151.0,360.0,1,Rural,1.0
LP001877,Male,1.0,2,1,0.0,4708,1387.0,150.0,360.0,1,Semiurban,1.0
LP001882,Male,1.0,3+,1,0.0,4333,1811.0,160.0,360.0,0,Urban,1.0
LP001883,Female,0.0,0,1,0.0,3418,0.0,135.0,360.0,1,Rural,0.0
LP001884,Female,0.0,1,1,0.0,2876,1560.0,90.0,360.0,1,Urban,1.0
LP001888,Female,0.0,0,1,0.0,3237,0.0,30.0,360.0,1,Urban,1.0
LP001891,Male,1.0,0,1,0.0,11146,0.0,136.0,360.0,1,Urban,1.0
LP001892,Male,0.0,0,1,0.0,2833,1857.0,126.0,360.0,1,Rural,1.0
LP001894,Male,1.0,0,1,0.0,2620,2223.0,150.0,360.0,1,Semiurban,1.0
LP001896,Male,1.0,2,1,0.0,3900,0.0,90.0,360.0,1,Semiurban,1.0
LP001900,Male,1.0,1,1,0.0,2750,1842.0,115.0,360.0,1,Semiurban,1.0
LP001903,Male,1.0,0,1,0.0,3993,3274.0,207.0,360.0,1,Semiurban,1.0
LP001904,Male,1.0,0,1,0.0,3103,1300.0,80.0,360.0,1,Urban,1.0
LP001907,Male,1.0,0,1,0.0,14583,0.0,436.0,360.0,1,Semiurban,1.0
LP001908,Female,1.0,0,0,0.0,4100,0.0,124.0,360.0,0,Rural,1.0
LP001910,Male,0.0,1,0,1.0,4053,2426.0,158.0,360.0,0,Urban,0.0
LP001914,Male,1.0,0,1,0.0,3927,800.0,112.0,360.0,1,Semiurban,1.0
LP001915,Male,1.0,2,1,0.0,2301,985.7999878,78.0,180.0,1,Urban,1.0
LP001917,Female,0.0,0,1,0.0,1811,1666.0,54.0,360.0,1,Urban,1.0
LP001922,Male,1.0,0,1,0.0,20667,0.0,0.0,360.0,1,Rural,0.0
LP001924,Male,0.0,0,1,0.0,3158,3053.0,89.0,360.0,1,Rural,1.0
LP001925,Female,0.0,0,1,1.0,2600,1717.0,99.0,300.0,1,Semiurban,0.0
LP001926,Male,1.0,0,1,0.0,3704,2000.0,120.0,360.0,1,Rural,1.0
LP001931,Female,0.0,0,1,0.0,4124,0.0,115.0,360.0,1,Semiurban,1.0
LP001935,Male,0.0,0,1,0.0,9508,0.0,187.0,360.0,1,Rural,1.0
LP001936,Male,1.0,0,1,0.0,3075,2416.0,139.0,360.0,1,Rural,1.0
LP001938,Male,1.0,2,1,0.0,4400,0.0,127.0,360.0,0,Semiurban,0.0
LP001940,Male,1.0,2,1,0.0,3153,1560.0,134.0,360.0,1,Urban,1.0
LP001945,Female,0.0,,1,0.0,5417,0.0,143.0,480.0,0,Urban,0.0
LP001947,Male,1.0,0,1,0.0,2383,3334.0,172.0,360.0,1,Semiurban,1.0
LP001949,Male,1.0,3+,1,0.0,4416,1250.0,110.0,360.0,1,Urban,1.0
LP001953,Male,1.0,1,1,0.0,6875,0.0,200.0,360.0,1,Semiurban,1.0
LP001954,Female,1.0,1,1,0.0,4666,0.0,135.0,360.0,1,Urban,1.0
LP001955,Female,0.0,0,1,0.0,5000,2541.0,151.0,480.0,1,Rural,0.0
LP001963,Male,1.0,1,1,0.0,2014,2925.0,113.0,360.0,1,Urban,0.0
LP001964,Male,1.0,0,0,0.0,1800,2934.0,93.0,360.0,0,Urban,0.0
LP001972,Male,1.0,,0,0.0,2875,1750.0,105.0,360.0,1,Semiurban,1.0
LP001974,Female,0.0,0,1,0.0,5000,0.0,132.0,360.0,1,Rural,1.0
LP001977,Male,1.0,1,1,0.0,1625,1803.0,96.0,360.0,1,Urban,1.0
LP001978,Male,0.0,0,1,0.0,4000,2500.0,140.0,360.0,1,Rural,1.0
LP001990,Male,0.0,0,0,0.0,2000,0.0,0.0,360.0,1,Urban,0.0
LP001993,Female,0.0,0,1,0.0,3762,1666.0,135.0,360.0,1,Rural,1.0
LP001994,Female,0.0,0,1,0.0,2400,1863.0,104.0,360.0,0,Urban,0.0
LP001996,Male,0.0,0,1,0.0,20233,0.0,480.0,360.0,1,Rural,0.0
LP001998,Male,1.0,2,0,0.0,7667,0.0,185.0,360.0,0,Rural,1.0
LP002002,Female,0.0,0,1,0.0,2917,0.0,84.0,360.0,1,Semiurban,1.0
LP002004,Male,0.0,0,0,0.0,2927,2405.0,111.0,360.0,1,Semiurban,1.0
LP002006,Female,0.0,0,1,0.0,2507,0.0,56.0,360.0,1,Rural,1.0
LP002008,Male,1.0,2,1,1.0,5746,0.0,144.0,84.0,0,Rural,1.0
LP002024,,1.0,0,1,0.0,2473,1843.0,159.0,360.0,1,Rural,0.0
LP002031,Male,1.0,1,0,0.0,3399,1640.0,111.0,180.0,1,Urban,1.0
LP002035,Male,1.0,2,1,0.0,3717,0.0,120.0,360.0,1,Semiurban,1.0
LP002036,Male,1.0,0,1,0.0,2058,2134.0,88.0,360.0,0,Urban,1.0
LP002043,Female,0.0,1,1,0.0,3541,0.0,112.0,360.0,0,Semiurban,1.0
LP002050,Male,1.0,1,1,1.0,10000,0.0,155.0,360.0,1,Rural,0.0
LP002051,Male,1.0,0,1,0.0,2400,2167.0,115.0,360.0,1,Semiurban,1.0
LP002053,Male,1.0,3+,1,0.0,4342,189.0,124.0,360.0,1,Semiurban,1.0
LP002054,Male,1.0,2,0,0.0,3601,1590.0,0.0,360.0,1,Rural,1.0
LP002055,Female,0.0,0,1,0.0,3166,2985.0,132.0,360.0,0,Rural,1.0
LP002065,Male,1.0,3+,1,0.0,15000,0.0,300.0,360.0,1,Rural,1.0
LP002067,Male,1.0,1,1,1.0,8666,4983.0,376.0,360.0,0,Rural,0.0
LP002068,Male,0.0,0,1,0.0,4917,0.0,130.0,360.0,0,Rural,1.0
LP002082,Male,1.0,0,1,1.0,5818,2160.0,184.0,360.0,1,Semiurban,1.0
LP002086,Female,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002087,Female,0.0,0,1,0.0,2500,0.0,67.0,360.0,1,Urban,1.0
LP002097,Male,0.0,1,1,0.0,4384,1793.0,117.0,360.0,1,Urban,1.0
LP002098,Male,0.0,0,1,0.0,2935,0.0,98.0,360.0,1,Semiurban,1.0
LP002100,Male,0.0,,1,0.0,2833,0.0,71.0,360.0,1,Urban,1.0
LP002101,Male,1.0,0,1,0.0,63337,0.0,490.0,180.0,1,Urban,1.0
LP002103,,1.0,1,1,1.0,9833,1833.0,182.0,180.0,1,Urban,1.0
LP002106,Male,1.0,,1,1.0,5503,4490.0,70.0,,1,Semiurban,1.0
LP002110,Male,1.0,1,1,0.0,5250,688.0,160.0,360.0,1,Rural,1.0
LP002112,Male,1.0,2,1,1.0,2500,4600.0,176.0,360.0,1,Rural,1.0
LP002113,Female,0.0,3+,0,0.0,1830,0.0,0.0,360.0,0,Urban,0.0
LP002114,Female,0.0,0,1,0.0,4160,0.0,71.0,360.0,1,Semiurban,1.0
LP002115,Male,1.0,3+,0,0.0,2647,1587.0,173.0,360.0,1,Rural,0.0
LP002116,Female,0.0,0,1,0.0,2378,0.0,46.0,360.0,1,Rural,0.0
LP002119,Male,1.0,1,0,0.0,4554,1229.0,158.0,360.0,1,Urban,1.0
LP002126,Male,1.0,3+,0,0.0,3173,0.0,74.0,360.0,1,Semiurban,1.0
LP002128,Male,1.0,2,1,0.0,2583,2330.0,125.0,360.0,1,Rural,1.0
LP002129,Male,1.0,0,1,0.0,2499,2458.0,160.0,360.0,1,Semiurban,1.0
LP002130,Male,1.0,,0,0.0,3523,3230.0,152.0,360.0,0,Rural,0.0
LP002131,Male,1.0,2,0,0.0,3083,2168.0,126.0,360.0,1,Urban,1.0
LP002137,Male,1.0,0,1,0.0,6333,4583.0,259.0,360.0,0,Semiurban,1.0
LP002138,Male,1.0,0,1,0.0,2625,6250.0,187.0,360.0,1,Rural,1.0
LP002139,Male,1.0,0,1,0.0,9083,0.0,228.0,360.0,1,Semiurban,1.0
LP002140,Male,0.0,0,1,0.0,8750,4167.0,308.0,360.0,1,Rural,0.0
LP002141,Male,1.0,3+,1,0.0,2666,2083.0,95.0,360.0,1,Rural,1.0
LP002142,Female,1.0,0,1,1.0,5500,0.0,105.0,360.0,0,Rural,0.0
LP002143,Female,1.0,0,1,0.0,2423,505.0,130.0,360.0,1,Semiurban,1.0
LP002144,Female,0.0,,1,0.0,3813,0.0,116.0,180.0,1,Urban,1.0
LP002149,Male,1.0,2,1,0.0,8333,3167.0,165.0,360.0,1,Rural,1.0
LP002151,Male,1.0,1,1,0.0,3875,0.0,67.0,360.0,1,Urban,0.0
LP002158,Male,1.0,0,0,0.0,3000,1666.0,100.0,480.0,0,Urban,0.0
LP002160,Male,1.0,3+,1,0.0,5167,3167.0,200.0,360.0,1,Semiurban,1.0
LP002161,Female,0.0,1,1,0.0,4723,0.0,81.0,360.0,1,Semiurban,0.0
LP002170,Male,1.0,2,1,0.0,5000,3667.0,236.0,360.0,1,Semiurban,1.0
LP002175,Male,1.0,0,1,0.0,4750,2333.0,130.0,360.0,1,Urban,1.0
LP002178,Male,1.0,0,1,0.0,3013,3033.0,95.0,300.0,0,Urban,1.0
LP002180,Male,0.0,0,1,1.0,6822,0.0,141.0,360.0,1,Rural,1.0
LP002181,Male,0.0,0,0,0.0,6216,0.0,133.0,360.0,1,Rural,0.0
LP002187,Male,0.0,0,1,0.0,2500,0.0,96.0,480.0,1,Semiurban,0.0
LP002188,Male,0.0,0,1,0.0,5124,0.0,124.0,,0,Rural,0.0
LP002190,Male,1.0,1,1,0.0,6325,0.0,175.0,360.0,1,Semiurban,1.0
LP002191,Male,1.0,0,1,0.0,19730,5266.0,570.0,360.0,1,Rural,0.0
LP002194,Female,0.0,0,1,1.0,15759,0.0,55.0,360.0,1,Semiurban,1.0
LP002197,Male,1.0,2,1,0.0,5185,0.0,155.0,360.0,1,Semiurban,1.0
LP002201,Male,1.0,2,1,1.0,9323,7873.0,380.0,300.0,1,Rural,1.0
LP002205,Male,0.0,1,1,0.0,3062,1987.0,111.0,180.0,0,Urban,0.0
LP002209,Female,0.0,0,1,0.0,2764,1459.0,110.0,360.0,1,Urban,1.0
LP002211,Male,1.0,0,1,0.0,4817,923.0,120.0,180.0,1,Urban,1.0
LP002219,Male,1.0,3+,1,0.0,8750,4996.0,130.0,360.0,1,Rural,1.0
LP002223,Male,1.0,0,1,0.0,4310,0.0,130.0,360.0,0,Semiurban,1.0
LP002224,Male,0.0,0,1,0.0,3069,0.0,71.0,480.0,1,Urban,0.0
LP002225,Male,1.0,2,1,0.0,5391,0.0,130.0,360.0,1,Urban,1.0
LP002226,Male,1.0,0,1,0.0,3333,2500.0,128.0,360.0,1,Semiurban,1.0
LP002229,Male,0.0,0,1,0.0,5941,4232.0,296.0,360.0,1,Semiurban,1.0
LP002231,Female,0.0,0,1,0.0,6000,0.0,156.0,360.0,1,Urban,1.0
LP002234,Male,0.0,0,1,1.0,7167,0.0,128.0,360.0,1,Urban,1.0
LP002236,Male,1.0,2,1,0.0,4566,0.0,100.0,360.0,1,Urban,0.0
LP002237,Male,0.0,1,1,0.0,3667,0.0,113.0,180.0,1,Urban,1.0
LP002239,Male,0.0,0,0,0.0,2346,1600.0,132.0,360.0,1,Semiurban,1.0
LP002243,Male,1.0,0,0,0.0,3010,3136.0,0.0,360.0,0,Urban,0.0
LP002244,Male,1.0,0,1,0.0,2333,2417.0,136.0,360.0,1,Urban,1.0
LP002250,Male,1.0,0,1,0.0,5488,0.0,125.0,360.0,1,Rural,1.0
LP002255,Male,0.0,3+,1,0.0,9167,0.0,185.0,360.0,1,Rural,1.0
LP002262,Male,1.0,3+,1,0.0,9504,0.0,275.0,360.0,1,Rural,1.0
LP002263,Male,1.0,0,1,0.0,2583,2115.0,120.0,360.0,0,Urban,1.0
LP002265,Male,1.0,2,0,0.0,1993,1625.0,113.0,180.0,1,Semiurban,1.0
LP002266,Male,1.0,2,1,0.0,3100,1400.0,113.0,360.0,1,Urban,1.0
LP002272,Male,1.0,2,1,0.0,3276,484.0,135.0,360.0,0,Semiurban,1.0
LP002277,Female,0.0,0,1,0.0,3180,0.0,71.0,360.0,0,Urban,0.0
LP002281,Male,1.0,0,1,0.0,3033,1459.0,95.0,360.0,1,Urban,1.0
LP002284,Male,0.0,0,0,0.0,3902,1666.0,109.0,360.0,1,Rural,1.0
LP002287,Female,0.0,0,1,0.0,1500,1800.0,103.0,360.0,0,Semiurban,0.0
LP002288,Male,1.0,2,0,0.0,2889,0.0,45.0,180.0,0,Urban,0.0
LP002296,Male,0.0,0,0,0.0,2755,0.0,65.0,300.0,1,Rural,0.0
LP002297,Male,0.0,0,1,0.0,2500,20000.0,103.0,360.0,1,Semiurban,1.0
LP002300,Female,0.0,0,0,0.0,1963,0.0,53.0,360.0,1,Semiurban,1.0
LP002301,Female,0.0,0,1,1.0,7441,0.0,194.0,360.0,1,Rural,0.0
LP002305,Female,0.0,0,1,0.0,4547,0.0,115.0,360.0,1,Semiurban,1.0
LP002308,Male,1.0,0,0,0.0,2167,2400.0,115.0,360.0,1,Urban,1.0
LP002314,Female,0.0,0,0,0.0,2213,0.0,66.0,360.0,1,Rural,1.0
LP002315,Male,1.0,1,1,0.0,8300,0.0,152.0,300.0,0,Semiurban,0.0
LP002317,Male,1.0,3+,1,0.0,81000,0.0,360.0,360.0,0,Rural,0.0
LP002318,Female,0.0,1,0,1.0,3867,0.0,62.0,360.0,1,Semiurban,0.0
LP002319,Male,1.0,0,1,0.0,6256,0.0,160.0,360.0,0,Urban,1.0
LP002328,Male,1.0,0,0,0.0,6096,0.0,218.0,360.0,0,Rural,0.0
LP002332,Male,1.0,0,0,0.0,2253,2033.0,110.0,360.0,1,Rural,1.0
LP002335,Female,1.0,0,0,0.0,2149,3237.0,178.0,360.0,0,Semiurban,0.0
LP002337,Female,0.0,0,1,0.0,2995,0.0,60.0,360.0,1,Urban,1.0
LP002341,Female,0.0,1,1,0.0,2600,0.0,160.0,360.0,1,Urban,0.0
LP002342,Male,1.0,2,1,1.0,1600,20000.0,239.0,360.0,1,Urban,0.0
LP002345,Male,1.0,0,1,0.0,1025,2773.0,112.0,360.0,1,Rural,1.0
LP002347,Male,1.0,0,1,0.0,3246,1417.0,138.0,360.0,1,Semiurban,1.0
LP002348,Male,1.0,0,1,0.0,5829,0.0,138.0,360.0,1,Rural,1.0
LP002357,Female,0.0,0,0,0.0,2720,0.0,80.0,,0,Urban,0.0
LP002361,Male,1.0,0,1,0.0,1820,1719.0,100.0,360.0,1,Urban,1.0
LP002362,Male,1.0,1,1,0.0,7250,1667.0,110.0,,0,Urban,0.0
LP002364,Male,1.0,0,1,0.0,14880,0.0,96.0,360.0,1,Semiurban,1.0
LP002366,Male,1.0,0,1,0.0,2666,4300.0,121.0,360.0,1,Rural,1.0
LP002367,Female,0.0,1,0,0.0,4606,0.0,81.0,360.0,1,Rural,0.0
LP002368,Male,1.0,2,1,0.0,5935,0.0,133.0,360.0,1,Semiurban,1.0
LP002369,Male,1.0,0,1,0.0,2920,16.12000084,87.0,360.0,1,Rural,1.0
LP002370,Male,0.0,0,0,0.0,2717,0.0,60.0,180.0,1,Urban,1.0
LP002377,Female,0.0,1,1,1.0,8624,0.0,150.0,360.0,1,Semiurban,1.0
LP002379,Male,0.0,0,1,0.0,6500,0.0,105.0,360.0,0,Rural,0.0
LP002386,Male,0.0,0,1,0.0,12876,0.0,405.0,360.0,1,Semiurban,1.0
LP002387,Male,1.0,0,1,0.0,2425,2340.0,143.0,360.0,1,Semiurban,1.0
LP002390,Male,0.0,0,1,0.0,3750,0.0,100.0,360.0,1,Urban,1.0
LP002393,Female,0.0,,1,0.0,10047,0.0,0.0,240.0,1,Semiurban,1.0
LP002398,Male,0.0,0,1,0.0,1926,1851.0,50.0,360.0,1,Semiurban,1.0
LP002401,Male,1.0,0,1,0.0,2213,1125.0,0.0,360.0,1,Urban,1.0
LP002403,Male,0.0,0,1,1.0,10416,0.0,187.0,360.0,0,Urban,0.0
LP002407,Female,1.0,0,0,1.0,7142,0.0,138.0,360.0,1,Rural,1.0
LP002408,Male,0.0,0,1,0.0,3660,5064.0,187.0,360.0,1,Semiurban,1.0
LP002409,Male,1.0,0,1,0.0,7901,1833.0,180.0,360.0,1,Rural,1.0
LP002418,Male,0.0,3+,0,0.0,4707,1993.0,148.0,360.0,1,Semiurban,1.0
LP002422,Male,0.0,1,1,0.0,37719,0.0,152.0,360.0,1,Semiurban,1.0
LP002424,Male,1.0,0,1,0.0,7333,8333.0,175.0,300.0,0,Rural,1.0
LP002429,Male,1.0,1,1,1.0,3466,1210.0,130.0,360.0,1,Rural,1.0
LP002434,Male,1.0,2,0,0.0,4652,0.0,110.0,360.0,1,Rural,1.0
LP002435,Male,1.0,0,1,0.0,3539,1376.0,55.0,360.0,1,Rural,0.0
LP002443,Male,1.0,2,1,0.0,3340,1710.0,150.0,360.0,0,Rural,0.0
LP002444,Male,0.0,1,0,1.0,2769,1542.0,190.0,360.0,0,Semiurban,0.0
LP002446,Male,1.0,2,0,0.0,2309,1255.0,125.0,360.0,0,Rural,0.0
LP002447,Male,1.0,2,0,0.0,1958,1456.0,60.0,300.0,0,Urban,1.0
LP002448,Male,1.0,0,1,0.0,3948,1733.0,149.0,360.0,0,Rural,0.0
LP002449,Male,1.0,0,1,0.0,2483,2466.0,90.0,180.0,0,Rural,1.0
LP002453,Male,0.0,0,1,1.0,7085,0.0,84.0,360.0,1,Semiurban,1.0
LP002455,Male,1.0,2,1,0.0,3859,0.0,96.0,360.0,1,Semiurban,1.0
LP002459,Male,1.0,0,1,0.0,4301,0.0,118.0,360.0,1,Urban,1.0
LP002467,Male,1.0,0,1,0.0,3708,2569.0,173.0,360.0,1,Urban,0.0
LP002472,Male,0.0,2,1,0.0,4354,0.0,136.0,360.0,1,Rural,1.0
LP002473,Male,1.0,0,1,0.0,8334,0.0,160.0,360.0,1,Semiurban,0.0
LP002478,,1.0,0,1,1.0,2083,4083.0,160.0,360.0,0,Semiurban,1.0
LP002484,Male,1.0,3+,1,0.0,7740,0.0,128.0,180.0,1,Urban,1.0
LP002487,Male,1.0,0,1,0.0,3015,2188.0,153.0,360.0,1,Rural,1.0
LP002489,Female,0.0,1,0,0.0,5191,0.0,132.0,360.0,1,Semiurban,1.0
LP002493,Male,0.0,0,1,0.0,4166,0.0,98.0,360.0,0,Semiurban,0.0
LP002494,Male,0.0,0,1,0.0,6000,0.0,140.0,360.0,1,Rural,1.0
LP002500,Male,1.0,3+,0,0.0,2947,1664.0,70.0,180.0,0,Urban,0.0
LP002501,,1.0,0,1,0.0,16692,0.0,110.0,360.0,1,Semiurban,1.0
LP002502,Female,1.0,2,0,0.0,210,2917.0,98.0,360.0,1,Semiurban,1.0
LP002505,Male,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002515,Male,1.0,1,1,1.0,3450,2079.0,162.0,360.0,1,Semiurban,1.0
LP002517,Male,1.0,1,0,0.0,2653,1500.0,113.0,180.0,0,Rural,0.0
LP002519,Male,1.0,3+,1,0.0,4691,0.0,100.0,360.0,1,Semiurban,1.0
LP002522,Female,0.0,0,1,1.0,2500,0.0,93.0,360.0,0,Urban,1.0
LP002524,Male,0.0,2,1,0.0,5532,4648.0,162.0,360.0,1,Rural,1.0
LP002527,Male,1.0,2,1,1.0,16525,1014.0,150.0,360.0,1,Rural,1.0
LP002529,Male,1.0,2,1,0.0,6700,1750.0,230.0,300.0,1,Semiurban,1.0
LP002530,,1.0,2,1,0.0,2873,1872.0,132.0,360.0,0,Semiurban,0.0
LP002531,Male,1.0,1,1,1.0,16667,2250.0,86.0,360.0,1,Semiurban,1.0
LP002533,Male,1.0,2,1,0.0,2947,1603.0,0.0,360.0,1,Urban,0.0
LP002534,Female,0.0,0,0,0.0,4350,0.0,154.0,360.0,1,Rural,1.0
LP002536,Male,1.0,3+,0,0.0,3095,0.0,113.0,360.0,1,Rural,1.0
LP002537,Male,1.0,0,1,0.0,2083,3150.0,128.0,360.0,1,Semiurban,1.0
LP002541,Male,1.0,0,1,0.0,10833,0.0,234.0,360.0,1,Semiurban,1.0
LP002543,Male,1.0,2,1,0.0,8333,0.0,246.0,360.0,1,Semiurban,1.0
LP002544,Male,1.0,1,0,0.0,1958,2436.0,131.0,360.0,1,Rural,1.0
LP002545,Male,0.0,2,1,0.0,3547,0.0,80.0,360.0,0,Rural,0.0
LP002547,Male,1.0,1,1,0.0,18333,0.0,500.0,360.0,1,Urban,0.0
LP002555,Male,1.0,2,1,1.0,4583,2083.0,160.0,360.0,1,Semiurban,1.0
LP002556,Male,0.0,0,1,0.0,2435,0.0,75.0,360.0,1,Urban,0.0
LP002560,Male,0.0,0,0,0.0,2699,2785.0,96.0,360.0,0,Semiurban,1.0
LP002562,Male,1.0,1,0,0.0,5333,1131.0,186.0,360.0,0,Urban,1.0
LP002571,Male,0.0,0,0,0.0,3691,0.0,110.0,360.0,1,Rural,1.0
LP002582,Female,0.0,0,0,1.0,17263,0.0,225.0,360.0,1,Semiurban,1.0
LP002585,Male,1.0,0,1,0.0,3597,2157.0,119.0,360.0,0,Rural,0.0
LP002586,Female,1.0,1,1,0.0,3326,913.0,105.0,84.0,1,Semiurban,1.0
LP002587,Male,1.0,0,0,0.0,2600,1700.0,107.0,360.0,1,Rural,1.0
LP002588,Male,1.0,0,1,0.0,4625,2857.0,111.0,12.0,0,Urban,1.0
LP002600,Male,1.0,1,1,1.0,2895,0.0,95.0,360.0,1,Semiurban,1.0
LP002602,Male,0.0,0,1,0.0,6283,4416.0,209.0,360.0,0,Rural,0.0
LP002603,Female,0.0,0,1,0.0,645,3683.0,113.0,480.0,1,Rural,1.0
LP002606,Female,0.0,0,1,0.0,3159,0.0,100.0,360.0,1,Semiurban,1.0
LP002615,Male,1.0,2,1,0.0,4865,5624.0,208.0,360.0,1,Semiurban,1.0
LP002618,Male,1.0,1,0,0.0,4050,5302.0,138.0,360.0,0,Rural,0.0
LP002619,Male,1.0,0,0,0.0,3814,1483.0,124.0,300.0,1,Semiurban,1.0
LP002622,Male,1.0,2,1,0.0,3510,4416.0,243.0,360.0,1,Rural,1.0
LP002624,Male,1.0,0,1,0.0,20833,6667.0,480.0,360.0,0,Urban,1.0
LP002625,,0.0,0,1,0.0,3583,0.0,96.0,360.0,1,Urban,0.0
LP002626,Male,1.0,0,1,1.0,2479,3013.0,188.0,360.0,1,Urban,1.0
LP002634,Female,0.0,1,1,0.0,13262,0.0,40.0,360.0,1,Urban,1.0
LP002637,Male,0.0,0,0,0.0,3598,1287.0,100.0,360.0,1,Rural,0.0
LP002640,Male,1.0,1,1,0.0,6065,2004.0,250.0,360.0,1,Semiurban,1.0
LP002643,Male,1.0,2,1,0.0,3283,2035.0,148.0,360.0,1,Urban,1.0
LP002648,Male,1.0,0,1,0.0,2130,6666.0,70.0,180.0,1,Semiurban,0.0
LP002652,Male,0.0,0,1,0.0,5815,3666.0,311.0,360.0,1,Rural,0.0
LP002659,Male,1.0,3+,1,0.0,3466,3428.0,150.0,360.0,1,Rural,1.0
LP002670,Female,1.0,2,1,0.0,2031,1632.0,113.0,480.0,1,Semiurban,1.0
LP002682,Male,1.0,,0,0.0,3074,1800.0,123.0,360.0,0,Semiurban,0.0
LP002683,Male,0.0,0,1,0.0,4683,1915.0,185.0,360.0,1,Semiurban,0.0
LP002684,Female,0.0,0,0,0.0,3400,0.0,95.0,360.0,1,Rural,0.0
LP002689,Male,1.0,2,0,0.0,2192,1742.0,45.0,360.0,1,Semiurban,1.0
LP002690,Male,0.0,0,1,0.0,2500,0.0,55.0,360.0,1,Semiurban,1.0
LP002692,Male,1.0,3+,1,1.0,5677,1424.0,100.0,360.0,1,Rural,1.0
LP002693,Male,1.0,2,1,1.0,7948,7166.0,480.0,360.0,1,Rural,1.0
LP002697,Male,0.0,0,1,0.0,4680,2087.0,0.0,360.0,1,Semiurban,0.0
LP002699,Male,1.0,2,1,1.0,17500,0.0,400.0,360.0,1,Rural,1.0
LP002705,Male,1.0,0,1,0.0,3775,0.0,110.0,360.0,1,Semiurban,1.0
LP002706,Male,1.0,1,0,0.0,5285,1430.0,161.0,360.0,0,Semiurban,1.0
LP002714,Male,0.0,1,0,0.0,2679,1302.0,94.0,360.0,1,Semiurban,1.0
LP002716,Male,0.0,0,0,0.0,6783,0.0,130.0,360.0,1,Semiurban,1.0
LP002717,Male,1.0,0,1,0.0,1025,5500.0,216.0,360.0,0,Rural,1.0
LP002720,Male,1.0,3+,1,0.0,4281,0.0,100.0,360.0,1,Urban,1.0
LP002723,Male,0.0,2,1,0.0,3588,0.0,110.0,360.0,0,Rural,0.0
LP002729,Male,0.0,1,1,0.0,11250,0.0,196.0,360.0,0,Semiurban,0.0
LP002731,Female,0.0,0,0,1.0,18165,0.0,125.0,360.0,1,Urban,1.0
LP002732,Male,0.0,0,0,0.0,2550,2042.0,126.0,360.0,1,Rural,1.0
LP002734,Male,1.0,0,1,0.0,6133,3906.0,324.0,360.0,1,Urban,1.0
LP002738,Male,0.0,2,1,0.0,3617,0.0,107.0,360.0,1,Semiurban,1.0
LP002739,Male,1.0,0,0,0.0,2917,536.0,66.0,360.0,1,Rural,0.0
LP002740,Male,1.0,3+,1,0.0,6417,0.0,157.0,180.0,1,Rural,1.0
LP002741,Female,1.0,1,1,0.0,4608,2845.0,140.0,180.0,1,Semiurban,1.0
LP002743,Female,0.0,0,1,0.0,2138,0.0,99.0,360.0,0,Semiurban,0.0
LP002753,Female,0.0,1,1,0.0,3652,0.0,95.0,360.0,1,Semiurban,1.0
LP002755,Male,1.0,1,0,0.0,2239,2524.0,128.0,360.0,1,Urban,1.0
LP002757,Female,1.0,0,0,0.0,3017,663.0,102.0,360.0,0,Semiurban,1.0
LP002767,Male,1.0,0,1,0.0,2768,1950.0,155.0,360.0,1,Rural,1.0
LP002768,Male,0.0,0,0,0.0,3358,0.0,80.0,36.0,1,Semiurban,0.0
LP002772,Male,0.0,0,1,0.0,2526,1783.0,145.0,360.0,1,Rural,1.0
LP002776,Female,0.0,0,1,0.0,5000,0.0,103.0,360.0,0,Semiurban,0.0
LP002777,Male,1.0,0,1,0.0,2785,2016.0,110.0,360.0,1,Rural,1.0
LP002778,Male,1.0,2,1,1.0,6633,0.0,0.0,360.0,0,Rural,0.0
LP002784,Male,1.0,1,0,0.0,2492,2375.0,0.0,360.0,1,Rural,1.0
LP002785,Male,1.0,1,1,0.0,3333,3250.0,158.0,360.0,1,Urban,1.0
LP002788,Male,1.0,0,0,0.0,2454,2333.0,181.0,360.0,0,Urban,0.0
LP002789,Male,1.0,0,1,0.0,3593,4266.0,132.0,180.0,0,Rural,0.0
LP002792,Male,1.0,1,1,0.0,5468,1032.0,26.0,360.0,1,Semiurban,1.0
LP002794,Female,0.0,0,1,0.0,2667,1625.0,84.0,360.0,0,Urban,1.0
LP002795,Male,1.0,3+,1,1.0,10139,0.0,260.0,360.0,1,Semiurban,1.0
LP002798,Male,1.0,0,1,0.0,3887,2669.0,162.0,360.0,1,Semiurban,1.0
LP002804,Female,1.0,0,1,0.0,4180,2306.0,182.0,360.0,1,Semiurban,1.0
LP002807,Male,1.0,2,0,0.0,3675,242.0,108.0,360.0,1,Semiurban,1.0
LP002813,Female,1.0,1,1,1.0,19484,0.0,600.0,360.0,1,Semiurban,1.0
LP002820,Male,1.0,0,1,0.0,5923,2054.0,211.0,360.0,1,Rural,1.0
LP002821,Male,0.0,0,0,1.0,5800,0.0,132.0,360.0,1,Semiurban,1.0
LP002832,Male,1.0,2,1,0.0,8799,0.0,258.0,360.0,0,Urban,0.0
LP002833,Male,1.0,0,0,0.0,4467,0.0,120.0,360.0,0,Rural,1.0
LP002836,Male,0.0,0,1,0.0,3333,0.0,70.0,360.0,1,Urban,1.0
LP002837,Male,1.0,3+,1,0.0,3400,2500.0,123.0,360.0,0,Rural,0.0
LP002840,Female,0.0,0,1,0.0,2378,0.0,9.0,360.0,1,Urban,0.0
LP002841,Male,1.0,0,1,0.0,3166,2064.0,104.0,360.0,0,Urban,0.0
LP002842,Male,1.0,1,1,0.0,3417,1750.0,186.0,360.0,1,Urban,1.0
LP002847,Male,1.0,,1,0.0,5116,1451.0,165.0,360.0,0,Urban,0.0
LP002855,Male,1.0,2,1,0.0,16666,0.0,275.0,360.0,1,Urban,1.0
LP002862,Male,1.0,2,0,0.0,6125,1625.0,187.0,480.0,1,Semiurban,0.0
LP002863,Male,1.0,3+,1,0.0,6406,0.0,150.0,360.0,1,Semiurban,0.0
LP002868,Male,1.0,2,1,0.0,3159,461.0,108.0,84.0,1,Urban,1.0
LP002872,,1.0,0,1,0.0,3087,2210.0,136.0,360.0,0,Semiurban,0.0
LP002874,Male,0.0,0,1,0.0,3229,2739.0,110.0,360.0,1,Urban,1.0
LP002877,Male,1.0,1,1,0.0,1782,2232.0,107.0,360.0,1,Rural,1.0
LP002888,Male,0.0,0,1,0.0,3182,2917.0,161.0,360.0,1,Urban,1.0
LP002892,Male,1.0,2,1,0.0,6540,0.0,205.0,360.0,1,Semiurban,1.0
LP002893,Male,0.0,0,1,0.0,1836,33837.0,90.0,360.0,1,Urban,0.0
LP002894,Female,1.0,0,1,0.0,3166,0.0,36.0,360.0,1,Semiurban,1.0
LP002898,Male,1.0,1,1,0.0,1880,0.0,61.0,360.0,0,Rural,0.0
LP002911,Male,1.0,1,1,0.0,2787,1917.0,146.0,360.0,0,Rural,0.0
LP002912,Male,1.0,1,1,0.0,4283,3000.0,172.0,84.0,1,Rural,0.0
LP002916,Male,1.0,0,1,0.0,2297,1522.0,104.0,360.0,1,Urban,1.0
LP002917,Female,0.0,0,0,0.0,2165,0.0,70.0,360.0,1,Semiurban,1.0
LP002925,,0.0,0,1,0.0,4750,0.0,94.0,360.0,1,Semiurban,1.0
LP002926,Male,1.0,2,1,1.0,2726,0.0,106.0,360.0,0,Semiurban,0.0
LP002928,Male,1.0,0,1,0.0,3000,3416.0,56.0,180.0,1,Semiurban,1.0
LP002931,Male,1.0,2,1,1.0,6000,0.0,205.0,240.0,1,Semiurban,0.0
LP002933,,0.0,3+,1,1.0,9357,0.0,292.0,360.0,1,Semiurban,1.0
LP002936,Male,1.0,0,1,0.0,3859,3300.0,142.0,180.0,1,Rural,1.0
LP002938,Male,1.0,0,1,1.0,16120,0.0,260.0,360.0,1,Urban,1.0
LP002940,Male,0.0,0,0,0.0,3833,0.0,110.0,360.0,1,Rural,1.0
LP002941,Male,1.0,2,0,1.0,6383,1000.0,187.0,360.0,1,Rural,0.0
LP002943,Male,0.0,,1,0.0,2987,0.0,88.0,360.0,0,Semiurban,0.0
LP002945,Male,1.0,0,1,1.0,9963,0.0,180.0,360.0,1,Rural,1.0
LP002948,Male,1.0,2,1,0.0,5780,0.0,192.0,360.0,1,Urban,1.0
LP002949,Female,0.0,3+,1,0.0,416,41667.0,350.0,180.0,0,Urban,0.0
LP002950,Male,1.0,0,0,0.0,2894,2792.0,155.0,360.0,1,Rural,1.0
LP002953,Male,1.0,3+,1,0.0,5703,0.0,128.0,360.0,1,Urban,1.0
LP002958,Male,0.0,0,1,0.0,3676,4301.0,172.0,360.0,1,Rural,1.0
LP002959,Female,1.0,1,1,0.0,12000,0.0,496.0,360.0,1,Semiurban,1.0
LP002960,Male,1.0,0,0,0.0,2400,3800.0,0.0,180.0,1,Urban,0.0
LP002961,Male,1.0,1,1,0.0,3400,2500.0,173.0,360.0,1,Semiurban,1.0
LP002964,Male,1.0,2,0,0.0,3987,1411.0,157.0,360.0,1,Rural,1.0
LP002974,Male,1.0,0,1,0.0,3232,1950.0,108.0,360.0,1,Rural,1.0
LP002978,Female,0.0,0,1,0.0,2900,0.0,71.0,360.0,1,Rural,1.0
LP002979,Male,1.0,3+,1,0.0,4106,0.0,40.0,180.0,1,Rural,1.0
LP002983,Male,1.0,1,1,0.0,8072,240.0,253.0,360.0,1,Urban,1.0
LP002984,Male,1.0,2,1,0.0,7583,0.0,187.0,360.0,1,Urban,1.0
LP002990,Female,0.0,0,1,1.0,4583,0.0,133.0,360.0,0,Semiurban,0.0
1 Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
2 LP001002 Male 0.0 0 1 0.0 5849 0.0 360.0 1.0 0 Y 0.0
3 LP001003 Male 1.0 1 1 0.0 4583 1508.0 128.0 360.0 1 Rural 0.0
4 LP001005 Male 1.0 0 1 1.0 3000 0.0 66.0 360.0 1 Urban 1.0
5 LP001006 Male 1.0 0 0 0.0 2583 2358.0 120.0 360.0 1 Urban 1.0
6 LP001008 Male 0.0 0 1 0.0 6000 0.0 141.0 360.0 1 Urban 1.0
7 LP001011 Male 1.0 2 1 1.0 5417 4196.0 267.0 360.0 1 Urban 1.0
8 LP001013 Male 1.0 0 0 0.0 2333 1516.0 95.0 360.0 1 Urban 1.0
9 LP001014 Male 1.0 3+ 1 0.0 3036 2504.0 158.0 360.0 0 Semiurban 0.0
10 LP001018 Male 1.0 2 1 0.0 4006 1526.0 168.0 360.0 1 Urban 1.0
11 LP001020 Male 1.0 1 1 0.0 12841 10968.0 349.0 360.0 1 Semiurban 0.0
12 LP001024 Male 1.0 2 1 0.0 3200 700.0 70.0 360.0 1 Urban 1.0
13 LP001027 Male 1.0 2 1 0.0 2500 1840.0 109.0 360.0 1 Urban 1.0
14 LP001028 Male 1.0 2 1 0.0 3073 8106.0 200.0 360.0 1 Urban 1.0
15 LP001029 Male 0.0 0 1 0.0 1853 2840.0 114.0 360.0 1 Rural 0.0
16 LP001030 Male 1.0 2 1 0.0 1299 1086.0 17.0 120.0 1 Urban 1.0
17 LP001032 Male 0.0 0 1 0.0 4950 0.0 125.0 360.0 1 Urban 1.0
18 LP001034 Male 0.0 1 0 0.0 3596 0.0 100.0 240.0 0 Urban 1.0
19 LP001036 Female 0.0 0 1 0.0 3510 0.0 76.0 360.0 0 Urban 0.0
20 LP001038 Male 1.0 0 0 0.0 4887 0.0 133.0 360.0 1 Rural 0.0
21 LP001041 Male 1.0 0 1 0.0 2600 3500.0 115.0 1 Urban 1.0
22 LP001043 Male 1.0 0 0 0.0 7660 0.0 104.0 360.0 0 Urban 0.0
23 LP001046 Male 1.0 1 1 0.0 5955 5625.0 315.0 360.0 1 Urban 1.0
24 LP001047 Male 1.0 0 0 0.0 2600 1911.0 116.0 360.0 0 Semiurban 0.0
25 LP001050 1.0 2 0 0.0 3365 1917.0 112.0 360.0 0 Rural 0.0
26 LP001052 Male 1.0 1 1 0.0 3717 2925.0 151.0 360.0 0 Semiurban 0.0
27 LP001066 Male 1.0 0 1 1.0 9560 0.0 191.0 360.0 1 Semiurban 1.0
28 LP001068 Male 1.0 0 1 0.0 2799 2253.0 122.0 360.0 1 Semiurban 1.0
29 LP001073 Male 1.0 2 0 0.0 4226 1040.0 110.0 360.0 1 Urban 1.0
30 LP001086 Male 0.0 0 0 0.0 1442 0.0 35.0 360.0 1 Urban 0.0
31 LP001087 Female 0.0 2 1 0.0 3750 2083.0 120.0 360.0 1 Semiurban 1.0
32 LP001091 Male 1.0 1 1 0.0 4166 3369.0 201.0 360.0 0 Urban 0.0
33 LP001095 Male 0.0 0 1 0.0 3167 0.0 74.0 360.0 1 Urban 0.0
34 LP001097 Male 0.0 1 1 1.0 4692 0.0 106.0 360.0 1 Rural 0.0
35 LP001098 Male 1.0 0 1 0.0 3500 1667.0 114.0 360.0 1 Semiurban 1.0
36 LP001100 Male 0.0 3+ 1 0.0 12500 3000.0 320.0 360.0 1 Rural 0.0
37 LP001106 Male 1.0 0 1 0.0 2275 2067.0 0.0 360.0 1 Urban 1.0
38 LP001109 Male 1.0 0 1 0.0 1828 1330.0 100.0 0 Urban 0.0
39 LP001112 Female 1.0 0 1 0.0 3667 1459.0 144.0 360.0 1 Semiurban 1.0
40 LP001114 Male 0.0 0 1 0.0 4166 7210.0 184.0 360.0 1 Urban 1.0
41 LP001116 Male 0.0 0 0 0.0 3748 1668.0 110.0 360.0 1 Semiurban 1.0
42 LP001119 Male 0.0 0 1 0.0 3600 0.0 80.0 360.0 1 Urban 0.0
43 LP001120 Male 0.0 0 1 0.0 1800 1213.0 47.0 360.0 1 Urban 1.0
44 LP001123 Male 1.0 0 1 0.0 2400 0.0 75.0 360.0 0 Urban 1.0
45 LP001131 Male 1.0 0 1 0.0 3941 2336.0 134.0 360.0 1 Semiurban 1.0
46 LP001136 Male 1.0 0 0 1.0 4695 0.0 96.0 1 Urban 1.0
47 LP001137 Female 0.0 0 1 0.0 3410 0.0 88.0 1 Urban 1.0
48 LP001138 Male 1.0 1 1 0.0 5649 0.0 44.0 360.0 1 Urban 1.0
49 LP001144 Male 1.0 0 1 0.0 5821 0.0 144.0 360.0 1 Urban 1.0
50 LP001146 Female 1.0 0 1 0.0 2645 3440.0 120.0 360.0 0 Urban 0.0
51 LP001151 Female 0.0 0 1 0.0 4000 2275.0 144.0 360.0 1 Semiurban 1.0
52 LP001155 Female 1.0 0 0 0.0 1928 1644.0 100.0 360.0 1 Semiurban 1.0
53 LP001157 Female 0.0 0 1 0.0 3086 0.0 120.0 360.0 1 Semiurban 1.0
54 LP001164 Female 0.0 0 1 0.0 4230 0.0 112.0 360.0 1 Semiurban 0.0
55 LP001179 Male 1.0 2 1 0.0 4616 0.0 134.0 360.0 1 Urban 0.0
56 LP001186 Female 1.0 1 1 1.0 11500 0.0 286.0 360.0 0 Urban 0.0
57 LP001194 Male 1.0 2 1 0.0 2708 1167.0 97.0 360.0 1 Semiurban 1.0
58 LP001195 Male 1.0 0 1 0.0 2132 1591.0 96.0 360.0 1 Semiurban 1.0
59 LP001197 Male 1.0 0 1 0.0 3366 2200.0 135.0 360.0 1 Rural 0.0
60 LP001198 Male 1.0 1 1 0.0 8080 2250.0 180.0 360.0 1 Urban 1.0
61 LP001199 Male 1.0 2 0 0.0 3357 2859.0 144.0 360.0 1 Urban 1.0
62 LP001205 Male 1.0 0 1 0.0 2500 3796.0 120.0 360.0 1 Urban 1.0
63 LP001206 Male 1.0 3+ 1 0.0 3029 0.0 99.0 360.0 1 Urban 1.0
64 LP001207 Male 1.0 0 0 1.0 2609 3449.0 165.0 180.0 0 Rural 0.0
65 LP001213 Male 1.0 1 1 0.0 4945 0.0 0.0 360.0 0 Rural 0.0
66 LP001222 Female 0.0 0 1 0.0 4166 0.0 116.0 360.0 0 Semiurban 0.0
67 LP001225 Male 1.0 0 1 0.0 5726 4595.0 258.0 360.0 1 Semiurban 0.0
68 LP001228 Male 0.0 0 0 0.0 3200 2254.0 126.0 180.0 0 Urban 0.0
69 LP001233 Male 1.0 1 1 0.0 10750 0.0 312.0 360.0 1 Urban 1.0
70 LP001238 Male 1.0 3+ 0 1.0 7100 0.0 125.0 60.0 1 Urban 1.0
71 LP001241 Female 0.0 0 1 0.0 4300 0.0 136.0 360.0 0 Semiurban 0.0
72 LP001243 Male 1.0 0 1 0.0 3208 3066.0 172.0 360.0 1 Urban 1.0
73 LP001245 Male 1.0 2 0 1.0 1875 1875.0 97.0 360.0 1 Semiurban 1.0
74 LP001248 Male 0.0 0 1 0.0 3500 0.0 81.0 300.0 1 Semiurban 1.0
75 LP001250 Male 1.0 3+ 0 0.0 4755 0.0 95.0 0 Semiurban 0.0
76 LP001253 Male 1.0 3+ 1 1.0 5266 1774.0 187.0 360.0 1 Semiurban 1.0
77 LP001255 Male 0.0 0 1 0.0 3750 0.0 113.0 480.0 1 Urban 0.0
78 LP001256 Male 0.0 0 1 0.0 3750 4750.0 176.0 360.0 1 Urban 0.0
79 LP001259 Male 1.0 1 1 1.0 1000 3022.0 110.0 360.0 1 Urban 0.0
80 LP001263 Male 1.0 3+ 1 0.0 3167 4000.0 180.0 300.0 0 Semiurban 0.0
81 LP001264 Male 1.0 3+ 0 1.0 3333 2166.0 130.0 360.0 0 Semiurban 1.0
82 LP001265 Female 0.0 0 1 0.0 3846 0.0 111.0 360.0 1 Semiurban 1.0
83 LP001266 Male 1.0 1 1 1.0 2395 0.0 0.0 360.0 1 Semiurban 1.0
84 LP001267 Female 1.0 2 1 0.0 1378 1881.0 167.0 360.0 1 Urban 0.0
85 LP001273 Male 1.0 0 1 0.0 6000 2250.0 265.0 360.0 0 Semiurban 0.0
86 LP001275 Male 1.0 1 1 0.0 3988 0.0 50.0 240.0 1 Urban 1.0
87 LP001279 Male 0.0 0 1 0.0 2366 2531.0 136.0 360.0 1 Semiurban 1.0
88 LP001280 Male 1.0 2 0 0.0 3333 2000.0 99.0 360.0 0 Semiurban 1.0
89 LP001282 Male 1.0 0 1 0.0 2500 2118.0 104.0 360.0 1 Semiurban 1.0
90 LP001289 Male 0.0 0 1 0.0 8566 0.0 210.0 360.0 1 Urban 1.0
91 LP001310 Male 1.0 0 1 0.0 5695 4167.0 175.0 360.0 1 Semiurban 1.0
92 LP001316 Male 1.0 0 1 0.0 2958 2900.0 131.0 360.0 1 Semiurban 1.0
93 LP001318 Male 1.0 2 1 0.0 6250 5654.0 188.0 180.0 1 Semiurban 1.0
94 LP001319 Male 1.0 2 0 0.0 3273 1820.0 81.0 360.0 1 Urban 1.0
95 LP001322 Male 0.0 0 1 0.0 4133 0.0 122.0 360.0 1 Semiurban 1.0
96 LP001325 Male 0.0 0 0 0.0 3620 0.0 25.0 120.0 1 Semiurban 1.0
97 LP001326 Male 0.0 0 1 0.0 6782 0.0 0.0 360.0 0 Urban 0.0
98 LP001327 Female 1.0 0 1 0.0 2484 2302.0 137.0 360.0 1 Semiurban 1.0
99 LP001333 Male 1.0 0 1 0.0 1977 997.0 50.0 360.0 1 Semiurban 1.0
100 LP001334 Male 1.0 0 0 0.0 4188 0.0 115.0 180.0 1 Semiurban 1.0
101 LP001343 Male 1.0 0 1 0.0 1759 3541.0 131.0 360.0 1 Semiurban 1.0
102 LP001345 Male 1.0 2 0 0.0 4288 3263.0 133.0 180.0 1 Urban 1.0
103 LP001349 Male 0.0 0 1 0.0 4843 3806.0 151.0 360.0 1 Semiurban 1.0
104 LP001350 Male 1.0 1 0.0 13650 0.0 0.0 360.0 1 Urban 1.0
105 LP001356 Male 1.0 0 1 0.0 4652 3583.0 0.0 360.0 1 Semiurban 1.0
106 LP001357 Male 0.0 1 0.0 3816 754.0 160.0 360.0 1 Urban 1.0
107 LP001367 Male 1.0 1 1 0.0 3052 1030.0 100.0 360.0 1 Urban 1.0
108 LP001369 Male 1.0 2 1 0.0 11417 1126.0 225.0 360.0 1 Urban 1.0
109 LP001370 Male 0.0 0 0 0.0 7333 0.0 120.0 360.0 1 Rural 0.0
110 LP001379 Male 1.0 2 1 0.0 3800 3600.0 216.0 360.0 0 Urban 0.0
111 LP001384 Male 1.0 3+ 0 0.0 2071 754.0 94.0 480.0 1 Semiurban 1.0
112 LP001385 Male 0.0 0 1 0.0 5316 0.0 136.0 360.0 1 Urban 1.0
113 LP001387 Female 1.0 0 1 0.0 2929 2333.0 139.0 360.0 1 Semiurban 1.0
114 LP001391 Male 1.0 0 0 0.0 3572 4114.0 152.0 0 Rural 0.0
115 LP001392 Female 0.0 1 1 1.0 7451 0.0 0.0 360.0 1 Semiurban 1.0
116 LP001398 Male 0.0 0 1 0.0 5050 0.0 118.0 360.0 1 Semiurban 1.0
117 LP001401 Male 1.0 1 1 0.0 14583 0.0 185.0 180.0 1 Rural 1.0
118 LP001404 Female 1.0 0 1 0.0 3167 2283.0 154.0 360.0 1 Semiurban 1.0
119 LP001405 Male 1.0 1 1 0.0 2214 1398.0 85.0 360.0 0 Urban 1.0
120 LP001421 Male 1.0 0 1 0.0 5568 2142.0 175.0 360.0 1 Rural 0.0
121 LP001422 Female 0.0 0 1 0.0 10408 0.0 259.0 360.0 1 Urban 1.0
122 LP001426 Male 1.0 1 0.0 5667 2667.0 180.0 360.0 1 Rural 1.0
123 LP001430 Female 0.0 0 1 0.0 4166 0.0 44.0 360.0 1 Semiurban 1.0
124 LP001431 Female 0.0 0 1 0.0 2137 8980.0 137.0 360.0 0 Semiurban 1.0
125 LP001432 Male 1.0 2 1 0.0 2957 0.0 81.0 360.0 1 Semiurban 1.0
126 LP001439 Male 1.0 0 0 0.0 4300 2014.0 194.0 360.0 1 Rural 1.0
127 LP001443 Female 0.0 0 1 0.0 3692 0.0 93.0 360.0 0 Rural 1.0
128 LP001448 1.0 3+ 1 0.0 23803 0.0 370.0 360.0 1 Rural 1.0
129 LP001449 Male 0.0 0 1 0.0 3865 1640.0 0.0 360.0 1 Rural 1.0
130 LP001451 Male 1.0 1 1 1.0 10513 3850.0 160.0 180.0 0 Urban 0.0
131 LP001465 Male 1.0 0 1 0.0 6080 2569.0 182.0 360.0 0 Rural 0.0
132 LP001469 Male 0.0 0 1 1.0 20166 0.0 650.0 480.0 0 Urban 1.0
133 LP001473 Male 0.0 0 1 0.0 2014 1929.0 74.0 360.0 1 Urban 1.0
134 LP001478 Male 0.0 0 1 0.0 2718 0.0 70.0 360.0 1 Semiurban 1.0
135 LP001482 Male 1.0 0 1 1.0 3459 0.0 25.0 120.0 1 Semiurban 1.0
136 LP001487 Male 0.0 0 1 0.0 4895 0.0 102.0 360.0 1 Semiurban 1.0
137 LP001488 Male 1.0 3+ 1 0.0 4000 7750.0 290.0 360.0 1 Semiurban 0.0
138 LP001489 Female 1.0 0 1 0.0 4583 0.0 84.0 360.0 1 Rural 0.0
139 LP001491 Male 1.0 2 1 1.0 3316 3500.0 88.0 360.0 1 Urban 1.0
140 LP001492 Male 0.0 0 1 0.0 14999 0.0 242.0 360.0 0 Semiurban 0.0
141 LP001493 Male 1.0 2 0 0.0 4200 1430.0 129.0 360.0 1 Rural 0.0
142 LP001497 Male 1.0 2 1 0.0 5042 2083.0 185.0 360.0 1 Rural 0.0
143 LP001498 Male 0.0 0 1 0.0 5417 0.0 168.0 360.0 1 Urban 1.0
144 LP001504 Male 0.0 0 1 1.0 6950 0.0 175.0 180.0 1 Semiurban 1.0
145 LP001507 Male 1.0 0 1 0.0 2698 2034.0 122.0 360.0 1 Semiurban 1.0
146 LP001508 Male 1.0 2 1 0.0 11757 0.0 187.0 180.0 1 Urban 1.0
147 LP001514 Female 1.0 0 1 0.0 2330 4486.0 100.0 360.0 1 Semiurban 1.0
148 LP001516 Female 1.0 2 1 0.0 14866 0.0 70.0 360.0 1 Urban 1.0
149 LP001518 Male 1.0 1 1 0.0 1538 1425.0 30.0 360.0 1 Urban 1.0
150 LP001519 Female 0.0 0 1 0.0 10000 1666.0 225.0 360.0 1 Rural 0.0
151 LP001520 Male 1.0 0 1 0.0 4860 830.0 125.0 360.0 1 Semiurban 1.0
152 LP001528 Male 0.0 0 1 0.0 6277 0.0 118.0 360.0 0 Rural 0.0
153 LP001529 Male 1.0 0 1 1.0 2577 3750.0 152.0 360.0 1 Rural 1.0
154 LP001531 Male 0.0 0 1 0.0 9166 0.0 244.0 360.0 1 Urban 0.0
155 LP001532 Male 1.0 2 0 0.0 2281 0.0 113.0 360.0 1 Rural 0.0
156 LP001535 Male 0.0 0 1 0.0 3254 0.0 50.0 360.0 1 Urban 1.0
157 LP001536 Male 1.0 3+ 1 0.0 39999 0.0 600.0 180.0 0 Semiurban 1.0
158 LP001541 Male 1.0 1 1 0.0 6000 0.0 160.0 360.0 0 Rural 1.0
159 LP001543 Male 1.0 1 1 0.0 9538 0.0 187.0 360.0 1 Urban 1.0
160 LP001546 Male 0.0 0 1 0.0 2980 2083.0 120.0 360.0 1 Rural 1.0
161 LP001552 Male 1.0 0 1 0.0 4583 5625.0 255.0 360.0 1 Semiurban 1.0
162 LP001560 Male 1.0 0 0 0.0 1863 1041.0 98.0 360.0 1 Semiurban 1.0
163 LP001562 Male 1.0 0 1 0.0 7933 0.0 275.0 360.0 1 Urban 0.0
164 LP001565 Male 1.0 1 1 0.0 3089 1280.0 121.0 360.0 0 Semiurban 0.0
165 LP001570 Male 1.0 2 1 0.0 4167 1447.0 158.0 360.0 1 Rural 1.0
166 LP001572 Male 1.0 0 1 0.0 9323 0.0 75.0 180.0 1 Urban 1.0
167 LP001574 Male 1.0 0 1 0.0 3707 3166.0 182.0 1 Rural 1.0
168 LP001577 Female 1.0 0 1 0.0 4583 0.0 112.0 360.0 1 Rural 0.0
169 LP001578 Male 1.0 0 1 0.0 2439 3333.0 129.0 360.0 1 Rural 1.0
170 LP001579 Male 0.0 0 1 0.0 2237 0.0 63.0 480.0 0 Semiurban 0.0
171 LP001580 Male 1.0 2 1 0.0 8000 0.0 200.0 360.0 1 Semiurban 1.0
172 LP001581 Male 1.0 0 0 0.0 1820 1769.0 95.0 360.0 1 Rural 1.0
173 LP001585 1.0 3+ 1 0.0 51763 0.0 700.0 300.0 1 Urban 1.0
174 LP001586 Male 1.0 3+ 0 0.0 3522 0.0 81.0 180.0 1 Rural 0.0
175 LP001594 Male 1.0 0 1 0.0 5708 5625.0 187.0 360.0 1 Semiurban 1.0
176 LP001603 Male 1.0 0 0 1.0 4344 736.0 87.0 360.0 1 Semiurban 0.0
177 LP001606 Male 1.0 0 1 0.0 3497 1964.0 116.0 360.0 1 Rural 1.0
178 LP001608 Male 1.0 2 1 0.0 2045 1619.0 101.0 360.0 1 Rural 1.0
179 LP001610 Male 1.0 3+ 1 0.0 5516 11300.0 495.0 360.0 0 Semiurban 0.0
180 LP001616 Male 1.0 1 1 0.0 3750 0.0 116.0 360.0 1 Semiurban 1.0
181 LP001630 Male 0.0 0 0 0.0 2333 1451.0 102.0 480.0 0 Urban 0.0
182 LP001633 Male 1.0 1 1 0.0 6400 7250.0 180.0 360.0 0 Urban 0.0
183 LP001634 Male 0.0 0 1 0.0 1916 5063.0 67.0 360.0 0 Rural 0.0
184 LP001636 Male 1.0 0 1 0.0 4600 0.0 73.0 180.0 1 Semiurban 1.0
185 LP001637 Male 1.0 1 1 0.0 33846 0.0 260.0 360.0 1 Semiurban 0.0
186 LP001639 Female 1.0 0 1 0.0 3625 0.0 108.0 360.0 1 Semiurban 1.0
187 LP001640 Male 1.0 0 1 1.0 39147 4750.0 120.0 360.0 1 Semiurban 1.0
188 LP001641 Male 1.0 1 1 1.0 2178 0.0 66.0 300.0 0 Rural 0.0
189 LP001643 Male 1.0 0 1 0.0 2383 2138.0 58.0 360.0 0 Rural 1.0
190 LP001644 1.0 0 1 1.0 674 5296.0 168.0 360.0 1 Rural 1.0
191 LP001647 Male 1.0 0 1 0.0 9328 0.0 188.0 180.0 1 Rural 1.0
192 LP001653 Male 0.0 0 0 0.0 4885 0.0 48.0 360.0 1 Rural 1.0
193 LP001656 Male 0.0 0 1 0.0 12000 0.0 164.0 360.0 1 Semiurban 0.0
194 LP001657 Male 1.0 0 0 0.0 6033 0.0 160.0 360.0 1 Urban 0.0
195 LP001658 Male 0.0 0 1 0.0 3858 0.0 76.0 360.0 1 Semiurban 1.0
196 LP001664 Male 0.0 0 1 0.0 4191 0.0 120.0 360.0 1 Rural 1.0
197 LP001665 Male 1.0 1 1 0.0 3125 2583.0 170.0 360.0 1 Semiurban 0.0
198 LP001666 Male 0.0 0 1 0.0 8333 3750.0 187.0 360.0 1 Rural 1.0
199 LP001669 Female 0.0 0 0 0.0 1907 2365.0 120.0 1 Urban 1.0
200 LP001671 Female 1.0 0 1 0.0 3416 2816.0 113.0 360.0 0 Semiurban 1.0
201 LP001673 Male 0.0 0 1 1.0 11000 0.0 83.0 360.0 1 Urban 0.0
202 LP001674 Male 1.0 1 0 0.0 2600 2500.0 90.0 360.0 1 Semiurban 1.0
203 LP001677 Male 0.0 2 1 0.0 4923 0.0 166.0 360.0 0 Semiurban 1.0
204 LP001682 Male 1.0 3+ 0 0.0 3992 0.0 0.0 180.0 1 Urban 0.0
205 LP001688 Male 1.0 1 0 0.0 3500 1083.0 135.0 360.0 1 Urban 1.0
206 LP001691 Male 1.0 2 0 0.0 3917 0.0 124.0 360.0 1 Semiurban 1.0
207 LP001692 Female 0.0 0 0 0.0 4408 0.0 120.0 360.0 1 Semiurban 1.0
208 LP001693 Female 0.0 0 1 0.0 3244 0.0 80.0 360.0 1 Urban 1.0
209 LP001698 Male 0.0 0 0 0.0 3975 2531.0 55.0 360.0 1 Rural 1.0
210 LP001699 Male 0.0 0 1 0.0 2479 0.0 59.0 360.0 1 Urban 1.0
211 LP001702 Male 0.0 0 1 0.0 3418 0.0 127.0 360.0 1 Semiurban 0.0
212 LP001708 Female 0.0 0 1 0.0 10000 0.0 214.0 360.0 1 Semiurban 0.0
213 LP001711 Male 1.0 3+ 1 0.0 3430 1250.0 128.0 360.0 0 Semiurban 0.0
214 LP001713 Male 1.0 1 1 1.0 7787 0.0 240.0 360.0 1 Urban 1.0
215 LP001715 Male 1.0 3+ 0 1.0 5703 0.0 130.0 360.0 1 Rural 1.0
216 LP001716 Male 1.0 0 1 0.0 3173 3021.0 137.0 360.0 1 Urban 1.0
217 LP001720 Male 1.0 3+ 0 0.0 3850 983.0 100.0 360.0 1 Semiurban 1.0
218 LP001722 Male 1.0 0 1 0.0 150 1800.0 135.0 360.0 1 Rural 0.0
219 LP001726 Male 1.0 0 1 0.0 3727 1775.0 131.0 360.0 1 Semiurban 1.0
220 LP001732 Male 1.0 2 1 0.0 5000 0.0 72.0 360.0 0 Semiurban 0.0
221 LP001734 Female 1.0 2 1 0.0 4283 2383.0 127.0 360.0 0 Semiurban 1.0
222 LP001736 Male 1.0 0 1 0.0 2221 0.0 60.0 360.0 0 Urban 0.0
223 LP001743 Male 1.0 2 1 0.0 4009 1717.0 116.0 360.0 1 Semiurban 1.0
224 LP001744 Male 0.0 0 1 0.0 2971 2791.0 144.0 360.0 1 Semiurban 1.0
225 LP001749 Male 1.0 0 1 0.0 7578 1010.0 175.0 1 Semiurban 1.0
226 LP001750 Male 1.0 0 1 0.0 6250 0.0 128.0 360.0 1 Semiurban 1.0
227 LP001751 Male 1.0 0 1 0.0 3250 0.0 170.0 360.0 1 Rural 0.0
228 LP001754 Male 1.0 0 1.0 4735 0.0 138.0 360.0 1 Urban 0.0
229 LP001758 Male 1.0 2 1 0.0 6250 1695.0 210.0 360.0 1 Semiurban 1.0
230 LP001760 Male 0.0 1 0.0 4758 0.0 158.0 480.0 1 Semiurban 1.0
231 LP001761 Male 0.0 0 1 1.0 6400 0.0 200.0 360.0 1 Rural 1.0
232 LP001765 Male 1.0 1 1 0.0 2491 2054.0 104.0 360.0 1 Semiurban 1.0
233 LP001768 Male 1.0 0 1 0.0 3716 0.0 42.0 180.0 1 Rural 1.0
234 LP001770 Male 0.0 0 0 0.0 3189 2598.0 120.0 1 Rural 1.0
235 LP001776 Female 0.0 0 1 0.0 8333 0.0 280.0 360.0 1 Semiurban 1.0
236 LP001778 Male 1.0 1 1 0.0 3155 1779.0 140.0 360.0 1 Semiurban 1.0
237 LP001784 Male 1.0 1 1 0.0 5500 1260.0 170.0 360.0 1 Rural 1.0
238 LP001786 Male 1.0 0 1 0.0 5746 0.0 255.0 360.0 0 Urban 0.0
239 LP001788 Female 0.0 0 1 1.0 3463 0.0 122.0 360.0 0 Urban 1.0
240 LP001790 Female 0.0 1 1 0.0 3812 0.0 112.0 360.0 1 Rural 1.0
241 LP001792 Male 1.0 1 1 0.0 3315 0.0 96.0 360.0 1 Semiurban 1.0
242 LP001798 Male 1.0 2 1 0.0 5819 5000.0 120.0 360.0 1 Rural 1.0
243 LP001800 Male 1.0 1 0 0.0 2510 1983.0 140.0 180.0 1 Urban 0.0
244 LP001806 Male 0.0 0 1 0.0 2965 5701.0 155.0 60.0 1 Urban 1.0
245 LP001807 Male 1.0 2 1 1.0 6250 1300.0 108.0 360.0 1 Rural 1.0
246 LP001811 Male 1.0 0 0 0.0 3406 4417.0 123.0 360.0 1 Semiurban 1.0
247 LP001813 Male 0.0 0 1 1.0 6050 4333.0 120.0 180.0 1 Urban 0.0
248 LP001814 Male 1.0 2 1 0.0 9703 0.0 112.0 360.0 1 Urban 1.0
249 LP001819 Male 1.0 1 0 0.0 6608 0.0 137.0 180.0 1 Urban 1.0
250 LP001824 Male 1.0 1 1 0.0 2882 1843.0 123.0 480.0 1 Semiurban 1.0
251 LP001825 Male 1.0 0 1 0.0 1809 1868.0 90.0 360.0 1 Urban 1.0
252 LP001835 Male 1.0 0 0 0.0 1668 3890.0 201.0 360.0 0 Semiurban 0.0
253 LP001836 Female 0.0 2 1 0.0 3427 0.0 138.0 360.0 1 Urban 0.0
254 LP001841 Male 0.0 0 0 1.0 2583 2167.0 104.0 360.0 1 Rural 1.0
255 LP001843 Male 1.0 1 0 0.0 2661 7101.0 279.0 180.0 1 Semiurban 1.0
256 LP001844 Male 0.0 0 1 1.0 16250 0.0 192.0 360.0 0 Urban 0.0
257 LP001846 Female 0.0 3+ 1 0.0 3083 0.0 255.0 360.0 1 Rural 1.0
258 LP001849 Male 0.0 0 0 0.0 6045 0.0 115.0 360.0 0 Rural 0.0
259 LP001854 Male 1.0 3+ 1 0.0 5250 0.0 94.0 360.0 1 Urban 0.0
260 LP001859 Male 1.0 0 1 0.0 14683 2100.0 304.0 360.0 1 Rural 0.0
261 LP001864 Male 1.0 3+ 0 0.0 4931 0.0 128.0 360.0 0 Semiurban 0.0
262 LP001865 Male 1.0 1 1 0.0 6083 4250.0 330.0 360.0 0 Urban 1.0
263 LP001868 Male 0.0 0 1 0.0 2060 2209.0 134.0 360.0 1 Semiurban 1.0
264 LP001870 Female 0.0 1 1 0.0 3481 0.0 155.0 36.0 1 Semiurban 0.0
265 LP001871 Female 0.0 0 1 0.0 7200 0.0 120.0 360.0 1 Rural 1.0
266 LP001872 Male 0.0 0 1 1.0 5166 0.0 128.0 360.0 1 Semiurban 1.0
267 LP001875 Male 0.0 0 1 0.0 4095 3447.0 151.0 360.0 1 Rural 1.0
268 LP001877 Male 1.0 2 1 0.0 4708 1387.0 150.0 360.0 1 Semiurban 1.0
269 LP001882 Male 1.0 3+ 1 0.0 4333 1811.0 160.0 360.0 0 Urban 1.0
270 LP001883 Female 0.0 0 1 0.0 3418 0.0 135.0 360.0 1 Rural 0.0
271 LP001884 Female 0.0 1 1 0.0 2876 1560.0 90.0 360.0 1 Urban 1.0
272 LP001888 Female 0.0 0 1 0.0 3237 0.0 30.0 360.0 1 Urban 1.0
273 LP001891 Male 1.0 0 1 0.0 11146 0.0 136.0 360.0 1 Urban 1.0
274 LP001892 Male 0.0 0 1 0.0 2833 1857.0 126.0 360.0 1 Rural 1.0
275 LP001894 Male 1.0 0 1 0.0 2620 2223.0 150.0 360.0 1 Semiurban 1.0
276 LP001896 Male 1.0 2 1 0.0 3900 0.0 90.0 360.0 1 Semiurban 1.0
277 LP001900 Male 1.0 1 1 0.0 2750 1842.0 115.0 360.0 1 Semiurban 1.0
278 LP001903 Male 1.0 0 1 0.0 3993 3274.0 207.0 360.0 1 Semiurban 1.0
279 LP001904 Male 1.0 0 1 0.0 3103 1300.0 80.0 360.0 1 Urban 1.0
280 LP001907 Male 1.0 0 1 0.0 14583 0.0 436.0 360.0 1 Semiurban 1.0
281 LP001908 Female 1.0 0 0 0.0 4100 0.0 124.0 360.0 0 Rural 1.0
282 LP001910 Male 0.0 1 0 1.0 4053 2426.0 158.0 360.0 0 Urban 0.0
283 LP001914 Male 1.0 0 1 0.0 3927 800.0 112.0 360.0 1 Semiurban 1.0
284 LP001915 Male 1.0 2 1 0.0 2301 985.7999878 78.0 180.0 1 Urban 1.0
285 LP001917 Female 0.0 0 1 0.0 1811 1666.0 54.0 360.0 1 Urban 1.0
286 LP001922 Male 1.0 0 1 0.0 20667 0.0 0.0 360.0 1 Rural 0.0
287 LP001924 Male 0.0 0 1 0.0 3158 3053.0 89.0 360.0 1 Rural 1.0
288 LP001925 Female 0.0 0 1 1.0 2600 1717.0 99.0 300.0 1 Semiurban 0.0
289 LP001926 Male 1.0 0 1 0.0 3704 2000.0 120.0 360.0 1 Rural 1.0
290 LP001931 Female 0.0 0 1 0.0 4124 0.0 115.0 360.0 1 Semiurban 1.0
291 LP001935 Male 0.0 0 1 0.0 9508 0.0 187.0 360.0 1 Rural 1.0
292 LP001936 Male 1.0 0 1 0.0 3075 2416.0 139.0 360.0 1 Rural 1.0
293 LP001938 Male 1.0 2 1 0.0 4400 0.0 127.0 360.0 0 Semiurban 0.0
294 LP001940 Male 1.0 2 1 0.0 3153 1560.0 134.0 360.0 1 Urban 1.0
295 LP001945 Female 0.0 1 0.0 5417 0.0 143.0 480.0 0 Urban 0.0
296 LP001947 Male 1.0 0 1 0.0 2383 3334.0 172.0 360.0 1 Semiurban 1.0
297 LP001949 Male 1.0 3+ 1 0.0 4416 1250.0 110.0 360.0 1 Urban 1.0
298 LP001953 Male 1.0 1 1 0.0 6875 0.0 200.0 360.0 1 Semiurban 1.0
299 LP001954 Female 1.0 1 1 0.0 4666 0.0 135.0 360.0 1 Urban 1.0
300 LP001955 Female 0.0 0 1 0.0 5000 2541.0 151.0 480.0 1 Rural 0.0
301 LP001963 Male 1.0 1 1 0.0 2014 2925.0 113.0 360.0 1 Urban 0.0
302 LP001964 Male 1.0 0 0 0.0 1800 2934.0 93.0 360.0 0 Urban 0.0
303 LP001972 Male 1.0 0 0.0 2875 1750.0 105.0 360.0 1 Semiurban 1.0
304 LP001974 Female 0.0 0 1 0.0 5000 0.0 132.0 360.0 1 Rural 1.0
305 LP001977 Male 1.0 1 1 0.0 1625 1803.0 96.0 360.0 1 Urban 1.0
306 LP001978 Male 0.0 0 1 0.0 4000 2500.0 140.0 360.0 1 Rural 1.0
307 LP001990 Male 0.0 0 0 0.0 2000 0.0 0.0 360.0 1 Urban 0.0
308 LP001993 Female 0.0 0 1 0.0 3762 1666.0 135.0 360.0 1 Rural 1.0
309 LP001994 Female 0.0 0 1 0.0 2400 1863.0 104.0 360.0 0 Urban 0.0
310 LP001996 Male 0.0 0 1 0.0 20233 0.0 480.0 360.0 1 Rural 0.0
311 LP001998 Male 1.0 2 0 0.0 7667 0.0 185.0 360.0 0 Rural 1.0
312 LP002002 Female 0.0 0 1 0.0 2917 0.0 84.0 360.0 1 Semiurban 1.0
313 LP002004 Male 0.0 0 0 0.0 2927 2405.0 111.0 360.0 1 Semiurban 1.0
314 LP002006 Female 0.0 0 1 0.0 2507 0.0 56.0 360.0 1 Rural 1.0
315 LP002008 Male 1.0 2 1 1.0 5746 0.0 144.0 84.0 0 Rural 1.0
316 LP002024 1.0 0 1 0.0 2473 1843.0 159.0 360.0 1 Rural 0.0
317 LP002031 Male 1.0 1 0 0.0 3399 1640.0 111.0 180.0 1 Urban 1.0
318 LP002035 Male 1.0 2 1 0.0 3717 0.0 120.0 360.0 1 Semiurban 1.0
319 LP002036 Male 1.0 0 1 0.0 2058 2134.0 88.0 360.0 0 Urban 1.0
320 LP002043 Female 0.0 1 1 0.0 3541 0.0 112.0 360.0 0 Semiurban 1.0
321 LP002050 Male 1.0 1 1 1.0 10000 0.0 155.0 360.0 1 Rural 0.0
322 LP002051 Male 1.0 0 1 0.0 2400 2167.0 115.0 360.0 1 Semiurban 1.0
323 LP002053 Male 1.0 3+ 1 0.0 4342 189.0 124.0 360.0 1 Semiurban 1.0
324 LP002054 Male 1.0 2 0 0.0 3601 1590.0 0.0 360.0 1 Rural 1.0
325 LP002055 Female 0.0 0 1 0.0 3166 2985.0 132.0 360.0 0 Rural 1.0
326 LP002065 Male 1.0 3+ 1 0.0 15000 0.0 300.0 360.0 1 Rural 1.0
327 LP002067 Male 1.0 1 1 1.0 8666 4983.0 376.0 360.0 0 Rural 0.0
328 LP002068 Male 0.0 0 1 0.0 4917 0.0 130.0 360.0 0 Rural 1.0
329 LP002082 Male 1.0 0 1 1.0 5818 2160.0 184.0 360.0 1 Semiurban 1.0
330 LP002086 Female 1.0 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
331 LP002087 Female 0.0 0 1 0.0 2500 0.0 67.0 360.0 1 Urban 1.0
332 LP002097 Male 0.0 1 1 0.0 4384 1793.0 117.0 360.0 1 Urban 1.0
333 LP002098 Male 0.0 0 1 0.0 2935 0.0 98.0 360.0 1 Semiurban 1.0
334 LP002100 Male 0.0 1 0.0 2833 0.0 71.0 360.0 1 Urban 1.0
335 LP002101 Male 1.0 0 1 0.0 63337 0.0 490.0 180.0 1 Urban 1.0
336 LP002103 1.0 1 1 1.0 9833 1833.0 182.0 180.0 1 Urban 1.0
337 LP002106 Male 1.0 1 1.0 5503 4490.0 70.0 1 Semiurban 1.0
338 LP002110 Male 1.0 1 1 0.0 5250 688.0 160.0 360.0 1 Rural 1.0
339 LP002112 Male 1.0 2 1 1.0 2500 4600.0 176.0 360.0 1 Rural 1.0
340 LP002113 Female 0.0 3+ 0 0.0 1830 0.0 0.0 360.0 0 Urban 0.0
341 LP002114 Female 0.0 0 1 0.0 4160 0.0 71.0 360.0 1 Semiurban 1.0
342 LP002115 Male 1.0 3+ 0 0.0 2647 1587.0 173.0 360.0 1 Rural 0.0
343 LP002116 Female 0.0 0 1 0.0 2378 0.0 46.0 360.0 1 Rural 0.0
344 LP002119 Male 1.0 1 0 0.0 4554 1229.0 158.0 360.0 1 Urban 1.0
345 LP002126 Male 1.0 3+ 0 0.0 3173 0.0 74.0 360.0 1 Semiurban 1.0
346 LP002128 Male 1.0 2 1 0.0 2583 2330.0 125.0 360.0 1 Rural 1.0
347 LP002129 Male 1.0 0 1 0.0 2499 2458.0 160.0 360.0 1 Semiurban 1.0
348 LP002130 Male 1.0 0 0.0 3523 3230.0 152.0 360.0 0 Rural 0.0
349 LP002131 Male 1.0 2 0 0.0 3083 2168.0 126.0 360.0 1 Urban 1.0
350 LP002137 Male 1.0 0 1 0.0 6333 4583.0 259.0 360.0 0 Semiurban 1.0
351 LP002138 Male 1.0 0 1 0.0 2625 6250.0 187.0 360.0 1 Rural 1.0
352 LP002139 Male 1.0 0 1 0.0 9083 0.0 228.0 360.0 1 Semiurban 1.0
353 LP002140 Male 0.0 0 1 0.0 8750 4167.0 308.0 360.0 1 Rural 0.0
354 LP002141 Male 1.0 3+ 1 0.0 2666 2083.0 95.0 360.0 1 Rural 1.0
355 LP002142 Female 1.0 0 1 1.0 5500 0.0 105.0 360.0 0 Rural 0.0
356 LP002143 Female 1.0 0 1 0.0 2423 505.0 130.0 360.0 1 Semiurban 1.0
357 LP002144 Female 0.0 1 0.0 3813 0.0 116.0 180.0 1 Urban 1.0
358 LP002149 Male 1.0 2 1 0.0 8333 3167.0 165.0 360.0 1 Rural 1.0
359 LP002151 Male 1.0 1 1 0.0 3875 0.0 67.0 360.0 1 Urban 0.0
360 LP002158 Male 1.0 0 0 0.0 3000 1666.0 100.0 480.0 0 Urban 0.0
361 LP002160 Male 1.0 3+ 1 0.0 5167 3167.0 200.0 360.0 1 Semiurban 1.0
362 LP002161 Female 0.0 1 1 0.0 4723 0.0 81.0 360.0 1 Semiurban 0.0
363 LP002170 Male 1.0 2 1 0.0 5000 3667.0 236.0 360.0 1 Semiurban 1.0
364 LP002175 Male 1.0 0 1 0.0 4750 2333.0 130.0 360.0 1 Urban 1.0
365 LP002178 Male 1.0 0 1 0.0 3013 3033.0 95.0 300.0 0 Urban 1.0
366 LP002180 Male 0.0 0 1 1.0 6822 0.0 141.0 360.0 1 Rural 1.0
367 LP002181 Male 0.0 0 0 0.0 6216 0.0 133.0 360.0 1 Rural 0.0
368 LP002187 Male 0.0 0 1 0.0 2500 0.0 96.0 480.0 1 Semiurban 0.0
369 LP002188 Male 0.0 0 1 0.0 5124 0.0 124.0 0 Rural 0.0
370 LP002190 Male 1.0 1 1 0.0 6325 0.0 175.0 360.0 1 Semiurban 1.0
371 LP002191 Male 1.0 0 1 0.0 19730 5266.0 570.0 360.0 1 Rural 0.0
372 LP002194 Female 0.0 0 1 1.0 15759 0.0 55.0 360.0 1 Semiurban 1.0
373 LP002197 Male 1.0 2 1 0.0 5185 0.0 155.0 360.0 1 Semiurban 1.0
374 LP002201 Male 1.0 2 1 1.0 9323 7873.0 380.0 300.0 1 Rural 1.0
375 LP002205 Male 0.0 1 1 0.0 3062 1987.0 111.0 180.0 0 Urban 0.0
376 LP002209 Female 0.0 0 1 0.0 2764 1459.0 110.0 360.0 1 Urban 1.0
377 LP002211 Male 1.0 0 1 0.0 4817 923.0 120.0 180.0 1 Urban 1.0
378 LP002219 Male 1.0 3+ 1 0.0 8750 4996.0 130.0 360.0 1 Rural 1.0
379 LP002223 Male 1.0 0 1 0.0 4310 0.0 130.0 360.0 0 Semiurban 1.0
380 LP002224 Male 0.0 0 1 0.0 3069 0.0 71.0 480.0 1 Urban 0.0
381 LP002225 Male 1.0 2 1 0.0 5391 0.0 130.0 360.0 1 Urban 1.0
382 LP002226 Male 1.0 0 1 0.0 3333 2500.0 128.0 360.0 1 Semiurban 1.0
383 LP002229 Male 0.0 0 1 0.0 5941 4232.0 296.0 360.0 1 Semiurban 1.0
384 LP002231 Female 0.0 0 1 0.0 6000 0.0 156.0 360.0 1 Urban 1.0
385 LP002234 Male 0.0 0 1 1.0 7167 0.0 128.0 360.0 1 Urban 1.0
386 LP002236 Male 1.0 2 1 0.0 4566 0.0 100.0 360.0 1 Urban 0.0
387 LP002237 Male 0.0 1 1 0.0 3667 0.0 113.0 180.0 1 Urban 1.0
388 LP002239 Male 0.0 0 0 0.0 2346 1600.0 132.0 360.0 1 Semiurban 1.0
389 LP002243 Male 1.0 0 0 0.0 3010 3136.0 0.0 360.0 0 Urban 0.0
390 LP002244 Male 1.0 0 1 0.0 2333 2417.0 136.0 360.0 1 Urban 1.0
391 LP002250 Male 1.0 0 1 0.0 5488 0.0 125.0 360.0 1 Rural 1.0
392 LP002255 Male 0.0 3+ 1 0.0 9167 0.0 185.0 360.0 1 Rural 1.0
393 LP002262 Male 1.0 3+ 1 0.0 9504 0.0 275.0 360.0 1 Rural 1.0
394 LP002263 Male 1.0 0 1 0.0 2583 2115.0 120.0 360.0 0 Urban 1.0
395 LP002265 Male 1.0 2 0 0.0 1993 1625.0 113.0 180.0 1 Semiurban 1.0
396 LP002266 Male 1.0 2 1 0.0 3100 1400.0 113.0 360.0 1 Urban 1.0
397 LP002272 Male 1.0 2 1 0.0 3276 484.0 135.0 360.0 0 Semiurban 1.0
398 LP002277 Female 0.0 0 1 0.0 3180 0.0 71.0 360.0 0 Urban 0.0
399 LP002281 Male 1.0 0 1 0.0 3033 1459.0 95.0 360.0 1 Urban 1.0
400 LP002284 Male 0.0 0 0 0.0 3902 1666.0 109.0 360.0 1 Rural 1.0
401 LP002287 Female 0.0 0 1 0.0 1500 1800.0 103.0 360.0 0 Semiurban 0.0
402 LP002288 Male 1.0 2 0 0.0 2889 0.0 45.0 180.0 0 Urban 0.0
403 LP002296 Male 0.0 0 0 0.0 2755 0.0 65.0 300.0 1 Rural 0.0
404 LP002297 Male 0.0 0 1 0.0 2500 20000.0 103.0 360.0 1 Semiurban 1.0
405 LP002300 Female 0.0 0 0 0.0 1963 0.0 53.0 360.0 1 Semiurban 1.0
406 LP002301 Female 0.0 0 1 1.0 7441 0.0 194.0 360.0 1 Rural 0.0
407 LP002305 Female 0.0 0 1 0.0 4547 0.0 115.0 360.0 1 Semiurban 1.0
408 LP002308 Male 1.0 0 0 0.0 2167 2400.0 115.0 360.0 1 Urban 1.0
409 LP002314 Female 0.0 0 0 0.0 2213 0.0 66.0 360.0 1 Rural 1.0
410 LP002315 Male 1.0 1 1 0.0 8300 0.0 152.0 300.0 0 Semiurban 0.0
411 LP002317 Male 1.0 3+ 1 0.0 81000 0.0 360.0 360.0 0 Rural 0.0
412 LP002318 Female 0.0 1 0 1.0 3867 0.0 62.0 360.0 1 Semiurban 0.0
413 LP002319 Male 1.0 0 1 0.0 6256 0.0 160.0 360.0 0 Urban 1.0
414 LP002328 Male 1.0 0 0 0.0 6096 0.0 218.0 360.0 0 Rural 0.0
415 LP002332 Male 1.0 0 0 0.0 2253 2033.0 110.0 360.0 1 Rural 1.0
416 LP002335 Female 1.0 0 0 0.0 2149 3237.0 178.0 360.0 0 Semiurban 0.0
417 LP002337 Female 0.0 0 1 0.0 2995 0.0 60.0 360.0 1 Urban 1.0
418 LP002341 Female 0.0 1 1 0.0 2600 0.0 160.0 360.0 1 Urban 0.0
419 LP002342 Male 1.0 2 1 1.0 1600 20000.0 239.0 360.0 1 Urban 0.0
420 LP002345 Male 1.0 0 1 0.0 1025 2773.0 112.0 360.0 1 Rural 1.0
421 LP002347 Male 1.0 0 1 0.0 3246 1417.0 138.0 360.0 1 Semiurban 1.0
422 LP002348 Male 1.0 0 1 0.0 5829 0.0 138.0 360.0 1 Rural 1.0
423 LP002357 Female 0.0 0 0 0.0 2720 0.0 80.0 0 Urban 0.0
424 LP002361 Male 1.0 0 1 0.0 1820 1719.0 100.0 360.0 1 Urban 1.0
425 LP002362 Male 1.0 1 1 0.0 7250 1667.0 110.0 0 Urban 0.0
426 LP002364 Male 1.0 0 1 0.0 14880 0.0 96.0 360.0 1 Semiurban 1.0
427 LP002366 Male 1.0 0 1 0.0 2666 4300.0 121.0 360.0 1 Rural 1.0
428 LP002367 Female 0.0 1 0 0.0 4606 0.0 81.0 360.0 1 Rural 0.0
429 LP002368 Male 1.0 2 1 0.0 5935 0.0 133.0 360.0 1 Semiurban 1.0
430 LP002369 Male 1.0 0 1 0.0 2920 16.12000084 87.0 360.0 1 Rural 1.0
431 LP002370 Male 0.0 0 0 0.0 2717 0.0 60.0 180.0 1 Urban 1.0
432 LP002377 Female 0.0 1 1 1.0 8624 0.0 150.0 360.0 1 Semiurban 1.0
433 LP002379 Male 0.0 0 1 0.0 6500 0.0 105.0 360.0 0 Rural 0.0
434 LP002386 Male 0.0 0 1 0.0 12876 0.0 405.0 360.0 1 Semiurban 1.0
435 LP002387 Male 1.0 0 1 0.0 2425 2340.0 143.0 360.0 1 Semiurban 1.0
436 LP002390 Male 0.0 0 1 0.0 3750 0.0 100.0 360.0 1 Urban 1.0
437 LP002393 Female 0.0 1 0.0 10047 0.0 0.0 240.0 1 Semiurban 1.0
438 LP002398 Male 0.0 0 1 0.0 1926 1851.0 50.0 360.0 1 Semiurban 1.0
439 LP002401 Male 1.0 0 1 0.0 2213 1125.0 0.0 360.0 1 Urban 1.0
440 LP002403 Male 0.0 0 1 1.0 10416 0.0 187.0 360.0 0 Urban 0.0
441 LP002407 Female 1.0 0 0 1.0 7142 0.0 138.0 360.0 1 Rural 1.0
442 LP002408 Male 0.0 0 1 0.0 3660 5064.0 187.0 360.0 1 Semiurban 1.0
443 LP002409 Male 1.0 0 1 0.0 7901 1833.0 180.0 360.0 1 Rural 1.0
444 LP002418 Male 0.0 3+ 0 0.0 4707 1993.0 148.0 360.0 1 Semiurban 1.0
445 LP002422 Male 0.0 1 1 0.0 37719 0.0 152.0 360.0 1 Semiurban 1.0
446 LP002424 Male 1.0 0 1 0.0 7333 8333.0 175.0 300.0 0 Rural 1.0
447 LP002429 Male 1.0 1 1 1.0 3466 1210.0 130.0 360.0 1 Rural 1.0
448 LP002434 Male 1.0 2 0 0.0 4652 0.0 110.0 360.0 1 Rural 1.0
449 LP002435 Male 1.0 0 1 0.0 3539 1376.0 55.0 360.0 1 Rural 0.0
450 LP002443 Male 1.0 2 1 0.0 3340 1710.0 150.0 360.0 0 Rural 0.0
451 LP002444 Male 0.0 1 0 1.0 2769 1542.0 190.0 360.0 0 Semiurban 0.0
452 LP002446 Male 1.0 2 0 0.0 2309 1255.0 125.0 360.0 0 Rural 0.0
453 LP002447 Male 1.0 2 0 0.0 1958 1456.0 60.0 300.0 0 Urban 1.0
454 LP002448 Male 1.0 0 1 0.0 3948 1733.0 149.0 360.0 0 Rural 0.0
455 LP002449 Male 1.0 0 1 0.0 2483 2466.0 90.0 180.0 0 Rural 1.0
456 LP002453 Male 0.0 0 1 1.0 7085 0.0 84.0 360.0 1 Semiurban 1.0
457 LP002455 Male 1.0 2 1 0.0 3859 0.0 96.0 360.0 1 Semiurban 1.0
458 LP002459 Male 1.0 0 1 0.0 4301 0.0 118.0 360.0 1 Urban 1.0
459 LP002467 Male 1.0 0 1 0.0 3708 2569.0 173.0 360.0 1 Urban 0.0
460 LP002472 Male 0.0 2 1 0.0 4354 0.0 136.0 360.0 1 Rural 1.0
461 LP002473 Male 1.0 0 1 0.0 8334 0.0 160.0 360.0 1 Semiurban 0.0
462 LP002478 1.0 0 1 1.0 2083 4083.0 160.0 360.0 0 Semiurban 1.0
463 LP002484 Male 1.0 3+ 1 0.0 7740 0.0 128.0 180.0 1 Urban 1.0
464 LP002487 Male 1.0 0 1 0.0 3015 2188.0 153.0 360.0 1 Rural 1.0
465 LP002489 Female 0.0 1 0 0.0 5191 0.0 132.0 360.0 1 Semiurban 1.0
466 LP002493 Male 0.0 0 1 0.0 4166 0.0 98.0 360.0 0 Semiurban 0.0
467 LP002494 Male 0.0 0 1 0.0 6000 0.0 140.0 360.0 1 Rural 1.0
468 LP002500 Male 1.0 3+ 0 0.0 2947 1664.0 70.0 180.0 0 Urban 0.0
469 LP002501 1.0 0 1 0.0 16692 0.0 110.0 360.0 1 Semiurban 1.0
470 LP002502 Female 1.0 2 0 0.0 210 2917.0 98.0 360.0 1 Semiurban 1.0
471 LP002505 Male 1.0 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
472 LP002515 Male 1.0 1 1 1.0 3450 2079.0 162.0 360.0 1 Semiurban 1.0
473 LP002517 Male 1.0 1 0 0.0 2653 1500.0 113.0 180.0 0 Rural 0.0
474 LP002519 Male 1.0 3+ 1 0.0 4691 0.0 100.0 360.0 1 Semiurban 1.0
475 LP002522 Female 0.0 0 1 1.0 2500 0.0 93.0 360.0 0 Urban 1.0
476 LP002524 Male 0.0 2 1 0.0 5532 4648.0 162.0 360.0 1 Rural 1.0
477 LP002527 Male 1.0 2 1 1.0 16525 1014.0 150.0 360.0 1 Rural 1.0
478 LP002529 Male 1.0 2 1 0.0 6700 1750.0 230.0 300.0 1 Semiurban 1.0
479 LP002530 1.0 2 1 0.0 2873 1872.0 132.0 360.0 0 Semiurban 0.0
480 LP002531 Male 1.0 1 1 1.0 16667 2250.0 86.0 360.0 1 Semiurban 1.0
481 LP002533 Male 1.0 2 1 0.0 2947 1603.0 0.0 360.0 1 Urban 0.0
482 LP002534 Female 0.0 0 0 0.0 4350 0.0 154.0 360.0 1 Rural 1.0
483 LP002536 Male 1.0 3+ 0 0.0 3095 0.0 113.0 360.0 1 Rural 1.0
484 LP002537 Male 1.0 0 1 0.0 2083 3150.0 128.0 360.0 1 Semiurban 1.0
485 LP002541 Male 1.0 0 1 0.0 10833 0.0 234.0 360.0 1 Semiurban 1.0
486 LP002543 Male 1.0 2 1 0.0 8333 0.0 246.0 360.0 1 Semiurban 1.0
487 LP002544 Male 1.0 1 0 0.0 1958 2436.0 131.0 360.0 1 Rural 1.0
488 LP002545 Male 0.0 2 1 0.0 3547 0.0 80.0 360.0 0 Rural 0.0
489 LP002547 Male 1.0 1 1 0.0 18333 0.0 500.0 360.0 1 Urban 0.0
490 LP002555 Male 1.0 2 1 1.0 4583 2083.0 160.0 360.0 1 Semiurban 1.0
491 LP002556 Male 0.0 0 1 0.0 2435 0.0 75.0 360.0 1 Urban 0.0
492 LP002560 Male 0.0 0 0 0.0 2699 2785.0 96.0 360.0 0 Semiurban 1.0
493 LP002562 Male 1.0 1 0 0.0 5333 1131.0 186.0 360.0 0 Urban 1.0
494 LP002571 Male 0.0 0 0 0.0 3691 0.0 110.0 360.0 1 Rural 1.0
495 LP002582 Female 0.0 0 0 1.0 17263 0.0 225.0 360.0 1 Semiurban 1.0
496 LP002585 Male 1.0 0 1 0.0 3597 2157.0 119.0 360.0 0 Rural 0.0
497 LP002586 Female 1.0 1 1 0.0 3326 913.0 105.0 84.0 1 Semiurban 1.0
498 LP002587 Male 1.0 0 0 0.0 2600 1700.0 107.0 360.0 1 Rural 1.0
499 LP002588 Male 1.0 0 1 0.0 4625 2857.0 111.0 12.0 0 Urban 1.0
500 LP002600 Male 1.0 1 1 1.0 2895 0.0 95.0 360.0 1 Semiurban 1.0
501 LP002602 Male 0.0 0 1 0.0 6283 4416.0 209.0 360.0 0 Rural 0.0
502 LP002603 Female 0.0 0 1 0.0 645 3683.0 113.0 480.0 1 Rural 1.0
503 LP002606 Female 0.0 0 1 0.0 3159 0.0 100.0 360.0 1 Semiurban 1.0
504 LP002615 Male 1.0 2 1 0.0 4865 5624.0 208.0 360.0 1 Semiurban 1.0
505 LP002618 Male 1.0 1 0 0.0 4050 5302.0 138.0 360.0 0 Rural 0.0
506 LP002619 Male 1.0 0 0 0.0 3814 1483.0 124.0 300.0 1 Semiurban 1.0
507 LP002622 Male 1.0 2 1 0.0 3510 4416.0 243.0 360.0 1 Rural 1.0
508 LP002624 Male 1.0 0 1 0.0 20833 6667.0 480.0 360.0 0 Urban 1.0
509 LP002625 0.0 0 1 0.0 3583 0.0 96.0 360.0 1 Urban 0.0
510 LP002626 Male 1.0 0 1 1.0 2479 3013.0 188.0 360.0 1 Urban 1.0
511 LP002634 Female 0.0 1 1 0.0 13262 0.0 40.0 360.0 1 Urban 1.0
512 LP002637 Male 0.0 0 0 0.0 3598 1287.0 100.0 360.0 1 Rural 0.0
513 LP002640 Male 1.0 1 1 0.0 6065 2004.0 250.0 360.0 1 Semiurban 1.0
514 LP002643 Male 1.0 2 1 0.0 3283 2035.0 148.0 360.0 1 Urban 1.0
515 LP002648 Male 1.0 0 1 0.0 2130 6666.0 70.0 180.0 1 Semiurban 0.0
516 LP002652 Male 0.0 0 1 0.0 5815 3666.0 311.0 360.0 1 Rural 0.0
517 LP002659 Male 1.0 3+ 1 0.0 3466 3428.0 150.0 360.0 1 Rural 1.0
518 LP002670 Female 1.0 2 1 0.0 2031 1632.0 113.0 480.0 1 Semiurban 1.0
519 LP002682 Male 1.0 0 0.0 3074 1800.0 123.0 360.0 0 Semiurban 0.0
520 LP002683 Male 0.0 0 1 0.0 4683 1915.0 185.0 360.0 1 Semiurban 0.0
521 LP002684 Female 0.0 0 0 0.0 3400 0.0 95.0 360.0 1 Rural 0.0
522 LP002689 Male 1.0 2 0 0.0 2192 1742.0 45.0 360.0 1 Semiurban 1.0
523 LP002690 Male 0.0 0 1 0.0 2500 0.0 55.0 360.0 1 Semiurban 1.0
524 LP002692 Male 1.0 3+ 1 1.0 5677 1424.0 100.0 360.0 1 Rural 1.0
525 LP002693 Male 1.0 2 1 1.0 7948 7166.0 480.0 360.0 1 Rural 1.0
526 LP002697 Male 0.0 0 1 0.0 4680 2087.0 0.0 360.0 1 Semiurban 0.0
527 LP002699 Male 1.0 2 1 1.0 17500 0.0 400.0 360.0 1 Rural 1.0
528 LP002705 Male 1.0 0 1 0.0 3775 0.0 110.0 360.0 1 Semiurban 1.0
529 LP002706 Male 1.0 1 0 0.0 5285 1430.0 161.0 360.0 0 Semiurban 1.0
530 LP002714 Male 0.0 1 0 0.0 2679 1302.0 94.0 360.0 1 Semiurban 1.0
531 LP002716 Male 0.0 0 0 0.0 6783 0.0 130.0 360.0 1 Semiurban 1.0
532 LP002717 Male 1.0 0 1 0.0 1025 5500.0 216.0 360.0 0 Rural 1.0
533 LP002720 Male 1.0 3+ 1 0.0 4281 0.0 100.0 360.0 1 Urban 1.0
534 LP002723 Male 0.0 2 1 0.0 3588 0.0 110.0 360.0 0 Rural 0.0
535 LP002729 Male 0.0 1 1 0.0 11250 0.0 196.0 360.0 0 Semiurban 0.0
536 LP002731 Female 0.0 0 0 1.0 18165 0.0 125.0 360.0 1 Urban 1.0
537 LP002732 Male 0.0 0 0 0.0 2550 2042.0 126.0 360.0 1 Rural 1.0
538 LP002734 Male 1.0 0 1 0.0 6133 3906.0 324.0 360.0 1 Urban 1.0
539 LP002738 Male 0.0 2 1 0.0 3617 0.0 107.0 360.0 1 Semiurban 1.0
540 LP002739 Male 1.0 0 0 0.0 2917 536.0 66.0 360.0 1 Rural 0.0
541 LP002740 Male 1.0 3+ 1 0.0 6417 0.0 157.0 180.0 1 Rural 1.0
542 LP002741 Female 1.0 1 1 0.0 4608 2845.0 140.0 180.0 1 Semiurban 1.0
543 LP002743 Female 0.0 0 1 0.0 2138 0.0 99.0 360.0 0 Semiurban 0.0
544 LP002753 Female 0.0 1 1 0.0 3652 0.0 95.0 360.0 1 Semiurban 1.0
545 LP002755 Male 1.0 1 0 0.0 2239 2524.0 128.0 360.0 1 Urban 1.0
546 LP002757 Female 1.0 0 0 0.0 3017 663.0 102.0 360.0 0 Semiurban 1.0
547 LP002767 Male 1.0 0 1 0.0 2768 1950.0 155.0 360.0 1 Rural 1.0
548 LP002768 Male 0.0 0 0 0.0 3358 0.0 80.0 36.0 1 Semiurban 0.0
549 LP002772 Male 0.0 0 1 0.0 2526 1783.0 145.0 360.0 1 Rural 1.0
550 LP002776 Female 0.0 0 1 0.0 5000 0.0 103.0 360.0 0 Semiurban 0.0
551 LP002777 Male 1.0 0 1 0.0 2785 2016.0 110.0 360.0 1 Rural 1.0
552 LP002778 Male 1.0 2 1 1.0 6633 0.0 0.0 360.0 0 Rural 0.0
553 LP002784 Male 1.0 1 0 0.0 2492 2375.0 0.0 360.0 1 Rural 1.0
554 LP002785 Male 1.0 1 1 0.0 3333 3250.0 158.0 360.0 1 Urban 1.0
555 LP002788 Male 1.0 0 0 0.0 2454 2333.0 181.0 360.0 0 Urban 0.0
556 LP002789 Male 1.0 0 1 0.0 3593 4266.0 132.0 180.0 0 Rural 0.0
557 LP002792 Male 1.0 1 1 0.0 5468 1032.0 26.0 360.0 1 Semiurban 1.0
558 LP002794 Female 0.0 0 1 0.0 2667 1625.0 84.0 360.0 0 Urban 1.0
559 LP002795 Male 1.0 3+ 1 1.0 10139 0.0 260.0 360.0 1 Semiurban 1.0
560 LP002798 Male 1.0 0 1 0.0 3887 2669.0 162.0 360.0 1 Semiurban 1.0
561 LP002804 Female 1.0 0 1 0.0 4180 2306.0 182.0 360.0 1 Semiurban 1.0
562 LP002807 Male 1.0 2 0 0.0 3675 242.0 108.0 360.0 1 Semiurban 1.0
563 LP002813 Female 1.0 1 1 1.0 19484 0.0 600.0 360.0 1 Semiurban 1.0
564 LP002820 Male 1.0 0 1 0.0 5923 2054.0 211.0 360.0 1 Rural 1.0
565 LP002821 Male 0.0 0 0 1.0 5800 0.0 132.0 360.0 1 Semiurban 1.0
566 LP002832 Male 1.0 2 1 0.0 8799 0.0 258.0 360.0 0 Urban 0.0
567 LP002833 Male 1.0 0 0 0.0 4467 0.0 120.0 360.0 0 Rural 1.0
568 LP002836 Male 0.0 0 1 0.0 3333 0.0 70.0 360.0 1 Urban 1.0
569 LP002837 Male 1.0 3+ 1 0.0 3400 2500.0 123.0 360.0 0 Rural 0.0
570 LP002840 Female 0.0 0 1 0.0 2378 0.0 9.0 360.0 1 Urban 0.0
571 LP002841 Male 1.0 0 1 0.0 3166 2064.0 104.0 360.0 0 Urban 0.0
572 LP002842 Male 1.0 1 1 0.0 3417 1750.0 186.0 360.0 1 Urban 1.0
573 LP002847 Male 1.0 1 0.0 5116 1451.0 165.0 360.0 0 Urban 0.0
574 LP002855 Male 1.0 2 1 0.0 16666 0.0 275.0 360.0 1 Urban 1.0
575 LP002862 Male 1.0 2 0 0.0 6125 1625.0 187.0 480.0 1 Semiurban 0.0
576 LP002863 Male 1.0 3+ 1 0.0 6406 0.0 150.0 360.0 1 Semiurban 0.0
577 LP002868 Male 1.0 2 1 0.0 3159 461.0 108.0 84.0 1 Urban 1.0
578 LP002872 1.0 0 1 0.0 3087 2210.0 136.0 360.0 0 Semiurban 0.0
579 LP002874 Male 0.0 0 1 0.0 3229 2739.0 110.0 360.0 1 Urban 1.0
580 LP002877 Male 1.0 1 1 0.0 1782 2232.0 107.0 360.0 1 Rural 1.0
581 LP002888 Male 0.0 0 1 0.0 3182 2917.0 161.0 360.0 1 Urban 1.0
582 LP002892 Male 1.0 2 1 0.0 6540 0.0 205.0 360.0 1 Semiurban 1.0
583 LP002893 Male 0.0 0 1 0.0 1836 33837.0 90.0 360.0 1 Urban 0.0
584 LP002894 Female 1.0 0 1 0.0 3166 0.0 36.0 360.0 1 Semiurban 1.0
585 LP002898 Male 1.0 1 1 0.0 1880 0.0 61.0 360.0 0 Rural 0.0
586 LP002911 Male 1.0 1 1 0.0 2787 1917.0 146.0 360.0 0 Rural 0.0
587 LP002912 Male 1.0 1 1 0.0 4283 3000.0 172.0 84.0 1 Rural 0.0
588 LP002916 Male 1.0 0 1 0.0 2297 1522.0 104.0 360.0 1 Urban 1.0
589 LP002917 Female 0.0 0 0 0.0 2165 0.0 70.0 360.0 1 Semiurban 1.0
590 LP002925 0.0 0 1 0.0 4750 0.0 94.0 360.0 1 Semiurban 1.0
591 LP002926 Male 1.0 2 1 1.0 2726 0.0 106.0 360.0 0 Semiurban 0.0
592 LP002928 Male 1.0 0 1 0.0 3000 3416.0 56.0 180.0 1 Semiurban 1.0
593 LP002931 Male 1.0 2 1 1.0 6000 0.0 205.0 240.0 1 Semiurban 0.0
594 LP002933 0.0 3+ 1 1.0 9357 0.0 292.0 360.0 1 Semiurban 1.0
595 LP002936 Male 1.0 0 1 0.0 3859 3300.0 142.0 180.0 1 Rural 1.0
596 LP002938 Male 1.0 0 1 1.0 16120 0.0 260.0 360.0 1 Urban 1.0
597 LP002940 Male 0.0 0 0 0.0 3833 0.0 110.0 360.0 1 Rural 1.0
598 LP002941 Male 1.0 2 0 1.0 6383 1000.0 187.0 360.0 1 Rural 0.0
599 LP002943 Male 0.0 1 0.0 2987 0.0 88.0 360.0 0 Semiurban 0.0
600 LP002945 Male 1.0 0 1 1.0 9963 0.0 180.0 360.0 1 Rural 1.0
601 LP002948 Male 1.0 2 1 0.0 5780 0.0 192.0 360.0 1 Urban 1.0
602 LP002949 Female 0.0 3+ 1 0.0 416 41667.0 350.0 180.0 0 Urban 0.0
603 LP002950 Male 1.0 0 0 0.0 2894 2792.0 155.0 360.0 1 Rural 1.0
604 LP002953 Male 1.0 3+ 1 0.0 5703 0.0 128.0 360.0 1 Urban 1.0
605 LP002958 Male 0.0 0 1 0.0 3676 4301.0 172.0 360.0 1 Rural 1.0
606 LP002959 Female 1.0 1 1 0.0 12000 0.0 496.0 360.0 1 Semiurban 1.0
607 LP002960 Male 1.0 0 0 0.0 2400 3800.0 0.0 180.0 1 Urban 0.0
608 LP002961 Male 1.0 1 1 0.0 3400 2500.0 173.0 360.0 1 Semiurban 1.0
609 LP002964 Male 1.0 2 0 0.0 3987 1411.0 157.0 360.0 1 Rural 1.0
610 LP002974 Male 1.0 0 1 0.0 3232 1950.0 108.0 360.0 1 Rural 1.0
611 LP002978 Female 0.0 0 1 0.0 2900 0.0 71.0 360.0 1 Rural 1.0
612 LP002979 Male 1.0 3+ 1 0.0 4106 0.0 40.0 180.0 1 Rural 1.0
613 LP002983 Male 1.0 1 1 0.0 8072 240.0 253.0 360.0 1 Urban 1.0
614 LP002984 Male 1.0 2 1 0.0 7583 0.0 187.0 360.0 1 Urban 1.0
615 LP002990 Female 0.0 0 1 1.0 4583 0.0 133.0 360.0 0 Semiurban 0.0

