реади2
This commit is contained in:
parent
3a868e5545
commit
ef485bf514
@ -1,34 +0,0 @@
|
||||
import numpy as np
|
||||
from keras.models import load_model
|
||||
from keras_preprocessing.sequence import pad_sequences
|
||||
from keras_preprocessing.text import Tokenizer
|
||||
|
||||
from antonov_dmitry_lab_7.lab7 import tokenizer, max_sequence_length
|
||||
|
||||
# Step 3: Load the pre-trained model
|
||||
model = load_model('my_model.h5') # Replace with the actual path to your model file
|
||||
|
||||
# Recreate the Tokenizer and compile the model (in case the model was not compiled before saving)
|
||||
with open('small.txt', 'r') as file:
|
||||
text = file.read()
|
||||
|
||||
tokenizer = Tokenizer()
|
||||
tokenizer.fit_on_texts([text])
|
||||
total_words = len(tokenizer.word_index) + 1
|
||||
def generate_text(seed_text, next_words, model, max_sequence_length):
|
||||
for _ in range(next_words):
|
||||
token_list = tokenizer.texts_to_sequences([seed_text])[0]
|
||||
token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre')
|
||||
predicted = np.argmax(model.predict(token_list), axis=-1)
|
||||
output_word = ""
|
||||
for word, index in tokenizer.word_index.items():
|
||||
if index == predicted:
|
||||
output_word = word
|
||||
break
|
||||
seed_text += " " + output_word
|
||||
return seed_text
|
||||
|
||||
|
||||
# Generate text using the loaded model (same as before)
|
||||
generated_text = generate_text("Once upon a", 50, model, max_sequence_length)
|
||||
print(generated_text)
|
Loading…
Reference in New Issue
Block a user