Compare commits

...

105 Commits

Author SHA1 Message Date
7a39edd289 arutunyan_dmitry_lab_7 is ready 2023-11-19 21:17:56 +04:00
2a6f06c08b Add picture 2023-11-19 21:04:57 +04:00
b85c45d6da Changed readme message again 2023-11-19 21:03:01 +04:00
cb6b7e0bfa Changed readme message 2023-11-19 21:01:59 +04:00
b68ad11807 arutunyan_dmitry_lab_7 is ready 2023-11-19 20:55:52 +04:00
a8c58683dd kutygin_andrey_lab_3_ready 2023-11-13 20:53:33 +04:00
b3e1e38eeb Merge pull request 'shadaev_anton_lab_7' (#137) from shadaev_anton_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/137
2023-11-06 22:08:36 +04:00
6de7179b7d Merge pull request 'madyshev_egor_lab_7 is ready' (#124) from madyshev_egor_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/124
2023-11-06 22:08:19 +04:00
c0ead13d82 Merge pull request 'gusev_vladislav_lab_7 is ready' (#121) from gusev_vladislav_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/121
2023-11-06 22:05:18 +04:00
357f26d992 Merge pull request 'belyaeva lab 7 ready' (#118) from belyaeva_ekaterina_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/118
2023-11-06 22:03:08 +04:00
f2f5d16974 Merge pull request 'abanin_daniil_lab_7' (#113) from abanin_daniil_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/113
2023-11-06 22:02:17 +04:00
cab38b4f27 Merge pull request 'senkin_alexander_lab_7 is ready' (#138) from senkin_alexander_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/138
2023-11-06 21:52:27 +04:00
c813e16f55 Merge pull request 'belyaeva lab 6 ready' (#117) from belyaeva_ekaterina_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/117
2023-11-06 21:51:52 +04:00
9142e612f8 Merge pull request 'madyshev_egor_lab_6 is ready' (#123) from madyshev_egor_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/123
2023-11-06 21:50:53 +04:00
7c92d143e0 Merge pull request 'senkin_alexander_lab_6 is ready' (#134) from senkin_alexander_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/134
2023-11-06 21:48:39 +04:00
52431a867c Merge pull request 'shadaev_anton_lab_6' (#136) from shadaev_anton_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/136
2023-11-06 21:45:02 +04:00
666a34b483 Merge pull request 'podkorytova_yulia_lab_6 is ready' (#141) from podkorytova_yulia_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/141
2023-11-06 21:44:46 +04:00
57bb7a90cd Merge pull request 'kurmyza_pavel_lab_6 is ready' (#143) from kurmyza_pavel_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/143
2023-11-06 21:44:24 +04:00
da2b5dacb8 Merge pull request 'abanin_daniil_lab_6' (#105) from abanin_daniil_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/105
2023-11-06 21:38:34 +04:00
0acf59f77f Merge pull request 'senkin_alexander_lab_5 is ready' (#133) from senkin_alexander_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/133
2023-11-06 21:36:55 +04:00
40f7706378 Merge pull request 'madyshev_egor_lab_5 is ready' (#122) from madyshev_egor_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/122
2023-11-06 21:36:38 +04:00
2881070bf0 Merge pull request 'belyaeva lab 5 ready' (#116) from belyaeva_ekaterina_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/116
2023-11-06 21:36:19 +04:00
02422f4eff Merge pull request 'kurmyza_pavel_lab_5 is ready' (#104) from kurmyza_pavel_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/104
2023-11-06 21:35:33 +04:00
831912d692 Merge pull request 'lipatov_ilya_lab_5' (#103) from lipatov_ilya_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/103
2023-11-06 21:30:42 +04:00
70c0f7a0e1 Merge pull request 'shadaev_anton_lab_5' (#135) from shadaev_anton_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/135
2023-11-06 21:25:29 +04:00
8592ba88a4 Merge pull request 'podkorytova_yulia_lab_5 is ready' (#140) from podkorytova_yulia_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/140
2023-11-06 21:25:08 +04:00
4973adb1f2 Merge pull request 'podkorytova_yulia_lab_4 is ready' (#139) from podkorytova_yulia_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/139
2023-11-06 21:22:56 +04:00
388c9e64cf Merge pull request 'shadaev_anton_lab_4' (#130) from shadaev_anton_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/130
2023-11-06 21:22:24 +04:00
1f8bc49d17 Merge pull request 'belyaeva lab 4 ready' (#115) from belyaeva_ekaterina_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/115
2023-11-06 21:22:02 +04:00
d4dbce9b09 Merge pull request 'senkin_alexander_lab_4 is ready' (#112) from senkin_alexander_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/112
2023-11-06 21:20:46 +04:00
931d8de854 Merge pull request 'lipatov_ilya_lab_4' (#102) from lipatov_ilya_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/102
2023-11-06 21:20:29 +04:00
ec42e21a1d Merge pull request 'shadaev_anton_lab_3' (#129) from shadaev_anton_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/129
2023-11-06 21:18:36 +04:00
02147c3d5f Merge pull request 'senkin_alexander_lab_2 is ready' (#110) from senkin_alexander_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/110
2023-11-06 21:18:14 +04:00
d388cd8442 Merge pull request 'basharin_sevastyan_lab_3' (#107) from basharin_sevastyan_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/107
2023-11-06 21:17:17 +04:00
7f45d87074 Merge pull request 'belyaeva lab3 ready' (#108) from belyaeva_ekaterina_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/108