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -0,0 +1,39 @@
# Лабораторная работа №7
### Рекуррентная нейронная сеть и задача генерации текста
## ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, keras, tensorflow
* запустить проект (стартовая точка lab7)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, keras, tensorflow
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* На основе выбранных художественных текстов происходит обучение рекуррентной нейронной сети для решения задачи генерации.
* Необходимо подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату.
### Тест
* Чтение текста из файлов .txt (eng_text.txt, rus_text.txt)
* Вызов функция get_model_data, из которой мы получаем входные, выходные данные (X, y), размер словаря и токенайзер. Используем Tokenizer с настройкой char_level=True, что позволяет упразднить использование Embedding слоя далее
* Создание объекта Sequential (последовательная рекуррентная нейронная сеть) и добавление двух слоёв LSTM. LSTM (Long Short-Term Memory) представляет собой разновидность рекуррентной нейронной сети, которая эффективно работает с последовательными данными. Использование нескольких слоёв даёт большую гибкость. Dropout — это метод регуляризации для нейронных сетей и моделей глубокого обучения, решение проблемы переобучения. Слой Dense с функцией активации softmax используется для предсказания следующего слова
* Компилирование модели с использованием sparse_categorical_crossentropy
* Обучение модели на 100 эпохах (оптимальный вариант)
* Генерация текста
Сгенерированные тексты
* ENG: I must be getting somewhere near the centre of the earth. how funny it'll seem to come out among the people that walk with their heads downward! the antipathies, i think—' (for, you see, alice had learnt several things of this
* RUS: господин осматривал свою комнату, внесены были его пожитки: прежде всего чемодан из белой кожи, несколько поистасканный, показывавший, что был не в первый раз в дороге. чемодан внесли кучер селифан отправился на конюшню вози
![Rus](result_rus.png)
![Eng](result_eng.png)
По итогу, программа способна сгенерировать осмысленный текст в каждом из случаев

