Merge branch 'main' into malkova_anastasia_lab_1
@ -1,8 +1,10 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="jdk" jdkName="Python 3.8 (venv)" jdkType="Python SDK" />
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.9 (PyCharmProjects)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
7
.idea/discord.xml
Normal file
@ -0,0 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="DiscordProjectSettings">
|
||||
<option name="show" value="ASK" />
|
||||
<option name="description" value="" />
|
||||
</component>
|
||||
</project>
|
@ -1,4 +1,10 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (venv)" project-jdk-type="Python SDK" />
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.9 (PyCharmProjects)" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9 (PyCharmProjects)" project-jdk-type="Python SDK" />
|
||||
<component name="PyCharmProfessionalAdvertiser">
|
||||
<option name="shown" value="true" />
|
||||
</component>
|
||||
</project>
|
@ -1,8 +1,13 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="AutoImportSettings">
|
||||
<option name="autoReloadType" value="SELECTIVE" />
|
||||
</component>
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="0ceb130e-88da-4a20-aad6-17f5ab4226ac" name="Changes" comment="">
|
||||
<change afterPath="$PROJECT_DIR$/zavrazhnova_svetlana_lab_2/result.png" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/.idea/IIS_2023_1.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/IIS_2023_1.iml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/.idea/misc.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||
</list>
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||
@ -17,29 +22,72 @@
|
||||
</option>
|
||||
</component>
|
||||
<component name="Git.Settings">
|
||||
<option name="RECENT_BRANCH_BY_REPOSITORY">
|
||||
<map>
|
||||
<entry key="$PROJECT_DIR$" value="main" />
|
||||
</map>
|
||||
</option>
|
||||
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
|
||||
</component>
|
||||
<component name="MarkdownSettingsMigration">
|
||||
<option name="stateVersion" value="1" />
|
||||
</component>
|
||||
<component name="ProjectColorInfo">{
|
||||
"associatedIndex": 2
|
||||
}</component>
|
||||
<component name="ProjectId" id="2VlZqWiOX68aCf0o2y0AtYJWURS" />
|
||||
<component name="ProjectLevelVcsManager">
|
||||
<ConfirmationsSetting value="1" id="Add" />
|
||||
</component>
|
||||
<component name="ProjectViewState">
|
||||
<option name="hideEmptyMiddlePackages" value="true" />
|
||||
<option name="showLibraryContents" value="true" />
|
||||
</component>
|
||||
<component name="PropertiesComponent"><![CDATA[{
|
||||
"keyToString": {
|
||||
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||
"last_opened_file_path": "D:/ulstukek/Course4/IIS/IISLabs/IIS_2023_1"
|
||||
<component name="PropertiesComponent">{
|
||||
"keyToString": {
|
||||
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||
"WebServerToolWindowFactoryState": "false",
|
||||
"git-widget-placeholder": "senkin__alexander__lab__1",
|
||||
"last_opened_file_path": "D:/ulstukek/Course4/IIS/labs",
|
||||
"node.js.detected.package.eslint": "true",
|
||||
"node.js.detected.package.tslint": "true",
|
||||
"node.js.selected.package.eslint": "(autodetect)",
|
||||
"node.js.selected.package.tslint": "(autodetect)",
|
||||
"nodejs_package_manager_path": "npm",
|
||||
"settings.editor.selected.configurable": "reference.settings.ide.settings.new.ui",
|
||||
"vue.rearranger.settings.migration": "true"
|
||||
}
|
||||
}]]></component>
|
||||
}</component>
|
||||
<component name="RecentsManager">
|
||||
<key name="CopyFile.RECENT_KEYS">
|
||||
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_3" />
|
||||
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_1" />
|
||||
</key>
|
||||
</component>
|
||||
<component name="RunManager">
|
||||
<configuration name="zavrazhnova_svetlana_lab3_2" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="IIS_2023_1" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3/zavrazhnova_svetlana_lab3_2.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="zavrazhnova_svetlana_lab_2" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="IIS_2023_1" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
@ -52,6 +100,7 @@
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_2/zavrazhnova_svetlana_lab_2.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
@ -61,9 +110,35 @@
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="zavrazhnova_svetlana_lab_3_1" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="IIS_2023_1" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3/zavrazhnova_svetlana_lab_3_1.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<recent_temporary>
|
||||
<list>
|
||||
<item itemvalue="Python.zavrazhnova_svetlana_lab_3_1" />
|
||||
<item itemvalue="Python.zavrazhnova_svetlana_lab_2" />
|
||||
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
|
||||
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
|
||||
<item itemvalue="Python.zavrazhnova_svetlana_lab_3_1" />
|
||||
</list>
|
||||
</recent_temporary>
|
||||
</component>
|
||||
@ -75,18 +150,38 @@
|
||||
<option name="number" value="Default" />
|
||||
<option name="presentableId" value="Default" />
|
||||
<updated>1695412818437</updated>
|
||||
<workItem from="1697735437405" duration="1706000" />
|
||||
<workItem from="1697740229646" duration="3802000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
<component name="TypeScriptGeneratedFilesManager">
|
||||
<option name="version" value="3" />
|
||||
</component>
|
||||
<component name="Vcs.Log.Tabs.Properties">
|
||||
<option name="TAB_STATES">
|
||||
<map>
|
||||
<entry key="MAIN">
|
||||
<value>
|
||||
<State />
|
||||
<State>
|
||||
<option name="FILTERS">
|
||||
<map>
|
||||
<entry key="branch">
|
||||
<value>
|
||||
<list>
|
||||
<option value="HEAD" />
|
||||
</list>
|
||||
</value>
|
||||
</entry>
|
||||
</map>
|
||||
</option>
|
||||
</State>
|
||||
</value>
|
||||
</entry>
|
||||
</map>
|
||||
</option>
|
||||
</component>
|
||||
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
||||
<SUITE FILE_PATH="coverage/PyCharmProjects$senkin_alexander_lab_1.coverage" NAME="senkin_alexander_lab_1 Coverage Results" MODIFIED="1697744262965" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/senkin_alexander_lab_1" />
|
||||
</component>
|
||||
</project>
|
47
abanin_daniil_lab_1/README.md
Normal file
@ -0,0 +1,47 @@
|
||||
## Лабораторная работа №1
|
||||
|
||||
### Работа с типовыми наборами данных и различными моделями
|
||||
|
||||
### ПИбд-41 Абанин Даниил
|
||||
|
||||
### Как запустить лабораторную работу:
|
||||
|
||||
* установить python, numpy, matplotlib, sklearn
|
||||
* запустить проект (стартовая точка класс lab1)
|
||||
|
||||
### Какие технологии использовались:
|
||||
|
||||
* Язык программирования `Python`,
|
||||
* Библиотеки numpy, matplotlib, sklearn
|
||||
* Среда разработки `PyCharm`
|
||||
|
||||
### Что делает лабораторная работа:
|
||||
|
||||
* Программа гененерирует данные с make_moonsmake_moons (noise=0.3, random_state=rs)
|
||||
* Сравнивает три типа моделей: инейная, полиномиальная, гребневая полиномиальная регрессии
|
||||
|
||||
### Примеры работы:
|
||||
|
||||
#### Результаты:
|
||||
MAE - средняя абсолютная ошибка, измеряет среднюю абсолютную разницу между прогнозируемыми значениями модели и фактическими значениями целевой переменной
|
||||
MSE - средняя квадратическая ошибка, измеряет среднюю квадратичную разницу между прогнозируемыми значениями модели и фактическими значениями целевой переменной
|
||||
|
||||
Чем меньше значения показателей, тем лучше модель справляется с предсказанием
|
||||
|
||||
Линейная регрессия
|
||||
MAE 0.2959889435199454
|
||||
MSE 0.13997968555679302
|
||||
|
||||
Полиномиальная регрессия
|
||||
MAE 0.21662135861071705
|
||||
MSE 0.08198825629271855
|
||||
|
||||
Гребневая полиномиальная регрессия
|
||||
MAE 0.2102788716636562
|
||||
MSE 0.07440133949387796
|
||||
|
||||
Лучший результат показала модель **Гребневая полиномиальная регрессия**
|
||||
|
||||
![Lin](lin_reg.jpg)
|
||||
![Pol](pol_reg.jpg)
|
||||
![Greb](greb_reg.jpg)
|
BIN
abanin_daniil_lab_1/greb_reg.jpg
Normal file
After Width: | Height: | Size: 59 KiB |
66
abanin_daniil_lab_1/lab1.py
Normal file
@ -0,0 +1,66 @@
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
from sklearn.linear_model import LinearRegression, Ridge
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
from sklearn.datasets import make_moons
|
||||
from sklearn import metrics
|
||||
|
||||
cm_bright = ListedColormap(['#8B0000', '#FF0000'])
|
||||
cm_bright1 = ListedColormap(['#FF4500', '#FFA500'])
|
||||
|
||||
|
||||
def create_moons():
|
||||
x, y = make_moons(noise=0.3, random_state=0)
|
||||
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.4, random_state=42)
|
||||
|
||||
linear_regretion(X_train, X_test, y_train, y_test)
|
||||
polynomial_regretion(X_train, X_test, y_train, y_test)
|
||||
ridge_regretion(X_train, X_test, y_train, y_test)
|
||||
|
||||
|
||||
def linear_regretion(x_train, x_test, y_train, y_test):
|
||||
model = LinearRegression().fit(x_train, y_train)
|
||||
y_predict = model.intercept_ + model.coef_ * x_test
|
||||
plt.title('Линейная регрессия')
|
||||
print('Линейная регрессия')
|
||||
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
|
||||
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
|
||||
plt.plot(x_test, y_predict, color='red')
|
||||
print('MAE', metrics.mean_absolute_error(y_test, y_predict[:, 1]))
|
||||
print('MSE', metrics.mean_squared_error(y_test, y_predict[:, 1]))
|
||||
plt.show()
|
||||
|
||||
|
||||
def polynomial_regretion(x_train, x_test, y_train, y_test):
|
||||
polynomial_features = PolynomialFeatures(degree=3)
|
||||
X_polynomial = polynomial_features.fit_transform(x_train, y_train)
|
||||
base_model = LinearRegression()
|
||||
base_model.fit(X_polynomial, y_train)
|
||||
y_predict = base_model.predict(X_polynomial)
|
||||
plt.title('Полиномиальная регрессия')
|
||||
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
|
||||
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
|
||||
plt.plot(x_train, y_predict, color='blue')
|
||||
plt.show()
|
||||
print('Полиномиальная регрессия')
|
||||
print('MAE', metrics.mean_absolute_error(y_train, y_predict))
|
||||
print('MSE', metrics.mean_squared_error(y_train, y_predict))
|
||||
|
||||
|
||||
def ridge_regretion(X_train, X_test, y_train, y_test):
|
||||
model = Pipeline([('poly', PolynomialFeatures(degree=3)), ('ridge', Ridge(alpha=1.0))])
|
||||
model.fit(X_train, y_train)
|
||||
y_predict = model.predict(X_test)
|
||||
plt.title('Гребневая полиномиальная регрессия')
|
||||
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
|
||||
plt.plot(X_test, y_predict, color='blue')
|
||||
plt.show()
|
||||
print('Гребневая полиномиальная регрессия')
|
||||
print('MAE', metrics.mean_absolute_error(y_test, y_predict))
|
||||
print('MSE', metrics.mean_squared_error(y_test, y_predict))
|
||||
|
||||
|
||||
create_moons()
|
BIN
abanin_daniil_lab_1/lin_reg.jpg
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
abanin_daniil_lab_1/pol_reg.jpg
Normal file
After Width: | Height: | Size: 63 KiB |
41
abanin_daniil_lab_2/README.md
Normal file
@ -0,0 +1,41 @@
|
||||
## Лабораторная работа №2
|
||||
|
||||
### Ранжирование признаков
|
||||
|
||||
## ПИбд-41 Абанин Даниил
|
||||
|
||||
### Как запустить лабораторную работу:
|
||||
|
||||
* установить python, numpy, matplotlib, sklearn
|
||||
* запустить проект (стартовая точка lab2)
|
||||
|
||||
### Какие технологии использовались:
|
||||
|
||||
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
|
||||
* Среда разработки `PyCharm`
|
||||
|
||||
### Что делает лабораторная работа:
|
||||
|
||||
* Генерирует данные и обучает такие модели, как: LinearRegression, RandomizedLasso, Recursive Feature Elimination (RFE)
|
||||
* Производиться ранжирование признаков с помощью моделей LinearRegression, RandomizedLasso, Recursive Feature Elimination (RFE)
|
||||
* Отображение получившихся результатов: 4 самых важных признака по среднему значению, значения признаков для каждой модели
|
||||
|
||||
|
||||
### 4 самых важных признака по среднему значению
|
||||
* Параметр - x4, значение - 0.56
|
||||
* Параметр - x1, значение - 0.45
|
||||
* Параметр - x2, значение - 0.33
|
||||
* Параметр - x9, значение - 0.33
|
||||
|
||||
####Linear Regression
|
||||
[('x1', 1.0), ('x4', 0.69), ('x2', 0.61), ('x11', 0.59), ('x3', 0.51), ('x13', 0.48), ('x5', 0.19), ('x12', 0.19), ('x14', 0.12), ('x8', 0.03), ('x6', 0.02), ('x10', 0.01), ('x7', 0.0), ('x9', 0.0)]
|
||||
|
||||
####Recursive Feature Elimination
|
||||
[('x9', 1.0), ('x7', 0.86), ('x10', 0.71), ('x6', 0.57), ('x8', 0.43), ('x14', 0.29), ('x12', 0.14), ('x1', 0.0), ('x2', 0.0), ('x3', 0.0), ('x4', 0.0), ('x5', 0.0), ('x11', 0.0), ('x13', 0.0)]
|
||||
|
||||
####Randomize Lasso
|
||||
[('x4', 1.0), ('x2', 0.37), ('x1', 0.36), ('x5', 0.32), ('x6', 0.02), ('x8', 0.02), ('x3', 0.01), ('x7', 0.0), ('x9', 0.0), ('x10', 0.0), ('x11', 0.0), ('x12', 0.0), ('x13', 0.0), ('x14', 0.0)]
|
||||
|
||||
#### Результаты:
|
||||
|
||||
![Result](result.png)
|
76
abanin_daniil_lab_2/RadomizedLasso.py
Normal file
@ -0,0 +1,76 @@
|
||||
from sklearn.utils import check_X_y, check_random_state
|
||||
from sklearn.linear_model import Lasso
|
||||
from scipy.sparse import issparse
|
||||
from scipy import sparse
|
||||
|
||||
|
||||
def _rescale_data(x, weights):
|
||||
if issparse(x):
|
||||
size = weights.shape[0]
|
||||
weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size))
|
||||
x_rescaled = x * weight_dia
|
||||
else:
|
||||
x_rescaled = x * (1 - weights)
|
||||
|
||||
return x_rescaled
|
||||
|
||||
|
||||
class RandomizedLasso(Lasso):
|
||||
"""
|
||||
Randomized version of scikit-learns Lasso class.
|
||||
|
||||
Randomized LASSO is a generalization of the LASSO. The LASSO penalises
|
||||
the absolute value of the coefficients with a penalty term proportional
|
||||
to `alpha`, but the randomized LASSO changes the penalty to a randomly
|
||||
chosen value in the range `[alpha, alpha/weakness]`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
weakness : float
|
||||
Weakness value for randomized LASSO. Must be in (0, 1].
|
||||
|
||||
See also
|
||||
--------
|
||||
sklearn.linear_model.LogisticRegression : learns logistic regression models
|
||||
using the same algorithm.
|
||||
"""
|
||||
def __init__(self, weakness=0.5, alpha=1.0, fit_intercept=True,
|
||||
precompute=False, copy_X=True, max_iter=1000,
|
||||
tol=1e-4, warm_start=False, positive=False,
|
||||
random_state=None, selection='cyclic'):
|
||||
self.weakness = weakness
|
||||
super(RandomizedLasso, self).__init__(
|
||||
alpha=alpha, fit_intercept=fit_intercept, precompute=precompute, copy_X=copy_X,
|
||||
max_iter=max_iter, tol=tol, warm_start=warm_start,
|
||||
positive=positive, random_state=random_state,
|
||||
selection=selection)
|
||||
|
||||
def fit(self, X, y):
|
||||
"""Fit the model according to the given training data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||||
The training input samples.
|
||||
|
||||
y : array-like, shape = [n_samples]
|
||||
The target values.
|
||||
"""
|
||||
if not isinstance(self.weakness, float) or not (0.0 < self.weakness <= 1.0):
|
||||
raise ValueError('weakness should be a float in (0, 1], got %s' % self.weakness)
|
||||
|
||||
X, y = check_X_y(X, y, accept_sparse=True)
|
||||
|
||||
n_features = X.shape[1]
|
||||
weakness = 1. - self.weakness
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
weights = weakness * random_state.randint(0, 1 + 1, size=(n_features,))
|
||||
|
||||
# TODO: I am afraid this will do double normalization if set to true
|
||||
#X, y, _, _ = _preprocess_data(X, y, self.fit_intercept, normalize=self.normalize, copy=False,
|
||||
# sample_weight=None, return_mean=False)
|
||||
|
||||
# TODO: Check if this is a problem if it happens before standardization
|
||||
X_rescaled = _rescale_data(X, weights)
|
||||
return super(RandomizedLasso, self).fit(X_rescaled, y)
|
BIN
abanin_daniil_lab_2/__pycache__/RadomizedLasso.cpython-39.pyc
Normal file
81
abanin_daniil_lab_2/lab2.py
Normal file
@ -0,0 +1,81 @@
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from RadomizedLasso import RandomizedLasso
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
import numpy as np
|
||||
|
||||
names = ["x%s" % i for i in range(1, 15)]
|
||||
|
||||
|
||||
def start_point():
|
||||
X,Y = generation_data()
|
||||
# Линейная модель
|
||||
lr = LinearRegression()
|
||||
lr.fit(X, Y)
|
||||
# Рекурсивное сокращение признаков
|
||||
rfe = RFE(lr)
|
||||
rfe.fit(X, Y)
|
||||
# Случайное Лассо
|
||||
randomized_lasso = RandomizedLasso(alpha=.01)
|
||||
randomized_lasso.fit(X, Y)
|
||||
|
||||
ranks = {"Linear Regression": rank_to_dict(lr.coef_), "Recursive Feature Elimination": rank_to_dict(rfe.ranking_),
|
||||
"Randomize Lasso": rank_to_dict(randomized_lasso.coef_)}
|
||||
|
||||
get_estimation(ranks)
|
||||
print_sorted_data(ranks)
|
||||
|
||||
|
||||
def generation_data():
|
||||
np.random.seed(0)
|
||||
size = 750
|
||||
X = np.random.uniform(0, 1, (size, 14))
|
||||
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
|
||||
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
|
||||
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
|
||||
return X, Y
|
||||
|
||||
|
||||
def rank_to_dict(ranks):
|
||||
ranks = np.abs(ranks)
|
||||
minmax = MinMaxScaler()
|
||||
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
|
||||
ranks = map(lambda x: round(x, 2), ranks)
|
||||
return dict(zip(names, ranks))
|
||||
|
||||
|
||||
def get_estimation(ranks: {}):
|
||||
mean = {}
|
||||
#«Бежим» по списку ranks
|
||||
for key, value in ranks.items():
|
||||
for item in value.items():
|
||||
if(item[0] not in mean):
|
||||
mean[item[0]] = 0
|
||||
mean[item[0]] += item[1]
|
||||
|
||||
for key, value in mean.items():
|
||||
res = value/len(ranks)
|
||||
mean[key] = round(res, 2)
|
||||
|
||||
mean_sorted = sorted(mean.items(), key=lambda item: item[1], reverse=True)
|
||||
print("Средние значения")
|
||||
print(mean_sorted)
|
||||
|
||||
|
||||
print("4 самых важных признака по среднему значению")
|
||||
for item in mean_sorted[:4]:
|
||||
print('Параметр - {0}, значение - {1}'.format(item[0], item[1]))
|
||||
|
||||
|
||||
|
||||
def print_sorted_data(ranks: {}):
|
||||
print()
|
||||
for key, value in ranks.items():
|
||||
ranks[key] = sorted(value.items(), key=lambda item: item[1], reverse=True)
|
||||
for key, value in ranks.items():
|
||||
print(key)
|
||||
print(value)
|
||||
|
||||
|
||||
start_point()
|
BIN
abanin_daniil_lab_2/result.png
Normal file
After Width: | Height: | Size: 178 KiB |
27
abanin_daniil_lab_3/README.md
Normal file
@ -0,0 +1,27 @@
|
||||
## Лабораторная работа №3
|
||||
|
||||
### Деревья решений
|
||||
|
||||
## Cтудент группы ПИбд-41 Абанин Даниил
|
||||
|
||||
### Как запустить лабораторную работу:
|
||||
|
||||
* установить python, numpy, matplotlib, sklearn
|
||||
* запустить проект (lab3)
|
||||
|
||||
### Какие технологии использовались:
|
||||
|
||||
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
|
||||
* Среда разработки `PyCharm`
|
||||
|
||||
### Что делает лабораторная работа:
|
||||
|
||||
* Выполняет ранжирование признаков для регрессионной модели
|
||||
* По данным "Eligibility Prediction for Loan" решает задачу классификации (с помощью дерева решений), в которой необходимо выявить риски выдачи кредита и определить его статус (выдан или отказ). В качестве исходных данных используются три признака: Credit_History - соответствие кредитной истории стандартам банка, ApplicantIncome - доход заявителя, LoanAmount - сумма кредита.
|
||||
|
||||
### Примеры работы:
|
||||
|
||||
#### Результаты:
|
||||
* Наиболее важным параметром при выдачи кредита оказался доход заявителя - ApplicantIncome, затем LoanAmount - сумма выдаваемого кредита
|
||||
|
||||
![Result](result.png)
|
33
abanin_daniil_lab_3/lab3.py
Normal file
@ -0,0 +1,33 @@
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
pd.options.mode.chained_assignment = None
|
||||
|
||||
FILE_PATH = "loan.csv"
|
||||
REQUIRED_COLUMNS = ['Credit_History', 'LoanAmount', 'ApplicantIncome']
|
||||
TARGET_COLUMN = 'Loan_Status'
|
||||
|
||||
|
||||
def print_classifier_info(feature_importance):
|
||||
feature_names = REQUIRED_COLUMNS
|
||||
embarked_score = feature_importance[-3:].sum()
|
||||
scores = np.append(feature_importance[:2], embarked_score)
|
||||
scores = map(lambda score: round(score, 2), scores)
|
||||
print(dict(zip(feature_names, scores)))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
data = pd.read_csv(FILE_PATH)
|
||||
|
||||
X = data[REQUIRED_COLUMNS]
|
||||
y = data[TARGET_COLUMN]
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
classifier_tree = DecisionTreeClassifier(random_state=42)
|
||||
classifier_tree.fit(X_train, y_train)
|
||||
|
||||
print_classifier_info(classifier_tree.feature_importances_)
|
||||
print("Оценка качества (задача классификации) - ", classifier_tree.score(X_test, y_test))
|
615
abanin_daniil_lab_3/loan.csv
Normal file
@ -0,0 +1,615 @@
|
||||
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
|
||||
LP001002,Male,No,0,1,No,5849,0.0,360.0,1.0,0,Y,0.0
|
||||
LP001003,Male,Yes,1,1,No,4583,1508.0,128.0,360.0,1,Rural,0.0
|
||||
LP001005,Male,Yes,0,1,Yes,3000,0.0,66.0,360.0,1,Urban,1.0
|
||||
LP001006,Male,Yes,0,0,No,2583,2358.0,120.0,360.0,1,Urban,1.0
|
||||
LP001008,Male,No,0,1,No,6000,0.0,141.0,360.0,1,Urban,1.0
|
||||
LP001011,Male,Yes,2,1,Yes,5417,4196.0,267.0,360.0,1,Urban,1.0
|
||||
LP001013,Male,Yes,0,0,No,2333,1516.0,95.0,360.0,1,Urban,1.0
|
||||
LP001014,Male,Yes,3+,1,No,3036,2504.0,158.0,360.0,0,Semiurban,0.0
|
||||
LP001018,Male,Yes,2,1,No,4006,1526.0,168.0,360.0,1,Urban,1.0
|
||||
LP001020,Male,Yes,1,1,No,12841,10968.0,349.0,360.0,1,Semiurban,0.0
|
||||
LP001024,Male,Yes,2,1,No,3200,700.0,70.0,360.0,1,Urban,1.0
|
||||
LP001027,Male,Yes,2,1,,2500,1840.0,109.0,360.0,1,Urban,1.0
|
||||
LP001028,Male,Yes,2,1,No,3073,8106.0,200.0,360.0,1,Urban,1.0
|
||||
LP001029,Male,No,0,1,No,1853,2840.0,114.0,360.0,1,Rural,0.0
|
||||
LP001030,Male,Yes,2,1,No,1299,1086.0,17.0,120.0,1,Urban,1.0
|
||||
LP001032,Male,No,0,1,No,4950,0.0,125.0,360.0,1,Urban,1.0
|
||||
LP001034,Male,No,1,0,No,3596,0.0,100.0,240.0,0,Urban,1.0
|
||||
LP001036,Female,No,0,1,No,3510,0.0,76.0,360.0,0,Urban,0.0
|
||||
LP001038,Male,Yes,0,0,No,4887,0.0,133.0,360.0,1,Rural,0.0
|
||||
LP001041,Male,Yes,0,1,,2600,3500.0,115.0,,1,Urban,1.0
|
||||
LP001043,Male,Yes,0,0,No,7660,0.0,104.0,360.0,0,Urban,0.0
|
||||
LP001046,Male,Yes,1,1,No,5955,5625.0,315.0,360.0,1,Urban,1.0
|
||||
LP001047,Male,Yes,0,0,No,2600,1911.0,116.0,360.0,0,Semiurban,0.0
|
||||
LP001050,,Yes,2,0,No,3365,1917.0,112.0,360.0,0,Rural,0.0
|
||||
LP001052,Male,Yes,1,1,,3717,2925.0,151.0,360.0,0,Semiurban,0.0
|
||||
LP001066,Male,Yes,0,1,Yes,9560,0.0,191.0,360.0,1,Semiurban,1.0
|
||||
LP001068,Male,Yes,0,1,No,2799,2253.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001073,Male,Yes,2,0,No,4226,1040.0,110.0,360.0,1,Urban,1.0
|
||||
LP001086,Male,No,0,0,No,1442,0.0,35.0,360.0,1,Urban,0.0
|
||||
LP001087,Female,No,2,1,,3750,2083.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001091,Male,Yes,1,1,,4166,3369.0,201.0,360.0,0,Urban,0.0
|
||||
LP001095,Male,No,0,1,No,3167,0.0,74.0,360.0,1,Urban,0.0
|
||||
LP001097,Male,No,1,1,Yes,4692,0.0,106.0,360.0,1,Rural,0.0
|
||||
LP001098,Male,Yes,0,1,No,3500,1667.0,114.0,360.0,1,Semiurban,1.0
|
||||
LP001100,Male,No,3+,1,No,12500,3000.0,320.0,360.0,1,Rural,0.0
|
||||
LP001106,Male,Yes,0,1,No,2275,2067.0,0.0,360.0,1,Urban,1.0
|
||||
LP001109,Male,Yes,0,1,No,1828,1330.0,100.0,,0,Urban,0.0
|
||||
LP001112,Female,Yes,0,1,No,3667,1459.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001114,Male,No,0,1,No,4166,7210.0,184.0,360.0,1,Urban,1.0
|
||||
LP001116,Male,No,0,0,No,3748,1668.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP001119,Male,No,0,1,No,3600,0.0,80.0,360.0,1,Urban,0.0
|
||||
LP001120,Male,No,0,1,No,1800,1213.0,47.0,360.0,1,Urban,1.0
|
||||
LP001123,Male,Yes,0,1,No,2400,0.0,75.0,360.0,0,Urban,1.0
|
||||
LP001131,Male,Yes,0,1,No,3941,2336.0,134.0,360.0,1,Semiurban,1.0
|
||||
LP001136,Male,Yes,0,0,Yes,4695,0.0,96.0,,1,Urban,1.0
|
||||
LP001137,Female,No,0,1,No,3410,0.0,88.0,,1,Urban,1.0
|
||||
LP001138,Male,Yes,1,1,No,5649,0.0,44.0,360.0,1,Urban,1.0
|
||||
LP001144,Male,Yes,0,1,No,5821,0.0,144.0,360.0,1,Urban,1.0
|
||||
LP001146,Female,Yes,0,1,No,2645,3440.0,120.0,360.0,0,Urban,0.0
|
||||
LP001151,Female,No,0,1,No,4000,2275.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001155,Female,Yes,0,0,No,1928,1644.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001157,Female,No,0,1,No,3086,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001164,Female,No,0,1,No,4230,0.0,112.0,360.0,1,Semiurban,0.0
|
||||
LP001179,Male,Yes,2,1,No,4616,0.0,134.0,360.0,1,Urban,0.0
|
||||
LP001186,Female,Yes,1,1,Yes,11500,0.0,286.0,360.0,0,Urban,0.0
|
||||
LP001194,Male,Yes,2,1,No,2708,1167.0,97.0,360.0,1,Semiurban,1.0
|
||||
LP001195,Male,Yes,0,1,No,2132,1591.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP001197,Male,Yes,0,1,No,3366,2200.0,135.0,360.0,1,Rural,0.0
|
||||
LP001198,Male,Yes,1,1,No,8080,2250.0,180.0,360.0,1,Urban,1.0
|
||||
LP001199,Male,Yes,2,0,No,3357,2859.0,144.0,360.0,1,Urban,1.0
|
||||
LP001205,Male,Yes,0,1,No,2500,3796.0,120.0,360.0,1,Urban,1.0
|
||||
LP001206,Male,Yes,3+,1,No,3029,0.0,99.0,360.0,1,Urban,1.0
|
||||
LP001207,Male,Yes,0,0,Yes,2609,3449.0,165.0,180.0,0,Rural,0.0
|
||||
LP001213,Male,Yes,1,1,No,4945,0.0,0.0,360.0,0,Rural,0.0
|
||||
LP001222,Female,No,0,1,No,4166,0.0,116.0,360.0,0,Semiurban,0.0
|
||||
LP001225,Male,Yes,0,1,No,5726,4595.0,258.0,360.0,1,Semiurban,0.0
|
||||
LP001228,Male,No,0,0,No,3200,2254.0,126.0,180.0,0,Urban,0.0
|
||||
LP001233,Male,Yes,1,1,No,10750,0.0,312.0,360.0,1,Urban,1.0
|
||||
LP001238,Male,Yes,3+,0,Yes,7100,0.0,125.0,60.0,1,Urban,1.0
|
||||
LP001241,Female,No,0,1,No,4300,0.0,136.0,360.0,0,Semiurban,0.0
|
||||
LP001243,Male,Yes,0,1,No,3208,3066.0,172.0,360.0,1,Urban,1.0
|
||||
LP001245,Male,Yes,2,0,Yes,1875,1875.0,97.0,360.0,1,Semiurban,1.0
|
||||
LP001248,Male,No,0,1,No,3500,0.0,81.0,300.0,1,Semiurban,1.0
|
||||
LP001250,Male,Yes,3+,0,No,4755,0.0,95.0,,0,Semiurban,0.0
|
||||
LP001253,Male,Yes,3+,1,Yes,5266,1774.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP001255,Male,No,0,1,No,3750,0.0,113.0,480.0,1,Urban,0.0
|
||||
LP001256,Male,No,0,1,No,3750,4750.0,176.0,360.0,1,Urban,0.0
|
||||
LP001259,Male,Yes,1,1,Yes,1000,3022.0,110.0,360.0,1,Urban,0.0
|
||||
LP001263,Male,Yes,3+,1,No,3167,4000.0,180.0,300.0,0,Semiurban,0.0
|
||||
LP001264,Male,Yes,3+,0,Yes,3333,2166.0,130.0,360.0,0,Semiurban,1.0
|
||||
LP001265,Female,No,0,1,No,3846,0.0,111.0,360.0,1,Semiurban,1.0
|
||||
LP001266,Male,Yes,1,1,Yes,2395,0.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001267,Female,Yes,2,1,No,1378,1881.0,167.0,360.0,1,Urban,0.0
|
||||
LP001273,Male,Yes,0,1,No,6000,2250.0,265.0,360.0,0,Semiurban,0.0
|
||||
LP001275,Male,Yes,1,1,No,3988,0.0,50.0,240.0,1,Urban,1.0
|
||||
LP001279,Male,No,0,1,No,2366,2531.0,136.0,360.0,1,Semiurban,1.0
|
||||
LP001280,Male,Yes,2,0,No,3333,2000.0,99.0,360.0,0,Semiurban,1.0
|
||||
LP001282,Male,Yes,0,1,No,2500,2118.0,104.0,360.0,1,Semiurban,1.0
|
||||
LP001289,Male,No,0,1,No,8566,0.0,210.0,360.0,1,Urban,1.0
|
||||
LP001310,Male,Yes,0,1,No,5695,4167.0,175.0,360.0,1,Semiurban,1.0
|
||||
LP001316,Male,Yes,0,1,No,2958,2900.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001318,Male,Yes,2,1,No,6250,5654.0,188.0,180.0,1,Semiurban,1.0
|
||||
LP001319,Male,Yes,2,0,No,3273,1820.0,81.0,360.0,1,Urban,1.0
|
||||
LP001322,Male,No,0,1,No,4133,0.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001325,Male,No,0,0,No,3620,0.0,25.0,120.0,1,Semiurban,1.0
|
||||
LP001326,Male,No,0,1,,6782,0.0,0.0,360.0,0,Urban,0.0
|
||||
LP001327,Female,Yes,0,1,No,2484,2302.0,137.0,360.0,1,Semiurban,1.0
|
||||
LP001333,Male,Yes,0,1,No,1977,997.0,50.0,360.0,1,Semiurban,1.0
|
||||
LP001334,Male,Yes,0,0,No,4188,0.0,115.0,180.0,1,Semiurban,1.0
|
||||
LP001343,Male,Yes,0,1,No,1759,3541.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001345,Male,Yes,2,0,No,4288,3263.0,133.0,180.0,1,Urban,1.0
|
||||
LP001349,Male,No,0,1,No,4843,3806.0,151.0,360.0,1,Semiurban,1.0
|
||||
LP001350,Male,Yes,,1,No,13650,0.0,0.0,360.0,1,Urban,1.0
|
||||
LP001356,Male,Yes,0,1,No,4652,3583.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001357,Male,,,1,No,3816,754.0,160.0,360.0,1,Urban,1.0
|
||||
LP001367,Male,Yes,1,1,No,3052,1030.0,100.0,360.0,1,Urban,1.0
|
||||
LP001369,Male,Yes,2,1,No,11417,1126.0,225.0,360.0,1,Urban,1.0
|
||||
LP001370,Male,No,0,0,,7333,0.0,120.0,360.0,1,Rural,0.0
|
||||
LP001379,Male,Yes,2,1,No,3800,3600.0,216.0,360.0,0,Urban,0.0
|
||||
LP001384,Male,Yes,3+,0,No,2071,754.0,94.0,480.0,1,Semiurban,1.0
|
||||
LP001385,Male,No,0,1,No,5316,0.0,136.0,360.0,1,Urban,1.0
|
||||
LP001387,Female,Yes,0,1,,2929,2333.0,139.0,360.0,1,Semiurban,1.0
|
||||
LP001391,Male,Yes,0,0,No,3572,4114.0,152.0,,0,Rural,0.0
|
||||
LP001392,Female,No,1,1,Yes,7451,0.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001398,Male,No,0,1,,5050,0.0,118.0,360.0,1,Semiurban,1.0
|
||||
LP001401,Male,Yes,1,1,No,14583,0.0,185.0,180.0,1,Rural,1.0
|
||||
LP001404,Female,Yes,0,1,No,3167,2283.0,154.0,360.0,1,Semiurban,1.0
|
||||
LP001405,Male,Yes,1,1,No,2214,1398.0,85.0,360.0,0,Urban,1.0
|
||||
LP001421,Male,Yes,0,1,No,5568,2142.0,175.0,360.0,1,Rural,0.0
|
||||
LP001422,Female,No,0,1,No,10408,0.0,259.0,360.0,1,Urban,1.0
|
||||
LP001426,Male,Yes,,1,No,5667,2667.0,180.0,360.0,1,Rural,1.0
|
||||
LP001430,Female,No,0,1,No,4166,0.0,44.0,360.0,1,Semiurban,1.0
|
||||
LP001431,Female,No,0,1,No,2137,8980.0,137.0,360.0,0,Semiurban,1.0
|
||||
LP001432,Male,Yes,2,1,No,2957,0.0,81.0,360.0,1,Semiurban,1.0
|
||||
LP001439,Male,Yes,0,0,No,4300,2014.0,194.0,360.0,1,Rural,1.0
|
||||
LP001443,Female,No,0,1,No,3692,0.0,93.0,360.0,0,Rural,1.0
|
||||
LP001448,,Yes,3+,1,No,23803,0.0,370.0,360.0,1,Rural,1.0
|
||||
LP001449,Male,No,0,1,No,3865,1640.0,0.0,360.0,1,Rural,1.0
|
||||
LP001451,Male,Yes,1,1,Yes,10513,3850.0,160.0,180.0,0,Urban,0.0
|
||||
LP001465,Male,Yes,0,1,No,6080,2569.0,182.0,360.0,0,Rural,0.0
|
||||
LP001469,Male,No,0,1,Yes,20166,0.0,650.0,480.0,0,Urban,1.0
|
||||
LP001473,Male,No,0,1,No,2014,1929.0,74.0,360.0,1,Urban,1.0
|
||||
LP001478,Male,No,0,1,No,2718,0.0,70.0,360.0,1,Semiurban,1.0
|
||||
LP001482,Male,Yes,0,1,Yes,3459,0.0,25.0,120.0,1,Semiurban,1.0
|
||||
LP001487,Male,No,0,1,No,4895,0.0,102.0,360.0,1,Semiurban,1.0
|
||||
LP001488,Male,Yes,3+,1,No,4000,7750.0,290.0,360.0,1,Semiurban,0.0
|
||||
LP001489,Female,Yes,0,1,No,4583,0.0,84.0,360.0,1,Rural,0.0
|
||||
LP001491,Male,Yes,2,1,Yes,3316,3500.0,88.0,360.0,1,Urban,1.0
|
||||
LP001492,Male,No,0,1,No,14999,0.0,242.0,360.0,0,Semiurban,0.0
|
||||
LP001493,Male,Yes,2,0,No,4200,1430.0,129.0,360.0,1,Rural,0.0
|
||||
LP001497,Male,Yes,2,1,No,5042,2083.0,185.0,360.0,1,Rural,0.0
|
||||
LP001498,Male,No,0,1,No,5417,0.0,168.0,360.0,1,Urban,1.0
|
||||
LP001504,Male,No,0,1,Yes,6950,0.0,175.0,180.0,1,Semiurban,1.0
|
||||
LP001507,Male,Yes,0,1,No,2698,2034.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001508,Male,Yes,2,1,No,11757,0.0,187.0,180.0,1,Urban,1.0
|
||||
LP001514,Female,Yes,0,1,No,2330,4486.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001516,Female,Yes,2,1,No,14866,0.0,70.0,360.0,1,Urban,1.0
|
||||
LP001518,Male,Yes,1,1,No,1538,1425.0,30.0,360.0,1,Urban,1.0
|
||||
LP001519,Female,No,0,1,No,10000,1666.0,225.0,360.0,1,Rural,0.0
|
||||
LP001520,Male,Yes,0,1,No,4860,830.0,125.0,360.0,1,Semiurban,1.0
|
||||
LP001528,Male,No,0,1,No,6277,0.0,118.0,360.0,0,Rural,0.0
|
||||
LP001529,Male,Yes,0,1,Yes,2577,3750.0,152.0,360.0,1,Rural,1.0
|
||||
LP001531,Male,No,0,1,No,9166,0.0,244.0,360.0,1,Urban,0.0
|
||||
LP001532,Male,Yes,2,0,No,2281,0.0,113.0,360.0,1,Rural,0.0
|
||||
LP001535,Male,No,0,1,No,3254,0.0,50.0,360.0,1,Urban,1.0
|
||||
LP001536,Male,Yes,3+,1,No,39999,0.0,600.0,180.0,0,Semiurban,1.0
|
||||
LP001541,Male,Yes,1,1,No,6000,0.0,160.0,360.0,0,Rural,1.0
|
||||
LP001543,Male,Yes,1,1,No,9538,0.0,187.0,360.0,1,Urban,1.0
|
||||
LP001546,Male,No,0,1,,2980,2083.0,120.0,360.0,1,Rural,1.0