2023-11-06 21:16:59 +04:00
fe77447993 Merge pull request 'senkin_alexander_lab_3 is ready' (#111) from senkin_alexander_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/111
2023-11-06 21:16:37 +04:00
9ce5af1aea Merge pull request 'Лабораторная 3' (#119) from almukhammetov_bulat_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/119
2023-11-06 21:16:15 +04:00
278b85e66a Merge pull request 'podkorytova_yulia_lab_3 is ready' (#125) from podkorytova_yulia_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/125
2023-11-06 21:15:46 +04:00
2885277f6c Merge pull request 'simonov_nikita_lab_1' (#132) from simonov_nikita_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/132
2023-11-06 21:14:57 +04:00
58b1009367 Merge pull request 'shadaev_anton_lab_2' (#128) from shadaev_anton_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/128
2023-11-06 21:14:18 +04:00
9755697671 Merge pull request 'simonov_nikita_lab_2' (#142) from simonov_nikita_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/142
2023-11-06 21:14:01 +04:00
d6bdc5893a Merge pull request 'basharin_sevastyan_lab_2' (#106) from basharin_sevastyan_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/106
2023-11-06 21:12:28 +04:00
28056f94bd Merge pull request 'malkova_anastasia_lab_1 ready' (#120) from malkova_anastasia_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/120
2023-11-06 21:08:34 +04:00
1aef95a6d9 Merge pull request 'shadaev_anton_lab_1' (#127) from shadaev_anton_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/127
2023-11-06 21:08:09 +04:00
95519adc5a kurmyza_pavel_lab_6 is ready 2023-11-06 17:45:17 +04:00
5746fc2084 simonov_nikita_lab_2 2023-11-06 17:19:53 +04:00
yulia
c92f833265 podkorytova_yulia_lab_6 2023-11-06 03:12:31 +04:00
yulia
1d2c86f568 podkorytova_yulia_lab_5 2023-11-06 01:53:55 +04:00
yulia
b27537157a podkorytova_yulia_lab_4 2023-11-05 23:01:59 +04:00
ee70ec67ba senkin_alexander_lab_6 is ready 2023-11-05 21:45:57 +04:00
dde432a16b senkin_alexander_lab_7 is ready 2023-11-05 21:44:12 +04:00
def334a1f4 senkin_alexander_lab_6 is ready 2023-11-05 15:25:21 +04:00
f6a9dc6a74 senkin_alexander_lab_4 is ready 2023-11-05 14:51:45 +04:00
d8ea68139d lab1 2023-11-05 13:31:50 +04:00
37d75cda32 Add lab7 2023-11-05 07:03:26 +04:00
2383a997b1 Initial commit 2023-11-04 21:23:54 +04:00
e8ff2392da Add lab6 2023-11-04 21:18:36 +04:00
de79db46c0 Initial commit 2023-11-04 21:11:51 +04:00
82829a15a2 Add lab5 2023-11-04 20:32:30 +04:00
c9fa1b2d60 Initial commit 2023-11-04 19:18:41 +04:00
d5cd684a98 Add lab4 2023-11-04 19:10:52 +04:00
a9af6c3c37 Initial commit 2023-11-03 19:52:06 +04:00
e1bba9b13c Update README.md 2023-11-03 19:48:45 +04:00
aa543e057e Update README.md && Add result images 2023-11-03 19:39:53 +04:00
72b717d7ae Add lab3 part #2 2023-11-03 18:11:03 +04:00
3007207ade Add shadaev_anton_lab_3/.gitignore 2023-11-03 16:03:24 +04:00
4838c6dbeb Delete 'shadaev_anton_lab_3/.DS_Store' 2023-11-03 15:55:25 +04:00
4949686542 Add lab3 part #1 2023-11-03 15:50:54 +04:00
4f16492ad7 Initial commit 2023-11-03 15:49:41 +04:00
565b4f171f Add lab2 2023-11-03 14:17:51 +04:00
a87330830b Initial commit 2023-11-03 13:16:07 +04:00
a8f3b6c692 Update main.py 2023-11-03 13:11:00 +04:00
ce7cfa4365 Add lab1 2023-11-02 23:09:40 +04:00
yulia
a492e2a6df podkorytova_yulia_lab_3 2023-11-02 20:02:38 +04:00
4eb8cfabd1 madyshev_egor_lab_6 is ready 2023-11-02 19:08:29 +04:00
e65543a5fc madyshev_egor_lab_5 is ready 2023-11-02 19:03:28 +04:00
vladg
f0e16a20d4 gusev_vladislav_lab_7 is ready 2023-11-02 16:38:27 +04:00
08ed6413b9 Merge branch 'main' into malkova_anastasia_lab_1 2023-11-01 23:59:43 +04:00
1f35af8f8f lab1 ready 2023-11-01 23:53:45 +04:00
BulatReznik
63198665cc Лабораторная 3 2023-11-01 23:05:45 +04:00
10761e96bb belyaeva lab 7 ready 2023-11-01 16:49:59 +04:00
f61aea2ee2 lab 6 ready 2023-11-01 16:08:27 +04:00
be664b513c lab 5 ready 2023-11-01 16:01:28 +04:00
5d250948b5 lab 4 ready 2023-11-01 15:55:34 +04:00
BossMouseFire
c344eb7300 lab7 2023-10-31 00:50:28 +04:00
8a51aacfb2 senkin_alexander_lab_4 is ready 2023-10-30 21:20:17 +04:00
017623e084 senkin_alexander_lab_3 is ready 2023-10-30 21:13:41 +04:00
09b9bfc730 senkin_alexander_lab_2 is ready 2023-10-30 21:10:46 +04:00
fee881b4b4 lab3 ready 2023-10-30 20:52:01 +04:00
7bd06eb002 basharin_sevastyan_lab_3 is ready 2023-10-29 21:38:54 +04:00
13a2641aa2 first commit 2023-10-29 17:12:59 +04:00
5e0058b82e basharin_sevastyan_lab_2 is ready 2023-10-29 17:07:56 +04:00
faeeecf1ef fix ignore 2023-10-29 15:26:49 +04:00
dab82f11ee fix ingore 2023-10-29 15:23:51 +04:00
55b79c339e start work 2023-10-29 14:03:33 +04:00
BossMouseFire
0e5a5ad282 lab6 2023-10-29 00:29:45 +04:00
a9e95110c1 kurmyza_pavel_lab_5 is ready 2023-10-28 17:58:50 +04:00
0fa8db9c5d lipatov_ilya_lab_5 2023-10-28 17:39:01 +04:00
e8a3914840 lipatov_ilya_lab_5 2023-10-28 17:37:41 +04:00
63c40e202e lipatov_ilya_lab_5 2023-10-28 17:37:18 +04:00
b8af0044a0 lipatov_ilya_lab_4 2023-10-28 16:52:13 +04:00
e36a729776 Initial commit 2023-09-22 16:05:42 +04:00
bbd6aea496 init 2023-09-22 10:49:36 +04:00
born
16b36dce9b Updated branch moving file into the correct branch. 2023-09-18 20:19:16 +04:00
born
0d865a6160 Test lab 1 2023-09-18 20:15:16 +04:00
202 changed files with 900414 additions and 0 deletions