View File

@@ -0,0 +1,7 @@
Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled 'ORANGE MARMALADE', but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody, so managed to put it into one of the cupboards as she fell past it.
'Well!' thought Alice to herself, 'after such a fall as this, I shall think nothing of tumbling down stairs! How brave they'll all think me at home! Why, I wouldn't say anything about it, even if I fell off the top of the house!' (Which was very likely true.)
Down, down, down. Would the fall NEVER come to an end! 'I wonder how many miles I've fallen by this time?' she said aloud. 'I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think—' (for, you see, Alice had learnt several things of this sort in her lessons in the schoolroom, and though this was not a VERY good opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) '—yes, that's about the right distance—but then I wonder what Latitude or Longitude I've got to?' (Alice had no idea what Latitude was, or Longitude either, but thought they were nice grand words to say.)
Presently she began again. 'I wonder if I shall fall right THROUGH the earth! How funny it'll seem to come out among the people that walk with their heads downward! The Antipathies, I think—' (she was rather glad there WAS no one listening, this time, as it didn't sound at all the right word) '—but I shall have to ask them what the name of the country is, you know. Please, Ma'am, is this New Zealand or Australia?' (and she tried to curtsey as she spoke—fancy CURTSEYING as you're falling through the air!

View File

@@ -0,0 +1,75 @@
from keras import Sequential
from keras.layers import LSTM, Dense, Dropout
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import numpy as np
with open('rus_text.txt', 'r', encoding='utf-8') as file:
text = file.read()
def create_sequences(text, seq_len):
sequences = []
next_chars = []
for i in range(0, len(text) - seq_len):
sequences.append(text[i:i + seq_len])
next_chars.append(text[i + seq_len])
return sequences, next_chars
def get_model_data(seq_length):
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts([text])
token_text = tokenizer.texts_to_sequences([text])[0]
sequences, next_chars = create_sequences(token_text, seq_length)
vocab_size = len(tokenizer.word_index) + 1
x = pad_sequences(sequences, maxlen=seq_length)
y = np.array(next_chars)
return x, y, vocab_size, tokenizer
def model_build(model, vocab_size):
model.add(LSTM(256, input_shape=(seq_length, 1), return_sequences=True))
model.add(LSTM(128, input_shape=(seq_length, 1)))
model.add(Dropout(0.2, input_shape=(60,)))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Функция для генерации текста
def generate_text(seed_text, gen_length, tokenizer, model):
generated_text = seed_text
for _ in range(gen_length):
sequence = tokenizer.texts_to_sequences([seed_text])[0]
sequence = pad_sequences([sequence], maxlen=seq_length)
prediction = model.predict(sequence)[0]
predicted_index = np.argmax(prediction)
predicted_char = tokenizer.index_word[predicted_index]
generated_text += predicted_char
seed_text += predicted_char
seed_text = seed_text[1:]
return generated_text
seq_length = 10
seed_text = "господин осматривал свою"
# Создание экземпляра Tokenizer и обучение на тексте
X, y, vocab_size, tokenizer = get_model_data(seq_length)
model = Sequential()
model_build(model, vocab_size)
model.fit(X, y, epochs=100, verbose=1)
generated_text = generate_text(seed_text, 200, tokenizer, model)
print(generated_text)

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

View File

@@ -0,0 +1,3 @@
В ворота гостиницы губернского города NN въехала довольно красивая рессорная небольшая бричка, в какой ездят холостяки: отставные подполковники, штабс-капитаны, помещики, имеющие около сотни душ крестьян, — словом, все те, которых называют господами средней руки. В бричке сидел господин, не красавец, но и не дурной наружности, ни слишком толст, ни слишком тонок; нельзя сказать, чтобы стар, однако ж и не так чтобы слишком молод. Въезд его не произвел в городе совершенно никакого шума и не был сопровожден ничем особенным; только два русские мужика, стоявшие у дверей кабака против гостиницы, сделали кое-какие замечания, относившиеся, впрочем, более к экипажу, чем к сидевшему в нем. «Вишь ты, — сказал один другому, — вон какое колесо! что ты думаешь, доедет то колесо, если б случилось, в Москву или не доедет?» — «Доедет», — отвечал другой. «А в Казань-то, я думаю, не доедет?» — «В Казань не доедет», — отвечал другой. Этим разговор и кончился. Да еще, когда бричка подъехала к гостинице, встретился молодой человек в белых канифасовых панталонах, весьма узких и коротких, во фраке с покушеньями на моду, из-под которого видна была манишка, застегнутая тульскою булавкою с бронзовым пистолетом. Молодой человек оборотился назад, посмотрел экипаж, придержал рукою картуз, чуть не слетевший от ветра, и пошел своей дорогой.
Когда экипаж въехал на двор, господин был встречен трактирным слугою, или половым, как их называют в русских трактирах, живым и вертлявым до такой степени, что даже нельзя было рассмотреть, какое у него было лицо. Он выбежал проворно, с салфеткой в руке, весь длинный и в длинном демикотонном сюртуке со спинкою чуть не на самом затылке, встряхнул волосами и повел проворно господина вверх по всей деревянной галдарее показывать ниспосланный ему Богом покой. Покой был известного рода, ибо гостиница была тоже известного рода, то есть именно такая, как бывают гостиницы в губернских городах, где за два рубля в сутки проезжающие получают покойную комнату с тараканами, выглядывающими, как чернослив, из всех углов, и дверью в соседнее помещение, всегда заставленную комодом, где устроивается сосед, молчаливый и спокойный человек, но чрезвычайно любопытный, интересующийся знать о всех подробностях проезжающего. Наружный фасад гостиницы отвечал ее внутренности: она была очень длинна, в два этажа; нижний не был выщекатурен и оставался в темно-красных кирпичиках, еще более потемневших от лихих погодных перемен и грязноватых уже самих по себе; верхний был выкрашен вечною желтою краскою; внизу были лавочки с хомутами, веревками и баранками. В угольной из этих лавочек, или, лучше, в окне, помещался сбитенщик с самоваром из красной меди и лицом так же красным, как самовар, так что издали можно бы подумать, что на окне стояло два самовара, если б один самовар не был с черною как смоль бородою.
Пока приезжий господин осматривал свою комнату, внесены были его пожитки: прежде всего чемодан из белой кожи, несколько поистасканный, показывавший, что был не в первый раз в дороге. Чемодан внесли кучер Селифан, низенький человек в тулупчике, и лакей Петрушка, малый лет тридцати, в просторном подержанном сюртуке, как видно с барского плеча, малый немного суровый на взгляд, с очень крупными губами и носом. Вслед за чемоданом внесен был небольшой ларчик красного дерева с штучными выкладками из карельской березы, сапожные колодки и завернутая в синюю бумагу жареная курица. Когда все это было внесено, кучер Селифан отправился на конюшню возиться около лошадей, а лакей Петрушка стал устраиваться в маленькой передней, очень темной конурке, куда уже успел притащить свою шинель и вместе с нею какой-то свой собственный запах, который был сообщен и принесенному вслед за тем мешку с разным лакейским туалетом. В этой конурке он приладил к стене узенькую трехногую кровать, накрыв ее небольшим подобием тюфяка, убитым и плоским, как блин, и, может быть, так же замаслившимся, как блин, который удалось ему вытребовать у хозяина гостиницы.

View File

@@ -0,0 +1,34 @@
## Лабораторная работа №6
### MLPClassifier
## Cтудент группы ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (lab6)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* По данным "Eligibility Prediction for Loan" решает задачу классификации, в которой необходимо выявить риски выдачи кредита. В качестве исходных данных используются признаки:
Credit_History - соответствие кредитной истории стандартам банка, ApplicantIncome - доход заявителя, LoanAmount - сумма кредитаб, Self_Employed - самозанятость (Да/Нет), Education - наличие образования, Married - заявитель женат/замужем (Да/Нет).
### Примеры работы:
#### Результаты:
* Было проведено несколько прогонов на разном количестве итераций (200, 400, 600, 800, 1000)
![Result](score_1.png)
![Result](score_2.png)
Средняя точность находится в диапазоне 50-60%, что является недостаточным значением. Увеличение итераций не дало значительного улучшения результата,
максиальный прирост составляет 10%
![Result](result_mean.jpg)

View File

@@ -0,0 +1,46 @@
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import pandas as pd
import numpy as np
def test_iter(iters_num, x_train, x_test, y_train, y_test):
print("Количество итераций: ", iters_num)
scores = []
for i in range(10):
neuro = MLPClassifier(max_iter=iters_num)
neuro.fit(x_train, y_train.values.ravel())
score = neuro.score(x_test, y_test)
print(f'Оценка №{i + 1} - {score}')
scores.append(score)
mean_value = np.mean(scores)
print(f"Средняя оценка - {mean_value}")
return mean_value
def start():
data = pd.read_csv('loan.csv')
x = data[['ApplicantIncome', 'LoanAmount', 'Credit_History', 'Self_Employed', 'Education', 'Married']]
y = data[['Loan_Status']]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42)
iters = [200, 400, 600, 800, 1000]
iters_means = []
for i in range(len(iters)):
mean_value = test_iter(iters[i], x_train, x_test, y_train, y_test)
iters_means.append(mean_value)
plt.figure(1, figsize=(16, 9))
plt.plot(iters, iters_means, c='r')
plt.show()
start()