|
||||
LP001552,Male,Yes,0,1,No,4583,5625.0,255.0,360.0,1,Semiurban,1.0
|
||||
LP001560,Male,Yes,0,0,No,1863,1041.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP001562,Male,Yes,0,1,No,7933,0.0,275.0,360.0,1,Urban,0.0
|
||||
LP001565,Male,Yes,1,1,No,3089,1280.0,121.0,360.0,0,Semiurban,0.0
|
||||
LP001570,Male,Yes,2,1,No,4167,1447.0,158.0,360.0,1,Rural,1.0
|
||||
LP001572,Male,Yes,0,1,No,9323,0.0,75.0,180.0,1,Urban,1.0
|
||||
LP001574,Male,Yes,0,1,No,3707,3166.0,182.0,,1,Rural,1.0
|
||||
LP001577,Female,Yes,0,1,No,4583,0.0,112.0,360.0,1,Rural,0.0
|
||||
LP001578,Male,Yes,0,1,No,2439,3333.0,129.0,360.0,1,Rural,1.0
|
||||
LP001579,Male,No,0,1,No,2237,0.0,63.0,480.0,0,Semiurban,0.0
|
||||
LP001580,Male,Yes,2,1,No,8000,0.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP001581,Male,Yes,0,0,,1820,1769.0,95.0,360.0,1,Rural,1.0
|
||||
LP001585,,Yes,3+,1,No,51763,0.0,700.0,300.0,1,Urban,1.0
|
||||
LP001586,Male,Yes,3+,0,No,3522,0.0,81.0,180.0,1,Rural,0.0
|
||||
LP001594,Male,Yes,0,1,No,5708,5625.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP001603,Male,Yes,0,0,Yes,4344,736.0,87.0,360.0,1,Semiurban,0.0
|
||||
LP001606,Male,Yes,0,1,No,3497,1964.0,116.0,360.0,1,Rural,1.0
|
||||
LP001608,Male,Yes,2,1,No,2045,1619.0,101.0,360.0,1,Rural,1.0
|
||||
LP001610,Male,Yes,3+,1,No,5516,11300.0,495.0,360.0,0,Semiurban,0.0
|
||||
LP001616,Male,Yes,1,1,No,3750,0.0,116.0,360.0,1,Semiurban,1.0
|
||||
LP001630,Male,No,0,0,No,2333,1451.0,102.0,480.0,0,Urban,0.0
|
||||
LP001633,Male,Yes,1,1,No,6400,7250.0,180.0,360.0,0,Urban,0.0
|
||||
LP001634,Male,No,0,1,No,1916,5063.0,67.0,360.0,0,Rural,0.0
|
||||
LP001636,Male,Yes,0,1,No,4600,0.0,73.0,180.0,1,Semiurban,1.0
|
||||
LP001637,Male,Yes,1,1,No,33846,0.0,260.0,360.0,1,Semiurban,0.0
|
||||
LP001639,Female,Yes,0,1,No,3625,0.0,108.0,360.0,1,Semiurban,1.0
|
||||
LP001640,Male,Yes,0,1,Yes,39147,4750.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001641,Male,Yes,1,1,Yes,2178,0.0,66.0,300.0,0,Rural,0.0
|
||||
LP001643,Male,Yes,0,1,No,2383,2138.0,58.0,360.0,0,Rural,1.0
|
||||
LP001644,,Yes,0,1,Yes,674,5296.0,168.0,360.0,1,Rural,1.0
|
||||
LP001647,Male,Yes,0,1,No,9328,0.0,188.0,180.0,1,Rural,1.0
|
||||
LP001653,Male,No,0,0,No,4885,0.0,48.0,360.0,1,Rural,1.0
|
||||
LP001656,Male,No,0,1,No,12000,0.0,164.0,360.0,1,Semiurban,0.0
|
||||
LP001657,Male,Yes,0,0,No,6033,0.0,160.0,360.0,1,Urban,0.0
|
||||
LP001658,Male,No,0,1,No,3858,0.0,76.0,360.0,1,Semiurban,1.0
|
||||
LP001664,Male,No,0,1,No,4191,0.0,120.0,360.0,1,Rural,1.0
|
||||
LP001665,Male,Yes,1,1,No,3125,2583.0,170.0,360.0,1,Semiurban,0.0
|
||||
LP001666,Male,No,0,1,No,8333,3750.0,187.0,360.0,1,Rural,1.0
|
||||
LP001669,Female,No,0,0,No,1907,2365.0,120.0,,1,Urban,1.0
|
||||
LP001671,Female,Yes,0,1,No,3416,2816.0,113.0,360.0,0,Semiurban,1.0
|
||||
LP001673,Male,No,0,1,Yes,11000,0.0,83.0,360.0,1,Urban,0.0
|
||||
LP001674,Male,Yes,1,0,No,2600,2500.0,90.0,360.0,1,Semiurban,1.0
|
||||
LP001677,Male,No,2,1,No,4923,0.0,166.0,360.0,0,Semiurban,1.0
|
||||
LP001682,Male,Yes,3+,0,No,3992,0.0,0.0,180.0,1,Urban,0.0
|
||||
LP001688,Male,Yes,1,0,No,3500,1083.0,135.0,360.0,1,Urban,1.0
|
||||
LP001691,Male,Yes,2,0,No,3917,0.0,124.0,360.0,1,Semiurban,1.0
|
||||
LP001692,Female,No,0,0,No,4408,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001693,Female,No,0,1,No,3244,0.0,80.0,360.0,1,Urban,1.0
|
||||
LP001698,Male,No,0,0,No,3975,2531.0,55.0,360.0,1,Rural,1.0
|
||||
LP001699,Male,No,0,1,No,2479,0.0,59.0,360.0,1,Urban,1.0
|
||||
LP001702,Male,No,0,1,No,3418,0.0,127.0,360.0,1,Semiurban,0.0
|
||||
LP001708,Female,No,0,1,No,10000,0.0,214.0,360.0,1,Semiurban,0.0
|
||||
LP001711,Male,Yes,3+,1,No,3430,1250.0,128.0,360.0,0,Semiurban,0.0
|
||||
LP001713,Male,Yes,1,1,Yes,7787,0.0,240.0,360.0,1,Urban,1.0
|
||||
LP001715,Male,Yes,3+,0,Yes,5703,0.0,130.0,360.0,1,Rural,1.0
|
||||
LP001716,Male,Yes,0,1,No,3173,3021.0,137.0,360.0,1,Urban,1.0
|
||||
LP001720,Male,Yes,3+,0,No,3850,983.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001722,Male,Yes,0,1,No,150,1800.0,135.0,360.0,1,Rural,0.0
|
||||
LP001726,Male,Yes,0,1,No,3727,1775.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001732,Male,Yes,2,1,,5000,0.0,72.0,360.0,0,Semiurban,0.0
|
||||
LP001734,Female,Yes,2,1,No,4283,2383.0,127.0,360.0,0,Semiurban,1.0
|
||||
LP001736,Male,Yes,0,1,No,2221,0.0,60.0,360.0,0,Urban,0.0
|
||||
LP001743,Male,Yes,2,1,No,4009,1717.0,116.0,360.0,1,Semiurban,1.0
|
||||
LP001744,Male,No,0,1,No,2971,2791.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001749,Male,Yes,0,1,No,7578,1010.0,175.0,,1,Semiurban,1.0
|
||||
LP001750,Male,Yes,0,1,No,6250,0.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP001751,Male,Yes,0,1,No,3250,0.0,170.0,360.0,1,Rural,0.0
|
||||
LP001754,Male,Yes,,0,Yes,4735,0.0,138.0,360.0,1,Urban,0.0
|
||||
LP001758,Male,Yes,2,1,No,6250,1695.0,210.0,360.0,1,Semiurban,1.0
|
||||
LP001760,Male,,,1,No,4758,0.0,158.0,480.0,1,Semiurban,1.0
|
||||
LP001761,Male,No,0,1,Yes,6400,0.0,200.0,360.0,1,Rural,1.0
|
||||
LP001765,Male,Yes,1,1,No,2491,2054.0,104.0,360.0,1,Semiurban,1.0
|
||||
LP001768,Male,Yes,0,1,,3716,0.0,42.0,180.0,1,Rural,1.0
|
||||
LP001770,Male,No,0,0,No,3189,2598.0,120.0,,1,Rural,1.0
|
||||
LP001776,Female,No,0,1,No,8333,0.0,280.0,360.0,1,Semiurban,1.0
|
||||
LP001778,Male,Yes,1,1,No,3155,1779.0,140.0,360.0,1,Semiurban,1.0
|
||||
LP001784,Male,Yes,1,1,No,5500,1260.0,170.0,360.0,1,Rural,1.0
|
||||
LP001786,Male,Yes,0,1,,5746,0.0,255.0,360.0,0,Urban,0.0
|
||||
LP001788,Female,No,0,1,Yes,3463,0.0,122.0,360.0,0,Urban,1.0
|
||||
LP001790,Female,No,1,1,No,3812,0.0,112.0,360.0,1,Rural,1.0
|
||||
LP001792,Male,Yes,1,1,No,3315,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP001798,Male,Yes,2,1,No,5819,5000.0,120.0,360.0,1,Rural,1.0
|
||||
LP001800,Male,Yes,1,0,No,2510,1983.0,140.0,180.0,1,Urban,0.0
|
||||
LP001806,Male,No,0,1,No,2965,5701.0,155.0,60.0,1,Urban,1.0
|
||||
LP001807,Male,Yes,2,1,Yes,6250,1300.0,108.0,360.0,1,Rural,1.0
|
||||
LP001811,Male,Yes,0,0,No,3406,4417.0,123.0,360.0,1,Semiurban,1.0
|
||||
LP001813,Male,No,0,1,Yes,6050,4333.0,120.0,180.0,1,Urban,0.0
|
||||
LP001814,Male,Yes,2,1,No,9703,0.0,112.0,360.0,1,Urban,1.0
|
||||
LP001819,Male,Yes,1,0,No,6608,0.0,137.0,180.0,1,Urban,1.0
|
||||
LP001824,Male,Yes,1,1,No,2882,1843.0,123.0,480.0,1,Semiurban,1.0
|
||||
LP001825,Male,Yes,0,1,No,1809,1868.0,90.0,360.0,1,Urban,1.0
|
||||
LP001835,Male,Yes,0,0,No,1668,3890.0,201.0,360.0,0,Semiurban,0.0
|
||||
LP001836,Female,No,2,1,No,3427,0.0,138.0,360.0,1,Urban,0.0
|
||||
LP001841,Male,No,0,0,Yes,2583,2167.0,104.0,360.0,1,Rural,1.0
|
||||
LP001843,Male,Yes,1,0,No,2661,7101.0,279.0,180.0,1,Semiurban,1.0
|
||||
LP001844,Male,No,0,1,Yes,16250,0.0,192.0,360.0,0,Urban,0.0
|
||||
LP001846,Female,No,3+,1,No,3083,0.0,255.0,360.0,1,Rural,1.0
|
||||
LP001849,Male,No,0,0,No,6045,0.0,115.0,360.0,0,Rural,0.0
|
||||
LP001854,Male,Yes,3+,1,No,5250,0.0,94.0,360.0,1,Urban,0.0
|
||||
LP001859,Male,Yes,0,1,No,14683,2100.0,304.0,360.0,1,Rural,0.0
|
||||
LP001864,Male,Yes,3+,0,No,4931,0.0,128.0,360.0,0,Semiurban,0.0
|
||||
LP001865,Male,Yes,1,1,No,6083,4250.0,330.0,360.0,0,Urban,1.0
|
||||
LP001868,Male,No,0,1,No,2060,2209.0,134.0,360.0,1,Semiurban,1.0
|
||||
LP001870,Female,No,1,1,No,3481,0.0,155.0,36.0,1,Semiurban,0.0
|
||||
LP001871,Female,No,0,1,No,7200,0.0,120.0,360.0,1,Rural,1.0
|
||||
LP001872,Male,No,0,1,Yes,5166,0.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP001875,Male,No,0,1,No,4095,3447.0,151.0,360.0,1,Rural,1.0
|
||||
LP001877,Male,Yes,2,1,No,4708,1387.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP001882,Male,Yes,3+,1,No,4333,1811.0,160.0,360.0,0,Urban,1.0
|
||||
LP001883,Female,No,0,1,,3418,0.0,135.0,360.0,1,Rural,0.0
|
||||
LP001884,Female,No,1,1,No,2876,1560.0,90.0,360.0,1,Urban,1.0
|
||||
LP001888,Female,No,0,1,No,3237,0.0,30.0,360.0,1,Urban,1.0
|
||||
LP001891,Male,Yes,0,1,No,11146,0.0,136.0,360.0,1,Urban,1.0
|
||||
LP001892,Male,No,0,1,No,2833,1857.0,126.0,360.0,1,Rural,1.0
|
||||
LP001894,Male,Yes,0,1,No,2620,2223.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP001896,Male,Yes,2,1,No,3900,0.0,90.0,360.0,1,Semiurban,1.0
|
||||
LP001900,Male,Yes,1,1,No,2750,1842.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP001903,Male,Yes,0,1,No,3993,3274.0,207.0,360.0,1,Semiurban,1.0
|
||||
LP001904,Male,Yes,0,1,No,3103,1300.0,80.0,360.0,1,Urban,1.0
|
||||
LP001907,Male,Yes,0,1,No,14583,0.0,436.0,360.0,1,Semiurban,1.0
|
||||
LP001908,Female,Yes,0,0,No,4100,0.0,124.0,360.0,0,Rural,1.0
|
||||
LP001910,Male,No,1,0,Yes,4053,2426.0,158.0,360.0,0,Urban,0.0
|
||||
LP001914,Male,Yes,0,1,No,3927,800.0,112.0,360.0,1,Semiurban,1.0
|
||||
LP001915,Male,Yes,2,1,No,2301,985.7999878,78.0,180.0,1,Urban,1.0
|
||||
LP001917,Female,No,0,1,No,1811,1666.0,54.0,360.0,1,Urban,1.0
|
||||
LP001922,Male,Yes,0,1,No,20667,0.0,0.0,360.0,1,Rural,0.0
|
||||
LP001924,Male,No,0,1,No,3158,3053.0,89.0,360.0,1,Rural,1.0
|
||||
LP001925,Female,No,0,1,Yes,2600,1717.0,99.0,300.0,1,Semiurban,0.0
|
||||
LP001926,Male,Yes,0,1,No,3704,2000.0,120.0,360.0,1,Rural,1.0
|
||||
LP001931,Female,No,0,1,No,4124,0.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP001935,Male,No,0,1,No,9508,0.0,187.0,360.0,1,Rural,1.0
|
||||
LP001936,Male,Yes,0,1,No,3075,2416.0,139.0,360.0,1,Rural,1.0
|
||||
LP001938,Male,Yes,2,1,No,4400,0.0,127.0,360.0,0,Semiurban,0.0
|
||||
LP001940,Male,Yes,2,1,No,3153,1560.0,134.0,360.0,1,Urban,1.0
|
||||
LP001945,Female,No,,1,No,5417,0.0,143.0,480.0,0,Urban,0.0
|
||||
LP001947,Male,Yes,0,1,No,2383,3334.0,172.0,360.0,1,Semiurban,1.0
|
||||
LP001949,Male,Yes,3+,1,,4416,1250.0,110.0,360.0,1,Urban,1.0
|
||||
LP001953,Male,Yes,1,1,No,6875,0.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP001954,Female,Yes,1,1,No,4666,0.0,135.0,360.0,1,Urban,1.0
|
||||
LP001955,Female,No,0,1,No,5000,2541.0,151.0,480.0,1,Rural,0.0
|
||||
LP001963,Male,Yes,1,1,No,2014,2925.0,113.0,360.0,1,Urban,0.0
|
||||
LP001964,Male,Yes,0,0,No,1800,2934.0,93.0,360.0,0,Urban,0.0
|
||||
LP001972,Male,Yes,,0,No,2875,1750.0,105.0,360.0,1,Semiurban,1.0
|
||||
LP001974,Female,No,0,1,No,5000,0.0,132.0,360.0,1,Rural,1.0
|
||||
LP001977,Male,Yes,1,1,No,1625,1803.0,96.0,360.0,1,Urban,1.0
|
||||
LP001978,Male,No,0,1,No,4000,2500.0,140.0,360.0,1,Rural,1.0
|
||||
LP001990,Male,No,0,0,No,2000,0.0,0.0,360.0,1,Urban,0.0
|
||||
LP001993,Female,No,0,1,No,3762,1666.0,135.0,360.0,1,Rural,1.0
|
||||
LP001994,Female,No,0,1,No,2400,1863.0,104.0,360.0,0,Urban,0.0
|
||||
LP001996,Male,No,0,1,No,20233,0.0,480.0,360.0,1,Rural,0.0
|
||||
LP001998,Male,Yes,2,0,No,7667,0.0,185.0,360.0,0,Rural,1.0
|
||||
LP002002,Female,No,0,1,No,2917,0.0,84.0,360.0,1,Semiurban,1.0
|
||||
LP002004,Male,No,0,0,No,2927,2405.0,111.0,360.0,1,Semiurban,1.0
|
||||
LP002006,Female,No,0,1,No,2507,0.0,56.0,360.0,1,Rural,1.0
|
||||
LP002008,Male,Yes,2,1,Yes,5746,0.0,144.0,84.0,0,Rural,1.0
|
||||
LP002024,,Yes,0,1,No,2473,1843.0,159.0,360.0,1,Rural,0.0
|
||||
LP002031,Male,Yes,1,0,No,3399,1640.0,111.0,180.0,1,Urban,1.0
|
||||
LP002035,Male,Yes,2,1,No,3717,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP002036,Male,Yes,0,1,No,2058,2134.0,88.0,360.0,0,Urban,1.0
|
||||
LP002043,Female,No,1,1,No,3541,0.0,112.0,360.0,0,Semiurban,1.0
|
||||
LP002050,Male,Yes,1,1,Yes,10000,0.0,155.0,360.0,1,Rural,0.0
|
||||
LP002051,Male,Yes,0,1,No,2400,2167.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP002053,Male,Yes,3+,1,No,4342,189.0,124.0,360.0,1,Semiurban,1.0
|
||||
LP002054,Male,Yes,2,0,No,3601,1590.0,0.0,360.0,1,Rural,1.0
|
||||
LP002055,Female,No,0,1,No,3166,2985.0,132.0,360.0,0,Rural,1.0
|
||||
LP002065,Male,Yes,3+,1,No,15000,0.0,300.0,360.0,1,Rural,1.0
|
||||
LP002067,Male,Yes,1,1,Yes,8666,4983.0,376.0,360.0,0,Rural,0.0
|
||||
LP002068,Male,No,0,1,No,4917,0.0,130.0,360.0,0,Rural,1.0
|
||||
LP002082,Male,Yes,0,1,Yes,5818,2160.0,184.0,360.0,1,Semiurban,1.0
|
||||
LP002086,Female,Yes,0,1,No,4333,2451.0,110.0,360.0,1,Urban,0.0
|
||||
LP002087,Female,No,0,1,No,2500,0.0,67.0,360.0,1,Urban,1.0
|
||||
LP002097,Male,No,1,1,No,4384,1793.0,117.0,360.0,1,Urban,1.0
|
||||
LP002098,Male,No,0,1,No,2935,0.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP002100,Male,No,,1,No,2833,0.0,71.0,360.0,1,Urban,1.0
|
||||
LP002101,Male,Yes,0,1,,63337,0.0,490.0,180.0,1,Urban,1.0
|
||||
LP002103,,Yes,1,1,Yes,9833,1833.0,182.0,180.0,1,Urban,1.0
|
||||
LP002106,Male,Yes,,1,Yes,5503,4490.0,70.0,,1,Semiurban,1.0
|
||||
LP002110,Male,Yes,1,1,,5250,688.0,160.0,360.0,1,Rural,1.0
|
||||
LP002112,Male,Yes,2,1,Yes,2500,4600.0,176.0,360.0,1,Rural,1.0
|
||||
LP002113,Female,No,3+,0,No,1830,0.0,0.0,360.0,0,Urban,0.0
|
||||
LP002114,Female,No,0,1,No,4160,0.0,71.0,360.0,1,Semiurban,1.0
|
||||
LP002115,Male,Yes,3+,0,No,2647,1587.0,173.0,360.0,1,Rural,0.0
|
||||
LP002116,Female,No,0,1,No,2378,0.0,46.0,360.0,1,Rural,0.0
|
||||
LP002119,Male,Yes,1,0,No,4554,1229.0,158.0,360.0,1,Urban,1.0
|
||||
LP002126,Male,Yes,3+,0,No,3173,0.0,74.0,360.0,1,Semiurban,1.0
|
||||
LP002128,Male,Yes,2,1,,2583,2330.0,125.0,360.0,1,Rural,1.0
|
||||
LP002129,Male,Yes,0,1,No,2499,2458.0,160.0,360.0,1,Semiurban,1.0
|
||||
LP002130,Male,Yes,,0,No,3523,3230.0,152.0,360.0,0,Rural,0.0
|
||||
LP002131,Male,Yes,2,0,No,3083,2168.0,126.0,360.0,1,Urban,1.0
|
||||
LP002137,Male,Yes,0,1,No,6333,4583.0,259.0,360.0,0,Semiurban,1.0
|
||||
LP002138,Male,Yes,0,1,No,2625,6250.0,187.0,360.0,1,Rural,1.0
|
||||
LP002139,Male,Yes,0,1,No,9083,0.0,228.0,360.0,1,Semiurban,1.0
|
||||
LP002140,Male,No,0,1,No,8750,4167.0,308.0,360.0,1,Rural,0.0
|
||||
LP002141,Male,Yes,3+,1,No,2666,2083.0,95.0,360.0,1,Rural,1.0
|
||||
LP002142,Female,Yes,0,1,Yes,5500,0.0,105.0,360.0,0,Rural,0.0
|
||||
LP002143,Female,Yes,0,1,No,2423,505.0,130.0,360.0,1,Semiurban,1.0
|
||||
LP002144,Female,No,,1,No,3813,0.0,116.0,180.0,1,Urban,1.0
|
||||
LP002149,Male,Yes,2,1,No,8333,3167.0,165.0,360.0,1,Rural,1.0
|
||||
LP002151,Male,Yes,1,1,No,3875,0.0,67.0,360.0,1,Urban,0.0
|
||||
LP002158,Male,Yes,0,0,No,3000,1666.0,100.0,480.0,0,Urban,0.0
|
||||
LP002160,Male,Yes,3+,1,No,5167,3167.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP002161,Female,No,1,1,No,4723,0.0,81.0,360.0,1,Semiurban,0.0
|
||||
LP002170,Male,Yes,2,1,No,5000,3667.0,236.0,360.0,1,Semiurban,1.0
|
||||
LP002175,Male,Yes,0,1,No,4750,2333.0,130.0,360.0,1,Urban,1.0
|
||||
LP002178,Male,Yes,0,1,No,3013,3033.0,95.0,300.0,0,Urban,1.0
|
||||
LP002180,Male,No,0,1,Yes,6822,0.0,141.0,360.0,1,Rural,1.0
|
||||
LP002181,Male,No,0,0,No,6216,0.0,133.0,360.0,1,Rural,0.0
|
||||
LP002187,Male,No,0,1,No,2500,0.0,96.0,480.0,1,Semiurban,0.0
|
||||
LP002188,Male,No,0,1,No,5124,0.0,124.0,,0,Rural,0.0
|
||||
LP002190,Male,Yes,1,1,No,6325,0.0,175.0,360.0,1,Semiurban,1.0
|
||||
LP002191,Male,Yes,0,1,No,19730,5266.0,570.0,360.0,1,Rural,0.0
|
||||
LP002194,Female,No,0,1,Yes,15759,0.0,55.0,360.0,1,Semiurban,1.0
|
||||
LP002197,Male,Yes,2,1,No,5185,0.0,155.0,360.0,1,Semiurban,1.0
|
||||
LP002201,Male,Yes,2,1,Yes,9323,7873.0,380.0,300.0,1,Rural,1.0
|
||||
LP002205,Male,No,1,1,No,3062,1987.0,111.0,180.0,0,Urban,0.0
|
||||
LP002209,Female,No,0,1,,2764,1459.0,110.0,360.0,1,Urban,1.0
|
||||
LP002211,Male,Yes,0,1,No,4817,923.0,120.0,180.0,1,Urban,1.0
|
||||
LP002219,Male,Yes,3+,1,No,8750,4996.0,130.0,360.0,1,Rural,1.0
|
||||
LP002223,Male,Yes,0,1,No,4310,0.0,130.0,360.0,0,Semiurban,1.0
|
||||
LP002224,Male,No,0,1,No,3069,0.0,71.0,480.0,1,Urban,0.0
|
||||
LP002225,Male,Yes,2,1,No,5391,0.0,130.0,360.0,1,Urban,1.0
|
||||
LP002226,Male,Yes,0,1,,3333,2500.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP002229,Male,No,0,1,No,5941,4232.0,296.0,360.0,1,Semiurban,1.0
|
||||
LP002231,Female,No,0,1,No,6000,0.0,156.0,360.0,1,Urban,1.0
|
||||
LP002234,Male,No,0,1,Yes,7167,0.0,128.0,360.0,1,Urban,1.0
|
||||
LP002236,Male,Yes,2,1,No,4566,0.0,100.0,360.0,1,Urban,0.0
|
||||
LP002237,Male,No,1,1,,3667,0.0,113.0,180.0,1,Urban,1.0
|
||||
LP002239,Male,No,0,0,No,2346,1600.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002243,Male,Yes,0,0,No,3010,3136.0,0.0,360.0,0,Urban,0.0
|
||||
LP002244,Male,Yes,0,1,No,2333,2417.0,136.0,360.0,1,Urban,1.0
|
||||
LP002250,Male,Yes,0,1,No,5488,0.0,125.0,360.0,1,Rural,1.0
|
||||
LP002255,Male,No,3+,1,No,9167,0.0,185.0,360.0,1,Rural,1.0
|
||||
LP002262,Male,Yes,3+,1,No,9504,0.0,275.0,360.0,1,Rural,1.0
|
||||
LP002263,Male,Yes,0,1,No,2583,2115.0,120.0,360.0,0,Urban,1.0
|
||||
LP002265,Male,Yes,2,0,No,1993,1625.0,113.0,180.0,1,Semiurban,1.0
|
||||
LP002266,Male,Yes,2,1,No,3100,1400.0,113.0,360.0,1,Urban,1.0
|
||||
LP002272,Male,Yes,2,1,No,3276,484.0,135.0,360.0,0,Semiurban,1.0
|
||||
LP002277,Female,No,0,1,No,3180,0.0,71.0,360.0,0,Urban,0.0
|
||||
LP002281,Male,Yes,0,1,No,3033,1459.0,95.0,360.0,1,Urban,1.0
|
||||
LP002284,Male,No,0,0,No,3902,1666.0,109.0,360.0,1,Rural,1.0
|
||||
LP002287,Female,No,0,1,No,1500,1800.0,103.0,360.0,0,Semiurban,0.0
|
||||
LP002288,Male,Yes,2,0,No,2889,0.0,45.0,180.0,0,Urban,0.0
|
||||
LP002296,Male,No,0,0,No,2755,0.0,65.0,300.0,1,Rural,0.0
|
||||
LP002297,Male,No,0,1,No,2500,20000.0,103.0,360.0,1,Semiurban,1.0
|
||||
LP002300,Female,No,0,0,No,1963,0.0,53.0,360.0,1,Semiurban,1.0
|
||||
LP002301,Female,No,0,1,Yes,7441,0.0,194.0,360.0,1,Rural,0.0
|
||||
LP002305,Female,No,0,1,No,4547,0.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP002308,Male,Yes,0,0,No,2167,2400.0,115.0,360.0,1,Urban,1.0
|
||||
LP002314,Female,No,0,0,No,2213,0.0,66.0,360.0,1,Rural,1.0
|
||||
LP002315,Male,Yes,1,1,No,8300,0.0,152.0,300.0,0,Semiurban,0.0
|
||||
LP002317,Male,Yes,3+,1,No,81000,0.0,360.0,360.0,0,Rural,0.0
|
||||
LP002318,Female,No,1,0,Yes,3867,0.0,62.0,360.0,1,Semiurban,0.0
|
||||
LP002319,Male,Yes,0,1,,6256,0.0,160.0,360.0,0,Urban,1.0
|
||||
LP002328,Male,Yes,0,0,No,6096,0.0,218.0,360.0,0,Rural,0.0
|
||||
LP002332,Male,Yes,0,0,No,2253,2033.0,110.0,360.0,1,Rural,1.0
|
||||
LP002335,Female,Yes,0,0,No,2149,3237.0,178.0,360.0,0,Semiurban,0.0
|
||||
LP002337,Female,No,0,1,No,2995,0.0,60.0,360.0,1,Urban,1.0
|
||||
LP002341,Female,No,1,1,No,2600,0.0,160.0,360.0,1,Urban,0.0
|
||||
LP002342,Male,Yes,2,1,Yes,1600,20000.0,239.0,360.0,1,Urban,0.0
|
||||
LP002345,Male,Yes,0,1,No,1025,2773.0,112.0,360.0,1,Rural,1.0
|
||||
LP002347,Male,Yes,0,1,No,3246,1417.0,138.0,360.0,1,Semiurban,1.0
|
||||
LP002348,Male,Yes,0,1,No,5829,0.0,138.0,360.0,1,Rural,1.0
|
||||
LP002357,Female,No,0,0,No,2720,0.0,80.0,,0,Urban,0.0
|
||||
LP002361,Male,Yes,0,1,No,1820,1719.0,100.0,360.0,1,Urban,1.0
|
||||
LP002362,Male,Yes,1,1,No,7250,1667.0,110.0,,0,Urban,0.0
|
||||
LP002364,Male,Yes,0,1,No,14880,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP002366,Male,Yes,0,1,No,2666,4300.0,121.0,360.0,1,Rural,1.0
|
||||
LP002367,Female,No,1,0,No,4606,0.0,81.0,360.0,1,Rural,0.0
|
||||
LP002368,Male,Yes,2,1,No,5935,0.0,133.0,360.0,1,Semiurban,1.0
|
||||
LP002369,Male,Yes,0,1,No,2920,16.12000084,87.0,360.0,1,Rural,1.0
|
||||
LP002370,Male,No,0,0,No,2717,0.0,60.0,180.0,1,Urban,1.0
|
||||
LP002377,Female,No,1,1,Yes,8624,0.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP002379,Male,No,0,1,No,6500,0.0,105.0,360.0,0,Rural,0.0
|
||||
LP002386,Male,No,0,1,,12876,0.0,405.0,360.0,1,Semiurban,1.0
|
||||
LP002387,Male,Yes,0,1,No,2425,2340.0,143.0,360.0,1,Semiurban,1.0
|
||||
LP002390,Male,No,0,1,No,3750,0.0,100.0,360.0,1,Urban,1.0
|
||||
LP002393,Female,,,1,No,10047,0.0,0.0,240.0,1,Semiurban,1.0
|
||||
LP002398,Male,No,0,1,No,1926,1851.0,50.0,360.0,1,Semiurban,1.0
|
||||
LP002401,Male,Yes,0,1,No,2213,1125.0,0.0,360.0,1,Urban,1.0
|
||||
LP002403,Male,No,0,1,Yes,10416,0.0,187.0,360.0,0,Urban,0.0
|
||||
LP002407,Female,Yes,0,0,Yes,7142,0.0,138.0,360.0,1,Rural,1.0
|
||||
LP002408,Male,No,0,1,No,3660,5064.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP002409,Male,Yes,0,1,No,7901,1833.0,180.0,360.0,1,Rural,1.0
|
||||
LP002418,Male,No,3+,0,No,4707,1993.0,148.0,360.0,1,Semiurban,1.0
|
||||
LP002422,Male,No,1,1,No,37719,0.0,152.0,360.0,1,Semiurban,1.0
|
||||
LP002424,Male,Yes,0,1,No,7333,8333.0,175.0,300.0,0,Rural,1.0
|
||||
LP002429,Male,Yes,1,1,Yes,3466,1210.0,130.0,360.0,1,Rural,1.0
|
||||
LP002434,Male,Yes,2,0,No,4652,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002435,Male,Yes,0,1,,3539,1376.0,55.0,360.0,1,Rural,0.0
|
||||
LP002443,Male,Yes,2,1,No,3340,1710.0,150.0,360.0,0,Rural,0.0
|
||||
LP002444,Male,No,1,0,Yes,2769,1542.0,190.0,360.0,0,Semiurban,0.0
|
||||
LP002446,Male,Yes,2,0,No,2309,1255.0,125.0,360.0,0,Rural,0.0
|
||||
LP002447,Male,Yes,2,0,No,1958,1456.0,60.0,300.0,0,Urban,1.0
|
||||
LP002448,Male,Yes,0,1,No,3948,1733.0,149.0,360.0,0,Rural,0.0
|
||||
LP002449,Male,Yes,0,1,No,2483,2466.0,90.0,180.0,0,Rural,1.0
|
||||
LP002453,Male,No,0,1,Yes,7085,0.0,84.0,360.0,1,Semiurban,1.0
|
||||
LP002455,Male,Yes,2,1,No,3859,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP002459,Male,Yes,0,1,No,4301,0.0,118.0,360.0,1,Urban,1.0
|
||||
LP002467,Male,Yes,0,1,No,3708,2569.0,173.0,360.0,1,Urban,0.0
|
||||
LP002472,Male,No,2,1,No,4354,0.0,136.0,360.0,1,Rural,1.0
|
||||
LP002473,Male,Yes,0,1,No,8334,0.0,160.0,360.0,1,Semiurban,0.0
|
||||
LP002478,,Yes,0,1,Yes,2083,4083.0,160.0,360.0,0,Semiurban,1.0
|
||||
LP002484,Male,Yes,3+,1,No,7740,0.0,128.0,180.0,1,Urban,1.0
|
||||
LP002487,Male,Yes,0,1,No,3015,2188.0,153.0,360.0,1,Rural,1.0
|
||||
LP002489,Female,No,1,0,,5191,0.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002493,Male,No,0,1,No,4166,0.0,98.0,360.0,0,Semiurban,0.0
|
||||
LP002494,Male,No,0,1,No,6000,0.0,140.0,360.0,1,Rural,1.0
|
||||
LP002500,Male,Yes,3+,0,No,2947,1664.0,70.0,180.0,0,Urban,0.0
|
||||
LP002501,,Yes,0,1,No,16692,0.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP002502,Female,Yes,2,0,,210,2917.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP002505,Male,Yes,0,1,No,4333,2451.0,110.0,360.0,1,Urban,0.0
|
||||
LP002515,Male,Yes,1,1,Yes,3450,2079.0,162.0,360.0,1,Semiurban,1.0
|
||||
LP002517,Male,Yes,1,0,No,2653,1500.0,113.0,180.0,0,Rural,0.0
|
||||
LP002519,Male,Yes,3+,1,No,4691,0.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP002522,Female,No,0,1,Yes,2500,0.0,93.0,360.0,0,Urban,1.0
|
||||
LP002524,Male,No,2,1,No,5532,4648.0,162.0,360.0,1,Rural,1.0
|
||||
LP002527,Male,Yes,2,1,Yes,16525,1014.0,150.0,360.0,1,Rural,1.0
|
||||
LP002529,Male,Yes,2,1,No,6700,1750.0,230.0,300.0,1,Semiurban,1.0
|
||||
LP002530,,Yes,2,1,No,2873,1872.0,132.0,360.0,0,Semiurban,0.0
|
||||
LP002531,Male,Yes,1,1,Yes,16667,2250.0,86.0,360.0,1,Semiurban,1.0
|
||||
LP002533,Male,Yes,2,1,No,2947,1603.0,0.0,360.0,1,Urban,0.0
|
||||
LP002534,Female,No,0,0,No,4350,0.0,154.0,360.0,1,Rural,1.0
|
||||
LP002536,Male,Yes,3+,0,No,3095,0.0,113.0,360.0,1,Rural,1.0
|
||||
LP002537,Male,Yes,0,1,No,2083,3150.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP002541,Male,Yes,0,1,No,10833,0.0,234.0,360.0,1,Semiurban,1.0
|
||||
LP002543,Male,Yes,2,1,No,8333,0.0,246.0,360.0,1,Semiurban,1.0
|
||||
LP002544,Male,Yes,1,0,No,1958,2436.0,131.0,360.0,1,Rural,1.0
|
||||
LP002545,Male,No,2,1,No,3547,0.0,80.0,360.0,0,Rural,0.0
|
||||
LP002547,Male,Yes,1,1,No,18333,0.0,500.0,360.0,1,Urban,0.0
|
||||
LP002555,Male,Yes,2,1,Yes,4583,2083.0,160.0,360.0,1,Semiurban,1.0
|
||||
LP002556,Male,No,0,1,No,2435,0.0,75.0,360.0,1,Urban,0.0
|
||||
LP002560,Male,No,0,0,No,2699,2785.0,96.0,360.0,0,Semiurban,1.0
|
||||
LP002562,Male,Yes,1,0,No,5333,1131.0,186.0,360.0,0,Urban,1.0
|
||||
LP002571,Male,No,0,0,No,3691,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002582,Female,No,0,0,Yes,17263,0.0,225.0,360.0,1,Semiurban,1.0
|
||||
LP002585,Male,Yes,0,1,No,3597,2157.0,119.0,360.0,0,Rural,0.0
|
||||
LP002586,Female,Yes,1,1,No,3326,913.0,105.0,84.0,1,Semiurban,1.0
|
||||
LP002587,Male,Yes,0,0,No,2600,1700.0,107.0,360.0,1,Rural,1.0
|
||||
LP002588,Male,Yes,0,1,No,4625,2857.0,111.0,12.0,0,Urban,1.0
|
||||
LP002600,Male,Yes,1,1,Yes,2895,0.0,95.0,360.0,1,Semiurban,1.0
|
||||
LP002602,Male,No,0,1,No,6283,4416.0,209.0,360.0,0,Rural,0.0
|
||||
LP002603,Female,No,0,1,No,645,3683.0,113.0,480.0,1,Rural,1.0
|
||||
LP002606,Female,No,0,1,No,3159,0.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP002615,Male,Yes,2,1,No,4865,5624.0,208.0,360.0,1,Semiurban,1.0
|
||||
LP002618,Male,Yes,1,0,No,4050,5302.0,138.0,360.0,0,Rural,0.0
|
||||
LP002619,Male,Yes,0,0,No,3814,1483.0,124.0,300.0,1,Semiurban,1.0
|
||||
LP002622,Male,Yes,2,1,No,3510,4416.0,243.0,360.0,1,Rural,1.0
|
||||
LP002624,Male,Yes,0,1,No,20833,6667.0,480.0,360.0,0,Urban,1.0
|
||||
LP002625,,No,0,1,No,3583,0.0,96.0,360.0,1,Urban,0.0
|
||||
LP002626,Male,Yes,0,1,Yes,2479,3013.0,188.0,360.0,1,Urban,1.0
|
||||
LP002634,Female,No,1,1,No,13262,0.0,40.0,360.0,1,Urban,1.0
|
||||
LP002637,Male,No,0,0,No,3598,1287.0,100.0,360.0,1,Rural,0.0
|
||||
LP002640,Male,Yes,1,1,No,6065,2004.0,250.0,360.0,1,Semiurban,1.0
|
||||
LP002643,Male,Yes,2,1,No,3283,2035.0,148.0,360.0,1,Urban,1.0
|
||||
LP002648,Male,Yes,0,1,No,2130,6666.0,70.0,180.0,1,Semiurban,0.0
|
||||
LP002652,Male,No,0,1,No,5815,3666.0,311.0,360.0,1,Rural,0.0
|
||||
LP002659,Male,Yes,3+,1,No,3466,3428.0,150.0,360.0,1,Rural,1.0
|
||||
LP002670,Female,Yes,2,1,No,2031,1632.0,113.0,480.0,1,Semiurban,1.0
|
||||
LP002682,Male,Yes,,0,No,3074,1800.0,123.0,360.0,0,Semiurban,0.0
|
||||
LP002683,Male,No,0,1,No,4683,1915.0,185.0,360.0,1,Semiurban,0.0
|
||||
LP002684,Female,No,0,0,No,3400,0.0,95.0,360.0,1,Rural,0.0
|
||||
LP002689,Male,Yes,2,0,No,2192,1742.0,45.0,360.0,1,Semiurban,1.0
|
||||
LP002690,Male,No,0,1,No,2500,0.0,55.0,360.0,1,Semiurban,1.0
|
||||
LP002692,Male,Yes,3+,1,Yes,5677,1424.0,100.0,360.0,1,Rural,1.0
|
||||
LP002693,Male,Yes,2,1,Yes,7948,7166.0,480.0,360.0,1,Rural,1.0
|
||||
LP002697,Male,No,0,1,No,4680,2087.0,0.0,360.0,1,Semiurban,0.0
|
||||
LP002699,Male,Yes,2,1,Yes,17500,0.0,400.0,360.0,1,Rural,1.0
|
||||
LP002705,Male,Yes,0,1,No,3775,0.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP002706,Male,Yes,1,0,No,5285,1430.0,161.0,360.0,0,Semiurban,1.0
|
||||
LP002714,Male,No,1,0,No,2679,1302.0,94.0,360.0,1,Semiurban,1.0
|
||||
LP002716,Male,No,0,0,No,6783,0.0,130.0,360.0,1,Semiurban,1.0
|
||||
LP002717,Male,Yes,0,1,No,1025,5500.0,216.0,360.0,0,Rural,1.0
|
||||
LP002720,Male,Yes,3+,1,No,4281,0.0,100.0,360.0,1,Urban,1.0
|
||||
LP002723,Male,No,2,1,No,3588,0.0,110.0,360.0,0,Rural,0.0
|
||||
LP002729,Male,No,1,1,No,11250,0.0,196.0,360.0,0,Semiurban,0.0
|
||||
LP002731,Female,No,0,0,Yes,18165,0.0,125.0,360.0,1,Urban,1.0
|
||||
LP002732,Male,No,0,0,,2550,2042.0,126.0,360.0,1,Rural,1.0
|
||||
LP002734,Male,Yes,0,1,No,6133,3906.0,324.0,360.0,1,Urban,1.0
|
||||
LP002738,Male,No,2,1,No,3617,0.0,107.0,360.0,1,Semiurban,1.0
|
||||
LP002739,Male,Yes,0,0,No,2917,536.0,66.0,360.0,1,Rural,0.0
|
||||
LP002740,Male,Yes,3+,1,No,6417,0.0,157.0,180.0,1,Rural,1.0
|
||||
LP002741,Female,Yes,1,1,No,4608,2845.0,140.0,180.0,1,Semiurban,1.0
|
||||
LP002743,Female,No,0,1,No,2138,0.0,99.0,360.0,0,Semiurban,0.0
|
||||
LP002753,Female,No,1,1,,3652,0.0,95.0,360.0,1,Semiurban,1.0
|
||||
LP002755,Male,Yes,1,0,No,2239,2524.0,128.0,360.0,1,Urban,1.0
|
||||
LP002757,Female,Yes,0,0,No,3017,663.0,102.0,360.0,0,Semiurban,1.0
|
||||
LP002767,Male,Yes,0,1,No,2768,1950.0,155.0,360.0,1,Rural,1.0
|
||||
LP002768,Male,No,0,0,No,3358,0.0,80.0,36.0,1,Semiurban,0.0
|
||||
LP002772,Male,No,0,1,No,2526,1783.0,145.0,360.0,1,Rural,1.0
|
||||
LP002776,Female,No,0,1,No,5000,0.0,103.0,360.0,0,Semiurban,0.0
|
||||
LP002777,Male,Yes,0,1,No,2785,2016.0,110.0,360.0,1,Rural,1.0
|
||||
LP002778,Male,Yes,2,1,Yes,6633,0.0,0.0,360.0,0,Rural,0.0
|
||||
LP002784,Male,Yes,1,0,No,2492,2375.0,0.0,360.0,1,Rural,1.0
|
||||
LP002785,Male,Yes,1,1,No,3333,3250.0,158.0,360.0,1,Urban,1.0
|
||||
LP002788,Male,Yes,0,0,No,2454,2333.0,181.0,360.0,0,Urban,0.0
|
||||
LP002789,Male,Yes,0,1,No,3593,4266.0,132.0,180.0,0,Rural,0.0
|
||||
LP002792,Male,Yes,1,1,No,5468,1032.0,26.0,360.0,1,Semiurban,1.0
|
||||
LP002794,Female,No,0,1,No,2667,1625.0,84.0,360.0,0,Urban,1.0
|
||||
LP002795,Male,Yes,3+,1,Yes,10139,0.0,260.0,360.0,1,Semiurban,1.0
|
||||
LP002798,Male,Yes,0,1,No,3887,2669.0,162.0,360.0,1,Semiurban,1.0
|
||||
LP002804,Female,Yes,0,1,No,4180,2306.0,182.0,360.0,1,Semiurban,1.0
|
||||
LP002807,Male,Yes,2,0,No,3675,242.0,108.0,360.0,1,Semiurban,1.0
|
||||
LP002813,Female,Yes,1,1,Yes,19484,0.0,600.0,360.0,1,Semiurban,1.0
|
||||
LP002820,Male,Yes,0,1,No,5923,2054.0,211.0,360.0,1,Rural,1.0
|
||||
LP002821,Male,No,0,0,Yes,5800,0.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002832,Male,Yes,2,1,No,8799,0.0,258.0,360.0,0,Urban,0.0
|
||||
LP002833,Male,Yes,0,0,No,4467,0.0,120.0,360.0,0,Rural,1.0
|
||||
LP002836,Male,No,0,1,No,3333,0.0,70.0,360.0,1,Urban,1.0
|
||||
LP002837,Male,Yes,3+,1,No,3400,2500.0,123.0,360.0,0,Rural,0.0
|
||||
LP002840,Female,No,0,1,No,2378,0.0,9.0,360.0,1,Urban,0.0
|
||||
LP002841,Male,Yes,0,1,No,3166,2064.0,104.0,360.0,0,Urban,0.0
|
||||
LP002842,Male,Yes,1,1,No,3417,1750.0,186.0,360.0,1,Urban,1.0
|
||||
LP002847,Male,Yes,,1,No,5116,1451.0,165.0,360.0,0,Urban,0.0
|
||||
LP002855,Male,Yes,2,1,No,16666,0.0,275.0,360.0,1,Urban,1.0
|
||||
LP002862,Male,Yes,2,0,No,6125,1625.0,187.0,480.0,1,Semiurban,0.0
|
||||
LP002863,Male,Yes,3+,1,No,6406,0.0,150.0,360.0,1,Semiurban,0.0
|
||||
LP002868,Male,Yes,2,1,No,3159,461.0,108.0,84.0,1,Urban,1.0
|
||||
LP002872,,Yes,0,1,No,3087,2210.0,136.0,360.0,0,Semiurban,0.0
|
||||
LP002874,Male,No,0,1,No,3229,2739.0,110.0,360.0,1,Urban,1.0
|
||||
LP002877,Male,Yes,1,1,No,1782,2232.0,107.0,360.0,1,Rural,1.0
|
||||
LP002888,Male,No,0,1,,3182,2917.0,161.0,360.0,1,Urban,1.0
|
||||
LP002892,Male,Yes,2,1,No,6540,0.0,205.0,360.0,1,Semiurban,1.0
|
||||
LP002893,Male,No,0,1,No,1836,33837.0,90.0,360.0,1,Urban,0.0
|
||||
LP002894,Female,Yes,0,1,No,3166,0.0,36.0,360.0,1,Semiurban,1.0
|
||||
LP002898,Male,Yes,1,1,No,1880,0.0,61.0,360.0,0,Rural,0.0
|
||||
LP002911,Male,Yes,1,1,No,2787,1917.0,146.0,360.0,0,Rural,0.0
|
||||
LP002912,Male,Yes,1,1,No,4283,3000.0,172.0,84.0,1,Rural,0.0
|
||||
LP002916,Male,Yes,0,1,No,2297,1522.0,104.0,360.0,1,Urban,1.0
|
||||
LP002917,Female,No,0,0,No,2165,0.0,70.0,360.0,1,Semiurban,1.0
|
||||
LP002925,,No,0,1,No,4750,0.0,94.0,360.0,1,Semiurban,1.0
|
||||
LP002926,Male,Yes,2,1,Yes,2726,0.0,106.0,360.0,0,Semiurban,0.0
|
||||
LP002928,Male,Yes,0,1,No,3000,3416.0,56.0,180.0,1,Semiurban,1.0
|
||||
LP002931,Male,Yes,2,1,Yes,6000,0.0,205.0,240.0,1,Semiurban,0.0
|
||||
LP002933,,No,3+,1,Yes,9357,0.0,292.0,360.0,1,Semiurban,1.0
|
||||
LP002936,Male,Yes,0,1,No,3859,3300.0,142.0,180.0,1,Rural,1.0
|
||||
LP002938,Male,Yes,0,1,Yes,16120,0.0,260.0,360.0,1,Urban,1.0
|
||||
LP002940,Male,No,0,0,No,3833,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002941,Male,Yes,2,0,Yes,6383,1000.0,187.0,360.0,1,Rural,0.0
|
||||
LP002943,Male,No,,1,No,2987,0.0,88.0,360.0,0,Semiurban,0.0
|
||||
LP002945,Male,Yes,0,1,Yes,9963,0.0,180.0,360.0,1,Rural,1.0
|
||||
LP002948,Male,Yes,2,1,No,5780,0.0,192.0,360.0,1,Urban,1.0
|
||||
LP002949,Female,No,3+,1,,416,41667.0,350.0,180.0,0,Urban,0.0
|
||||
LP002950,Male,Yes,0,0,,2894,2792.0,155.0,360.0,1,Rural,1.0
|
||||
LP002953,Male,Yes,3+,1,No,5703,0.0,128.0,360.0,1,Urban,1.0
|
||||
LP002958,Male,No,0,1,No,3676,4301.0,172.0,360.0,1,Rural,1.0
|
||||
LP002959,Female,Yes,1,1,No,12000,0.0,496.0,360.0,1,Semiurban,1.0
|
||||
LP002960,Male,Yes,0,0,No,2400,3800.0,0.0,180.0,1,Urban,0.0
|
||||
LP002961,Male,Yes,1,1,No,3400,2500.0,173.0,360.0,1,Semiurban,1.0
|
||||
LP002964,Male,Yes,2,0,No,3987,1411.0,157.0,360.0,1,Rural,1.0
|
||||
LP002974,Male,Yes,0,1,No,3232,1950.0,108.0,360.0,1,Rural,1.0
|
||||
LP002978,Female,No,0,1,No,2900,0.0,71.0,360.0,1,Rural,1.0
|
||||
LP002979,Male,Yes,3+,1,No,4106,0.0,40.0,180.0,1,Rural,1.0
|
||||
LP002983,Male,Yes,1,1,No,8072,240.0,253.0,360.0,1,Urban,1.0
|
||||
LP002984,Male,Yes,2,1,No,7583,0.0,187.0,360.0,1,Urban,1.0
|
||||
LP002990,Female,No,0,1,Yes,4583,0.0,133.0,360.0,0,Semiurban,0.0
|
|
BIN
abanin_daniil_lab_3/result.png
Normal file
After Width: | Height: | Size: 27 KiB |
26
abanin_daniil_lab_4/README.md
Normal file
@ -0,0 +1,26 @@
|
||||
## Лабораторная работа №4
|
||||
|
||||
### Ранжирование признаков
|
||||
|
||||
## ПИбд-41 Абанин Даниил
|
||||
|
||||
### Как запустить лабораторную работу:
|
||||
|
||||
* установить python, pandas, matplotlib, scipy
|
||||
* запустить проект (стартовая точка lab4)
|
||||
|
||||
### Какие технологии использовались:
|
||||
|
||||
* Язык программирования `Python`, библиотеки pandas, matplotlib, scipy
|
||||
* Среда разработки `PyCharm`
|
||||
|
||||
### Что делает лабораторная работа:
|
||||
Программа читает данные из csv файла. На основе имеющейся информации кластеризует заявителей на различные группы по риску выдачи кредита.