141
.gitignore vendored Normal file
View File

@@ -0,0 +1,141 @@
### Python template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
.idea

View File

@@ -0,0 +1,39 @@
# Лабораторная работа №7
### Рекуррентная нейронная сеть и задача генерации текста
## ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, keras, tensorflow
* запустить проект (стартовая точка lab7)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, keras, tensorflow
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* На основе выбранных художественных текстов происходит обучение рекуррентной нейронной сети для решения задачи генерации.
* Необходимо подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату.
### Тест
* Чтение текста из файлов .txt (eng_text.txt, rus_text.txt)
* Вызов функция get_model_data, из которой мы получаем входные, выходные данные (X, y), размер словаря и токенайзер. Используем Tokenizer с настройкой char_level=True, что позволяет упразднить использование Embedding слоя далее
* Создание объекта Sequential (последовательная рекуррентная нейронная сеть) и добавление двух слоёв LSTM. LSTM (Long Short-Term Memory) представляет собой разновидность рекуррентной нейронной сети, которая эффективно работает с последовательными данными. Использование нескольких слоёв даёт большую гибкость. Dropout — это метод регуляризации для нейронных сетей и моделей глубокого обучения, решение проблемы переобучения. Слой Dense с функцией активации softmax используется для предсказания следующего слова
* Компилирование модели с использованием sparse_categorical_crossentropy
* Обучение модели на 100 эпохах (оптимальный вариант)
* Генерация текста
Сгенерированные тексты
* ENG: I must be getting somewhere near the centre of the earth. how funny it'll seem to come out among the people that walk with their heads downward! the antipathies, i think—' (for, you see, alice had learnt several things of this
* RUS: господин осматривал свою комнату, внесены были его пожитки: прежде всего чемодан из белой кожи, несколько поистасканный, показывавший, что был не в первый раз в дороге. чемодан внесли кучер селифан отправился на конюшню вози
![Rus](result_rus.png)
![Eng](result_eng.png)
По итогу, программа способна сгенерировать осмысленный текст в каждом из случаев