View File

@@ -0,0 +1,615 @@
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
LP001002,Male,0.0,0,1,0.0,5849,0.0,360.0,1.0,0,Y,0.0
LP001003,Male,1.0,1,1,0.0,4583,1508.0,128.0,360.0,1,Rural,0.0
LP001005,Male,1.0,0,1,1.0,3000,0.0,66.0,360.0,1,Urban,1.0
LP001006,Male,1.0,0,0,0.0,2583,2358.0,120.0,360.0,1,Urban,1.0
LP001008,Male,0.0,0,1,0.0,6000,0.0,141.0,360.0,1,Urban,1.0
LP001011,Male,1.0,2,1,1.0,5417,4196.0,267.0,360.0,1,Urban,1.0
LP001013,Male,1.0,0,0,0.0,2333,1516.0,95.0,360.0,1,Urban,1.0
LP001014,Male,1.0,3+,1,0.0,3036,2504.0,158.0,360.0,0,Semiurban,0.0
LP001018,Male,1.0,2,1,0.0,4006,1526.0,168.0,360.0,1,Urban,1.0
LP001020,Male,1.0,1,1,0.0,12841,10968.0,349.0,360.0,1,Semiurban,0.0
LP001024,Male,1.0,2,1,0.0,3200,700.0,70.0,360.0,1,Urban,1.0
LP001027,Male,1.0,2,1,0.0,2500,1840.0,109.0,360.0,1,Urban,1.0
LP001028,Male,1.0,2,1,0.0,3073,8106.0,200.0,360.0,1,Urban,1.0
LP001029,Male,0.0,0,1,0.0,1853,2840.0,114.0,360.0,1,Rural,0.0
LP001030,Male,1.0,2,1,0.0,1299,1086.0,17.0,120.0,1,Urban,1.0
LP001032,Male,0.0,0,1,0.0,4950,0.0,125.0,360.0,1,Urban,1.0
LP001034,Male,0.0,1,0,0.0,3596,0.0,100.0,240.0,0,Urban,1.0
LP001036,Female,0.0,0,1,0.0,3510,0.0,76.0,360.0,0,Urban,0.0
LP001038,Male,1.0,0,0,0.0,4887,0.0,133.0,360.0,1,Rural,0.0
LP001041,Male,1.0,0,1,0.0,2600,3500.0,115.0,,1,Urban,1.0
LP001043,Male,1.0,0,0,0.0,7660,0.0,104.0,360.0,0,Urban,0.0
LP001046,Male,1.0,1,1,0.0,5955,5625.0,315.0,360.0,1,Urban,1.0
LP001047,Male,1.0,0,0,0.0,2600,1911.0,116.0,360.0,0,Semiurban,0.0
LP001050,,1.0,2,0,0.0,3365,1917.0,112.0,360.0,0,Rural,0.0
LP001052,Male,1.0,1,1,0.0,3717,2925.0,151.0,360.0,0,Semiurban,0.0
LP001066,Male,1.0,0,1,1.0,9560,0.0,191.0,360.0,1,Semiurban,1.0
LP001068,Male,1.0,0,1,0.0,2799,2253.0,122.0,360.0,1,Semiurban,1.0
LP001073,Male,1.0,2,0,0.0,4226,1040.0,110.0,360.0,1,Urban,1.0
LP001086,Male,0.0,0,0,0.0,1442,0.0,35.0,360.0,1,Urban,0.0
LP001087,Female,0.0,2,1,0.0,3750,2083.0,120.0,360.0,1,Semiurban,1.0
LP001091,Male,1.0,1,1,0.0,4166,3369.0,201.0,360.0,0,Urban,0.0
LP001095,Male,0.0,0,1,0.0,3167,0.0,74.0,360.0,1,Urban,0.0
LP001097,Male,0.0,1,1,1.0,4692,0.0,106.0,360.0,1,Rural,0.0
LP001098,Male,1.0,0,1,0.0,3500,1667.0,114.0,360.0,1,Semiurban,1.0
LP001100,Male,0.0,3+,1,0.0,12500,3000.0,320.0,360.0,1,Rural,0.0
LP001106,Male,1.0,0,1,0.0,2275,2067.0,0.0,360.0,1,Urban,1.0
LP001109,Male,1.0,0,1,0.0,1828,1330.0,100.0,,0,Urban,0.0
LP001112,Female,1.0,0,1,0.0,3667,1459.0,144.0,360.0,1,Semiurban,1.0
LP001114,Male,0.0,0,1,0.0,4166,7210.0,184.0,360.0,1,Urban,1.0
LP001116,Male,0.0,0,0,0.0,3748,1668.0,110.0,360.0,1,Semiurban,1.0
LP001119,Male,0.0,0,1,0.0,3600,0.0,80.0,360.0,1,Urban,0.0
LP001120,Male,0.0,0,1,0.0,1800,1213.0,47.0,360.0,1,Urban,1.0
LP001123,Male,1.0,0,1,0.0,2400,0.0,75.0,360.0,0,Urban,1.0
LP001131,Male,1.0,0,1,0.0,3941,2336.0,134.0,360.0,1,Semiurban,1.0
LP001136,Male,1.0,0,0,1.0,4695,0.0,96.0,,1,Urban,1.0
LP001137,Female,0.0,0,1,0.0,3410,0.0,88.0,,1,Urban,1.0
LP001138,Male,1.0,1,1,0.0,5649,0.0,44.0,360.0,1,Urban,1.0
LP001144,Male,1.0,0,1,0.0,5821,0.0,144.0,360.0,1,Urban,1.0
LP001146,Female,1.0,0,1,0.0,2645,3440.0,120.0,360.0,0,Urban,0.0
LP001151,Female,0.0,0,1,0.0,4000,2275.0,144.0,360.0,1,Semiurban,1.0
LP001155,Female,1.0,0,0,0.0,1928,1644.0,100.0,360.0,1,Semiurban,1.0
LP001157,Female,0.0,0,1,0.0,3086,0.0,120.0,360.0,1,Semiurban,1.0
LP001164,Female,0.0,0,1,0.0,4230,0.0,112.0,360.0,1,Semiurban,0.0
LP001179,Male,1.0,2,1,0.0,4616,0.0,134.0,360.0,1,Urban,0.0
LP001186,Female,1.0,1,1,1.0,11500,0.0,286.0,360.0,0,Urban,0.0
LP001194,Male,1.0,2,1,0.0,2708,1167.0,97.0,360.0,1,Semiurban,1.0
LP001195,Male,1.0,0,1,0.0,2132,1591.0,96.0,360.0,1,Semiurban,1.0
LP001197,Male,1.0,0,1,0.0,3366,2200.0,135.0,360.0,1,Rural,0.0
LP001198,Male,1.0,1,1,0.0,8080,2250.0,180.0,360.0,1,Urban,1.0
LP001199,Male,1.0,2,0,0.0,3357,2859.0,144.0,360.0,1,Urban,1.0
LP001205,Male,1.0,0,1,0.0,2500,3796.0,120.0,360.0,1,Urban,1.0
LP001206,Male,1.0,3+,1,0.0,3029,0.0,99.0,360.0,1,Urban,1.0
LP001207,Male,1.0,0,0,1.0,2609,3449.0,165.0,180.0,0,Rural,0.0
LP001213,Male,1.0,1,1,0.0,4945,0.0,0.0,360.0,0,Rural,0.0
LP001222,Female,0.0,0,1,0.0,4166,0.0,116.0,360.0,0,Semiurban,0.0
LP001225,Male,1.0,0,1,0.0,5726,4595.0,258.0,360.0,1,Semiurban,0.0
LP001228,Male,0.0,0,0,0.0,3200,2254.0,126.0,180.0,0,Urban,0.0
LP001233,Male,1.0,1,1,0.0,10750,0.0,312.0,360.0,1,Urban,1.0
LP001238,Male,1.0,3+,0,1.0,7100,0.0,125.0,60.0,1,Urban,1.0
LP001241,Female,0.0,0,1,0.0,4300,0.0,136.0,360.0,0,Semiurban,0.0
LP001243,Male,1.0,0,1,0.0,3208,3066.0,172.0,360.0,1,Urban,1.0
LP001245,Male,1.0,2,0,1.0,1875,1875.0,97.0,360.0,1,Semiurban,1.0
LP001248,Male,0.0,0,1,0.0,3500,0.0,81.0,300.0,1,Semiurban,1.0
LP001250,Male,1.0,3+,0,0.0,4755,0.0,95.0,,0,Semiurban,0.0
LP001253,Male,1.0,3+,1,1.0,5266,1774.0,187.0,360.0,1,Semiurban,1.0
LP001255,Male,0.0,0,1,0.0,3750,0.0,113.0,480.0,1,Urban,0.0
LP001256,Male,0.0,0,1,0.0,3750,4750.0,176.0,360.0,1,Urban,0.0
LP001259,Male,1.0,1,1,1.0,1000,3022.0,110.0,360.0,1,Urban,0.0
LP001263,Male,1.0,3+,1,0.0,3167,4000.0,180.0,300.0,0,Semiurban,0.0
LP001264,Male,1.0,3+,0,1.0,3333,2166.0,130.0,360.0,0,Semiurban,1.0
LP001265,Female,0.0,0,1,0.0,3846,0.0,111.0,360.0,1,Semiurban,1.0
LP001266,Male,1.0,1,1,1.0,2395,0.0,0.0,360.0,1,Semiurban,1.0
LP001267,Female,1.0,2,1,0.0,1378,1881.0,167.0,360.0,1,Urban,0.0
LP001273,Male,1.0,0,1,0.0,6000,2250.0,265.0,360.0,0,Semiurban,0.0
LP001275,Male,1.0,1,1,0.0,3988,0.0,50.0,240.0,1,Urban,1.0
LP001279,Male,0.0,0,1,0.0,2366,2531.0,136.0,360.0,1,Semiurban,1.0
LP001280,Male,1.0,2,0,0.0,3333,2000.0,99.0,360.0,0,Semiurban,1.0
LP001282,Male,1.0,0,1,0.0,2500,2118.0,104.0,360.0,1,Semiurban,1.0
LP001289,Male,0.0,0,1,0.0,8566,0.0,210.0,360.0,1,Urban,1.0
LP001310,Male,1.0,0,1,0.0,5695,4167.0,175.0,360.0,1,Semiurban,1.0
LP001316,Male,1.0,0,1,0.0,2958,2900.0,131.0,360.0,1,Semiurban,1.0
LP001318,Male,1.0,2,1,0.0,6250,5654.0,188.0,180.0,1,Semiurban,1.0
LP001319,Male,1.0,2,0,0.0,3273,1820.0,81.0,360.0,1,Urban,1.0
LP001322,Male,0.0,0,1,0.0,4133,0.0,122.0,360.0,1,Semiurban,1.0
LP001325,Male,0.0,0,0,0.0,3620,0.0,25.0,120.0,1,Semiurban,1.0
LP001326,Male,0.0,0,1,0.0,6782,0.0,0.0,360.0,0,Urban,0.0
LP001327,Female,1.0,0,1,0.0,2484,2302.0,137.0,360.0,1,Semiurban,1.0
LP001333,Male,1.0,0,1,0.0,1977,997.0,50.0,360.0,1,Semiurban,1.0
LP001334,Male,1.0,0,0,0.0,4188,0.0,115.0,180.0,1,Semiurban,1.0
LP001343,Male,1.0,0,1,0.0,1759,3541.0,131.0,360.0,1,Semiurban,1.0
LP001345,Male,1.0,2,0,0.0,4288,3263.0,133.0,180.0,1,Urban,1.0
LP001349,Male,0.0,0,1,0.0,4843,3806.0,151.0,360.0,1,Semiurban,1.0
LP001350,Male,1.0,,1,0.0,13650,0.0,0.0,360.0,1,Urban,1.0
LP001356,Male,1.0,0,1,0.0,4652,3583.0,0.0,360.0,1,Semiurban,1.0
LP001357,Male,0.0,,1,0.0,3816,754.0,160.0,360.0,1,Urban,1.0
LP001367,Male,1.0,1,1,0.0,3052,1030.0,100.0,360.0,1,Urban,1.0
LP001369,Male,1.0,2,1,0.0,11417,1126.0,225.0,360.0,1,Urban,1.0
LP001370,Male,0.0,0,0,0.0,7333,0.0,120.0,360.0,1,Rural,0.0
LP001379,Male,1.0,2,1,0.0,3800,3600.0,216.0,360.0,0,Urban,0.0
LP001384,Male,1.0,3+,0,0.0,2071,754.0,94.0,480.0,1,Semiurban,1.0
LP001385,Male,0.0,0,1,0.0,5316,0.0,136.0,360.0,1,Urban,1.0
LP001387,Female,1.0,0,1,0.0,2929,2333.0,139.0,360.0,1,Semiurban,1.0
LP001391,Male,1.0,0,0,0.0,3572,4114.0,152.0,,0,Rural,0.0
LP001392,Female,0.0,1,1,1.0,7451,0.0,0.0,360.0,1,Semiurban,1.0
LP001398,Male,0.0,0,1,0.0,5050,0.0,118.0,360.0,1,Semiurban,1.0
LP001401,Male,1.0,1,1,0.0,14583,0.0,185.0,180.0,1,Rural,1.0
LP001404,Female,1.0,0,1,0.0,3167,2283.0,154.0,360.0,1,Semiurban,1.0
LP001405,Male,1.0,1,1,0.0,2214,1398.0,85.0,360.0,0,Urban,1.0
LP001421,Male,1.0,0,1,0.0,5568,2142.0,175.0,360.0,1,Rural,0.0
LP001422,Female,0.0,0,1,0.0,10408,0.0,259.0,360.0,1,Urban,1.0
LP001426,Male,1.0,,1,0.0,5667,2667.0,180.0,360.0,1,Rural,1.0
LP001430,Female,0.0,0,1,0.0,4166,0.0,44.0,360.0,1,Semiurban,1.0
LP001431,Female,0.0,0,1,0.0,2137,8980.0,137.0,360.0,0,Semiurban,1.0
LP001432,Male,1.0,2,1,0.0,2957,0.0,81.0,360.0,1,Semiurban,1.0
LP001439,Male,1.0,0,0,0.0,4300,2014.0,194.0,360.0,1,Rural,1.0
LP001443,Female,0.0,0,1,0.0,3692,0.0,93.0,360.0,0,Rural,1.0
LP001448,,1.0,3+,1,0.0,23803,0.0,370.0,360.0,1,Rural,1.0
LP001449,Male,0.0,0,1,0.0,3865,1640.0,0.0,360.0,1,Rural,1.0
LP001451,Male,1.0,1,1,1.0,10513,3850.0,160.0,180.0,0,Urban,0.0
LP001465,Male,1.0,0,1,0.0,6080,2569.0,182.0,360.0,0,Rural,0.0
LP001469,Male,0.0,0,1,1.0,20166,0.0,650.0,480.0,0,Urban,1.0
LP001473,Male,0.0,0,1,0.0,2014,1929.0,74.0,360.0,1,Urban,1.0
LP001478,Male,0.0,0,1,0.0,2718,0.0,70.0,360.0,1,Semiurban,1.0
LP001482,Male,1.0,0,1,1.0,3459,0.0,25.0,120.0,1,Semiurban,1.0
LP001487,Male,0.0,0,1,0.0,4895,0.0,102.0,360.0,1,Semiurban,1.0
LP001488,Male,1.0,3+,1,0.0,4000,7750.0,290.0,360.0,1,Semiurban,0.0
LP001489,Female,1.0,0,1,0.0,4583,0.0,84.0,360.0,1,Rural,0.0
LP001491,Male,1.0,2,1,1.0,3316,3500.0,88.0,360.0,1,Urban,1.0
LP001492,Male,0.0,0,1,0.0,14999,0.0,242.0,360.0,0,Semiurban,0.0
LP001493,Male,1.0,2,0,0.0,4200,1430.0,129.0,360.0,1,Rural,0.0
LP001497,Male,1.0,2,1,0.0,5042,2083.0,185.0,360.0,1,Rural,0.0
LP001498,Male,0.0,0,1,0.0,5417,0.0,168.0,360.0,1,Urban,1.0
LP001504,Male,0.0,0,1,1.0,6950,0.0,175.0,180.0,1,Semiurban,1.0
LP001507,Male,1.0,0,1,0.0,2698,2034.0,122.0,360.0,1,Semiurban,1.0
LP001508,Male,1.0,2,1,0.0,11757,0.0,187.0,180.0,1,Urban,1.0
LP001514,Female,1.0,0,1,0.0,2330,4486.0,100.0,360.0,1,Semiurban,1.0
LP001516,Female,1.0,2,1,0.0,14866,0.0,70.0,360.0,1,Urban,1.0
LP001518,Male,1.0,1,1,0.0,1538,1425.0,30.0,360.0,1,Urban,1.0
LP001519,Female,0.0,0,1,0.0,10000,1666.0,225.0,360.0,1,Rural,0.0
LP001520,Male,1.0,0,1,0.0,4860,830.0,125.0,360.0,1,Semiurban,1.0
LP001528,Male,0.0,0,1,0.0,6277,0.0,118.0,360.0,0,Rural,0.0
LP001529,Male,1.0,0,1,1.0,2577,3750.0,152.0,360.0,1,Rural,1.0
LP001531,Male,0.0,0,1,0.0,9166,0.0,244.0,360.0,1,Urban,0.0
LP001532,Male,1.0,2,0,0.0,2281,0.0,113.0,360.0,1,Rural,0.0
LP001535,Male,0.0,0,1,0.0,3254,0.0,50.0,360.0,1,Urban,1.0
LP001536,Male,1.0,3+,1,0.0,39999,0.0,600.0,180.0,0,Semiurban,1.0
LP001541,Male,1.0,1,1,0.0,6000,0.0,160.0,360.0,0,Rural,1.0
LP001543,Male,1.0,1,1,0.0,9538,0.0,187.0,360.0,1,Urban,1.0
LP001546,Male,0.0,0,1,0.0,2980,2083.0,120.0,360.0,1,Rural,1.0
LP001552,Male,1.0,0,1,0.0,4583,5625.0,255.0,360.0,1,Semiurban,1.0
LP001560,Male,1.0,0,0,0.0,1863,1041.0,98.0,360.0,1,Semiurban,1.0
LP001562,Male,1.0,0,1,0.0,7933,0.0,275.0,360.0,1,Urban,0.0
LP001565,Male,1.0,1,1,0.0,3089,1280.0,121.0,360.0,0,Semiurban,0.0
LP001570,Male,1.0,2,1,0.0,4167,1447.0,158.0,360.0,1,Rural,1.0
LP001572,Male,1.0,0,1,0.0,9323,0.0,75.0,180.0,1,Urban,1.0
LP001574,Male,1.0,0,1,0.0,3707,3166.0,182.0,,1,Rural,1.0
LP001577,Female,1.0,0,1,0.0,4583,0.0,112.0,360.0,1,Rural,0.0
LP001578,Male,1.0,0,1,0.0,2439,3333.0,129.0,360.0,1,Rural,1.0
LP001579,Male,0.0,0,1,0.0,2237,0.0,63.0,480.0,0,Semiurban,0.0
LP001580,Male,1.0,2,1,0.0,8000,0.0,200.0,360.0,1,Semiurban,1.0
LP001581,Male,1.0,0,0,0.0,1820,1769.0,95.0,360.0,1,Rural,1.0
LP001585,,1.0,3+,1,0.0,51763,0.0,700.0,300.0,1,Urban,1.0
LP001586,Male,1.0,3+,0,0.0,3522,0.0,81.0,180.0,1,Rural,0.0
LP001594,Male,1.0,0,1,0.0,5708,5625.0,187.0,360.0,1,Semiurban,1.0
LP001603,Male,1.0,0,0,1.0,4344,736.0,87.0,360.0,1,Semiurban,0.0
LP001606,Male,1.0,0,1,0.0,3497,1964.0,116.0,360.0,1,Rural,1.0
LP001608,Male,1.0,2,1,0.0,2045,1619.0,101.0,360.0,1,Rural,1.0
LP001610,Male,1.0,3+,1,0.0,5516,11300.0,495.0,360.0,0,Semiurban,0.0
LP001616,Male,1.0,1,1,0.0,3750,0.0,116.0,360.0,1,Semiurban,1.0
LP001630,Male,0.0,0,0,0.0,2333,1451.0,102.0,480.0,0,Urban,0.0
LP001633,Male,1.0,1,1,0.0,6400,7250.0,180.0,360.0,0,Urban,0.0
LP001634,Male,0.0,0,1,0.0,1916,5063.0,67.0,360.0,0,Rural,0.0
LP001636,Male,1.0,0,1,0.0,4600,0.0,73.0,180.0,1,Semiurban,1.0
LP001637,Male,1.0,1,1,0.0,33846,0.0,260.0,360.0,1,Semiurban,0.0
LP001639,Female,1.0,0,1,0.0,3625,0.0,108.0,360.0,1,Semiurban,1.0
LP001640,Male,1.0,0,1,1.0,39147,4750.0,120.0,360.0,1,Semiurban,1.0
LP001641,Male,1.0,1,1,1.0,2178,0.0,66.0,300.0,0,Rural,0.0
LP001643,Male,1.0,0,1,0.0,2383,2138.0,58.0,360.0,0,Rural,1.0
LP001644,,1.0,0,1,1.0,674,5296.0,168.0,360.0,1,Rural,1.0
LP001647,Male,1.0,0,1,0.0,9328,0.0,188.0,180.0,1,Rural,1.0
LP001653,Male,0.0,0,0,0.0,4885,0.0,48.0,360.0,1,Rural,1.0
LP001656,Male,0.0,0,1,0.0,12000,0.0,164.0,360.0,1,Semiurban,0.0
LP001657,Male,1.0,0,0,0.0,6033,0.0,160.0,360.0,1,Urban,0.0
LP001658,Male,0.0,0,1,0.0,3858,0.0,76.0,360.0,1,Semiurban,1.0
LP001664,Male,0.0,0,1,0.0,4191,0.0,120.0,360.0,1,Rural,1.0
LP001665,Male,1.0,1,1,0.0,3125,2583.0,170.0,360.0,1,Semiurban,0.0
LP001666,Male,0.0,0,1,0.0,8333,3750.0,187.0,360.0,1,Rural,1.0
LP001669,Female,0.0,0,0,0.0,1907,2365.0,120.0,,1,Urban,1.0
LP001671,Female,1.0,0,1,0.0,3416,2816.0,113.0,360.0,0,Semiurban,1.0
LP001673,Male,0.0,0,1,1.0,11000,0.0,83.0,360.0,1,Urban,0.0
LP001674,Male,1.0,1,0,0.0,2600,2500.0,90.0,360.0,1,Semiurban,1.0
LP001677,Male,0.0,2,1,0.0,4923,0.0,166.0,360.0,0,Semiurban,1.0
LP001682,Male,1.0,3+,0,0.0,3992,0.0,0.0,180.0,1,Urban,0.0
LP001688,Male,1.0,1,0,0.0,3500,1083.0,135.0,360.0,1,Urban,1.0
LP001691,Male,1.0,2,0,0.0,3917,0.0,124.0,360.0,1,Semiurban,1.0
LP001692,Female,0.0,0,0,0.0,4408,0.0,120.0,360.0,1,Semiurban,1.0
LP001693,Female,0.0,0,1,0.0,3244,0.0,80.0,360.0,1,Urban,1.0
LP001698,Male,0.0,0,0,0.0,3975,2531.0,55.0,360.0,1,Rural,1.0
LP001699,Male,0.0,0,1,0.0,2479,0.0,59.0,360.0,1,Urban,1.0
LP001702,Male,0.0,0,1,0.0,3418,0.0,127.0,360.0,1,Semiurban,0.0
LP001708,Female,0.0,0,1,0.0,10000,0.0,214.0,360.0,1,Semiurban,0.0
LP001711,Male,1.0,3+,1,0.0,3430,1250.0,128.0,360.0,0,Semiurban,0.0
LP001713,Male,1.0,1,1,1.0,7787,0.0,240.0,360.0,1,Urban,1.0
LP001715,Male,1.0,3+,0,1.0,5703,0.0,130.0,360.0,1,Rural,1.0
LP001716,Male,1.0,0,1,0.0,3173,3021.0,137.0,360.0,1,Urban,1.0
LP001720,Male,1.0,3+,0,0.0,3850,983.0,100.0,360.0,1,Semiurban,1.0
LP001722,Male,1.0,0,1,0.0,150,1800.0,135.0,360.0,1,Rural,0.0
LP001726,Male,1.0,0,1,0.0,3727,1775.0,131.0,360.0,1,Semiurban,1.0
LP001732,Male,1.0,2,1,0.0,5000,0.0,72.0,360.0,0,Semiurban,0.0
LP001734,Female,1.0,2,1,0.0,4283,2383.0,127.0,360.0,0,Semiurban,1.0
LP001736,Male,1.0,0,1,0.0,2221,0.0,60.0,360.0,0,Urban,0.0
LP001743,Male,1.0,2,1,0.0,4009,1717.0,116.0,360.0,1,Semiurban,1.0
LP001744,Male,0.0,0,1,0.0,2971,2791.0,144.0,360.0,1,Semiurban,1.0
LP001749,Male,1.0,0,1,0.0,7578,1010.0,175.0,,1,Semiurban,1.0
LP001750,Male,1.0,0,1,0.0,6250,0.0,128.0,360.0,1,Semiurban,1.0
LP001751,Male,1.0,0,1,0.0,3250,0.0,170.0,360.0,1,Rural,0.0
LP001754,Male,1.0,,0,1.0,4735,0.0,138.0,360.0,1,Urban,0.0
LP001758,Male,1.0,2,1,0.0,6250,1695.0,210.0,360.0,1,Semiurban,1.0
LP001760,Male,0.0,,1,0.0,4758,0.0,158.0,480.0,1,Semiurban,1.0
LP001761,Male,0.0,0,1,1.0,6400,0.0,200.0,360.0,1,Rural,1.0
LP001765,Male,1.0,1,1,0.0,2491,2054.0,104.0,360.0,1,Semiurban,1.0
LP001768,Male,1.0,0,1,0.0,3716,0.0,42.0,180.0,1,Rural,1.0
LP001770,Male,0.0,0,0,0.0,3189,2598.0,120.0,,1,Rural,1.0
LP001776,Female,0.0,0,1,0.0,8333,0.0,280.0,360.0,1,Semiurban,1.0
LP001778,Male,1.0,1,1,0.0,3155,1779.0,140.0,360.0,1,Semiurban,1.0
LP001784,Male,1.0,1,1,0.0,5500,1260.0,170.0,360.0,1,Rural,1.0
LP001786,Male,1.0,0,1,0.0,5746,0.0,255.0,360.0,0,Urban,0.0
LP001788,Female,0.0,0,1,1.0,3463,0.0,122.0,360.0,0,Urban,1.0
LP001790,Female,0.0,1,1,0.0,3812,0.0,112.0,360.0,1,Rural,1.0
LP001792,Male,1.0,1,1,0.0,3315,0.0,96.0,360.0,1,Semiurban,1.0
LP001798,Male,1.0,2,1,0.0,5819,5000.0,120.0,360.0,1,Rural,1.0
LP001800,Male,1.0,1,0,0.0,2510,1983.0,140.0,180.0,1,Urban,0.0
LP001806,Male,0.0,0,1,0.0,2965,5701.0,155.0,60.0,1,Urban,1.0
LP001807,Male,1.0,2,1,1.0,6250,1300.0,108.0,360.0,1,Rural,1.0
LP001811,Male,1.0,0,0,0.0,3406,4417.0,123.0,360.0,1,Semiurban,1.0
LP001813,Male,0.0,0,1,1.0,6050,4333.0,120.0,180.0,1,Urban,0.0
LP001814,Male,1.0,2,1,0.0,9703,0.0,112.0,360.0,1,Urban,1.0
LP001819,Male,1.0,1,0,0.0,6608,0.0,137.0,180.0,1,Urban,1.0
LP001824,Male,1.0,1,1,0.0,2882,1843.0,123.0,480.0,1,Semiurban,1.0
LP001825,Male,1.0,0,1,0.0,1809,1868.0,90.0,360.0,1,Urban,1.0
LP001835,Male,1.0,0,0,0.0,1668,3890.0,201.0,360.0,0,Semiurban,0.0
LP001836,Female,0.0,2,1,0.0,3427,0.0,138.0,360.0,1,Urban,0.0
LP001841,Male,0.0,0,0,1.0,2583,2167.0,104.0,360.0,1,Rural,1.0
LP001843,Male,1.0,1,0,0.0,2661,7101.0,279.0,180.0,1,Semiurban,1.0
LP001844,Male,0.0,0,1,1.0,16250,0.0,192.0,360.0,0,Urban,0.0
LP001846,Female,0.0,3+,1,0.0,3083,0.0,255.0,360.0,1,Rural,1.0
LP001849,Male,0.0,0,0,0.0,6045,0.0,115.0,360.0,0,Rural,0.0
LP001854,Male,1.0,3+,1,0.0,5250,0.0,94.0,360.0,1,Urban,0.0
LP001859,Male,1.0,0,1,0.0,14683,2100.0,304.0,360.0,1,Rural,0.0
LP001864,Male,1.0,3+,0,0.0,4931,0.0,128.0,360.0,0,Semiurban,0.0
LP001865,Male,1.0,1,1,0.0,6083,4250.0,330.0,360.0,0,Urban,1.0
LP001868,Male,0.0,0,1,0.0,2060,2209.0,134.0,360.0,1,Semiurban,1.0
LP001870,Female,0.0,1,1,0.0,3481,0.0,155.0,36.0,1,Semiurban,0.0
LP001871,Female,0.0,0,1,0.0,7200,0.0,120.0,360.0,1,Rural,1.0
LP001872,Male,0.0,0,1,1.0,5166,0.0,128.0,360.0,1,Semiurban,1.0
LP001875,Male,0.0,0,1,0.0,4095,3447.0,151.0,360.0,1,Rural,1.0
LP001877,Male,1.0,2,1,0.0,4708,1387.0,150.0,360.0,1,Semiurban,1.0
LP001882,Male,1.0,3+,1,0.0,4333,1811.0,160.0,360.0,0,Urban,1.0
LP001883,Female,0.0,0,1,0.0,3418,0.0,135.0,360.0,1,Rural,0.0
LP001884,Female,0.0,1,1,0.0,2876,1560.0,90.0,360.0,1,Urban,1.0
LP001888,Female,0.0,0,1,0.0,3237,0.0,30.0,360.0,1,Urban,1.0
LP001891,Male,1.0,0,1,0.0,11146,0.0,136.0,360.0,1,Urban,1.0
LP001892,Male,0.0,0,1,0.0,2833,1857.0,126.0,360.0,1,Rural,1.0
LP001894,Male,1.0,0,1,0.0,2620,2223.0,150.0,360.0,1,Semiurban,1.0
LP001896,Male,1.0,2,1,0.0,3900,0.0,90.0,360.0,1,Semiurban,1.0
LP001900,Male,1.0,1,1,0.0,2750,1842.0,115.0,360.0,1,Semiurban,1.0
LP001903,Male,1.0,0,1,0.0,3993,3274.0,207.0,360.0,1,Semiurban,1.0
LP001904,Male,1.0,0,1,0.0,3103,1300.0,80.0,360.0,1,Urban,1.0
LP001907,Male,1.0,0,1,0.0,14583,0.0,436.0,360.0,1,Semiurban,1.0
LP001908,Female,1.0,0,0,0.0,4100,0.0,124.0,360.0,0,Rural,1.0
LP001910,Male,0.0,1,0,1.0,4053,2426.0,158.0,360.0,0,Urban,0.0
LP001914,Male,1.0,0,1,0.0,3927,800.0,112.0,360.0,1,Semiurban,1.0
LP001915,Male,1.0,2,1,0.0,2301,985.7999878,78.0,180.0,1,Urban,1.0
LP001917,Female,0.0,0,1,0.0,1811,1666.0,54.0,360.0,1,Urban,1.0
LP001922,Male,1.0,0,1,0.0,20667,0.0,0.0,360.0,1,Rural,0.0
LP001924,Male,0.0,0,1,0.0,3158,3053.0,89.0,360.0,1,Rural,1.0
LP001925,Female,0.0,0,1,1.0,2600,1717.0,99.0,300.0,1,Semiurban,0.0
LP001926,Male,1.0,0,1,0.0,3704,2000.0,120.0,360.0,1,Rural,1.0
LP001931,Female,0.0,0,1,0.0,4124,0.0,115.0,360.0,1,Semiurban,1.0
LP001935,Male,0.0,0,1,0.0,9508,0.0,187.0,360.0,1,Rural,1.0
LP001936,Male,1.0,0,1,0.0,3075,2416.0,139.0,360.0,1,Rural,1.0
LP001938,Male,1.0,2,1,0.0,4400,0.0,127.0,360.0,0,Semiurban,0.0
LP001940,Male,1.0,2,1,0.0,3153,1560.0,134.0,360.0,1,Urban,1.0
LP001945,Female,0.0,,1,0.0,5417,0.0,143.0,480.0,0,Urban,0.0
LP001947,Male,1.0,0,1,0.0,2383,3334.0,172.0,360.0,1,Semiurban,1.0
LP001949,Male,1.0,3+,1,0.0,4416,1250.0,110.0,360.0,1,Urban,1.0
LP001953,Male,1.0,1,1,0.0,6875,0.0,200.0,360.0,1,Semiurban,1.0
LP001954,Female,1.0,1,1,0.0,4666,0.0,135.0,360.0,1,Urban,1.0
LP001955,Female,0.0,0,1,0.0,5000,2541.0,151.0,480.0,1,Rural,0.0
LP001963,Male,1.0,1,1,0.0,2014,2925.0,113.0,360.0,1,Urban,0.0
LP001964,Male,1.0,0,0,0.0,1800,2934.0,93.0,360.0,0,Urban,0.0
LP001972,Male,1.0,,0,0.0,2875,1750.0,105.0,360.0,1,Semiurban,1.0
LP001974,Female,0.0,0,1,0.0,5000,0.0,132.0,360.0,1,Rural,1.0
LP001977,Male,1.0,1,1,0.0,1625,1803.0,96.0,360.0,1,Urban,1.0
LP001978,Male,0.0,0,1,0.0,4000,2500.0,140.0,360.0,1,Rural,1.0
LP001990,Male,0.0,0,0,0.0,2000,0.0,0.0,360.0,1,Urban,0.0
LP001993,Female,0.0,0,1,0.0,3762,1666.0,135.0,360.0,1,Rural,1.0
LP001994,Female,0.0,0,1,0.0,2400,1863.0,104.0,360.0,0,Urban,0.0
LP001996,Male,0.0,0,1,0.0,20233,0.0,480.0,360.0,1,Rural,0.0
LP001998,Male,1.0,2,0,0.0,7667,0.0,185.0,360.0,0,Rural,1.0
LP002002,Female,0.0,0,1,0.0,2917,0.0,84.0,360.0,1,Semiurban,1.0
LP002004,Male,0.0,0,0,0.0,2927,2405.0,111.0,360.0,1,Semiurban,1.0
LP002006,Female,0.0,0,1,0.0,2507,0.0,56.0,360.0,1,Rural,1.0
LP002008,Male,1.0,2,1,1.0,5746,0.0,144.0,84.0,0,Rural,1.0
LP002024,,1.0,0,1,0.0,2473,1843.0,159.0,360.0,1,Rural,0.0
LP002031,Male,1.0,1,0,0.0,3399,1640.0,111.0,180.0,1,Urban,1.0
LP002035,Male,1.0,2,1,0.0,3717,0.0,120.0,360.0,1,Semiurban,1.0
LP002036,Male,1.0,0,1,0.0,2058,2134.0,88.0,360.0,0,Urban,1.0
LP002043,Female,0.0,1,1,0.0,3541,0.0,112.0,360.0,0,Semiurban,1.0
LP002050,Male,1.0,1,1,1.0,10000,0.0,155.0,360.0,1,Rural,0.0
LP002051,Male,1.0,0,1,0.0,2400,2167.0,115.0,360.0,1,Semiurban,1.0
LP002053,Male,1.0,3+,1,0.0,4342,189.0,124.0,360.0,1,Semiurban,1.0
LP002054,Male,1.0,2,0,0.0,3601,1590.0,0.0,360.0,1,Rural,1.0
LP002055,Female,0.0,0,1,0.0,3166,2985.0,132.0,360.0,0,Rural,1.0
LP002065,Male,1.0,3+,1,0.0,15000,0.0,300.0,360.0,1,Rural,1.0
LP002067,Male,1.0,1,1,1.0,8666,4983.0,376.0,360.0,0,Rural,0.0
LP002068,Male,0.0,0,1,0.0,4917,0.0,130.0,360.0,0,Rural,1.0
LP002082,Male,1.0,0,1,1.0,5818,2160.0,184.0,360.0,1,Semiurban,1.0
LP002086,Female,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002087,Female,0.0,0,1,0.0,2500,0.0,67.0,360.0,1,Urban,1.0
LP002097,Male,0.0,1,1,0.0,4384,1793.0,117.0,360.0,1,Urban,1.0
LP002098,Male,0.0,0,1,0.0,2935,0.0,98.0,360.0,1,Semiurban,1.0
LP002100,Male,0.0,,1,0.0,2833,0.0,71.0,360.0,1,Urban,1.0
LP002101,Male,1.0,0,1,0.0,63337,0.0,490.0,180.0,1,Urban,1.0
LP002103,,1.0,1,1,1.0,9833,1833.0,182.0,180.0,1,Urban,1.0
LP002106,Male,1.0,,1,1.0,5503,4490.0,70.0,,1,Semiurban,1.0
LP002110,Male,1.0,1,1,0.0,5250,688.0,160.0,360.0,1,Rural,1.0
LP002112,Male,1.0,2,1,1.0,2500,4600.0,176.0,360.0,1,Rural,1.0
LP002113,Female,0.0,3+,0,0.0,1830,0.0,0.0,360.0,0,Urban,0.0
LP002114,Female,0.0,0,1,0.0,4160,0.0,71.0,360.0,1,Semiurban,1.0
LP002115,Male,1.0,3+,0,0.0,2647,1587.0,173.0,360.0,1,Rural,0.0
LP002116,Female,0.0,0,1,0.0,2378,0.0,46.0,360.0,1,Rural,0.0
LP002119,Male,1.0,1,0,0.0,4554,1229.0,158.0,360.0,1,Urban,1.0
LP002126,Male,1.0,3+,0,0.0,3173,0.0,74.0,360.0,1,Semiurban,1.0
LP002128,Male,1.0,2,1,0.0,2583,2330.0,125.0,360.0,1,Rural,1.0
LP002129,Male,1.0,0,1,0.0,2499,2458.0,160.0,360.0,1,Semiurban,1.0
LP002130,Male,1.0,,0,0.0,3523,3230.0,152.0,360.0,0,Rural,0.0
LP002131,Male,1.0,2,0,0.0,3083,2168.0,126.0,360.0,1,Urban,1.0
LP002137,Male,1.0,0,1,0.0,6333,4583.0,259.0,360.0,0,Semiurban,1.0
LP002138,Male,1.0,0,1,0.0,2625,6250.0,187.0,360.0,1,Rural,1.0
LP002139,Male,1.0,0,1,0.0,9083,0.0,228.0,360.0,1,Semiurban,1.0
LP002140,Male,0.0,0,1,0.0,8750,4167.0,308.0,360.0,1,Rural,0.0
LP002141,Male,1.0,3+,1,0.0,2666,2083.0,95.0,360.0,1,Rural,1.0
LP002142,Female,1.0,0,1,1.0,5500,0.0,105.0,360.0,0,Rural,0.0
LP002143,Female,1.0,0,1,0.0,2423,505.0,130.0,360.0,1,Semiurban,1.0
LP002144,Female,0.0,,1,0.0,3813,0.0,116.0,180.0,1,Urban,1.0
LP002149,Male,1.0,2,1,0.0,8333,3167.0,165.0,360.0,1,Rural,1.0
LP002151,Male,1.0,1,1,0.0,3875,0.0,67.0,360.0,1,Urban,0.0
LP002158,Male,1.0,0,0,0.0,3000,1666.0,100.0,480.0,0,Urban,0.0
LP002160,Male,1.0,3+,1,0.0,5167,3167.0,200.0,360.0,1,Semiurban,1.0
LP002161,Female,0.0,1,1,0.0,4723,0.0,81.0,360.0,1,Semiurban,0.0
LP002170,Male,1.0,2,1,0.0,5000,3667.0,236.0,360.0,1,Semiurban,1.0
LP002175,Male,1.0,0,1,0.0,4750,2333.0,130.0,360.0,1,Urban,1.0
LP002178,Male,1.0,0,1,0.0,3013,3033.0,95.0,300.0,0,Urban,1.0
LP002180,Male,0.0,0,1,1.0,6822,0.0,141.0,360.0,1,Rural,1.0
LP002181,Male,0.0,0,0,0.0,6216,0.0,133.0,360.0,1,Rural,0.0
LP002187,Male,0.0,0,1,0.0,2500,0.0,96.0,480.0,1,Semiurban,0.0
LP002188,Male,0.0,0,1,0.0,5124,0.0,124.0,,0,Rural,0.0
LP002190,Male,1.0,1,1,0.0,6325,0.0,175.0,360.0,1,Semiurban,1.0
LP002191,Male,1.0,0,1,0.0,19730,5266.0,570.0,360.0,1,Rural,0.0
LP002194,Female,0.0,0,1,1.0,15759,0.0,55.0,360.0,1,Semiurban,1.0
LP002197,Male,1.0,2,1,0.0,5185,0.0,155.0,360.0,1,Semiurban,1.0
LP002201,Male,1.0,2,1,1.0,9323,7873.0,380.0,300.0,1,Rural,1.0
LP002205,Male,0.0,1,1,0.0,3062,1987.0,111.0,180.0,0,Urban,0.0
LP002209,Female,0.0,0,1,0.0,2764,1459.0,110.0,360.0,1,Urban,1.0
LP002211,Male,1.0,0,1,0.0,4817,923.0,120.0,180.0,1,Urban,1.0
LP002219,Male,1.0,3+,1,0.0,8750,4996.0,130.0,360.0,1,Rural,1.0
LP002223,Male,1.0,0,1,0.0,4310,0.0,130.0,360.0,0,Semiurban,1.0
LP002224,Male,0.0,0,1,0.0,3069,0.0,71.0,480.0,1,Urban,0.0
LP002225,Male,1.0,2,1,0.0,5391,0.0,130.0,360.0,1,Urban,1.0
LP002226,Male,1.0,0,1,0.0,3333,2500.0,128.0,360.0,1,Semiurban,1.0
LP002229,Male,0.0,0,1,0.0,5941,4232.0,296.0,360.0,1,Semiurban,1.0
LP002231,Female,0.0,0,1,0.0,6000,0.0,156.0,360.0,1,Urban,1.0
LP002234,Male,0.0,0,1,1.0,7167,0.0,128.0,360.0,1,Urban,1.0
LP002236,Male,1.0,2,1,0.0,4566,0.0,100.0,360.0,1,Urban,0.0
LP002237,Male,0.0,1,1,0.0,3667,0.0,113.0,180.0,1,Urban,1.0
LP002239,Male,0.0,0,0,0.0,2346,1600.0,132.0,360.0,1,Semiurban,1.0
LP002243,Male,1.0,0,0,0.0,3010,3136.0,0.0,360.0,0,Urban,0.0
LP002244,Male,1.0,0,1,0.0,2333,2417.0,136.0,360.0,1,Urban,1.0
LP002250,Male,1.0,0,1,0.0,5488,0.0,125.0,360.0,1,Rural,1.0
LP002255,Male,0.0,3+,1,0.0,9167,0.0,185.0,360.0,1,Rural,1.0
LP002262,Male,1.0,3+,1,0.0,9504,0.0,275.0,360.0,1,Rural,1.0
LP002263,Male,1.0,0,1,0.0,2583,2115.0,120.0,360.0,0,Urban,1.0
LP002265,Male,1.0,2,0,0.0,1993,1625.0,113.0,180.0,1,Semiurban,1.0
LP002266,Male,1.0,2,1,0.0,3100,1400.0,113.0,360.0,1,Urban,1.0
LP002272,Male,1.0,2,1,0.0,3276,484.0,135.0,360.0,0,Semiurban,1.0
LP002277,Female,0.0,0,1,0.0,3180,0.0,71.0,360.0,0,Urban,0.0
LP002281,Male,1.0,0,1,0.0,3033,1459.0,95.0,360.0,1,Urban,1.0
LP002284,Male,0.0,0,0,0.0,3902,1666.0,109.0,360.0,1,Rural,1.0
LP002287,Female,0.0,0,1,0.0,1500,1800.0,103.0,360.0,0,Semiurban,0.0
LP002288,Male,1.0,2,0,0.0,2889,0.0,45.0,180.0,0,Urban,0.0
LP002296,Male,0.0,0,0,0.0,2755,0.0,65.0,300.0,1,Rural,0.0
LP002297,Male,0.0,0,1,0.0,2500,20000.0,103.0,360.0,1,Semiurban,1.0
LP002300,Female,0.0,0,0,0.0,1963,0.0,53.0,360.0,1,Semiurban,1.0
LP002301,Female,0.0,0,1,1.0,7441,0.0,194.0,360.0,1,Rural,0.0
LP002305,Female,0.0,0,1,0.0,4547,0.0,115.0,360.0,1,Semiurban,1.0
LP002308,Male,1.0,0,0,0.0,2167,2400.0,115.0,360.0,1,Urban,1.0
LP002314,Female,0.0,0,0,0.0,2213,0.0,66.0,360.0,1,Rural,1.0
LP002315,Male,1.0,1,1,0.0,8300,0.0,152.0,300.0,0,Semiurban,0.0
LP002317,Male,1.0,3+,1,0.0,81000,0.0,360.0,360.0,0,Rural,0.0
LP002318,Female,0.0,1,0,1.0,3867,0.0,62.0,360.0,1,Semiurban,0.0
LP002319,Male,1.0,0,1,0.0,6256,0.0,160.0,360.0,0,Urban,1.0
LP002328,Male,1.0,0,0,0.0,6096,0.0,218.0,360.0,0,Rural,0.0
LP002332,Male,1.0,0,0,0.0,2253,2033.0,110.0,360.0,1,Rural,1.0
LP002335,Female,1.0,0,0,0.0,2149,3237.0,178.0,360.0,0,Semiurban,0.0
LP002337,Female,0.0,0,1,0.0,2995,0.0,60.0,360.0,1,Urban,1.0
LP002341,Female,0.0,1,1,0.0,2600,0.0,160.0,360.0,1,Urban,0.0
LP002342,Male,1.0,2,1,1.0,1600,20000.0,239.0,360.0,1,Urban,0.0
LP002345,Male,1.0,0,1,0.0,1025,2773.0,112.0,360.0,1,Rural,1.0
LP002347,Male,1.0,0,1,0.0,3246,1417.0,138.0,360.0,1,Semiurban,1.0
LP002348,Male,1.0,0,1,0.0,5829,0.0,138.0,360.0,1,Rural,1.0
LP002357,Female,0.0,0,0,0.0,2720,0.0,80.0,,0,Urban,0.0
LP002361,Male,1.0,0,1,0.0,1820,1719.0,100.0,360.0,1,Urban,1.0
LP002362,Male,1.0,1,1,0.0,7250,1667.0,110.0,,0,Urban,0.0
LP002364,Male,1.0,0,1,0.0,14880,0.0,96.0,360.0,1,Semiurban,1.0
LP002366,Male,1.0,0,1,0.0,2666,4300.0,121.0,360.0,1,Rural,1.0
LP002367,Female,0.0,1,0,0.0,4606,0.0,81.0,360.0,1,Rural,0.0
LP002368,Male,1.0,2,1,0.0,5935,0.0,133.0,360.0,1,Semiurban,1.0
LP002369,Male,1.0,0,1,0.0,2920,16.12000084,87.0,360.0,1,Rural,1.0
LP002370,Male,0.0,0,0,0.0,2717,0.0,60.0,180.0,1,Urban,1.0
LP002377,Female,0.0,1,1,1.0,8624,0.0,150.0,360.0,1,Semiurban,1.0
LP002379,Male,0.0,0,1,0.0,6500,0.0,105.0,360.0,0,Rural,0.0
LP002386,Male,0.0,0,1,0.0,12876,0.0,405.0,360.0,1,Semiurban,1.0
LP002387,Male,1.0,0,1,0.0,2425,2340.0,143.0,360.0,1,Semiurban,1.0
LP002390,Male,0.0,0,1,0.0,3750,0.0,100.0,360.0,1,Urban,1.0
LP002393,Female,0.0,,1,0.0,10047,0.0,0.0,240.0,1,Semiurban,1.0
LP002398,Male,0.0,0,1,0.0,1926,1851.0,50.0,360.0,1,Semiurban,1.0
LP002401,Male,1.0,0,1,0.0,2213,1125.0,0.0,360.0,1,Urban,1.0
LP002403,Male,0.0,0,1,1.0,10416,0.0,187.0,360.0,0,Urban,0.0
LP002407,Female,1.0,0,0,1.0,7142,0.0,138.0,360.0,1,Rural,1.0
LP002408,Male,0.0,0,1,0.0,3660,5064.0,187.0,360.0,1,Semiurban,1.0
LP002409,Male,1.0,0,1,0.0,7901,1833.0,180.0,360.0,1,Rural,1.0
LP002418,Male,0.0,3+,0,0.0,4707,1993.0,148.0,360.0,1,Semiurban,1.0
LP002422,Male,0.0,1,1,0.0,37719,0.0,152.0,360.0,1,Semiurban,1.0
LP002424,Male,1.0,0,1,0.0,7333,8333.0,175.0,300.0,0,Rural,1.0
LP002429,Male,1.0,1,1,1.0,3466,1210.0,130.0,360.0,1,Rural,1.0
LP002434,Male,1.0,2,0,0.0,4652,0.0,110.0,360.0,1,Rural,1.0
LP002435,Male,1.0,0,1,0.0,3539,1376.0,55.0,360.0,1,Rural,0.0
LP002443,Male,1.0,2,1,0.0,3340,1710.0,150.0,360.0,0,Rural,0.0
LP002444,Male,0.0,1,0,1.0,2769,1542.0,190.0,360.0,0,Semiurban,0.0
LP002446,Male,1.0,2,0,0.0,2309,1255.0,125.0,360.0,0,Rural,0.0
LP002447,Male,1.0,2,0,0.0,1958,1456.0,60.0,300.0,0,Urban,1.0
LP002448,Male,1.0,0,1,0.0,3948,1733.0,149.0,360.0,0,Rural,0.0
LP002449,Male,1.0,0,1,0.0,2483,2466.0,90.0,180.0,0,Rural,1.0
LP002453,Male,0.0,0,1,1.0,7085,0.0,84.0,360.0,1,Semiurban,1.0
LP002455,Male,1.0,2,1,0.0,3859,0.0,96.0,360.0,1,Semiurban,1.0
LP002459,Male,1.0,0,1,0.0,4301,0.0,118.0,360.0,1,Urban,1.0
LP002467,Male,1.0,0,1,0.0,3708,2569.0,173.0,360.0,1,Urban,0.0
LP002472,Male,0.0,2,1,0.0,4354,0.0,136.0,360.0,1,Rural,1.0
LP002473,Male,1.0,0,1,0.0,8334,0.0,160.0,360.0,1,Semiurban,0.0
LP002478,,1.0,0,1,1.0,2083,4083.0,160.0,360.0,0,Semiurban,1.0
LP002484,Male,1.0,3+,1,0.0,7740,0.0,128.0,180.0,1,Urban,1.0
LP002487,Male,1.0,0,1,0.0,3015,2188.0,153.0,360.0,1,Rural,1.0
LP002489,Female,0.0,1,0,0.0,5191,0.0,132.0,360.0,1,Semiurban,1.0
LP002493,Male,0.0,0,1,0.0,4166,0.0,98.0,360.0,0,Semiurban,0.0
LP002494,Male,0.0,0,1,0.0,6000,0.0,140.0,360.0,1,Rural,1.0
LP002500,Male,1.0,3+,0,0.0,2947,1664.0,70.0,180.0,0,Urban,0.0
LP002501,,1.0,0,1,0.0,16692,0.0,110.0,360.0,1,Semiurban,1.0
LP002502,Female,1.0,2,0,0.0,210,2917.0,98.0,360.0,1,Semiurban,1.0
LP002505,Male,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002515,Male,1.0,1,1,1.0,3450,2079.0,162.0,360.0,1,Semiurban,1.0
LP002517,Male,1.0,1,0,0.0,2653,1500.0,113.0,180.0,0,Rural,0.0
LP002519,Male,1.0,3+,1,0.0,4691,0.0,100.0,360.0,1,Semiurban,1.0
LP002522,Female,0.0,0,1,1.0,2500,0.0,93.0,360.0,0,Urban,1.0
LP002524,Male,0.0,2,1,0.0,5532,4648.0,162.0,360.0,1,Rural,1.0
LP002527,Male,1.0,2,1,1.0,16525,1014.0,150.0,360.0,1,Rural,1.0
LP002529,Male,1.0,2,1,0.0,6700,1750.0,230.0,300.0,1,Semiurban,1.0
LP002530,,1.0,2,1,0.0,2873,1872.0,132.0,360.0,0,Semiurban,0.0
LP002531,Male,1.0,1,1,1.0,16667,2250.0,86.0,360.0,1,Semiurban,1.0
LP002533,Male,1.0,2,1,0.0,2947,1603.0,0.0,360.0,1,Urban,0.0
LP002534,Female,0.0,0,0,0.0,4350,0.0,154.0,360.0,1,Rural,1.0
LP002536,Male,1.0,3+,0,0.0,3095,0.0,113.0,360.0,1,Rural,1.0
LP002537,Male,1.0,0,1,0.0,2083,3150.0,128.0,360.0,1,Semiurban,1.0
LP002541,Male,1.0,0,1,0.0,10833,0.0,234.0,360.0,1,Semiurban,1.0
LP002543,Male,1.0,2,1,0.0,8333,0.0,246.0,360.0,1,Semiurban,1.0
LP002544,Male,1.0,1,0,0.0,1958,2436.0,131.0,360.0,1,Rural,1.0
LP002545,Male,0.0,2,1,0.0,3547,0.0,80.0,360.0,0,Rural,0.0
LP002547,Male,1.0,1,1,0.0,18333,0.0,500.0,360.0,1,Urban,0.0
LP002555,Male,1.0,2,1,1.0,4583,2083.0,160.0,360.0,1,Semiurban,1.0
LP002556,Male,0.0,0,1,0.0,2435,0.0,75.0,360.0,1,Urban,0.0
LP002560,Male,0.0,0,0,0.0,2699,2785.0,96.0,360.0,0,Semiurban,1.0
LP002562,Male,1.0,1,0,0.0,5333,1131.0,186.0,360.0,0,Urban,1.0
LP002571,Male,0.0,0,0,0.0,3691,0.0,110.0,360.0,1,Rural,1.0
LP002582,Female,0.0,0,0,1.0,17263,0.0,225.0,360.0,1,Semiurban,1.0
LP002585,Male,1.0,0,1,0.0,3597,2157.0,119.0,360.0,0,Rural,0.0
LP002586,Female,1.0,1,1,0.0,3326,913.0,105.0,84.0,1,Semiurban,1.0
LP002587,Male,1.0,0,0,0.0,2600,1700.0,107.0,360.0,1,Rural,1.0
LP002588,Male,1.0,0,1,0.0,4625,2857.0,111.0,12.0,0,Urban,1.0
LP002600,Male,1.0,1,1,1.0,2895,0.0,95.0,360.0,1,Semiurban,1.0
LP002602,Male,0.0,0,1,0.0,6283,4416.0,209.0,360.0,0,Rural,0.0
LP002603,Female,0.0,0,1,0.0,645,3683.0,113.0,480.0,1,Rural,1.0
LP002606,Female,0.0,0,1,0.0,3159,0.0,100.0,360.0,1,Semiurban,1.0
LP002615,Male,1.0,2,1,0.0,4865,5624.0,208.0,360.0,1,Semiurban,1.0
LP002618,Male,1.0,1,0,0.0,4050,5302.0,138.0,360.0,0,Rural,0.0
LP002619,Male,1.0,0,0,0.0,3814,1483.0,124.0,300.0,1,Semiurban,1.0
LP002622,Male,1.0,2,1,0.0,3510,4416.0,243.0,360.0,1,Rural,1.0
LP002624,Male,1.0,0,1,0.0,20833,6667.0,480.0,360.0,0,Urban,1.0
LP002625,,0.0,0,1,0.0,3583,0.0,96.0,360.0,1,Urban,0.0
LP002626,Male,1.0,0,1,1.0,2479,3013.0,188.0,360.0,1,Urban,1.0
LP002634,Female,0.0,1,1,0.0,13262,0.0,40.0,360.0,1,Urban,1.0
LP002637,Male,0.0,0,0,0.0,3598,1287.0,100.0,360.0,1,Rural,0.0
LP002640,Male,1.0,1,1,0.0,6065,2004.0,250.0,360.0,1,Semiurban,1.0
LP002643,Male,1.0,2,1,0.0,3283,2035.0,148.0,360.0,1,Urban,1.0
LP002648,Male,1.0,0,1,0.0,2130,6666.0,70.0,180.0,1,Semiurban,0.0
LP002652,Male,0.0,0,1,0.0,5815,3666.0,311.0,360.0,1,Rural,0.0
LP002659,Male,1.0,3+,1,0.0,3466,3428.0,150.0,360.0,1,Rural,1.0
LP002670,Female,1.0,2,1,0.0,2031,1632.0,113.0,480.0,1,Semiurban,1.0
LP002682,Male,1.0,,0,0.0,3074,1800.0,123.0,360.0,0,Semiurban,0.0
LP002683,Male,0.0,0,1,0.0,4683,1915.0,185.0,360.0,1,Semiurban,0.0
LP002684,Female,0.0,0,0,0.0,3400,0.0,95.0,360.0,1,Rural,0.0
LP002689,Male,1.0,2,0,0.0,2192,1742.0,45.0,360.0,1,Semiurban,1.0
LP002690,Male,0.0,0,1,0.0,2500,0.0,55.0,360.0,1,Semiurban,1.0
LP002692,Male,1.0,3+,1,1.0,5677,1424.0,100.0,360.0,1,Rural,1.0
LP002693,Male,1.0,2,1,1.0,7948,7166.0,480.0,360.0,1,Rural,1.0
LP002697,Male,0.0,0,1,0.0,4680,2087.0,0.0,360.0,1,Semiurban,0.0
LP002699,Male,1.0,2,1,1.0,17500,0.0,400.0,360.0,1,Rural,1.0
LP002705,Male,1.0,0,1,0.0,3775,0.0,110.0,360.0,1,Semiurban,1.0
LP002706,Male,1.0,1,0,0.0,5285,1430.0,161.0,360.0,0,Semiurban,1.0
LP002714,Male,0.0,1,0,0.0,2679,1302.0,94.0,360.0,1,Semiurban,1.0
LP002716,Male,0.0,0,0,0.0,6783,0.0,130.0,360.0,1,Semiurban,1.0
LP002717,Male,1.0,0,1,0.0,1025,5500.0,216.0,360.0,0,Rural,1.0
LP002720,Male,1.0,3+,1,0.0,4281,0.0,100.0,360.0,1,Urban,1.0
LP002723,Male,0.0,2,1,0.0,3588,0.0,110.0,360.0,0,Rural,0.0
LP002729,Male,0.0,1,1,0.0,11250,0.0,196.0,360.0,0,Semiurban,0.0
LP002731,Female,0.0,0,0,1.0,18165,0.0,125.0,360.0,1,Urban,1.0
LP002732,Male,0.0,0,0,0.0,2550,2042.0,126.0,360.0,1,Rural,1.0
LP002734,Male,1.0,0,1,0.0,6133,3906.0,324.0,360.0,1,Urban,1.0
LP002738,Male,0.0,2,1,0.0,3617,0.0,107.0,360.0,1,Semiurban,1.0
LP002739,Male,1.0,0,0,0.0,2917,536.0,66.0,360.0,1,Rural,0.0
LP002740,Male,1.0,3+,1,0.0,6417,0.0,157.0,180.0,1,Rural,1.0
LP002741,Female,1.0,1,1,0.0,4608,2845.0,140.0,180.0,1,Semiurban,1.0
LP002743,Female,0.0,0,1,0.0,2138,0.0,99.0,360.0,0,Semiurban,0.0
LP002753,Female,0.0,1,1,0.0,3652,0.0,95.0,360.0,1,Semiurban,1.0
LP002755,Male,1.0,1,0,0.0,2239,2524.0,128.0,360.0,1,Urban,1.0
LP002757,Female,1.0,0,0,0.0,3017,663.0,102.0,360.0,0,Semiurban,1.0
LP002767,Male,1.0,0,1,0.0,2768,1950.0,155.0,360.0,1,Rural,1.0
LP002768,Male,0.0,0,0,0.0,3358,0.0,80.0,36.0,1,Semiurban,0.0
LP002772,Male,0.0,0,1,0.0,2526,1783.0,145.0,360.0,1,Rural,1.0
LP002776,Female,0.0,0,1,0.0,5000,0.0,103.0,360.0,0,Semiurban,0.0
LP002777,Male,1.0,0,1,0.0,2785,2016.0,110.0,360.0,1,Rural,1.0
LP002778,Male,1.0,2,1,1.0,6633,0.0,0.0,360.0,0,Rural,0.0
LP002784,Male,1.0,1,0,0.0,2492,2375.0,0.0,360.0,1,Rural,1.0
LP002785,Male,1.0,1,1,0.0,3333,3250.0,158.0,360.0,1,Urban,1.0
LP002788,Male,1.0,0,0,0.0,2454,2333.0,181.0,360.0,0,Urban,0.0
LP002789,Male,1.0,0,1,0.0,3593,4266.0,132.0,180.0,0,Rural,0.0
LP002792,Male,1.0,1,1,0.0,5468,1032.0,26.0,360.0,1,Semiurban,1.0
LP002794,Female,0.0,0,1,0.0,2667,1625.0,84.0,360.0,0,Urban,1.0
LP002795,Male,1.0,3+,1,1.0,10139,0.0,260.0,360.0,1,Semiurban,1.0
LP002798,Male,1.0,0,1,0.0,3887,2669.0,162.0,360.0,1,Semiurban,1.0
LP002804,Female,1.0,0,1,0.0,4180,2306.0,182.0,360.0,1,Semiurban,1.0
LP002807,Male,1.0,2,0,0.0,3675,242.0,108.0,360.0,1,Semiurban,1.0
LP002813,Female,1.0,1,1,1.0,19484,0.0,600.0,360.0,1,Semiurban,1.0
LP002820,Male,1.0,0,1,0.0,5923,2054.0,211.0,360.0,1,Rural,1.0
LP002821,Male,0.0,0,0,1.0,5800,0.0,132.0,360.0,1,Semiurban,1.0
LP002832,Male,1.0,2,1,0.0,8799,0.0,258.0,360.0,0,Urban,0.0
LP002833,Male,1.0,0,0,0.0,4467,0.0,120.0,360.0,0,Rural,1.0
LP002836,Male,0.0,0,1,0.0,3333,0.0,70.0,360.0,1,Urban,1.0
LP002837,Male,1.0,3+,1,0.0,3400,2500.0,123.0,360.0,0,Rural,0.0
LP002840,Female,0.0,0,1,0.0,2378,0.0,9.0,360.0,1,Urban,0.0
LP002841,Male,1.0,0,1,0.0,3166,2064.0,104.0,360.0,0,Urban,0.0
LP002842,Male,1.0,1,1,0.0,3417,1750.0,186.0,360.0,1,Urban,1.0
LP002847,Male,1.0,,1,0.0,5116,1451.0,165.0,360.0,0,Urban,0.0
LP002855,Male,1.0,2,1,0.0,16666,0.0,275.0,360.0,1,Urban,1.0
LP002862,Male,1.0,2,0,0.0,6125,1625.0,187.0,480.0,1,Semiurban,0.0
LP002863,Male,1.0,3+,1,0.0,6406,0.0,150.0,360.0,1,Semiurban,0.0
LP002868,Male,1.0,2,1,0.0,3159,461.0,108.0,84.0,1,Urban,1.0
LP002872,,1.0,0,1,0.0,3087,2210.0,136.0,360.0,0,Semiurban,0.0
LP002874,Male,0.0,0,1,0.0,3229,2739.0,110.0,360.0,1,Urban,1.0
LP002877,Male,1.0,1,1,0.0,1782,2232.0,107.0,360.0,1,Rural,1.0
LP002888,Male,0.0,0,1,0.0,3182,2917.0,161.0,360.0,1,Urban,1.0
LP002892,Male,1.0,2,1,0.0,6540,0.0,205.0,360.0,1,Semiurban,1.0
LP002893,Male,0.0,0,1,0.0,1836,33837.0,90.0,360.0,1,Urban,0.0
LP002894,Female,1.0,0,1,0.0,3166,0.0,36.0,360.0,1,Semiurban,1.0
LP002898,Male,1.0,1,1,0.0,1880,0.0,61.0,360.0,0,Rural,0.0
LP002911,Male,1.0,1,1,0.0,2787,1917.0,146.0,360.0,0,Rural,0.0
LP002912,Male,1.0,1,1,0.0,4283,3000.0,172.0,84.0,1,Rural,0.0
LP002916,Male,1.0,0,1,0.0,2297,1522.0,104.0,360.0,1,Urban,1.0
LP002917,Female,0.0,0,0,0.0,2165,0.0,70.0,360.0,1,Semiurban,1.0
LP002925,,0.0,0,1,0.0,4750,0.0,94.0,360.0,1,Semiurban,1.0
LP002926,Male,1.0,2,1,1.0,2726,0.0,106.0,360.0,0,Semiurban,0.0
LP002928,Male,1.0,0,1,0.0,3000,3416.0,56.0,180.0,1,Semiurban,1.0
LP002931,Male,1.0,2,1,1.0,6000,0.0,205.0,240.0,1,Semiurban,0.0
LP002933,,0.0,3+,1,1.0,9357,0.0,292.0,360.0,1,Semiurban,1.0
LP002936,Male,1.0,0,1,0.0,3859,3300.0,142.0,180.0,1,Rural,1.0
LP002938,Male,1.0,0,1,1.0,16120,0.0,260.0,360.0,1,Urban,1.0
LP002940,Male,0.0,0,0,0.0,3833,0.0,110.0,360.0,1,Rural,1.0
LP002941,Male,1.0,2,0,1.0,6383,1000.0,187.0,360.0,1,Rural,0.0
LP002943,Male,0.0,,1,0.0,2987,0.0,88.0,360.0,0,Semiurban,0.0
LP002945,Male,1.0,0,1,1.0,9963,0.0,180.0,360.0,1,Rural,1.0
LP002948,Male,1.0,2,1,0.0,5780,0.0,192.0,360.0,1,Urban,1.0
LP002949,Female,0.0,3+,1,0.0,416,41667.0,350.0,180.0,0,Urban,0.0
LP002950,Male,1.0,0,0,0.0,2894,2792.0,155.0,360.0,1,Rural,1.0
LP002953,Male,1.0,3+,1,0.0,5703,0.0,128.0,360.0,1,Urban,1.0
LP002958,Male,0.0,0,1,0.0,3676,4301.0,172.0,360.0,1,Rural,1.0
LP002959,Female,1.0,1,1,0.0,12000,0.0,496.0,360.0,1,Semiurban,1.0
LP002960,Male,1.0,0,0,0.0,2400,3800.0,0.0,180.0,1,Urban,0.0
LP002961,Male,1.0,1,1,0.0,3400,2500.0,173.0,360.0,1,Semiurban,1.0
LP002964,Male,1.0,2,0,0.0,3987,1411.0,157.0,360.0,1,Rural,1.0
LP002974,Male,1.0,0,1,0.0,3232,1950.0,108.0,360.0,1,Rural,1.0
LP002978,Female,0.0,0,1,0.0,2900,0.0,71.0,360.0,1,Rural,1.0
LP002979,Male,1.0,3+,1,0.0,4106,0.0,40.0,180.0,1,Rural,1.0
LP002983,Male,1.0,1,1,0.0,8072,240.0,253.0,360.0,1,Urban,1.0
LP002984,Male,1.0,2,1,0.0,7583,0.0,187.0,360.0,1,Urban,1.0
LP002990,Female,0.0,0,1,1.0,4583,0.0,133.0,360.0,0,Semiurban,0.0
1 Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
2 LP001002 Male 0.0 0 1 0.0 5849 0.0 360.0 1.0 0 Y 0.0
3 LP001003 Male 1.0 1 1 0.0 4583 1508.0 128.0 360.0 1 Rural 0.0
4 LP001005 Male 1.0 0 1 1.0 3000 0.0 66.0 360.0 1 Urban 1.0
5 LP001006 Male 1.0 0 0 0.0 2583 2358.0 120.0 360.0 1 Urban 1.0
6 LP001008 Male 0.0 0 1 0.0 6000 0.0 141.0 360.0 1 Urban 1.0
7 LP001011 Male 1.0 2 1 1.0 5417 4196.0 267.0 360.0 1 Urban 1.0
8 LP001013 Male 1.0 0 0 0.0 2333 1516.0 95.0 360.0 1 Urban 1.0
9 LP001014 Male 1.0 3+ 1 0.0 3036 2504.0 158.0 360.0 0 Semiurban 0.0
10 LP001018 Male 1.0 2 1 0.0 4006 1526.0 168.0 360.0 1 Urban 1.0
11 LP001020 Male 1.0 1 1 0.0 12841 10968.0 349.0 360.0 1 Semiurban 0.0
12 LP001024 Male 1.0 2 1 0.0 3200 700.0 70.0 360.0 1 Urban 1.0
13 LP001027 Male 1.0 2 1 0.0 2500 1840.0 109.0 360.0 1 Urban 1.0
14 LP001028 Male 1.0 2 1 0.0 3073 8106.0 200.0 360.0 1 Urban 1.0
15 LP001029 Male 0.0 0 1 0.0 1853 2840.0 114.0 360.0 1 Rural 0.0
16 LP001030 Male 1.0 2 1 0.0 1299 1086.0 17.0 120.0 1 Urban 1.0
17 LP001032 Male 0.0 0 1 0.0 4950 0.0 125.0 360.0 1 Urban 1.0
18 LP001034 Male 0.0 1 0 0.0 3596 0.0 100.0 240.0 0 Urban 1.0