|
||||
При кластеризации используются такие признаки, как: ApplicantIncome - доход заявителя, LoanAmount - сумма займа в тысячах, Credit_History -
|
||||
статус кредитной истории заявителя (соответствие рекомендациям), Self_Employed - самозанятость (Да/Нет), Education - наличие образования
|
||||
|
||||
### Тест
|
||||
|
||||
![Result](result.png)
|
||||
|
||||
По результатам кластеризации дендрограммой видно, что было проведено эффективное разбиение данных. На диаграмме показаны различные группы заявителей по рискам выдачи кредита
|
23
abanin_daniil_lab_4/lab4.py
Normal file
@ -0,0 +1,23 @@
|
||||
from scipy.cluster import hierarchy
|
||||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def start():
|
||||
data = pd.read_csv('loan.csv')
|
||||
x = data[['ApplicantIncome', 'LoanAmount', 'Credit_History', 'Self_Employed', 'Education']]
|
||||
plt.figure(1, figsize=(16, 9))
|
||||
plt.title('Дендрограмма кластеризации заявителей')
|
||||
|
||||
hierarchy.dendrogram(hierarchy.linkage(x, method='single'),
|
||||
truncate_mode='lastp',
|
||||
p=20,
|
||||
orientation='top',
|
||||
leaf_rotation=90,
|
||||
leaf_font_size=8,
|
||||
show_contracted=True)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
start()
|
615
abanin_daniil_lab_4/loan.csv
Normal file
@ -0,0 +1,615 @@
|
||||
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
|
||||
LP001002,Male,No,0,1,0.0,5849,0.0,360.0,1.0,0,Y,0.0
|
||||
LP001003,Male,Yes,1,1,0.0,4583,1508.0,128.0,360.0,1,Rural,0.0
|
||||
LP001005,Male,Yes,0,1,1.0,3000,0.0,66.0,360.0,1,Urban,1.0
|
||||
LP001006,Male,Yes,0,0,0.0,2583,2358.0,120.0,360.0,1,Urban,1.0
|
||||
LP001008,Male,No,0,1,0.0,6000,0.0,141.0,360.0,1,Urban,1.0
|
||||
LP001011,Male,Yes,2,1,1.0,5417,4196.0,267.0,360.0,1,Urban,1.0
|
||||
LP001013,Male,Yes,0,0,0.0,2333,1516.0,95.0,360.0,1,Urban,1.0
|
||||
LP001014,Male,Yes,3+,1,0.0,3036,2504.0,158.0,360.0,0,Semiurban,0.0
|
||||
LP001018,Male,Yes,2,1,0.0,4006,1526.0,168.0,360.0,1,Urban,1.0
|
||||
LP001020,Male,Yes,1,1,0.0,12841,10968.0,349.0,360.0,1,Semiurban,0.0
|
||||
LP001024,Male,Yes,2,1,0.0,3200,700.0,70.0,360.0,1,Urban,1.0
|
||||
LP001027,Male,Yes,2,1,0.0,2500,1840.0,109.0,360.0,1,Urban,1.0
|
||||
LP001028,Male,Yes,2,1,0.0,3073,8106.0,200.0,360.0,1,Urban,1.0
|
||||
LP001029,Male,No,0,1,0.0,1853,2840.0,114.0,360.0,1,Rural,0.0
|
||||
LP001030,Male,Yes,2,1,0.0,1299,1086.0,17.0,120.0,1,Urban,1.0
|
||||
LP001032,Male,No,0,1,0.0,4950,0.0,125.0,360.0,1,Urban,1.0
|
||||
LP001034,Male,No,1,0,0.0,3596,0.0,100.0,240.0,0,Urban,1.0
|
||||
LP001036,Female,No,0,1,0.0,3510,0.0,76.0,360.0,0,Urban,0.0
|
||||
LP001038,Male,Yes,0,0,0.0,4887,0.0,133.0,360.0,1,Rural,0.0
|
||||
LP001041,Male,Yes,0,1,0.0,2600,3500.0,115.0,,1,Urban,1.0
|
||||
LP001043,Male,Yes,0,0,0.0,7660,0.0,104.0,360.0,0,Urban,0.0
|
||||
LP001046,Male,Yes,1,1,0.0,5955,5625.0,315.0,360.0,1,Urban,1.0
|
||||
LP001047,Male,Yes,0,0,0.0,2600,1911.0,116.0,360.0,0,Semiurban,0.0
|
||||
LP001050,,Yes,2,0,0.0,3365,1917.0,112.0,360.0,0,Rural,0.0
|
||||
LP001052,Male,Yes,1,1,0.0,3717,2925.0,151.0,360.0,0,Semiurban,0.0
|
||||
LP001066,Male,Yes,0,1,1.0,9560,0.0,191.0,360.0,1,Semiurban,1.0
|
||||
LP001068,Male,Yes,0,1,0.0,2799,2253.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001073,Male,Yes,2,0,0.0,4226,1040.0,110.0,360.0,1,Urban,1.0
|
||||
LP001086,Male,No,0,0,0.0,1442,0.0,35.0,360.0,1,Urban,0.0
|
||||
LP001087,Female,No,2,1,0.0,3750,2083.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001091,Male,Yes,1,1,0.0,4166,3369.0,201.0,360.0,0,Urban,0.0
|
||||
LP001095,Male,No,0,1,0.0,3167,0.0,74.0,360.0,1,Urban,0.0
|
||||
LP001097,Male,No,1,1,1.0,4692,0.0,106.0,360.0,1,Rural,0.0
|
||||
LP001098,Male,Yes,0,1,0.0,3500,1667.0,114.0,360.0,1,Semiurban,1.0
|
||||
LP001100,Male,No,3+,1,0.0,12500,3000.0,320.0,360.0,1,Rural,0.0
|
||||
LP001106,Male,Yes,0,1,0.0,2275,2067.0,0.0,360.0,1,Urban,1.0
|
||||
LP001109,Male,Yes,0,1,0.0,1828,1330.0,100.0,,0,Urban,0.0
|
||||
LP001112,Female,Yes,0,1,0.0,3667,1459.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001114,Male,No,0,1,0.0,4166,7210.0,184.0,360.0,1,Urban,1.0
|
||||
LP001116,Male,No,0,0,0.0,3748,1668.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP001119,Male,No,0,1,0.0,3600,0.0,80.0,360.0,1,Urban,0.0
|
||||
LP001120,Male,No,0,1,0.0,1800,1213.0,47.0,360.0,1,Urban,1.0
|
||||
LP001123,Male,Yes,0,1,0.0,2400,0.0,75.0,360.0,0,Urban,1.0
|
||||
LP001131,Male,Yes,0,1,0.0,3941,2336.0,134.0,360.0,1,Semiurban,1.0
|
||||
LP001136,Male,Yes,0,0,1.0,4695,0.0,96.0,,1,Urban,1.0
|
||||
LP001137,Female,No,0,1,0.0,3410,0.0,88.0,,1,Urban,1.0
|
||||
LP001138,Male,Yes,1,1,0.0,5649,0.0,44.0,360.0,1,Urban,1.0
|
||||
LP001144,Male,Yes,0,1,0.0,5821,0.0,144.0,360.0,1,Urban,1.0
|
||||
LP001146,Female,Yes,0,1,0.0,2645,3440.0,120.0,360.0,0,Urban,0.0
|
||||
LP001151,Female,No,0,1,0.0,4000,2275.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001155,Female,Yes,0,0,0.0,1928,1644.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001157,Female,No,0,1,0.0,3086,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001164,Female,No,0,1,0.0,4230,0.0,112.0,360.0,1,Semiurban,0.0
|
||||
LP001179,Male,Yes,2,1,0.0,4616,0.0,134.0,360.0,1,Urban,0.0
|
||||
LP001186,Female,Yes,1,1,1.0,11500,0.0,286.0,360.0,0,Urban,0.0
|
||||
LP001194,Male,Yes,2,1,0.0,2708,1167.0,97.0,360.0,1,Semiurban,1.0
|
||||
LP001195,Male,Yes,0,1,0.0,2132,1591.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP001197,Male,Yes,0,1,0.0,3366,2200.0,135.0,360.0,1,Rural,0.0
|
||||
LP001198,Male,Yes,1,1,0.0,8080,2250.0,180.0,360.0,1,Urban,1.0
|
||||
LP001199,Male,Yes,2,0,0.0,3357,2859.0,144.0,360.0,1,Urban,1.0
|
||||
LP001205,Male,Yes,0,1,0.0,2500,3796.0,120.0,360.0,1,Urban,1.0
|
||||
LP001206,Male,Yes,3+,1,0.0,3029,0.0,99.0,360.0,1,Urban,1.0
|
||||
LP001207,Male,Yes,0,0,1.0,2609,3449.0,165.0,180.0,0,Rural,0.0
|
||||
LP001213,Male,Yes,1,1,0.0,4945,0.0,0.0,360.0,0,Rural,0.0
|
||||
LP001222,Female,No,0,1,0.0,4166,0.0,116.0,360.0,0,Semiurban,0.0
|
||||
LP001225,Male,Yes,0,1,0.0,5726,4595.0,258.0,360.0,1,Semiurban,0.0
|
||||
LP001228,Male,No,0,0,0.0,3200,2254.0,126.0,180.0,0,Urban,0.0
|
||||
LP001233,Male,Yes,1,1,0.0,10750,0.0,312.0,360.0,1,Urban,1.0
|
||||
LP001238,Male,Yes,3+,0,1.0,7100,0.0,125.0,60.0,1,Urban,1.0
|
||||
LP001241,Female,No,0,1,0.0,4300,0.0,136.0,360.0,0,Semiurban,0.0
|
||||
LP001243,Male,Yes,0,1,0.0,3208,3066.0,172.0,360.0,1,Urban,1.0
|
||||
LP001245,Male,Yes,2,0,1.0,1875,1875.0,97.0,360.0,1,Semiurban,1.0
|
||||
LP001248,Male,No,0,1,0.0,3500,0.0,81.0,300.0,1,Semiurban,1.0
|
||||
LP001250,Male,Yes,3+,0,0.0,4755,0.0,95.0,,0,Semiurban,0.0
|
||||
LP001253,Male,Yes,3+,1,1.0,5266,1774.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP001255,Male,No,0,1,0.0,3750,0.0,113.0,480.0,1,Urban,0.0
|
||||
LP001256,Male,No,0,1,0.0,3750,4750.0,176.0,360.0,1,Urban,0.0
|
||||
LP001259,Male,Yes,1,1,1.0,1000,3022.0,110.0,360.0,1,Urban,0.0
|
||||
LP001263,Male,Yes,3+,1,0.0,3167,4000.0,180.0,300.0,0,Semiurban,0.0
|
||||
LP001264,Male,Yes,3+,0,1.0,3333,2166.0,130.0,360.0,0,Semiurban,1.0
|
||||
LP001265,Female,No,0,1,0.0,3846,0.0,111.0,360.0,1,Semiurban,1.0
|
||||
LP001266,Male,Yes,1,1,1.0,2395,0.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001267,Female,Yes,2,1,0.0,1378,1881.0,167.0,360.0,1,Urban,0.0
|
||||
LP001273,Male,Yes,0,1,0.0,6000,2250.0,265.0,360.0,0,Semiurban,0.0
|
||||
LP001275,Male,Yes,1,1,0.0,3988,0.0,50.0,240.0,1,Urban,1.0
|
||||
LP001279,Male,No,0,1,0.0,2366,2531.0,136.0,360.0,1,Semiurban,1.0
|
||||
LP001280,Male,Yes,2,0,0.0,3333,2000.0,99.0,360.0,0,Semiurban,1.0
|
||||
LP001282,Male,Yes,0,1,0.0,2500,2118.0,104.0,360.0,1,Semiurban,1.0
|
||||
LP001289,Male,No,0,1,0.0,8566,0.0,210.0,360.0,1,Urban,1.0
|
||||
LP001310,Male,Yes,0,1,0.0,5695,4167.0,175.0,360.0,1,Semiurban,1.0
|
||||
LP001316,Male,Yes,0,1,0.0,2958,2900.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001318,Male,Yes,2,1,0.0,6250,5654.0,188.0,180.0,1,Semiurban,1.0
|
||||
LP001319,Male,Yes,2,0,0.0,3273,1820.0,81.0,360.0,1,Urban,1.0
|
||||
LP001322,Male,No,0,1,0.0,4133,0.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001325,Male,No,0,0,0.0,3620,0.0,25.0,120.0,1,Semiurban,1.0
|
||||
LP001326,Male,No,0,1,0.0,6782,0.0,0.0,360.0,0,Urban,0.0
|
||||
LP001327,Female,Yes,0,1,0.0,2484,2302.0,137.0,360.0,1,Semiurban,1.0
|
||||
LP001333,Male,Yes,0,1,0.0,1977,997.0,50.0,360.0,1,Semiurban,1.0
|
||||
LP001334,Male,Yes,0,0,0.0,4188,0.0,115.0,180.0,1,Semiurban,1.0
|
||||
LP001343,Male,Yes,0,1,0.0,1759,3541.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001345,Male,Yes,2,0,0.0,4288,3263.0,133.0,180.0,1,Urban,1.0
|
||||
LP001349,Male,No,0,1,0.0,4843,3806.0,151.0,360.0,1,Semiurban,1.0
|
||||
LP001350,Male,Yes,,1,0.0,13650,0.0,0.0,360.0,1,Urban,1.0
|
||||
LP001356,Male,Yes,0,1,0.0,4652,3583.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001357,Male,,,1,0.0,3816,754.0,160.0,360.0,1,Urban,1.0
|
||||
LP001367,Male,Yes,1,1,0.0,3052,1030.0,100.0,360.0,1,Urban,1.0
|
||||
LP001369,Male,Yes,2,1,0.0,11417,1126.0,225.0,360.0,1,Urban,1.0
|
||||
LP001370,Male,No,0,0,0.0,7333,0.0,120.0,360.0,1,Rural,0.0
|
||||
LP001379,Male,Yes,2,1,0.0,3800,3600.0,216.0,360.0,0,Urban,0.0
|
||||
LP001384,Male,Yes,3+,0,0.0,2071,754.0,94.0,480.0,1,Semiurban,1.0
|
||||
LP001385,Male,No,0,1,0.0,5316,0.0,136.0,360.0,1,Urban,1.0
|
||||
LP001387,Female,Yes,0,1,0.0,2929,2333.0,139.0,360.0,1,Semiurban,1.0
|
||||
LP001391,Male,Yes,0,0,0.0,3572,4114.0,152.0,,0,Rural,0.0
|
||||
LP001392,Female,No,1,1,1.0,7451,0.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001398,Male,No,0,1,0.0,5050,0.0,118.0,360.0,1,Semiurban,1.0
|
||||
LP001401,Male,Yes,1,1,0.0,14583,0.0,185.0,180.0,1,Rural,1.0
|
||||
LP001404,Female,Yes,0,1,0.0,3167,2283.0,154.0,360.0,1,Semiurban,1.0
|
||||
LP001405,Male,Yes,1,1,0.0,2214,1398.0,85.0,360.0,0,Urban,1.0
|
||||
LP001421,Male,Yes,0,1,0.0,5568,2142.0,175.0,360.0,1,Rural,0.0
|
||||
LP001422,Female,No,0,1,0.0,10408,0.0,259.0,360.0,1,Urban,1.0
|
||||
LP001426,Male,Yes,,1,0.0,5667,2667.0,180.0,360.0,1,Rural,1.0
|
||||
LP001430,Female,No,0,1,0.0,4166,0.0,44.0,360.0,1,Semiurban,1.0
|
||||
LP001431,Female,No,0,1,0.0,2137,8980.0,137.0,360.0,0,Semiurban,1.0
|
||||
LP001432,Male,Yes,2,1,0.0,2957,0.0,81.0,360.0,1,Semiurban,1.0
|
||||
LP001439,Male,Yes,0,0,0.0,4300,2014.0,194.0,360.0,1,Rural,1.0
|
||||
LP001443,Female,No,0,1,0.0,3692,0.0,93.0,360.0,0,Rural,1.0
|
||||
LP001448,,Yes,3+,1,0.0,23803,0.0,370.0,360.0,1,Rural,1.0
|
||||
LP001449,Male,No,0,1,0.0,3865,1640.0,0.0,360.0,1,Rural,1.0
|
||||
LP001451,Male,Yes,1,1,1.0,10513,3850.0,160.0,180.0,0,Urban,0.0
|
||||
LP001465,Male,Yes,0,1,0.0,6080,2569.0,182.0,360.0,0,Rural,0.0
|
||||
LP001469,Male,No,0,1,1.0,20166,0.0,650.0,480.0,0,Urban,1.0
|
||||
LP001473,Male,No,0,1,0.0,2014,1929.0,74.0,360.0,1,Urban,1.0
|
||||
LP001478,Male,No,0,1,0.0,2718,0.0,70.0,360.0,1,Semiurban,1.0
|
||||
LP001482,Male,Yes,0,1,1.0,3459,0.0,25.0,120.0,1,Semiurban,1.0
|
||||
LP001487,Male,No,0,1,0.0,4895,0.0,102.0,360.0,1,Semiurban,1.0
|
||||
LP001488,Male,Yes,3+,1,0.0,4000,7750.0,290.0,360.0,1,Semiurban,0.0
|
||||
LP001489,Female,Yes,0,1,0.0,4583,0.0,84.0,360.0,1,Rural,0.0
|
||||
LP001491,Male,Yes,2,1,1.0,3316,3500.0,88.0,360.0,1,Urban,1.0
|
||||
LP001492,Male,No,0,1,0.0,14999,0.0,242.0,360.0,0,Semiurban,0.0
|
||||
LP001493,Male,Yes,2,0,0.0,4200,1430.0,129.0,360.0,1,Rural,0.0
|
||||
LP001497,Male,Yes,2,1,0.0,5042,2083.0,185.0,360.0,1,Rural,0.0
|
||||
LP001498,Male,No,0,1,0.0,5417,0.0,168.0,360.0,1,Urban,1.0
|
||||
LP001504,Male,No,0,1,1.0,6950,0.0,175.0,180.0,1,Semiurban,1.0
|
||||
LP001507,Male,Yes,0,1,0.0,2698,2034.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001508,Male,Yes,2,1,0.0,11757,0.0,187.0,180.0,1,Urban,1.0
|
||||
LP001514,Female,Yes,0,1,0.0,2330,4486.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001516,Female,Yes,2,1,0.0,14866,0.0,70.0,360.0,1,Urban,1.0
|
||||
LP001518,Male,Yes,1,1,0.0,1538,1425.0,30.0,360.0,1,Urban,1.0
|
||||
LP001519,Female,No,0,1,0.0,10000,1666.0,225.0,360.0,1,Rural,0.0
|
||||
LP001520,Male,Yes,0,1,0.0,4860,830.0,125.0,360.0,1,Semiurban,1.0
|
||||
LP001528,Male,No,0,1,0.0,6277,0.0,118.0,360.0,0,Rural,0.0
|
||||
LP001529,Male,Yes,0,1,1.0,2577,3750.0,152.0,360.0,1,Rural,1.0
|
||||
LP001531,Male,No,0,1,0.0,9166,0.0,244.0,360.0,1,Urban,0.0
|
||||
LP001532,Male,Yes,2,0,0.0,2281,0.0,113.0,360.0,1,Rural,0.0
|
||||
LP001535,Male,No,0,1,0.0,3254,0.0,50.0,360.0,1,Urban,1.0
|
||||
LP001536,Male,Yes,3+,1,0.0,39999,0.0,600.0,180.0,0,Semiurban,1.0
|
||||
LP001541,Male,Yes,1,1,0.0,6000,0.0,160.0,360.0,0,Rural,1.0
|
||||
LP001543,Male,Yes,1,1,0.0,9538,0.0,187.0,360.0,1,Urban,1.0
|
||||
LP001546,Male,No,0,1,0.0,2980,2083.0,120.0,360.0,1,Rural,1.0
|
||||
LP001552,Male,Yes,0,1,0.0,4583,5625.0,255.0,360.0,1,Semiurban,1.0
|
||||
LP001560,Male,Yes,0,0,0.0,1863,1041.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP001562,Male,Yes,0,1,0.0,7933,0.0,275.0,360.0,1,Urban,0.0
|
||||
LP001565,Male,Yes,1,1,0.0,3089,1280.0,121.0,360.0,0,Semiurban,0.0
|
||||
LP001570,Male,Yes,2,1,0.0,4167,1447.0,158.0,360.0,1,Rural,1.0
|
||||
LP001572,Male,Yes,0,1,0.0,9323,0.0,75.0,180.0,1,Urban,1.0
|
||||
LP001574,Male,Yes,0,1,0.0,3707,3166.0,182.0,,1,Rural,1.0
|
||||
LP001577,Female,Yes,0,1,0.0,4583,0.0,112.0,360.0,1,Rural,0.0
|
||||
LP001578,Male,Yes,0,1,0.0,2439,3333.0,129.0,360.0,1,Rural,1.0
|
||||
LP001579,Male,No,0,1,0.0,2237,0.0,63.0,480.0,0,Semiurban,0.0
|
||||
LP001580,Male,Yes,2,1,0.0,8000,0.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP001581,Male,Yes,0,0,0.0,1820,1769.0,95.0,360.0,1,Rural,1.0
|
||||
LP001585,,Yes,3+,1,0.0,51763,0.0,700.0,300.0,1,Urban,1.0
|
||||
LP001586,Male,Yes,3+,0,0.0,3522,0.0,81.0,180.0,1,Rural,0.0
|
||||
LP001594,Male,Yes,0,1,0.0,5708,5625.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP001603,Male,Yes,0,0,1.0,4344,736.0,87.0,360.0,1,Semiurban,0.0
|
||||
LP001606,Male,Yes,0,1,0.0,3497,1964.0,116.0,360.0,1,Rural,1.0
|
||||
LP001608,Male,Yes,2,1,0.0,2045,1619.0,101.0,360.0,1,Rural,1.0
|
||||
LP001610,Male,Yes,3+,1,0.0,5516,11300.0,495.0,360.0,0,Semiurban,0.0
|
||||
LP001616,Male,Yes,1,1,0.0,3750,0.0,116.0,360.0,1,Semiurban,1.0
|
||||
LP001630,Male,No,0,0,0.0,2333,1451.0,102.0,480.0,0,Urban,0.0
|
||||
LP001633,Male,Yes,1,1,0.0,6400,7250.0,180.0,360.0,0,Urban,0.0
|
||||
LP001634,Male,No,0,1,0.0,1916,5063.0,67.0,360.0,0,Rural,0.0
|
||||
LP001636,Male,Yes,0,1,0.0,4600,0.0,73.0,180.0,1,Semiurban,1.0
|
||||
LP001637,Male,Yes,1,1,0.0,33846,0.0,260.0,360.0,1,Semiurban,0.0
|
||||
LP001639,Female,Yes,0,1,0.0,3625,0.0,108.0,360.0,1,Semiurban,1.0
|
||||
LP001640,Male,Yes,0,1,1.0,39147,4750.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001641,Male,Yes,1,1,1.0,2178,0.0,66.0,300.0,0,Rural,0.0
|
||||
LP001643,Male,Yes,0,1,0.0,2383,2138.0,58.0,360.0,0,Rural,1.0
|
||||
LP001644,,Yes,0,1,1.0,674,5296.0,168.0,360.0,1,Rural,1.0
|
||||
LP001647,Male,Yes,0,1,0.0,9328,0.0,188.0,180.0,1,Rural,1.0
|
||||
LP001653,Male,No,0,0,0.0,4885,0.0,48.0,360.0,1,Rural,1.0
|
||||
LP001656,Male,No,0,1,0.0,12000,0.0,164.0,360.0,1,Semiurban,0.0
|
||||
LP001657,Male,Yes,0,0,0.0,6033,0.0,160.0,360.0,1,Urban,0.0
|
||||
LP001658,Male,No,0,1,0.0,3858,0.0,76.0,360.0,1,Semiurban,1.0
|
||||
LP001664,Male,No,0,1,0.0,4191,0.0,120.0,360.0,1,Rural,1.0
|
||||
LP001665,Male,Yes,1,1,0.0,3125,2583.0,170.0,360.0,1,Semiurban,0.0
|
||||
LP001666,Male,No,0,1,0.0,8333,3750.0,187.0,360.0,1,Rural,1.0
|
||||
LP001669,Female,No,0,0,0.0,1907,2365.0,120.0,,1,Urban,1.0
|
||||
LP001671,Female,Yes,0,1,0.0,3416,2816.0,113.0,360.0,0,Semiurban,1.0
|
||||
LP001673,Male,No,0,1,1.0,11000,0.0,83.0,360.0,1,Urban,0.0
|
||||
LP001674,Male,Yes,1,0,0.0,2600,2500.0,90.0,360.0,1,Semiurban,1.0
|
||||
LP001677,Male,No,2,1,0.0,4923,0.0,166.0,360.0,0,Semiurban,1.0
|
||||
LP001682,Male,Yes,3+,0,0.0,3992,0.0,0.0,180.0,1,Urban,0.0
|
||||
LP001688,Male,Yes,1,0,0.0,3500,1083.0,135.0,360.0,1,Urban,1.0
|
||||
LP001691,Male,Yes,2,0,0.0,3917,0.0,124.0,360.0,1,Semiurban,1.0
|
||||
LP001692,Female,No,0,0,0.0,4408,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001693,Female,No,0,1,0.0,3244,0.0,80.0,360.0,1,Urban,1.0
|
||||
LP001698,Male,No,0,0,0.0,3975,2531.0,55.0,360.0,1,Rural,1.0
|
||||
LP001699,Male,No,0,1,0.0,2479,0.0,59.0,360.0,1,Urban,1.0
|
||||
LP001702,Male,No,0,1,0.0,3418,0.0,127.0,360.0,1,Semiurban,0.0
|
||||
LP001708,Female,No,0,1,0.0,10000,0.0,214.0,360.0,1,Semiurban,0.0
|
||||
LP001711,Male,Yes,3+,1,0.0,3430,1250.0,128.0,360.0,0,Semiurban,0.0
|
||||
LP001713,Male,Yes,1,1,1.0,7787,0.0,240.0,360.0,1,Urban,1.0
|
||||
LP001715,Male,Yes,3+,0,1.0,5703,0.0,130.0,360.0,1,Rural,1.0
|
||||
LP001716,Male,Yes,0,1,0.0,3173,3021.0,137.0,360.0,1,Urban,1.0
|
||||
LP001720,Male,Yes,3+,0,0.0,3850,983.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001722,Male,Yes,0,1,0.0,150,1800.0,135.0,360.0,1,Rural,0.0
|
||||
LP001726,Male,Yes,0,1,0.0,3727,1775.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001732,Male,Yes,2,1,0.0,5000,0.0,72.0,360.0,0,Semiurban,0.0
|
||||
LP001734,Female,Yes,2,1,0.0,4283,2383.0,127.0,360.0,0,Semiurban,1.0
|
||||
LP001736,Male,Yes,0,1,0.0,2221,0.0,60.0,360.0,0,Urban,0.0
|
||||
LP001743,Male,Yes,2,1,0.0,4009,1717.0,116.0,360.0,1,Semiurban,1.0
|
||||
LP001744,Male,No,0,1,0.0,2971,2791.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001749,Male,Yes,0,1,0.0,7578,1010.0,175.0,,1,Semiurban,1.0
|
||||
LP001750,Male,Yes,0,1,0.0,6250,0.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP001751,Male,Yes,0,1,0.0,3250,0.0,170.0,360.0,1,Rural,0.0
|
||||
LP001754,Male,Yes,,0,1.0,4735,0.0,138.0,360.0,1,Urban,0.0
|
||||
LP001758,Male,Yes,2,1,0.0,6250,1695.0,210.0,360.0,1,Semiurban,1.0
|
||||
LP001760,Male,,,1,0.0,4758,0.0,158.0,480.0,1,Semiurban,1.0
|
||||
LP001761,Male,No,0,1,1.0,6400,0.0,200.0,360.0,1,Rural,1.0
|
||||
LP001765,Male,Yes,1,1,0.0,2491,2054.0,104.0,360.0,1,Semiurban,1.0
|
||||
LP001768,Male,Yes,0,1,0.0,3716,0.0,42.0,180.0,1,Rural,1.0
|
||||
LP001770,Male,No,0,0,0.0,3189,2598.0,120.0,,1,Rural,1.0
|
||||
LP001776,Female,No,0,1,0.0,8333,0.0,280.0,360.0,1,Semiurban,1.0
|
||||
LP001778,Male,Yes,1,1,0.0,3155,1779.0,140.0,360.0,1,Semiurban,1.0
|
||||
LP001784,Male,Yes,1,1,0.0,5500,1260.0,170.0,360.0,1,Rural,1.0
|
||||
LP001786,Male,Yes,0,1,0.0,5746,0.0,255.0,360.0,0,Urban,0.0
|
||||
LP001788,Female,No,0,1,1.0,3463,0.0,122.0,360.0,0,Urban,1.0
|
||||
LP001790,Female,No,1,1,0.0,3812,0.0,112.0,360.0,1,Rural,1.0
|
||||
LP001792,Male,Yes,1,1,0.0,3315,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP001798,Male,Yes,2,1,0.0,5819,5000.0,120.0,360.0,1,Rural,1.0
|
||||
LP001800,Male,Yes,1,0,0.0,2510,1983.0,140.0,180.0,1,Urban,0.0
|
||||
LP001806,Male,No,0,1,0.0,2965,5701.0,155.0,60.0,1,Urban,1.0
|
||||
LP001807,Male,Yes,2,1,1.0,6250,1300.0,108.0,360.0,1,Rural,1.0
|
||||
LP001811,Male,Yes,0,0,0.0,3406,4417.0,123.0,360.0,1,Semiurban,1.0
|
||||
LP001813,Male,No,0,1,1.0,6050,4333.0,120.0,180.0,1,Urban,0.0
|
||||
LP001814,Male,Yes,2,1,0.0,9703,0.0,112.0,360.0,1,Urban,1.0
|
||||
LP001819,Male,Yes,1,0,0.0,6608,0.0,137.0,180.0,1,Urban,1.0
|
||||
LP001824,Male,Yes,1,1,0.0,2882,1843.0,123.0,480.0,1,Semiurban,1.0
|
||||
LP001825,Male,Yes,0,1,0.0,1809,1868.0,90.0,360.0,1,Urban,1.0
|
||||
LP001835,Male,Yes,0,0,0.0,1668,3890.0,201.0,360.0,0,Semiurban,0.0
|
||||
LP001836,Female,No,2,1,0.0,3427,0.0,138.0,360.0,1,Urban,0.0
|
||||
LP001841,Male,No,0,0,1.0,2583,2167.0,104.0,360.0,1,Rural,1.0
|
||||
LP001843,Male,Yes,1,0,0.0,2661,7101.0,279.0,180.0,1,Semiurban,1.0
|
||||
LP001844,Male,No,0,1,1.0,16250,0.0,192.0,360.0,0,Urban,0.0
|
||||
LP001846,Female,No,3+,1,0.0,3083,0.0,255.0,360.0,1,Rural,1.0
|
||||
LP001849,Male,No,0,0,0.0,6045,0.0,115.0,360.0,0,Rural,0.0
|
||||
LP001854,Male,Yes,3+,1,0.0,5250,0.0,94.0,360.0,1,Urban,0.0
|
||||
LP001859,Male,Yes,0,1,0.0,14683,2100.0,304.0,360.0,1,Rural,0.0
|
||||
LP001864,Male,Yes,3+,0,0.0,4931,0.0,128.0,360.0,0,Semiurban,0.0
|
||||
LP001865,Male,Yes,1,1,0.0,6083,4250.0,330.0,360.0,0,Urban,1.0
|
||||
LP001868,Male,No,0,1,0.0,2060,2209.0,134.0,360.0,1,Semiurban,1.0
|
||||
LP001870,Female,No,1,1,0.0,3481,0.0,155.0,36.0,1,Semiurban,0.0
|
||||
LP001871,Female,No,0,1,0.0,7200,0.0,120.0,360.0,1,Rural,1.0
|
||||
LP001872,Male,No,0,1,1.0,5166,0.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP001875,Male,No,0,1,0.0,4095,3447.0,151.0,360.0,1,Rural,1.0
|
||||
LP001877,Male,Yes,2,1,0.0,4708,1387.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP001882,Male,Yes,3+,1,0.0,4333,1811.0,160.0,360.0,0,Urban,1.0
|
||||
LP001883,Female,No,0,1,0.0,3418,0.0,135.0,360.0,1,Rural,0.0
|
||||
LP001884,Female,No,1,1,0.0,2876,1560.0,90.0,360.0,1,Urban,1.0
|
||||
LP001888,Female,No,0,1,0.0,3237,0.0,30.0,360.0,1,Urban,1.0
|
||||
LP001891,Male,Yes,0,1,0.0,11146,0.0,136.0,360.0,1,Urban,1.0
|
||||
LP001892,Male,No,0,1,0.0,2833,1857.0,126.0,360.0,1,Rural,1.0
|
||||
LP001894,Male,Yes,0,1,0.0,2620,2223.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP001896,Male,Yes,2,1,0.0,3900,0.0,90.0,360.0,1,Semiurban,1.0
|
||||
LP001900,Male,Yes,1,1,0.0,2750,1842.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP001903,Male,Yes,0,1,0.0,3993,3274.0,207.0,360.0,1,Semiurban,1.0
|
||||
LP001904,Male,Yes,0,1,0.0,3103,1300.0,80.0,360.0,1,Urban,1.0
|
||||
LP001907,Male,Yes,0,1,0.0,14583,0.0,436.0,360.0,1,Semiurban,1.0
|
||||
LP001908,Female,Yes,0,0,0.0,4100,0.0,124.0,360.0,0,Rural,1.0
|
||||
LP001910,Male,No,1,0,1.0,4053,2426.0,158.0,360.0,0,Urban,0.0
|
||||
LP001914,Male,Yes,0,1,0.0,3927,800.0,112.0,360.0,1,Semiurban,1.0
|
||||
LP001915,Male,Yes,2,1,0.0,2301,985.7999878,78.0,180.0,1,Urban,1.0
|
||||
LP001917,Female,No,0,1,0.0,1811,1666.0,54.0,360.0,1,Urban,1.0
|
||||
LP001922,Male,Yes,0,1,0.0,20667,0.0,0.0,360.0,1,Rural,0.0
|
||||
LP001924,Male,No,0,1,0.0,3158,3053.0,89.0,360.0,1,Rural,1.0
|
||||
LP001925,Female,No,0,1,1.0,2600,1717.0,99.0,300.0,1,Semiurban,0.0
|
||||
LP001926,Male,Yes,0,1,0.0,3704,2000.0,120.0,360.0,1,Rural,1.0
|
||||
LP001931,Female,No,0,1,0.0,4124,0.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP001935,Male,No,0,1,0.0,9508,0.0,187.0,360.0,1,Rural,1.0
|
||||
LP001936,Male,Yes,0,1,0.0,3075,2416.0,139.0,360.0,1,Rural,1.0
|
||||
LP001938,Male,Yes,2,1,0.0,4400,0.0,127.0,360.0,0,Semiurban,0.0
|
||||
LP001940,Male,Yes,2,1,0.0,3153,1560.0,134.0,360.0,1,Urban,1.0
|
||||
LP001945,Female,No,,1,0.0,5417,0.0,143.0,480.0,0,Urban,0.0
|
||||
LP001947,Male,Yes,0,1,0.0,2383,3334.0,172.0,360.0,1,Semiurban,1.0
|
||||
LP001949,Male,Yes,3+,1,0.0,4416,1250.0,110.0,360.0,1,Urban,1.0
|
||||
LP001953,Male,Yes,1,1,0.0,6875,0.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP001954,Female,Yes,1,1,0.0,4666,0.0,135.0,360.0,1,Urban,1.0
|
||||
LP001955,Female,No,0,1,0.0,5000,2541.0,151.0,480.0,1,Rural,0.0
|
||||
LP001963,Male,Yes,1,1,0.0,2014,2925.0,113.0,360.0,1,Urban,0.0
|
||||
LP001964,Male,Yes,0,0,0.0,1800,2934.0,93.0,360.0,0,Urban,0.0
|
||||