View File

@@ -0,0 +1,7 @@
Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled 'ORANGE MARMALADE', but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody, so managed to put it into one of the cupboards as she fell past it.
'Well!' thought Alice to herself, 'after such a fall as this, I shall think nothing of tumbling down stairs! How brave they'll all think me at home! Why, I wouldn't say anything about it, even if I fell off the top of the house!' (Which was very likely true.)
Down, down, down. Would the fall NEVER come to an end! 'I wonder how many miles I've fallen by this time?' she said aloud. 'I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think—' (for, you see, Alice had learnt several things of this sort in her lessons in the schoolroom, and though this was not a VERY good opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) '—yes, that's about the right distance—but then I wonder what Latitude or Longitude I've got to?' (Alice had no idea what Latitude was, or Longitude either, but thought they were nice grand words to say.)
Presently she began again. 'I wonder if I shall fall right THROUGH the earth! How funny it'll seem to come out among the people that walk with their heads downward! The Antipathies, I think—' (she was rather glad there WAS no one listening, this time, as it didn't sound at all the right word) '—but I shall have to ask them what the name of the country is, you know. Please, Ma'am, is this New Zealand or Australia?' (and she tried to curtsey as she spoke—fancy CURTSEYING as you're falling through the air!

View File

@@ -0,0 +1,75 @@
from keras import Sequential
from keras.layers import LSTM, Dense, Dropout
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import numpy as np
with open('rus_text.txt', 'r', encoding='utf-8') as file:
text = file.read()
def create_sequences(text, seq_len):
sequences = []
next_chars = []
for i in range(0, len(text) - seq_len):
sequences.append(text[i:i + seq_len])
next_chars.append(text[i + seq_len])
return sequences, next_chars
def get_model_data(seq_length):
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts([text])
token_text = tokenizer.texts_to_sequences([text])[0]
sequences, next_chars = create_sequences(token_text, seq_length)
vocab_size = len(tokenizer.word_index) + 1
x = pad_sequences(sequences, maxlen=seq_length)
y = np.array(next_chars)
return x, y, vocab_size, tokenizer
def model_build(model, vocab_size):
model.add(LSTM(256, input_shape=(seq_length, 1), return_sequences=True))
model.add(LSTM(128, input_shape=(seq_length, 1)))
model.add(Dropout(0.2, input_shape=(60,)))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Функция для генерации текста
def generate_text(seed_text, gen_length, tokenizer, model):
generated_text = seed_text
for _ in range(gen_length):
sequence = tokenizer.texts_to_sequences([seed_text])[0]
sequence = pad_sequences([sequence], maxlen=seq_length)
prediction = model.predict(sequence)[0]
predicted_index = np.argmax(prediction)
predicted_char = tokenizer.index_word[predicted_index]
generated_text += predicted_char
seed_text += predicted_char
seed_text = seed_text[1:]
return generated_text
seq_length = 10
seed_text = "господин осматривал свою"
# Создание экземпляра Tokenizer и обучение на тексте
X, y, vocab_size, tokenizer = get_model_data(seq_length)
model = Sequential()
model_build(model, vocab_size)
model.fit(X, y, epochs=100, verbose=1)
generated_text = generate_text(seed_text, 200, tokenizer, model)
print(generated_text)