19 LP001036 Female 0.0 0 1 0.0 3510 0.0 76.0 360.0 0 Urban 0.0
20 LP001038 Male 1.0 0 0 0.0 4887 0.0 133.0 360.0 1 Rural 0.0
21 LP001041 Male 1.0 0 1 0.0 2600 3500.0 115.0 1 Urban 1.0
22 LP001043 Male 1.0 0 0 0.0 7660 0.0 104.0 360.0 0 Urban 0.0
23 LP001046 Male 1.0 1 1 0.0 5955 5625.0 315.0 360.0 1 Urban 1.0
24 LP001047 Male 1.0 0 0 0.0 2600 1911.0 116.0 360.0 0 Semiurban 0.0
25 LP001050 1.0 2 0 0.0 3365 1917.0 112.0 360.0 0 Rural 0.0
26 LP001052 Male 1.0 1 1 0.0 3717 2925.0 151.0 360.0 0 Semiurban 0.0
27 LP001066 Male 1.0 0 1 1.0 9560 0.0 191.0 360.0 1 Semiurban 1.0
28 LP001068 Male 1.0 0 1 0.0 2799 2253.0 122.0 360.0 1 Semiurban 1.0
29 LP001073 Male 1.0 2 0 0.0 4226 1040.0 110.0 360.0 1 Urban 1.0
30 LP001086 Male 0.0 0 0 0.0 1442 0.0 35.0 360.0 1 Urban 0.0
31 LP001087 Female 0.0 2 1 0.0 3750 2083.0 120.0 360.0 1 Semiurban 1.0
32 LP001091 Male 1.0 1 1 0.0 4166 3369.0 201.0 360.0 0 Urban 0.0
33 LP001095 Male 0.0 0 1 0.0 3167 0.0 74.0 360.0 1 Urban 0.0
34 LP001097 Male 0.0 1 1 1.0 4692 0.0 106.0 360.0 1 Rural 0.0
35 LP001098 Male 1.0 0 1 0.0 3500 1667.0 114.0 360.0 1 Semiurban 1.0
36 LP001100 Male 0.0 3+ 1 0.0 12500 3000.0 320.0 360.0 1 Rural 0.0
37 LP001106 Male 1.0 0 1 0.0 2275 2067.0 0.0 360.0 1 Urban 1.0
38 LP001109 Male 1.0 0 1 0.0 1828 1330.0 100.0 0 Urban 0.0
39 LP001112 Female 1.0 0 1 0.0 3667 1459.0 144.0 360.0 1 Semiurban 1.0
40 LP001114 Male 0.0 0 1 0.0 4166 7210.0 184.0 360.0 1 Urban 1.0
41 LP001116 Male 0.0 0 0 0.0 3748 1668.0 110.0 360.0 1 Semiurban 1.0
42 LP001119 Male 0.0 0 1 0.0 3600 0.0 80.0 360.0 1 Urban 0.0
43 LP001120 Male 0.0 0 1 0.0 1800 1213.0 47.0 360.0 1 Urban 1.0
44 LP001123 Male 1.0 0 1 0.0 2400 0.0 75.0 360.0 0 Urban 1.0
45 LP001131 Male 1.0 0 1 0.0 3941 2336.0 134.0 360.0 1 Semiurban 1.0
46 LP001136 Male 1.0 0 0 1.0 4695 0.0 96.0 1 Urban 1.0
47 LP001137 Female 0.0 0 1 0.0 3410 0.0 88.0 1 Urban 1.0
48 LP001138 Male 1.0 1 1 0.0 5649 0.0 44.0 360.0 1 Urban 1.0
49 LP001144 Male 1.0 0 1 0.0 5821 0.0 144.0 360.0 1 Urban 1.0
50 LP001146 Female 1.0 0 1 0.0 2645 3440.0 120.0 360.0 0 Urban 0.0
51 LP001151 Female 0.0 0 1 0.0 4000 2275.0 144.0 360.0 1 Semiurban 1.0
52 LP001155 Female 1.0 0 0 0.0 1928 1644.0 100.0 360.0 1 Semiurban 1.0
53 LP001157 Female 0.0 0 1 0.0 3086 0.0 120.0 360.0 1 Semiurban 1.0
54 LP001164 Female 0.0 0 1 0.0 4230 0.0 112.0 360.0 1 Semiurban 0.0
55 LP001179 Male 1.0 2 1 0.0 4616 0.0 134.0 360.0 1 Urban 0.0
56 LP001186 Female 1.0 1 1 1.0 11500 0.0 286.0 360.0 0 Urban 0.0
57 LP001194 Male 1.0 2 1 0.0 2708 1167.0 97.0 360.0 1 Semiurban 1.0
58 LP001195 Male 1.0 0 1 0.0 2132 1591.0 96.0 360.0 1 Semiurban 1.0
59 LP001197 Male 1.0 0 1 0.0 3366 2200.0 135.0 360.0 1 Rural 0.0
60 LP001198 Male 1.0 1 1 0.0 8080 2250.0 180.0 360.0 1 Urban 1.0
61 LP001199 Male 1.0 2 0 0.0 3357 2859.0 144.0 360.0 1 Urban 1.0
62 LP001205 Male 1.0 0 1 0.0 2500 3796.0 120.0 360.0 1 Urban 1.0
63 LP001206 Male 1.0 3+ 1 0.0 3029 0.0 99.0 360.0 1 Urban 1.0
64 LP001207 Male 1.0 0 0 1.0 2609 3449.0 165.0 180.0 0 Rural 0.0
65 LP001213 Male 1.0 1 1 0.0 4945 0.0 0.0 360.0 0 Rural 0.0
66 LP001222 Female 0.0 0 1 0.0 4166 0.0 116.0 360.0 0 Semiurban 0.0
67 LP001225 Male 1.0 0 1 0.0 5726 4595.0 258.0 360.0 1 Semiurban 0.0
68 LP001228 Male 0.0 0 0 0.0 3200 2254.0 126.0 180.0 0 Urban 0.0
69 LP001233 Male 1.0 1 1 0.0 10750 0.0 312.0 360.0 1 Urban 1.0
70 LP001238 Male 1.0 3+ 0 1.0 7100 0.0 125.0 60.0 1 Urban 1.0
71 LP001241 Female 0.0 0 1 0.0 4300 0.0 136.0 360.0 0 Semiurban 0.0
72 LP001243 Male 1.0 0 1 0.0 3208 3066.0 172.0 360.0 1 Urban 1.0
73 LP001245 Male 1.0 2 0 1.0 1875 1875.0 97.0 360.0 1 Semiurban 1.0
74 LP001248 Male 0.0 0 1 0.0 3500 0.0 81.0 300.0 1 Semiurban 1.0
75 LP001250 Male 1.0 3+ 0 0.0 4755 0.0 95.0 0 Semiurban 0.0
76 LP001253 Male 1.0 3+ 1 1.0 5266 1774.0 187.0 360.0 1 Semiurban 1.0
77 LP001255 Male 0.0 0 1 0.0 3750 0.0 113.0 480.0 1 Urban 0.0
78 LP001256 Male 0.0 0 1 0.0 3750 4750.0 176.0 360.0 1 Urban 0.0
79 LP001259 Male 1.0 1 1 1.0 1000 3022.0 110.0 360.0 1 Urban 0.0
80 LP001263 Male 1.0 3+ 1 0.0 3167 4000.0 180.0 300.0 0 Semiurban 0.0
81 LP001264 Male 1.0 3+ 0 1.0 3333 2166.0 130.0 360.0 0 Semiurban 1.0
82 LP001265 Female 0.0 0 1 0.0 3846 0.0 111.0 360.0 1 Semiurban 1.0
83 LP001266 Male 1.0 1 1 1.0 2395 0.0 0.0 360.0 1 Semiurban 1.0
84 LP001267 Female 1.0 2 1 0.0 1378 1881.0 167.0 360.0 1 Urban 0.0
85 LP001273 Male 1.0 0 1 0.0 6000 2250.0 265.0 360.0 0 Semiurban 0.0
86 LP001275 Male 1.0 1 1 0.0 3988 0.0 50.0 240.0 1 Urban 1.0
87 LP001279 Male 0.0 0 1 0.0 2366 2531.0 136.0 360.0 1 Semiurban 1.0
88 LP001280 Male 1.0 2 0 0.0 3333 2000.0 99.0 360.0 0 Semiurban 1.0
89 LP001282 Male 1.0 0 1 0.0 2500 2118.0 104.0 360.0 1 Semiurban 1.0
90 LP001289 Male 0.0 0 1 0.0 8566 0.0 210.0 360.0 1 Urban 1.0
91 LP001310 Male 1.0 0 1 0.0 5695 4167.0 175.0 360.0 1 Semiurban 1.0
92 LP001316 Male 1.0 0 1 0.0 2958 2900.0 131.0 360.0 1 Semiurban 1.0
93 LP001318 Male 1.0 2 1 0.0 6250 5654.0 188.0 180.0 1 Semiurban 1.0
94 LP001319 Male 1.0 2 0 0.0 3273 1820.0 81.0 360.0 1 Urban 1.0
95 LP001322 Male 0.0 0 1 0.0 4133 0.0 122.0 360.0 1 Semiurban 1.0
96 LP001325 Male 0.0 0 0 0.0 3620 0.0 25.0 120.0 1 Semiurban 1.0
97 LP001326 Male 0.0 0 1 0.0 6782 0.0 0.0 360.0 0 Urban 0.0
98 LP001327 Female 1.0 0 1 0.0 2484 2302.0 137.0 360.0 1 Semiurban 1.0
99 LP001333 Male 1.0 0 1 0.0 1977 997.0 50.0 360.0 1 Semiurban 1.0
100 LP001334 Male 1.0 0 0 0.0 4188 0.0 115.0 180.0 1 Semiurban 1.0
101 LP001343 Male 1.0 0 1 0.0 1759 3541.0 131.0 360.0 1 Semiurban 1.0
102 LP001345 Male 1.0 2 0 0.0 4288 3263.0 133.0 180.0 1 Urban 1.0
103 LP001349 Male 0.0 0 1 0.0 4843 3806.0 151.0 360.0 1 Semiurban 1.0
104 LP001350 Male 1.0 1 0.0 13650 0.0 0.0 360.0 1 Urban 1.0
105 LP001356 Male 1.0 0 1 0.0 4652 3583.0 0.0 360.0 1 Semiurban 1.0
106 LP001357 Male 0.0 1 0.0 3816 754.0 160.0 360.0 1 Urban 1.0
107 LP001367 Male 1.0 1 1 0.0 3052 1030.0 100.0 360.0 1 Urban 1.0
108 LP001369 Male 1.0 2 1 0.0 11417 1126.0 225.0 360.0 1 Urban 1.0
109 LP001370 Male 0.0 0 0 0.0 7333 0.0 120.0 360.0 1 Rural 0.0
110 LP001379 Male 1.0 2 1 0.0 3800 3600.0 216.0 360.0 0 Urban 0.0
111 LP001384 Male 1.0 3+ 0 0.0 2071 754.0 94.0 480.0 1 Semiurban 1.0
112 LP001385 Male 0.0 0 1 0.0 5316 0.0 136.0 360.0 1 Urban 1.0
113 LP001387 Female 1.0 0 1 0.0 2929 2333.0 139.0 360.0 1 Semiurban 1.0
114 LP001391 Male 1.0 0 0 0.0 3572 4114.0 152.0 0 Rural 0.0
115 LP001392 Female 0.0 1 1 1.0 7451 0.0 0.0 360.0 1 Semiurban 1.0
116 LP001398 Male 0.0 0 1 0.0 5050 0.0 118.0 360.0 1 Semiurban 1.0
117 LP001401 Male 1.0 1 1 0.0 14583 0.0 185.0 180.0 1 Rural 1.0
118 LP001404 Female 1.0 0 1 0.0 3167 2283.0 154.0 360.0 1 Semiurban 1.0
119 LP001405 Male 1.0 1 1 0.0 2214 1398.0 85.0 360.0 0 Urban 1.0
120 LP001421 Male 1.0 0 1 0.0 5568 2142.0 175.0 360.0 1 Rural 0.0
121 LP001422 Female 0.0 0 1 0.0 10408 0.0 259.0 360.0 1 Urban 1.0
122 LP001426 Male 1.0 1 0.0 5667 2667.0 180.0 360.0 1 Rural 1.0
123 LP001430 Female 0.0 0 1 0.0 4166 0.0 44.0 360.0 1 Semiurban 1.0
124 LP001431 Female 0.0 0 1 0.0 2137 8980.0 137.0 360.0 0 Semiurban 1.0
125 LP001432 Male 1.0 2 1 0.0 2957 0.0 81.0 360.0 1 Semiurban 1.0
126 LP001439 Male 1.0 0 0 0.0 4300 2014.0 194.0 360.0 1 Rural 1.0
127 LP001443 Female 0.0 0 1 0.0 3692 0.0 93.0 360.0 0 Rural 1.0
128 LP001448 1.0 3+ 1 0.0 23803 0.0 370.0 360.0 1 Rural 1.0
129 LP001449 Male 0.0 0 1 0.0 3865 1640.0 0.0 360.0 1 Rural 1.0
130 LP001451 Male 1.0 1 1 1.0 10513 3850.0 160.0 180.0 0 Urban 0.0
131 LP001465 Male 1.0 0 1 0.0 6080 2569.0 182.0 360.0 0 Rural 0.0
132 LP001469 Male 0.0 0 1 1.0 20166 0.0 650.0 480.0 0 Urban 1.0
133 LP001473 Male 0.0 0 1 0.0 2014 1929.0 74.0 360.0 1 Urban 1.0
134 LP001478 Male 0.0 0 1 0.0 2718 0.0 70.0 360.0 1 Semiurban 1.0
135 LP001482 Male 1.0 0 1 1.0 3459 0.0 25.0 120.0 1 Semiurban 1.0
136 LP001487 Male 0.0 0 1 0.0 4895 0.0 102.0 360.0 1 Semiurban 1.0
137 LP001488 Male 1.0 3+ 1 0.0 4000 7750.0 290.0 360.0 1 Semiurban 0.0
138 LP001489 Female 1.0 0 1 0.0 4583 0.0 84.0 360.0 1 Rural 0.0
139 LP001491 Male 1.0 2 1 1.0 3316 3500.0 88.0 360.0 1 Urban 1.0
140 LP001492 Male 0.0 0 1 0.0 14999 0.0 242.0 360.0 0 Semiurban 0.0
141 LP001493 Male 1.0 2 0 0.0 4200 1430.0 129.0 360.0 1 Rural 0.0
142 LP001497 Male 1.0 2 1 0.0 5042 2083.0 185.0 360.0 1 Rural 0.0
143 LP001498 Male 0.0 0 1 0.0 5417 0.0 168.0 360.0 1 Urban 1.0
144 LP001504 Male 0.0 0 1 1.0 6950 0.0 175.0 180.0 1 Semiurban 1.0
145 LP001507 Male 1.0 0 1 0.0 2698 2034.0 122.0 360.0 1 Semiurban 1.0
146 LP001508 Male 1.0 2 1 0.0 11757 0.0 187.0 180.0 1 Urban 1.0
147 LP001514 Female 1.0 0 1 0.0 2330 4486.0 100.0 360.0 1 Semiurban 1.0
148 LP001516 Female 1.0 2 1 0.0 14866 0.0 70.0 360.0 1 Urban 1.0
149 LP001518 Male 1.0 1 1 0.0 1538 1425.0 30.0 360.0 1 Urban 1.0
150 LP001519 Female 0.0 0 1 0.0 10000 1666.0 225.0 360.0 1 Rural 0.0
151 LP001520 Male 1.0 0 1 0.0 4860 830.0 125.0 360.0 1 Semiurban 1.0
152 LP001528 Male 0.0 0 1 0.0 6277 0.0 118.0 360.0 0 Rural 0.0
153 LP001529 Male 1.0 0 1 1.0 2577 3750.0 152.0 360.0 1 Rural 1.0
154 LP001531 Male 0.0 0 1 0.0 9166 0.0 244.0 360.0 1 Urban 0.0
155 LP001532 Male 1.0 2 0 0.0 2281 0.0 113.0 360.0 1 Rural 0.0
156 LP001535 Male 0.0 0 1 0.0 3254 0.0 50.0 360.0 1 Urban 1.0
157 LP001536 Male 1.0 3+ 1 0.0 39999 0.0 600.0 180.0 0 Semiurban 1.0
158 LP001541 Male 1.0 1 1 0.0 6000 0.0 160.0 360.0 0 Rural 1.0
159 LP001543 Male 1.0 1 1 0.0 9538 0.0 187.0 360.0 1 Urban 1.0
160 LP001546 Male 0.0 0 1 0.0 2980 2083.0 120.0 360.0 1 Rural 1.0
161 LP001552 Male 1.0 0 1 0.0 4583 5625.0 255.0 360.0 1 Semiurban 1.0
162 LP001560 Male 1.0 0 0 0.0 1863 1041.0 98.0 360.0 1 Semiurban 1.0
163 LP001562 Male 1.0 0 1 0.0 7933 0.0 275.0 360.0 1 Urban 0.0
164 LP001565 Male 1.0 1 1 0.0 3089 1280.0 121.0 360.0 0 Semiurban 0.0
165 LP001570 Male 1.0 2 1 0.0 4167 1447.0 158.0 360.0 1 Rural 1.0
166 LP001572 Male 1.0 0 1 0.0 9323 0.0 75.0 180.0 1 Urban 1.0
167 LP001574 Male 1.0 0 1 0.0 3707 3166.0 182.0 1 Rural 1.0
168 LP001577 Female 1.0 0 1 0.0 4583 0.0 112.0 360.0 1 Rural 0.0
169 LP001578 Male 1.0 0 1 0.0 2439 3333.0 129.0 360.0 1 Rural 1.0
170 LP001579 Male 0.0 0 1 0.0 2237 0.0 63.0 480.0 0 Semiurban 0.0
171 LP001580 Male 1.0 2 1 0.0 8000 0.0 200.0 360.0 1 Semiurban 1.0
172 LP001581 Male 1.0 0 0 0.0 1820 1769.0 95.0 360.0 1 Rural 1.0
173 LP001585 1.0 3+ 1 0.0 51763 0.0 700.0 300.0 1 Urban 1.0
174 LP001586 Male 1.0 3+ 0 0.0 3522 0.0 81.0 180.0 1 Rural 0.0
175 LP001594 Male 1.0 0 1 0.0 5708 5625.0 187.0 360.0 1 Semiurban 1.0
176 LP001603 Male 1.0 0 0 1.0 4344 736.0 87.0 360.0 1 Semiurban 0.0
177 LP001606 Male 1.0 0 1 0.0 3497 1964.0 116.0 360.0 1 Rural 1.0
178 LP001608 Male 1.0 2 1 0.0 2045 1619.0 101.0 360.0 1 Rural 1.0
179 LP001610 Male 1.0 3+ 1 0.0 5516 11300.0 495.0 360.0 0 Semiurban 0.0
180 LP001616 Male 1.0 1 1 0.0 3750 0.0 116.0 360.0 1 Semiurban 1.0
181 LP001630 Male 0.0 0 0 0.0 2333 1451.0 102.0 480.0 0 Urban 0.0
182 LP001633 Male 1.0 1 1 0.0 6400 7250.0 180.0 360.0 0 Urban 0.0
183 LP001634 Male 0.0 0 1 0.0 1916 5063.0 67.0 360.0 0 Rural 0.0
184 LP001636 Male 1.0 0 1 0.0 4600 0.0 73.0 180.0 1 Semiurban 1.0
185 LP001637 Male 1.0 1 1 0.0 33846 0.0 260.0 360.0 1 Semiurban 0.0
186 LP001639 Female 1.0 0 1 0.0 3625 0.0 108.0 360.0 1 Semiurban 1.0
187 LP001640 Male 1.0 0 1 1.0 39147 4750.0 120.0 360.0 1 Semiurban 1.0
188 LP001641 Male 1.0 1 1 1.0 2178 0.0 66.0 300.0 0 Rural 0.0
189 LP001643 Male 1.0 0 1 0.0 2383 2138.0 58.0 360.0 0 Rural 1.0
190 LP001644 1.0 0 1 1.0 674 5296.0 168.0 360.0 1 Rural 1.0
191 LP001647 Male 1.0 0 1 0.0 9328 0.0 188.0 180.0 1 Rural 1.0
192 LP001653 Male 0.0 0 0 0.0 4885 0.0 48.0 360.0 1 Rural 1.0
193 LP001656 Male 0.0 0 1 0.0 12000 0.0 164.0 360.0 1 Semiurban 0.0
194 LP001657 Male 1.0 0 0 0.0 6033 0.0 160.0 360.0 1 Urban 0.0
195 LP001658 Male 0.0 0 1 0.0 3858 0.0 76.0 360.0 1 Semiurban 1.0
196 LP001664 Male 0.0 0 1 0.0 4191 0.0 120.0 360.0 1 Rural 1.0
197 LP001665 Male 1.0 1 1 0.0 3125 2583.0 170.0 360.0 1 Semiurban 0.0
198 LP001666 Male 0.0 0 1 0.0 8333 3750.0 187.0 360.0 1 Rural 1.0
199 LP001669 Female 0.0 0 0 0.0 1907 2365.0 120.0 1 Urban 1.0
200 LP001671 Female 1.0 0 1 0.0 3416 2816.0 113.0 360.0 0 Semiurban 1.0
201 LP001673 Male 0.0 0 1 1.0 11000 0.0 83.0 360.0 1 Urban 0.0
202 LP001674 Male 1.0 1 0 0.0 2600 2500.0 90.0 360.0 1 Semiurban 1.0
203 LP001677 Male 0.0 2 1 0.0 4923 0.0 166.0 360.0 0 Semiurban 1.0
204 LP001682 Male 1.0 3+ 0 0.0 3992 0.0 0.0 180.0 1 Urban 0.0
205 LP001688 Male 1.0 1 0 0.0 3500 1083.0 135.0 360.0 1 Urban 1.0
206 LP001691 Male 1.0 2 0 0.0 3917 0.0 124.0 360.0 1 Semiurban 1.0
207 LP001692 Female 0.0 0 0 0.0 4408 0.0 120.0 360.0 1 Semiurban 1.0
208 LP001693 Female 0.0 0 1 0.0 3244 0.0 80.0 360.0 1 Urban 1.0
209 LP001698 Male 0.0 0 0 0.0 3975 2531.0 55.0 360.0 1 Rural 1.0
210 LP001699 Male 0.0 0 1 0.0 2479 0.0 59.0 360.0 1 Urban 1.0
211 LP001702 Male 0.0 0 1 0.0 3418 0.0 127.0 360.0 1 Semiurban 0.0
212 LP001708 Female 0.0 0 1 0.0 10000 0.0 214.0 360.0 1 Semiurban 0.0
213 LP001711 Male 1.0 3+ 1 0.0 3430 1250.0 128.0 360.0 0 Semiurban 0.0
214 LP001713 Male 1.0 1 1 1.0 7787 0.0 240.0 360.0 1 Urban 1.0
215 LP001715 Male 1.0 3+ 0 1.0 5703 0.0 130.0 360.0 1 Rural 1.0
216 LP001716 Male 1.0 0 1 0.0 3173 3021.0 137.0 360.0 1 Urban 1.0
217 LP001720 Male 1.0 3+ 0 0.0 3850 983.0 100.0 360.0 1 Semiurban 1.0
218 LP001722 Male 1.0 0 1 0.0 150 1800.0 135.0 360.0 1 Rural 0.0
219 LP001726 Male 1.0 0 1 0.0 3727 1775.0 131.0 360.0 1 Semiurban 1.0
220 LP001732 Male 1.0 2 1 0.0 5000 0.0 72.0 360.0 0 Semiurban 0.0
221 LP001734 Female 1.0 2 1 0.0 4283 2383.0 127.0 360.0 0 Semiurban 1.0
222 LP001736 Male 1.0 0 1 0.0 2221 0.0 60.0 360.0 0 Urban 0.0
223 LP001743 Male 1.0 2 1 0.0 4009 1717.0 116.0 360.0 1 Semiurban 1.0
224 LP001744 Male 0.0 0 1 0.0 2971 2791.0 144.0 360.0 1 Semiurban 1.0
225 LP001749 Male 1.0 0 1 0.0 7578 1010.0 175.0 1 Semiurban 1.0
226 LP001750 Male 1.0 0 1 0.0 6250 0.0 128.0 360.0 1 Semiurban 1.0
227 LP001751 Male 1.0 0 1 0.0 3250 0.0 170.0 360.0 1 Rural 0.0
228 LP001754 Male 1.0 0 1.0 4735 0.0 138.0 360.0 1 Urban 0.0
229 LP001758 Male 1.0 2 1 0.0 6250 1695.0 210.0 360.0 1 Semiurban 1.0
230 LP001760 Male 0.0 1 0.0 4758 0.0 158.0 480.0 1 Semiurban 1.0
231 LP001761 Male 0.0 0 1 1.0 6400 0.0 200.0 360.0 1 Rural 1.0
232 LP001765 Male 1.0 1 1 0.0 2491 2054.0 104.0 360.0 1 Semiurban 1.0
233 LP001768 Male 1.0 0 1 0.0 3716 0.0 42.0 180.0 1 Rural 1.0
234 LP001770 Male 0.0 0 0 0.0 3189 2598.0 120.0 1 Rural 1.0
235 LP001776 Female 0.0 0 1 0.0 8333 0.0 280.0 360.0 1 Semiurban 1.0
236 LP001778 Male 1.0 1 1 0.0 3155 1779.0 140.0 360.0 1 Semiurban 1.0
237 LP001784 Male 1.0 1 1 0.0 5500 1260.0 170.0 360.0 1 Rural 1.0
238 LP001786 Male 1.0 0 1 0.0 5746 0.0 255.0 360.0 0 Urban 0.0
239 LP001788 Female 0.0 0 1 1.0 3463 0.0 122.0 360.0 0 Urban 1.0
240 LP001790 Female 0.0 1 1 0.0 3812 0.0 112.0 360.0 1 Rural 1.0
241 LP001792 Male 1.0 1 1 0.0 3315 0.0 96.0 360.0 1 Semiurban 1.0
242 LP001798 Male 1.0 2 1 0.0 5819 5000.0 120.0 360.0 1 Rural 1.0
243 LP001800 Male 1.0 1 0 0.0 2510 1983.0 140.0 180.0 1 Urban 0.0
244 LP001806 Male 0.0 0 1 0.0 2965 5701.0 155.0 60.0 1 Urban 1.0
245 LP001807 Male 1.0 2 1 1.0 6250 1300.0 108.0 360.0 1 Rural 1.0
246 LP001811 Male 1.0 0 0 0.0 3406 4417.0 123.0 360.0 1 Semiurban 1.0
247 LP001813 Male 0.0 0 1 1.0 6050 4333.0 120.0 180.0 1 Urban 0.0
248 LP001814 Male 1.0 2 1 0.0 9703 0.0 112.0 360.0 1 Urban 1.0
249 LP001819 Male 1.0 1 0 0.0 6608 0.0 137.0 180.0 1 Urban 1.0
250 LP001824 Male 1.0 1 1 0.0 2882 1843.0 123.0 480.0 1 Semiurban 1.0
251 LP001825 Male 1.0 0 1 0.0 1809 1868.0 90.0 360.0 1 Urban 1.0
252 LP001835 Male 1.0 0 0 0.0 1668 3890.0 201.0 360.0 0 Semiurban 0.0
253 LP001836 Female 0.0 2 1 0.0 3427 0.0 138.0 360.0 1 Urban 0.0
254 LP001841 Male 0.0 0 0 1.0 2583 2167.0 104.0 360.0 1 Rural 1.0
255 LP001843 Male 1.0 1 0 0.0 2661 7101.0 279.0 180.0 1 Semiurban 1.0
256 LP001844 Male 0.0 0 1 1.0 16250 0.0 192.0 360.0 0 Urban 0.0
257 LP001846 Female 0.0 3+ 1 0.0 3083 0.0 255.0 360.0 1 Rural 1.0
258 LP001849 Male 0.0 0 0 0.0 6045 0.0 115.0 360.0 0 Rural 0.0
259 LP001854 Male 1.0 3+ 1 0.0 5250 0.0 94.0 360.0 1 Urban 0.0
260 LP001859 Male 1.0 0 1 0.0 14683 2100.0 304.0 360.0 1 Rural 0.0
261 LP001864 Male 1.0 3+ 0 0.0 4931 0.0 128.0 360.0 0 Semiurban 0.0
262 LP001865 Male 1.0 1 1 0.0 6083 4250.0 330.0 360.0 0 Urban 1.0
263 LP001868 Male 0.0 0 1 0.0 2060 2209.0 134.0 360.0 1 Semiurban 1.0
264 LP001870 Female 0.0 1 1 0.0 3481 0.0 155.0 36.0 1 Semiurban 0.0
265 LP001871 Female 0.0 0 1 0.0 7200 0.0 120.0 360.0 1 Rural 1.0
266 LP001872 Male 0.0 0 1 1.0 5166 0.0 128.0 360.0 1 Semiurban 1.0
267 LP001875 Male 0.0 0 1 0.0 4095 3447.0 151.0 360.0 1 Rural 1.0
268 LP001877 Male 1.0 2 1 0.0 4708 1387.0 150.0 360.0 1 Semiurban 1.0
269 LP001882 Male 1.0 3+ 1 0.0 4333 1811.0 160.0 360.0 0 Urban 1.0
270 LP001883 Female 0.0 0 1 0.0 3418 0.0 135.0 360.0 1 Rural 0.0
271 LP001884 Female 0.0 1 1 0.0 2876 1560.0 90.0 360.0 1 Urban 1.0
272 LP001888 Female 0.0 0 1 0.0 3237 0.0 30.0 360.0 1 Urban 1.0
273 LP001891 Male 1.0 0 1 0.0 11146 0.0 136.0 360.0 1 Urban 1.0
274 LP001892 Male 0.0 0 1 0.0 2833 1857.0 126.0 360.0 1 Rural 1.0
275 LP001894 Male 1.0 0 1 0.0 2620 2223.0 150.0 360.0 1 Semiurban 1.0
276 LP001896 Male 1.0 2 1 0.0 3900 0.0 90.0 360.0 1 Semiurban 1.0
277 LP001900 Male 1.0 1 1 0.0 2750 1842.0 115.0 360.0 1 Semiurban 1.0
278 LP001903 Male 1.0 0 1 0.0 3993 3274.0 207.0 360.0 1 Semiurban 1.0
279 LP001904 Male 1.0 0 1 0.0 3103 1300.0 80.0 360.0 1 Urban 1.0
280 LP001907 Male 1.0 0 1 0.0 14583 0.0 436.0 360.0 1 Semiurban 1.0
281 LP001908 Female 1.0 0 0 0.0 4100 0.0 124.0 360.0 0 Rural 1.0
282 LP001910 Male 0.0 1 0 1.0 4053 2426.0 158.0 360.0 0 Urban 0.0
283 LP001914 Male 1.0 0 1 0.0 3927 800.0 112.0 360.0 1 Semiurban 1.0
284 LP001915 Male 1.0 2 1 0.0 2301 985.7999878 78.0 180.0 1 Urban 1.0
285 LP001917 Female 0.0 0 1 0.0 1811 1666.0 54.0 360.0 1 Urban 1.0
286 LP001922 Male 1.0 0 1 0.0 20667 0.0 0.0 360.0 1 Rural 0.0
287 LP001924 Male 0.0 0 1 0.0 3158 3053.0 89.0 360.0 1 Rural 1.0
288 LP001925 Female 0.0 0 1 1.0 2600 1717.0 99.0 300.0 1 Semiurban 0.0
289 LP001926 Male 1.0 0 1 0.0 3704 2000.0 120.0 360.0 1 Rural 1.0
290 LP001931 Female 0.0 0 1 0.0 4124 0.0 115.0 360.0 1 Semiurban 1.0
291 LP001935 Male 0.0 0 1 0.0 9508 0.0 187.0 360.0 1 Rural 1.0
292 LP001936 Male 1.0 0 1 0.0 3075 2416.0 139.0 360.0 1 Rural 1.0
293 LP001938 Male 1.0 2 1 0.0 4400 0.0 127.0 360.0 0 Semiurban 0.0
294 LP001940 Male 1.0 2 1 0.0 3153 1560.0 134.0 360.0 1 Urban 1.0
295 LP001945 Female 0.0 1 0.0 5417 0.0 143.0 480.0 0 Urban 0.0
296 LP001947 Male 1.0 0 1 0.0 2383 3334.0 172.0 360.0 1 Semiurban 1.0
297 LP001949 Male 1.0 3+ 1 0.0 4416 1250.0 110.0 360.0 1 Urban 1.0
298 LP001953 Male 1.0 1 1 0.0 6875 0.0 200.0 360.0 1 Semiurban 1.0
299 LP001954 Female 1.0 1 1 0.0 4666 0.0 135.0 360.0 1 Urban 1.0
300 LP001955 Female 0.0 0 1 0.0 5000 2541.0 151.0 480.0 1 Rural 0.0
301 LP001963 Male 1.0 1 1 0.0 2014 2925.0 113.0 360.0 1 Urban 0.0
302 LP001964 Male 1.0 0 0 0.0 1800 2934.0 93.0 360.0 0 Urban 0.0
303 LP001972 Male 1.0 0 0.0 2875 1750.0 105.0 360.0 1 Semiurban 1.0
304 LP001974 Female 0.0 0 1 0.0 5000 0.0 132.0 360.0 1 Rural 1.0
305 LP001977 Male 1.0 1 1 0.0 1625 1803.0 96.0 360.0 1 Urban 1.0
306 LP001978 Male 0.0 0 1 0.0 4000 2500.0 140.0 360.0 1 Rural 1.0
307 LP001990 Male 0.0 0 0 0.0 2000 0.0 0.0 360.0 1 Urban 0.0
308 LP001993 Female 0.0 0 1 0.0 3762 1666.0 135.0 360.0 1 Rural 1.0
309 LP001994 Female 0.0 0 1 0.0 2400 1863.0 104.0 360.0 0 Urban 0.0
310 LP001996 Male 0.0 0 1 0.0 20233 0.0 480.0 360.0 1 Rural 0.0
311 LP001998 Male 1.0 2 0 0.0 7667 0.0 185.0 360.0 0 Rural 1.0
312 LP002002 Female 0.0 0 1 0.0 2917 0.0 84.0 360.0 1 Semiurban 1.0
313 LP002004 Male 0.0 0 0 0.0 2927 2405.0 111.0 360.0 1 Semiurban 1.0
314 LP002006 Female 0.0 0 1 0.0 2507 0.0 56.0 360.0 1 Rural 1.0
315 LP002008 Male 1.0 2 1 1.0 5746 0.0 144.0 84.0 0 Rural 1.0
316 LP002024 1.0 0 1 0.0 2473 1843.0 159.0 360.0 1 Rural 0.0
317 LP002031 Male 1.0 1 0 0.0 3399 1640.0 111.0 180.0 1 Urban 1.0
318 LP002035 Male 1.0 2 1 0.0 3717 0.0 120.0 360.0 1 Semiurban 1.0
319 LP002036 Male 1.0 0 1 0.0 2058 2134.0 88.0 360.0 0 Urban 1.0
320 LP002043 Female 0.0 1 1 0.0 3541 0.0 112.0 360.0 0 Semiurban 1.0
321 LP002050 Male 1.0 1 1 1.0 10000 0.0 155.0 360.0 1 Rural 0.0
322 LP002051 Male 1.0 0 1 0.0 2400 2167.0 115.0 360.0 1 Semiurban 1.0
323 LP002053 Male 1.0 3+ 1 0.0 4342 189.0 124.0 360.0 1 Semiurban 1.0
324 LP002054 Male 1.0 2 0 0.0 3601 1590.0 0.0 360.0 1 Rural 1.0
325 LP002055 Female 0.0 0 1 0.0 3166 2985.0 132.0 360.0 0 Rural 1.0
326 LP002065 Male 1.0 3+ 1 0.0 15000 0.0 300.0 360.0 1 Rural 1.0
327 LP002067 Male 1.0 1 1 1.0 8666 4983.0 376.0 360.0 0 Rural 0.0
328 LP002068 Male 0.0 0 1 0.0 4917 0.0 130.0 360.0 0 Rural 1.0
329 LP002082 Male 1.0 0 1 1.0 5818 2160.0 184.0 360.0 1 Semiurban 1.0
330 LP002086 Female 1.0 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
331 LP002087 Female 0.0 0 1 0.0 2500 0.0 67.0 360.0 1 Urban 1.0
332 LP002097 Male 0.0 1 1 0.0 4384 1793.0 117.0 360.0 1 Urban 1.0
333 LP002098 Male 0.0 0 1 0.0 2935 0.0 98.0 360.0 1 Semiurban 1.0
334 LP002100 Male 0.0 1 0.0 2833 0.0 71.0 360.0 1 Urban 1.0
335 LP002101 Male 1.0 0 1 0.0 63337 0.0 490.0 180.0 1 Urban 1.0
336 LP002103 1.0 1 1 1.0 9833 1833.0 182.0 180.0 1 Urban 1.0
337 LP002106 Male 1.0 1 1.0 5503 4490.0 70.0 1 Semiurban 1.0
338 LP002110 Male 1.0 1 1 0.0 5250 688.0 160.0 360.0 1 Rural 1.0
339 LP002112 Male 1.0 2 1 1.0 2500 4600.0 176.0 360.0 1 Rural 1.0
340 LP002113 Female 0.0 3+ 0 0.0 1830 0.0 0.0 360.0 0 Urban 0.0
341 LP002114 Female 0.0 0 1 0.0 4160 0.0 71.0 360.0 1 Semiurban 1.0
342 LP002115 Male 1.0 3+ 0 0.0 2647 1587.0 173.0 360.0 1 Rural 0.0
343 LP002116 Female 0.0 0 1 0.0 2378 0.0 46.0 360.0 1 Rural 0.0
344 LP002119 Male 1.0 1 0 0.0 4554 1229.0 158.0 360.0 1 Urban 1.0
345 LP002126 Male 1.0 3+ 0 0.0 3173 0.0 74.0 360.0 1 Semiurban 1.0
346 LP002128 Male 1.0 2 1 0.0 2583 2330.0 125.0 360.0 1 Rural 1.0
347 LP002129 Male 1.0 0 1 0.0 2499 2458.0 160.0 360.0 1 Semiurban 1.0
348 LP002130 Male 1.0 0 0.0 3523 3230.0 152.0 360.0 0 Rural 0.0
349 LP002131 Male 1.0 2 0 0.0 3083 2168.0 126.0 360.0 1 Urban 1.0
350 LP002137 Male 1.0 0 1 0.0 6333 4583.0 259.0 360.0 0 Semiurban 1.0
351 LP002138 Male 1.0 0 1 0.0 2625 6250.0 187.0 360.0 1 Rural 1.0
352 LP002139 Male 1.0 0 1 0.0 9083 0.0 228.0 360.0 1 Semiurban 1.0
353 LP002140 Male 0.0 0 1 0.0 8750 4167.0 308.0 360.0 1 Rural 0.0
354 LP002141 Male 1.0 3+ 1 0.0 2666 2083.0 95.0 360.0 1 Rural 1.0
355 LP002142 Female 1.0 0 1 1.0 5500 0.0 105.0 360.0 0 Rural 0.0
356 LP002143 Female 1.0 0 1 0.0 2423 505.0 130.0 360.0 1 Semiurban 1.0
357 LP002144 Female 0.0 1 0.0 3813 0.0 116.0 180.0 1 Urban 1.0
358 LP002149 Male 1.0 2 1 0.0 8333 3167.0 165.0 360.0 1 Rural 1.0
359 LP002151 Male 1.0 1 1 0.0 3875 0.0 67.0 360.0 1 Urban 0.0
360 LP002158 Male 1.0 0 0 0.0 3000 1666.0 100.0 480.0 0 Urban 0.0
361 LP002160 Male 1.0 3+ 1 0.0 5167 3167.0 200.0 360.0 1 Semiurban 1.0
362 LP002161 Female 0.0 1 1 0.0 4723 0.0 81.0 360.0 1 Semiurban 0.0
363 LP002170 Male 1.0 2 1 0.0 5000 3667.0 236.0 360.0 1 Semiurban 1.0
364 LP002175 Male 1.0 0 1 0.0 4750 2333.0 130.0 360.0 1 Urban 1.0
365 LP002178 Male 1.0 0 1 0.0 3013 3033.0 95.0 300.0 0 Urban 1.0
366 LP002180 Male 0.0 0 1 1.0 6822 0.0 141.0 360.0 1 Rural 1.0
367 LP002181 Male 0.0 0 0 0.0 6216 0.0 133.0 360.0 1 Rural 0.0
368 LP002187 Male 0.0 0 1 0.0 2500 0.0 96.0 480.0 1 Semiurban 0.0
369 LP002188 Male 0.0 0 1 0.0 5124 0.0 124.0 0 Rural 0.0
370 LP002190 Male 1.0 1 1 0.0 6325 0.0 175.0 360.0 1 Semiurban 1.0
371 LP002191 Male 1.0 0 1 0.0 19730 5266.0 570.0 360.0 1 Rural 0.0
372 LP002194 Female 0.0 0 1 1.0 15759 0.0 55.0 360.0 1 Semiurban 1.0
373 LP002197 Male 1.0 2 1 0.0 5185 0.0 155.0 360.0 1 Semiurban 1.0
374 LP002201 Male 1.0 2 1 1.0 9323 7873.0 380.0 300.0 1 Rural 1.0
375 LP002205 Male 0.0 1 1 0.0 3062 1987.0 111.0 180.0 0 Urban 0.0
376 LP002209 Female 0.0 0 1 0.0 2764 1459.0 110.0 360.0 1 Urban 1.0
377 LP002211 Male 1.0 0 1 0.0 4817 923.0 120.0 180.0 1 Urban 1.0
378 LP002219 Male 1.0 3+ 1 0.0 8750 4996.0 130.0 360.0 1 Rural 1.0
379 LP002223 Male 1.0 0 1 0.0 4310 0.0 130.0 360.0 0 Semiurban 1.0
380 LP002224 Male 0.0 0 1 0.0 3069 0.0 71.0 480.0 1 Urban 0.0
381 LP002225 Male 1.0 2 1 0.0 5391 0.0 130.0 360.0 1 Urban 1.0
382 LP002226 Male 1.0 0 1 0.0 3333 2500.0 128.0 360.0 1 Semiurban 1.0
383 LP002229 Male 0.0 0 1 0.0 5941 4232.0 296.0 360.0 1 Semiurban 1.0
384 LP002231 Female 0.0 0 1 0.0 6000 0.0 156.0 360.0 1 Urban 1.0
385 LP002234 Male 0.0 0 1 1.0 7167 0.0 128.0 360.0 1 Urban 1.0
386 LP002236 Male 1.0 2 1 0.0 4566 0.0 100.0 360.0 1 Urban 0.0
387 LP002237 Male 0.0 1 1 0.0 3667 0.0 113.0 180.0 1 Urban 1.0
388 LP002239 Male 0.0 0 0 0.0 2346 1600.0 132.0 360.0 1 Semiurban 1.0
389 LP002243 Male 1.0 0 0 0.0 3010 3136.0 0.0 360.0 0 Urban 0.0
390 LP002244 Male 1.0 0 1 0.0 2333 2417.0 136.0 360.0 1 Urban 1.0
391 LP002250 Male 1.0 0 1 0.0 5488 0.0 125.0 360.0 1 Rural 1.0
392 LP002255 Male 0.0 3+ 1 0.0 9167 0.0 185.0 360.0 1 Rural 1.0
393 LP002262 Male 1.0 3+ 1 0.0 9504 0.0 275.0 360.0 1 Rural 1.0
394 LP002263 Male 1.0 0 1 0.0 2583 2115.0 120.0 360.0 0 Urban 1.0
395 LP002265 Male 1.0 2 0 0.0 1993 1625.0 113.0 180.0 1 Semiurban 1.0
396 LP002266 Male 1.0 2 1 0.0 3100 1400.0 113.0 360.0 1 Urban 1.0
397 LP002272 Male 1.0 2 1 0.0 3276 484.0 135.0 360.0 0 Semiurban 1.0
398 LP002277 Female 0.0 0 1 0.0 3180 0.0 71.0 360.0 0 Urban 0.0
399 LP002281 Male 1.0 0 1 0.0 3033 1459.0 95.0 360.0 1 Urban 1.0
400 LP002284 Male 0.0 0 0 0.0 3902 1666.0 109.0 360.0 1 Rural 1.0
401 LP002287 Female 0.0 0 1 0.0 1500 1800.0 103.0 360.0 0 Semiurban 0.0
402 LP002288 Male 1.0 2 0 0.0 2889 0.0 45.0 180.0 0 Urban 0.0
403 LP002296 Male 0.0 0 0 0.0 2755 0.0 65.0 300.0 1 Rural 0.0
404 LP002297 Male 0.0 0 1 0.0 2500 20000.0 103.0 360.0 1 Semiurban 1.0
405 LP002300 Female 0.0 0 0 0.0 1963 0.0 53.0 360.0 1 Semiurban 1.0
406 LP002301 Female 0.0 0 1 1.0 7441 0.0 194.0 360.0 1 Rural 0.0
407 LP002305 Female 0.0 0 1 0.0 4547 0.0 115.0 360.0 1 Semiurban 1.0
408 LP002308 Male 1.0 0 0 0.0 2167 2400.0 115.0 360.0 1 Urban 1.0
409 LP002314 Female 0.0 0 0 0.0 2213 0.0 66.0 360.0 1 Rural 1.0
410 LP002315 Male 1.0 1 1 0.0 8300 0.0 152.0 300.0 0 Semiurban 0.0
411 LP002317 Male 1.0 3+ 1 0.0 81000 0.0 360.0 360.0 0 Rural 0.0
412 LP002318 Female 0.0 1 0 1.0 3867 0.0 62.0 360.0 1 Semiurban 0.0
413 LP002319 Male 1.0 0 1 0.0 6256 0.0 160.0 360.0 0 Urban 1.0
414 LP002328 Male 1.0 0 0 0.0 6096 0.0 218.0 360.0 0 Rural 0.0
415 LP002332 Male 1.0 0 0 0.0 2253 2033.0 110.0 360.0 1 Rural 1.0
416 LP002335 Female 1.0 0 0 0.0 2149 3237.0 178.0 360.0 0 Semiurban 0.0
417 LP002337 Female 0.0 0 1 0.0 2995 0.0 60.0 360.0 1 Urban 1.0
418 LP002341 Female 0.0 1 1 0.0 2600 0.0 160.0 360.0 1 Urban 0.0
419 LP002342 Male 1.0 2 1 1.0 1600 20000.0 239.0 360.0 1 Urban 0.0
420 LP002345 Male 1.0 0 1 0.0 1025 2773.0 112.0 360.0 1 Rural 1.0
421 LP002347 Male 1.0 0 1 0.0 3246 1417.0 138.0 360.0 1 Semiurban 1.0
422 LP002348 Male 1.0 0 1 0.0 5829 0.0 138.0 360.0 1 Rural 1.0
423 LP002357 Female 0.0 0 0 0.0 2720 0.0 80.0 0 Urban 0.0
424 LP002361 Male 1.0 0 1 0.0 1820 1719.0 100.0 360.0 1 Urban 1.0
425 LP002362 Male 1.0 1 1 0.0 7250 1667.0 110.0 0 Urban 0.0
426 LP002364 Male 1.0 0 1 0.0 14880 0.0 96.0 360.0 1 Semiurban 1.0
427 LP002366 Male 1.0 0 1 0.0 2666 4300.0 121.0 360.0 1 Rural 1.0
428 LP002367 Female 0.0 1 0 0.0 4606 0.0 81.0 360.0 1 Rural 0.0
429 LP002368 Male 1.0 2 1 0.0 5935 0.0 133.0 360.0 1 Semiurban 1.0
430 LP002369 Male 1.0 0 1 0.0 2920 16.12000084 87.0 360.0 1 Rural 1.0
431 LP002370 Male 0.0 0 0 0.0 2717 0.0 60.0 180.0 1 Urban 1.0
432 LP002377 Female 0.0 1 1 1.0 8624 0.0 150.0 360.0 1 Semiurban 1.0
433 LP002379 Male 0.0 0 1 0.0 6500 0.0 105.0 360.0 0 Rural 0.0
434 LP002386 Male 0.0 0 1 0.0 12876 0.0 405.0 360.0 1 Semiurban 1.0
435 LP002387 Male 1.0 0 1 0.0 2425 2340.0 143.0 360.0 1 Semiurban 1.0
436 LP002390 Male 0.0 0 1 0.0 3750 0.0 100.0 360.0 1 Urban 1.0
437 LP002393 Female 0.0 1 0.0 10047 0.0 0.0 240.0 1 Semiurban 1.0
438 LP002398 Male 0.0 0 1 0.0 1926 1851.0 50.0 360.0 1 Semiurban 1.0
439 LP002401 Male 1.0 0 1 0.0 2213 1125.0 0.0 360.0 1 Urban 1.0
440 LP002403 Male 0.0 0 1 1.0 10416 0.0 187.0 360.0 0 Urban 0.0
441 LP002407 Female 1.0 0 0 1.0 7142 0.0 138.0 360.0 1 Rural 1.0
442 LP002408 Male 0.0 0 1 0.0 3660 5064.0 187.0 360.0 1 Semiurban 1.0
443 LP002409 Male 1.0 0 1 0.0 7901 1833.0 180.0 360.0 1 Rural 1.0
444 LP002418 Male 0.0 3+ 0 0.0 4707 1993.0 148.0 360.0 1 Semiurban 1.0
445 LP002422 Male 0.0 1 1 0.0 37719 0.0 152.0 360.0 1 Semiurban 1.0
446 LP002424 Male 1.0 0 1 0.0 7333 8333.0 175.0 300.0 0 Rural 1.0
447 LP002429 Male 1.0 1 1 1.0 3466 1210.0 130.0 360.0 1 Rural 1.0
448 LP002434 Male 1.0 2 0 0.0 4652 0.0 110.0 360.0 1 Rural 1.0
449 LP002435 Male 1.0 0 1 0.0 3539 1376.0 55.0 360.0 1 Rural 0.0
450 LP002443 Male 1.0 2 1 0.0 3340 1710.0 150.0 360.0 0 Rural 0.0
451 LP002444 Male 0.0 1 0 1.0 2769 1542.0 190.0 360.0 0 Semiurban 0.0
452 LP002446 Male 1.0 2 0 0.0 2309 1255.0 125.0 360.0 0 Rural 0.0
453 LP002447 Male 1.0 2 0 0.0 1958 1456.0 60.0 300.0 0 Urban 1.0
454 LP002448 Male 1.0 0 1 0.0 3948 1733.0 149.0 360.0 0 Rural 0.0
455 LP002449 Male 1.0 0 1 0.0 2483 2466.0 90.0 180.0 0 Rural 1.0
456 LP002453 Male 0.0 0 1 1.0 7085 0.0 84.0 360.0 1 Semiurban 1.0
457 LP002455 Male 1.0 2 1 0.0 3859 0.0 96.0 360.0 1 Semiurban 1.0
458 LP002459 Male 1.0 0 1 0.0 4301 0.0 118.0 360.0 1 Urban 1.0
459 LP002467 Male 1.0 0 1 0.0 3708 2569.0 173.0 360.0 1 Urban 0.0
460 LP002472 Male 0.0 2 1 0.0 4354 0.0 136.0 360.0 1 Rural 1.0
461 LP002473 Male 1.0 0 1 0.0 8334 0.0 160.0 360.0 1 Semiurban 0.0
462 LP002478 1.0 0 1 1.0 2083 4083.0 160.0 360.0 0 Semiurban 1.0
463 LP002484 Male 1.0 3+ 1 0.0 7740 0.0 128.0 180.0 1 Urban 1.0
464 LP002487 Male 1.0 0 1 0.0 3015 2188.0 153.0 360.0 1 Rural 1.0
465 LP002489 Female 0.0 1 0 0.0 5191 0.0 132.0 360.0 1 Semiurban 1.0
466 LP002493 Male 0.0 0 1 0.0 4166 0.0 98.0 360.0 0 Semiurban 0.0
467 LP002494 Male 0.0 0 1 0.0 6000 0.0 140.0 360.0 1 Rural 1.0
468 LP002500 Male 1.0 3+ 0 0.0 2947 1664.0 70.0 180.0 0 Urban 0.0
469 LP002501 1.0 0 1 0.0 16692 0.0 110.0 360.0 1 Semiurban 1.0
470 LP002502 Female 1.0 2 0 0.0 210 2917.0 98.0 360.0 1 Semiurban 1.0
471 LP002505 Male 1.0 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
472 LP002515 Male 1.0 1 1 1.0 3450 2079.0 162.0 360.0 1 Semiurban 1.0
473 LP002517 Male 1.0 1 0 0.0 2653 1500.0 113.0 180.0 0 Rural 0.0
474 LP002519 Male 1.0 3+ 1 0.0 4691 0.0 100.0 360.0 1 Semiurban 1.0
475 LP002522 Female 0.0 0 1 1.0 2500 0.0 93.0 360.0 0 Urban 1.0
476 LP002524 Male 0.0 2 1 0.0 5532 4648.0 162.0 360.0 1 Rural 1.0
477 LP002527 Male 1.0 2 1 1.0 16525 1014.0 150.0 360.0 1 Rural 1.0
478 LP002529 Male 1.0 2 1 0.0 6700 1750.0 230.0 300.0 1 Semiurban 1.0
479 LP002530 1.0 2 1 0.0 2873 1872.0 132.0 360.0 0 Semiurban 0.0
480 LP002531 Male 1.0 1 1 1.0 16667 2250.0 86.0 360.0 1 Semiurban 1.0
481 LP002533 Male 1.0 2 1 0.0 2947 1603.0 0.0 360.0 1 Urban 0.0
482 LP002534 Female 0.0 0 0 0.0 4350 0.0 154.0 360.0 1 Rural 1.0
483 LP002536 Male 1.0 3+ 0 0.0 3095 0.0 113.0 360.0 1 Rural 1.0
484 LP002537 Male 1.0 0 1 0.0 2083 3150.0 128.0 360.0 1 Semiurban 1.0
485 LP002541 Male 1.0 0 1 0.0 10833 0.0 234.0 360.0 1 Semiurban 1.0
486 LP002543 Male 1.0 2 1 0.0 8333 0.0 246.0 360.0 1 Semiurban 1.0
487 LP002544 Male 1.0 1 0 0.0 1958 2436.0 131.0 360.0 1 Rural 1.0
488 LP002545 Male 0.0 2 1 0.0 3547 0.0 80.0 360.0 0 Rural 0.0
489 LP002547 Male 1.0 1 1 0.0 18333 0.0 500.0 360.0 1 Urban 0.0
490 LP002555 Male 1.0 2 1 1.0 4583 2083.0 160.0 360.0 1 Semiurban 1.0
491 LP002556 Male 0.0 0 1 0.0 2435 0.0 75.0 360.0 1 Urban 0.0
492 LP002560 Male 0.0 0 0 0.0 2699 2785.0 96.0 360.0 0 Semiurban 1.0
493 LP002562 Male 1.0 1 0 0.0 5333 1131.0 186.0 360.0 0 Urban 1.0
494 LP002571 Male 0.0 0 0 0.0 3691 0.0 110.0 360.0 1 Rural 1.0
495 LP002582 Female 0.0 0 0 1.0 17263 0.0 225.0 360.0 1 Semiurban 1.0
496 LP002585 Male 1.0 0 1 0.0 3597 2157.0 119.0 360.0 0 Rural 0.0
497 LP002586 Female 1.0 1 1 0.0 3326 913.0 105.0 84.0 1 Semiurban 1.0
498 LP002587 Male 1.0 0 0 0.0 2600 1700.0 107.0 360.0 1 Rural 1.0
499 LP002588 Male 1.0 0 1 0.0 4625 2857.0 111.0 12.0 0 Urban 1.0
500 LP002600 Male 1.0 1 1 1.0 2895 0.0 95.0 360.0 1 Semiurban 1.0
501 LP002602 Male 0.0 0 1 0.0 6283 4416.0 209.0 360.0 0 Rural 0.0
502 LP002603 Female 0.0 0 1 0.0 645 3683.0 113.0 480.0 1 Rural 1.0
503 LP002606 Female 0.0 0 1 0.0 3159 0.0 100.0 360.0 1 Semiurban 1.0
504 LP002615 Male 1.0 2 1 0.0 4865 5624.0 208.0 360.0 1 Semiurban 1.0
505 LP002618 Male 1.0 1 0 0.0 4050 5302.0 138.0 360.0 0 Rural 0.0
506 LP002619 Male 1.0 0 0 0.0 3814 1483.0 124.0 300.0 1 Semiurban 1.0
507 LP002622 Male 1.0 2 1 0.0 3510 4416.0 243.0 360.0 1 Rural 1.0
508 LP002624 Male 1.0 0 1 0.0 20833 6667.0 480.0 360.0 0 Urban 1.0
509 LP002625 0.0 0 1 0.0 3583 0.0 96.0 360.0 1 Urban 0.0
510 LP002626 Male 1.0 0 1 1.0 2479 3013.0 188.0 360.0 1 Urban 1.0
511 LP002634 Female 0.0 1 1 0.0 13262 0.0 40.0 360.0 1 Urban 1.0
512 LP002637 Male 0.0 0 0 0.0 3598 1287.0 100.0 360.0 1 Rural 0.0
513 LP002640 Male 1.0 1 1 0.0 6065 2004.0 250.0 360.0 1 Semiurban 1.0
514 LP002643 Male 1.0 2 1 0.0 3283 2035.0 148.0 360.0 1 Urban 1.0
515 LP002648 Male 1.0 0 1 0.0 2130 6666.0 70.0 180.0 1 Semiurban 0.0
516 LP002652 Male 0.0 0 1 0.0 5815 3666.0 311.0 360.0 1 Rural 0.0
517 LP002659 Male 1.0 3+ 1 0.0 3466 3428.0 150.0 360.0 1 Rural 1.0
518 LP002670 Female 1.0 2 1 0.0 2031 1632.0 113.0 480.0 1 Semiurban 1.0
519 LP002682 Male 1.0 0 0.0 3074 1800.0 123.0 360.0 0 Semiurban 0.0
520 LP002683 Male 0.0 0 1 0.0 4683 1915.0 185.0 360.0 1 Semiurban 0.0
521 LP002684 Female 0.0 0 0 0.0 3400 0.0 95.0 360.0 1 Rural 0.0
522 LP002689 Male 1.0 2 0 0.0 2192 1742.0 45.0 360.0 1 Semiurban 1.0
523 LP002690 Male 0.0 0 1 0.0 2500 0.0 55.0 360.0 1 Semiurban 1.0
524 LP002692 Male 1.0 3+ 1 1.0 5677 1424.0 100.0 360.0 1 Rural 1.0
525 LP002693 Male 1.0 2 1 1.0 7948 7166.0 480.0 360.0 1 Rural 1.0
526 LP002697 Male 0.0 0 1 0.0 4680 2087.0 0.0 360.0 1 Semiurban 0.0
527 LP002699 Male 1.0 2 1 1.0 17500 0.0 400.0 360.0 1 Rural 1.0
528 LP002705 Male 1.0 0 1 0.0 3775 0.0 110.0 360.0 1 Semiurban 1.0
529 LP002706 Male 1.0 1 0 0.0 5285 1430.0 161.0 360.0 0 Semiurban 1.0
530 LP002714 Male 0.0 1 0 0.0 2679 1302.0 94.0 360.0 1 Semiurban 1.0
531 LP002716 Male 0.0 0 0 0.0 6783 0.0 130.0 360.0 1 Semiurban 1.0
532 LP002717 Male 1.0 0 1 0.0 1025 5500.0 216.0 360.0 0 Rural 1.0
533 LP002720 Male 1.0 3+ 1 0.0 4281 0.0 100.0 360.0 1 Urban 1.0
534 LP002723 Male 0.0 2 1 0.0 3588 0.0 110.0 360.0 0 Rural 0.0
535 LP002729 Male 0.0 1 1 0.0 11250 0.0 196.0 360.0 0 Semiurban 0.0
536 LP002731 Female 0.0 0 0 1.0 18165 0.0 125.0 360.0 1 Urban 1.0
537 LP002732 Male 0.0 0 0 0.0 2550 2042.0 126.0 360.0 1 Rural 1.0
538 LP002734 Male 1.0 0 1 0.0 6133 3906.0 324.0 360.0 1 Urban 1.0
539 LP002738 Male 0.0 2 1 0.0 3617 0.0 107.0 360.0 1 Semiurban 1.0
540 LP002739 Male 1.0 0 0 0.0 2917 536.0 66.0 360.0 1 Rural 0.0
541 LP002740 Male 1.0 3+ 1 0.0 6417 0.0 157.0 180.0 1 Rural 1.0
542 LP002741 Female 1.0 1 1 0.0 4608 2845.0 140.0 180.0 1 Semiurban 1.0
543 LP002743 Female 0.0 0 1 0.0 2138 0.0 99.0 360.0 0 Semiurban 0.0
544 LP002753 Female 0.0 1 1 0.0 3652 0.0 95.0 360.0 1 Semiurban 1.0
545 LP002755 Male 1.0 1 0 0.0 2239 2524.0 128.0 360.0 1 Urban 1.0
546 LP002757 Female 1.0 0 0 0.0 3017 663.0 102.0 360.0 0 Semiurban 1.0
547 LP002767 Male 1.0 0 1 0.0 2768 1950.0 155.0 360.0 1 Rural 1.0
548 LP002768 Male 0.0 0 0 0.0 3358 0.0 80.0 36.0 1 Semiurban 0.0
549 LP002772 Male 0.0 0 1 0.0 2526 1783.0 145.0 360.0 1 Rural 1.0
550 LP002776 Female 0.0 0 1 0.0 5000 0.0 103.0 360.0 0 Semiurban 0.0
551 LP002777 Male 1.0 0 1 0.0 2785 2016.0 110.0 360.0 1 Rural 1.0
552 LP002778 Male 1.0 2 1 1.0 6633 0.0 0.0 360.0 0 Rural 0.0
553 LP002784 Male 1.0 1 0 0.0 2492 2375.0 0.0 360.0 1 Rural 1.0
554 LP002785 Male 1.0 1 1 0.0 3333 3250.0 158.0 360.0 1 Urban 1.0
555 LP002788 Male 1.0 0 0 0.0 2454 2333.0 181.0 360.0 0 Urban 0.0
556 LP002789 Male 1.0 0 1 0.0 3593 4266.0 132.0 180.0 0 Rural 0.0
557 LP002792 Male 1.0 1 1 0.0 5468 1032.0 26.0 360.0 1 Semiurban 1.0
558 LP002794 Female 0.0 0 1 0.0 2667 1625.0 84.0 360.0 0 Urban 1.0
559 LP002795 Male 1.0 3+ 1 1.0 10139 0.0 260.0 360.0 1 Semiurban 1.0
560 LP002798 Male 1.0 0 1 0.0 3887 2669.0 162.0 360.0 1 Semiurban 1.0
561 LP002804 Female 1.0 0 1 0.0 4180 2306.0 182.0 360.0 1 Semiurban 1.0
562 LP002807 Male 1.0 2 0 0.0 3675 242.0 108.0 360.0 1 Semiurban 1.0
563 LP002813 Female 1.0 1 1 1.0 19484 0.0 600.0 360.0 1 Semiurban 1.0
564 LP002820 Male 1.0 0 1 0.0 5923 2054.0 211.0 360.0 1 Rural 1.0
565 LP002821 Male 0.0 0 0 1.0 5800 0.0 132.0 360.0 1 Semiurban 1.0
566 LP002832 Male 1.0 2 1 0.0 8799 0.0 258.0 360.0 0 Urban 0.0
567 LP002833 Male 1.0 0 0 0.0 4467 0.0 120.0 360.0 0 Rural 1.0
568 LP002836 Male 0.0 0 1 0.0 3333 0.0 70.0 360.0 1 Urban 1.0
569 LP002837 Male 1.0 3+ 1 0.0 3400 2500.0 123.0 360.0 0 Rural 0.0
570 LP002840 Female 0.0 0 1 0.0 2378 0.0 9.0 360.0 1 Urban 0.0
571 LP002841 Male 1.0 0 1 0.0 3166 2064.0 104.0 360.0 0 Urban 0.0
572 LP002842 Male 1.0 1 1 0.0 3417 1750.0 186.0 360.0 1 Urban 1.0
573 LP002847 Male 1.0 1 0.0 5116 1451.0 165.0 360.0 0 Urban 0.0
574 LP002855 Male 1.0 2 1 0.0 16666 0.0 275.0 360.0 1 Urban 1.0
575 LP002862 Male 1.0 2 0 0.0 6125 1625.0 187.0 480.0 1 Semiurban 0.0
576 LP002863 Male 1.0 3+ 1 0.0 6406 0.0 150.0 360.0 1 Semiurban 0.0
577 LP002868 Male 1.0 2 1 0.0 3159 461.0 108.0 84.0 1 Urban 1.0
578 LP002872 1.0 0 1 0.0 3087 2210.0 136.0 360.0 0 Semiurban 0.0
579 LP002874 Male 0.0 0 1 0.0 3229 2739.0 110.0 360.0 1 Urban 1.0
580 LP002877 Male 1.0 1 1 0.0 1782 2232.0 107.0 360.0 1 Rural 1.0
581 LP002888 Male 0.0 0 1 0.0 3182 2917.0 161.0 360.0 1 Urban 1.0
582 LP002892 Male 1.0 2 1 0.0 6540 0.0 205.0 360.0 1 Semiurban 1.0
583 LP002893 Male 0.0 0 1 0.0 1836 33837.0 90.0 360.0 1 Urban 0.0
584 LP002894 Female 1.0 0 1 0.0 3166 0.0 36.0 360.0 1 Semiurban 1.0
585 LP002898 Male 1.0 1 1 0.0 1880 0.0 61.0 360.0 0 Rural 0.0
586 LP002911 Male 1.0 1 1 0.0 2787 1917.0 146.0 360.0 0 Rural 0.0
587 LP002912 Male 1.0 1 1 0.0 4283 3000.0 172.0 84.0 1 Rural 0.0
588 LP002916 Male 1.0 0 1 0.0 2297 1522.0 104.0 360.0 1 Urban 1.0
589 LP002917 Female 0.0 0 0 0.0 2165 0.0 70.0 360.0 1 Semiurban 1.0
590 LP002925 0.0 0 1 0.0 4750 0.0 94.0 360.0 1 Semiurban 1.0
591 LP002926 Male 1.0 2 1 1.0 2726 0.0 106.0 360.0 0 Semiurban 0.0
592 LP002928 Male 1.0 0 1 0.0 3000 3416.0 56.0 180.0 1 Semiurban 1.0
593 LP002931 Male 1.0 2 1 1.0 6000 0.0 205.0 240.0 1 Semiurban 0.0
594 LP002933 0.0 3+ 1 1.0 9357 0.0 292.0 360.0 1 Semiurban 1.0
595 LP002936 Male 1.0 0 1 0.0 3859 3300.0 142.0 180.0 1 Rural 1.0
596 LP002938 Male 1.0 0 1 1.0 16120 0.0 260.0 360.0 1 Urban 1.0
597 LP002940 Male 0.0 0 0 0.0 3833 0.0 110.0 360.0 1 Rural 1.0
598 LP002941 Male 1.0 2 0 1.0 6383 1000.0 187.0 360.0 1 Rural 0.0
599 LP002943 Male 0.0 1 0.0 2987 0.0 88.0 360.0 0 Semiurban 0.0
600 LP002945 Male 1.0 0 1 1.0 9963 0.0 180.0 360.0 1 Rural 1.0
601 LP002948 Male 1.0 2 1 0.0 5780 0.0 192.0 360.0 1 Urban 1.0
602 LP002949 Female 0.0 3+ 1 0.0 416 41667.0 350.0 180.0 0 Urban 0.0
603 LP002950 Male 1.0 0 0 0.0 2894 2792.0 155.0 360.0 1 Rural 1.0
604 LP002953 Male 1.0 3+ 1 0.0 5703 0.0 128.0 360.0 1 Urban 1.0
605 LP002958 Male 0.0 0 1 0.0 3676 4301.0 172.0 360.0 1 Rural 1.0
606 LP002959 Female 1.0 1 1 0.0 12000 0.0 496.0 360.0 1 Semiurban 1.0
607 LP002960 Male 1.0 0 0 0.0 2400 3800.0 0.0 180.0 1 Urban 0.0
608 LP002961 Male 1.0 1 1 0.0 3400 2500.0 173.0 360.0 1 Semiurban 1.0
609 LP002964 Male 1.0 2 0 0.0 3987 1411.0 157.0 360.0 1 Rural 1.0
610 LP002974 Male 1.0 0 1 0.0 3232 1950.0 108.0 360.0 1 Rural 1.0
611 LP002978 Female 0.0 0 1 0.0 2900 0.0 71.0 360.0 1 Rural 1.0
612 LP002979 Male 1.0 3+ 1 0.0 4106 0.0 40.0 180.0 1 Rural 1.0
613 LP002983 Male 1.0 1 1 0.0 8072 240.0 253.0 360.0 1 Urban 1.0
614 LP002984 Male 1.0 2 1 0.0 7583 0.0 187.0 360.0 1 Urban 1.0
615 LP002990 Female 0.0 0 1 1.0 4583 0.0 133.0 360.0 0 Semiurban 0.0