LP001972,Male,Yes,,0,0.0,2875,1750.0,105.0,360.0,1,Semiurban,1.0
|
||||
LP001974,Female,No,0,1,0.0,5000,0.0,132.0,360.0,1,Rural,1.0
|
||||
LP001977,Male,Yes,1,1,0.0,1625,1803.0,96.0,360.0,1,Urban,1.0
|
||||
LP001978,Male,No,0,1,0.0,4000,2500.0,140.0,360.0,1,Rural,1.0
|
||||
LP001990,Male,No,0,0,0.0,2000,0.0,0.0,360.0,1,Urban,0.0
|
||||
LP001993,Female,No,0,1,0.0,3762,1666.0,135.0,360.0,1,Rural,1.0
|
||||
LP001994,Female,No,0,1,0.0,2400,1863.0,104.0,360.0,0,Urban,0.0
|
||||
LP001996,Male,No,0,1,0.0,20233,0.0,480.0,360.0,1,Rural,0.0
|
||||
LP001998,Male,Yes,2,0,0.0,7667,0.0,185.0,360.0,0,Rural,1.0
|
||||
LP002002,Female,No,0,1,0.0,2917,0.0,84.0,360.0,1,Semiurban,1.0
|
||||
LP002004,Male,No,0,0,0.0,2927,2405.0,111.0,360.0,1,Semiurban,1.0
|
||||
LP002006,Female,No,0,1,0.0,2507,0.0,56.0,360.0,1,Rural,1.0
|
||||
LP002008,Male,Yes,2,1,1.0,5746,0.0,144.0,84.0,0,Rural,1.0
|
||||
LP002024,,Yes,0,1,0.0,2473,1843.0,159.0,360.0,1,Rural,0.0
|
||||
LP002031,Male,Yes,1,0,0.0,3399,1640.0,111.0,180.0,1,Urban,1.0
|
||||
LP002035,Male,Yes,2,1,0.0,3717,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP002036,Male,Yes,0,1,0.0,2058,2134.0,88.0,360.0,0,Urban,1.0
|
||||
LP002043,Female,No,1,1,0.0,3541,0.0,112.0,360.0,0,Semiurban,1.0
|
||||
LP002050,Male,Yes,1,1,1.0,10000,0.0,155.0,360.0,1,Rural,0.0
|
||||
LP002051,Male,Yes,0,1,0.0,2400,2167.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP002053,Male,Yes,3+,1,0.0,4342,189.0,124.0,360.0,1,Semiurban,1.0
|
||||
LP002054,Male,Yes,2,0,0.0,3601,1590.0,0.0,360.0,1,Rural,1.0
|
||||
LP002055,Female,No,0,1,0.0,3166,2985.0,132.0,360.0,0,Rural,1.0
|
||||
LP002065,Male,Yes,3+,1,0.0,15000,0.0,300.0,360.0,1,Rural,1.0
|
||||
LP002067,Male,Yes,1,1,1.0,8666,4983.0,376.0,360.0,0,Rural,0.0
|
||||
LP002068,Male,No,0,1,0.0,4917,0.0,130.0,360.0,0,Rural,1.0
|
||||
LP002082,Male,Yes,0,1,1.0,5818,2160.0,184.0,360.0,1,Semiurban,1.0
|
||||
LP002086,Female,Yes,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
|
||||
LP002087,Female,No,0,1,0.0,2500,0.0,67.0,360.0,1,Urban,1.0
|
||||
LP002097,Male,No,1,1,0.0,4384,1793.0,117.0,360.0,1,Urban,1.0
|
||||
LP002098,Male,No,0,1,0.0,2935,0.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP002100,Male,No,,1,0.0,2833,0.0,71.0,360.0,1,Urban,1.0
|
||||
LP002101,Male,Yes,0,1,0.0,63337,0.0,490.0,180.0,1,Urban,1.0
|
||||
LP002103,,Yes,1,1,1.0,9833,1833.0,182.0,180.0,1,Urban,1.0
|
||||
LP002106,Male,Yes,,1,1.0,5503,4490.0,70.0,,1,Semiurban,1.0
|
||||
LP002110,Male,Yes,1,1,0.0,5250,688.0,160.0,360.0,1,Rural,1.0
|
||||
LP002112,Male,Yes,2,1,1.0,2500,4600.0,176.0,360.0,1,Rural,1.0
|
||||
LP002113,Female,No,3+,0,0.0,1830,0.0,0.0,360.0,0,Urban,0.0
|
||||
LP002114,Female,No,0,1,0.0,4160,0.0,71.0,360.0,1,Semiurban,1.0
|
||||
LP002115,Male,Yes,3+,0,0.0,2647,1587.0,173.0,360.0,1,Rural,0.0
|
||||
LP002116,Female,No,0,1,0.0,2378,0.0,46.0,360.0,1,Rural,0.0
|
||||
LP002119,Male,Yes,1,0,0.0,4554,1229.0,158.0,360.0,1,Urban,1.0
|
||||
LP002126,Male,Yes,3+,0,0.0,3173,0.0,74.0,360.0,1,Semiurban,1.0
|
||||
LP002128,Male,Yes,2,1,0.0,2583,2330.0,125.0,360.0,1,Rural,1.0
|
||||
LP002129,Male,Yes,0,1,0.0,2499,2458.0,160.0,360.0,1,Semiurban,1.0
|
||||
LP002130,Male,Yes,,0,0.0,3523,3230.0,152.0,360.0,0,Rural,0.0
|
||||
LP002131,Male,Yes,2,0,0.0,3083,2168.0,126.0,360.0,1,Urban,1.0
|
||||
LP002137,Male,Yes,0,1,0.0,6333,4583.0,259.0,360.0,0,Semiurban,1.0
|
||||
LP002138,Male,Yes,0,1,0.0,2625,6250.0,187.0,360.0,1,Rural,1.0
|
||||
LP002139,Male,Yes,0,1,0.0,9083,0.0,228.0,360.0,1,Semiurban,1.0
|
||||
LP002140,Male,No,0,1,0.0,8750,4167.0,308.0,360.0,1,Rural,0.0
|
||||
LP002141,Male,Yes,3+,1,0.0,2666,2083.0,95.0,360.0,1,Rural,1.0
|
||||
LP002142,Female,Yes,0,1,1.0,5500,0.0,105.0,360.0,0,Rural,0.0
|
||||
LP002143,Female,Yes,0,1,0.0,2423,505.0,130.0,360.0,1,Semiurban,1.0
|
||||
LP002144,Female,No,,1,0.0,3813,0.0,116.0,180.0,1,Urban,1.0
|
||||
LP002149,Male,Yes,2,1,0.0,8333,3167.0,165.0,360.0,1,Rural,1.0
|
||||
LP002151,Male,Yes,1,1,0.0,3875,0.0,67.0,360.0,1,Urban,0.0
|
||||
LP002158,Male,Yes,0,0,0.0,3000,1666.0,100.0,480.0,0,Urban,0.0
|
||||
LP002160,Male,Yes,3+,1,0.0,5167,3167.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP002161,Female,No,1,1,0.0,4723,0.0,81.0,360.0,1,Semiurban,0.0
|
||||
LP002170,Male,Yes,2,1,0.0,5000,3667.0,236.0,360.0,1,Semiurban,1.0
|
||||
LP002175,Male,Yes,0,1,0.0,4750,2333.0,130.0,360.0,1,Urban,1.0
|
||||
LP002178,Male,Yes,0,1,0.0,3013,3033.0,95.0,300.0,0,Urban,1.0
|
||||
LP002180,Male,No,0,1,1.0,6822,0.0,141.0,360.0,1,Rural,1.0
|
||||
LP002181,Male,No,0,0,0.0,6216,0.0,133.0,360.0,1,Rural,0.0
|
||||
LP002187,Male,No,0,1,0.0,2500,0.0,96.0,480.0,1,Semiurban,0.0
|
||||
LP002188,Male,No,0,1,0.0,5124,0.0,124.0,,0,Rural,0.0
|
||||
LP002190,Male,Yes,1,1,0.0,6325,0.0,175.0,360.0,1,Semiurban,1.0
|
||||
LP002191,Male,Yes,0,1,0.0,19730,5266.0,570.0,360.0,1,Rural,0.0
|
||||
LP002194,Female,No,0,1,1.0,15759,0.0,55.0,360.0,1,Semiurban,1.0
|
||||
LP002197,Male,Yes,2,1,0.0,5185,0.0,155.0,360.0,1,Semiurban,1.0
|
||||
LP002201,Male,Yes,2,1,1.0,9323,7873.0,380.0,300.0,1,Rural,1.0
|
||||
LP002205,Male,No,1,1,0.0,3062,1987.0,111.0,180.0,0,Urban,0.0
|
||||
LP002209,Female,No,0,1,0.0,2764,1459.0,110.0,360.0,1,Urban,1.0
|
||||
LP002211,Male,Yes,0,1,0.0,4817,923.0,120.0,180.0,1,Urban,1.0
|
||||
LP002219,Male,Yes,3+,1,0.0,8750,4996.0,130.0,360.0,1,Rural,1.0
|
||||
LP002223,Male,Yes,0,1,0.0,4310,0.0,130.0,360.0,0,Semiurban,1.0
|
||||
LP002224,Male,No,0,1,0.0,3069,0.0,71.0,480.0,1,Urban,0.0
|
||||
LP002225,Male,Yes,2,1,0.0,5391,0.0,130.0,360.0,1,Urban,1.0
|
||||
LP002226,Male,Yes,0,1,0.0,3333,2500.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP002229,Male,No,0,1,0.0,5941,4232.0,296.0,360.0,1,Semiurban,1.0
|
||||
LP002231,Female,No,0,1,0.0,6000,0.0,156.0,360.0,1,Urban,1.0
|
||||
LP002234,Male,No,0,1,1.0,7167,0.0,128.0,360.0,1,Urban,1.0
|
||||
LP002236,Male,Yes,2,1,0.0,4566,0.0,100.0,360.0,1,Urban,0.0
|
||||
LP002237,Male,No,1,1,0.0,3667,0.0,113.0,180.0,1,Urban,1.0
|
||||
LP002239,Male,No,0,0,0.0,2346,1600.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002243,Male,Yes,0,0,0.0,3010,3136.0,0.0,360.0,0,Urban,0.0
|
||||
LP002244,Male,Yes,0,1,0.0,2333,2417.0,136.0,360.0,1,Urban,1.0
|
||||
LP002250,Male,Yes,0,1,0.0,5488,0.0,125.0,360.0,1,Rural,1.0
|
||||
LP002255,Male,No,3+,1,0.0,9167,0.0,185.0,360.0,1,Rural,1.0
|
||||
LP002262,Male,Yes,3+,1,0.0,9504,0.0,275.0,360.0,1,Rural,1.0
|
||||
LP002263,Male,Yes,0,1,0.0,2583,2115.0,120.0,360.0,0,Urban,1.0
|
||||
LP002265,Male,Yes,2,0,0.0,1993,1625.0,113.0,180.0,1,Semiurban,1.0
|
||||
LP002266,Male,Yes,2,1,0.0,3100,1400.0,113.0,360.0,1,Urban,1.0
|
||||
LP002272,Male,Yes,2,1,0.0,3276,484.0,135.0,360.0,0,Semiurban,1.0
|
||||
LP002277,Female,No,0,1,0.0,3180,0.0,71.0,360.0,0,Urban,0.0
|
||||
LP002281,Male,Yes,0,1,0.0,3033,1459.0,95.0,360.0,1,Urban,1.0
|
||||
LP002284,Male,No,0,0,0.0,3902,1666.0,109.0,360.0,1,Rural,1.0
|
||||
LP002287,Female,No,0,1,0.0,1500,1800.0,103.0,360.0,0,Semiurban,0.0
|
||||
LP002288,Male,Yes,2,0,0.0,2889,0.0,45.0,180.0,0,Urban,0.0
|
||||
LP002296,Male,No,0,0,0.0,2755,0.0,65.0,300.0,1,Rural,0.0
|
||||
LP002297,Male,No,0,1,0.0,2500,20000.0,103.0,360.0,1,Semiurban,1.0
|
||||
LP002300,Female,No,0,0,0.0,1963,0.0,53.0,360.0,1,Semiurban,1.0
|
||||
LP002301,Female,No,0,1,1.0,7441,0.0,194.0,360.0,1,Rural,0.0
|
||||
LP002305,Female,No,0,1,0.0,4547,0.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP002308,Male,Yes,0,0,0.0,2167,2400.0,115.0,360.0,1,Urban,1.0
|
||||
LP002314,Female,No,0,0,0.0,2213,0.0,66.0,360.0,1,Rural,1.0
|
||||
LP002315,Male,Yes,1,1,0.0,8300,0.0,152.0,300.0,0,Semiurban,0.0
|
||||
LP002317,Male,Yes,3+,1,0.0,81000,0.0,360.0,360.0,0,Rural,0.0
|
||||
LP002318,Female,No,1,0,1.0,3867,0.0,62.0,360.0,1,Semiurban,0.0
|
||||
LP002319,Male,Yes,0,1,0.0,6256,0.0,160.0,360.0,0,Urban,1.0
|
||||
LP002328,Male,Yes,0,0,0.0,6096,0.0,218.0,360.0,0,Rural,0.0
|
||||
LP002332,Male,Yes,0,0,0.0,2253,2033.0,110.0,360.0,1,Rural,1.0
|
||||
LP002335,Female,Yes,0,0,0.0,2149,3237.0,178.0,360.0,0,Semiurban,0.0
|
||||
LP002337,Female,No,0,1,0.0,2995,0.0,60.0,360.0,1,Urban,1.0
|
||||
LP002341,Female,No,1,1,0.0,2600,0.0,160.0,360.0,1,Urban,0.0
|
||||
LP002342,Male,Yes,2,1,1.0,1600,20000.0,239.0,360.0,1,Urban,0.0
|
||||
LP002345,Male,Yes,0,1,0.0,1025,2773.0,112.0,360.0,1,Rural,1.0
|
||||
LP002347,Male,Yes,0,1,0.0,3246,1417.0,138.0,360.0,1,Semiurban,1.0
|
||||
LP002348,Male,Yes,0,1,0.0,5829,0.0,138.0,360.0,1,Rural,1.0
|
||||
LP002357,Female,No,0,0,0.0,2720,0.0,80.0,,0,Urban,0.0
|
||||
LP002361,Male,Yes,0,1,0.0,1820,1719.0,100.0,360.0,1,Urban,1.0
|
||||
LP002362,Male,Yes,1,1,0.0,7250,1667.0,110.0,,0,Urban,0.0
|
||||
LP002364,Male,Yes,0,1,0.0,14880,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP002366,Male,Yes,0,1,0.0,2666,4300.0,121.0,360.0,1,Rural,1.0
|
||||
LP002367,Female,No,1,0,0.0,4606,0.0,81.0,360.0,1,Rural,0.0
|
||||
LP002368,Male,Yes,2,1,0.0,5935,0.0,133.0,360.0,1,Semiurban,1.0
|
||||
LP002369,Male,Yes,0,1,0.0,2920,16.12000084,87.0,360.0,1,Rural,1.0
|
||||
LP002370,Male,No,0,0,0.0,2717,0.0,60.0,180.0,1,Urban,1.0
|
||||
LP002377,Female,No,1,1,1.0,8624,0.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP002379,Male,No,0,1,0.0,6500,0.0,105.0,360.0,0,Rural,0.0
|
||||
LP002386,Male,No,0,1,0.0,12876,0.0,405.0,360.0,1,Semiurban,1.0
|
||||
LP002387,Male,Yes,0,1,0.0,2425,2340.0,143.0,360.0,1,Semiurban,1.0
|
||||
LP002390,Male,No,0,1,0.0,3750,0.0,100.0,360.0,1,Urban,1.0
|
||||
LP002393,Female,,,1,0.0,10047,0.0,0.0,240.0,1,Semiurban,1.0
|
||||
LP002398,Male,No,0,1,0.0,1926,1851.0,50.0,360.0,1,Semiurban,1.0
|
||||
LP002401,Male,Yes,0,1,0.0,2213,1125.0,0.0,360.0,1,Urban,1.0
|
||||
LP002403,Male,No,0,1,1.0,10416,0.0,187.0,360.0,0,Urban,0.0
|
||||
LP002407,Female,Yes,0,0,1.0,7142,0.0,138.0,360.0,1,Rural,1.0
|
||||
LP002408,Male,No,0,1,0.0,3660,5064.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP002409,Male,Yes,0,1,0.0,7901,1833.0,180.0,360.0,1,Rural,1.0
|
||||
LP002418,Male,No,3+,0,0.0,4707,1993.0,148.0,360.0,1,Semiurban,1.0
|
||||
LP002422,Male,No,1,1,0.0,37719,0.0,152.0,360.0,1,Semiurban,1.0
|
||||
LP002424,Male,Yes,0,1,0.0,7333,8333.0,175.0,300.0,0,Rural,1.0
|
||||
LP002429,Male,Yes,1,1,1.0,3466,1210.0,130.0,360.0,1,Rural,1.0
|
||||
LP002434,Male,Yes,2,0,0.0,4652,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002435,Male,Yes,0,1,0.0,3539,1376.0,55.0,360.0,1,Rural,0.0
|
||||
LP002443,Male,Yes,2,1,0.0,3340,1710.0,150.0,360.0,0,Rural,0.0
|
||||
LP002444,Male,No,1,0,1.0,2769,1542.0,190.0,360.0,0,Semiurban,0.0
|
||||
LP002446,Male,Yes,2,0,0.0,2309,1255.0,125.0,360.0,0,Rural,0.0
|
||||
LP002447,Male,Yes,2,0,0.0,1958,1456.0,60.0,300.0,0,Urban,1.0
|
||||
LP002448,Male,Yes,0,1,0.0,3948,1733.0,149.0,360.0,0,Rural,0.0
|
||||
LP002449,Male,Yes,0,1,0.0,2483,2466.0,90.0,180.0,0,Rural,1.0
|
||||
LP002453,Male,No,0,1,1.0,7085,0.0,84.0,360.0,1,Semiurban,1.0
|
||||
LP002455,Male,Yes,2,1,0.0,3859,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP002459,Male,Yes,0,1,0.0,4301,0.0,118.0,360.0,1,Urban,1.0
|
||||
LP002467,Male,Yes,0,1,0.0,3708,2569.0,173.0,360.0,1,Urban,0.0
|
||||
LP002472,Male,No,2,1,0.0,4354,0.0,136.0,360.0,1,Rural,1.0
|
||||
LP002473,Male,Yes,0,1,0.0,8334,0.0,160.0,360.0,1,Semiurban,0.0
|
||||
LP002478,,Yes,0,1,1.0,2083,4083.0,160.0,360.0,0,Semiurban,1.0
|
||||
LP002484,Male,Yes,3+,1,0.0,7740,0.0,128.0,180.0,1,Urban,1.0
|
||||
LP002487,Male,Yes,0,1,0.0,3015,2188.0,153.0,360.0,1,Rural,1.0
|
||||
LP002489,Female,No,1,0,0.0,5191,0.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002493,Male,No,0,1,0.0,4166,0.0,98.0,360.0,0,Semiurban,0.0
|
||||
LP002494,Male,No,0,1,0.0,6000,0.0,140.0,360.0,1,Rural,1.0
|
||||
LP002500,Male,Yes,3+,0,0.0,2947,1664.0,70.0,180.0,0,Urban,0.0
|
||||
LP002501,,Yes,0,1,0.0,16692,0.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP002502,Female,Yes,2,0,0.0,210,2917.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP002505,Male,Yes,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
|
||||
LP002515,Male,Yes,1,1,1.0,3450,2079.0,162.0,360.0,1,Semiurban,1.0
|
||||
LP002517,Male,Yes,1,0,0.0,2653,1500.0,113.0,180.0,0,Rural,0.0
|
||||
LP002519,Male,Yes,3+,1,0.0,4691,0.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP002522,Female,No,0,1,1.0,2500,0.0,93.0,360.0,0,Urban,1.0
|
||||
LP002524,Male,No,2,1,0.0,5532,4648.0,162.0,360.0,1,Rural,1.0
|
||||
LP002527,Male,Yes,2,1,1.0,16525,1014.0,150.0,360.0,1,Rural,1.0
|
||||
LP002529,Male,Yes,2,1,0.0,6700,1750.0,230.0,300.0,1,Semiurban,1.0
|
||||
LP002530,,Yes,2,1,0.0,2873,1872.0,132.0,360.0,0,Semiurban,0.0
|
||||
LP002531,Male,Yes,1,1,1.0,16667,2250.0,86.0,360.0,1,Semiurban,1.0
|
||||
LP002533,Male,Yes,2,1,0.0,2947,1603.0,0.0,360.0,1,Urban,0.0
|
||||
LP002534,Female,No,0,0,0.0,4350,0.0,154.0,360.0,1,Rural,1.0
|
||||
LP002536,Male,Yes,3+,0,0.0,3095,0.0,113.0,360.0,1,Rural,1.0
|
||||
LP002537,Male,Yes,0,1,0.0,2083,3150.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP002541,Male,Yes,0,1,0.0,10833,0.0,234.0,360.0,1,Semiurban,1.0
|
||||
LP002543,Male,Yes,2,1,0.0,8333,0.0,246.0,360.0,1,Semiurban,1.0
|
||||
LP002544,Male,Yes,1,0,0.0,1958,2436.0,131.0,360.0,1,Rural,1.0
|
||||
LP002545,Male,No,2,1,0.0,3547,0.0,80.0,360.0,0,Rural,0.0
|
||||
LP002547,Male,Yes,1,1,0.0,18333,0.0,500.0,360.0,1,Urban,0.0
|
||||
LP002555,Male,Yes,2,1,1.0,4583,2083.0,160.0,360.0,1,Semiurban,1.0
|
||||
LP002556,Male,No,0,1,0.0,2435,0.0,75.0,360.0,1,Urban,0.0
|
||||
LP002560,Male,No,0,0,0.0,2699,2785.0,96.0,360.0,0,Semiurban,1.0
|
||||
LP002562,Male,Yes,1,0,0.0,5333,1131.0,186.0,360.0,0,Urban,1.0
|
||||
LP002571,Male,No,0,0,0.0,3691,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002582,Female,No,0,0,1.0,17263,0.0,225.0,360.0,1,Semiurban,1.0
|
||||
LP002585,Male,Yes,0,1,0.0,3597,2157.0,119.0,360.0,0,Rural,0.0
|
||||
LP002586,Female,Yes,1,1,0.0,3326,913.0,105.0,84.0,1,Semiurban,1.0
|
||||
LP002587,Male,Yes,0,0,0.0,2600,1700.0,107.0,360.0,1,Rural,1.0
|
||||
LP002588,Male,Yes,0,1,0.0,4625,2857.0,111.0,12.0,0,Urban,1.0
|
||||
LP002600,Male,Yes,1,1,1.0,2895,0.0,95.0,360.0,1,Semiurban,1.0
|
||||
LP002602,Male,No,0,1,0.0,6283,4416.0,209.0,360.0,0,Rural,0.0
|
||||
LP002603,Female,No,0,1,0.0,645,3683.0,113.0,480.0,1,Rural,1.0
|
||||
LP002606,Female,No,0,1,0.0,3159,0.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP002615,Male,Yes,2,1,0.0,4865,5624.0,208.0,360.0,1,Semiurban,1.0
|
||||
LP002618,Male,Yes,1,0,0.0,4050,5302.0,138.0,360.0,0,Rural,0.0
|
||||
LP002619,Male,Yes,0,0,0.0,3814,1483.0,124.0,300.0,1,Semiurban,1.0
|
||||
LP002622,Male,Yes,2,1,0.0,3510,4416.0,243.0,360.0,1,Rural,1.0
|
||||
LP002624,Male,Yes,0,1,0.0,20833,6667.0,480.0,360.0,0,Urban,1.0
|
||||
LP002625,,No,0,1,0.0,3583,0.0,96.0,360.0,1,Urban,0.0
|
||||
LP002626,Male,Yes,0,1,1.0,2479,3013.0,188.0,360.0,1,Urban,1.0
|
||||
LP002634,Female,No,1,1,0.0,13262,0.0,40.0,360.0,1,Urban,1.0
|
||||
LP002637,Male,No,0,0,0.0,3598,1287.0,100.0,360.0,1,Rural,0.0
|
||||
LP002640,Male,Yes,1,1,0.0,6065,2004.0,250.0,360.0,1,Semiurban,1.0
|
||||
LP002643,Male,Yes,2,1,0.0,3283,2035.0,148.0,360.0,1,Urban,1.0
|
||||
LP002648,Male,Yes,0,1,0.0,2130,6666.0,70.0,180.0,1,Semiurban,0.0
|
||||
LP002652,Male,No,0,1,0.0,5815,3666.0,311.0,360.0,1,Rural,0.0
|
||||
LP002659,Male,Yes,3+,1,0.0,3466,3428.0,150.0,360.0,1,Rural,1.0
|
||||
LP002670,Female,Yes,2,1,0.0,2031,1632.0,113.0,480.0,1,Semiurban,1.0
|
||||
LP002682,Male,Yes,,0,0.0,3074,1800.0,123.0,360.0,0,Semiurban,0.0
|
||||
LP002683,Male,No,0,1,0.0,4683,1915.0,185.0,360.0,1,Semiurban,0.0
|
||||
LP002684,Female,No,0,0,0.0,3400,0.0,95.0,360.0,1,Rural,0.0
|
||||
LP002689,Male,Yes,2,0,0.0,2192,1742.0,45.0,360.0,1,Semiurban,1.0
|
||||
LP002690,Male,No,0,1,0.0,2500,0.0,55.0,360.0,1,Semiurban,1.0
|
||||
LP002692,Male,Yes,3+,1,1.0,5677,1424.0,100.0,360.0,1,Rural,1.0
|
||||
LP002693,Male,Yes,2,1,1.0,7948,7166.0,480.0,360.0,1,Rural,1.0
|
||||
LP002697,Male,No,0,1,0.0,4680,2087.0,0.0,360.0,1,Semiurban,0.0
|
||||
LP002699,Male,Yes,2,1,1.0,17500,0.0,400.0,360.0,1,Rural,1.0
|
||||
LP002705,Male,Yes,0,1,0.0,3775,0.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP002706,Male,Yes,1,0,0.0,5285,1430.0,161.0,360.0,0,Semiurban,1.0
|
||||
LP002714,Male,No,1,0,0.0,2679,1302.0,94.0,360.0,1,Semiurban,1.0
|
||||
LP002716,Male,No,0,0,0.0,6783,0.0,130.0,360.0,1,Semiurban,1.0
|
||||
LP002717,Male,Yes,0,1,0.0,1025,5500.0,216.0,360.0,0,Rural,1.0
|
||||
LP002720,Male,Yes,3+,1,0.0,4281,0.0,100.0,360.0,1,Urban,1.0
|
||||
LP002723,Male,No,2,1,0.0,3588,0.0,110.0,360.0,0,Rural,0.0
|
||||
LP002729,Male,No,1,1,0.0,11250,0.0,196.0,360.0,0,Semiurban,0.0
|
||||
LP002731,Female,No,0,0,1.0,18165,0.0,125.0,360.0,1,Urban,1.0
|
||||
LP002732,Male,No,0,0,0.0,2550,2042.0,126.0,360.0,1,Rural,1.0
|
||||
LP002734,Male,Yes,0,1,0.0,6133,3906.0,324.0,360.0,1,Urban,1.0
|
||||
LP002738,Male,No,2,1,0.0,3617,0.0,107.0,360.0,1,Semiurban,1.0
|
||||
LP002739,Male,Yes,0,0,0.0,2917,536.0,66.0,360.0,1,Rural,0.0
|
||||
LP002740,Male,Yes,3+,1,0.0,6417,0.0,157.0,180.0,1,Rural,1.0
|
||||
LP002741,Female,Yes,1,1,0.0,4608,2845.0,140.0,180.0,1,Semiurban,1.0
|
||||
LP002743,Female,No,0,1,0.0,2138,0.0,99.0,360.0,0,Semiurban,0.0
|
||||
LP002753,Female,No,1,1,0.0,3652,0.0,95.0,360.0,1,Semiurban,1.0
|
||||
LP002755,Male,Yes,1,0,0.0,2239,2524.0,128.0,360.0,1,Urban,1.0
|
||||
LP002757,Female,Yes,0,0,0.0,3017,663.0,102.0,360.0,0,Semiurban,1.0
|
||||
LP002767,Male,Yes,0,1,0.0,2768,1950.0,155.0,360.0,1,Rural,1.0
|
||||
LP002768,Male,No,0,0,0.0,3358,0.0,80.0,36.0,1,Semiurban,0.0
|
||||
LP002772,Male,No,0,1,0.0,2526,1783.0,145.0,360.0,1,Rural,1.0
|
||||
LP002776,Female,No,0,1,0.0,5000,0.0,103.0,360.0,0,Semiurban,0.0
|
||||
LP002777,Male,Yes,0,1,0.0,2785,2016.0,110.0,360.0,1,Rural,1.0
|
||||
LP002778,Male,Yes,2,1,1.0,6633,0.0,0.0,360.0,0,Rural,0.0
|
||||
LP002784,Male,Yes,1,0,0.0,2492,2375.0,0.0,360.0,1,Rural,1.0
|
||||
LP002785,Male,Yes,1,1,0.0,3333,3250.0,158.0,360.0,1,Urban,1.0
|
||||
LP002788,Male,Yes,0,0,0.0,2454,2333.0,181.0,360.0,0,Urban,0.0
|
||||
LP002789,Male,Yes,0,1,0.0,3593,4266.0,132.0,180.0,0,Rural,0.0
|
||||
LP002792,Male,Yes,1,1,0.0,5468,1032.0,26.0,360.0,1,Semiurban,1.0
|
||||
LP002794,Female,No,0,1,0.0,2667,1625.0,84.0,360.0,0,Urban,1.0
|
||||
LP002795,Male,Yes,3+,1,1.0,10139,0.0,260.0,360.0,1,Semiurban,1.0
|
||||
LP002798,Male,Yes,0,1,0.0,3887,2669.0,162.0,360.0,1,Semiurban,1.0
|
||||
LP002804,Female,Yes,0,1,0.0,4180,2306.0,182.0,360.0,1,Semiurban,1.0
|
||||
LP002807,Male,Yes,2,0,0.0,3675,242.0,108.0,360.0,1,Semiurban,1.0
|
||||
LP002813,Female,Yes,1,1,1.0,19484,0.0,600.0,360.0,1,Semiurban,1.0
|
||||
LP002820,Male,Yes,0,1,0.0,5923,2054.0,211.0,360.0,1,Rural,1.0
|
||||
LP002821,Male,No,0,0,1.0,5800,0.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002832,Male,Yes,2,1,0.0,8799,0.0,258.0,360.0,0,Urban,0.0
|
||||
LP002833,Male,Yes,0,0,0.0,4467,0.0,120.0,360.0,0,Rural,1.0
|
||||
LP002836,Male,No,0,1,0.0,3333,0.0,70.0,360.0,1,Urban,1.0
|
||||
LP002837,Male,Yes,3+,1,0.0,3400,2500.0,123.0,360.0,0,Rural,0.0
|
||||
LP002840,Female,No,0,1,0.0,2378,0.0,9.0,360.0,1,Urban,0.0
|
||||
LP002841,Male,Yes,0,1,0.0,3166,2064.0,104.0,360.0,0,Urban,0.0
|
||||
LP002842,Male,Yes,1,1,0.0,3417,1750.0,186.0,360.0,1,Urban,1.0
|
||||
LP002847,Male,Yes,,1,0.0,5116,1451.0,165.0,360.0,0,Urban,0.0
|
||||
LP002855,Male,Yes,2,1,0.0,16666,0.0,275.0,360.0,1,Urban,1.0
|
||||
LP002862,Male,Yes,2,0,0.0,6125,1625.0,187.0,480.0,1,Semiurban,0.0
|
||||
LP002863,Male,Yes,3+,1,0.0,6406,0.0,150.0,360.0,1,Semiurban,0.0
|
||||
LP002868,Male,Yes,2,1,0.0,3159,461.0,108.0,84.0,1,Urban,1.0
|
||||
LP002872,,Yes,0,1,0.0,3087,2210.0,136.0,360.0,0,Semiurban,0.0
|
||||
LP002874,Male,No,0,1,0.0,3229,2739.0,110.0,360.0,1,Urban,1.0
|
||||
LP002877,Male,Yes,1,1,0.0,1782,2232.0,107.0,360.0,1,Rural,1.0
|
||||
LP002888,Male,No,0,1,0.0,3182,2917.0,161.0,360.0,1,Urban,1.0
|
||||
LP002892,Male,Yes,2,1,0.0,6540,0.0,205.0,360.0,1,Semiurban,1.0
|
||||
LP002893,Male,No,0,1,0.0,1836,33837.0,90.0,360.0,1,Urban,0.0
|
||||
LP002894,Female,Yes,0,1,0.0,3166,0.0,36.0,360.0,1,Semiurban,1.0
|
||||
LP002898,Male,Yes,1,1,0.0,1880,0.0,61.0,360.0,0,Rural,0.0
|
||||
LP002911,Male,Yes,1,1,0.0,2787,1917.0,146.0,360.0,0,Rural,0.0
|
||||
LP002912,Male,Yes,1,1,0.0,4283,3000.0,172.0,84.0,1,Rural,0.0
|
||||
LP002916,Male,Yes,0,1,0.0,2297,1522.0,104.0,360.0,1,Urban,1.0
|
||||
LP002917,Female,No,0,0,0.0,2165,0.0,70.0,360.0,1,Semiurban,1.0
|
||||
LP002925,,No,0,1,0.0,4750,0.0,94.0,360.0,1,Semiurban,1.0
|
||||
LP002926,Male,Yes,2,1,1.0,2726,0.0,106.0,360.0,0,Semiurban,0.0
|
||||
LP002928,Male,Yes,0,1,0.0,3000,3416.0,56.0,180.0,1,Semiurban,1.0
|
||||
LP002931,Male,Yes,2,1,1.0,6000,0.0,205.0,240.0,1,Semiurban,0.0
|
||||
LP002933,,No,3+,1,1.0,9357,0.0,292.0,360.0,1,Semiurban,1.0
|
||||
LP002936,Male,Yes,0,1,0.0,3859,3300.0,142.0,180.0,1,Rural,1.0
|
||||
LP002938,Male,Yes,0,1,1.0,16120,0.0,260.0,360.0,1,Urban,1.0
|
||||
LP002940,Male,No,0,0,0.0,3833,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002941,Male,Yes,2,0,1.0,6383,1000.0,187.0,360.0,1,Rural,0.0
|
||||
LP002943,Male,No,,1,0.0,2987,0.0,88.0,360.0,0,Semiurban,0.0
|
||||
LP002945,Male,Yes,0,1,1.0,9963,0.0,180.0,360.0,1,Rural,1.0
|
||||
LP002948,Male,Yes,2,1,0.0,5780,0.0,192.0,360.0,1,Urban,1.0
|
||||
LP002949,Female,No,3+,1,0.0,416,41667.0,350.0,180.0,0,Urban,0.0
|
||||
LP002950,Male,Yes,0,0,0.0,2894,2792.0,155.0,360.0,1,Rural,1.0
|
||||
LP002953,Male,Yes,3+,1,0.0,5703,0.0,128.0,360.0,1,Urban,1.0
|
||||
LP002958,Male,No,0,1,0.0,3676,4301.0,172.0,360.0,1,Rural,1.0
|
||||
LP002959,Female,Yes,1,1,0.0,12000,0.0,496.0,360.0,1,Semiurban,1.0
|
||||
LP002960,Male,Yes,0,0,0.0,2400,3800.0,0.0,180.0,1,Urban,0.0
|
||||
LP002961,Male,Yes,1,1,0.0,3400,2500.0,173.0,360.0,1,Semiurban,1.0
|
||||
LP002964,Male,Yes,2,0,0.0,3987,1411.0,157.0,360.0,1,Rural,1.0
|
||||
LP002974,Male,Yes,0,1,0.0,3232,1950.0,108.0,360.0,1,Rural,1.0
|
||||
LP002978,Female,No,0,1,0.0,2900,0.0,71.0,360.0,1,Rural,1.0
|
||||
LP002979,Male,Yes,3+,1,0.0,4106,0.0,40.0,180.0,1,Rural,1.0
|
||||
LP002983,Male,Yes,1,1,0.0,8072,240.0,253.0,360.0,1,Urban,1.0
|
||||
LP002984,Male,Yes,2,1,0.0,7583,0.0,187.0,360.0,1,Urban,1.0
|
||||
LP002990,Female,No,0,1,1.0,4583,0.0,133.0,360.0,0,Semiurban,0.0
|
|
BIN
abanin_daniil_lab_4/result.png
Normal file
After Width: | Height: | Size: 92 KiB |
38
abanin_daniil_lab_5/README.md
Normal file
@ -0,0 +1,38 @@
|
||||
## Лабораторная работа №5
|
||||
|
||||
### Ранжирование признаков
|
||||
|
||||
## ПИбд-41 Абанин Даниил
|
||||
|
||||
### Как запустить лабораторную работу:
|
||||
|
||||
* установить python, pandas, matplotlib, sklearn
|
||||
* запустить проект (стартовая точка lab4)
|
||||
|
||||
### Какие технологии использовались:
|
||||
|
||||
* Язык программирования `Python`, библиотеки pandas, matplotlib, sklearn
|
||||
* Среда разработки `PyCharm`
|
||||
|
||||
### Что делает лабораторная работа:
|
||||
Программа решает задачу регрессии, используя полиномиальную регрессию.