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

View File

@@ -0,0 +1,3 @@
В ворота гостиницы губернского города NN въехала довольно красивая рессорная небольшая бричка, в какой ездят холостяки: отставные подполковники, штабс-капитаны, помещики, имеющие около сотни душ крестьян, — словом, все те, которых называют господами средней руки. В бричке сидел господин, не красавец, но и не дурной наружности, ни слишком толст, ни слишком тонок; нельзя сказать, чтобы стар, однако ж и не так чтобы слишком молод. Въезд его не произвел в городе совершенно никакого шума и не был сопровожден ничем особенным; только два русские мужика, стоявшие у дверей кабака против гостиницы, сделали кое-какие замечания, относившиеся, впрочем, более к экипажу, чем к сидевшему в нем. «Вишь ты, — сказал один другому, — вон какое колесо! что ты думаешь, доедет то колесо, если б случилось, в Москву или не доедет?» — «Доедет», — отвечал другой. «А в Казань-то, я думаю, не доедет?» — «В Казань не доедет», — отвечал другой. Этим разговор и кончился. Да еще, когда бричка подъехала к гостинице, встретился молодой человек в белых канифасовых панталонах, весьма узких и коротких, во фраке с покушеньями на моду, из-под которого видна была манишка, застегнутая тульскою булавкою с бронзовым пистолетом. Молодой человек оборотился назад, посмотрел экипаж, придержал рукою картуз, чуть не слетевший от ветра, и пошел своей дорогой.
Когда экипаж въехал на двор, господин был встречен трактирным слугою, или половым, как их называют в русских трактирах, живым и вертлявым до такой степени, что даже нельзя было рассмотреть, какое у него было лицо. Он выбежал проворно, с салфеткой в руке, весь длинный и в длинном демикотонном сюртуке со спинкою чуть не на самом затылке, встряхнул волосами и повел проворно господина вверх по всей деревянной галдарее показывать ниспосланный ему Богом покой. Покой был известного рода, ибо гостиница была тоже известного рода, то есть именно такая, как бывают гостиницы в губернских городах, где за два рубля в сутки проезжающие получают покойную комнату с тараканами, выглядывающими, как чернослив, из всех углов, и дверью в соседнее помещение, всегда заставленную комодом, где устроивается сосед, молчаливый и спокойный человек, но чрезвычайно любопытный, интересующийся знать о всех подробностях проезжающего. Наружный фасад гостиницы отвечал ее внутренности: она была очень длинна, в два этажа; нижний не был выщекатурен и оставался в темно-красных кирпичиках, еще более потемневших от лихих погодных перемен и грязноватых уже самих по себе; верхний был выкрашен вечною желтою краскою; внизу были лавочки с хомутами, веревками и баранками. В угольной из этих лавочек, или, лучше, в окне, помещался сбитенщик с самоваром из красной меди и лицом так же красным, как самовар, так что издали можно бы подумать, что на окне стояло два самовара, если б один самовар не был с черною как смоль бородою.
Пока приезжий господин осматривал свою комнату, внесены были его пожитки: прежде всего чемодан из белой кожи, несколько поистасканный, показывавший, что был не в первый раз в дороге. Чемодан внесли кучер Селифан, низенький человек в тулупчике, и лакей Петрушка, малый лет тридцати, в просторном подержанном сюртуке, как видно с барского плеча, малый немного суровый на взгляд, с очень крупными губами и носом. Вслед за чемоданом внесен был небольшой ларчик красного дерева с штучными выкладками из карельской березы, сапожные колодки и завернутая в синюю бумагу жареная курица. Когда все это было внесено, кучер Селифан отправился на конюшню возиться около лошадей, а лакей Петрушка стал устраиваться в маленькой передней, очень темной конурке, куда уже успел притащить свою шинель и вместе с нею какой-то свой собственный запах, который был сообщен и принесенному вслед за тем мешку с разным лакейским туалетом. В этой конурке он приладил к стене узенькую трехногую кровать, накрыв ее небольшим подобием тюфяка, убитым и плоским, как блин, и, может быть, так же замаслившимся, как блин, который удалось ему вытребовать у хозяина гостиницы.

View File

@@ -0,0 +1,34 @@
## Лабораторная работа №6
### MLPClassifier
## Cтудент группы ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (lab6)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* По данным "Eligibility Prediction for Loan" решает задачу классификации, в которой необходимо выявить риски выдачи кредита. В качестве исходных данных используются признаки:
Credit_History - соответствие кредитной истории стандартам банка, ApplicantIncome - доход заявителя, LoanAmount - сумма кредитаб, Self_Employed - самозанятость (Да/Нет), Education - наличие образования, Married - заявитель женат/замужем (Да/Нет).
### Примеры работы:
#### Результаты:
* Было проведено несколько прогонов на разном количестве итераций (200, 400, 600, 800, 1000)
![Result](score_1.png)
![Result](score_2.png)
Средняя точность находится в диапазоне 50-60%, что является недостаточным значением. Увеличение итераций не дало значительного улучшения результата,
максиальный прирост составляет 10%
![Result](result_mean.jpg)

View File

@@ -0,0 +1,46 @@
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import pandas as pd
import numpy as np
def test_iter(iters_num, x_train, x_test, y_train, y_test):
print("Количество итераций: ", iters_num)
scores = []
for i in range(10):
neuro = MLPClassifier(max_iter=iters_num)
neuro.fit(x_train, y_train.values.ravel())
score = neuro.score(x_test, y_test)
print(f'Оценка №{i + 1} - {score}')
scores.append(score)
mean_value = np.mean(scores)
print(f"Средняя оценка - {mean_value}")
return mean_value
def start():
data = pd.read_csv('loan.csv')
x = data[['ApplicantIncome', 'LoanAmount', 'Credit_History', 'Self_Employed', 'Education', 'Married']]
y = data[['Loan_Status']]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42)
iters = [200, 400, 600, 800, 1000]
iters_means = []
for i in range(len(iters)):
mean_value = test_iter(iters[i], x_train, x_test, y_train, y_test)
iters_means.append(mean_value)
plt.figure(1, figsize=(16, 9))
plt.plot(iters, iters_means, c='r')
plt.show()
start()