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 680 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 452 KiB

View File

@@ -0,0 +1,40 @@
from scipy.cluster import hierarchy
import pandas as pd
from matplotlib import pyplot as plt
def start():
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data[['full_sq', 'price_doc']]
plt.figure(1, figsize=(16, 9))
plt.title('Дендрограмма кластеризации цен')
prices = [0, 0, 0, 0]
for ind, val in x.iterrows():
val = val['price_doc'] / val['full_sq']
if val < 100000:
prices[0] = prices[0] + 1
elif val < 300000:
prices[1] = prices[1] + 1
elif val < 500000:
prices[2] = prices[2] + 1
else:
prices[3] = prices[3] + 1
print('Результаты подчсёта ручного распределения:')
print('низких цен:'+str(prices[0]))
print('средних цен:'+str(prices[1]))
print('высоких цен:'+str(prices[2]))
print('премиальных цен:'+str(prices[3]))
hierarchy.dendrogram(hierarchy.linkage(x, method='single'),
truncate_mode='lastp',
p=15,
orientation='top',
leaf_rotation=90,
leaf_font_size=8,
show_contracted=True)
plt.show()
start()

View File

@@ -0,0 +1,27 @@
### Задание
Использовать метод кластеризации по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо он подходит для
решения сформулированной вами задачи.
Вариант 1: dendrogram
Была сформулирована следующая задача: необходимо разбить записи на кластеры в зависимости от цен и площади.
### Запуск программы
Файл lab4.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа считывает цены и площади из файла статистики сбербанка по рынку недвижимости.
Поскольку по заданию требуется оценить машинную кластеризацию, для сравнения программа подсчитывает и выводит в консоль количество записей в каждом из выделенных вручную классов цен.
Далее программа кластеризует данные с помощью алгоритма ближайших точек (на другие памяти нету) и выводит дендрограмму на основе кластеризации.
Выводимая дендрограмма ограничена 15 последними (верхними) объединениями.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* Последние объединения в дендрограмме - объединения выбросов с 'основным' кластером, то есть 10-20 записей с кластером с более чем 28000 записями.
* Это правильная информация, так как ручная классификация показывает, что премиальных (аномально больших) цен как раз порядка 20, остальные относятся к другим классам.
* Поскольку в имеющихся данных нет ограничений по ценам, выбросы аномально высоких цен при использовании данного алгоритма формируют отдельные кластеры, что негативно сказывается на наглядности.
* Ценовое ограничение также не дало положительнх результатов: снова сформировался 'основной' кластер, с которым последними объединялись отдельные значения.
* Значит, сам алгоритм не эффективен.
Итого: Алгоритм ближайших точек слишком чувствителен к выбросам, поэтому можно признать его неэффективным для необработанных данных. Дендрограмма как средство визуализации скорее уступает по наглядности диаграмме рассеяния.