|
||||
Цель - предсказать сумму займа (LoanAmount), используя имеющиеся признаки: ApplicantIncome - доход заявителя, Credit_History - статус соответствия кредитной истории стандартам банка,
|
||||
Education - наличие образования, Married - заявитель женат/замужем (Да/Нет), Self_Employed - самозанятый (Да/Нет)
|
||||
|
||||
### Тест
|
||||
Зелёные маркеры на графике - тестовые результаты
|
||||
Красные маркеры на графике - предсказанные результаты
|
||||
|
||||
При небольшом объёме тестовых данных, алгоритм показывает неплохие результаты обучения
|
||||
|
||||
![Result](grade_1.png)
|
||||
|
||||
![Result](result_1.png)
|
||||
|
||||
Но при увеличении объёма данных, алгоритм теряет свою эффективность
|
||||
|
||||
![Result](grade_2.png)
|
||||
|
||||
![Result](result_2.png)
|
||||
|
||||
Вывод: На малых объёмах данных алгоритм показывает свою эффективность. Но при большем объём стоит использовать другие методы для данного набора информации
|
BIN
abanin_daniil_lab_5/grade_1.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
abanin_daniil_lab_5/grade_2.png
Normal file
After Width: | Height: | Size: 10 KiB |
33
abanin_daniil_lab_5/lab5.py
Normal file
@ -0,0 +1,33 @@
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn import metrics
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
from sklearn.pipeline import Pipeline
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def start():
|
||||
data = pd.read_csv('loan.csv')
|
||||
x = data[['ApplicantIncome', 'Credit_History', 'Education', 'Married', 'Self_Employed']]
|
||||
y = data[['LoanAmount']]
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42)
|
||||
|
||||
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
|
||||
('linear', LinearRegression())])
|
||||
poly.fit(x_train, y_train)
|
||||
|
||||
y_predicted = poly.predict(x_test)
|
||||
|
||||
print('Оценка обучения:')
|
||||
print(metrics.r2_score(y_test, y_predicted))
|
||||
|
||||
plt.figure(1, figsize=(16, 9))
|
||||
plt.title('Сравнение результатов обучения')
|
||||
plt.scatter(x=[i for i in range(len(x_test))], y=y_test, c='green', s=5)
|
||||
plt.scatter(x=[i for i in range(len(x_test))], y=y_predicted, c='red', s=5)
|
||||
plt.show()
|
||||
|
||||
|
||||
start()
|
615
abanin_daniil_lab_5/loan.csv
Normal file
@ -0,0 +1,615 @@
|
||||
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
|
||||
LP001002,Male,0.0,0,1,0.0,5849,0.0,360.0,1.0,0,Y,0.0
|
||||
LP001003,Male,1.0,1,1,0.0,4583,1508.0,128.0,360.0,1,Rural,0.0
|
||||
LP001005,Male,1.0,0,1,1.0,3000,0.0,66.0,360.0,1,Urban,1.0
|
||||
LP001006,Male,1.0,0,0,0.0,2583,2358.0,120.0,360.0,1,Urban,1.0
|
||||
LP001008,Male,0.0,0,1,0.0,6000,0.0,141.0,360.0,1,Urban,1.0
|
||||
LP001011,Male,1.0,2,1,1.0,5417,4196.0,267.0,360.0,1,Urban,1.0
|
||||
LP001013,Male,1.0,0,0,0.0,2333,1516.0,95.0,360.0,1,Urban,1.0
|
||||
LP001014,Male,1.0,3+,1,0.0,3036,2504.0,158.0,360.0,0,Semiurban,0.0
|
||||
LP001018,Male,1.0,2,1,0.0,4006,1526.0,168.0,360.0,1,Urban,1.0
|
||||
LP001020,Male,1.0,1,1,0.0,12841,10968.0,349.0,360.0,1,Semiurban,0.0
|
||||
LP001024,Male,1.0,2,1,0.0,3200,700.0,70.0,360.0,1,Urban,1.0
|
||||
LP001027,Male,1.0,2,1,0.0,2500,1840.0,109.0,360.0,1,Urban,1.0
|
||||
LP001028,Male,1.0,2,1,0.0,3073,8106.0,200.0,360.0,1,Urban,1.0
|
||||
LP001029,Male,0.0,0,1,0.0,1853,2840.0,114.0,360.0,1,Rural,0.0
|
||||
LP001030,Male,1.0,2,1,0.0,1299,1086.0,17.0,120.0,1,Urban,1.0
|
||||
LP001032,Male,0.0,0,1,0.0,4950,0.0,125.0,360.0,1,Urban,1.0
|
||||
LP001034,Male,0.0,1,0,0.0,3596,0.0,100.0,240.0,0,Urban,1.0
|
||||
LP001036,Female,0.0,0,1,0.0,3510,0.0,76.0,360.0,0,Urban,0.0
|
||||
LP001038,Male,1.0,0,0,0.0,4887,0.0,133.0,360.0,1,Rural,0.0
|
||||
LP001041,Male,1.0,0,1,0.0,2600,3500.0,115.0,,1,Urban,1.0
|
||||
LP001043,Male,1.0,0,0,0.0,7660,0.0,104.0,360.0,0,Urban,0.0
|
||||
LP001046,Male,1.0,1,1,0.0,5955,5625.0,315.0,360.0,1,Urban,1.0
|
||||
LP001047,Male,1.0,0,0,0.0,2600,1911.0,116.0,360.0,0,Semiurban,0.0
|
||||
LP001050,,1.0,2,0,0.0,3365,1917.0,112.0,360.0,0,Rural,0.0
|
||||
LP001052,Male,1.0,1,1,0.0,3717,2925.0,151.0,360.0,0,Semiurban,0.0
|
||||
LP001066,Male,1.0,0,1,1.0,9560,0.0,191.0,360.0,1,Semiurban,1.0
|
||||
LP001068,Male,1.0,0,1,0.0,2799,2253.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001073,Male,1.0,2,0,0.0,4226,1040.0,110.0,360.0,1,Urban,1.0
|
||||
LP001086,Male,0.0,0,0,0.0,1442,0.0,35.0,360.0,1,Urban,0.0
|
||||
LP001087,Female,0.0,2,1,0.0,3750,2083.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001091,Male,1.0,1,1,0.0,4166,3369.0,201.0,360.0,0,Urban,0.0
|
||||
LP001095,Male,0.0,0,1,0.0,3167,0.0,74.0,360.0,1,Urban,0.0
|
||||
LP001097,Male,0.0,1,1,1.0,4692,0.0,106.0,360.0,1,Rural,0.0
|
||||
LP001098,Male,1.0,0,1,0.0,3500,1667.0,114.0,360.0,1,Semiurban,1.0
|
||||
LP001100,Male,0.0,3+,1,0.0,12500,3000.0,320.0,360.0,1,Rural,0.0
|
||||
LP001106,Male,1.0,0,1,0.0,2275,2067.0,0.0,360.0,1,Urban,1.0
|
||||
LP001109,Male,1.0,0,1,0.0,1828,1330.0,100.0,,0,Urban,0.0
|
||||
LP001112,Female,1.0,0,1,0.0,3667,1459.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001114,Male,0.0,0,1,0.0,4166,7210.0,184.0,360.0,1,Urban,1.0
|
||||
LP001116,Male,0.0,0,0,0.0,3748,1668.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP001119,Male,0.0,0,1,0.0,3600,0.0,80.0,360.0,1,Urban,0.0
|
||||
LP001120,Male,0.0,0,1,0.0,1800,1213.0,47.0,360.0,1,Urban,1.0
|
||||
LP001123,Male,1.0,0,1,0.0,2400,0.0,75.0,360.0,0,Urban,1.0
|
||||
LP001131,Male,1.0,0,1,0.0,3941,2336.0,134.0,360.0,1,Semiurban,1.0
|
||||
LP001136,Male,1.0,0,0,1.0,4695,0.0,96.0,,1,Urban,1.0
|
||||
LP001137,Female,0.0,0,1,0.0,3410,0.0,88.0,,1,Urban,1.0
|
||||
LP001138,Male,1.0,1,1,0.0,5649,0.0,44.0,360.0,1,Urban,1.0
|
||||
LP001144,Male,1.0,0,1,0.0,5821,0.0,144.0,360.0,1,Urban,1.0
|
||||
LP001146,Female,1.0,0,1,0.0,2645,3440.0,120.0,360.0,0,Urban,0.0
|
||||
LP001151,Female,0.0,0,1,0.0,4000,2275.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001155,Female,1.0,0,0,0.0,1928,1644.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001157,Female,0.0,0,1,0.0,3086,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001164,Female,0.0,0,1,0.0,4230,0.0,112.0,360.0,1,Semiurban,0.0
|
||||
LP001179,Male,1.0,2,1,0.0,4616,0.0,134.0,360.0,1,Urban,0.0
|
||||
LP001186,Female,1.0,1,1,1.0,11500,0.0,286.0,360.0,0,Urban,0.0
|
||||
LP001194,Male,1.0,2,1,0.0,2708,1167.0,97.0,360.0,1,Semiurban,1.0
|
||||
LP001195,Male,1.0,0,1,0.0,2132,1591.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP001197,Male,1.0,0,1,0.0,3366,2200.0,135.0,360.0,1,Rural,0.0
|
||||
LP001198,Male,1.0,1,1,0.0,8080,2250.0,180.0,360.0,1,Urban,1.0
|
||||
LP001199,Male,1.0,2,0,0.0,3357,2859.0,144.0,360.0,1,Urban,1.0
|
||||
LP001205,Male,1.0,0,1,0.0,2500,3796.0,120.0,360.0,1,Urban,1.0
|
||||
LP001206,Male,1.0,3+,1,0.0,3029,0.0,99.0,360.0,1,Urban,1.0
|
||||
LP001207,Male,1.0,0,0,1.0,2609,3449.0,165.0,180.0,0,Rural,0.0
|
||||
LP001213,Male,1.0,1,1,0.0,4945,0.0,0.0,360.0,0,Rural,0.0
|
||||
LP001222,Female,0.0,0,1,0.0,4166,0.0,116.0,360.0,0,Semiurban,0.0
|
||||
LP001225,Male,1.0,0,1,0.0,5726,4595.0,258.0,360.0,1,Semiurban,0.0
|
||||
LP001228,Male,0.0,0,0,0.0,3200,2254.0,126.0,180.0,0,Urban,0.0
|
||||
LP001233,Male,1.0,1,1,0.0,10750,0.0,312.0,360.0,1,Urban,1.0
|
||||
LP001238,Male,1.0,3+,0,1.0,7100,0.0,125.0,60.0,1,Urban,1.0
|
||||
LP001241,Female,0.0,0,1,0.0,4300,0.0,136.0,360.0,0,Semiurban,0.0
|
||||
LP001243,Male,1.0,0,1,0.0,3208,3066.0,172.0,360.0,1,Urban,1.0
|
||||
LP001245,Male,1.0,2,0,1.0,1875,1875.0,97.0,360.0,1,Semiurban,1.0
|
||||
LP001248,Male,0.0,0,1,0.0,3500,0.0,81.0,300.0,1,Semiurban,1.0
|
||||
LP001250,Male,1.0,3+,0,0.0,4755,0.0,95.0,,0,Semiurban,0.0
|
||||
LP001253,Male,1.0,3+,1,1.0,5266,1774.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP001255,Male,0.0,0,1,0.0,3750,0.0,113.0,480.0,1,Urban,0.0
|
||||
LP001256,Male,0.0,0,1,0.0,3750,4750.0,176.0,360.0,1,Urban,0.0
|
||||
LP001259,Male,1.0,1,1,1.0,1000,3022.0,110.0,360.0,1,Urban,0.0
|
||||
LP001263,Male,1.0,3+,1,0.0,3167,4000.0,180.0,300.0,0,Semiurban,0.0
|
||||
LP001264,Male,1.0,3+,0,1.0,3333,2166.0,130.0,360.0,0,Semiurban,1.0
|
||||
LP001265,Female,0.0,0,1,0.0,3846,0.0,111.0,360.0,1,Semiurban,1.0
|
||||
LP001266,Male,1.0,1,1,1.0,2395,0.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001267,Female,1.0,2,1,0.0,1378,1881.0,167.0,360.0,1,Urban,0.0
|
||||
LP001273,Male,1.0,0,1,0.0,6000,2250.0,265.0,360.0,0,Semiurban,0.0
|
||||
LP001275,Male,1.0,1,1,0.0,3988,0.0,50.0,240.0,1,Urban,1.0
|
||||
LP001279,Male,0.0,0,1,0.0,2366,2531.0,136.0,360.0,1,Semiurban,1.0
|
||||
LP001280,Male,1.0,2,0,0.0,3333,2000.0,99.0,360.0,0,Semiurban,1.0
|
||||
LP001282,Male,1.0,0,1,0.0,2500,2118.0,104.0,360.0,1,Semiurban,1.0
|
||||
LP001289,Male,0.0,0,1,0.0,8566,0.0,210.0,360.0,1,Urban,1.0
|
||||
LP001310,Male,1.0,0,1,0.0,5695,4167.0,175.0,360.0,1,Semiurban,1.0
|
||||
LP001316,Male,1.0,0,1,0.0,2958,2900.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001318,Male,1.0,2,1,0.0,6250,5654.0,188.0,180.0,1,Semiurban,1.0
|
||||
LP001319,Male,1.0,2,0,0.0,3273,1820.0,81.0,360.0,1,Urban,1.0
|
||||
LP001322,Male,0.0,0,1,0.0,4133,0.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001325,Male,0.0,0,0,0.0,3620,0.0,25.0,120.0,1,Semiurban,1.0
|
||||
LP001326,Male,0.0,0,1,0.0,6782,0.0,0.0,360.0,0,Urban,0.0
|
||||
LP001327,Female,1.0,0,1,0.0,2484,2302.0,137.0,360.0,1,Semiurban,1.0
|
||||
LP001333,Male,1.0,0,1,0.0,1977,997.0,50.0,360.0,1,Semiurban,1.0
|
||||
LP001334,Male,1.0,0,0,0.0,4188,0.0,115.0,180.0,1,Semiurban,1.0
|
||||
LP001343,Male,1.0,0,1,0.0,1759,3541.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001345,Male,1.0,2,0,0.0,4288,3263.0,133.0,180.0,1,Urban,1.0
|
||||
LP001349,Male,0.0,0,1,0.0,4843,3806.0,151.0,360.0,1,Semiurban,1.0
|
||||
LP001350,Male,1.0,,1,0.0,13650,0.0,0.0,360.0,1,Urban,1.0
|
||||
LP001356,Male,1.0,0,1,0.0,4652,3583.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001357,Male,0.0,,1,0.0,3816,754.0,160.0,360.0,1,Urban,1.0
|
||||
LP001367,Male,1.0,1,1,0.0,3052,1030.0,100.0,360.0,1,Urban,1.0
|
||||
LP001369,Male,1.0,2,1,0.0,11417,1126.0,225.0,360.0,1,Urban,1.0
|
||||
LP001370,Male,0.0,0,0,0.0,7333,0.0,120.0,360.0,1,Rural,0.0
|
||||
LP001379,Male,1.0,2,1,0.0,3800,3600.0,216.0,360.0,0,Urban,0.0
|
||||
LP001384,Male,1.0,3+,0,0.0,2071,754.0,94.0,480.0,1,Semiurban,1.0
|
||||
LP001385,Male,0.0,0,1,0.0,5316,0.0,136.0,360.0,1,Urban,1.0
|
||||
LP001387,Female,1.0,0,1,0.0,2929,2333.0,139.0,360.0,1,Semiurban,1.0
|
||||
LP001391,Male,1.0,0,0,0.0,3572,4114.0,152.0,,0,Rural,0.0
|
||||
LP001392,Female,0.0,1,1,1.0,7451,0.0,0.0,360.0,1,Semiurban,1.0
|
||||
LP001398,Male,0.0,0,1,0.0,5050,0.0,118.0,360.0,1,Semiurban,1.0
|
||||
LP001401,Male,1.0,1,1,0.0,14583,0.0,185.0,180.0,1,Rural,1.0
|
||||
LP001404,Female,1.0,0,1,0.0,3167,2283.0,154.0,360.0,1,Semiurban,1.0
|
||||
LP001405,Male,1.0,1,1,0.0,2214,1398.0,85.0,360.0,0,Urban,1.0
|
||||
LP001421,Male,1.0,0,1,0.0,5568,2142.0,175.0,360.0,1,Rural,0.0
|
||||
LP001422,Female,0.0,0,1,0.0,10408,0.0,259.0,360.0,1,Urban,1.0
|
||||
LP001426,Male,1.0,,1,0.0,5667,2667.0,180.0,360.0,1,Rural,1.0
|
||||
LP001430,Female,0.0,0,1,0.0,4166,0.0,44.0,360.0,1,Semiurban,1.0
|
||||
LP001431,Female,0.0,0,1,0.0,2137,8980.0,137.0,360.0,0,Semiurban,1.0
|
||||
LP001432,Male,1.0,2,1,0.0,2957,0.0,81.0,360.0,1,Semiurban,1.0
|
||||
LP001439,Male,1.0,0,0,0.0,4300,2014.0,194.0,360.0,1,Rural,1.0
|
||||
LP001443,Female,0.0,0,1,0.0,3692,0.0,93.0,360.0,0,Rural,1.0
|
||||
LP001448,,1.0,3+,1,0.0,23803,0.0,370.0,360.0,1,Rural,1.0
|
||||
LP001449,Male,0.0,0,1,0.0,3865,1640.0,0.0,360.0,1,Rural,1.0
|
||||
LP001451,Male,1.0,1,1,1.0,10513,3850.0,160.0,180.0,0,Urban,0.0
|
||||
LP001465,Male,1.0,0,1,0.0,6080,2569.0,182.0,360.0,0,Rural,0.0
|
||||
LP001469,Male,0.0,0,1,1.0,20166,0.0,650.0,480.0,0,Urban,1.0
|
||||
LP001473,Male,0.0,0,1,0.0,2014,1929.0,74.0,360.0,1,Urban,1.0
|
||||
LP001478,Male,0.0,0,1,0.0,2718,0.0,70.0,360.0,1,Semiurban,1.0
|
||||
LP001482,Male,1.0,0,1,1.0,3459,0.0,25.0,120.0,1,Semiurban,1.0
|
||||
LP001487,Male,0.0,0,1,0.0,4895,0.0,102.0,360.0,1,Semiurban,1.0
|
||||
LP001488,Male,1.0,3+,1,0.0,4000,7750.0,290.0,360.0,1,Semiurban,0.0
|
||||
LP001489,Female,1.0,0,1,0.0,4583,0.0,84.0,360.0,1,Rural,0.0
|
||||
LP001491,Male,1.0,2,1,1.0,3316,3500.0,88.0,360.0,1,Urban,1.0
|
||||
LP001492,Male,0.0,0,1,0.0,14999,0.0,242.0,360.0,0,Semiurban,0.0
|
||||
LP001493,Male,1.0,2,0,0.0,4200,1430.0,129.0,360.0,1,Rural,0.0
|
||||
LP001497,Male,1.0,2,1,0.0,5042,2083.0,185.0,360.0,1,Rural,0.0
|
||||
LP001498,Male,0.0,0,1,0.0,5417,0.0,168.0,360.0,1,Urban,1.0
|
||||
LP001504,Male,0.0,0,1,1.0,6950,0.0,175.0,180.0,1,Semiurban,1.0
|
||||
LP001507,Male,1.0,0,1,0.0,2698,2034.0,122.0,360.0,1,Semiurban,1.0
|
||||
LP001508,Male,1.0,2,1,0.0,11757,0.0,187.0,180.0,1,Urban,1.0
|
||||
LP001514,Female,1.0,0,1,0.0,2330,4486.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001516,Female,1.0,2,1,0.0,14866,0.0,70.0,360.0,1,Urban,1.0
|
||||
LP001518,Male,1.0,1,1,0.0,1538,1425.0,30.0,360.0,1,Urban,1.0
|
||||
LP001519,Female,0.0,0,1,0.0,10000,1666.0,225.0,360.0,1,Rural,0.0
|
||||
LP001520,Male,1.0,0,1,0.0,4860,830.0,125.0,360.0,1,Semiurban,1.0
|
||||
LP001528,Male,0.0,0,1,0.0,6277,0.0,118.0,360.0,0,Rural,0.0
|
||||
LP001529,Male,1.0,0,1,1.0,2577,3750.0,152.0,360.0,1,Rural,1.0
|
||||
LP001531,Male,0.0,0,1,0.0,9166,0.0,244.0,360.0,1,Urban,0.0
|
||||
LP001532,Male,1.0,2,0,0.0,2281,0.0,113.0,360.0,1,Rural,0.0
|
||||
LP001535,Male,0.0,0,1,0.0,3254,0.0,50.0,360.0,1,Urban,1.0
|
||||
LP001536,Male,1.0,3+,1,0.0,39999,0.0,600.0,180.0,0,Semiurban,1.0
|
||||
LP001541,Male,1.0,1,1,0.0,6000,0.0,160.0,360.0,0,Rural,1.0
|
||||
LP001543,Male,1.0,1,1,0.0,9538,0.0,187.0,360.0,1,Urban,1.0
|
||||
LP001546,Male,0.0,0,1,0.0,2980,2083.0,120.0,360.0,1,Rural,1.0
|
||||
LP001552,Male,1.0,0,1,0.0,4583,5625.0,255.0,360.0,1,Semiurban,1.0
|
||||
LP001560,Male,1.0,0,0,0.0,1863,1041.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP001562,Male,1.0,0,1,0.0,7933,0.0,275.0,360.0,1,Urban,0.0
|
||||
LP001565,Male,1.0,1,1,0.0,3089,1280.0,121.0,360.0,0,Semiurban,0.0
|
||||
LP001570,Male,1.0,2,1,0.0,4167,1447.0,158.0,360.0,1,Rural,1.0
|
||||
LP001572,Male,1.0,0,1,0.0,9323,0.0,75.0,180.0,1,Urban,1.0
|
||||
LP001574,Male,1.0,0,1,0.0,3707,3166.0,182.0,,1,Rural,1.0
|
||||
LP001577,Female,1.0,0,1,0.0,4583,0.0,112.0,360.0,1,Rural,0.0
|
||||
LP001578,Male,1.0,0,1,0.0,2439,3333.0,129.0,360.0,1,Rural,1.0
|
||||
LP001579,Male,0.0,0,1,0.0,2237,0.0,63.0,480.0,0,Semiurban,0.0
|
||||
LP001580,Male,1.0,2,1,0.0,8000,0.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP001581,Male,1.0,0,0,0.0,1820,1769.0,95.0,360.0,1,Rural,1.0
|
||||
LP001585,,1.0,3+,1,0.0,51763,0.0,700.0,300.0,1,Urban,1.0
|
||||
LP001586,Male,1.0,3+,0,0.0,3522,0.0,81.0,180.0,1,Rural,0.0
|
||||
LP001594,Male,1.0,0,1,0.0,5708,5625.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP001603,Male,1.0,0,0,1.0,4344,736.0,87.0,360.0,1,Semiurban,0.0
|
||||
LP001606,Male,1.0,0,1,0.0,3497,1964.0,116.0,360.0,1,Rural,1.0
|
||||
LP001608,Male,1.0,2,1,0.0,2045,1619.0,101.0,360.0,1,Rural,1.0
|
||||
LP001610,Male,1.0,3+,1,0.0,5516,11300.0,495.0,360.0,0,Semiurban,0.0
|
||||
LP001616,Male,1.0,1,1,0.0,3750,0.0,116.0,360.0,1,Semiurban,1.0
|
||||
LP001630,Male,0.0,0,0,0.0,2333,1451.0,102.0,480.0,0,Urban,0.0
|
||||
LP001633,Male,1.0,1,1,0.0,6400,7250.0,180.0,360.0,0,Urban,0.0
|
||||
LP001634,Male,0.0,0,1,0.0,1916,5063.0,67.0,360.0,0,Rural,0.0
|
||||
LP001636,Male,1.0,0,1,0.0,4600,0.0,73.0,180.0,1,Semiurban,1.0
|
||||
LP001637,Male,1.0,1,1,0.0,33846,0.0,260.0,360.0,1,Semiurban,0.0
|
||||
LP001639,Female,1.0,0,1,0.0,3625,0.0,108.0,360.0,1,Semiurban,1.0
|
||||
LP001640,Male,1.0,0,1,1.0,39147,4750.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001641,Male,1.0,1,1,1.0,2178,0.0,66.0,300.0,0,Rural,0.0
|
||||
LP001643,Male,1.0,0,1,0.0,2383,2138.0,58.0,360.0,0,Rural,1.0
|
||||
LP001644,,1.0,0,1,1.0,674,5296.0,168.0,360.0,1,Rural,1.0
|
||||
LP001647,Male,1.0,0,1,0.0,9328,0.0,188.0,180.0,1,Rural,1.0
|
||||
LP001653,Male,0.0,0,0,0.0,4885,0.0,48.0,360.0,1,Rural,1.0
|
||||
LP001656,Male,0.0,0,1,0.0,12000,0.0,164.0,360.0,1,Semiurban,0.0
|
||||
LP001657,Male,1.0,0,0,0.0,6033,0.0,160.0,360.0,1,Urban,0.0
|
||||
LP001658,Male,0.0,0,1,0.0,3858,0.0,76.0,360.0,1,Semiurban,1.0
|
||||
LP001664,Male,0.0,0,1,0.0,4191,0.0,120.0,360.0,1,Rural,1.0
|
||||
LP001665,Male,1.0,1,1,0.0,3125,2583.0,170.0,360.0,1,Semiurban,0.0
|
||||
LP001666,Male,0.0,0,1,0.0,8333,3750.0,187.0,360.0,1,Rural,1.0
|
||||
LP001669,Female,0.0,0,0,0.0,1907,2365.0,120.0,,1,Urban,1.0
|
||||
LP001671,Female,1.0,0,1,0.0,3416,2816.0,113.0,360.0,0,Semiurban,1.0
|
||||
LP001673,Male,0.0,0,1,1.0,11000,0.0,83.0,360.0,1,Urban,0.0
|
||||
LP001674,Male,1.0,1,0,0.0,2600,2500.0,90.0,360.0,1,Semiurban,1.0
|
||||
LP001677,Male,0.0,2,1,0.0,4923,0.0,166.0,360.0,0,Semiurban,1.0
|
||||
LP001682,Male,1.0,3+,0,0.0,3992,0.0,0.0,180.0,1,Urban,0.0
|
||||
LP001688,Male,1.0,1,0,0.0,3500,1083.0,135.0,360.0,1,Urban,1.0
|
||||
LP001691,Male,1.0,2,0,0.0,3917,0.0,124.0,360.0,1,Semiurban,1.0
|
||||
LP001692,Female,0.0,0,0,0.0,4408,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP001693,Female,0.0,0,1,0.0,3244,0.0,80.0,360.0,1,Urban,1.0
|
||||
LP001698,Male,0.0,0,0,0.0,3975,2531.0,55.0,360.0,1,Rural,1.0
|
||||
LP001699,Male,0.0,0,1,0.0,2479,0.0,59.0,360.0,1,Urban,1.0
|
||||
LP001702,Male,0.0,0,1,0.0,3418,0.0,127.0,360.0,1,Semiurban,0.0
|
||||
LP001708,Female,0.0,0,1,0.0,10000,0.0,214.0,360.0,1,Semiurban,0.0
|
||||
LP001711,Male,1.0,3+,1,0.0,3430,1250.0,128.0,360.0,0,Semiurban,0.0
|
||||
LP001713,Male,1.0,1,1,1.0,7787,0.0,240.0,360.0,1,Urban,1.0
|
||||
LP001715,Male,1.0,3+,0,1.0,5703,0.0,130.0,360.0,1,Rural,1.0
|
||||
LP001716,Male,1.0,0,1,0.0,3173,3021.0,137.0,360.0,1,Urban,1.0
|
||||
LP001720,Male,1.0,3+,0,0.0,3850,983.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP001722,Male,1.0,0,1,0.0,150,1800.0,135.0,360.0,1,Rural,0.0
|
||||
LP001726,Male,1.0,0,1,0.0,3727,1775.0,131.0,360.0,1,Semiurban,1.0
|
||||
LP001732,Male,1.0,2,1,0.0,5000,0.0,72.0,360.0,0,Semiurban,0.0
|
||||
LP001734,Female,1.0,2,1,0.0,4283,2383.0,127.0,360.0,0,Semiurban,1.0
|
||||
LP001736,Male,1.0,0,1,0.0,2221,0.0,60.0,360.0,0,Urban,0.0
|
||||
LP001743,Male,1.0,2,1,0.0,4009,1717.0,116.0,360.0,1,Semiurban,1.0
|
||||
LP001744,Male,0.0,0,1,0.0,2971,2791.0,144.0,360.0,1,Semiurban,1.0
|
||||
LP001749,Male,1.0,0,1,0.0,7578,1010.0,175.0,,1,Semiurban,1.0
|
||||
LP001750,Male,1.0,0,1,0.0,6250,0.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP001751,Male,1.0,0,1,0.0,3250,0.0,170.0,360.0,1,Rural,0.0
|
||||
LP001754,Male,1.0,,0,1.0,4735,0.0,138.0,360.0,1,Urban,0.0
|
||||
LP001758,Male,1.0,2,1,0.0,6250,1695.0,210.0,360.0,1,Semiurban,1.0
|
||||
LP001760,Male,0.0,,1,0.0,4758,0.0,158.0,480.0,1,Semiurban,1.0
|
||||
LP001761,Male,0.0,0,1,1.0,6400,0.0,200.0,360.0,1,Rural,1.0
|
||||
LP001765,Male,1.0,1,1,0.0,2491,2054.0,104.0,360.0,1,Semiurban,1.0
|
||||
LP001768,Male,1.0,0,1,0.0,3716,0.0,42.0,180.0,1,Rural,1.0
|
||||
LP001770,Male,0.0,0,0,0.0,3189,2598.0,120.0,,1,Rural,1.0
|
||||
LP001776,Female,0.0,0,1,0.0,8333,0.0,280.0,360.0,1,Semiurban,1.0
|
||||
LP001778,Male,1.0,1,1,0.0,3155,1779.0,140.0,360.0,1,Semiurban,1.0
|
||||
LP001784,Male,1.0,1,1,0.0,5500,1260.0,170.0,360.0,1,Rural,1.0
|
||||
LP001786,Male,1.0,0,1,0.0,5746,0.0,255.0,360.0,0,Urban,0.0
|
||||
LP001788,Female,0.0,0,1,1.0,3463,0.0,122.0,360.0,0,Urban,1.0
|
||||
LP001790,Female,0.0,1,1,0.0,3812,0.0,112.0,360.0,1,Rural,1.0
|
||||
LP001792,Male,1.0,1,1,0.0,3315,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP001798,Male,1.0,2,1,0.0,5819,5000.0,120.0,360.0,1,Rural,1.0
|
||||
LP001800,Male,1.0,1,0,0.0,2510,1983.0,140.0,180.0,1,Urban,0.0
|
||||
LP001806,Male,0.0,0,1,0.0,2965,5701.0,155.0,60.0,1,Urban,1.0
|
||||
LP001807,Male,1.0,2,1,1.0,6250,1300.0,108.0,360.0,1,Rural,1.0
|
||||
LP001811,Male,1.0,0,0,0.0,3406,4417.0,123.0,360.0,1,Semiurban,1.0
|
||||
LP001813,Male,0.0,0,1,1.0,6050,4333.0,120.0,180.0,1,Urban,0.0
|
||||
LP001814,Male,1.0,2,1,0.0,9703,0.0,112.0,360.0,1,Urban,1.0
|
||||
LP001819,Male,1.0,1,0,0.0,6608,0.0,137.0,180.0,1,Urban,1.0
|
||||
LP001824,Male,1.0,1,1,0.0,2882,1843.0,123.0,480.0,1,Semiurban,1.0
|
||||
LP001825,Male,1.0,0,1,0.0,1809,1868.0,90.0,360.0,1,Urban,1.0
|
||||
LP001835,Male,1.0,0,0,0.0,1668,3890.0,201.0,360.0,0,Semiurban,0.0
|
||||
LP001836,Female,0.0,2,1,0.0,3427,0.0,138.0,360.0,1,Urban,0.0
|
||||
LP001841,Male,0.0,0,0,1.0,2583,2167.0,104.0,360.0,1,Rural,1.0
|
||||
LP001843,Male,1.0,1,0,0.0,2661,7101.0,279.0,180.0,1,Semiurban,1.0
|
||||
LP001844,Male,0.0,0,1,1.0,16250,0.0,192.0,360.0,0,Urban,0.0
|
||||
LP001846,Female,0.0,3+,1,0.0,3083,0.0,255.0,360.0,1,Rural,1.0
|
||||
LP001849,Male,0.0,0,0,0.0,6045,0.0,115.0,360.0,0,Rural,0.0
|
||||
LP001854,Male,1.0,3+,1,0.0,5250,0.0,94.0,360.0,1,Urban,0.0
|
||||
LP001859,Male,1.0,0,1,0.0,14683,2100.0,304.0,360.0,1,Rural,0.0
|
||||
LP001864,Male,1.0,3+,0,0.0,4931,0.0,128.0,360.0,0,Semiurban,0.0
|
||||
LP001865,Male,1.0,1,1,0.0,6083,4250.0,330.0,360.0,0,Urban,1.0
|
||||
LP001868,Male,0.0,0,1,0.0,2060,2209.0,134.0,360.0,1,Semiurban,1.0
|
||||
LP001870,Female,0.0,1,1,0.0,3481,0.0,155.0,36.0,1,Semiurban,0.0
|
||||
LP001871,Female,0.0,0,1,0.0,7200,0.0,120.0,360.0,1,Rural,1.0
|
||||
LP001872,Male,0.0,0,1,1.0,5166,0.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP001875,Male,0.0,0,1,0.0,4095,3447.0,151.0,360.0,1,Rural,1.0
|
||||
LP001877,Male,1.0,2,1,0.0,4708,1387.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP001882,Male,1.0,3+,1,0.0,4333,1811.0,160.0,360.0,0,Urban,1.0
|
||||
LP001883,Female,0.0,0,1,0.0,3418,0.0,135.0,360.0,1,Rural,0.0
|
||||
LP001884,Female,0.0,1,1,0.0,2876,1560.0,90.0,360.0,1,Urban,1.0
|
||||
LP001888,Female,0.0,0,1,0.0,3237,0.0,30.0,360.0,1,Urban,1.0
|
||||
LP001891,Male,1.0,0,1,0.0,11146,0.0,136.0,360.0,1,Urban,1.0
|
||||
LP001892,Male,0.0,0,1,0.0,2833,1857.0,126.0,360.0,1,Rural,1.0
|
||||
LP001894,Male,1.0,0,1,0.0,2620,2223.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP001896,Male,1.0,2,1,0.0,3900,0.0,90.0,360.0,1,Semiurban,1.0
|
||||
LP001900,Male,1.0,1,1,0.0,2750,1842.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP001903,Male,1.0,0,1,0.0,3993,3274.0,207.0,360.0,1,Semiurban,1.0
|
||||
LP001904,Male,1.0,0,1,0.0,3103,1300.0,80.0,360.0,1,Urban,1.0
|
||||
LP001907,Male,1.0,0,1,0.0,14583,0.0,436.0,360.0,1,Semiurban,1.0
|
||||
LP001908,Female,1.0,0,0,0.0,4100,0.0,124.0,360.0,0,Rural,1.0
|
||||
LP001910,Male,0.0,1,0,1.0,4053,2426.0,158.0,360.0,0,Urban,0.0
|
||||
LP001914,Male,1.0,0,1,0.0,3927,800.0,112.0,360.0,1,Semiurban,1.0
|
||||
LP001915,Male,1.0,2,1,0.0,2301,985.7999878,78.0,180.0,1,Urban,1.0
|
||||
LP001917,Female,0.0,0,1,0.0,1811,1666.0,54.0,360.0,1,Urban,1.0
|
||||
LP001922,Male,1.0,0,1,0.0,20667,0.0,0.0,360.0,1,Rural,0.0
|
||||
LP001924,Male,0.0,0,1,0.0,3158,3053.0,89.0,360.0,1,Rural,1.0
|
||||
LP001925,Female,0.0,0,1,1.0,2600,1717.0,99.0,300.0,1,Semiurban,0.0
|
||||
LP001926,Male,1.0,0,1,0.0,3704,2000.0,120.0,360.0,1,Rural,1.0
|
||||
LP001931,Female,0.0,0,1,0.0,4124,0.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP001935,Male,0.0,0,1,0.0,9508,0.0,187.0,360.0,1,Rural,1.0
|
||||
LP001936,Male,1.0,0,1,0.0,3075,2416.0,139.0,360.0,1,Rural,1.0
|
||||
LP001938,Male,1.0,2,1,0.0,4400,0.0,127.0,360.0,0,Semiurban,0.0
|
||||
LP001940,Male,1.0,2,1,0.0,3153,1560.0,134.0,360.0,1,Urban,1.0
|
||||
LP001945,Female,0.0,,1,0.0,5417,0.0,143.0,480.0,0,Urban,0.0
|
||||
LP001947,Male,1.0,0,1,0.0,2383,3334.0,172.0,360.0,1,Semiurban,1.0
|
||||
LP001949,Male,1.0,3+,1,0.0,4416,1250.0,110.0,360.0,1,Urban,1.0
|
||||
LP001953,Male,1.0,1,1,0.0,6875,0.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP001954,Female,1.0,1,1,0.0,4666,0.0,135.0,360.0,1,Urban,1.0
|
||||
LP001955,Female,0.0,0,1,0.0,5000,2541.0,151.0,480.0,1,Rural,0.0
|
||||
LP001963,Male,1.0,1,1,0.0,2014,2925.0,113.0,360.0,1,Urban,0.0
|
||||
LP001964,Male,1.0,0,0,0.0,1800,2934.0,93.0,360.0,0,Urban,0.0
|
||||
LP001972,Male,1.0,,0,0.0,2875,1750.0,105.0,360.0,1,Semiurban,1.0
|
||||
LP001974,Female,0.0,0,1,0.0,5000,0.0,132.0,360.0,1,Rural,1.0
|
||||
LP001977,Male,1.0,1,1,0.0,1625,1803.0,96.0,360.0,1,Urban,1.0
|
||||
LP001978,Male,0.0,0,1,0.0,4000,2500.0,140.0,360.0,1,Rural,1.0
|
||||
LP001990,Male,0.0,0,0,0.0,2000,0.0,0.0,360.0,1,Urban,0.0
|
||||
LP001993,Female,0.0,0,1,0.0,3762,1666.0,135.0,360.0,1,Rural,1.0
|
||||
LP001994,Female,0.0,0,1,0.0,2400,1863.0,104.0,360.0,0,Urban,0.0
|
||||
LP001996,Male,0.0,0,1,0.0,20233,0.0,480.0,360.0,1,Rural,0.0
|
||||
LP001998,Male,1.0,2,0,0.0,7667,0.0,185.0,360.0,0,Rural,1.0
|
||||
LP002002,Female,0.0,0,1,0.0,2917,0.0,84.0,360.0,1,Semiurban,1.0
|
||||
LP002004,Male,0.0,0,0,0.0,2927,2405.0,111.0,360.0,1,Semiurban,1.0
|
||||
LP002006,Female,0.0,0,1,0.0,2507,0.0,56.0,360.0,1,Rural,1.0
|
||||
LP002008,Male,1.0,2,1,1.0,5746,0.0,144.0,84.0,0,Rural,1.0
|
||||
LP002024,,1.0,0,1,0.0,2473,1843.0,159.0,360.0,1,Rural,0.0
|
||||
LP002031,Male,1.0,1,0,0.0,3399,1640.0,111.0,180.0,1,Urban,1.0
|
||||
LP002035,Male,1.0,2,1,0.0,3717,0.0,120.0,360.0,1,Semiurban,1.0
|
||||
LP002036,Male,1.0,0,1,0.0,2058,2134.0,88.0,360.0,0,Urban,1.0
|
||||
LP002043,Female,0.0,1,1,0.0,3541,0.0,112.0,360.0,0,Semiurban,1.0
|
||||
LP002050,Male,1.0,1,1,1.0,10000,0.0,155.0,360.0,1,Rural,0.0
|
||||
LP002051,Male,1.0,0,1,0.0,2400,2167.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP002053,Male,1.0,3+,1,0.0,4342,189.0,124.0,360.0,1,Semiurban,1.0
|
||||
LP002054,Male,1.0,2,0,0.0,3601,1590.0,0.0,360.0,1,Rural,1.0
|
||||
LP002055,Female,0.0,0,1,0.0,3166,2985.0,132.0,360.0,0,Rural,1.0
|
||||
LP002065,Male,1.0,3+,1,0.0,15000,0.0,300.0,360.0,1,Rural,1.0
|
||||
LP002067,Male,1.0,1,1,1.0,8666,4983.0,376.0,360.0,0,Rural,0.0
|
||||
LP002068,Male,0.0,0,1,0.0,4917,0.0,130.0,360.0,0,Rural,1.0
|
||||
LP002082,Male,1.0,0,1,1.0,5818,2160.0,184.0,360.0,1,Semiurban,1.0
|
||||
LP002086,Female,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
|
||||
LP002087,Female,0.0,0,1,0.0,2500,0.0,67.0,360.0,1,Urban,1.0
|
||||
LP002097,Male,0.0,1,1,0.0,4384,1793.0,117.0,360.0,1,Urban,1.0
|
||||
LP002098,Male,0.0,0,1,0.0,2935,0.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP002100,Male,0.0,,1,0.0,2833,0.0,71.0,360.0,1,Urban,1.0
|
||||
LP002101,Male,1.0,0,1,0.0,63337,0.0,490.0,180.0,1,Urban,1.0
|
||||
LP002103,,1.0,1,1,1.0,9833,1833.0,182.0,180.0,1,Urban,1.0
|
||||
LP002106,Male,1.0,,1,1.0,5503,4490.0,70.0,,1,Semiurban,1.0
|
||||
LP002110,Male,1.0,1,1,0.0,5250,688.0,160.0,360.0,1,Rural,1.0
|
||||
LP002112,Male,1.0,2,1,1.0,2500,4600.0,176.0,360.0,1,Rural,1.0
|
||||
LP002113,Female,0.0,3+,0,0.0,1830,0.0,0.0,360.0,0,Urban,0.0
|
||||
LP002114,Female,0.0,0,1,0.0,4160,0.0,71.0,360.0,1,Semiurban,1.0
|
||||
LP002115,Male,1.0,3+,0,0.0,2647,1587.0,173.0,360.0,1,Rural,0.0
|
||||
LP002116,Female,0.0,0,1,0.0,2378,0.0,46.0,360.0,1,Rural,0.0
|
||||
LP002119,Male,1.0,1,0,0.0,4554,1229.0,158.0,360.0,1,Urban,1.0
|
||||
LP002126,Male,1.0,3+,0,0.0,3173,0.0,74.0,360.0,1,Semiurban,1.0
|
||||
LP002128,Male,1.0,2,1,0.0,2583,2330.0,125.0,360.0,1,Rural,1.0
|
||||
LP002129,Male,1.0,0,1,0.0,2499,2458.0,160.0,360.0,1,Semiurban,1.0
|
||||
LP002130,Male,1.0,,0,0.0,3523,3230.0,152.0,360.0,0,Rural,0.0
|
||||
LP002131,Male,1.0,2,0,0.0,3083,2168.0,126.0,360.0,1,Urban,1.0
|
||||
LP002137,Male,1.0,0,1,0.0,6333,4583.0,259.0,360.0,0,Semiurban,1.0
|
||||
LP002138,Male,1.0,0,1,0.0,2625,6250.0,187.0,360.0,1,Rural,1.0
|
||||
LP002139,Male,1.0,0,1,0.0,9083,0.0,228.0,360.0,1,Semiurban,1.0
|
||||
LP002140,Male,0.0,0,1,0.0,8750,4167.0,308.0,360.0,1,Rural,0.0
|
||||
LP002141,Male,1.0,3+,1,0.0,2666,2083.0,95.0,360.0,1,Rural,1.0
|
||||
LP002142,Female,1.0,0,1,1.0,5500,0.0,105.0,360.0,0,Rural,0.0
|
||||
LP002143,Female,1.0,0,1,0.0,2423,505.0,130.0,360.0,1,Semiurban,1.0
|
||||
LP002144,Female,0.0,,1,0.0,3813,0.0,116.0,180.0,1,Urban,1.0
|
||||
LP002149,Male,1.0,2,1,0.0,8333,3167.0,165.0,360.0,1,Rural,1.0
|
||||
LP002151,Male,1.0,1,1,0.0,3875,0.0,67.0,360.0,1,Urban,0.0
|
||||
LP002158,Male,1.0,0,0,0.0,3000,1666.0,100.0,480.0,0,Urban,0.0
|
||||
LP002160,Male,1.0,3+,1,0.0,5167,3167.0,200.0,360.0,1,Semiurban,1.0
|
||||
LP002161,Female,0.0,1,1,0.0,4723,0.0,81.0,360.0,1,Semiurban,0.0
|
||||
LP002170,Male,1.0,2,1,0.0,5000,3667.0,236.0,360.0,1,Semiurban,1.0
|
||||
LP002175,Male,1.0,0,1,0.0,4750,2333.0,130.0,360.0,1,Urban,1.0
|
||||
LP002178,Male,1.0,0,1,0.0,3013,3033.0,95.0,300.0,0,Urban,1.0
|
||||
LP002180,Male,0.0,0,1,1.0,6822,0.0,141.0,360.0,1,Rural,1.0
|
||||
LP002181,Male,0.0,0,0,0.0,6216,0.0,133.0,360.0,1,Rural,0.0
|
||||
LP002187,Male,0.0,0,1,0.0,2500,0.0,96.0,480.0,1,Semiurban,0.0
|
||||
LP002188,Male,0.0,0,1,0.0,5124,0.0,124.0,,0,Rural,0.0
|
||||
LP002190,Male,1.0,1,1,0.0,6325,0.0,175.0,360.0,1,Semiurban,1.0
|
||||
LP002191,Male,1.0,0,1,0.0,19730,5266.0,570.0,360.0,1,Rural,0.0
|
||||
LP002194,Female,0.0,0,1,1.0,15759,0.0,55.0,360.0,1,Semiurban,1.0
|
||||
LP002197,Male,1.0,2,1,0.0,5185,0.0,155.0,360.0,1,Semiurban,1.0
|
||||
LP002201,Male,1.0,2,1,1.0,9323,7873.0,380.0,300.0,1,Rural,1.0
|
||||
LP002205,Male,0.0,1,1,0.0,3062,1987.0,111.0,180.0,0,Urban,0.0
|
||||
LP002209,Female,0.0,0,1,0.0,2764,1459.0,110.0,360.0,1,Urban,1.0
|
||||
LP002211,Male,1.0,0,1,0.0,4817,923.0,120.0,180.0,1,Urban,1.0
|
||||
LP002219,Male,1.0,3+,1,0.0,8750,4996.0,130.0,360.0,1,Rural,1.0
|
||||
LP002223,Male,1.0,0,1,0.0,4310,0.0,130.0,360.0,0,Semiurban,1.0
|
||||
LP002224,Male,0.0,0,1,0.0,3069,0.0,71.0,480.0,1,Urban,0.0
|
||||
LP002225,Male,1.0,2,1,0.0,5391,0.0,130.0,360.0,1,Urban,1.0
|
||||
LP002226,Male,1.0,0,1,0.0,3333,2500.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP002229,Male,0.0,0,1,0.0,5941,4232.0,296.0,360.0,1,Semiurban,1.0
|
||||
LP002231,Female,0.0,0,1,0.0,6000,0.0,156.0,360.0,1,Urban,1.0
|
||||
LP002234,Male,0.0,0,1,1.0,7167,0.0,128.0,360.0,1,Urban,1.0
|
||||
LP002236,Male,1.0,2,1,0.0,4566,0.0,100.0,360.0,1,Urban,0.0
|
||||
LP002237,Male,0.0,1,1,0.0,3667,0.0,113.0,180.0,1,Urban,1.0
|
||||
LP002239,Male,0.0,0,0,0.0,2346,1600.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002243,Male,1.0,0,0,0.0,3010,3136.0,0.0,360.0,0,Urban,0.0
|
||||
LP002244,Male,1.0,0,1,0.0,2333,2417.0,136.0,360.0,1,Urban,1.0
|
||||
LP002250,Male,1.0,0,1,0.0,5488,0.0,125.0,360.0,1,Rural,1.0
|
||||
LP002255,Male,0.0,3+,1,0.0,9167,0.0,185.0,360.0,1,Rural,1.0
|
||||
LP002262,Male,1.0,3+,1,0.0,9504,0.0,275.0,360.0,1,Rural,1.0
|
||||
LP002263,Male,1.0,0,1,0.0,2583,2115.0,120.0,360.0,0,Urban,1.0
|
||||
LP002265,Male,1.0,2,0,0.0,1993,1625.0,113.0,180.0,1,Semiurban,1.0
|
||||
LP002266,Male,1.0,2,1,0.0,3100,1400.0,113.0,360.0,1,Urban,1.0
|
||||
LP002272,Male,1.0,2,1,0.0,3276,484.0,135.0,360.0,0,Semiurban,1.0
|
||||
LP002277,Female,0.0,0,1,0.0,3180,0.0,71.0,360.0,0,Urban,0.0
|
||||
LP002281,Male,1.0,0,1,0.0,3033,1459.0,95.0,360.0,1,Urban,1.0
|
||||
LP002284,Male,0.0,0,0,0.0,3902,1666.0,109.0,360.0,1,Rural,1.0
|
||||
LP002287,Female,0.0,0,1,0.0,1500,1800.0,103.0,360.0,0,Semiurban,0.0
|
||||
LP002288,Male,1.0,2,0,0.0,2889,0.0,45.0,180.0,0,Urban,0.0
|
||||
LP002296,Male,0.0,0,0,0.0,2755,0.0,65.0,300.0,1,Rural,0.0
|
||||
LP002297,Male,0.0,0,1,0.0,2500,20000.0,103.0,360.0,1,Semiurban,1.0
|
||||
LP002300,Female,0.0,0,0,0.0,1963,0.0,53.0,360.0,1,Semiurban,1.0
|
||||
LP002301,Female,0.0,0,1,1.0,7441,0.0,194.0,360.0,1,Rural,0.0
|
||||
LP002305,Female,0.0,0,1,0.0,4547,0.0,115.0,360.0,1,Semiurban,1.0
|
||||
LP002308,Male,1.0,0,0,0.0,2167,2400.0,115.0,360.0,1,Urban,1.0
|
||||
LP002314,Female,0.0,0,0,0.0,2213,0.0,66.0,360.0,1,Rural,1.0
|
||||
LP002315,Male,1.0,1,1,0.0,8300,0.0,152.0,300.0,0,Semiurban,0.0
|
||||
LP002317,Male,1.0,3+,1,0.0,81000,0.0,360.0,360.0,0,Rural,0.0
|
||||
LP002318,Female,0.0,1,0,1.0,3867,0.0,62.0,360.0,1,Semiurban,0.0
|
||||
LP002319,Male,1.0,0,1,0.0,6256,0.0,160.0,360.0,0,Urban,1.0
|
||||
LP002328,Male,1.0,0,0,0.0,6096,0.0,218.0,360.0,0,Rural,0.0
|
||||
LP002332,Male,1.0,0,0,0.0,2253,2033.0,110.0,360.0,1,Rural,1.0
|
||||
LP002335,Female,1.0,0,0,0.0,2149,3237.0,178.0,360.0,0,Semiurban,0.0
|
||||
LP002337,Female,0.0,0,1,0.0,2995,0.0,60.0,360.0,1,Urban,1.0
|
||||
LP002341,Female,0.0,1,1,0.0,2600,0.0,160.0,360.0,1,Urban,0.0
|
||||
LP002342,Male,1.0,2,1,1.0,1600,20000.0,239.0,360.0,1,Urban,0.0
|
||||
LP002345,Male,1.0,0,1,0.0,1025,2773.0,112.0,360.0,1,Rural,1.0
|
||||
LP002347,Male,1.0,0,1,0.0,3246,1417.0,138.0,360.0,1,Semiurban,1.0
|
||||
LP002348,Male,1.0,0,1,0.0,5829,0.0,138.0,360.0,1,Rural,1.0
|
||||
LP002357,Female,0.0,0,0,0.0,2720,0.0,80.0,,0,Urban,0.0
|
||||
LP002361,Male,1.0,0,1,0.0,1820,1719.0,100.0,360.0,1,Urban,1.0
|
||||
LP002362,Male,1.0,1,1,0.0,7250,1667.0,110.0,,0,Urban,0.0
|
||||
LP002364,Male,1.0,0,1,0.0,14880,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP002366,Male,1.0,0,1,0.0,2666,4300.0,121.0,360.0,1,Rural,1.0
|
||||
LP002367,Female,0.0,1,0,0.0,4606,0.0,81.0,360.0,1,Rural,0.0
|
||||
LP002368,Male,1.0,2,1,0.0,5935,0.0,133.0,360.0,1,Semiurban,1.0
|
||||
LP002369,Male,1.0,0,1,0.0,2920,16.12000084,87.0,360.0,1,Rural,1.0
|
||||
LP002370,Male,0.0,0,0,0.0,2717,0.0,60.0,180.0,1,Urban,1.0
|
||||
LP002377,Female,0.0,1,1,1.0,8624,0.0,150.0,360.0,1,Semiurban,1.0
|
||||
LP002379,Male,0.0,0,1,0.0,6500,0.0,105.0,360.0,0,Rural,0.0
|
||||
LP002386,Male,0.0,0,1,0.0,12876,0.0,405.0,360.0,1,Semiurban,1.0
|
||||
LP002387,Male,1.0,0,1,0.0,2425,2340.0,143.0,360.0,1,Semiurban,1.0
|
||||
LP002390,Male,0.0,0,1,0.0,3750,0.0,100.0,360.0,1,Urban,1.0
|
||||
LP002393,Female,0.0,,1,0.0,10047,0.0,0.0,240.0,1,Semiurban,1.0
|
||||
LP002398,Male,0.0,0,1,0.0,1926,1851.0,50.0,360.0,1,Semiurban,1.0
|
||||
LP002401,Male,1.0,0,1,0.0,2213,1125.0,0.0,360.0,1,Urban,1.0
|
||||
LP002403,Male,0.0,0,1,1.0,10416,0.0,187.0,360.0,0,Urban,0.0
|
||||
LP002407,Female,1.0,0,0,1.0,7142,0.0,138.0,360.0,1,Rural,1.0
|
||||
LP002408,Male,0.0,0,1,0.0,3660,5064.0,187.0,360.0,1,Semiurban,1.0
|
||||
LP002409,Male,1.0,0,1,0.0,7901,1833.0,180.0,360.0,1,Rural,1.0
|
||||
LP002418,Male,0.0,3+,0,0.0,4707,1993.0,148.0,360.0,1,Semiurban,1.0
|
||||
LP002422,Male,0.0,1,1,0.0,37719,0.0,152.0,360.0,1,Semiurban,1.0
|
||||
LP002424,Male,1.0,0,1,0.0,7333,8333.0,175.0,300.0,0,Rural,1.0
|
||||
LP002429,Male,1.0,1,1,1.0,3466,1210.0,130.0,360.0,1,Rural,1.0
|
||||
LP002434,Male,1.0,2,0,0.0,4652,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002435,Male,1.0,0,1,0.0,3539,1376.0,55.0,360.0,1,Rural,0.0
|
||||
LP002443,Male,1.0,2,1,0.0,3340,1710.0,150.0,360.0,0,Rural,0.0
|
||||
LP002444,Male,0.0,1,0,1.0,2769,1542.0,190.0,360.0,0,Semiurban,0.0
|
||||
LP002446,Male,1.0,2,0,0.0,2309,1255.0,125.0,360.0,0,Rural,0.0
|
||||
LP002447,Male,1.0,2,0,0.0,1958,1456.0,60.0,300.0,0,Urban,1.0
|
||||
LP002448,Male,1.0,0,1,0.0,3948,1733.0,149.0,360.0,0,Rural,0.0
|
||||
LP002449,Male,1.0,0,1,0.0,2483,2466.0,90.0,180.0,0,Rural,1.0
|
||||
LP002453,Male,0.0,0,1,1.0,7085,0.0,84.0,360.0,1,Semiurban,1.0
|
||||
LP002455,Male,1.0,2,1,0.0,3859,0.0,96.0,360.0,1,Semiurban,1.0
|
||||
LP002459,Male,1.0,0,1,0.0,4301,0.0,118.0,360.0,1,Urban,1.0
|
||||
LP002467,Male,1.0,0,1,0.0,3708,2569.0,173.0,360.0,1,Urban,0.0
|
||||
LP002472,Male,0.0,2,1,0.0,4354,0.0,136.0,360.0,1,Rural,1.0
|
||||
LP002473,Male,1.0,0,1,0.0,8334,0.0,160.0,360.0,1,Semiurban,0.0
|
||||
LP002478,,1.0,0,1,1.0,2083,4083.0,160.0,360.0,0,Semiurban,1.0
|
||||
LP002484,Male,1.0,3+,1,0.0,7740,0.0,128.0,180.0,1,Urban,1.0
|
||||
LP002487,Male,1.0,0,1,0.0,3015,2188.0,153.0,360.0,1,Rural,1.0
|
||||
LP002489,Female,0.0,1,0,0.0,5191,0.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002493,Male,0.0,0,1,0.0,4166,0.0,98.0,360.0,0,Semiurban,0.0
|
||||
LP002494,Male,0.0,0,1,0.0,6000,0.0,140.0,360.0,1,Rural,1.0
|
||||
LP002500,Male,1.0,3+,0,0.0,2947,1664.0,70.0,180.0,0,Urban,0.0
|
||||
LP002501,,1.0,0,1,0.0,16692,0.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP002502,Female,1.0,2,0,0.0,210,2917.0,98.0,360.0,1,Semiurban,1.0
|
||||
LP002505,Male,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
|
||||
LP002515,Male,1.0,1,1,1.0,3450,2079.0,162.0,360.0,1,Semiurban,1.0
|
||||
LP002517,Male,1.0,1,0,0.0,2653,1500.0,113.0,180.0,0,Rural,0.0
|
||||
LP002519,Male,1.0,3+,1,0.0,4691,0.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP002522,Female,0.0,0,1,1.0,2500,0.0,93.0,360.0,0,Urban,1.0
|
||||
LP002524,Male,0.0,2,1,0.0,5532,4648.0,162.0,360.0,1,Rural,1.0
|
||||
LP002527,Male,1.0,2,1,1.0,16525,1014.0,150.0,360.0,1,Rural,1.0
|
||||
LP002529,Male,1.0,2,1,0.0,6700,1750.0,230.0,300.0,1,Semiurban,1.0
|
||||
LP002530,,1.0,2,1,0.0,2873,1872.0,132.0,360.0,0,Semiurban,0.0
|
||||
LP002531,Male,1.0,1,1,1.0,16667,2250.0,86.0,360.0,1,Semiurban,1.0
|
||||
LP002533,Male,1.0,2,1,0.0,2947,1603.0,0.0,360.0,1,Urban,0.0
|
||||
LP002534,Female,0.0,0,0,0.0,4350,0.0,154.0,360.0,1,Rural,1.0
|
||||
LP002536,Male,1.0,3+,0,0.0,3095,0.0,113.0,360.0,1,Rural,1.0
|
||||
LP002537,Male,1.0,0,1,0.0,2083,3150.0,128.0,360.0,1,Semiurban,1.0
|
||||
LP002541,Male,1.0,0,1,0.0,10833,0.0,234.0,360.0,1,Semiurban,1.0
|
||||
LP002543,Male,1.0,2,1,0.0,8333,0.0,246.0,360.0,1,Semiurban,1.0
|
||||
LP002544,Male,1.0,1,0,0.0,1958,2436.0,131.0,360.0,1,Rural,1.0
|
||||
LP002545,Male,0.0,2,1,0.0,3547,0.0,80.0,360.0,0,Rural,0.0
|
||||
LP002547,Male,1.0,1,1,0.0,18333,0.0,500.0,360.0,1,Urban,0.0
|
||||
LP002555,Male,1.0,2,1,1.0,4583,2083.0,160.0,360.0,1,Semiurban,1.0
|
||||
LP002556,Male,0.0,0,1,0.0,2435,0.0,75.0,360.0,1,Urban,0.0
|
||||
LP002560,Male,0.0,0,0,0.0,2699,2785.0,96.0,360.0,0,Semiurban,1.0
|
||||
LP002562,Male,1.0,1,0,0.0,5333,1131.0,186.0,360.0,0,Urban,1.0
|
||||
LP002571,Male,0.0,0,0,0.0,3691,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002582,Female,0.0,0,0,1.0,17263,0.0,225.0,360.0,1,Semiurban,1.0
|
||||
LP002585,Male,1.0,0,1,0.0,3597,2157.0,119.0,360.0,0,Rural,0.0
|
||||
LP002586,Female,1.0,1,1,0.0,3326,913.0,105.0,84.0,1,Semiurban,1.0
|
||||
LP002587,Male,1.0,0,0,0.0,2600,1700.0,107.0,360.0,1,Rural,1.0
|
||||
LP002588,Male,1.0,0,1,0.0,4625,2857.0,111.0,12.0,0,Urban,1.0
|
||||
LP002600,Male,1.0,1,1,1.0,2895,0.0,95.0,360.0,1,Semiurban,1.0
|
||||
LP002602,Male,0.0,0,1,0.0,6283,4416.0,209.0,360.0,0,Rural,0.0
|
||||
LP002603,Female,0.0,0,1,0.0,645,3683.0,113.0,480.0,1,Rural,1.0
|
||||
LP002606,Female,0.0,0,1,0.0,3159,0.0,100.0,360.0,1,Semiurban,1.0
|
||||
LP002615,Male,1.0,2,1,0.0,4865,5624.0,208.0,360.0,1,Semiurban,1.0
|
||||
LP002618,Male,1.0,1,0,0.0,4050,5302.0,138.0,360.0,0,Rural,0.0
|
||||
LP002619,Male,1.0,0,0,0.0,3814,1483.0,124.0,300.0,1,Semiurban,1.0
|
||||
LP002622,Male,1.0,2,1,0.0,3510,4416.0,243.0,360.0,1,Rural,1.0
|
||||
LP002624,Male,1.0,0,1,0.0,20833,6667.0,480.0,360.0,0,Urban,1.0
|
||||
LP002625,,0.0,0,1,0.0,3583,0.0,96.0,360.0,1,Urban,0.0
|
||||
LP002626,Male,1.0,0,1,1.0,2479,3013.0,188.0,360.0,1,Urban,1.0
|
||||
LP002634,Female,0.0,1,1,0.0,13262,0.0,40.0,360.0,1,Urban,1.0
|
||||
LP002637,Male,0.0,0,0,0.0,3598,1287.0,100.0,360.0,1,Rural,0.0
|
||||
LP002640,Male,1.0,1,1,0.0,6065,2004.0,250.0,360.0,1,Semiurban,1.0
|
||||
LP002643,Male,1.0,2,1,0.0,3283,2035.0,148.0,360.0,1,Urban,1.0
|
||||
LP002648,Male,1.0,0,1,0.0,2130,6666.0,70.0,180.0,1,Semiurban,0.0
|
||||
LP002652,Male,0.0,0,1,0.0,5815,3666.0,311.0,360.0,1,Rural,0.0
|
||||
LP002659,Male,1.0,3+,1,0.0,3466,3428.0,150.0,360.0,1,Rural,1.0
|
||||
LP002670,Female,1.0,2,1,0.0,2031,1632.0,113.0,480.0,1,Semiurban,1.0
|
||||
LP002682,Male,1.0,,0,0.0,3074,1800.0,123.0,360.0,0,Semiurban,0.0
|
||||
LP002683,Male,0.0,0,1,0.0,4683,1915.0,185.0,360.0,1,Semiurban,0.0
|
||||
LP002684,Female,0.0,0,0,0.0,3400,0.0,95.0,360.0,1,Rural,0.0
|
||||
LP002689,Male,1.0,2,0,0.0,2192,1742.0,45.0,360.0,1,Semiurban,1.0
|
||||
LP002690,Male,0.0,0,1,0.0,2500,0.0,55.0,360.0,1,Semiurban,1.0
|
||||
LP002692,Male,1.0,3+,1,1.0,5677,1424.0,100.0,360.0,1,Rural,1.0
|
||||
LP002693,Male,1.0,2,1,1.0,7948,7166.0,480.0,360.0,1,Rural,1.0
|
||||
LP002697,Male,0.0,0,1,0.0,4680,2087.0,0.0,360.0,1,Semiurban,0.0
|
||||
LP002699,Male,1.0,2,1,1.0,17500,0.0,400.0,360.0,1,Rural,1.0
|
||||
LP002705,Male,1.0,0,1,0.0,3775,0.0,110.0,360.0,1,Semiurban,1.0
|
||||
LP002706,Male,1.0,1,0,0.0,5285,1430.0,161.0,360.0,0,Semiurban,1.0
|
||||
LP002714,Male,0.0,1,0,0.0,2679,1302.0,94.0,360.0,1,Semiurban,1.0
|
||||
LP002716,Male,0.0,0,0,0.0,6783,0.0,130.0,360.0,1,Semiurban,1.0
|
||||
LP002717,Male,1.0,0,1,0.0,1025,5500.0,216.0,360.0,0,Rural,1.0
|
||||
LP002720,Male,1.0,3+,1,0.0,4281,0.0,100.0,360.0,1,Urban,1.0
|
||||
LP002723,Male,0.0,2,1,0.0,3588,0.0,110.0,360.0,0,Rural,0.0
|
||||
LP002729,Male,0.0,1,1,0.0,11250,0.0,196.0,360.0,0,Semiurban,0.0
|
||||
LP002731,Female,0.0,0,0,1.0,18165,0.0,125.0,360.0,1,Urban,1.0
|
||||
LP002732,Male,0.0,0,0,0.0,2550,2042.0,126.0,360.0,1,Rural,1.0
|
||||
LP002734,Male,1.0,0,1,0.0,6133,3906.0,324.0,360.0,1,Urban,1.0
|
||||
LP002738,Male,0.0,2,1,0.0,3617,0.0,107.0,360.0,1,Semiurban,1.0
|
||||
LP002739,Male,1.0,0,0,0.0,2917,536.0,66.0,360.0,1,Rural,0.0
|
||||
LP002740,Male,1.0,3+,1,0.0,6417,0.0,157.0,180.0,1,Rural,1.0
|
||||
LP002741,Female,1.0,1,1,0.0,4608,2845.0,140.0,180.0,1,Semiurban,1.0
|
||||
LP002743,Female,0.0,0,1,0.0,2138,0.0,99.0,360.0,0,Semiurban,0.0
|
||||
LP002753,Female,0.0,1,1,0.0,3652,0.0,95.0,360.0,1,Semiurban,1.0
|
||||
LP002755,Male,1.0,1,0,0.0,2239,2524.0,128.0,360.0,1,Urban,1.0
|
||||
LP002757,Female,1.0,0,0,0.0,3017,663.0,102.0,360.0,0,Semiurban,1.0
|
||||
LP002767,Male,1.0,0,1,0.0,2768,1950.0,155.0,360.0,1,Rural,1.0
|
||||
LP002768,Male,0.0,0,0,0.0,3358,0.0,80.0,36.0,1,Semiurban,0.0
|
||||
LP002772,Male,0.0,0,1,0.0,2526,1783.0,145.0,360.0,1,Rural,1.0
|
||||
LP002776,Female,0.0,0,1,0.0,5000,0.0,103.0,360.0,0,Semiurban,0.0
|
||||
LP002777,Male,1.0,0,1,0.0,2785,2016.0,110.0,360.0,1,Rural,1.0
|
||||
LP002778,Male,1.0,2,1,1.0,6633,0.0,0.0,360.0,0,Rural,0.0
|
||||
LP002784,Male,1.0,1,0,0.0,2492,2375.0,0.0,360.0,1,Rural,1.0
|
||||
LP002785,Male,1.0,1,1,0.0,3333,3250.0,158.0,360.0,1,Urban,1.0
|
||||
LP002788,Male,1.0,0,0,0.0,2454,2333.0,181.0,360.0,0,Urban,0.0
|
||||
LP002789,Male,1.0,0,1,0.0,3593,4266.0,132.0,180.0,0,Rural,0.0
|
||||
LP002792,Male,1.0,1,1,0.0,5468,1032.0,26.0,360.0,1,Semiurban,1.0
|
||||
LP002794,Female,0.0,0,1,0.0,2667,1625.0,84.0,360.0,0,Urban,1.0
|
||||
LP002795,Male,1.0,3+,1,1.0,10139,0.0,260.0,360.0,1,Semiurban,1.0
|
||||
LP002798,Male,1.0,0,1,0.0,3887,2669.0,162.0,360.0,1,Semiurban,1.0
|
||||
LP002804,Female,1.0,0,1,0.0,4180,2306.0,182.0,360.0,1,Semiurban,1.0
|
||||
LP002807,Male,1.0,2,0,0.0,3675,242.0,108.0,360.0,1,Semiurban,1.0
|
||||
LP002813,Female,1.0,1,1,1.0,19484,0.0,600.0,360.0,1,Semiurban,1.0
|
||||
LP002820,Male,1.0,0,1,0.0,5923,2054.0,211.0,360.0,1,Rural,1.0
|
||||
LP002821,Male,0.0,0,0,1.0,5800,0.0,132.0,360.0,1,Semiurban,1.0
|
||||
LP002832,Male,1.0,2,1,0.0,8799,0.0,258.0,360.0,0,Urban,0.0
|
||||
LP002833,Male,1.0,0,0,0.0,4467,0.0,120.0,360.0,0,Rural,1.0
|
||||
LP002836,Male,0.0,0,1,0.0,3333,0.0,70.0,360.0,1,Urban,1.0
|
||||
LP002837,Male,1.0,3+,1,0.0,3400,2500.0,123.0,360.0,0,Rural,0.0
|
||||
LP002840,Female,0.0,0,1,0.0,2378,0.0,9.0,360.0,1,Urban,0.0
|
||||
LP002841,Male,1.0,0,1,0.0,3166,2064.0,104.0,360.0,0,Urban,0.0
|
||||
LP002842,Male,1.0,1,1,0.0,3417,1750.0,186.0,360.0,1,Urban,1.0
|
||||
LP002847,Male,1.0,,1,0.0,5116,1451.0,165.0,360.0,0,Urban,0.0
|
||||
LP002855,Male,1.0,2,1,0.0,16666,0.0,275.0,360.0,1,Urban,1.0
|
||||
LP002862,Male,1.0,2,0,0.0,6125,1625.0,187.0,480.0,1,Semiurban,0.0
|
||||
LP002863,Male,1.0,3+,1,0.0,6406,0.0,150.0,360.0,1,Semiurban,0.0
|
||||
LP002868,Male,1.0,2,1,0.0,3159,461.0,108.0,84.0,1,Urban,1.0
|
||||
LP002872,,1.0,0,1,0.0,3087,2210.0,136.0,360.0,0,Semiurban,0.0
|
||||
LP002874,Male,0.0,0,1,0.0,3229,2739.0,110.0,360.0,1,Urban,1.0
|
||||
LP002877,Male,1.0,1,1,0.0,1782,2232.0,107.0,360.0,1,Rural,1.0
|
||||
LP002888,Male,0.0,0,1,0.0,3182,2917.0,161.0,360.0,1,Urban,1.0
|
||||
LP002892,Male,1.0,2,1,0.0,6540,0.0,205.0,360.0,1,Semiurban,1.0
|
||||
LP002893,Male,0.0,0,1,0.0,1836,33837.0,90.0,360.0,1,Urban,0.0
|
||||
LP002894,Female,1.0,0,1,0.0,3166,0.0,36.0,360.0,1,Semiurban,1.0
|
||||
LP002898,Male,1.0,1,1,0.0,1880,0.0,61.0,360.0,0,Rural,0.0
|
||||
LP002911,Male,1.0,1,1,0.0,2787,1917.0,146.0,360.0,0,Rural,0.0
|
||||
LP002912,Male,1.0,1,1,0.0,4283,3000.0,172.0,84.0,1,Rural,0.0
|
||||
LP002916,Male,1.0,0,1,0.0,2297,1522.0,104.0,360.0,1,Urban,1.0
|
||||
LP002917,Female,0.0,0,0,0.0,2165,0.0,70.0,360.0,1,Semiurban,1.0
|
||||
LP002925,,0.0,0,1,0.0,4750,0.0,94.0,360.0,1,Semiurban,1.0
|
||||
LP002926,Male,1.0,2,1,1.0,2726,0.0,106.0,360.0,0,Semiurban,0.0
|
||||
LP002928,Male,1.0,0,1,0.0,3000,3416.0,56.0,180.0,1,Semiurban,1.0
|
||||
LP002931,Male,1.0,2,1,1.0,6000,0.0,205.0,240.0,1,Semiurban,0.0
|
||||
LP002933,,0.0,3+,1,1.0,9357,0.0,292.0,360.0,1,Semiurban,1.0
|
||||
LP002936,Male,1.0,0,1,0.0,3859,3300.0,142.0,180.0,1,Rural,1.0
|
||||
LP002938,Male,1.0,0,1,1.0,16120,0.0,260.0,360.0,1,Urban,1.0
|
||||
LP002940,Male,0.0,0,0,0.0,3833,0.0,110.0,360.0,1,Rural,1.0
|
||||
LP002941,Male,1.0,2,0,1.0,6383,1000.0,187.0,360.0,1,Rural,0.0
|
||||
LP002943,Male,0.0,,1,0.0,2987,0.0,88.0,360.0,0,Semiurban,0.0
|
||||
LP002945,Male,1.0,0,1,1.0,9963,0.0,180.0,360.0,1,Rural,1.0
|
||||
LP002948,Male,1.0,2,1,0.0,5780,0.0,192.0,360.0,1,Urban,1.0
|
||||
LP002949,Female,0.0,3+,1,0.0,416,41667.0,350.0,180.0,0,Urban,0.0
|
||||
LP002950,Male,1.0,0,0,0.0,2894,2792.0,155.0,360.0,1,Rural,1.0
|
||||
LP002953,Male,1.0,3+,1,0.0,5703,0.0,128.0,360.0,1,Urban,1.0
|
||||
LP002958,Male,0.0,0,1,0.0,3676,4301.0,172.0,360.0,1,Rural,1.0
|
||||
LP002959,Female,1.0,1,1,0.0,12000,0.0,496.0,360.0,1,Semiurban,1.0
|
||||
LP002960,Male,1.0,0,0,0.0,2400,3800.0,0.0,180.0,1,Urban,0.0
|
||||
LP002961,Male,1.0,1,1,0.0,3400,2500.0,173.0,360.0,1,Semiurban,1.0
|
||||
LP002964,Male,1.0,2,0,0.0,3987,1411.0,157.0,360.0,1,Rural,1.0
|
||||
LP002974,Male,1.0,0,1,0.0,3232,1950.0,108.0,360.0,1,Rural,1.0
|
||||
LP002978,Female,0.0,0,1,0.0,2900,0.0,71.0,360.0,1,Rural,1.0
|
||||
LP002979,Male,1.0,3+,1,0.0,4106,0.0,40.0,180.0,1,Rural,1.0
|
||||
LP002983,Male,1.0,1,1,0.0,8072,240.0,253.0,360.0,1,Urban,1.0
|
||||
LP002984,Male,1.0,2,1,0.0,7583,0.0,187.0,360.0,1,Urban,1.0
|
||||
LP002990,Female,0.0,0,1,1.0,4583,0.0,133.0,360.0,0,Semiurban,0.0
|
|
BIN
abanin_daniil_lab_5/result_1.png
Normal file
After Width: | Height: | Size: 66 KiB |
BIN
abanin_daniil_lab_5/result_2.png
Normal file
After Width: | Height: | Size: 22 KiB |
82
alexandrov_dmitrii_lab_2/lab2.py
Normal file
@ -0,0 +1,82 @@
|
||||
from sklearn.linear_model import LinearRegression, RandomizedLasso
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
import random as rand
|
||||
|
||||
figure = plt.figure(1, figsize=(16, 9))
|
||||
axis = figure.subplots(1, 4)
|
||||
col = 0
|
||||
y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
|
||||
|
||||
|
||||
def rank_to_dict(ranks, names, n_features):
|
||||
ranks = np.abs(ranks)
|
||||
minmax = MinMaxScaler()
|
||||
ranks = minmax.fit_transform(np.array(ranks).reshape(n_features, 1)).ravel()
|
||||
ranks = map(lambda x: round(x, 2), ranks)
|
||||
return dict(zip(names, ranks))
|
||||
|
||||
|
||||
def createView(key, val):
|
||||
global figure
|
||||
global axis
|
||||
global col
|
||||
global y
|
||||
|
||||
axis[col].bar(y, list(val.values()), label=key)
|
||||
axis[col].set_title(key)
|
||||
|
||||
col = col + 1
|
||||
|
||||
|
||||
def start():
|
||||
np.random.seed(rand.randint(0, 50))
|
||||
size = 750
|
||||
n_features = 14
|
||||
X = np.random.uniform(0, 1, (size, n_features))
|
||||
|
||||
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
|
||||
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
|
||||
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
|
||||
|
||||
lr = LinearRegression()
|
||||
rl = RandomizedLasso()
|
||||
rfe = RFE(estimator=LinearRegression(), n_features_to_select=1)
|
||||
lr.fit(X, Y)
|
||||
rl.fit(X, Y)
|
||||
rfe.fit(X, Y)
|
||||
|
||||
names = ["x%s" % i for i in range(1, n_features + 1)]
|
||||
rfe_res = rfe.ranking_
|
||||
for i in range(rfe_res.size):
|
||||
rfe_res[i] = 14 - rfe_res[i]
|
||||
ranks = {"Linear regression": rank_to_dict(lr.coef_, names, n_features),
|
||||
"Random lasso": rank_to_dict(rl.scores_, names, n_features),
|
||||
"RFE": rank_to_dict(rfe_res, names, n_features)}
|
||||
|
||||
mean = {}
|
||||
|
||||
for key, value in ranks.items():
|
||||
for item in value.items():
|
||||
if item[0] not in mean:
|
||||
mean[item[0]] = 0
|
||||
mean[item[0]] += item[1]
|
||||
|
||||
for key, value in mean.items():
|
||||
res = value / len(ranks)
|
||||
mean[key] = round(res, 2)
|
||||
|
||||
ranks["Mean"] = mean
|
||||
|
||||
for key, value in ranks.items():
|
||||
createView(key, value)
|
||||
ranks[key] = sorted(value.items(), key=lambda y: y[1], reverse=True)
|
||||
for key, value in ranks.items():
|
||||
print(key)
|
||||
print(value)
|
||||
|
||||
|
||||
start()
|
||||
plt.show()
|
50
alexandrov_dmitrii_lab_2/readme.md
Normal file
@ -0,0 +1,50 @@
|
||||
### Задание
|
||||
Выполнить ранжирование признаков с помощью указанных по варианту моделей. Отобразить получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Провести анализ получившихся результатов. Определить, какие четыре признака оказались самыми важными по среднему значению.
|
||||
|
||||
Вариант 1.
|
||||
Модели:
|
||||
* Линейная регрессия (LinearRegression)
|
||||
* Случайное Лассо (RandomizedLasso)
|
||||
* Рекурсивное сокращение признаков (Recursive Feature Elimination – RFE)
|
||||
|
||||
### Запуск программы
|
||||
Программа работает на Python 3.7, поскольку только в нём можно подключить нужную версию библиотеки scikit-learn, которая ещё содержит RandomizedLasso.
|
||||
|
||||
Файл lab2.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
|
||||
|
||||
### Описание программы
|
||||
Файл lab2.py содержит непосредственно программу.
|
||||
|
||||
Программа создаёт набор данных с 10 признаками для последующего их ранжирования, и обрабатывает тремя моделями по варианту.
|
||||
Программа строит столбчатые диаграммы, которые показывают как распределились оценки важности признаков, и выводит в консоль отсортированные по убыванию важности признаки.
|
||||
Таким образом можно легко определить наиважнейшие признаки.
|
||||
|
||||
### Результаты тестирования
|
||||
По результатам тестирования, можно сказать следующее:
|
||||
* линейная регрессия показывает хорошие результаты, выделяет все 9 значимых признаков.
|
||||
* случайное лассо справляется хуже других моделей, иногда выделяя шумовые признаки в значимые, а значимые - в шумовые.
|
||||
* рекурсивное сокращение признаков показывает хорошие результаты, правильно правильно выделяя 9 самых значимых признаков.
|
||||
* хотя линейная регрессия и рекурсивное сокращение признаков правильно выделяют значимые признаки, саму значимость они оценивают по-разному.
|
||||
* среднее значение позволяет c хорошей уверенностью определять истинные значимые признаки.
|
||||
|
||||
Итого. Если необходимо просто ранжирование, достаточно взять модель RFE, однако, если необходимо анализировать признаки по коэффициентам, имея меру (коэффициенты), то брать нужно линейную регрессию. Случайное лассо лучше не надо.
|
||||
|
||||
Пример консольных результатов:
|
||||
|
||||
>Linear regression
|
||||
|
||||
>[('x1', 1.0), ('x4', 0.69), ('x2', 0.61), ('x11', 0.59), ('x3', 0.51), ('x13', 0.48), ('x5', 0.19), ('x12', 0.19), ('x14', 0.12), ('x8', 0.03), ('x6', 0.02), ('x10', 0.01), ('x7', 0.0), ('x9', 0.0)]
|
||||
|
||||
>Random lasso
|
||||
|
||||
>[('x5', 1.0), ('x4', 0.76), ('x2', 0.74), ('x1', 0.72), ('x14', 0.44), ('x12', 0.32), ('x11', 0.28), ('x8', 0.22), ('x6', 0.17), ('x3', 0.08), ('x7', 0.02), ('x13', 0.02), ('x9', 0.01), ('x10', 0.0)]
|
||||
|
||||
>RFE
|
||||
|
||||
>[('x4', 1.0), ('x1', 0.92), ('x11', 0.85), ('x2', 0.77), ('x3', 0.69), ('x13', 0.62), ('x5', 0.54), ('x12', 0.46), ('x14', 0.38), ('x8', 0.31), ('x6', 0.23), ('x10', 0.15), ('x7', 0.08), ('x9', 0.0)]
|
||||
|
||||
>Mean
|
||||
|
||||
>[('x1', 0.88), ('x4', 0.82), ('x2', 0.71), ('x5', 0.58), ('x11', 0.57), ('x3', 0.43), ('x13', 0.37), ('x12', 0.32), ('x14', 0.31), ('x8', 0.19), ('x6', 0.14), ('x10', 0.05), ('x7', 0.03), ('x9', 0.0)]
|
||||
|
||||
По данным результатам можно заключить, что наиболее влиятельные признаки по убыванию: x1, x4, x2, x5.
|
126
alexandrov_dmitrii_lab_3/lab3.py
Normal file
@ -0,0 +1,126 @@
|
||||
from sklearn.impute import SimpleImputer, MissingIndicator
|
||||
from sklearn.pipeline import FeatureUnion, make_pipeline
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.model_selection import train_test_split
|
||||
import pandas as pd
|
||||
import random as rand
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def rank_to_dict(ranks, names, n_features):
|
||||
ranks = np.abs(ranks)
|
||||
minmax = MinMaxScaler()
|
||||
ranks = minmax.fit_transform(np.array(ranks).reshape(len(ranks), 1)).ravel()
|
||||
ranks = map(lambda x: round(x, 2), ranks)
|
||||
return dict(zip(names, ranks))
|
||||
|
||||
|
||||
def part_one():
|
||||
print('Titanic data analysis\n')
|
||||
data = pd.read_csv('titanic_data.csv', index_col='PassengerId')
|
||||
x = data[['Pclass', 'Name', 'Sex']]
|
||||
y = data[['Survived']]
|
||||
|
||||
names = pd.DataFrame(TfidfVectorizer().fit_transform(x['Name']).toarray())
|
||||
col_names = names[names.columns[1:]].apply(lambda el: sum(el.dropna().astype(float)), axis=1)
|
||||
col_names.index = np.arange(1, len(col_names) + 1)
|
||||
col_sexes = []
|
||||
|
||||
for index, row in x.iterrows():
|
||||
if row['Sex'] == 'male':
|
||||
col_sexes.append(1)
|
||||
else:
|
||||
col_sexes.append(0)
|
||||
|
||||
x = x.drop(columns=['Sex', 'Name'])
|
||||
x['Sex'] = col_sexes
|
||||
x['Name'] = col_names
|
||||
|
||||
dtc = DecisionTreeClassifier(random_state=rand.randint(0, 250))
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.05, random_state=rand.randint(0, 250))
|
||||
dtc.fit(x_train, y_train)
|
||||
print('model score: ' + str(dtc.score(x_test, y_test)))
|
||||
res = dict(zip(['Pclass', 'Sex', 'Name'], dtc.feature_importances_))
|
||||
print('feature importances: ' + str(res))
|
||||
|
||||
|
||||
def part_two():
|
||||
print('\n---------------------------------------------------------------------------\nSberbank data analysis\n')
|
||||
data = pd.read_csv('sberbank_data.csv', index_col='id')
|
||||
x = data.drop(columns='price_doc')
|
||||
y = data[['price_doc']]
|
||||
|
||||
x = x.replace(
|
||||
['NA', 'no', 'yes', 'Investment', 'OwnerOccupier', 'poor', 'satisfactory', 'no data', 'good', 'excellent'],
|
||||
[0, 0, 1, 0, 1, -1, 0, 0, 1, 2])
|
||||
x.fillna(0, inplace=True)
|
||||
|
||||
names = pd.DataFrame(TfidfVectorizer().fit_transform(x['sub_area']).toarray())
|
||||
col_area = names[names.columns[1:]].apply(lambda el: sum(el.dropna().astype(float)), axis=1)
|
||||
col_area.index = np.arange(1, len(col_area) + 1)
|
||||
col_date = []
|
||||
|
||||
for val in x['timestamp']:
|
||||
col_date.append(val.split('-', 1)[0])
|
||||
|
||||
x = x.drop(columns=['sub_area', 'timestamp'])
|
||||
x['sub_area'] = col_area
|
||||
x['timestamp'] = col_date
|
||||
|
||||
col_price = []
|
||||
for val in y['price_doc']:
|
||||
if val < 1500000:
|
||||
col_price.append('low')
|
||||
elif val < 3000000:
|
||||
col_price.append('medium')
|
||||
elif val < 5500000:
|
||||
col_price.append('high')
|
||||
elif val < 10000000:
|
||||
col_price.append('premium')
|
||||
else:
|
||||
col_price.append('oligarch')
|
||||
|
||||
y = pd.DataFrame(col_price)
|
||||
|
||||
transformer = FeatureUnion(
|
||||
transformer_list=[
|
||||
('features', SimpleImputer(strategy='mean')),
|
||||
('indicators', MissingIndicator())])
|
||||
|
||||
dtr = make_pipeline(transformer, DecisionTreeClassifier(random_state=rand.randint(0, 250)))
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=rand.randint(0, 250))
|
||||
dtr.fit(x_train, y_train)
|
||||
|
||||
features = list(x.columns)
|
||||
print('model score: ' + str(dtr.score(x_test, y_test)))
|
||||
|
||||
res = sorted(dict(zip(features, dtr.steps[-1][1].feature_importances_)).items(),
|
||||
key=lambda el: el[1], reverse=True)
|
||||
|
||||
view_y = []
|
||||
view_x = []
|
||||
|
||||
flag = 0
|
||||
print('feature importances:')
|
||||
for val in res:
|
||||
if flag == 8:
|
||||
break
|
||||
print(val[0]+" - "+str(val[1]))
|
||||
view_y.append(val[0])
|
||||
view_x.append(val[1])
|
||||
flag = flag + 1
|
||||
|
||||
plt.figure(1, figsize=(16, 9))
|
||||
plt.bar(view_y, view_x)
|
||||
plt.show()
|
||||
|
||||
|
||||
def start():
|
||||
part_one()
|
||||
part_two()
|
||||
|
||||
|
||||
start()
|
60
alexandrov_dmitrii_lab_3/readme.md
Normal file
@ -0,0 +1,60 @@
|
||||
### Задание
|
||||
1. По данным о пассажирах Титаника решить задачу классификации с помощью дерева решений, в которой по различным характеристикам пассажиров требуется найти у выживших пассажиров два наиболее важных признака из трех рассматриваемых.
|
||||
|
||||
Вариант 1: Pclass,Name,Sex.
|
||||
|
||||
2. По данным курсовой работы с помощью дерева решений решить выбранную задачу: классификация - зависимость категории цены от всех остальных факторов, оценка результата и отбор наиболее значимых признаков.
|
||||
|
||||
### Запуск программы
|
||||
Файл lab3.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
|
||||
|
||||
### Описание программы
|
||||
Программа состоит из двух частей:
|
||||
1. Она считывает файл с данными по пассажирам "Титаника", признаки "класс", "имя", "пол" и запись о том, выжил ли пассажир. Данные предобрабатываются: запись о поле кодируется (ж - 0, м - 1), запись об имени кодируется (Tfidf). После этого дерево решений тренируется на данных и результаты выводятся в консоль.
|
||||
2. Она считывает файл с данными сбербанка по рынку недвижимости. Далее данные предобрабатываются: названия районов кодируется (Tfidf), нечисловые записи цифровизируются, запоняются нулевые записи, записи подразделяются на классы. После этого на данных обучается дерево решений и результат выводится в консоль и на форму. Поскольку признаков слишком много, выводимые результаты ограничены восемью наиболее значимыми.
|
||||
|
||||
### Результаты тестирования
|
||||
По результатам тестирования, можно сказать следующее:
|
||||
|
||||
По первой задаче:
|
||||
* Дерево решений показывает неплохие результаты, около 70-75%.
|
||||
* Однако оценка важности признаков даёт абсолютно неверный результат: наиболее значимым признаком назначается имя пассажира. Это значит, что кодировка не подходит для правильной обработки данных. Возможные решения: обнуление или исключение признака как аналитически очевидно незначимого.
|
||||
* Помимо неправильной оценки роли имени, пол определяется более чем в два раза более значимым, нежели класс. Действительная статистика (среди спасшихся пассажиров 74% женщин и детей (из которых многие также были мужского пола) и 26% мужчин, 60% первого класса, 44% - второго, 25% - третьего) скорее подтверждает правильность этого вывода.