View File

@@ -0,0 +1,615 @@
Loan_ID,Gender,Married,Dependents,Education,Self_Employed,ApplicantIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,Credit_History,Property_Area,Loan_Status
LP001002,Male,0.0,0,1,0.0,5849,0.0,360.0,1.0,0,Y,0.0
LP001003,Male,1.0,1,1,0.0,4583,1508.0,128.0,360.0,1,Rural,0.0
LP001005,Male,1.0,0,1,1.0,3000,0.0,66.0,360.0,1,Urban,1.0
LP001006,Male,1.0,0,0,0.0,2583,2358.0,120.0,360.0,1,Urban,1.0
LP001008,Male,0.0,0,1,0.0,6000,0.0,141.0,360.0,1,Urban,1.0
LP001011,Male,1.0,2,1,1.0,5417,4196.0,267.0,360.0,1,Urban,1.0
LP001013,Male,1.0,0,0,0.0,2333,1516.0,95.0,360.0,1,Urban,1.0
LP001014,Male,1.0,3+,1,0.0,3036,2504.0,158.0,360.0,0,Semiurban,0.0
LP001018,Male,1.0,2,1,0.0,4006,1526.0,168.0,360.0,1,Urban,1.0
LP001020,Male,1.0,1,1,0.0,12841,10968.0,349.0,360.0,1,Semiurban,0.0
LP001024,Male,1.0,2,1,0.0,3200,700.0,70.0,360.0,1,Urban,1.0
LP001027,Male,1.0,2,1,0.0,2500,1840.0,109.0,360.0,1,Urban,1.0
LP001028,Male,1.0,2,1,0.0,3073,8106.0,200.0,360.0,1,Urban,1.0
LP001029,Male,0.0,0,1,0.0,1853,2840.0,114.0,360.0,1,Rural,0.0
LP001030,Male,1.0,2,1,0.0,1299,1086.0,17.0,120.0,1,Urban,1.0
LP001032,Male,0.0,0,1,0.0,4950,0.0,125.0,360.0,1,Urban,1.0
LP001034,Male,0.0,1,0,0.0,3596,0.0,100.0,240.0,0,Urban,1.0
LP001036,Female,0.0,0,1,0.0,3510,0.0,76.0,360.0,0,Urban,0.0
LP001038,Male,1.0,0,0,0.0,4887,0.0,133.0,360.0,1,Rural,0.0
LP001041,Male,1.0,0,1,0.0,2600,3500.0,115.0,,1,Urban,1.0
LP001043,Male,1.0,0,0,0.0,7660,0.0,104.0,360.0,0,Urban,0.0
LP001046,Male,1.0,1,1,0.0,5955,5625.0,315.0,360.0,1,Urban,1.0
LP001047,Male,1.0,0,0,0.0,2600,1911.0,116.0,360.0,0,Semiurban,0.0
LP001050,,1.0,2,0,0.0,3365,1917.0,112.0,360.0,0,Rural,0.0
LP001052,Male,1.0,1,1,0.0,3717,2925.0,151.0,360.0,0,Semiurban,0.0
LP001066,Male,1.0,0,1,1.0,9560,0.0,191.0,360.0,1,Semiurban,1.0
LP001068,Male,1.0,0,1,0.0,2799,2253.0,122.0,360.0,1,Semiurban,1.0
LP001073,Male,1.0,2,0,0.0,4226,1040.0,110.0,360.0,1,Urban,1.0
LP001086,Male,0.0,0,0,0.0,1442,0.0,35.0,360.0,1,Urban,0.0
LP001087,Female,0.0,2,1,0.0,3750,2083.0,120.0,360.0,1,Semiurban,1.0
LP001091,Male,1.0,1,1,0.0,4166,3369.0,201.0,360.0,0,Urban,0.0
LP001095,Male,0.0,0,1,0.0,3167,0.0,74.0,360.0,1,Urban,0.0
LP001097,Male,0.0,1,1,1.0,4692,0.0,106.0,360.0,1,Rural,0.0
LP001098,Male,1.0,0,1,0.0,3500,1667.0,114.0,360.0,1,Semiurban,1.0
LP001100,Male,0.0,3+,1,0.0,12500,3000.0,320.0,360.0,1,Rural,0.0
LP001106,Male,1.0,0,1,0.0,2275,2067.0,0.0,360.0,1,Urban,1.0
LP001109,Male,1.0,0,1,0.0,1828,1330.0,100.0,,0,Urban,0.0
LP001112,Female,1.0,0,1,0.0,3667,1459.0,144.0,360.0,1,Semiurban,1.0
LP001114,Male,0.0,0,1,0.0,4166,7210.0,184.0,360.0,1,Urban,1.0