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,48 @@
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
import pandas as pd
def start():
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data[['timestamp', 'full_sq', 'floor', 'max_floor', 'build_year', 'num_room', 'material', 'kremlin_km']]
y = data[['price_doc']]
x = x.replace('NA', 0)
x.fillna(0, inplace=True)
col_date = []
for val in x['timestamp']:
col_date.append(val.split('-', 1)[0])
x = x.drop(columns='timestamp')
x['timestamp'] = col_date
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=42)
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
('linear', LinearRegression())])
poly.fit(x_train, y_train)
y_mean = y['price_doc'].mean()
y_predicted = poly.predict(x_test)
for i, n in enumerate(y_predicted):
if n < 10000:
y_predicted[i] = y_mean
print('Оценка обучения:')
print(metrics.r2_score(y_test, y_predicted))
plt.figure(1, figsize=(16, 9))
plt.title('Сравнение результатов обучения')
plt.scatter(x=[i for i in range(len(y_test))], y=y_test, c='g', s=5)
plt.scatter(x=[i for i in range(len(y_test))], y=y_predicted, c='r', s=5)
plt.show()
start()

View File

@@ -0,0 +1,36 @@
### Задание
Использовать регрессию по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо она подходит для
решения сформулированной вами задачи.
Вариант 1: полиномиальная регрессия
Была сформулирована следующая задача: необходимо предсказывать стоимость жилья по избранным признакам при помощи регрессии.
### Запуск программы
Файл lab5.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа считывает цены на жильё как выходные данные и следующие данные как входные: год размещения объявления, площадь, этаж, количество этажей, год постройки, количество комнат, материал, расстояние до кремля (условного центра).
Далее она обрабатывает данные (цифровизирует нулевые данные), оставляет только год объявления.
После обработки программа делит данные на 99% обучающего материала и 1% тестового и обучает модель полиномиальной регрессии со степенью 3.
Далее модель генерирует набор предсказаний на основе тестовых входных данных. Эти предсказания обрабатываются: убираются отрицательные цены.
Далее программа оценивает предсказания по коэффициенту детерминации и выводит результат в консоль. А также показывает диаграммы рассеяния для действительных (зелёные точки) и предсказанных (красные точки) цен.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* Полные данные алгоритм обрабатывает плохо, поэтому было необходимо было выбирать наиболее значимые признаки.
* В зависимости от данных, разные степени регрессии дают разный результат. В общем случае обычная линейная регрессия давала коэффициент около 0.3. При добавлении же степеней полиномиальная регрессия выдавала выбросные значения цен: например, -300 миллионов, что негативно сказывалось на результате.
* Для того, чтобы явно выбросные результаты не портили оценку (коэффициент соответственно становился -1000) эти выбросные значения заменялись на средние.
* Опытным путём было найдено, что наилучшие результаты (коэффициент 0.54) показывает степень 3.
* Результат 0.54 - наилучший результат - можно назвать неприемлимым: только в половине случаев предсказанная цена условно похожа на действительную.
* Возможно, включением большего количества признаков и использованием других моделей (линейная, например, не давала выбросов) удастся решить проблему.
Пример консольного вывода:
>Оценка обучения:
>
>0.5390648784908953
Итого: Алгоритм можно привести к некоторой эффективности, однако для конкретно этих данных он не подходит. Лучше попытаться найти другую модель регрессии.

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,76 @@
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import pandas as pd
import numpy as np
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data[['timestamp', 'full_sq', 'floor', 'max_floor', 'build_year', 'num_room', 'material', 'kremlin_km']]
x = x.replace('NA', 0)
x.fillna(0, inplace=True)
col_date = []
for val in x['timestamp']:
col_date.append(val.split('-', 1)[0])
x = x.drop(columns='timestamp')
x['timestamp'] = col_date
y = []
for val in data['price_doc']:
if val < 1500000:
y.append('low')
elif val < 3000000:
y.append('medium')
elif val < 5500000:
y.append('high')
elif val < 10000000:
y.append('premium')
else:
y.append('oligarch')
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=42)
min_scores = []
med_scores = []
max_scores = []
def do_test(iters_num):
global x_train, x_test, y_train, y_test, min_scores, med_scores, max_scores
print("Testing iterations number "+str(iters_num)+":")
scores = []
for i in range(10):
neuro = MLPClassifier(max_iter=200)
neuro.fit(x_train, y_train)
scr = neuro.score(x_test, y_test)
print("res"+str(i+1)+": "+str(scr))
scores.append(scr)
print("Medium result: "+str(np.mean(scores)))
min_scores.append(np.min(scores))
med_scores.append(np.mean(scores))
max_scores.append(np.max(scores))
def start():
global min_scores, med_scores, max_scores
iter_nums = [200, 400, 600, 800, 1000]
for num in iter_nums:
do_test(num)
plt.figure(1, figsize=(16, 9))
plt.plot(iter_nums, min_scores, c='r')
plt.plot(iter_nums, med_scores, c='b')
plt.plot(iter_nums, max_scores, c='b')
plt.show()
start()

View File

@@ -0,0 +1,149 @@
### Задание
Использовать нейронную сеть по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо она подходит для
решения сформулированной вами задачи.
Вариант 1: MLPClassifier
Была сформулирована следующая задача: необходимо классифицировать жильё по стоимости на основе избранных признаков при помощи нейронной сети.
### Запуск программы
Файл lab6.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа считывает цены на жильё как выходные данные и следующие данные как входные: год размещения объявления, площадь, этаж, количество этажей, год постройки, количество комнат, материал, расстояние до кремля (условного центра).
Далее она обрабатывает данные (цифровизирует нулевые данные), оставляет только год объявления. Цены распределяются по пяти классам.
После обработки программа делит данные на 99% обучающего материала и 1% тестового.
Эти данные обрабатываются по 10 раз для идентичных моделей нейронных сетей, использующих метод градиентного спуска "adam", с разной настройкой максимального количества поколений: 200, 400, 600, 800, 1000.
Считаются оценка модели. Для каждой модели запоминаются минимальный, максимальный и средний результаты. В консоль выводятся все результаты.
В конце программа показывает графики зависимости результатов от максимального количества поколений модели.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* В общем, модель даёт средний результат в районе 40-50% точности, что недостаточно.
* Увеличение максимального количества поколений влияет сильнее всего на минимальные оценки, сужая разброс точности.
* Нельзя сказать, что увеличение максимального количества поколений сильно улучшит модель: максимум на 10% точности.
Пример консольного вывода:
>Testing iterations number 200:
>
>res1: 0.3806228373702422
>
>res2: 0.6055363321799307
>
>res3: 0.4809688581314879
>
>res4: 0.4913494809688581
>
>res5: 0.4844290657439446
>
>res6: 0.2975778546712803
>
>res7: 0.48788927335640137
>
>res8: 0.06228373702422145
>
>res9: 0.6193771626297578
>
>res10: 0.47750865051903113
>
>Medium result: 0.4387543252595155
>
>Testing iterations number 400:
>
>res1: 0.6124567474048442
>
>res2: 0.4290657439446367
>
>res3: 0.3217993079584775
>
>res4: 0.5467128027681661
>
>res5: 0.48788927335640137
>
>res6: 0.40484429065743943
>
>res7: 0.6020761245674741
>
>res8: 0.4186851211072664
>
>res9: 0.42214532871972316
>
>res10: 0.370242214532872
>
>Medium result: 0.46159169550173
>
>Testing iterations number 600:
>
>res1: 0.4359861591695502
>
>res2: 0.2560553633217993
>
>res3: 0.5363321799307958
>
>res4: 0.5778546712802768
>
>res5: 0.35986159169550175
>
>res6: 0.356401384083045
>
>res7: 0.49480968858131485
>
>res8: 0.5121107266435986
>
>res9: 0.5224913494809689
>
>res10: 0.5190311418685121
>
>Medium result: 0.4570934256055363
>
>Testing iterations number 800:
>
>res1: 0.25951557093425603
>
>res2: 0.4083044982698962
>
>res3: 0.5224913494809689
>
>res4: 0.5986159169550173
>
>res5: 0.24567474048442905
>
>res6: 0.4013840830449827
>
>res7: 0.21453287197231835
>
>res8: 0.4671280276816609
>
>res9: 0.40484429065743943
>
>res10: 0.38408304498269896
>
>Medium result: 0.3906574394463667
>
>Testing iterations number 1000:
>
>res1: 0.4186851211072664
>
>res2: 0.5017301038062284
>
>res3: 0.5121107266435986
>
>res4: 0.3806228373702422
>
>res5: 0.44982698961937717
>
>res6: 0.5986159169550173
>
>res7: 0.5570934256055363
>
>res8: 0.4290657439446367
>
>res9: 0.32525951557093424
>
>res10: 0.41522491349480967
>
>Medium result: 0.4588235294117647
Итого: Для отобранных данных нейронная модель с методом градиентного спуска "adam" показала себя не лучшим образом. Возможно, другие методы могут выдать лучшие результаты, либо необходима более обширная модификация модели.

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,96 @@
import numpy as np
from keras_preprocessing.sequence import pad_sequences
from keras_preprocessing.text import Tokenizer
from keras.models import Sequential
from keras.layers import Dense, LSTM, Embedding, Dropout
from keras.callbacks import ModelCheckpoint
def recreate_model(predictors, labels, model, filepath, epoch_num):
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
append_epochs(predictors, labels, model, epoch_num)
def append_epochs(predictors, labels, model, filepath, epoch_num):
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
desired_callbacks = [checkpoint]
model.fit(predictors, labels, epochs=epoch_num, verbose=1, callbacks=desired_callbacks)
def generate_text(tokenizer, seed_text, next_words, model, max_seq_length):
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_seq_length - 1, padding='pre')
predicted = np.argmax(model.predict(token_list), axis=-1)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
return seed_text
def start():
flag = -1
while flag < 1 or flag > 2:
flag = int(input("Select model and text (1 - eng, 2 - ru): "))
if flag == 1:
file = open("data.txt").read()
filepath = "model_eng.hdf5"
elif flag == 2:
file = open("rus_data.txt").read()
filepath = "model_rus.hdf5"
else:
exit(1)
tokenizer = Tokenizer()
tokenizer.fit_on_texts([file])
words_count = len(tokenizer.word_index) + 1
input_sequences = []
for line in file.split('\n'):
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
max_seq_length = max([len(x) for x in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_seq_length, padding='pre')
predictors, labels = input_sequences[:, :-1], input_sequences[:, -1]
model = Sequential()
model.add(Embedding(words_count, 100, input_length=max_seq_length - 1))
model.add(LSTM(150))
model.add(Dropout(0.15))
model.add(Dense(words_count, activation='softmax'))
flag = input("Do you want to recreate the model ? (print yes): ")
if flag == 'yes':
flag = input("Are you sure? (print yes): ")
if flag == 'yes':
num = int(input("Select number of epoch: "))
if 0 < num < 100:
recreate_model(predictors, labels, model, filepath, num)
model.load_weights(filepath)
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
flag = input("Do you want to train the model ? (print yes): ")
if flag == 'yes':
flag = input("Are you sure? (print yes): ")
if flag == 'yes':
num = int(input("Select number of epoch: "))
if 0 < num < 100:
append_epochs(predictors, labels, model, filepath, num)
flag = 'y'
while flag == 'y':
seed = input("Enter seed: ")
print(generate_text(tokenizer, seed, 25, model, max_seq_length))
flag = input("Continue? (print \'y\'): ")
start()

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,49 @@
### Задание
Выбрать художественный текст(четные варианты русскоязычный, нечетные англоязычный)и обучить на нем рекуррентную нейронную сеть для решения задачи генерации. Подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату. Далее разбиться на пары четный-нечетный вариант, обменяться разработанными сетями и проверить, как архитектура товарища справляется с вашим текстом.
Вариант 1: первостепенно - английский текст. Кооперироваться, впрочем, не с кем.
### Запуск программы
Файл lab7.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа представляет собой консольное приложение-инструмент для работы с моделями. Она может создавать и обучать однородные модели для разных текстов.
В файлах хранятся два текста: англоязычный data.txt (Остров сокровищ) и русскоязычный rus_data.txt (Хоббит). Также там хранятся две сохранённые обученные модели:
* model_eng - модель, обученная на английском тексте. На текущий момент 27 эпох обучения.
* model_rus - модель, обученная на русском тексте. На текущий момент 12 эпох обучения.
Обучение проходило 1 день.
В программе необходимо выбрать загружаемый текст и соответствующую модель, в данный момент подключается русскоязычная модель.
Программа содержит методы пересоздания модели и дообучения модели (передаётся модель и количество эпох дообучения). Оба метода отключены и могут быть подключены обратно при необходимости.
После возможных пересоздания и дообучения моделей программа запрашивает текст-кодовое слово, которое модели будет необходимо продолжить, сгенерировав свой текст.
Сама модель имеет следующую архитектуру:
* слой, преобразующий слова в векторы плотности, Embedding с входом, равным числу слов, с выходом 100, и с длиной ввода, равной длине максимального слова.
* слой с блоками долгой краткосрочной памятью, составляющая рекуррентную сеть, LSTM со 150 блоками.
* слой, задающий степень разрыва нейронных связей между соседними слоями, Dropout с процентом разрыва 15.
* слой вычисления взвешенных сумм Dense с числом нейронов, равным числу слов в тексте и функцией активации 'softmax'
### Результаты тестирования
По результатам дневного обучения можно сказать следующее:
Модель успешно генерирует бессмысленные последовательности слов, которые либо состоят из обрывков фраз, либо случайно (но достаточно часто) складываются в осмысленные словосочетания, но не более.
Примеры генераций (первое слово - код генерации):
Модель, обученная на 'Острове сокровищ', 27 эпох обучения:
>ship that he said with the buccaneers a gentleman and neither can read and figure but what is it anyway ah 'deposed' that's it is a
>
>chest said the doctor touching the black spot mind by the arm who is the ship there's long john now you are the first that were
>
>silver said the doctor if you can get the treasure you can find the ship there's been a man that has lost his score out he
Модель, обученная на 'Хоббите', 12 эпох обучения:
>дракон и тут они услыхали про смога он понял что он стал видел и разозлился как слоны у гэндальфа хороши но все это было бы он
>
>поле он не мог сообразить что он делал то в живых и слышал бильбо как раз доедал пуще прежнего а бильбо все таки уж не мог
>
>паук направился к нему толстому из свертков они добрались до рассвета и даже дальше не останавливаясь а именно что гоблины обидело бильбо они не мог ничего
Итого: Даже такая простая модель с таким малым количеством эпох обучения может иногда сгенерировать нечто осмысленное. Однако для генерации нормального текста необходимо длительное обучение и более сложная модель, из нескольких слоёв LSTM и Dropout после них, что, однако, потребовало бы вычислительные мощности, которых у меня нет в наличии. Иначе следует взять очень маленький текст.

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View File

@@ -0,0 +1,64 @@
Вариант 2
Задание:
Предсказание категории возраста дома (housingMedianAge) на основе других признаков, таких как широта, долгота, общее количество комнат и т.д.
Данные:
Данный набор данных использовался во второй главе недавней книги Аурелиена Жерона "Практическое машинное обучение с помощью Scikit-Learn и TensorFlow". Он служит отличным введением в реализацию алгоритмов машинного обучения, потому что требует минимальной предварительной обработки данных, содержит легко понимаемый список переменных и находится в оптимальном размере, который не слишком мал и не слишком большой.
Данные содержат информацию о домах в определенном районе Калифорнии и некоторую сводную статистику на основе данных переписи 1990 года. Следует отметить, что данные не прошли предварительную очистку, и для них требуются некоторые этапы предварительной обработки. Столбцы включают в себя следующие переменные, их названия весьма наглядно описывают их суть:
долгота longitude
широта latitude
средний возраст жилья median_house_value
общее количество комнат total_rooms
общее количество спален total_bedrooms
население population
домохозяйства households
медианный доход median_income
Запуск:
Запустите файл lab3.py
Описание программы:
1. Загружает набор данных из файла 'housing.csv', который содержит информацию о домах в Калифорнии, включая их координаты, возраст, количество комнат, население, доход и другие характеристики.
2. Удаляет строки с нулевыми значениями из набора данных для чистоты анализа.
3. Выбирает набор признаков (features) из данных, которые будут использоваться для обучения моделей регрессии и классификации.
4. Определяет задачу регрессии, где целевой переменной (target) является 'housing_median_age', и задачу классификации, где целевой переменной является 'housing_median_age'.
5. Разделяет данные на обучающий и тестовый наборы для обеих задач с использованием функции train_test_split. Тестовый набор составляет 1% от исходных данных.
6. Создает и обучает дерево решений для регрессии и классификации с использованием моделей DecisionTreeRegressor и DecisionTreeClassifier.
7. Предсказывает значения целевой переменной на тестовых наборах для обеих задач.
8. Оценивает качество моделей с помощью среднеквадратичной ошибки (MSE) для регрессии и точности (accuracy) для классификации.
9. Выводит среднеквадратичную ошибку для регрессии и точность для классификации, а также важности признаков для обеих задач.
Результаты:
![Alt text](1.png)
Выводы:
Для задачи регрессии, где целью было предсказать возраст жилья (housing_median_age), модель дерева решений показала среднюю ошибку (MSE) равную 117.65. Это означает, что модель регрессии вполне приемлемо предсказывает возраст жилья на основе выбранных признаков.
Для задачи классификации, где целью было предсказать стоимость жилья (housing_median_age), модель дерева решений показала низкую точность, всего 8.29%. Это свидетельствует о том, что модель классификации не справляется с предсказанием стоимости жилья на основе выбранных признаков. Низкая точность указывает на необходимость улучшения модели или выбора других методов для решения задачи классификации.
Анализ важности признаков для задачи регрессии показал, что наибольший вклад в предсказание возраста жилья вносят признаки 'longitude', 'latitude' и 'total_rooms'. Эти признаки оказывают наибольшее влияние на результаты модели.
Для задачи классификации наибольший вклад в предсказание стоимости жилья вносят признаки 'median_income', 'longitude' и 'latitude'. Эти признаки имеют наибольшее значение при определении классов стоимости жилья.
В целом, результаты указывают на успешное решение задачи регрессии с использованием модели дерева решений. Однако задача классификации требует дополнительных улучшений.

View File

@@ -0,0 +1,48 @@
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
# Загрузка данных
data = pd.read_csv('titanic.csv', index_col='PassengerId')
# Функция для преобразования пола в числовое значение
def Sex_to_bool(sex):
if sex == "male":
return 0
return 1
# Преобразование пола в числовое значение
data['Sex'] = data['Sex'].apply(Sex_to_bool)
# Отбор строк с непустыми значениями
# Отбор строк с непустыми значениями
data = data.loc[~data['Name'].isna()
& ~data['Age'].isna()
& ~data['Sex'].isna()
& ~data['Survived'].isna()]
# Отбор нужных столбцов
features = data[['Name', 'Sex', 'Age']]
# Применение Label Encoding к столбцу 'Name'
label_encoder = LabelEncoder()
features['Name'] = label_encoder.fit_transform(features['Name'])
# Определение целевой переменной
y = data['Survived']
# Создание и обучение дерева решений
clf = DecisionTreeClassifier(random_state=241)
clf.fit(features, y)
# Получение важностей признаков
importance = clf.feature_importances_
# Печать важности каждого признака
print("Важность 'Name':", importance[0])
print("Важность 'Sex':", importance[1])
print("Важность 'Age':", importance[2])

View File

@@ -0,0 +1,77 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, accuracy_score
# Загрузка данных
data = pd.read_csv('housing.csv')
data = data.dropna()
# Отбор нужных столбцов
features = data[
['longitude', 'latitude', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income']]
# Задача регрессии
target_regression = data['housing_median_age']
# Разделение данных на обучающий и тестовый наборы для регрессии
X_train_regression, X_test_regression, y_train_regression, y_test_regression = train_test_split(features,
target_regression,
test_size=0.01,
random_state=241)
# Создание и обучение дерева решений для регрессии
clf_regression = DecisionTreeRegressor(random_state=241)
clf_regression.fit(X_train_regression, y_train_regression)
# Предсказание на тестовом наборе для регрессии
y_pred_regression = clf_regression.predict(X_test_regression)
# Оценка качества модели для регрессии (MSE)
mse_regression = mean_squared_error(y_test_regression, y_pred_regression)
print("Средняя ошибка для регрессии:", mse_regression)
# Задача классификации
target_classification = data['median_house_value']
# Разделение данных на обучающий и тестовый наборы для классификации
X_train_classification, X_test_classification, y_train_classification, y_test_classification = train_test_split(
features, target_classification, test_size=0.01, random_state=241)
# Создание и обучение дерева классификации
clf_classification = DecisionTreeClassifier(random_state=241)
clf_classification.fit(X_train_classification, y_train_classification)
# Предсказание на тестовом наборе для классификации
y_pred_classification = clf_classification.predict(X_test_classification)
# Оценка качества модели для классификации (точность)
accuracy_classification = accuracy_score(y_test_classification, y_pred_classification)
print("Точность для классификации: {:.2f}%".format(accuracy_classification * 100))
# Важности признаков для регрессии
importance_regression = clf_regression.feature_importances_
print("Важность для регрессии")
# Печать важности каждого признака для регрессии
print("Важность 'longitude':", importance_regression[0]) # За западную долготу дома
print("Важность 'latitude':", importance_regression[1]) # За северную широту дома
print("Важность 'total_rooms':", importance_regression[2]) # За общее количество комнат в блоке
print("Важность 'total_bedrooms':", importance_regression[3]) # За общее количество спален в блоке
print("Важность 'population':", importance_regression[4]) # За общее количество проживающих в блоке
print("Важность 'households':", importance_regression[5]) # За общее количество домохозяйств в блоке
print("Важность 'median_income':", importance_regression[6]) # За медианный доход домохозяйств в блоке
# Важности признаков для классификации
importance_classification = clf_classification.feature_importances_
print()
print("Важность для классификации")
# Печать важности каждого признака для классификации
print("Важность 'longitude':", importance_classification[0]) # За западную долготу дома
print("Важность 'latitude':", importance_classification[1]) # За северную широту дома
print("Важность 'total_rooms':", importance_classification[2]) # За общее количество комнат в блоке
print("Важность 'total_bedrooms':", importance_classification[3]) # За общее количество спален в блоке
print("Важность 'population':", importance_classification[4]) # За общее количество проживающих в блоке
print("Важность 'households':", importance_classification[5]) # За общее количество домохозяйств в блоке
print("Важность 'median_income':", importance_classification[6]) # За медианный доход домохозяйств в блоке

View File

@@ -0,0 +1,115 @@
# Лаб 7 RNN
Выбрать художественный текст (четные варианты русскоязычный,
нечетные англоязычный) и обучить на нем рекуррентную нейронную сеть
для решения задачи генерации. Подобрать архитектуру и параметры так,
чтобы приблизиться к максимально осмысленному результату. Далее
разбиться на пары четный-нечетный вариант, обменяться разработанными
сетями и проверить, как архитектура товарища справляется с вашим текстом.
В завершении подобрать компромиссную архитектуру, справляющуюся
достаточно хорошо с обоими видами текстов.
# Вариант 3
Рекуррентная нейронная сеть и задача
генерации текста
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Описание модели:
Использованы библиотеки:
* numpy (np): популярная библиотека для научных вычислений.
* tensorflow (tf): библиотека для тренировки нейросетей.
* Sequential: тип Keras модель которая позволяет создавать нейросети слой за слоем.
* Embedding, LSTM, Dense: различные типы слоев в нейросетях.
* Tokenizer: класс для конвертации слов в числовой понятный для нейросети формат.
<p></p>
Каждая строка текста переводится в числа с помощью Tokernizer.
Класс Tokenizer в Keras - это утилита обработки текста, которая преобразует текст в
последовательность целых чисел. Он присваивает уникальное целое число (индекс) каждому слову
в тексте и создает словарь, который сопоставляет каждое слово с соответствующим индексом.
Это позволяет вам работать с текстовыми данными в формате, который может быть передан в нейронную сеть.
Все это записывается в input_sequences.
Строим RNN модель используя Keras:
* Embedding: Этот слой превращает числа в векторы плотности фиксированного размера. Так же известного
как "word embeddings". Вложения слов - это плотные векторные представления слов в непрерывном
векторном пространстве.Они позволяют нейронной сети изучать и понимать взаимосвязи между словами
на основе их контекста в содержании текста.
* LSTM: это тип рекуррентной нейронной сети (RNN), которая предназначена для обработки
зависимостей в последовательностях.
* Dense: полносвязный слой с множеством нейронов, нейронов столько же сколько и уникальных слов.
Он выводит вероятность следующего слова.
* Модель обучаем на разном количестве эпох, по умолчанию epochs = 100 (итераций по всему набору данных).
Определеяем функцию generate_text которая принимает стартовое слово, а также, число слов для генерации.
Модель генерирует текст путем многократного предсказания следующего слова на основе предыдущих слов в
начальном тексте.
* В конце мы получаем сгенерированную на основе текста последовательность.
# Задача генерации англоязычного текста
На вход подаем историю с похожими повторяющимися слова. Историю сохраняем в файл.
Задача проверить насколько сеть не станет повторять текст, а будет действительно генерировать
относительно новый текст.
# Результаты
Тестируется английский текст, приложенный в репозитории.
* на 50 эпохах ответ на I want
* I want to soar high up in the sky like to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i want to
* на 100 эпох ответ на I want
* I want to fly i want to soar high up in the sky like a bird to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to spread my wings and soar into the open sky to glide far above the
* на 150 эпохах ответ на I want
* I want to fly i want to spread my wings and soar into the open sky to glide far above the earth unbounded by gravity i want to fly i want to fly i want to fly i want to soar high up in the sky like a bird to glide through
* на 220 эпохах ответ на I want
* I want to fly i want to soar high up in the sky like a bird to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i
* На 220 эпохах результаты хуже, это произошло скорее всего из-за переобучения(грубый повтор).
* На 50 эпохах нейронная сеть плохо обучена (из 1 места плюс повтор)
* На 100 эпохах средний результат (из 2 мест)
* На 150 эпохах нейронная сеть показывает наилучший результат (из 3 разных мест без повтора)
Так же модель работает и на русском тексте. Вот что сгенерировала модель на 150 эпохах.
Предложения взяты из разных мест и выглядят осмысленно.
"Я хочу летать потому что в этом заложено желание преодолевать границы хочу чувствовать себя
свободным словно ветер несущим меня к новым приключениям я хочу летать и продолжать этот бескрайний
полет вперед ибо в этом полете заключена вся суть моего существования существования существования
существования существования трудности трудности трудности неважными хочу летать потому что."
Чем больше текст мы берем, тем более интересные результаты получаем, но моих вычислительных мощностей уже не хватит.
Так же чем больше прогонов, тем лучше модель, но тоже не до бесконечности можно получить хороший результат.
<p>
<div>Обучение</div>
<img src="screens/img_2.png" width="650" title="Обучение">
</p>
<p>
<div>Результат</div>
<img src="screens/img_3.png" width="650" title="Результат">
</p>
<p>
<div>Обучение 1</div>
<img src="screens/step1.png" width="650" title="Обучение 1">
</p>
<p>
<div>Обучение 2</div>
<img src="screens/step2.png" width="650" title="Обучение 2">
</p>
<p>
<div>Обучение 3</div>
<img src="screens/step3.png" width="650" title="Обучение 3">
</p>
<p>
<div>Обучение 4</div>
<img src="screens/step4.png" width="650" title="Обучение 4">
</p>
<p>
<div>Обучение 5</div>
<img src="screens/step5.png" width="650" title="Обучение 5">
</p>

View File

@@ -0,0 +1,55 @@
import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences
# загрузка текста
with open('rus.txt', encoding='utf-8') as file:
text = file.read()
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in text.split('\n'):
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
max_sequence_length = max([len(x) for x in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')
predictors, labels = input_sequences[:, :-1], input_sequences[:, -1]
# создание RNN модели
model = Sequential()
model.add(Embedding(total_words, 100, input_length=max_sequence_length - 1))
model.add(LSTM(150))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# тренировка модели
model.fit(predictors, labels, epochs=150, verbose=1)
# генерация текста на основе модели
def generate_text(seed_text, next_words, model, max_sequence_length):
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre')
predicted = np.argmax(model.predict(token_list), axis=-1)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
return seed_text
generated_text = generate_text("Я хочу", 50, model, max_sequence_length)
print(generated_text)

Binary file not shown.

View File

@@ -0,0 +1,11 @@
Я хочу летать. Почувствовать ветер в лицо, свободно парить в небесах. Я хочу летать, словно птица, освободившись от земных оков. Летать, словно орел, покоряя небесные просторы. Я хочу летать, чувствовать каждый момент поднятия в воздух, каждый поворот, каждое крыло, взмахнувшее в танце с аэродинамикой.
Я хочу летать над горами, смотреть на вершины, которые кажутся такими далекими с земли. Хочу летать над океанами, наблюдая за волнами, встречая закаты, окрашивающие водную гладь в огонь. Я хочу летать над городами, где жизнь бурлит своим ритмом, а улицы выглядят как мозаика, расстилающаяся под ногами.
Я хочу летать, ощущать тот подъем, когда ты понимаешь, что земля осталась позади, а ты свободен, как никогда. Я хочу летать и видеть этот мир с высоты, где все проблемы кажутся такими маленькими и неважными. Хочу летать и чувствовать себя частью этого огромного космического танца, где звезды танцуют свои вечерние вальсы.
Я хочу летать, несмотря ни на что, преодолевая любые преграды. Хочу летать, потому что в этом чувствую свое настоящее "я". Летать значит освобождаться от гравитации рутины, подниматься над повседневностью, смотреть на мир с высоты своей мечты.
Я хочу летать, потому что в этом заключена свобода души. Хочу ощутить, как воздух обволакивает меня, как каждая клетка моего тела ощущает эту свободу. Хочу летать, потому что это моя мечта, которая дает мне силы двигаться вперед, преодолевая все трудности.
Я хочу летать, потому что в этом заложено желание преодолевать границы. Хочу чувствовать себя свободным, словно ветер, несущим меня к новым приключениям. Я хочу летать и продолжать этот бескрайний полет вперед, ибо в этом полете заключена вся суть моего существования.

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

View File

@@ -0,0 +1,16 @@
I want to fly. I want to soar high up in the sky like a bird. To glide through the clouds, feeling the wind beneath my wings. I want to fly.
I imagine what it would be like, to be able to spread my arms and take off into the endless blue. To swoop and dive and twirl through the air unencumbered by gravity's pull. I want to fly.
I watch the birds outside my window, floating effortlessly on the breeze. How I wish I could join them up there. To break free of the bounds of this earth and taste the freedom of flight. I want to fly.
Over and over I dream of flying. I flap my arms but remain stuck to the ground. Still I gaze up hopefully at the sky. One day, I tell myself. One day I will fly. I want to fly.
I want to fly. I want to spread my wings and soar into the open sky. To glide far above the earth unbounded by gravity. I want to fly.
Ever since I was a child I've dreamed of flying. I would flap my arms trying in vain to take off. I envied the birds and their gift of flight. On windy days, I'd run with the breeze, hoping it would lift me up. But my feet stayed planted. Still my desire to fly remained.
As I grew up, my dreams of flying never left. I'd gaze out plane windows high above the earth and ache to sprout wings. I'd watch birds for hours wishing I could join their effortless flight. At night I'd have vivid dreams of gliding among the clouds. Then I'd awake still earthbound and sigh. My longing to fly unchanged.
I want to know what it feels like to swoop and dive through the air. To loop and twirl on the wind currents with ease. To soar untethered by gravity's grip. But I'm trapped on the ground, wings useless and weighted. Still I stare upwards hoping. Still I imagine what could be. Still I want to fly.
They say it's impossible, that humans aren't meant for flight. But I refuse to let go of this dream. I gaze up, envying the way the birds own the sky while my feet stay planted. I flap and I hope. And still I want to fly.

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

View File

@@ -0,0 +1,170 @@
## Лабораторная работа 3. Вариант 4.
### Задание
Выполнить ранжирование признаков и решить с помощью библиотечной реализации дерева решений
задачу классификации на 99% данных из курсовой работы. Проверить
работу модели на оставшемся проценте, сделать вывод.
Модель:
- Дерево решений `DecisionTreeClassifier`.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
После этого в папке `static` сгенерируются 2 графика, по которым оценивается результат выполнения программы.
### Используемые технологии
- Библиотека `numpy`, используемая для обработки массивов данных и вычислений
- Библиотека `pyplot`, используемая для построения графиков.
- Библиотека `pandas`, используемая для работы с данными для анализа scv формата.
- Библиотека `sklearn` - большой набор функционала для анализа данных. Из неё были использованы инструменты:
- `DecisionTreeClassifier` - инструмент работы с моделью "Дерево решений"
- `metrics` - набор инструменов для оценки моделей
- `MinMaxScaler` - инструмент масштабирования значений в заданный диапазон
### Описание работы
#### Описание набора данных
Набор данных - набор для определения возможности наличия ССЗ заболеваний у челоека
Названия столбцов набора данных и их описание:
* HeartDisease - Имеет ли человек ССЗ (No / Yes),
* BMI - Индекс массы тела человека (float),
* Smoking - Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (No / Yes),
* AlcoholDrinking - Сильно ли человек употребляет алкоголь (No / Yes),
* Stroke - Был ли у человека инсульт (No / Yes),
* PhysicalHealth - Сколько дней за последний месяц человек чувствовал себя плохо (0-30),
* MentalHealth - Сколько дней за последний месяц человек чувствовал себя удручённо (0-30),
* DiffWalking - Ииспытывает ли человек трудности при ходьбе (No / Yes),
* Sex - Пол (female, male),
* AgeCategory - Возрастная категория (18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80 or older),
* Race - Национальная принадлежность человека (White, Black, Hispanic, American Indian/Alaskan Native, Asian, Other),
* Diabetic - Был ли у человека диабет (No / Yes),
* PhysicalActivity - Занимался ли человек спротом за последний месяц (No / Yes),
* GenHealth - Общее самочувствие человека (Excellent, Very good, Good, Fair, Poor),
* SleepTime - Сколько человек в среднем спит за 24 часа (0-24),
* Asthma - Была ли у человека астма (No / Yes),
* KidneyDisease - Было ли у человека заболевание почек (No / Yes),
* SkinCancer - Был ли у человека рак кожи (No / Yes).
Ссылка на страницу набора на kuggle: [Indicators of Heart Disease](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease/data)
#### Оцифровка и нормализация данных
Для нормальной работы с данными, необходимо исключить из них все нечисловые значения. После этого, представить все строковые значения параметров как числовые и очистить датасет от "мусора". Для удаления нечисловых значений воспользуемся функцией `.dropna()`. Мы исключаем строки с нечисловыми значениями, поскольку данные предварительно были очищены (указано в описании датасета) и строк данных достаточно с избытком для обучение модели: `400.000`.
После этого, переведём все строковые значения данных в числовые методами прямой оцифровки, разделения на группы, ранжирования.
Процесс оцифровки данных столбцов со строковыми значениями:
- Имеет ли человек ССЗ (0 / 1)
- Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (0 / 1)
- Сильно ли человек употребляет алкоголь (0 / 1)
- Был ли у человека инсульт (0 / 1)
- Ииспытывает ли человек трудности при ходьбе (0 / 1)
- Пол (Ж - 0 / М - 1)
- Возрастная категория (средний возраст каждого диапазона)
- Национальная принадлежность человека
- White - Европиойды - 0
- Black - Негройды - 1
- Hispanic - Испанцы - 2
- American Indian/Alaskan Native - Индусы - 3
- Asian - Азиаты - 4
- Other - Другие - 5
- Был ли у человека диабет (0 / 1)
- Занимался ли человек спротом за последний месяц (0 / 1)
- Общее самочувствие человека
- Excellent - Отлично - 4
- Very good - Очень хорошо - 3
- Good - Хорошо - 2
- Fair - Нормально - 1
- "Poor" / "Other..." - Плохое или другое - 0
- Была ли у человека астма (0 / 1)
- Было ли у человека заболевание почек (0 /1)
- Был ли у человека рак кожи (0 / 1)
После оцифровки значений необходимо избавиться от строк с возможными остаточнымии данными ("мусором"). Для этого переведём автоматически все значения датасета в числовые функцией `to_numeric` и непереводимые отметим как `NaN` (параметр `errors='coerce'`). После снова сотрём строки содержащие нечисловые значения методом `.dropna()` и сохраним нормализованный датасет в новый csv файл:
```python
df = df.applymap(pd.to_numeric, errors='coerce').dropna()
df.to_csv(fileout, index=False)
```
#### Выявление значимых параметров
В выбранном датасете параметром предсказания `y` выступает столбец данных `HeartDisease`. Остальные столбцы считаются параметрами для решения задачи предсказания `x`, которые необходимо проранжировать по важности. Чтобы разделить выборку данных на обучаемую и тестовую, воспользуемся функцией `.iloc`.
```python
x_train = df[["BMI", "Smoking", "AlcoholDrinking", "Stroke", "PhysicalHealth",
"MentalHealth", "DiffWalking", "Sex", "AgeCategory", "Race", "Diabetic",
"PhysicalActivity", "GenHealth", "SleepTime", "Asthma", "KidneyDisease", "SkinCancer"]].iloc[
0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df[["BMI", "Smoking", "AlcoholDrinking", "Stroke", "PhysicalHealth",
"MentalHealth", "DiffWalking", "Sex", "AgeCategory", "Race", "Diabetic",
"PhysicalActivity", "GenHealth", "SleepTime", "Asthma", "KidneyDisease", "SkinCancer"]].iloc[
round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
```
Где `round(len(df) / 100 * 99)` - 99ти процентная строка в датасете.
Теперь, обучим модель на данных `x_train` и `y_train` и получим значимость каждого признака в модели с помощью метода `.feature_importances_`. После отмасштабируем значения важности признаков.
```python
ranks = np.abs(dtc.feature_importances_)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(len(x_train.columns), 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
ranks = dict(zip(x_train.columns, ranks))
ranks = dict(sorted(ranks.items(), key=lambda x: x[1], reverse=True))
```
Чтобы отсеять значимые параметры от незначимых, условимся, что параметры, с оценкой значимости меньше `0.05` будут считаться незначимыми. Выведем список параметров с пометками:
```
X ranging results:
* BMI: 1.0 - Approved
* SleepTime: 0.26 - Approved
* PhysicalHealth: 0.18 - Approved
* GenHealth: 0.16 - Approved
* MentalHealth: 0.15 - Approved
* AgeCategory: 0.14 - Approved
* Race: 0.07 - Approved
* PhysicalActivity: 0.06 - Approved
* Stroke: 0.04 - Eliminated
* Smoking: 0.03 - Eliminated
* Asthma: 0.03 - Eliminated
* SkinCancer: 0.03 - Eliminated
* DiffWalking: 0.02 - Eliminated
* Sex: 0.02 - Eliminated
* AlcoholDrinking: 0.0 - Eliminated
* Diabetic: 0.0 - Eliminated
* KidneyDisease: 0.0 - Eliminated
```
Где `Approved` - параметр значим и будет использоваться в предсказании, а `Eliminated` - параметр незначим и будет исключён.
#### Решение задачи кластеризации на полном наборе признаков
Чтобы решить задачу кластеризации моделью `DecisionTreeClassifier`, воспользуемся методом `.predict()`. Оценку качества решения и графики будем строить теми же методами, что в 1й лабораторной работе.
График решения задачи классификации на полном наборе признаков:
![](FullParam.png "")
#### Решение задачи кластеризации, используя только значимые признаки
Согласно предыдущему пункту, значимыми признаками модели были выявлены:
* BMI
* SleepTime
* PhysicalHealth
* GenHealth
* MentalHealth
* AgeCategory
* Race
* PhysicalActivity
Обучим модель только с их использованием, решим задачу классификации и построим график.
График решения задачи классификации, используя только значимые признаки:
![](ImpParam.png "")
### Вывод
Согласно среднеквадратической ошибке и коэфициенту детерминации, модель, обученная только на значимых признаков отработала точнее, чем модель, обученная на полном наборе признаков. Это значит, что ранжирование было проведено верно и дало полезный результат. О логической оценке исключённых данных сказать ничего не получится, поскольку действительную зависимость результата от параметров значет только медицинский эксперт.
Исходя их общих значений точности, обе модели показали хорошие результаты и могут быть применимы к решению задачи классификации на данном наборе данных.