|
||||
|
||||
По второй задаче:
|
||||
* Дерево решений показывает неплохие результаты, около 70-75%.
|
||||
* Оценка важности признаков показывает наиболее важным признаком площадь недвижимости, что скорее всего верно.
|
||||
* После площади с небольшим отрывом идёт количество спортивных объектов в округе. Это неверно хотя бы потому, что в данных присустствуют коррелирующие признаки - площадь жилого пространства и другие. К тому же доступна информация по действительному ранжированию.
|
||||
* Дальнейшие оценки содержат как правильные, так и неправильные признаки: этаж, количество этажей в доме, район - действительно значимые признаки, но они перемешаны с незначимыми.
|
||||
|
||||
Итого. Дерево решений даёт неплохие результаты при классификации. Однако для задач регрессии не подходят, т.к. неверно определяют значимые признаки. При работе также следует тщательнее предобрабатывать данные, в особенности малозначащие текстовые - предложенные методы кодирования показали себя неэффективно на лабораторных данных.
|
||||
|
||||
Пример консольных результатов:
|
||||
|
||||
>Titanic data analysis
|
||||
|
||||
>model score: 0.7777777777777778
|
||||
|
||||
>feature importances: {'Pclass': 0.1287795817634186, 'Sex': 0.3381642167551354, 'Name': 0.533056201481446}
|
||||
|
||||
>Sberbank data analysis
|
||||
|
||||
>model score: 0.7162629757785467
|
||||
|
||||
>feature importances:
|
||||
|
||||
>full_sq - 0.1801327274709341
|
||||
|
||||
>sport_count_3000 - 0.14881362533480907
|
||||
|
||||
>floor - 0.03169232872469085
|
||||
|
||||
>power_transmission_line_km - 0.027978416524911377
|
||||
|
||||
>timestamp - 0.020092007662845194
|
||||
|
||||
>max_floor - 0.019985442431576052
|
||||
|
||||
>cafe_count_5000_price_2500 - 0.019397048405749438
|
||||
|
||||
>sub_area - 0.017477163456413432
|
28896
alexandrov_dmitrii_lab_3/sberbank_data.csv
Normal file
892
alexandrov_dmitrii_lab_3/titanic_data.csv
Normal file
@ -0,0 +1,892 @@
|
||||
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
|
||||
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
|
||||
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
|
||||
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
|
||||
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
|
||||
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
|
||||
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
|
||||
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
|
||||
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
|
||||
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
|
||||
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
|
||||
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
|
||||
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
|
||||
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
|
||||
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
|
||||
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
|
||||
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
|
||||
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
|
||||
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
|
||||
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
|
||||
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
|
||||
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
|
||||
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
|
||||
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
|
||||
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
|
||||
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
|
||||
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
|
||||
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
|
||||
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
|
||||
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
|
||||
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
|
||||
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
|
||||
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
|
||||
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
|
||||
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
|
||||
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
|
||||
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
|
||||
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
|
||||
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
|
||||
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
|
||||
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
|
||||
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
|
||||
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
|
||||
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
|
||||
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
|
||||
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
|
||||
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
|
||||
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
|
||||
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
|
||||
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
|
||||
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
|
||||
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
|
||||
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
|
||||
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
|
||||
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
|
||||
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
|
||||
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
|
||||
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
|
||||
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
|
||||
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
|
||||
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
|
||||
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
|
||||
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
|
||||
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
|
||||
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
|
||||
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
|
||||
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
|
||||
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
|
||||
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
|
||||
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
|
||||
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
|
||||
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
|
||||
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
|
||||
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
|
||||
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
|
||||
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
|
||||
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
|
||||
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
|
||||
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
|
||||
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
|
||||
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
|
||||
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
|
||||
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
|
||||
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
|
||||
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
|
||||
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
|
||||
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
|
||||
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
|
||||
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
|
||||
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
|
||||
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
|
||||
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
|
||||
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
|
||||
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
|
||||
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
|
||||
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
|
||||
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
|
||||
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
|
||||
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
|
||||
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
|
||||
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
|
||||
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
|
||||
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
|
||||
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
|
||||
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
|
||||
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
|
||||
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
|
||||
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
|
||||
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
|
||||
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
|
||||
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
|
||||
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
|
||||
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
|
||||
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
|
||||
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
|
||||
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
|
||||
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
|
||||
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
|
||||
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
|
||||
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
|
||||
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
|
||||
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
|
||||
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
|
||||
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
|
||||
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
|
||||
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
|
||||
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
|
||||
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
|
||||
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
|
||||
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
|
||||
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
|
||||
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
|
||||
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
|
||||
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
|
||||
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
|
||||
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
|
||||
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
|
||||
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
|
||||
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
|
||||
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
|
||||
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
|
||||
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
|
||||
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
|
||||
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
|
||||
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
|
||||
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
|
||||
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
|
||||
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
|
||||
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
|
||||
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
|
||||
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
|
||||
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
|
||||
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
|
||||
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
|
||||
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
|
||||
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
|
||||
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
|
||||
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
|
||||
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
|
||||
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
|
||||
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
|
||||
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
|
||||
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
|
||||
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
|
||||
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
|
||||
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
|
||||
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
|
||||
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
|
||||
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
|
||||
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
|
||||
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
|
||||
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
|
||||
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
|
||||
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
|
||||
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
|
||||
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
|
||||
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
|
||||
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
|
||||
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
|
||||
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
|
||||
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
|
||||
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
|
||||
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
|
||||
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
|
||||
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
|
||||
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
|
||||
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
|
||||
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
|
||||
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
|
||||
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
|
||||
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
|
||||
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
|
||||
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
|
||||
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
|
||||
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
|
||||
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
|
||||
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
|
||||
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
|
||||
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
|
||||
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
|
||||
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
|
||||
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
|
||||
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
|
||||
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
|
||||
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
|
||||
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
|
||||
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
|
||||
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
|
||||
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
|
||||
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
|
||||
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
|
||||
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
|
||||
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
|
||||
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
|
||||
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
|
||||
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
|
||||
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
|
||||
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
|
||||
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
|
||||
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
|
||||
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
|
||||
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
|
||||
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
|
||||
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
|
||||
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
|
||||
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
|
||||
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
|
||||
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
|
||||
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
|
||||
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
|
||||
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
|
||||
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
|
||||
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
|
||||
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
|
||||
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
|
||||
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
|
||||
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
|
||||
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
|
||||
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
|
||||
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
|
||||
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
|
||||
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
|
||||
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
|
||||
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
|
||||
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
|
||||
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
|
||||
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
|
||||
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
|
||||
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
|
||||
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
|
||||
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
|
||||
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
|
||||
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
|
||||
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
|
||||
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
|
||||
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
|
||||
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
|
||||
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
|
||||
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
|
||||
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
|
||||
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
|
||||
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
|
||||
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
|
||||
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
|
||||
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
|
||||
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
|
||||
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
|
||||
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
|
||||
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
|
||||
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
|
||||
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
|
||||
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
|
||||
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
|
||||
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
|
||||
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
|
||||
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
|
||||
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
|
||||
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
|
||||
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
|
||||
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
|
||||
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
|
||||
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
|
||||
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
|
||||
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
|
||||
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
|
||||
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
|
||||
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
|
||||
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
|
||||
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
|
||||
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
|
||||
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
|
||||
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
|
||||
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
|
||||
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
|
||||
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
|
||||
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
|
||||
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
|
||||
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
|
||||
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
|
||||
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
|
||||
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
|
||||
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
|
||||
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
|
||||
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
|
||||
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
|
||||
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
|
||||
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
|
||||
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
|
||||
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
|
||||
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
|
||||
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
|
||||
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
|
||||
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
|
||||
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
|
||||
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
|
||||
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
|
||||
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
|
||||
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
|
||||
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
|
||||
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
|
||||
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
|
||||
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
|
||||
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
|
||||
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
|
||||
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
|
||||
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
|
||||
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
|
||||
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
|
||||
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
|
||||
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
|
||||
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
|
||||
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
|
||||
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
|
||||
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
|
||||
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
|
||||
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
|
||||
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
|
||||
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
|
||||
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
|
||||
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
|
||||
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
|
||||
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
|
||||
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
|
||||
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
|
||||
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
|
||||
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
|
||||
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
|
||||
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
|
||||
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
|
||||
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
|
||||
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
|
||||
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
|
||||
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
|
||||
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
|
||||
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
|
||||
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
|
||||
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
|
||||
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
|
||||
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
|
||||
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
|
||||
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
|
||||
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
|
||||
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
|
||||
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
|
||||
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
|
||||
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
|
||||
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
|
||||
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
|
||||
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
|
||||
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
|
||||
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
|
||||
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
|
||||
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
|
||||
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
|
||||
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
|
||||
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
|
||||
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
|
||||
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
|
||||
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
|
||||
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
|
||||
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
|
||||
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
|
||||
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
|
||||
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
|
||||
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
|
||||
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
|
||||
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
|
||||
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
|
||||
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
|
||||
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
|
||||
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
|
||||
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
|
||||
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
|
||||
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
|
||||
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
|
||||
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
|
||||
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
|
||||
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
|
||||
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
|
||||
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
|
||||
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
|
||||
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
|
||||
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
|
||||
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
|
||||
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
|
||||
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
|
||||
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
|
||||
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
|
||||
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
|
||||
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
|
||||
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
|
||||
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
|
||||
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
|
||||
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
|
||||
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
|
||||
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
|
||||
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
|
||||
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
|
||||
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
|
||||
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
|
||||
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
|
||||
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
|
||||
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
|
||||
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
|
||||
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
|
||||
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
|
||||
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
|
||||
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
|
||||
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
|
||||
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
|
||||
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
|
||||
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
|
||||
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
|
||||
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
|
||||
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
|
||||
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
|
||||
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
|
||||
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
|
||||
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
|
||||
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
|
||||
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
|
||||
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
|
||||
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
|
||||
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
|
||||
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
|
||||
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
|
||||
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
|
||||
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
|
||||
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
|
||||
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
|
||||
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
|
||||
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
|
||||
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
|
||||
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
|
||||
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
|
||||
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
|
||||
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
|
||||
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
|
||||
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
|
||||
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
|
||||
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
|
||||
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
|
||||
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
|
||||
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
|
||||
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
|
||||
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
|
||||
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
|
||||
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
|
||||
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
|
||||
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
|
||||
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
|
||||
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
|
||||
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
|
||||
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
|
||||
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
|
||||
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
|
||||
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
|
||||
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
|
||||
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
|
||||
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
|
||||
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
|
||||
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
|
||||
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
|
||||
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
|
||||
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
|
||||
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
|
||||
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
|
||||
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
|
||||
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
|
||||
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
|
||||
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
|
||||
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
|
||||
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
|
||||
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
|
||||
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
|
||||
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
|
||||
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
|
||||
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
|
||||
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
|
||||
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
|
||||
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
|
||||
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
|
||||
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
|
||||
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
|
||||
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
|
||||
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
|
||||
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
|
||||
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
|
||||
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
|
||||
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
|
||||
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
|
||||
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
|
||||
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
|
||||
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
|
||||
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
|
||||
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
|
||||
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
|
||||
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
|
||||
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
|
||||
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
|
||||
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
|
||||
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
|
||||
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
|
||||
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
|
||||
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
|
||||
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
|
||||
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
|
||||
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
|
||||
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
|
||||
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
|
||||
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
|
||||
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
|
||||
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
|
||||
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
|
||||
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
|
||||
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
|
||||
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
|
||||
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
|
||||
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
|
||||
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
|
||||
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
|
||||
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
|
||||
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
|
||||
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
|
||||
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
|
||||
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
|
||||
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
|
||||
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
|
||||
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
|
||||
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
|
||||
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
|
||||
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
|
||||
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
|
||||
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
|
||||
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
|
||||
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
|
||||
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
|
||||
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
|
||||
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
|
||||
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
|
||||
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
|
||||
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
|
||||
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
|
||||
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
|
||||
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
|
||||
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
|
||||
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
|
||||
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
|
||||
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
|
||||
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
|
||||
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
|
||||
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
|
||||
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
|
||||
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
|
||||
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
|
||||
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
|
||||
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
|
||||
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
|
||||
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
|
||||
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
|
||||
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
|
||||
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
|
||||
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
|
||||
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
|
||||
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
|
||||
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
|
||||
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
|
||||
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
|
||||
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
|
||||
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
|
||||
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
|
||||
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
|
||||
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
|
||||
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
|
||||
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
|
||||
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
|
||||
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
|
||||
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
|
||||
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
|
||||
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
|
||||
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
|
||||
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
|
||||
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
|
||||
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
|
||||
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
|
||||
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
|
||||
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
|
||||
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
|
||||
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
|
||||
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
|
||||
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
|
||||
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
|
||||
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
|
||||
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
|
||||
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
|
||||
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
|
||||
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
|
||||
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
|
||||
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
|
||||
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
|
||||
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
|
||||
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
|
||||
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
|
||||
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
|
||||
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
|
||||
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
|
||||
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
|
||||
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
|
||||
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
|
||||
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
|
||||
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
|
||||
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
|
||||
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
|
||||
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
|
||||
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
|
||||
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
|
||||
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
|
||||
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
|
||||
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
|
||||
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
|
||||
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
|
||||
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
|
||||
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
|
||||
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
|
||||
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
|
||||
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
|
||||
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
|
||||
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
|
||||
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
|
||||
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
|
||||
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
|
||||
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
|
||||
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
|
||||
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
|
||||
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
|
||||
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
|
||||
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
|
||||
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
|
||||
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
|
||||
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
|
||||
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
|
||||
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
|
||||
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
|
||||
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
|
||||
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
|
||||
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
|
||||
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
|
||||
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
|
||||
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
|
||||
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
|
||||
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
|
||||
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
|
||||
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
|
||||
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
|
||||
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
|
||||
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
|
||||
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
|
||||
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
|
||||
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
|
||||
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
|
||||
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
|
||||
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
|
||||
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
|
||||
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
|
||||
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
|
||||
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
|
||||
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
|
||||
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
|
||||
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
|
||||
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
|
||||
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
|
||||
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
|
||||
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
|
||||
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
|
||||
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
|
||||
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
|
||||
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
|
||||
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
|
||||
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
|
||||
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
|
||||
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
|
||||
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
|
||||
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
|
||||
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
|
||||
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
|
||||
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
|
||||
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
|
||||
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
|
||||
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
|
||||
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
|
||||
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
|
||||
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
|
||||
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
|
||||
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
|
||||
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
|
||||
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
|
||||
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
|
||||
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
|
||||
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
|
||||
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
|
||||
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
|
||||
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
|
||||
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
|
||||
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
|
||||
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
|
||||
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
|
||||
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
|
||||
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
|
||||
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
|
||||
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
|
||||
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
|
||||
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
|
||||
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
|
||||
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
|
||||
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
|
||||
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
|
||||
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
|
||||
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
|
||||
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
|
||||
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
|
||||
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
|
||||
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
|
||||
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
|
||||
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
|
||||
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
|
||||
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
|
||||
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
|
||||
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
|
||||
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
|
||||
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
|
||||
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
|
||||
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
|
||||
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
|
||||
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
|
||||
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
|
||||
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
|
||||
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
|
||||
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
|
||||
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
|
||||
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
|
||||
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
|
||||
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
|
||||
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
|
||||
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
|
||||
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
|
||||
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
|
||||
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
|
||||
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
|
||||
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
|
||||
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
|
||||
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
|
||||
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
|
||||
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
|
||||
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
|
||||
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
|
||||
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
|
||||
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
|
||||
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
|
||||
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
|
||||
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
|
||||
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
|
||||
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
|
||||
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
|
||||
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
|
||||
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
|
||||
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
|
||||
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
|
||||
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
|
||||
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
|
||||
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
|
||||
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
|
||||
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
|
||||
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
|
||||
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
|
||||
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
|
||||
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
|
||||
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
|
||||
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
|
||||
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
|
||||
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
|
||||
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
|
||||
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
|
||||
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
|
||||
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
|
||||
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
|
||||
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
|
||||
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
|
||||
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
|
||||
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
|
||||
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
|
||||
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
|
||||
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
|
||||
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
|
||||
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
|
||||
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
|
||||
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
|
||||
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
|
||||
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
|
||||
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
|
||||
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
|
||||
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
|
||||
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
|
||||
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
|
||||
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
|
||||
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
|
||||
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
|
||||
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
|
||||
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
|
||||
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
|
||||
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
|
||||
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
|
||||
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
|
||||
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
|
||||
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
|
||||
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
|
||||
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
|
||||
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
|
||||
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
|
||||
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
|
||||
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
|
||||
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
|
||||
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
|
||||
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
|
||||
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
|
||||
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
|
||||
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
|
||||
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
|
||||
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
|
||||
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
|
||||
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
|
||||
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
|
||||
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
|
||||
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
|
||||
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
|
||||
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
|
||||
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
|
||||
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
|
||||
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
|
||||
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
|
||||
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
|
||||
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
|
||||
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
|
||||
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
|
||||
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
|
||||
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
|
||||
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
|
||||
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
|
||||
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
|
||||
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
|
||||
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
|
||||
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
|
||||
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
|
||||
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
|
||||
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
|
||||
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
|
||||
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
|
||||
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
|
||||
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
|
||||
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
|
||||
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
|
||||
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
|
||||
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
|
||||
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
|
||||
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
|
||||
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
|
||||
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
|
||||
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
|
||||
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
|
||||
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
|
||||
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
|
|
40
alexandrov_dmitrii_lab_4/lab4.py
Normal file
@ -0,0 +1,40 @@
|
||||
from scipy.cluster import hierarchy
|
||||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def start():
|
||||
data = pd.read_csv('sberbank_data.csv', index_col='id')
|
||||
x = data[['full_sq', 'price_doc']]
|
||||
plt.figure(1, figsize=(16, 9))
|
||||
plt.title('Дендрограмма кластеризации цен')
|
||||
|
||||
prices = [0, 0, 0, 0]
|
||||
for ind, val in x.iterrows():
|
||||
val = val['price_doc'] / val['full_sq']
|
||||
if val < 100000:
|
||||
prices[0] = prices[0] + 1
|
||||
elif val < 300000:
|
||||
prices[1] = prices[1] + 1
|
||||
elif val < 500000:
|
||||
prices[2] = prices[2] + 1
|
||||
else:
|
||||
prices[3] = prices[3] + 1
|
||||
print('Результаты подчсёта ручного распределения:')
|
||||
print('низких цен:'+str(prices[0]))
|
||||
print('средних цен:'+str(prices[1]))
|
||||
print('высоких цен:'+str(prices[2]))
|
||||
print('премиальных цен:'+str(prices[3]))
|
||||
|
||||
hierarchy.dendrogram(hierarchy.linkage(x, method='single'),
|
||||
truncate_mode='lastp',
|
||||
p=15,
|
||||
orientation='top',
|
||||
leaf_rotation=90,
|
||||
leaf_font_size=8,
|
||||
show_contracted=True)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
start()
|
27
alexandrov_dmitrii_lab_4/readme.md
Normal file
@ -0,0 +1,27 @@
|
||||
### Задание
|
||||
Использовать метод кластеризации по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
|
||||
Интерпретировать результаты и оценить, насколько хорошо он подходит для
|
||||
решения сформулированной вами задачи.