LP001116,Male,0.0,0,0,0.0,3748,1668.0,110.0,360.0,1,Semiurban,1.0
LP001119,Male,0.0,0,1,0.0,3600,0.0,80.0,360.0,1,Urban,0.0
LP001120,Male,0.0,0,1,0.0,1800,1213.0,47.0,360.0,1,Urban,1.0
LP001123,Male,1.0,0,1,0.0,2400,0.0,75.0,360.0,0,Urban,1.0
LP001131,Male,1.0,0,1,0.0,3941,2336.0,134.0,360.0,1,Semiurban,1.0
LP001136,Male,1.0,0,0,1.0,4695,0.0,96.0,,1,Urban,1.0
LP001137,Female,0.0,0,1,0.0,3410,0.0,88.0,,1,Urban,1.0
LP001138,Male,1.0,1,1,0.0,5649,0.0,44.0,360.0,1,Urban,1.0
LP001144,Male,1.0,0,1,0.0,5821,0.0,144.0,360.0,1,Urban,1.0
LP001146,Female,1.0,0,1,0.0,2645,3440.0,120.0,360.0,0,Urban,0.0
LP001151,Female,0.0,0,1,0.0,4000,2275.0,144.0,360.0,1,Semiurban,1.0
LP001155,Female,1.0,0,0,0.0,1928,1644.0,100.0,360.0,1,Semiurban,1.0
LP001157,Female,0.0,0,1,0.0,3086,0.0,120.0,360.0,1,Semiurban,1.0
LP001164,Female,0.0,0,1,0.0,4230,0.0,112.0,360.0,1,Semiurban,0.0
LP001179,Male,1.0,2,1,0.0,4616,0.0,134.0,360.0,1,Urban,0.0
LP001186,Female,1.0,1,1,1.0,11500,0.0,286.0,360.0,0,Urban,0.0
LP001194,Male,1.0,2,1,0.0,2708,1167.0,97.0,360.0,1,Semiurban,1.0
LP001195,Male,1.0,0,1,0.0,2132,1591.0,96.0,360.0,1,Semiurban,1.0
LP001197,Male,1.0,0,1,0.0,3366,2200.0,135.0,360.0,1,Rural,0.0
LP001198,Male,1.0,1,1,0.0,8080,2250.0,180.0,360.0,1,Urban,1.0
LP001199,Male,1.0,2,0,0.0,3357,2859.0,144.0,360.0,1,Urban,1.0
LP001205,Male,1.0,0,1,0.0,2500,3796.0,120.0,360.0,1,Urban,1.0
LP001206,Male,1.0,3+,1,0.0,3029,0.0,99.0,360.0,1,Urban,1.0
LP001207,Male,1.0,0,0,1.0,2609,3449.0,165.0,180.0,0,Rural,0.0
LP001213,Male,1.0,1,1,0.0,4945,0.0,0.0,360.0,0,Rural,0.0
LP001222,Female,0.0,0,1,0.0,4166,0.0,116.0,360.0,0,Semiurban,0.0
LP001225,Male,1.0,0,1,0.0,5726,4595.0,258.0,360.0,1,Semiurban,0.0
LP001228,Male,0.0,0,0,0.0,3200,2254.0,126.0,180.0,0,Urban,0.0
LP001233,Male,1.0,1,1,0.0,10750,0.0,312.0,360.0,1,Urban,1.0
LP001238,Male,1.0,3+,0,1.0,7100,0.0,125.0,60.0,1,Urban,1.0
LP001241,Female,0.0,0,1,0.0,4300,0.0,136.0,360.0,0,Semiurban,0.0
LP001243,Male,1.0,0,1,0.0,3208,3066.0,172.0,360.0,1,Urban,1.0
LP001245,Male,1.0,2,0,1.0,1875,1875.0,97.0,360.0,1,Semiurban,1.0
LP001248,Male,0.0,0,1,0.0,3500,0.0,81.0,300.0,1,Semiurban,1.0
LP001250,Male,1.0,3+,0,0.0,4755,0.0,95.0,,0,Semiurban,0.0
LP001253,Male,1.0,3+,1,1.0,5266,1774.0,187.0,360.0,1,Semiurban,1.0
LP001255,Male,0.0,0,1,0.0,3750,0.0,113.0,480.0,1,Urban,0.0
LP001256,Male,0.0,0,1,0.0,3750,4750.0,176.0,360.0,1,Urban,0.0
LP001259,Male,1.0,1,1,1.0,1000,3022.0,110.0,360.0,1,Urban,0.0
LP001263,Male,1.0,3+,1,0.0,3167,4000.0,180.0,300.0,0,Semiurban,0.0
LP001264,Male,1.0,3+,0,1.0,3333,2166.0,130.0,360.0,0,Semiurban,1.0