View File

@@ -0,0 +1,221 @@
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.tree import DecisionTreeClassifier
'''
Названия столбцов набора данных и их описание:
* HeartDisease - Имеет ли человек ССЗ (No / Yes),
* BMI - Индекс массы тела человека (float),
* Smoking - Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (No / Yes),
* AlcoholDrinking - Сильно ли человек употребляет алкоголь (No / Yes),
* Stroke - Был ли у человека инсульт (No / Yes),
* PhysicalHealth - Сколько дней за последний месяц человек чувствовал себя плохо (0-30),
* MentalHealth - Сколько дней за последний месяц человек чувствовал себя удручённо (0-30),
* DiffWalking - Ииспытывает ли человек трудности при ходьбе (No / Yes),
* Sex - Пол (female, male),
* AgeCategory - Возрастная категория (18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80 or older),
* Race - Национальная принадлежность человека (White, Black, Hispanic, American Indian/Alaskan Native, Asian, Other),
* Diabetic - Был ли у человека диабет (No / Yes),
* PhysicalActivity - Занимался ли человек спротом за последний месяц (No / Yes),
* GenHealth - Общее самочувствие человека (Excellent, Very good, Good, Fair, Poor),
* SleepTime - Сколько человек в среднем спит за 24 часа (0-24),
* Asthma - Была ли у человека астма (No / Yes),
* KidneyDisease - Было ли у человека заболевание почек (No / Yes),
* SkinCancer - Был ли у человека рак кожи (No / Yes).
'''
# Метод оцифровки и нормализации данных
def normalisation(filename):
fileout = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_norm.csv"
df = pd.read_csv(filename, sep=',').dropna() # Считываем данные с csv файла и удаляем строки, содержащие NaN
for index, row in df.iterrows():
if index % 10000 == 0:
print("normalisation running . . . " + str(round((index / len(df) * 100), 2)) +'%')
if "Yes" in row["HeartDisease"]: # Имеет ли человек ССЗ (0 / 1)
df.at[index, "HeartDisease"] = 1
else:
df.at[index, "HeartDisease"] = 0
if "Yes" in row["Smoking"]: # Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (0 / 1)
df.at[index, "Smoking"] = 1
else:
df.at[index, "Smoking"] = 0
if "Yes" in row["AlcoholDrinking"]: # Сильно ли человек употребляет алкоголь (0 / 1)
df.at[index, "AlcoholDrinking"] = 1
else:
df.at[index, "AlcoholDrinking"] = 0
if "Yes" in row["Stroke"]: # Был ли у человека инсульт (0 / 1)
df.at[index, "Stroke"] = 1
else:
df.at[index, "Stroke"] = 0
if "Yes" in row["DiffWalking"]: # Ииспытывает ли человек трудности при ходьбе (0 / 1)
df.at[index, "DiffWalking"] = 1
else:
df.at[index, "DiffWalking"] = 0
if "Female" in row["Sex"]: # Пол (Ж - 0 / М - 1)
df.at[index, "Sex"] = 0
else:
df.at[index, "Sex"] = 1
if "18-24" in row["AgeCategory"]: # Возрастная категория (средний возраст каждого диапазона)
df.at[index, "AgeCategory"] = (18 + 24) / 2
elif "25-29" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (25 + 29) / 2
elif "30-34" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (30 + 34) / 2
elif "35-39" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (35 + 39) / 2
elif "40-44" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (40 + 44) / 2
elif "45-49" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (45 + 49) / 2
elif "50-54" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (50 + 54) / 2
elif "55-59" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (55 + 59) / 2
elif "60-64" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (60 + 64) / 2
elif "65-69" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (65 + 69) / 2
elif "70-74" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (70 + 74) / 2
elif "75-79" in row["AgeCategory"]:
df.at[index, "AgeCategory"] = (75 + 79) / 2
else:
df.at[index, "AgeCategory"] = (25 + 29) / 2
if "White" in row["Race"]: # Национальная принадлежность человека
df.at[index, "Race"] = 0 # White - Европиойды - 0
elif "Black" in row["Race"]: # Black - Негройды - 1
df.at[index, "Race"] = 1 # Hispanic - Испанцы - 2
elif "Hispanic" in row["Race"]: # American Indian/Alaskan Native - Индусы - 3
df.at[index, "Race"] = 2 # Asian - Азиаты - 4
elif "American Indian/Alaskan Native" in row["Race"]: # Other - Другие - 5
df.at[index, "Race"] = 3
elif "Asian" in row["Race"]:
df.at[index, "Race"] = 4
else:
df.at[index, "Race"] = 5
if "Yes" in row["Diabetic"]: # Был ли у человека диабет (0 / 1)
df.at[index, "Diabetic"] = 1
else:
df.at[index, "Diabetic"] = 0
if "Yes" in row["PhysicalActivity"]: # Занимался ли человек спротом за последний месяц (0 / 1)
df.at[index, "PhysicalActivity"] = 1
else:
df.at[index, "PhysicalActivity"] = 0
if "Excellent" in row["GenHealth"]: # Общее самочувствие человека
df.at[index, "GenHealth"] = 4 # Excellent - Отлично - 4
elif "Very good" in row["GenHealth"]: # Very good - Очень хорошо - 3
df.at[index, "GenHealth"] = 3 # Good - Хорошо - 2
elif "Good" in row["GenHealth"]: # Fair - Нормально - 1
df.at[index, "GenHealth"] = 2 # "Poor" / "Other..." - Плохое или другое - 0
elif "Fair" in row["GenHealth"]:
df.at[index, "GenHealth"] = 1
else:
df.at[index, "GenHealth"] = 0
if "Yes" in row["Asthma"]: # Была ли у человека астма (0 / 1)
df.at[index, "Asthma"] = 1
else:
df.at[index, "Asthma"] = 0
if "Yes" in row["KidneyDisease"]: # Было ли у человека заболевание почек (0 /1)
df.at[index, "KidneyDisease"] = 1
else:
df.at[index, "KidneyDisease"] = 0
if "Yes" in row["SkinCancer"]: # Был ли у человека рак кожи (0 / 1)
df.at[index, "SkinCancer"] = 1
else:
df.at[index, "SkinCancer"] = 0
df = df.applymap(pd.to_numeric, errors='coerce').dropna() # Гарантированно убираем все нечисловые значения из датасета
df.to_csv(fileout, index=False) # Сохраняем нормализованный датасет для дальнейшей работы
return fileout
# Метод ранжирования параметров по степени важности
def param_range(filename, elim_kp):
df = pd.read_csv(filename, sep=',') # Считываем нормализованные данные и разделяем их на выборки
x_train = df[["BMI", "Smoking", "AlcoholDrinking", "Stroke", "PhysicalHealth",
"MentalHealth", "DiffWalking", "Sex", "AgeCategory", "Race", "Diabetic",
"PhysicalActivity", "GenHealth", "SleepTime", "Asthma", "KidneyDisease", "SkinCancer"]].iloc[
0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df[["BMI", "Smoking", "AlcoholDrinking", "Stroke", "PhysicalHealth",
"MentalHealth", "DiffWalking", "Sex", "AgeCategory", "Race", "Diabetic",
"PhysicalActivity", "GenHealth", "SleepTime", "Asthma", "KidneyDisease", "SkinCancer"]].iloc[
round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
dtc = DecisionTreeClassifier(random_state=241) # Создаём модель дерева решений
dtc.fit(x_train.values, y_train.values) # Обучаем модель на данных
y_predict = dtc.predict(x_test.values) # Решаем задачу классификации на полном наборе признаков
err = pred_errors(y_predict, y_test.values) # Рассчитываем ошибки предсказания
make_plots(y_test.values, y_predict, err[0], err[1], "Полный набор данных") # Строим графики
ranks = np.abs(dtc.feature_importances_) # Получаем значимость каждого признака в модели
minmax = MinMaxScaler() # Шкалируем и нормализуем значимость
ranks = minmax.fit_transform(np.array(ranks).reshape(len(x_train.columns), 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
ranks = dict(zip(x_train.columns, ranks))
ranks = dict(sorted(ranks.items(), key=lambda x: x[1], reverse=True)) # Сортируем оценки по максимуму и записываем в словарь
print("X ranging results: \n")
del_keys = [] # Исключаем параметры, важность которых меньше elim_kp
for key, value in ranks.items():
if value >= elim_kp:
print(" * " + key + ": " + str(value) + " - Approved")
else:
print(" * " + key + ": " + str(value) + " - Eliminated")
del_keys.append(key)
for key in del_keys:
ranks.pop(key)
return filename, ranks.keys()
# Метод решения задачи классификации, основанный только на значимых параметрах
def most_valuable_prediction(params):
filename = params[0]
val_p = params[1]
df = pd.read_csv(filename, sep=',')
x_train = df[val_p].iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df[val_p].iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
dtc = DecisionTreeClassifier(random_state=241)
dtc.fit(x_train.values, y_train.values)
y_predict = dtc.predict(x_test.values)
err = pred_errors(y_predict, y_test.values)
make_plots(y_test.values, y_predict, err[0], err[1], "Только важные параметры")
# Метод рассчёта ошибок
def pred_errors(y_predict, y_test):
mid_square = np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3) # Рассчёт среднеквадратичной ошибки модели
det_kp = np.round(metrics.accuracy_score (y_test, y_predict), 2) # Рассчёт коэфициента детерминации модели
return mid_square, det_kp
# Метод отрисовки графиков
def make_plots(y_test, y_predict, mid_sqrt, det_kp, title):
plt.plot(y_test, c="red", label="\"y\" исходная") # Создание графика исходной функции
plt.plot(y_predict, c="green", label="\"y\" предсказанная \n"
"Ср^2 = " + str(mid_sqrt) + "\n"
"Кд = " + str(det_kp)) # Создание графика предсказанной функции
plt.legend(loc='lower left')
plt.title(title)
plt.savefig('static/' + title + '.png')
plt.close()
if __name__ == '__main__':
# Работа системы в комплексе
# Здесь elim_kp - значение пороговой значимости параметра (выбран эмпирически)
most_valuable_prediction(param_range(normalisation("P:\\ULSTU\\ИИС\\Datasets\\heart_2020_cleaned.csv"), 0.05))

View File

@@ -0,0 +1,131 @@
## Лабораторная работа 4. Вариант 4.
### Задание
Использовать метод кластеризации по варианту для данных из курсовой работы. Самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо он подходит для
решения сформулированной задачи.
Алгоритм кластеризации:
- Пространственная кластеризация данных с шумом на основе плотности `DBSCAN`.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
После этого в папке `static` сгенерируются 3 графика, по которым оценивается результат выполнения программы.
### Используемые технологии
- Библиотека `numpy`, используемая для обработки массивов данных и вычислений
- Библиотека `pyplot`, используемая для построения графиков.
- Библиотека `pandas`, используемая для работы с данными для анализа scv формата.
- Библиотека `sklearn` - большой набор функционала для анализа данных. Из неё были использованы инструменты:
- `DBSCAN` - инструмент работы с моделью "Пространственная кластеризация данных с шумом на основе плотности"
- `metrics` - набор инструменов для оценки моделей
- `LinearRegression` - инструмент работы с моделью "Линейная регрессия"
`DBSCAN` - это алгоритм кластеризации, который используется для кластеризации данных на основе плотности, что позволяет обнаруживать кластеры произвольной формы и обнаруживать выбросы (шум). `DBSCAN` может быть полезным при предварительной обработке данных перед задачей предсказания:
- Удаление выбросов (шума): `DBSCAN` может помочь в идентификации и удалении выбросов из данных.
- Генерация новых признаков: `DBSCAN` может быть использован для генерации новых признаков на основе кластеров.
### Описание работы
#### Описание набора данных
Набор данных - набор для определения возможности наличия ССЗ заболеваний у челоека
Названия столбцов набора данных и их описание:
* HeartDisease - Имеет ли человек ССЗ (No / Yes),
* BMI - Индекс массы тела человека (float),
* Smoking - Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (No / Yes),
* AlcoholDrinking - Сильно ли человек употребляет алкоголь (No / Yes),
* Stroke - Был ли у человека инсульт (No / Yes),
* PhysicalHealth - Сколько дней за последний месяц человек чувствовал себя плохо (0-30),
* MentalHealth - Сколько дней за последний месяц человек чувствовал себя удручённо (0-30),
* DiffWalking - Ииспытывает ли человек трудности при ходьбе (No / Yes),
* Sex - Пол (female, male),
* AgeCategory - Возрастная категория (18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80 or older),
* Race - Национальная принадлежность человека (White, Black, Hispanic, American Indian/Alaskan Native, Asian, Other),
* Diabetic - Был ли у человека диабет (No / Yes),
* PhysicalActivity - Занимался ли человек спротом за последний месяц (No / Yes),
* GenHealth - Общее самочувствие человека (Excellent, Very good, Good, Fair, Poor),
* SleepTime - Сколько человек в среднем спит за 24 часа (0-24),
* Asthma - Была ли у человека астма (No / Yes),
* KidneyDisease - Было ли у человека заболевание почек (No / Yes),
* SkinCancer - Был ли у человека рак кожи (No / Yes).
Ссылка на страницу набора на kuggle: [Indicators of Heart Disease](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease/data)
#### Формулировка задачи
Согласно прописанным в литературе варантам использования, `DBSCAN` может помочь в идентификации и удалении выбросов из данных, а также может быть использован для генерации новых признаков на основе кластеров. Исходя из этого сформулируем задачу:
> "В наборе данных с помощью `DBSCAN` определить и исключить строки содержащие шум, а также сгенерировать новый признак для данных на сонове кластеров. Проверить результат через решение задачи предсказания моделью линейной регрессии на исходных и модифицированных данных"
#### Использование алгоритма `DBSCAN`
Чтобы эффективно использовать алгоритм `DBSCAN` необходимо правильно определить два параметра: `eps` - радиус окрестности вокруг каждой точки и `min_samples` - минимальное количество точек, которые должны находиться в окрестности, чтобы рассматривать ее как ядро кластера.
Начнём с получения датасета из csv файла и признаков кластеризации:
```python
df = pd.read_csv(filein, sep=',').iloc[0:10000]
x = df.drop("HeartDisease", axis=1)
```
> **Warning**
>
> Алгоритм `DBSCAN` - очень жадная по памяти программа. В худшем случае алгоритм может занимать Q(N^2) оперативной памяти устройства, поэтому исследование получится провести лишь на частичной выборке в 10000 строк данных.
Для нахождения оптимального значения параметра `eps` воспользуемся методом рассчёта средней плотности данных. Для этого необходимо найти суммы максимальных и минимальных значений каждого признака и взять среднее арифметическое этих двух значений:
```python
eps_opt = (x.max().values.mean() + x.min().values.mean()) / 2
```
Оптимальное значение параметра `min_samples` будем искать эмпирически. Условимся, что нам будет достаточно разделить высе данные на 6 кластеров (пусть это будут степени риска возникновения ССЗ), но нам нельзя терять в качестве выбросов более 10% данных. Тогда мы будем варьировать параметр `min_samples` от 1 до кол-ва всех данных и закончим эксперимент при выполнении одного из указанных условий:
```python
developed_data = []
for i in range(len(x)):
if i == 0:
continue
dbscan = DBSCAN(eps=eps_opt, min_samples=i)
clusters = dbscan.fit_predict(x.values)
if len(set(clusters)) <= 7:
developed_data = clusters
break
if list(clusters).count(-1) / len(clusters) >= 0.1:
developed_data = clusters
break
```
Таким образом в массиве `developed_data` мы получим значение кластеров для каждй строки датасета. Добавим её как дополнительный признак.
График кластеров для значений датасета:
![](dbscan.png "")
#### Решение задачи предсказания
Создадим два обучающих модуля. В 1м удалим все строки с кластером `-1`, что указывает на то, что они шум и воспользуемся дополнительным признаком `DBSCAN`:
```python
df_mod = df.loc[df["DBSCAN"] != -1]
x_train_mod = df_mod.drop("HeartDisease", axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train_mod = df_mod["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test_mod = df_mod.drop("HeartDisease", axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test_mod = df_mod["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
```
Во 2м модуле для разделения на выборки оставим исходные данные:
```python
x_train = df.drop(["HeartDisease", "DBSCAN"], axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df.drop(["HeartDisease", "DBSCAN"], axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
```
Создаим две модели регрессии и на каждой решим задачу предсказания. Вычислим ошибки и построим графики.
График решения задачи предсказания на модифицированных данных:
![](regdbscan.png "")
График решения задачи предсказания на исходных данных:
![](reg.png "")
### Вывод
Согласно графиком, модель, обученная на исходных данных показала результат лучше, чем модель, обученная на модифицированных данных. Получается, что на данном наборе, используя алгоритм `DBSCAN`, мы не только невероятно увеличиваем затратность памяти на обучение модели, но и отрицательно влияем на результат её работы. Это означает, что использование алгоритма на таком наборе данных абсолютно нецелесообразно.
Связанно это может быть с большим количеством бинарных признаков в данных. В таких случаях задачи кластеризации решаются сравнительно хуже.

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

View File

@@ -0,0 +1,96 @@
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.cluster import DBSCAN
from sklearn.linear_model import LinearRegression
filein = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_norm.csv"
fileout = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_classified.csv"
# Метод устранения шумов и кластеризации данных алгоритмом DBSCAN
def dbscan():
df = pd.read_csv(filein, sep=',').iloc[0:10000] # Считывание датасета
x = df.drop("HeartDisease", axis=1) # Определение кластеризуемых параметров
eps_opt = (x.max().values.mean() + x.min().values.mean()) / 2 # Рассчёт опционального радиуса окрестности методом средней плотности
developed_data = [] # Подбор значения минимального количества точек в окрестности
for i in range(len(x)): # - Начинаем с одной точки
if i == 0:
continue # - Увеличиваем значение кол-ва точек на 1
dbscan = DBSCAN(eps=eps_opt, min_samples=i) # - Обучаем модель и получаем массив кластеров
clusters = dbscan.fit_predict(x.values)
if len(set(clusters)) <= 7: # - Прекращаем увеличивать значение точек, если кол-во кластеров уменьшилось до требуемого
developed_data = clusters
break
if list(clusters).count(-1) / len(clusters) >= 0.1: # - Или если "шум" превышает 10% от данных
developed_data = clusters
break
make_plot(x, developed_data)
df["DBSCAN"] = developed_data
df.to_csv(fileout, index=False) # Сохраняем полученные кластеры как доп. столбец датасета
# Метод оценки эффективности кластеризации DBSCAN
def linear_reg(): # Создаём две выборки данных
df = pd.read_csv(fileout, sep=',') # В 1й избавляемся от "шумов" и используем столбец кластеров как признак
df_mod = df.loc[df["DBSCAN"] != -1]
x_train_mod = df_mod.drop("HeartDisease", axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train_mod = df_mod["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test_mod = df_mod.drop("HeartDisease", axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test_mod = df_mod["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
# Во 2й оставляем обычные данные
x_train = df.drop(["HeartDisease", "DBSCAN"], axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df.drop(["HeartDisease", "DBSCAN"], axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
lr_mod = LinearRegression() # Обучаем модель без "шума" и с признаком кластеров
lr_mod.fit(x_train_mod.values, y_train_mod.values)
y_mod_pred = lr_mod.predict(x_test_mod.values)
err = pred_errors(y_mod_pred, y_test_mod.values)
make_plots(y_test_mod.values, y_mod_pred, err[0], err[1], "Регрессия с кластеризацией dbscan")
lr = LinearRegression() # Обучаем модель на исходных данных
lr.fit(x_train.values, y_train.values)
y_pred = lr.predict(x_test.values)
err = pred_errors(y_pred, y_test.values)
make_plots(y_test.values, y_pred, err[0], err[1], "Чистая линейная регрессия")
# Метод рассчёта ошибок
def pred_errors(y_predict, y_test):
mid_square = np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3) # Рассчёт среднеквадратичной ошибки модели
det_kp = np.round(metrics.r2_score (y_test, y_predict), 2) # Рассчёт коэфициента детерминации модели
return mid_square, det_kp
# Метод отрисовки графиков
def make_plots(y_test, y_predict, mid_sqrt, det_kp, title):
plt.plot(y_test, c="red", label="\"y\" исходная") # Создание графика исходной функции
plt.plot(y_predict, c="green", label="\"y\" предсказанная \n"
"Ср^2 = " + str(mid_sqrt) + "\n"
"Кд = " + str(det_kp)) # Создание графика предсказанной функции
plt.legend(loc='lower left')
plt.title(title)
plt.savefig('static/' + title + '.png')
plt.close()
# Метод построения графика кластеризации
def make_plot(x, c):
plt.scatter(x.values[:, 0], x.values[:, 13], c=c, cmap='viridis')
plt.xlabel('BMI')
plt.ylabel('SleepTime')
plt.colorbar()
plt.title('DBSCAN Clustering')
plt.savefig('static/dbscan.png')
plt.close()
if __name__ == '__main__':
dbscan()
linear_reg()

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

View File

@@ -0,0 +1,94 @@
## Лабораторная работа 5. Вариант 4.
### Задание
Использовать регрессию по варианту для данных из курсовой работы. Самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо он подходит для
решения сформулированной задачи.
Модель регрессии:
- Гребневая регрессия `Ridge`.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
После этого в папке `static` сгенерируются 2 графика, по которым оценивается результат выполнения программы.
### Используемые технологии
- Библиотека `numpy`, используемая для обработки массивов данных и вычислений
- Библиотека `pyplot`, используемая для построения графиков.
- Библиотека `pandas`, используемая для работы с данными для анализа scv формата.
- Библиотека `sklearn` - большой набор функционала для анализа данных. Из неё были использованы инструменты:
- `Ridge` - инструмент работы с моделью "Гребневая регрессия"
- `metrics` - набор инструменов для оценки моделей
`Ridge` - это линейная регрессионная модель с регуляризацией L2, которая может быть использована для решения задачи регрессии.
### Описание работы
#### Описание набора данных
Набор данных - набор для определения возможности наличия ССЗ заболеваний у челоека
Названия столбцов набора данных и их описание:
* HeartDisease - Имеет ли человек ССЗ (No / Yes),
* BMI - Индекс массы тела человека (float),
* Smoking - Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (No / Yes),
* AlcoholDrinking - Сильно ли человек употребляет алкоголь (No / Yes),
* Stroke - Был ли у человека инсульт (No / Yes),
* PhysicalHealth - Сколько дней за последний месяц человек чувствовал себя плохо (0-30),
* MentalHealth - Сколько дней за последний месяц человек чувствовал себя удручённо (0-30),
* DiffWalking - Ииспытывает ли человек трудности при ходьбе (No / Yes),
* Sex - Пол (female, male),
* AgeCategory - Возрастная категория (18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80 or older),
* Race - Национальная принадлежность человека (White, Black, Hispanic, American Indian/Alaskan Native, Asian, Other),
* Diabetic - Был ли у человека диабет (No / Yes),
* PhysicalActivity - Занимался ли человек спротом за последний месяц (No / Yes),
* GenHealth - Общее самочувствие человека (Excellent, Very good, Good, Fair, Poor),
* SleepTime - Сколько человек в среднем спит за 24 часа (0-24),
* Asthma - Была ли у человека астма (No / Yes),
* KidneyDisease - Было ли у человека заболевание почек (No / Yes),
* SkinCancer - Был ли у человека рак кожи (No / Yes).
Ссылка на страницу набора на kuggle: [Indicators of Heart Disease](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease/data)
#### Формулировка задачи
Поскольку модель гребневой регрессии используется для решения задачи регресси, то попробуем на ней предсказать поведение параметров при обучении на всех признаках, и на значимых признаках, найденных ранее в лабораторной №3. Сформулируем задачу:
> "Решить задачу предсказания с помощью моделей гребневой регрессии, обученных на всех признаках и только на значимых признаках. Сравнить результаты работы моделей"
#### Решение задачи предсказания
Создадим два обучающих модуля. В 1й включим все признаки. Разделим даныые на выборки. Пусть обучающая выборка будет 99% данных, а тестовая - 1% соответсвенно:
```python
x_train = df.drop("HeartDisease", axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df.drop("HeartDisease", axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
```
Тогда во 2м модуле используем только признаки, названные значимыми в 3й лабораторной, а именно:
* BMI
* SleepTime
* PhysicalHealth
* GenHealth
* MentalHealth
* AgeCategory
* Race
* PhysicalActivity
Обучим две модели гребневой регнессии на данных из разных модулей. Решим задачу предсказания, найдём ошибки и построим графики.
График решения задачи предсказания моделью гребневой регрессии с использованием всех признаков:
![](all.png "")
График решения задачи предсказания моделью гребневой регрессии с использованием значимых признаков:
![](imp.png "")
### Вывод
Согласно графиком, среднеквадратическая ошибка обеих моделей достаточна низкая. что свидетельствует достаточно точному соответствию истиных и полученных значений, однако коэффициент детерминации моделей имеет очень низкое значение, что свидетельствует практически полному непониманию модели зависимостей в данных.
> **Note**
>
> Модель `Ridge` имеет коэффициент регуляризации `alpha`, который помогает избавиться модели от переобучения, однако даже при стандартном его значении в единицу, модель показывает очень низкий коэффициент детерминации, поэтому варьирование его значения не принесёт никаких результатов.
Исходя из полученных результатов можно сделать вывод, что модель гребневой регрессии неприменима к данному набору данных.

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

View File

@@ -0,0 +1,65 @@
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.linear_model import Ridge
filein = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_norm.csv"
# Метод решения задачи предсказания на всех признаках данных
def ridge_all():
df = pd.read_csv(filein, sep=',')
x_train = df.drop("HeartDisease", axis=1).iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df.drop("HeartDisease", axis=1).iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
rid = Ridge(alpha=1.0)
rid.fit(x_train.values, y_train.values)
y_predict = rid.predict(x_test.values)
err = pred_errors(y_predict, y_test.values)
make_plots(y_test.values, y_predict, err[0], err[1], "Гребневая регрессия (все признаки)")
# Метод решения задачи предсказания на значимых признаках данных
def ridge_valuable():
df = pd.read_csv(filein, sep=',')
x_train = df[["BMI", "PhysicalHealth", "MentalHealth", "AgeCategory", "Race",
"PhysicalActivity", "GenHealth", "SleepTime", ]].iloc[0:round(len(df) / 100 * 99)]
y_train = df["HeartDisease"].iloc[0:round(len(df) / 100 * 99)]
x_test = df[["BMI", "PhysicalHealth", "MentalHealth", "AgeCategory", "Race",
"PhysicalActivity", "GenHealth", "SleepTime", ]].iloc[round(len(df) / 100 * 99):len(df)]
y_test = df["HeartDisease"].iloc[round(len(df) / 100 * 99):len(df)]
rid = Ridge(alpha=1.0)
rid.fit(x_train.values, y_train.values)
y_predict = rid.predict(x_test.values)
err = pred_errors(y_predict, y_test.values)
make_plots(y_test.values, y_predict, err[0], err[1], "Гребневая регрессия (значимые признаки)")
# Метод рассчёта ошибок
def pred_errors(y_predict, y_test):
mid_square = np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3) # Рассчёт среднеквадратичной ошибки модели
det_kp = np.round(metrics.r2_score (y_test, y_predict), 2) # Рассчёт коэфициента детерминации модели
return mid_square, det_kp
# Метод отрисовки графиков
def make_plots(y_test, y_predict, mid_sqrt, det_kp, title):
plt.plot(y_test, c="red", label="\"y\" исходная") # Создание графика исходной функции
plt.plot(y_predict, c="green", label="\"y\" предсказанная \n"
"Ср^2 = " + str(mid_sqrt) + "\n"
"Кд = " + str(det_kp)) # Создание графика предсказанной функции
plt.legend(loc='lower left')
plt.title(title)
plt.savefig('static/' + title + '.png')
plt.close()
if __name__ == '__main__':
ridge_all()
ridge_valuable()

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

View File

@@ -0,0 +1,110 @@
## Лабораторная работа 6. Вариант 4.
### Задание
Использовать нейронную сеть `MLPRegressor` для данных из курсовой работы. Самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо он подходит для решения сформулированной задачи.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
После этого в папке `static` сгенерируются график, по которому оценивается результат выполнения программы.
### Используемые технологии
- Библиотека `numpy`, используемая для обработки массивов данных и вычислений
- Библиотека `pyplot`, используемая для построения графиков.
- Библиотека `pandas`, используемая для работы с данными для анализа scv формата.
- Библиотека `sklearn` - большой набор функционала для анализа данных. Из неё были использованы инструменты:
- `train_test_split` - разделитель данных на обучающиую и тестовую выборки
- `metrics` - набор инструменов для оценки моделей
- `MLPRegressor` - инструмент работы с моделью "Многослойный перцептрон для задачи регрессии"
`MLPRegressor` - это тип искусственной нейронной сети, состоящей из нескольких слоев нейронов, включая входной слой, скрытые слои и выходной слой.
Этот класс позволяет создавать и обучать MLP-модель для предсказания непрерывных числовых значений.
### Описание работы
#### Описание набора данных
Набор данных - набор для определения возможности наличия ССЗ заболеваний у челоека
Названия столбцов набора данных и их описание:
* HeartDisease - Имеет ли человек ССЗ (No / Yes),
* BMI - Индекс массы тела человека (float),
* Smoking - Выкурил ли человек хотя бы 5 пачек сигарет за всю жизнь (No / Yes),
* AlcoholDrinking - Сильно ли человек употребляет алкоголь (No / Yes),
* Stroke - Был ли у человека инсульт (No / Yes),
* PhysicalHealth - Сколько дней за последний месяц человек чувствовал себя плохо (0-30),
* MentalHealth - Сколько дней за последний месяц человек чувствовал себя удручённо (0-30),
* DiffWalking - Ииспытывает ли человек трудности при ходьбе (No / Yes),
* Sex - Пол (female, male),
* AgeCategory - Возрастная категория (18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80 or older),
* Race - Национальная принадлежность человека (White, Black, Hispanic, American Indian/Alaskan Native, Asian, Other),
* Diabetic - Был ли у человека диабет (No / Yes),
* PhysicalActivity - Занимался ли человек спротом за последний месяц (No / Yes),
* GenHealth - Общее самочувствие человека (Excellent, Very good, Good, Fair, Poor),
* SleepTime - Сколько человек в среднем спит за 24 часа (0-24),
* Asthma - Была ли у человека астма (No / Yes),
* KidneyDisease - Было ли у человека заболевание почек (No / Yes),
* SkinCancer - Был ли у человека рак кожи (No / Yes).
Ссылка на страницу набора на kuggle: [Indicators of Heart Disease](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease/data)
#### Формулировка задачи
Поскольку модель `MLPRegressor` используется для решения задачи регресси, то попробуем на ней предсказать поведение параметров при обучении на всех признаках, варьируя конфигурации модели. Сформулируем задачу:
> "Решить задачу предсказания с помощью нейронной сети, обученной на всех признаках при различных конфигурациях. Сравнить результаты работы моделей"
#### Решение задачи предсказания
Из csv файла выргузим набор данных, выделим параметр для предсказания - (столбец `HeartDisease`), и его признаки - все остальные столбцы. Разделим данные на обучающую и тестовые выборки, при условии, что 99.9% данных - для обучения, а остальные для тестов:
```python
х, y = [df.drop("HeartDisease", axis=1).values, df["HeartDisease"].values]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.001, random_state=42)
```
Создадим класс нейронной сети и определим варьируемые конфигурации.
`hidden_layer_sizes ` - параметр, принимающий на вход количество скрытых слоёв нейронной сети и количество нейронов в каждом слое. Для определения его наилучшего значения необходимо взять минимальное количество слоёв и нейронов в слое и постепенно увеличивать его, до тех пор, пока качество модели не перестанет улучшаться или не будет достаточным.
> **Note**
>
> Экспериментально для нейронной сети `MLPRegressor` было выявленно наилучшее значение равное 100 слоям нейронной сети по 50 нейронов в каждой. Для прелоставления данных процесс оказался очень длительным, поэтому будет указан только наилучший результат.
`activation` - функция активации. В классе представлена 4мя решениями:
- `identity` - функция `f(x) = x`, абсолютно линейная идентичная функция для приведения работы нейронной сети ближе к модели линейной регрессии,
- `logistic` - логистическая сигмовидная функция вида `f(x) = 1 / (1 + exp(-x))`,
- `tanh` - гиперболическая функция тангенса `f(x) = tanh(x)`,
- `relu` - функция выпрямленной линейной единицы измерения `f(x) = max(0, x)`, проверяет больше ли х нуля (используется чаще всего).
`solver` - метод оптимизации весов. Существует в 3х вариациях:
- `Bfgs` - оптимизатор из семейства квазиньютоновских методов,
> **Warning**
>
> Оптимизатор из семейства квазиньютоновских методов показал себя как очень жадный по времени выполнения алгоритм при этом использующий большие коэфициенты весов, что приводило к едиичным, но слишком большим погрешностям на данных. Поэтому в эксперименте варьирования он не принимал участия.
- `sgd` - метод стозастического градиентного спуска (классика),
- `adam` - оптимизированный метод стозастического градиентного спуска Кингмы, Дидерика и Джимми Барнсома.
```python
mlp = MLPRegressor(hidden_layer_sizes=(100, 50), activation='relu', solver='adam', random_state=42)
mlp.fit(x_train, y_train)
y_predict = mlp.predict(x_test)
err = pred_errors(y_predict, y_test)
```
Проведём эксперимент варьирования конфигураций, посчитаем ошибки предсказания и выберем наилучшую нейронную сеть.
#### Эксперимент варьирования
Рассмотрим различные функции активации.
Графики решения задачи предсказания на разных функциях активации:
![](1.png "")
Теперь для выбранной функции подберём лучший метод оптимизации весов.
Грфики решения задачи предсказания на разных методах оптимизации весов:
![](2.png "")
### Вывод
Согласно графиком, наилучшие результаты показала нейронаая сеть с функцией активации гиперболического тангенса `tanh` и методом оптимизации весов путём оптимизированного стозастического градиентного спуска Кингмы, Дидерика и Джимми Барнсома `adam`.
В целом нейронная сеть справилась неудовлетворительно с задачей предсказания, показав хоть и небольшую среднеквадратическую ошибку в 0.25, но очень низкий коэфициент детерминации в 0.23 максимально.
Это значит, что теоретически модель может предсказать результат по признакам, однако понимания зависимостей результата от последних у неё мало.

View File

@@ -0,0 +1,46 @@
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
filein = "P:\\ULSTU\\ИИС\\Datasets\\heart_2020_norm.csv"
# Метод обучения нейронной сети
def reg_neural_net():
df = pd.read_csv(filein, sep=',')
x, y = [df.drop("HeartDisease", axis=1).values,
df["HeartDisease"].values]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.001, random_state=42)
mlp = MLPRegressor(hidden_layer_sizes=(100, 50), activation='tanh', solver='adam', random_state=15000)
mlp.fit(x_train, y_train)
y_predict = mlp.predict(x_test)
err = pred_errors(y_predict, y_test)
make_plots(y_test, y_predict, err[0], err[1], "Нейронная сеть")
# Метод рассчёта ошибок
def pred_errors(y_predict, y_test):
mid_square = np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3) # Рассчёт среднеквадратичной ошибки модели
det_kp = np.round(metrics.r2_score(y_test, y_predict), 2) # Рассчёт коэфициента детерминации модели
return mid_square, det_kp
# Метод отрисовки графиков
def make_plots(y_test, y_predict, mid_sqrt, det_kp, title):
plt.plot(y_test, c="red", label="\"y\" исходная") # Создание графика исходной функции
plt.plot(y_predict, c="green", label="\"y\" предсказанная \n"
"Ср^2 = " + str(mid_sqrt) + "\n"
"Кд = " + str(det_kp)) # Создание графика предсказанной функции
plt.legend(loc='lower left')
plt.title(title)
plt.savefig('static/' + title + '.png')
plt.close()
if __name__ == '__main__':
reg_neural_net()

View File

@@ -0,0 +1,83 @@
## Лабораторная работа 1. Вариант 4.
### Задание
Построить графики, отобразить
качество моделей, объяснить полученные результаты.
Данные: `make_circles (noise=0.2, factor=0.5, random_state=rs)`
Модели:
- Линейная регресся
- Полиномиальная регрессия (со степенью 4)
- Гребневая полиномиальная регресся (со степенью 4, alpha = 1.0)
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
После будет запущена программа и сгенерированы 3 графика.
### Используемые технологии
- `numpy` (псевдоним `np`): NumPy - это библиотека для научных вычислений в Python.
- `matplotlib.pyplot` (псевдоним `plt`): Matplotlib - это библиотека для создания статических, анимированных и интерактивных визуализаций в Python. `pyplot` - это модуль Matplotlib, который используется для создания графиков и диаграмм.
- `matplotlib.colors.ListedColormap` - этот модуль Matplotlib используется для создания цветных схем цветовых карт, которые могут быть использованы для визуализации данных.
- `sklearn` (scikit-learn): Scikit-learn - это библиотека для машинного обучения и анализа данных в Python. Из данной библиотеки были использованы следующие модули:
- `model_selection` - Этот модуль scikit-learn предоставляет инструменты для разделения данных на обучающие и тестовые наборы.
- `linear_model` - содержит реализации линейных моделей, таких как линейная регрессия, логистическая регрессия и другие.
- `pipeline` - позволяет объединить несколько этапов обработки данных и построения моделей в одну конвейерную цепочку.
- `PolynomialFeatures` - Этот класс scikit-learn используется для генерации полиномиальных признаков, позволяя моделям учитывать нелинейные зависимости в данных.
- `make_circles` - Эта функция scikit-learn создает набор данных, представляющий собой два класса, расположенных в форме двух пересекающихся окружностей. Это удобно для демонстрации работы различных моделей классификации.
- `LinearRegression` - линейная регрессия - это алгоритм машинного обучения, используемый для задач бинарной классификации.
### Описание работы
Программа генерирует данные, разделяет данные на тестовые и обучающие для моделей по заданию.
```python
rs = randrange(50)
X, y = make_circles(noise=0.2, factor=0.5, random_state=rs)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rs)
```
`X_train` и `y_train` используются для обучения, а на данных `X_test` и `y_test` - оценка их качества.
Поскольку все модели в задании регрессионные, результаты работы будем оценивать через решение задачи предсказания.
Для оценки будем использовать следующие критерии: среднеквадратическому отклонению и коэфициенту детерминации. Чем ошибка меньше и чем коэфициент детерминации больше, тем лучше.
```python
np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3) #среднеквадратическое отклонение
np.round(metrics.r2_score(y_test, y_predict), 2) #коэфициент детерминации
```
Оценочные параметры округлены с помощью функции `round` до 3х и 2х знаков после запятой.
### Линейная регрессия
Для создания модели линейной регрессии воспользуемся `LinearRegression`.
```python
linear_reg = LinearRegression()
```
Обучим её и предскажем с её помощью `y` на тестовой выборке `x_text`.
```python
model.fit(X_train, y_train)
y_predict = model.predict(X_test)
```
График для оценки результатов:
![](linear.png "")
#### Полиномиальная регрессия
Добавим 3 недостающих члена к линейной модели, возведённых в соответствующие степени 2, 3 и 4.
```python
poly_reg = make_pipeline(PolynomialFeatures(degree=4), StandardScaler(), LogisticRegression(random_state=rs))
```
График для оценки результатов:
![](poly.png "")
#### Полиномиальная гребневая регрессия
Линейная регрессия является разновидностью полиномиальной регрессии со степенью ведущего члена равной 1.
```python
ridge_poly_reg = make_pipeline(PolynomialFeatures(degree=4), StandardScaler(), LogisticRegression(penalty='l2', C=1.0, random_state=rs))
```
График для оценки результатов:
![](ridge.png "")
Точность измерений:
![](result.png "")
### Вывод
Наиболее низкое среднеквадратичное отклонение и наиболее высокий коэффициент детерминации показала модель полиномиальной и полиномиальной гребневой регрессии. Это означает, что они являются лучшими моделями для данного набора данных.

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

View File

@@ -0,0 +1,60 @@
from random import randrange
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.datasets import make_circles
rs = randrange(50)
X, y = make_circles(noise=0.2, factor=0.5, random_state=rs) # Сгенерируем данные
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=rs) # Разделим данные на обучающий и тестовый наборы
# Линейная модель
linear_reg = LinearRegression()
# Полиномиальная регрессия (со степенью 4)
poly_reg = make_pipeline(PolynomialFeatures(degree=4), StandardScaler(), LogisticRegression(random_state=rs))
# Гребневая полиномиальная регрессия (со степенью 4 и alpha=1.0)
ridge_poly_reg = make_pipeline(PolynomialFeatures(degree=4), StandardScaler(), LogisticRegression(penalty='l2', C=1.0,
random_state=rs))
# Обучение моделей
def mid_sq_n_det(name, model):
model.fit(X_train, y_train)
y_predict = model.predict(X_test)
print(f'Рассчёт среднеквадратичной ошибки для {name}: '
f'{np.round(np.sqrt(metrics.mean_squared_error(y_test, y_predict)),3)}') # Рассчёт среднеквадратичной ошибки модели
print(f'Рассчёт коэфициента детерминации для {name}: {np.round(metrics.r2_score(y_test, y_predict), 2)}') # Рассчёт коэфициента детерминации модели
return name, model
# Графики
models = [mid_sq_n_det("Линейная регрессия", linear_reg),
mid_sq_n_det("Полиномиальная регрессия (со степенью 4)", poly_reg),
mid_sq_n_det("Гребневая полиномиальная регрессия (со степенью 4, alpha = 1.0)", ridge_poly_reg)]
cmap_background = ListedColormap(['#FFAAAA', '#AAAAFF'])
cmap_points = ListedColormap(['#FF0000', '#0000FF'])
plt.figure(figsize=(15, 4))
for i, (name, model) in enumerate(models):
plt.subplot(1, 3, i + 1)
xx, yy = np.meshgrid(np.linspace(X[:, 0].min() - 1, X[:, 0].max() + 1, 100),
np.linspace(X[:, 1].min() - 1, X[:, 1].max() + 1, 100))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=cmap_background, alpha=0.5)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_points, marker='o', label='Тестовые точки')
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cmap_points, marker='x', label='Обучающие точки')
plt.legend()
plt.title(name)
plt.text(0.5, -1.2, 'Красный класс', color='r', fontsize=12)
plt.text(0.5, -1.7, 'Синий класс', color='b', fontsize=12)
plt.tight_layout()
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

View File

@@ -0,0 +1,42 @@
## Лабораторная работа 2. Вариант 5.
### Задание
Выполнить ранжирование признаков. Отобразить получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Провести анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению?
Модели:
- Гребневая регрессия `Ridge`,
- Рекурсивное сокращение признаков `Recursive Feature Elimination RFE`,
- Сокращение признаков Случайными деревьями `Random Forest Regressor`
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
### Используемые технологии
- `numpy` (псевдоним `np`): NumPy - это библиотека для научных вычислений в Python.
- `sklearn` (scikit-learn): Scikit-learn - это библиотека для машинного обучения и анализа данных в Python. Из данной библиотеки были использованы следующие модули:
- `LinearRegression` - линейная регрессия - это алгоритм машинного обучения, используемый для задач бинарной классификации.
- `Ridge` - инструмент работы с моделью "Гребневая регрессия"
- `RFE` - инструмент оценки важности признаков "Рекурсивное сокращение признаков"
- `RandomForestRegressor` - инструмент работы с моделью "Регрессор случайного леса"
### Описание работы
1. Программа генерирует данные для обучения моделей, содержащие матрицу признаков X и вектор целевой переменной y.
1. Создает DataFrame data, в котором столбцы представляют признаки, а последний столбец - целевую переменную.
1. Разделяет данные на матрицу признаков X и вектор целевой переменной y
1. Создает список обученных моделей для ранжирования признаков: гребневой регрессии, рекурсивного сокращения признаков и сокращения признаков случайными деревьями.
1. Создает словарь model_scores для хранения оценок каждой модели.
1. Выводит оценки признаков каждой модели и их средние оценки.
1. Находит четыре наиболее важных признака по средней оценке и выводит их индексы и значения.
### Результат работы
![](ridge.png "Гребневая регрессия")
![](rfe.png "Рекурсивное сокращение признаков")
![](rfr.png "Сокращение признаков Случайными деревьями")
![](res.png "Четыре самых важных")
### Вывод
Четыре наиболее важных признака, определенных на основе средних оценок, включают
Признак 1, Признак 3, Признак 12 и Признак 6.

Some files were not shown because too many files have changed in this diff Show More