|
||||
|
||||
Вариант 1: dendrogram
|
||||
|
||||
Была сформулирована следующая задача: необходимо разбить записи на кластеры в зависимости от цен и площади.
|
||||
|
||||
### Запуск программы
|
||||
Файл lab4.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
|
||||
|
||||
### Описание программы
|
||||
Программа считывает цены и площади из файла статистики сбербанка по рынку недвижимости.
|
||||
Поскольку по заданию требуется оценить машинную кластеризацию, для сравнения программа подсчитывает и выводит в консоль количество записей в каждом из выделенных вручную классов цен.
|
||||
Далее программа кластеризует данные с помощью алгоритма ближайших точек (на другие памяти нету) и выводит дендрограмму на основе кластеризации.
|
||||
Выводимая дендрограмма ограничена 15 последними (верхними) объединениями.
|
||||
|
||||
### Результаты тестирования
|
||||
По результатам тестирования, можно сказать следующее:
|
||||
* Последние объединения в дендрограмме - объединения выбросов с 'основным' кластером, то есть 10-20 записей с кластером с более чем 28000 записями.
|
||||
* Это правильная информация, так как ручная классификация показывает, что премиальных (аномально больших) цен как раз порядка 20, остальные относятся к другим классам.
|
||||
* Поскольку в имеющихся данных нет ограничений по ценам, выбросы аномально высоких цен при использовании данного алгоритма формируют отдельные кластеры, что негативно сказывается на наглядности.
|
||||
* Ценовое ограничение также не дало положительнх результатов: снова сформировался 'основной' кластер, с которым последними объединялись отдельные значения.
|
||||
* Значит, сам алгоритм не эффективен.
|
||||
|
||||
Итого: Алгоритм ближайших точек слишком чувствителен к выбросам, поэтому можно признать его неэффективным для необработанных данных. Дендрограмма как средство визуализации скорее уступает по наглядности диаграмме рассеяния.
|
28896
alexandrov_dmitrii_lab_4/sberbank_data.csv
Normal file
48
alexandrov_dmitrii_lab_5/lab5.py
Normal file
@ -0,0 +1,48 @@
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn import metrics
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
from sklearn.pipeline import Pipeline
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def start():
|
||||
data = pd.read_csv('sberbank_data.csv', index_col='id')
|
||||
x = data[['timestamp', 'full_sq', 'floor', 'max_floor', 'build_year', 'num_room', 'material', 'kremlin_km']]
|
||||
y = data[['price_doc']]
|
||||
|
||||
x = x.replace('NA', 0)
|
||||
x.fillna(0, inplace=True)
|
||||
|
||||
col_date = []
|
||||
|
||||
for val in x['timestamp']:
|
||||
col_date.append(val.split('-', 1)[0])
|
||||
|
||||
x = x.drop(columns='timestamp')
|
||||
x['timestamp'] = col_date
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=42)
|
||||
|
||||
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
|
||||
('linear', LinearRegression())])
|
||||
poly.fit(x_train, y_train)
|
||||
|
||||
y_mean = y['price_doc'].mean()
|
||||
y_predicted = poly.predict(x_test)
|
||||
for i, n in enumerate(y_predicted):
|
||||
if n < 10000:
|
||||
y_predicted[i] = y_mean
|
||||
|
||||
print('Оценка обучения:')
|
||||
print(metrics.r2_score(y_test, y_predicted))
|
||||
|
||||
plt.figure(1, figsize=(16, 9))
|
||||
plt.title('Сравнение результатов обучения')
|
||||
plt.scatter(x=[i for i in range(len(y_test))], y=y_test, c='g', s=5)
|
||||
plt.scatter(x=[i for i in range(len(y_test))], y=y_predicted, c='r', s=5)
|
||||
plt.show()
|
||||
|
||||
|
||||
start()
|
36
alexandrov_dmitrii_lab_5/readme.md
Normal file
@ -0,0 +1,36 @@
|
||||
### Задание
|
||||
Использовать регрессию по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
|
||||
Интерпретировать результаты и оценить, насколько хорошо она подходит для
|
||||
решения сформулированной вами задачи.
|
||||
|
||||
Вариант 1: полиномиальная регрессия
|
||||
|
||||
Была сформулирована следующая задача: необходимо предсказывать стоимость жилья по избранным признакам при помощи регрессии.
|
||||
|
||||
### Запуск программы
|
||||
Файл lab5.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
|
||||
|
||||
### Описание программы
|
||||
Программа считывает цены на жильё как выходные данные и следующие данные как входные: год размещения объявления, площадь, этаж, количество этажей, год постройки, количество комнат, материал, расстояние до кремля (условного центра).
|
||||
Далее она обрабатывает данные (цифровизирует нулевые данные), оставляет только год объявления.
|
||||
|
||||
После обработки программа делит данные на 99% обучающего материала и 1% тестового и обучает модель полиномиальной регрессии со степенью 3.
|
||||
Далее модель генерирует набор предсказаний на основе тестовых входных данных. Эти предсказания обрабатываются: убираются отрицательные цены.
|
||||
|
||||
Далее программа оценивает предсказания по коэффициенту детерминации и выводит результат в консоль. А также показывает диаграммы рассеяния для действительных (зелёные точки) и предсказанных (красные точки) цен.
|
||||
|
||||
### Результаты тестирования
|
||||
По результатам тестирования, можно сказать следующее:
|
||||
* Полные данные алгоритм обрабатывает плохо, поэтому было необходимо было выбирать наиболее значимые признаки.
|
||||
* В зависимости от данных, разные степени регрессии дают разный результат. В общем случае обычная линейная регрессия давала коэффициент около 0.3. При добавлении же степеней полиномиальная регрессия выдавала выбросные значения цен: например, -300 миллионов, что негативно сказывалось на результате.
|
||||
* Для того, чтобы явно выбросные результаты не портили оценку (коэффициент соответственно становился -1000) эти выбросные значения заменялись на средние.
|
||||
* Опытным путём было найдено, что наилучшие результаты (коэффициент 0.54) показывает степень 3.
|
||||
* Результат 0.54 - наилучший результат - можно назвать неприемлимым: только в половине случаев предсказанная цена условно похожа на действительную.
|
||||
* Возможно, включением большего количества признаков и использованием других моделей (линейная, например, не давала выбросов) удастся решить проблему.
|
||||
|
||||
Пример консольного вывода:
|
||||
>Оценка обучения:
|
||||
>
|
||||
>0.5390648784908953
|
||||
|
||||
Итого: Алгоритм можно привести к некоторой эффективности, однако для конкретно этих данных он не подходит. Лучше попытаться найти другую модель регрессии.
|
28896
alexandrov_dmitrii_lab_5/sberbank_data.csv
Normal file
76
alexandrov_dmitrii_lab_6/lab6.py
Normal file
@ -0,0 +1,76 @@
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
data = pd.read_csv('sberbank_data.csv', index_col='id')
|
||||
x = data[['timestamp', 'full_sq', 'floor', 'max_floor', 'build_year', 'num_room', 'material', 'kremlin_km']]
|
||||
|
||||
x = x.replace('NA', 0)
|
||||
x.fillna(0, inplace=True)
|
||||
|
||||
col_date = []
|
||||
|
||||
for val in x['timestamp']:
|
||||
col_date.append(val.split('-', 1)[0])
|
||||
|
||||
x = x.drop(columns='timestamp')
|
||||
x['timestamp'] = col_date
|
||||
|
||||
y = []
|
||||
for val in data['price_doc']:
|
||||
if val < 1500000:
|
||||
y.append('low')
|
||||
elif val < 3000000:
|
||||
y.append('medium')
|
||||
elif val < 5500000:
|
||||
y.append('high')
|
||||
elif val < 10000000:
|
||||
y.append('premium')
|
||||
else:
|
||||
y.append('oligarch')
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=42)
|
||||
|
||||
min_scores = []
|
||||
med_scores = []
|
||||
max_scores = []
|
||||
|
||||
|
||||
def do_test(iters_num):
|
||||
global x_train, x_test, y_train, y_test, min_scores, med_scores, max_scores
|
||||
|
||||
print("Testing iterations number "+str(iters_num)+":")
|
||||
scores = []
|
||||
|
||||
for i in range(10):
|
||||
neuro = MLPClassifier(max_iter=200)
|
||||
neuro.fit(x_train, y_train)
|
||||
scr = neuro.score(x_test, y_test)
|
||||
print("res"+str(i+1)+": "+str(scr))
|
||||
scores.append(scr)
|
||||
|
||||
print("Medium result: "+str(np.mean(scores)))
|
||||
|
||||
min_scores.append(np.min(scores))
|
||||
med_scores.append(np.mean(scores))
|
||||
max_scores.append(np.max(scores))
|
||||
|
||||
|
||||
def start():
|
||||
global min_scores, med_scores, max_scores
|
||||
|
||||
iter_nums = [200, 400, 600, 800, 1000]
|
||||
|
||||
for num in iter_nums:
|
||||
do_test(num)
|
||||
|
||||
plt.figure(1, figsize=(16, 9))
|
||||
plt.plot(iter_nums, min_scores, c='r')
|
||||
plt.plot(iter_nums, med_scores, c='b')
|
||||
plt.plot(iter_nums, max_scores, c='b')
|
||||
plt.show()
|
||||
|
||||
|
||||
start()
|
149
alexandrov_dmitrii_lab_6/readme.md
Normal file
@ -0,0 +1,149 @@
|
||||
### Задание
|
||||
Использовать нейронную сеть по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
|
||||
Интерпретировать результаты и оценить, насколько хорошо она подходит для
|
||||
решения сформулированной вами задачи.
|
||||
|
||||
Вариант 1: MLPClassifier
|
||||
|
||||
Была сформулирована следующая задача: необходимо классифицировать жильё по стоимости на основе избранных признаков при помощи нейронной сети.
|
||||
|
||||
### Запуск программы
|
||||
Файл lab6.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
|
||||
|
||||
### Описание программы
|
||||
Программа считывает цены на жильё как выходные данные и следующие данные как входные: год размещения объявления, площадь, этаж, количество этажей, год постройки, количество комнат, материал, расстояние до кремля (условного центра).
|
||||
Далее она обрабатывает данные (цифровизирует нулевые данные), оставляет только год объявления. Цены распределяются по пяти классам.
|
||||
|
||||
После обработки программа делит данные на 99% обучающего материала и 1% тестового.
|
||||
Эти данные обрабатываются по 10 раз для идентичных моделей нейронных сетей, использующих метод градиентного спуска "adam", с разной настройкой максимального количества поколений: 200, 400, 600, 800, 1000.
|
||||
Считаются оценка модели. Для каждой модели запоминаются минимальный, максимальный и средний результаты. В консоль выводятся все результаты.
|
||||
В конце программа показывает графики зависимости результатов от максимального количества поколений модели.
|
||||
|
||||
### Результаты тестирования
|
||||
По результатам тестирования, можно сказать следующее:
|
||||
* В общем, модель даёт средний результат в районе 40-50% точности, что недостаточно.
|
||||
* Увеличение максимального количества поколений влияет сильнее всего на минимальные оценки, сужая разброс точности.
|
||||
* Нельзя сказать, что увеличение максимального количества поколений сильно улучшит модель: максимум на 10% точности.
|
||||
|
||||
Пример консольного вывода:
|
||||
>Testing iterations number 200:
|
||||
>
|
||||
>res1: 0.3806228373702422
|
||||
>
|
||||
>res2: 0.6055363321799307
|
||||
>
|
||||
>res3: 0.4809688581314879
|
||||
>
|
||||
>res4: 0.4913494809688581
|
||||
>
|
||||
>res5: 0.4844290657439446
|
||||
>
|
||||
>res6: 0.2975778546712803
|
||||
>
|
||||
>res7: 0.48788927335640137
|
||||
>
|
||||
>res8: 0.06228373702422145
|
||||
>
|
||||
>res9: 0.6193771626297578
|
||||
>
|
||||
>res10: 0.47750865051903113
|
||||
>
|
||||
>Medium result: 0.4387543252595155
|
||||
>
|
||||
>Testing iterations number 400:
|
||||
>
|
||||
>res1: 0.6124567474048442
|
||||
>
|
||||
>res2: 0.4290657439446367
|
||||
>
|
||||
>res3: 0.3217993079584775
|
||||
>
|
||||
>res4: 0.5467128027681661
|
||||
>
|
||||
>res5: 0.48788927335640137
|
||||
>
|
||||
>res6: 0.40484429065743943
|
||||
>
|
||||
>res7: 0.6020761245674741
|
||||
>
|
||||
>res8: 0.4186851211072664
|
||||
>
|
||||
>res9: 0.42214532871972316
|
||||
>
|
||||
>res10: 0.370242214532872
|
||||
>
|
||||
>Medium result: 0.46159169550173
|
||||
>
|
||||
>Testing iterations number 600:
|
||||
>
|
||||
>res1: 0.4359861591695502
|
||||
>
|
||||
>res2: 0.2560553633217993
|
||||
>
|
||||
>res3: 0.5363321799307958
|
||||
>
|
||||
>res4: 0.5778546712802768
|
||||
>
|
||||
>res5: 0.35986159169550175
|
||||
>
|
||||
>res6: 0.356401384083045
|
||||
>
|
||||
>res7: 0.49480968858131485
|
||||
>
|
||||
>res8: 0.5121107266435986
|
||||
>
|
||||
>res9: 0.5224913494809689
|
||||
>
|
||||
>res10: 0.5190311418685121
|
||||
>
|
||||
>Medium result: 0.4570934256055363
|
||||
>
|
||||
>Testing iterations number 800:
|
||||
>
|
||||
>res1: 0.25951557093425603
|
||||
>
|
||||
>res2: 0.4083044982698962
|
||||
>
|
||||
>res3: 0.5224913494809689
|
||||
>
|
||||
>res4: 0.5986159169550173
|
||||
>
|
||||
>res5: 0.24567474048442905
|
||||
>
|
||||
>res6: 0.4013840830449827
|
||||
>
|
||||
>res7: 0.21453287197231835
|
||||
>
|
||||
>res8: 0.4671280276816609
|
||||
>
|
||||
>res9: 0.40484429065743943
|
||||
>
|
||||
>res10: 0.38408304498269896
|
||||
>
|
||||
>Medium result: 0.3906574394463667
|
||||
>
|
||||
>Testing iterations number 1000:
|
||||
>
|
||||
>res1: 0.4186851211072664
|
||||
>
|
||||
>res2: 0.5017301038062284
|
||||
>
|
||||
>res3: 0.5121107266435986
|
||||
>
|
||||
>res4: 0.3806228373702422
|
||||
>
|
||||
>res5: 0.44982698961937717
|
||||
>
|
||||
>res6: 0.5986159169550173
|
||||
>
|
||||
>res7: 0.5570934256055363
|
||||
>
|
||||
>res8: 0.4290657439446367
|
||||
>
|
||||
>res9: 0.32525951557093424
|
||||
>
|
||||
>res10: 0.41522491349480967
|
||||
>
|
||||
>Medium result: 0.4588235294117647
|
||||
|
||||
Итого: Для отобранных данных нейронная модель с методом градиентного спуска "adam" показала себя не лучшим образом. Возможно, другие методы могут выдать лучшие результаты, либо необходима более обширная модификация модели.
|
28896
alexandrov_dmitrii_lab_6/sberbank_data.csv
Normal file
2795
alexandrov_dmitrii_lab_7/data.txt
Normal file
96
alexandrov_dmitrii_lab_7/lab7.py
Normal file
@ -0,0 +1,96 @@
|
||||
import numpy as np
|
||||
from keras_preprocessing.sequence import pad_sequences
|
||||
from keras_preprocessing.text import Tokenizer
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense, LSTM, Embedding, Dropout
|
||||
from keras.callbacks import ModelCheckpoint
|
||||
|
||||
|
||||
def recreate_model(predictors, labels, model, filepath, epoch_num):
|
||||
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
append_epochs(predictors, labels, model, epoch_num)
|
||||
|
||||
|
||||
def append_epochs(predictors, labels, model, filepath, epoch_num):
|
||||
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
|
||||
desired_callbacks = [checkpoint]
|
||||
model.fit(predictors, labels, epochs=epoch_num, verbose=1, callbacks=desired_callbacks)
|
||||
|
||||
|
||||
def generate_text(tokenizer, seed_text, next_words, model, max_seq_length):
|
||||
for _ in range(next_words):
|
||||
token_list = tokenizer.texts_to_sequences([seed_text])[0]
|
||||
token_list = pad_sequences([token_list], maxlen=max_seq_length - 1, padding='pre')
|
||||
predicted = np.argmax(model.predict(token_list), axis=-1)
|
||||
output_word = ""
|
||||
for word, index in tokenizer.word_index.items():
|
||||
if index == predicted:
|
||||
output_word = word
|
||||
break
|
||||
seed_text += " " + output_word
|
||||
return seed_text
|
||||
|
||||
|
||||
def start():
|
||||
flag = -1
|
||||
while flag < 1 or flag > 2:
|
||||
flag = int(input("Select model and text (1 - eng, 2 - ru): "))
|
||||
|
||||
if flag == 1:
|
||||
file = open("data.txt").read()
|
||||
filepath = "model_eng.hdf5"
|
||||
elif flag == 2:
|
||||
file = open("rus_data.txt").read()
|
||||
filepath = "model_rus.hdf5"
|
||||
else:
|
||||
exit(1)
|
||||
|
||||
tokenizer = Tokenizer()
|
||||
tokenizer.fit_on_texts([file])
|
||||
words_count = len(tokenizer.word_index) + 1
|
||||
|
||||
input_sequences = []
|
||||
for line in file.split('\n'):
|
||||
token_list = tokenizer.texts_to_sequences([line])[0]
|
||||
for i in range(1, len(token_list)):
|
||||
n_gram_sequence = token_list[:i + 1]
|
||||
input_sequences.append(n_gram_sequence)
|
||||
|
||||
max_seq_length = max([len(x) for x in input_sequences])
|
||||
input_sequences = pad_sequences(input_sequences, maxlen=max_seq_length, padding='pre')
|
||||
|
||||
predictors, labels = input_sequences[:, :-1], input_sequences[:, -1]
|
||||
|
||||
model = Sequential()
|
||||
model.add(Embedding(words_count, 100, input_length=max_seq_length - 1))
|
||||
model.add(LSTM(150))
|
||||
model.add(Dropout(0.15))
|
||||
model.add(Dense(words_count, activation='softmax'))
|
||||
|
||||
flag = input("Do you want to recreate the model ? (print yes): ")
|
||||
if flag == 'yes':
|
||||
flag = input("Are you sure? (print yes): ")
|
||||
if flag == 'yes':
|
||||
num = int(input("Select number of epoch: "))
|
||||
if 0 < num < 100:
|
||||
recreate_model(predictors, labels, model, filepath, num)
|
||||
|
||||
model.load_weights(filepath)
|
||||
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
flag = input("Do you want to train the model ? (print yes): ")
|
||||
if flag == 'yes':
|
||||
flag = input("Are you sure? (print yes): ")
|
||||
if flag == 'yes':
|
||||
num = int(input("Select number of epoch: "))
|
||||
if 0 < num < 100:
|
||||
append_epochs(predictors, labels, model, filepath, num)
|
||||
|
||||
flag = 'y'
|
||||
while flag == 'y':
|
||||
seed = input("Enter seed: ")
|
||||
print(generate_text(tokenizer, seed, 25, model, max_seq_length))
|
||||
flag = input("Continue? (print \'y\'): ")
|
||||
|
||||
|
||||
start()
|
BIN
alexandrov_dmitrii_lab_7/model_eng.hdf5
Normal file
BIN
alexandrov_dmitrii_lab_7/model_rus.hdf5
Normal file
49
alexandrov_dmitrii_lab_7/readme.md
Normal file
@ -0,0 +1,49 @@
|
||||
### Задание
|
||||
Выбрать художественный текст(четные варианты – русскоязычный, нечетные – англоязычный)и обучить на нем рекуррентную нейронную сеть для решения задачи генерации. Подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату. Далее разбиться на пары четный-нечетный вариант, обменяться разработанными сетями и проверить, как архитектура товарища справляется с вашим текстом.
|
||||
|
||||
Вариант 1: первостепенно - английский текст. Кооперироваться, впрочем, не с кем.
|
||||
|
||||
### Запуск программы
|
||||
Файл lab7.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
|
||||
|
||||
### Описание программы
|
||||
Программа представляет собой консольное приложение-инструмент для работы с моделями. Она может создавать и обучать однородные модели для разных текстов.
|
||||
В файлах хранятся два текста: англоязычный data.txt (Остров сокровищ) и русскоязычный rus_data.txt (Хоббит). Также там хранятся две сохранённые обученные модели:
|
||||
* model_eng - модель, обученная на английском тексте. На текущий момент 27 эпох обучения.
|
||||
* model_rus - модель, обученная на русском тексте. На текущий момент 12 эпох обучения.
|
||||
Обучение проходило 1 день.
|
||||
|
||||
В программе необходимо выбрать загружаемый текст и соответствующую модель, в данный момент подключается русскоязычная модель.
|
||||
|
||||
Программа содержит методы пересоздания модели и дообучения модели (передаётся модель и количество эпох дообучения). Оба метода отключены и могут быть подключены обратно при необходимости.
|
||||
|
||||
После возможных пересоздания и дообучения моделей программа запрашивает текст-кодовое слово, которое модели будет необходимо продолжить, сгенерировав свой текст.
|
||||
|
||||
Сама модель имеет следующую архитектуру:
|
||||
* слой, преобразующий слова в векторы плотности, Embedding с входом, равным числу слов, с выходом 100, и с длиной ввода, равной длине максимального слова.
|
||||
* слой с блоками долгой краткосрочной памятью, составляющая рекуррентную сеть, LSTM со 150 блоками.
|
||||
* слой, задающий степень разрыва нейронных связей между соседними слоями, Dropout с процентом разрыва 15.
|
||||
* слой вычисления взвешенных сумм Dense с числом нейронов, равным числу слов в тексте и функцией активации 'softmax'
|
||||
|
||||
### Результаты тестирования
|
||||
По результатам дневного обучения можно сказать следующее:
|
||||
|
||||
Модель успешно генерирует бессмысленные последовательности слов, которые либо состоят из обрывков фраз, либо случайно (но достаточно часто) складываются в осмысленные словосочетания, но не более.
|
||||
|
||||
Примеры генераций (первое слово - код генерации):
|
||||
|
||||
Модель, обученная на 'Острове сокровищ', 27 эпох обучения:
|
||||
>ship that he said with the buccaneers a gentleman and neither can read and figure but what is it anyway ah 'deposed' that's it is a
|
||||
>
|
||||
>chest said the doctor touching the black spot mind by the arm who is the ship there's long john now you are the first that were
|
||||
>
|
||||
>silver said the doctor if you can get the treasure you can find the ship there's been a man that has lost his score out he
|
||||
|
||||
Модель, обученная на 'Хоббите', 12 эпох обучения:
|
||||
>дракон и тут они услыхали про смога он понял что он стал видел и разозлился как слоны у гэндальфа хороши но все это было бы он
|
||||
>
|
||||
>поле он не мог сообразить что он делал то в живых и слышал бильбо как раз доедал пуще прежнего а бильбо все таки уж не мог
|
||||
>
|
||||
>паук направился к нему толстому из свертков они добрались до рассвета и даже дальше не останавливаясь а именно что гоблины обидело бильбо они не мог ничего
|
||||
|
||||
Итого: Даже такая простая модель с таким малым количеством эпох обучения может иногда сгенерировать нечто осмысленное. Однако для генерации нормального текста необходимо длительное обучение и более сложная модель, из нескольких слоёв LSTM и Dropout после них, что, однако, потребовало бы вычислительные мощности, которых у меня нет в наличии. Иначе следует взять очень маленький текст.
|
6838
alexandrov_dmitrii_lab_7/rus_data.txt
Normal file
53
almukhammetov_bulat_lab_1/README.md
Normal file
@ -0,0 +1,53 @@
|
||||
Вариант 2
|
||||
|
||||
Задание:
|
||||
Используя код из пункта «Регуляризация и сеть прямого распространения «из [1] (стр. 228), сгенерируйте определенный тип данных и сравните на нем 3 модели (по варианту)Постройте графики, отобразите качество моделей, объясните полученные результаты.
|
||||
|
||||
Данные:
|
||||
make_circles (noise=0.2, factor=0.5, random_state=rs) Модели: · Линейную регрессию · Полиномиальную регрессию (со степенью 3) · Гребневую полиномиальную регрессию (со степенью 3, alpha= 1.0)
|
||||
|
||||
Запуск:
|
||||
Запустите файл lab1.py
|
||||
|
||||
Описание программы:
|
||||
1. Генерирует набор данных с использованием функции make_circles из scikit-learn. Этот набор данных представляет собой два класса, где точки одного класса окружают точки другого класса с добавленным шумом.
|
||||
2. Разделяет данные на обучающий и тестовый наборы с помощью функции train_test_split.
|
||||
3. Создает три разные модели для классификации данных:
|
||||
4. Линейная регрессия (Logistic Regression).
|
||||
5. Полиномиальная регрессия третьей степени (Polynomial Regression).
|
||||
6. Гребневая полиномиальная регрессия третьей степени с регуляризацией и альфой равной единице (Ridge Polynomial Regression).
|
||||
7. Обучаем каждую из этих моделей на обучающем наборе данных и оцениваем их точность на тестовом наборе данных.
|
||||
8. Выводит результаты точности каждой модели.
|
||||
9. Разделение областей предсказаний моделей (границы решения).
|
||||
10. Тестовые и обучающие точки, окрашенные в соответствии с классами. (красным и синим)
|
||||
|
||||
Результаты:
|
||||
|
||||
<p>
|
||||
<div>Точность</div>
|
||||
<img src="Рисунок1.png">
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<div>Графики регрессии</div>
|
||||
<img src="Рисунок2.png">
|
||||
<img src="Рисунок3.png">
|
||||
<img src="Рисунок4.png">
|
||||
</p>
|
||||
|
||||
|
||||
Исходя из получивших графиков и точночсти с данным типом генерации данных из этих трех моделей наиболее точной получились полиномиальную регрессия (со степенью 3) и гребневaz полиномиальная регрессия (со степенью 3, alpha= 1.0). Они так же являются идентичными между собой. Чтобы проверить это утверждение я провел дополнительное тестирование и написал скрипт, который для 10 разных random_state (2-11) вычисляет точность для трех разных моделей.
|
||||
|
||||
Результаты:
|
||||
|
||||
Значения точности для каждой модели:
|
||||
Линейная регрессия 0.40 0.52 0.44 0.56 0.48 0.49 0.50 0.49 0.46 0.40
|
||||
Полиномиальная регрессия (со степенью 3) 0.63 0.67 0.74 0.64 0.80 0.73 0.64 0.81 0.46 0.62
|
||||
Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0) 0.63 0.67 0.74 0.64 0.80 0.73 0.64 0.81 0.46 0.62
|
||||
|
||||
Средние значения точности:
|
||||
Линейная регрессия - Средняя точность: 0.47
|
||||
Полиномиальная регрессия (со степенью 3) - Средняя точность: 0.68
|
||||
Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0) - Средняя точность: 0.68
|
||||
|
||||
Утверждение также подтвердилось.
|
83
almukhammetov_bulat_lab_1/lab1.py
Normal file
@ -0,0 +1,83 @@
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
from sklearn.datasets import make_circles
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
# Используя код из пункта «Регуляризация и сеть прямого распространения»из [1](стр. 228),
|
||||
# сгенерируйте определенный тип данных и сравните на нем 3 модели (по варианту).
|
||||
# Постройте графики, отобразите качество моделей, объясните полученные результаты.
|
||||
|
||||
# Модели
|
||||
# Линейная регрессия
|
||||
# Полиномиальная регрессия (со степенью 3)
|
||||
# Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
|
||||
|
||||
# Данные
|
||||
# make_circles (noise=0.2, factor=0.5, random_state=rs)
|
||||
|
||||
random_state = np.random.RandomState(2)
|
||||
|
||||
# Генерируем датасет
|
||||
circles_dataset = make_circles(noise=0.2, factor=0.5, random_state=random_state)
|
||||
|
||||
X, y = circles_dataset
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=random_state)
|
||||
|
||||
# Создаем модели
|
||||
models = []
|
||||
|
||||
# Линейная регрессия
|
||||
linear_model = LogisticRegression(random_state=random_state)
|
||||
models.append(("Линейная регрессия", linear_model))
|
||||
|
||||
# Полиномиальная регрессия (со степенью 3)
|
||||
poly_model = make_pipeline(PolynomialFeatures(degree=3), StandardScaler(),
|
||||
LogisticRegression(random_state=random_state))
|
||||
models.append(("Полиномиальная регрессия (со степенью 3)", poly_model))
|
||||
|
||||
# Гребневая полиномиальная регрессия (со степенью 3 и alpha=1.0)
|
||||
ridge_poly_model = make_pipeline(PolynomialFeatures(degree=3), StandardScaler(),
|
||||
LogisticRegression(penalty='l2', C=1.0, random_state=random_state))
|
||||
models.append(("Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0)", ridge_poly_model))
|
||||
|
||||
# Обучаем и оцениваем модели
|
||||
results = []
|
||||
|
||||
for name, model in models:
|
||||
model.fit(X_train, y_train) # обучаем
|
||||
y_pred = model.predict(X_test) # предсказываем
|
||||
accuracy = accuracy_score(y_test, y_pred) # определяем точность
|
||||
results.append((name, accuracy))
|
||||
|
||||
# Выводим результаты
|
||||
for name, accuracy in results:
|
||||
print(f"{name} - Точность: {accuracy:.2f}")
|
||||
|
||||
# Строим графики
|
||||
cmap_background = ListedColormap(['#FFAAAA', '#AAAAFF'])
|
||||
cmap_points = ListedColormap(['#FF0000', '#0000FF'])
|
||||
|
||||
plt.figure(figsize=(15, 5))
|
||||
for i, (name, model) in enumerate(models):
|
||||
plt.subplot(1, 3, i + 1)
|
||||
xx, yy = np.meshgrid(np.linspace(X[:, 0].min() - 1, X[:, 0].max() + 1, 100),
|
||||
np.linspace(X[:, 1].min() - 1, X[:, 1].max() + 1, 100))
|
||||
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
|
||||
Z = Z.reshape(xx.shape)
|
||||
plt.contourf(xx, yy, Z, cmap=cmap_background, alpha=0.5)
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_points, marker='o', label='Тестовые точки')
|
||||
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cmap_points, marker='x', label='Обучающие точки')
|
||||
plt.legend()
|
||||
plt.title(name)
|
||||
|
||||
plt.text(0.5, -1.2, 'Красный класс', color='r', fontsize=12)
|
||||
plt.text(0.5, -1.7, 'Синий класс', color='b', fontsize=12)
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
BIN
almukhammetov_bulat_lab_1/Рисунок1.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
almukhammetov_bulat_lab_1/Рисунок2.png
Normal file
After Width: | Height: | Size: 66 KiB |
BIN
almukhammetov_bulat_lab_1/Рисунок3.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
almukhammetov_bulat_lab_1/Рисунок4.png
Normal file
After Width: | Height: | Size: 81 KiB |
40
almukhammetov_bulat_lab_2/README.md
Normal file
@ -0,0 +1,40 @@
|
||||
Вариант 2
|
||||
|
||||
Задание:
|
||||
Используя код из [1](пункт «Решение задачи ранжирования признаков», стр. 205), выполните ранжирование признаков с помощью указанных по варианту моделей. Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Проведите анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению? (Названия\индексы признаков и будут ответом на задание).
|
||||
|
||||
Данные:
|
||||
Линейная регрессия (LinearRegression)
|
||||
Рекурсивное сокращение признаков (Recursive Feature Elimination –RFE)
|
||||
Сокращение признаков Случайными деревьями (Random Forest Regressor)
|
||||
|
||||
Запуск:
|
||||
Запустите файл lab2.py
|
||||
|
||||
Описание программы:
|
||||
1. Генерирует случайные данные для задачи регрессии с помощью функции make_regression, создавая матрицу признаков X и вектор целевой переменной y.
|
||||
2. Создает DataFrame data, в котором столбцы представляют признаки, а последний столбец - целевую переменную.
|
||||
3. Разделяет данные на матрицу признаков X и вектор целевой переменной y.
|
||||
4. Создает список моделей для ранжирования признаков: линейной регрессии, рекурсивного сокращения признаков и сокращения признаков случайными деревьями.
|
||||
5. Создает словарь model_scores для хранения оценок каждой модели.
|
||||
6. Обучает и оценивает каждую модель на данных:
|
||||
7. Вычисляет ранги признаков и нормализует их в диапазоне от 0 до 1.
|
||||
8. Выводит оценки признаков каждой модели и их средние оценки.
|
||||
9. Находит четыре наиболее важных признака по средней оценке и выводит их индексы и значения.
|
||||
|
||||
Результаты:
|
||||
|
||||
![Alt text](image.png)
|
||||
|
||||
![Alt text](image-1.png)
|
||||
|
||||
![Alt text](image-2.png)
|
||||
|
||||
![Alt text](image-3.png)
|
||||
|
||||
![Alt text](image-4.png)
|
||||
|
||||
Выводы:
|
||||
|
||||
Четыре наиболее важных признака, определенных на основе средних оценок, включают Признак 6, Признак 1, Признак 2 и Признак 5. Эти признаки имеют наибольшую среднюю важность среди всех признаков.
|
||||
|
BIN
almukhammetov_bulat_lab_2/image-1.png
Normal file
After Width: | Height: | Size: 21 KiB |
BIN
almukhammetov_bulat_lab_2/image-2.png
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
almukhammetov_bulat_lab_2/image-3.png
Normal file
After Width: | Height: | Size: 9.8 KiB |
BIN
almukhammetov_bulat_lab_2/image-4.png
Normal file
After Width: | Height: | Size: 6.8 KiB |
BIN
almukhammetov_bulat_lab_2/image.png
Normal file
After Width: | Height: | Size: 9.7 KiB |
75
almukhammetov_bulat_lab_2/lab2.py
Normal file
@ -0,0 +1,75 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.datasets import make_regression
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
# Используя код из [1](пункт «Решение задачи ранжирования признаков», стр. 205), выполните ранжирование признаков
|
||||
# с помощью указанных по варианту моделей. Отобразите получившиеся значения\оценки каждого признака каждым
|
||||
# методом\моделью и среднюю оценку. Проведите анализ получившихся результатов. Какие четыре признака оказались
|
||||
# самыми важными по среднему значению? (Названия\индексы признаков и будут ответом на задание).
|
||||
|
||||
# Линейная регрессия (LinearRegression), Рекурсивное сокращение признаков (Recursive Feature Elimination –RFE),
|
||||
# Сокращение признаков Случайными деревьями (Random Forest Regressor)
|
||||
random_state = np.random.RandomState(2)
|
||||
|
||||
# Генерация случайных данных для регрессии
|
||||
X, y = make_regression(n_samples=100, n_features=10, noise=0.1, random_state=random_state)
|
||||
|
||||
# Создание DataFrame для данных
|
||||
data = pd.DataFrame(X, columns=[f'признак_{i}' for i in range(X.shape[1])])
|
||||
data['целевая_переменная'] = y
|
||||
|
||||
# Разделение данных на признаки (X) и целевую переменную (y)
|
||||
X = data.drop('целевая_переменная', axis=1)
|
||||
y = data['целевая_переменная']
|
||||
|
||||
# Создаем модели
|
||||
models = [
|
||||
("Линейная регрессия", LinearRegression()),
|
||||
("Рекурсивное сокращение признаков", RFE(LinearRegression(), n_features_to_select=1)),
|
||||
("Сокращение признаков Случайными деревьями", RandomForestRegressor())
|
||||
]
|
||||
|
||||
# Словарь для хранения оценок каждой модели
|
||||
model_scores = {}
|
||||
|
||||
# Обучение и оценка моделей
|
||||
for name, model in models:
|
||||
model.fit(X, y)
|
||||
if name == "Рекурсивное сокращение признаков":
|
||||
# RFE возвращает ранжирование признаков
|
||||
rankings = model.ranking_
|
||||
# Нормализация рангов так, чтобы они находились в диапазоне от 0 до 1
|
||||
normalized_rankings = 1 - (rankings - 1) / (np.max(rankings) - 1)
|
||||
model_scores[name] = normalized_rankings
|
||||
elif name == "Сокращение признаков Случайными деревьями":
|
||||
# Важность признаков для RandomForestRegressor
|
||||
feature_importances = model.feature_importances_
|
||||
# Нормализация значений важности признаков в диапазоне от 0 до 1
|
||||
normalized_importances = MinMaxScaler().fit_transform(feature_importances.reshape(-1, 1))
|
||||
model_scores[name] = normalized_importances.flatten()
|
||||
elif name == "Линейная регрессия":
|
||||
# Коэффициенты признаков для Linear Regression
|
||||
coefficients = model.coef_
|
||||
# Нормализация коэффициентов так, чтобы они находились в диапазоне от 0 до 1
|
||||
normalized_coefficients = MinMaxScaler().fit_transform(np.abs(coefficients).reshape(-1, 1))
|
||||
model_scores[name] = normalized_coefficients.flatten()
|
||||
|
||||
# Вывод оценок каждой модели
|
||||
for name, scores in model_scores.items():
|
||||
print(f"{name} оценки признаков:")
|
||||
for feature, score in enumerate(scores, start=1):
|
||||
print(f"Признак {feature}: {score:.2f}")
|
||||
print(f"Средняя оценка: {np.mean(scores):.2f}")
|
||||
print()
|
||||
|
||||
# Находим четыре наиболее важных признака по средней оценке
|
||||
all_feature_scores = np.mean(list(model_scores.values()), axis=0)
|
||||
sorted_features = sorted(enumerate(all_feature_scores, start=1), key=lambda x: x[1], reverse=True)
|
||||
top_features = sorted_features[:4]
|
||||
print("Четыре наиболее важных признака:")
|
||||
for feature, score in top_features:
|
||||
print(f"Признак {feature}: {score:.2f}")
|
84
antonov_dmitry_lab_2/README.md
Normal file
@ -0,0 +1,84 @@
|
||||
# Лаб 2
|
||||
|
||||
Ранжирование признаков
|
||||
|
||||
Выполните ранжирование признаков с помощью указанных по варианту моделей.
|
||||
Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку.
|
||||
Проведите анализ получившихся результатов.
|
||||
Какие четыре признака оказались самыми важными по среднему значению?
|
||||
(Названия\индексы признаков и будут ответом на задание).
|
||||
|
||||
# Вариант 3
|
||||
|
||||
Линейная регрессия (LinearRegression) , Сокращение признаков
|
||||
Случайными деревьями (Random Forest Regressor), Линейная корреляция
|
||||
(f_regression)
|
||||
|
||||
Я использовал датасет Predict students' dropout and academic success
|
||||
https://www.kaggle.com/datasets/thedevastator/higher-education-predictors-of-student-retention
|
||||
Он используется мной по заданию на курсовую работу
|
||||
|
||||
# Запуск
|
||||
|
||||
Выполнением скрипта файла (вывод в консоль).
|
||||
|
||||
# Модели:
|
||||
|
||||
1. Линейная регрессия (LinearRegression)
|
||||
1. Сокращение признаков cлучайными деревьями (Random Forest Regressor)
|
||||
1. Линейная корреляция (f_regression)
|
||||
|
||||
# Пояснения
|
||||
|
||||
<div>
|
||||
Выбор наиболее подходящего метода ранжирования объектов зависит от специфики набора данных и требований
|
||||
к модели.
|
||||
|
||||
Линейная регрессия - это простой и понятный метод, который может быть использован для предсказания значений.
|
||||
Он хорошо работает, если зависимость между переменными является линейной.
|
||||
Однако, если данные содержат сложные нелинейные зависимости, линейная регрессия может
|
||||
оказаться не очень эффективной.
|
||||
|
||||
Уменьшение признаков с помощью случайных деревьев (Random Forest Regressor) - это мощный метод,
|
||||
который способен обрабатывать сложные взаимосвязи в данных, даже если они нелинейные.
|
||||
Он основан на идее создания ансамбля деревьев решений, каждое из которых дает свой голос за
|
||||
наиболее подходящий ответ. Случайные леса обычно дают хорошие результаты и являются устойчивыми
|
||||
к переобучению.
|
||||
|
||||
Линейная корреляция или f_regression - это статистический метод, который используется для измерения
|
||||
степени связи между двумя переменными. Он может помочь определить, есть ли вообще связь между переменными,
|
||||
но не подходит для ранжирования объектов.
|
||||
</div>
|
||||
|
||||
### 4 самых важных признака в среднем:
|
||||
1. Признак: Curricular units 2nd sem (approved), Оценка: 0.8428
|
||||
2. Признак: Tuition fees up to date, Оценка: 0.4797
|
||||
3. Признак: Curricular units 1st sem (approved), Оценка: 0.2986
|
||||
4. Признак: Curricular units 2nd sem (grade), Оценка: 0.2778
|
||||
|
||||
### 4 самых важных для lr_scores линейной регрессии:
|
||||
1. 0.3917 'Tuition fees up to date'
|
||||
2. 0.2791 'International'
|
||||
3. 0.2075 'Curricular units 2nd sem (approved)'
|
||||
4. 0.1481 'Debtor'
|
||||
|
||||
### 4 самых важных для rf_scores рандом forests:
|
||||
1. 0.4928 'Curricular units 2nd sem (approved)'
|
||||
2. 0.061 'Tuition fees up to date'
|
||||
3. 0.0458 'Curricular units 2nd sem (grade)'
|
||||
4. 0.0308 'Curricular units 1st sem (grade)'
|
||||
|
||||
### 4 самых важных для f_regression:
|
||||
1. 2822.104 'Curricular units 2nd sem (approved)'
|
||||
2. 2093.3315 'Curricular units 2nd sem (grade)'
|
||||
3. 1719.4229 'Curricular units 1st sem (approved)'
|
||||
4. 1361.6144 'Curricular units 1st sem (grade)'
|
||||
|
||||
### Объяснение:
|
||||
<div>
|
||||
В общем, выбор между линейной регрессией и случайными лесами зависит от характеристик данных.
|
||||
Если данные имеют линейную зависимость, то линейная регрессия будет предпочтительнее.
|
||||
Если данные содержат сложные, возможно нелинейные взаимосвязи, то Random Forest может быть лучшим выбором.
|
||||
В любом случае, важно провести предварительное исследование данных и тестирование различных моделей,
|
||||
чтобы выбрать наиболее подходящую.
|
||||
</div>
|
4425
antonov_dmitry_lab_2/dataset.csv
Normal file
106
antonov_dmitry_lab_2/lab2.py
Normal file
@ -0,0 +1,106 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.feature_selection import f_regression
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
# загрузка dataset
|
||||
data = pd.read_csv('dataset.csv')
|
||||
|
||||
# разделение dataset на тренировочную и тестовую выборки
|
||||
X = data.drop(['Target'], axis=1)
|
||||
y = data['Target']
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# Тренировка моделей
|
||||
# Линейная регрессия
|
||||
lr = LinearRegression()
|
||||
lr.fit(X_train, y_train)
|
||||
|
||||
# Сокращение признаков случайными деревьями с помощью Random Forest Regressor
|
||||
rf = RandomForestRegressor()
|
||||
rf.fit(X_train, y_train)
|
||||
|
||||
# Ранжирование признаков использую каждую модель/метод
|
||||
# Получение абсолютных значений коэффициентов в качестве оценок важности признаков
|
||||
lr_scores = abs(lr.coef_)
|
||||
|
||||
# Получение оценок важности объектов из модели Random Forest Regressor
|
||||
rf_scores = rf.feature_importances_
|
||||
|
||||
# Отображение итоговых оценок по каждой колонке
|
||||
feature_names = X.columns.tolist()
|
||||
|
||||
# показать оценки рангов по модели линейной регрессии
|
||||
print("оценки линейной регрессии:")
|
||||
for feature, score in zip(feature_names, lr_scores):
|
||||
print(f"{feature}: {round(score, 4)}")
|
||||
|
||||
# оценки метода рандомных лесов
|
||||
print("\nоценки Random Forest:")
|
||||
for feature, score in zip(feature_names, rf_scores):
|
||||
print(f"{feature}: {round(score, 4)}")
|
||||
|
||||
# вычисление значений оценки для f_regression
|
||||
f_scores, p_values = f_regression(X, y)
|
||||
|
||||
# оценки f_regression
|
||||
print("\nоценки f_regression:")
|
||||
for feature, score in zip(feature_names, f_scores):
|
||||
print(f"{feature}: {round(score, 4)}")
|
||||
|
||||
# использую MinMaxScaler для точных средних значений рангов
|
||||
scaler = MinMaxScaler()
|
||||
lr_scores_scaled = scaler.fit_transform(lr_scores.reshape(-1, 1)).flatten()
|
||||
rf_scores_scaled = scaler.fit_transform(rf_scores.reshape(-1, 1)).flatten()
|
||||
f_scores_scaled = scaler.fit_transform(f_scores.reshape(-1, 1)).flatten()
|
||||
|
||||
# вычисление средних оценок для каждого признака
|
||||
average_scores = {}
|
||||
for feature in feature_names:
|
||||
average_scores[feature] = (lr_scores_scaled[feature_names.index(feature)] +
|
||||
rf_scores_scaled[feature_names.index(feature)] +
|
||||
f_scores_scaled[feature_names.index(feature)]) / 3
|
||||
|
||||
# получаем среднюю оценку признаков
|
||||
sorted_features = sorted(average_scores.items(), key=lambda x: x[1], reverse=True)
|
||||
|
||||
# получаем самых важных признака
|
||||
top_4_features = sorted_features[:4]
|
||||
|
||||
# отображаем 4 самые важные
|
||||
print("\n4 самых важных признака в среднем:")
|
||||
for feature, score in top_4_features:
|
||||
print(f"Признак: {feature}, Оценка: {round(score, 4)}")
|
||||
|
||||
|
||||
# отображаем самых важных признака для каждого метода/модели
|
||||
top_lr_indices = np.argsort(lr_scores)[-4:][::-1]
|
||||
top_rf_indices = np.argsort(rf_scores)[-4:][::-1]
|
||||
top_f_indices = np.argsort(f_scores)[-4:][::-1]
|
||||
|
||||
top_lr_features = [feature_names[i] for i in top_lr_indices]
|
||||
top_rf_features = [feature_names[i] for i in top_rf_indices]
|
||||
top_f_features = [feature_names[i] for i in top_f_indices]
|
||||
|
||||
top_lr_features_score = [lr_scores[i] for i in top_lr_indices]
|
||||
top_rf_features_score = [rf_scores[i] for i in top_rf_indices]
|
||||
top_f_features_score = [f_scores[i] for i in top_f_indices]
|
||||
|
||||
print("\n4 самых важных для lr_scores:")
|
||||
print(top_lr_features)
|
||||
for i in top_lr_features_score:
|
||||
print(round(i, 4))
|
||||
|
||||
print("\n4 самых важных для rf_scores:")
|
||||
print(top_rf_features)
|
||||
for i in top_rf_features_score:
|
||||
print(round(i, 4))
|
||||
|
||||
print("\n4 самых важных для f_scores:")
|
||||
print(top_f_features)
|
||||
for i in top_f_features_score:
|
||||
print(round(i, 4))
|
85
antonov_dmitry_lab_3/README.md
Normal file
@ -0,0 +1,85 @@
|
||||
# Лаб 3
|
||||
|
||||
Деревья решений
|
||||
|
||||
Часть 1. По данным о пассажирах Титаника решите задачу классификации
|
||||
(с помощью дерева решений), в которой по различным характеристикам
|
||||
пассажиров требуется найти у выживших пассажиров два наиболее важных
|
||||
признака из трех рассматриваемых (по варианту). Пример решения задачи
|
||||
можно посмотреть здесь: [1] (стр.188). Скачать данные можно по ссылке:
|
||||
https://www.kaggle.com/datasets/heptapod/titanic
|
||||
|
||||
Часть 2. Решите с помощью библиотечной реализации дерева решений
|
||||
задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету
|
||||
«Методы искусственного интеллекта» на 99% ваших данных. Проверьте
|
||||
работу модели на оставшемся проценте, сделайте вывод.
|
||||
|
||||
# Вариант 3
|
||||
|
||||
Признаки Sex,Age,SibSp
|
||||
|
||||
# Запуск
|
||||
|
||||
Выполнением скрипта файла (вывод в консоль).
|
||||
|
||||
# Описание модели:
|
||||
|
||||
DecisionTreeClassifier - это алгоритм машинного обучения, используемый для задач классификации и регрессии.
|
||||
Он представляет собой дерево решений, где на каждом узле дерева решается, какой вопрос задать дальше
|
||||
(признак для дальнейшего разбиения данных), а в листьях находятся окончательные ответы.
|
||||
|
||||
# Результаты
|
||||
|
||||
На данных для Титаника модель определяет важность признаков с точность 75% (исключает 'sibsp').
|
||||
Эти два признака обладают статистической важностью.
|
||||
<p>
|
||||
<div>Титаник</div>
|
||||
<img src="screens/titanic.png" width="650" title="Титаник 1">
|
||||
</p>
|
||||
|
||||
На данных моего датасета модель справляется на 52.768%, если в качестве предлагаемых параметров
|
||||
на вход идут ['Gender', 'Debtor', 'International'] (исключает 'International').
|
||||
|
||||
<p>
|
||||
<div>Мой датасет 1</div>
|
||||
<img src="screens/mydataset1.png" width="650" title="Мой датасет 1">
|
||||
</p>
|
||||
|
||||
И на 70.961, если на вход идут ['Gender', 'Debtor', 'Curricular units 2nd sem (approved)']
|
||||
(исключает 'Gender').
|
||||
|
||||
<p>
|
||||
<div>Мой датасет 2</div>
|
||||
<img src="screens/mydataset2.png" width="650" title="Мой датасет 2">
|
||||
</p>
|
||||
|
||||
Такой результат можно объяснить большей значимостью признака 'Curricular units 2nd sem (approved)'
|
||||
вместо 'International' (было показано в предыдущей лабораторной).
|
||||
|
||||
Из-за того, что мы взяли статистически более значимый признак, модель выдает нам большую точность.
|
||||
|
||||
Точность 52.768% указывает на то, что модель работает на уровне случайности, что означает, что она
|
||||
работает не лучше, чем случайное угадывание. Для этого может быть несколько причин:
|
||||
|
||||
1. Признаки все имеет малое значение: то есть для сравнения подаются признаки статистически малозначимые.
|
||||
|
||||
2. Недостаточно данных: Набор данных может содержать недостаточно информации или примеров для
|
||||
изучения моделью. Если набор данных невелик или нерепрезентативен, модель, возможно, не сможет
|
||||
хорошо обобщить новые данные.
|
||||
|
||||
3. Несбалансированные классы: Если классы в вашей целевой переменной несбалансированы
|
||||
(например, случаев, не связанных с отсевом, гораздо больше, чем случаев отсева), модель может
|
||||
быть смещена в сторону прогнозирования класса большинства.
|
||||
|
||||
4. Переобучение: Модель может быть переобучена обучающими данным, что означает, что она изучает шум
|
||||
в данных, а не лежащие в их основе закономерности. Это может произойти, если модель слишком сложна по
|
||||
сравнению с объемом доступных данных.
|
||||
|
||||
5. Недостаточное соответствие: С другой стороны, модель может быть слишком простой, чтобы отразить
|
||||
взаимосвязи в данных. Важно выбрать соответствующий уровень сложности модели.
|
||||
|
||||
<div>
|
||||
При отборе признаков должна учитываться их статистическая значимость, вычисленная различными способами
|
||||
(например с помощью лин регрессии, Random Forest Regressor, линейной корреляции f_regression или других).
|
||||
Так же должно быть достаточно данных, в модели должно быть сведено к минимуму переобучение.
|
||||
</div>
|
4425
antonov_dmitry_lab_3/dataset.csv
Normal file
35
antonov_dmitry_lab_3/lab3.py
Normal file
@ -0,0 +1,35 @@
|
||||
import pandas as pd
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
|
||||
# прочитали датасет
|
||||
data = pd.read_csv('dataset.csv')
|
||||
|
||||
# определение признаков
|
||||
# целевая переменная - Target
|
||||
X = data[['Gender', 'Debtor', 'Curricular units 2nd sem (approved)']]
|
||||
y = data['Target'] # Assuming 'Dropout' is the target variable
|
||||
|
||||
# разделили данные на тренировочную и тестовую выборки
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# создали модель decision tree classifier
|
||||
dt_classifier = DecisionTreeClassifier(random_state=42)
|
||||
dt_classifier.fit(X_train, y_train)
|
||||
|
||||
# получили значения модели для 2ух самых важных признаков
|
||||
feature_importances = dt_classifier.feature_importances_
|
||||
|
||||
top_features_indices = feature_importances.argsort()[-2:][::-1]
|
||||
top_features = X.columns[top_features_indices]
|
||||
|
||||
# вывод результата
|
||||
print("2 самых важных признака:", top_features)
|
||||
|
||||
# получили значения модели для проверки точности
|
||||
predictions = dt_classifier.predict(X_test)
|
||||
|
||||
# вычислили точность модели
|
||||
accuracy = accuracy_score(y_test, predictions)
|
||||
print("точность модели:", accuracy)
|
BIN
antonov_dmitry_lab_3/screens/mydataset1.png
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
antonov_dmitry_lab_3/screens/mydataset2.png
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
antonov_dmitry_lab_3/screens/titanic.png
Normal file
After Width: | Height: | Size: 11 KiB |
40
antonov_dmitry_lab_3/titanic.py
Normal file
@ -0,0 +1,40 @@
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
# прочитали датасет
|
||||
data = pd.read_csv("titanic_data.csv")
|
||||
|
||||
# определение признаков
|
||||
features = ['Sex', 'Age', 'sibsp']
|
||||
|
||||
# целевая переменная - выжившие
|
||||
target = 'Survived'
|
||||
|
||||
# разделили данные на тренировочную и тестовую выборки
|
||||
train_data, test_data, train_labels, test_labels = train_test_split(
|
||||
data[features],
|
||||
data[target],
|
||||
test_size=0.2,
|
||||
random_state=42
|
||||
)
|
||||
|
||||
# создали модель decision tree classifier
|
||||
model = DecisionTreeClassifier()
|
||||
|
||||
# натренировали модель
|
||||
model.fit(train_data, train_labels)
|
||||
|
||||
# получили значения модели для проверки точности
|
||||
predictions = model.predict(test_data)
|
||||
|
||||
# вычислили точность модели
|
||||
accuracy = accuracy_score(test_labels, predictions)
|
||||
print("точность модели:", accuracy)
|
||||
|
||||
# нашли два самых важных признака
|
||||
importances = model.feature_importances_
|
||||
indices = (-importances).argsort()[:2]
|
||||
important_features = [features[i] for i in indices]
|
||||
print("два самых важных признака:", important_features)
|
1310
antonov_dmitry_lab_3/titanic_data.csv
Normal file
78
antonov_dmitry_lab_4/README.md
Normal file
@ -0,0 +1,78 @@
|
||||
# Лаб 4 Кластеризация
|
||||
|
||||
Использовать метод кластеризации по варианту для данных из датасета курсовой
|
||||
Predict students' dropout and academic success (отсев студентов), самостоятельно сформулировав задачу.
|
||||
Интерпретировать результаты и оценить, насколько хорошо он подходит для
|
||||
решения сформулированной вами задачи.
|
||||
|
||||
# Вариант 3
|
||||
|
||||
Метод t-SNE
|
||||
|
||||
# Запуск
|
||||
|
||||
Выполнением скрипта файла (вывод в консоль).
|
||||
|
||||
# Описание модели:
|
||||
|
||||
T-Distributed Stochastic Neighbor Embedding (t-SNE) - это метод визуализации и снижения размерности,
|
||||
используемый для визуализации многомерных данных в виде двумерной или трехмерной графики.
|
||||
|
||||
Результатом работы t-SNE является визуализация данных, где близкие точки в исходном пространстве отображаются
|
||||
близко друг к другу, а отдаленные точки - далеко. Это позволяет исследователям изучать структуру данных и
|
||||
находить кластеры и структуры, которые могут быть не видны при прямом наблюдении исходного пространства высокой размерности.
|
||||
|
||||
# Задача кластеризации
|
||||
Учитывая набор данных, содержащий информацию о студентах, включая их пол, международный статус и ВВП,
|
||||
цель состоит в том, чтобы сгруппировать этих студентов в отдельные кластеры на основе этих признаков.
|
||||
Цель состоит в том, чтобы выявить естественные закономерности или подгруппы среди учащихся, которые могут
|
||||
иметь сходные характеристики с точки зрения пола, международного статуса и экономического происхождения.
|
||||
Такая кластеризация может помочь в адаптации образовательных программ, служб поддержки или вмешательств
|
||||
к конкретным группам учащихся для улучшения академических результатов и показателей удержания.
|
||||
Цель анализа - выявить значимые идеи, которые могут быть использованы для улучшения общего образовательного опыта
|
||||
и показателей успешности различных групп учащихся.
|
||||
|
||||
# Результаты
|
||||
|
||||
Для применения метода уменьшения размерности t-SNE использованы признаки "Гендер", "Международный" и "ВВП".
|
||||
Данные проецируются на двумерную плоскость, при этом сохраняя локальную структуру данных.
|
||||
|
||||
Как интерпретировать результаты на графике:
|
||||
|
||||
1. Пол:
|
||||
- Поскольку "Пол" является категориальной переменной (бинарной, как "Мужчина" или "Женщина"),
|
||||
- Ожидается увидеть на графике отчетливые кластеры или разделения. Каждая точка представляет учащегося,
|
||||
- и лица одинакового пола должны быть сгруппированы вместе.
|
||||
|
||||
2. Международный:
|
||||
- "Международный" также является бинарной категориальной переменной (например, "Да" или "Нет" указывает,
|
||||
- является ли студент иностранным), вы можете увидеть разделение между иностранными и немеждународными студентами.
|
||||
- Это может привести к образованию двух различных кластеров.
|
||||
|
||||
3. ВВП:
|
||||
- "ВВП" - это непрерывная переменная, и ее значения будут представлены в виде точек на графике. В зависимости от
|
||||
- распределения значений ВВП вы можете наблюдать градиент или закономерность в данных.
|
||||
|
||||
Теперь, когда посмотреть на график, должны быть видны точки, разбросанные по двумерному пространству. Похожие точки
|
||||
находятся близко друг к другу, а непохожие - дальше друг от друга.
|
||||
|
||||
- Результаты:
|
||||
- Видны четкие кластеры, это говорит о том, что эти признаки являются хорошими показателями для разделения
|
||||
- студентов на группы.
|
||||
|
||||
- Доминирующими признаками являются "гендер" и "Интернациональность", можно увидеть два различных кластера,
|
||||
- в одном из которых, например, в основном учатся местные студенты мужского пола, а в другом - иностранные студентки
|
||||
- женского пола.
|
||||
|
||||
- "ВВП" оказывает сильное влияние, можно увидеть градиент точек, указывающий на корреляцию между ВВП и
|
||||
- некоторой базовой закономерностью в данных.
|
||||
|
||||
Конкретная интерпретация будет зависеть от фактического распределения и характеристик данных.
|
||||
Также важно отметить, что t-SNE - это стохастический алгоритм, поэтому его многократное выполнение с одними и теми
|
||||
же параметрами может привести к несколько иным результатам. Поэтому рекомендуется изучить графики из нескольких прогонов,
|
||||
чтобы получить четкое представление о структуре данных.
|
||||
|
||||
<p>
|
||||
<div>График</div>
|
||||
<img src="screens/myplot.png" width="650" title="График">
|
||||
</p>
|
4425
antonov_dmitry_lab_4/dataset.csv
Normal file
22
antonov_dmitry_lab_4/lab4.py
Normal file
@ -0,0 +1,22 @@
|
||||
import pandas as pd
|
||||
from sklearn.cluster import KMeans
|
||||
from sklearn.manifold import TSNE
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# загрузка датасета
|
||||
data = pd.read_csv('dataset.csv')
|
||||
|
||||
# выделение необходимых признаков
|
||||
X = data[['Gender', 'International', 'GDP']]
|
||||
|
||||
# применение t-SNE для сокращения размерности
|
||||
tsne = TSNE(n_components=2, random_state=42)
|
||||
X_tsne = tsne.fit_transform(X)
|
||||
|
||||
# визуализация данных
|
||||
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=data['Target'], cmap='viridis')
|
||||
plt.colorbar()
|
||||
plt.xlabel('t-SNE х')
|
||||
plt.ylabel('t-SNE у')
|
||||
plt.title('t-SNE визуализация')
|
||||
plt.show()
|
BIN
antonov_dmitry_lab_4/screens/myplot.png
Normal file
After Width: | Height: | Size: 37 KiB |
42
antonov_dmitry_lab_5/README.md
Normal file
@ -0,0 +1,42 @@
|
||||
# Лаб 5 Регрессия
|
||||
|
||||
Использовать регрессию по варианту для данных из датасета курсовой
|
||||
Predict students' dropout and academic success (отсев студентов),
|
||||
самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит
|
||||
для решения сформулированной вами задачи.
|
||||
|
||||
# Вариант 3
|
||||
|
||||
Лассо-регрессия
|
||||
|
||||
# Запуск
|
||||
|
||||
Выполнением скрипта файла (вывод в консоль).
|
||||
|
||||
# Описание модели:
|
||||
|
||||
Лассо (Lasso) — это метод регрессионного анализа, который используется в статистике и
|
||||
машинном обучении для предсказания значения зависимой переменной.
|
||||
|
||||
Регрессия Лассо использует регуляризацию L1 для добавления штрафа, равного абсолютному
|
||||
значению коэффициентов. Это уменьшает некоторые коэффициенты и устанавливает другие равными 0,
|
||||
выполняя автоматический выбор функции. Обычная регрессия не имеет регуляризации.
|
||||
|
||||
# Задача регрессии
|
||||
Для прогнозирования отсева учащихся и набора данных об успеваемости спрогнозируйте отсев
|
||||
используя регрессию Лассо для признаков
|
||||
'Curricular units 2nd sem (approved)' - (Учебные блоки 2-го семестра (утверждены))
|
||||
'Curricular units 2nd sem (grade)' - (Учебные блоки 2-го семестра (класс))
|
||||
'Tuition fees up to date' - (Стоимость обучения")
|
||||
|
||||
# Результаты
|
||||
Точность регрессии для вышеперечисленных признаков составили 0.6256 (alpha = 0.01)
|
||||
При изменении коэффициента регуляризации в диапозоне от 0.01 до 1.5 наблюдается только ухудшение качества
|
||||
модели, таким образом для заданных параметров подходит больше обычная модель линейной регрессии, так как
|
||||
по этим признакам судя по результатам наблюдается линейная зависимость.
|
||||
Для этих признаков модель регрессии подходит плохо, нужно искать другую.
|
||||
|
||||
<p>
|
||||
<div>График</div>
|
||||
<img src="screens/myplot.png" width="650" title="График">
|
||||
</p>
|
4425
antonov_dmitry_lab_5/dataset.csv
Normal file
47
antonov_dmitry_lab_5/lab5.py
Normal file
@ -0,0 +1,47 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.linear_model import Lasso
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# загрузка данных
|
||||
data = pd.read_csv('dataset.csv')
|
||||
X = (data[
|
||||
['Curricular units 2nd sem (approved)',
|
||||
'Tuition fees up to date',
|
||||
'Curricular units 2nd sem (grade)']]
|
||||
)
|
||||
y = data['Target']
|
||||
|
||||
# тренировка модели
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
lasso_model = Lasso(alpha=0.01)
|
||||
lasso_model.fit(X_train, y_train)
|
||||
|
||||
# оценка модели
|
||||
y_pred_train = lasso_model.predict(X_train)
|
||||
y_pred_test = lasso_model.predict(X_test)
|
||||
|
||||
# оценка результатов модели
|
||||
train_accuracy = accuracy_score(y_train, np.round(y_pred_train))
|
||||
test_accuracy = accuracy_score(y_test, np.round(y_pred_test))
|
||||
|
||||
# вывод результатов
|
||||
print(f"Тренировочная Accuracy: {train_accuracy}")
|
||||
print(f"Тест Accuracy: {test_accuracy}")
|
||||
|
||||
# коэффициенты значимости признаков
|
||||
coefficients = lasso_model.coef_
|
||||
feature_names = X.columns
|
||||
|
||||
# вывод в консоль коэффициентов значимости
|
||||
for feature, coef in zip(feature_names, coefficients):
|
||||
print(f"{feature}: {coef}")
|
||||
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.barh(feature_names, coefficients)
|
||||
plt.xlabel('коэффициент')
|
||||
plt.title('Значимости признаков по регрессии Лассо')
|
||||
plt.show()
|
BIN
antonov_dmitry_lab_5/screens/myplot.png
Normal file
After Width: | Height: | Size: 19 KiB |
89
antonov_dmitry_lab_6/README.md
Normal file
@ -0,0 +1,89 @@
|
||||
# Лаб 6 Нейронная сеть
|
||||
|
||||
Использовать нейронную сеть MLPClassifier по варианту для данных из датасета курсовой
|
||||
Predict students' dropout and academic success (отсев студентов),
|
||||
самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит
|
||||
для решения сформулированной вами задачи.
|
||||
|
||||
# Вариант 3
|
||||
|
||||
Нейронная сеть MLPClassifier
|
||||
|
||||
# Запуск
|
||||
|
||||
Выполнением скрипта файла (вывод в консоль).
|
||||
|
||||
# Задача регрессии
|
||||
Для прогнозирования отсева учащихся и набора данных об успеваемости спрогнозируйте отсев
|
||||
используя нейронную сеть для признаков
|
||||
'Curricular units 2nd sem (approved)' - (Учебные блоки 2-го семестра (утверждены))
|
||||
'Curricular units 2nd sem (grade)' - (Учебные блоки 2-го семестра (класс))
|
||||
'Tuition fees up to date' - (Стоимость обучения")
|
||||
|
||||
# Описание модели:
|
||||
"MLPClassifier" - это тип искусственной нейронной сети прямого действия, которая широко используется для задач классификации.
|
||||
Объяснение некоторых ключевых параметров:
|
||||
|
||||
1. hidden_layer_sizes:
|
||||
- Этот параметр определяет количество нейронов в каждом скрытом слое и количество скрытых слоев в сети.
|
||||
- Это кортеж, где каждый элемент представляет количество нейронов в определенном скрытом слое.
|
||||
- Например, `hidden_layer_sizes=(100, 100)` означает, что есть два скрытых слоя, причем первый слой
|
||||
- содержит 100 нейронов, а второй слой также содержит 100 нейронов.
|
||||
|
||||
2. activation:
|
||||
- Этот параметр определяет функцию активации для скрытых слоев. Функция активации привносит
|
||||
нелинейность в сеть, позволяя ей изучать сложные паттерны.
|
||||
- Распространенные варианты включают:
|
||||
- "identity": линейная функция активации (обычно не используется на практике).
|
||||
- "logistic": сигмовидная логистическая функция
|
||||
- "tanh": гиперболическая касательная функция
|
||||
- "relu": Выпрямленная линейная единица измерения
|
||||
|
||||
3. solver:
|
||||
- Этот параметр определяет алгоритм, используемый для оптимизации весов нейронной сети.
|
||||
- Распространенные варианты включают:
|
||||
- `adam": оптимизатор на основе стохастического градиента, сочетающий идеи RMSProp и Momentum.
|
||||
- `sgd": Стохастический градиентный спуск.
|
||||
- `lbfgs": алгоритм Бройдена-Флетчера-Гольдфарба-Шанно с ограниченной памятью.
|
||||
|
||||
4. alpha:
|
||||
- Параметр штрафа L2 (условие регуляризации). Это помогает предотвратить переобучение,
|
||||
наказывая за большие веса.
|
||||
- Более высокие значения "альфа" приводят к более сильной регуляризации.
|
||||
|
||||
5. max_iter:
|
||||
- Максимальное количество итераций для тренировочного процесса. Этот параметр помогает
|
||||
предотвратить бесконечное обучение модели.
|
||||
|
||||
6. learning_rate:
|
||||
- График скорости обучения для обновления веса. Он определяет размер шага, с которым веса
|
||||
обновляются во время тренировки.
|
||||
- Опции включают 'constant', 'invscaling', и 'adaptive'.
|
||||
|
||||
7. random_state:
|
||||
- Начальное значение, используемое генератором случайных чисел. Установка начального значения
|
||||
гарантирует воспроизводимость результатов.
|
||||
|
||||
8. batch_size:
|
||||
- Количество образцов, использованных в каждой мини-партии во время обучения. Это влияет
|
||||
на скорость конвергенции и использование памяти.
|
||||
|
||||
9. early_stopping:
|
||||
- Если установлено значение "True", обучение прекратится, если оценка проверки не улучшится.
|
||||
Это помогает предотвратить переобучение.
|
||||
|
||||
10. validation_fraction:
|
||||
- Доля обучающих данных, которую следует отложить в качестве валидационного набора для ранней
|
||||
остановки.
|
||||
|
||||
# Результат:
|
||||
Из прошлой лабораторной точность регрессии для вышеперечисленных признаков составила 0.6256 (alpha = 0.01)
|
||||
Точность нейронной сети для вышеперечисленных признаков составила 72.32%
|
||||
(при изменении описанных выше параметров оценка не улучается)
|
||||
На примере тех же самых признаков нейронная сеть обеспечивает
|
||||
лучшее качество предсказания отсева студентов.
|
||||
|
||||
<p>
|
||||
<div>Результат</div>
|
||||
<img src="screens/img.png" width="650" title="Результат">
|
||||
</p>
|
4425
antonov_dmitry_lab_6/dataset.csv
Normal file
51
antonov_dmitry_lab_6/lab6.py
Normal file
@ -0,0 +1,51 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
# загрузка датасета
|
||||
data = pd.read_csv('dataset.csv')
|
||||
|
||||
# выбор признаков
|
||||
features = [
|
||||
'Curricular units 2nd sem (approved)',
|
||||
'Curricular units 2nd sem (grade)',
|
||||
'Tuition fees up to date',
|
||||
]
|
||||
target = 'Target'
|
||||
|
||||
X = data[features]
|
||||
y = data[target]
|
||||
|
||||
# разбиваем на тестовую и тренировочную выборки
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# стандартизация признаков
|
||||
scaler = StandardScaler()
|
||||
X_train = scaler.fit_transform(X_train)
|
||||
X_test = scaler.transform(X_test)
|
||||
|
||||
# тренируем нейронную сеть MLPClassifier
|
||||
classifier = MLPClassifier(
|
||||
hidden_layer_sizes=(50, 50), # два скрытых слоя с 50 нейронами каждый
|
||||
activation='relu', # relu функция активации
|
||||
solver='adam', # оптимизатор на основе стохастического градиента
|
||||
alpha=0.0001, # L2 штраф (регуляризация)
|
||||
max_iter=1000, # макс итераций
|
||||
learning_rate='constant', # постоянная скорость обучения
|
||||
random_state=42, # Random начало для воспроизведения результата
|
||||
batch_size=32, # размер мини партии
|
||||
early_stopping=True, # для предотвращения переобучения
|
||||
validation_fraction=0.2, # 20% данных для проверки
|
||||
verbose=True, # для оттображения итераций
|
||||
)
|
||||
classifier.fit(X_train, y_train)
|
||||
|
||||
# предсказываем значение
|
||||
y_pred = classifier.predict(X_test)
|
||||
|
||||
# оцениваем результат
|
||||
accuracy = np.mean(y_pred == y_test)
|
||||
|
||||
print(f'Оценка точности: {accuracy*100:.2f}%')
|
BIN
antonov_dmitry_lab_6/screens/img.png
Normal file
After Width: | Height: | Size: 44 KiB |
115
antonov_dmitry_lab_7/README.md
Normal file
@ -0,0 +1,115 @@
|
||||
# Лаб 7 RNN
|
||||
|
||||
Выбрать художественный текст (четные варианты – русскоязычный,
|
||||
нечетные – англоязычный) и обучить на нем рекуррентную нейронную сеть
|
||||
для решения задачи генерации. Подобрать архитектуру и параметры так,
|
||||
чтобы приблизиться к максимально осмысленному результату. Далее
|
||||
разбиться на пары четный-нечетный вариант, обменяться разработанными
|
||||
сетями и проверить, как архитектура товарища справляется с вашим текстом.
|
||||
В завершении подобрать компромиссную архитектуру, справляющуюся
|
||||
достаточно хорошо с обоими видами текстов.
|
||||
|
||||
# Вариант 3
|
||||
|
||||
Рекуррентная нейронная сеть и задача
|
||||
генерации текста
|
||||
|
||||
# Запуск
|
||||
|
||||
Выполнением скрипта файла (вывод в консоль).
|
||||
|
||||
# Описание модели:
|
||||
|
||||
Использованы библиотеки:
|
||||
* numpy (np): популярная библиотека для научных вычислений.
|
||||
* tensorflow (tf): библиотека для тренировки нейросетей.
|
||||
* Sequential: тип Keras модель которая позволяет создавать нейросети слой за слоем.
|
||||
* Embedding, LSTM, Dense: различные типы слоев в нейросетях.
|
||||
* Tokenizer: класс для конвертации слов в числовой понятный для нейросети формат.
|
||||
<p></p>
|
||||
Каждая строка текста переводится в числа с помощью Tokernizer.
|
||||
Класс Tokenizer в Keras - это утилита обработки текста, которая преобразует текст в
|
||||
последовательность целых чисел. Он присваивает уникальное целое число (индекс) каждому слову
|
||||
в тексте и создает словарь, который сопоставляет каждое слово с соответствующим индексом.
|
||||
Это позволяет вам работать с текстовыми данными в формате, который может быть передан в нейронную сеть.
|
||||
Все это записывается в input_sequences.
|
||||
|
||||
Строим RNN модель используя Keras:
|
||||
|
||||
* Embedding: Этот слой превращает числа в векторы плотности фиксированного размера. Так же известного
|
||||
как "word embeddings". Вложения слов - это плотные векторные представления слов в непрерывном
|
||||
векторном пространстве.Они позволяют нейронной сети изучать и понимать взаимосвязи между словами
|
||||
на основе их контекста в содержании текста.
|
||||
* LSTM: это тип рекуррентной нейронной сети (RNN), которая предназначена для обработки
|
||||
зависимостей в последовательностях.
|
||||
* Dense: полносвязный слой с множеством нейронов, нейронов столько же сколько и уникальных слов.
|
||||
Он выводит вероятность следующего слова.
|
||||
|
||||
* Модель обучаем на разном количестве эпох, по умолчанию epochs = 100 (итераций по всему набору данных).
|
||||
|
||||
Определеяем функцию generate_text которая принимает стартовое слово, а также, число слов для генерации.
|
||||
Модель генерирует текст путем многократного предсказания следующего слова на основе предыдущих слов в
|
||||
начальном тексте.
|
||||
|
||||
* В конце мы получаем сгенерированную на основе текста последовательность.
|
||||
|
||||
# Задача генерации англоязычного текста
|
||||
На вход подаем историю с похожими повторяющимися слова. Историю сохраняем в файл.
|
||||
Задача проверить насколько сеть не станет повторять текст, а будет действительно генерировать
|
||||
относительно новый текст.
|
||||
|
||||
# Результаты
|
||||
Тестируется английский текст, приложенный в репозитории.
|
||||
* на 50 эпохах ответ на I want
|
||||
* I want to soar high up in the sky like to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i want to
|
||||
* на 100 эпох ответ на I want
|
||||
* I want to fly i want to soar high up in the sky like a bird to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to spread my wings and soar into the open sky to glide far above the
|
||||
* на 150 эпохах ответ на I want
|
||||
* I want to fly i want to spread my wings and soar into the open sky to glide far above the earth unbounded by gravity i want to fly i want to fly i want to fly i want to soar high up in the sky like a bird to glide through
|
||||
* на 220 эпохах ответ на I want
|
||||
* I want to fly i want to soar high up in the sky like a bird to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i
|
||||
|
||||
* На 220 эпохах результаты хуже, это произошло скорее всего из-за переобучения(грубый повтор).
|
||||
* На 50 эпохах нейронная сеть плохо обучена (из 1 места плюс повтор)
|
||||
* На 100 эпохах средний результат (из 2 мест)
|
||||
* На 150 эпохах нейронная сеть показывает наилучший результат (из 3 разных мест без повтора)
|
||||
|
||||
Так же модель работает и на русском тексте. Вот что сгенерировала модель на 150 эпохах.
|
||||
Предложения взяты из разных мест и выглядят осмысленно.
|
||||
"Я хочу летать потому что в этом заложено желание преодолевать границы хочу чувствовать себя
|
||||
свободным словно ветер несущим меня к новым приключениям я хочу летать и продолжать этот бескрайний
|
||||
полет вперед ибо в этом полете заключена вся суть моего существования существования существования
|
||||
существования существования трудности трудности трудности неважными хочу летать потому что."
|
||||
|
||||
Чем больше текст мы берем, тем более интересные результаты получаем, но моих вычислительных мощностей уже не хватит.
|
||||
Так же чем больше прогонов, тем лучше модель, но тоже не до бесконечности можно получить хороший результат.
|
||||
<p>
|
||||
<div>Обучение</div>
|
||||
<img src="screens/img_2.png" width="650" title="Обучение">
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<div>Результат</div>
|
||||
<img src="screens/img_3.png" width="650" title="Результат">
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<div>Обучение 1</div>
|
||||
<img src="screens/step1.png" width="650" title="Обучение 1">
|
||||
</p>
|
||||
<p>
|
||||
<div>Обучение 2</div>
|
||||
<img src="screens/step2.png" width="650" title="Обучение 2">
|
||||
</p>
|
||||
<p>
|
||||
<div>Обучение 3</div>
|
||||
<img src="screens/step3.png" width="650" title="Обучение 3">
|
||||
</p>
|
||||
<p>
|
||||
<div>Обучение 4</div>
|
||||
<img src="screens/step4.png" width="650" title="Обучение 4">
|
||||
</p>
|
||||
<p>
|
||||
<div>Обучение 5</div>
|
||||
<img src="screens/step5.png" width="650" title="Обучение 5">
|
||||
</p>
|
55
antonov_dmitry_lab_7/lab7.py
Normal file
@ -0,0 +1,55 @@
|
||||
import numpy as np
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Embedding, LSTM, Dense
|
||||
from keras.preprocessing.text import Tokenizer
|
||||
from keras_preprocessing.sequence import pad_sequences
|
||||
|
||||
# загрузка текста
|
||||
with open('rus.txt', encoding='utf-8') as file:
|
||||
text = file.read()
|
||||
|
||||
tokenizer = Tokenizer()
|
||||
tokenizer.fit_on_texts([text])
|
||||
total_words = len(tokenizer.word_index) + 1
|
||||
|
||||
input_sequences = []
|
||||
for line in text.split('\n'):
|
||||
token_list = tokenizer.texts_to_sequences([line])[0]
|
||||
for i in range(1, len(token_list)):
|
||||
n_gram_sequence = token_list[:i + 1]
|
||||
input_sequences.append(n_gram_sequence)
|
||||
|
||||
max_sequence_length = max([len(x) for x in input_sequences])
|
||||
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')
|
||||
|
||||
predictors, labels = input_sequences[:, :-1], input_sequences[:, -1]
|
||||
|
||||
# создание RNN модели
|
||||
model = Sequential()
|
||||
model.add(Embedding(total_words, 100, input_length=max_sequence_length - 1))
|
||||
model.add(LSTM(150))
|
||||
model.add(Dense(total_words, activation='softmax'))
|
||||
|
||||
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
# тренировка модели
|
||||
model.fit(predictors, labels, epochs=150, verbose=1)
|
||||
|
||||
|
||||
# генерация текста на основе модели
|
||||
def generate_text(seed_text, next_words, model, max_sequence_length):
|
||||
for _ in range(next_words):
|
||||
token_list = tokenizer.texts_to_sequences([seed_text])[0]
|
||||
token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre')
|
||||
predicted = np.argmax(model.predict(token_list), axis=-1)
|
||||
output_word = ""
|
||||
for word, index in tokenizer.word_index.items():
|
||||
if index == predicted:
|
||||
output_word = word
|
||||
break
|
||||
seed_text += " " + output_word
|
||||
return seed_text
|
||||
|
||||
|
||||
generated_text = generate_text("Я хочу", 50, model, max_sequence_length)
|
||||
print(generated_text)
|
BIN
antonov_dmitry_lab_7/my_model.h5
Normal file
11
antonov_dmitry_lab_7/rus.txt
Normal file
@ -0,0 +1,11 @@
|
||||
Я хочу летать. Почувствовать ветер в лицо, свободно парить в небесах. Я хочу летать, словно птица, освободившись от земных оков. Летать, словно орел, покоряя небесные просторы. Я хочу летать, чувствовать каждый момент поднятия в воздух, каждый поворот, каждое крыло, взмахнувшее в танце с аэродинамикой.
|
||||
|
||||
Я хочу летать над горами, смотреть на вершины, которые кажутся такими далекими с земли. Хочу летать над океанами, наблюдая за волнами, встречая закаты, окрашивающие водную гладь в огонь. Я хочу летать над городами, где жизнь бурлит своим ритмом, а улицы выглядят как мозаика, расстилающаяся под ногами.
|
||||
|
||||
Я хочу летать, ощущать тот подъем, когда ты понимаешь, что земля осталась позади, а ты – свободен, как никогда. Я хочу летать и видеть этот мир с высоты, где все проблемы кажутся такими маленькими и неважными. Хочу летать и чувствовать себя частью этого огромного космического танца, где звезды танцуют свои вечерние вальсы.
|
||||
|
||||
Я хочу летать, несмотря ни на что, преодолевая любые преграды. Хочу летать, потому что в этом чувствую свое настоящее "я". Летать – значит освобождаться от гравитации рутины, подниматься над повседневностью, смотреть на мир с высоты своей мечты.
|
||||
|
||||
Я хочу летать, потому что в этом заключена свобода души. Хочу ощутить, как воздух обволакивает меня, как каждая клетка моего тела ощущает эту свободу. Хочу летать, потому что это моя мечта, которая дает мне силы двигаться вперед, преодолевая все трудности.
|
||||
|
||||
Я хочу летать, потому что в этом заложено желание преодолевать границы. Хочу чувствовать себя свободным, словно ветер, несущим меня к новым приключениям. Я хочу летать и продолжать этот бескрайний полет вперед, ибо в этом полете заключена вся суть моего существования.
|
BIN
antonov_dmitry_lab_7/screens/img.png
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
antonov_dmitry_lab_7/screens/img_1.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
antonov_dmitry_lab_7/screens/img_2.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
antonov_dmitry_lab_7/screens/img_3.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
antonov_dmitry_lab_7/screens/img_4.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
antonov_dmitry_lab_7/screens/step1.png
Normal file
After Width: | Height: | Size: 76 KiB |
BIN
antonov_dmitry_lab_7/screens/step2.png
Normal file
After Width: | Height: | Size: 81 KiB |
BIN
antonov_dmitry_lab_7/screens/step3.png
Normal file
After Width: | Height: | Size: 72 KiB |
BIN
antonov_dmitry_lab_7/screens/step4.png
Normal file
After Width: | Height: | Size: 63 KiB |
BIN
antonov_dmitry_lab_7/screens/step5.png
Normal file
After Width: | Height: | Size: 29 KiB |