LP001265,Female,0.0,0,1,0.0,3846,0.0,111.0,360.0,1,Semiurban,1.0
LP001266,Male,1.0,1,1,1.0,2395,0.0,0.0,360.0,1,Semiurban,1.0
LP001267,Female,1.0,2,1,0.0,1378,1881.0,167.0,360.0,1,Urban,0.0
LP001273,Male,1.0,0,1,0.0,6000,2250.0,265.0,360.0,0,Semiurban,0.0
LP001275,Male,1.0,1,1,0.0,3988,0.0,50.0,240.0,1,Urban,1.0
LP001279,Male,0.0,0,1,0.0,2366,2531.0,136.0,360.0,1,Semiurban,1.0
LP001280,Male,1.0,2,0,0.0,3333,2000.0,99.0,360.0,0,Semiurban,1.0
LP001282,Male,1.0,0,1,0.0,2500,2118.0,104.0,360.0,1,Semiurban,1.0
LP001289,Male,0.0,0,1,0.0,8566,0.0,210.0,360.0,1,Urban,1.0
LP001310,Male,1.0,0,1,0.0,5695,4167.0,175.0,360.0,1,Semiurban,1.0
LP001316,Male,1.0,0,1,0.0,2958,2900.0,131.0,360.0,1,Semiurban,1.0
LP001318,Male,1.0,2,1,0.0,6250,5654.0,188.0,180.0,1,Semiurban,1.0
LP001319,Male,1.0,2,0,0.0,3273,1820.0,81.0,360.0,1,Urban,1.0
LP001322,Male,0.0,0,1,0.0,4133,0.0,122.0,360.0,1,Semiurban,1.0
LP001325,Male,0.0,0,0,0.0,3620,0.0,25.0,120.0,1,Semiurban,1.0
LP001326,Male,0.0,0,1,0.0,6782,0.0,0.0,360.0,0,Urban,0.0
LP001327,Female,1.0,0,1,0.0,2484,2302.0,137.0,360.0,1,Semiurban,1.0
LP001333,Male,1.0,0,1,0.0,1977,997.0,50.0,360.0,1,Semiurban,1.0
LP001334,Male,1.0,0,0,0.0,4188,0.0,115.0,180.0,1,Semiurban,1.0
LP001343,Male,1.0,0,1,0.0,1759,3541.0,131.0,360.0,1,Semiurban,1.0
LP001345,Male,1.0,2,0,0.0,4288,3263.0,133.0,180.0,1,Urban,1.0
LP001349,Male,0.0,0,1,0.0,4843,3806.0,151.0,360.0,1,Semiurban,1.0
LP001350,Male,1.0,,1,0.0,13650,0.0,0.0,360.0,1,Urban,1.0
LP001356,Male,1.0,0,1,0.0,4652,3583.0,0.0,360.0,1,Semiurban,1.0
LP001357,Male,0.0,,1,0.0,3816,754.0,160.0,360.0,1,Urban,1.0
LP001367,Male,1.0,1,1,0.0,3052,1030.0,100.0,360.0,1,Urban,1.0
LP001369,Male,1.0,2,1,0.0,11417,1126.0,225.0,360.0,1,Urban,1.0
LP001370,Male,0.0,0,0,0.0,7333,0.0,120.0,360.0,1,Rural,0.0
LP001379,Male,1.0,2,1,0.0,3800,3600.0,216.0,360.0,0,Urban,0.0
LP001384,Male,1.0,3+,0,0.0,2071,754.0,94.0,480.0,1,Semiurban,1.0
LP001385,Male,0.0,0,1,0.0,5316,0.0,136.0,360.0,1,Urban,1.0
LP001387,Female,1.0,0,1,0.0,2929,2333.0,139.0,360.0,1,Semiurban,1.0
LP001391,Male,1.0,0,0,0.0,3572,4114.0,152.0,,0,Rural,0.0
LP001392,Female,0.0,1,1,1.0,7451,0.0,0.0,360.0,1,Semiurban,1.0
LP001398,Male,0.0,0,1,0.0,5050,0.0,118.0,360.0,1,Semiurban,1.0
LP001401,Male,1.0,1,1,0.0,14583,0.0,185.0,180.0,1,Rural,1.0
LP001404,Female,1.0,0,1,0.0,3167,2283.0,154.0,360.0,1,Semiurban,1.0
LP001405,Male,1.0,1,1,0.0,2214,1398.0,85.0,360.0,0,Urban,1.0
LP001421,Male,1.0,0,1,0.0,5568,2142.0,175.0,360.0,1,Rural,0.0
LP001422,Female,0.0,0,1,0.0,10408,0.0,259.0,360.0,1,Urban,1.0
LP001426,Male,1.0,,1,0.0,5667,2667.0,180.0,360.0,1,Rural,1.0
LP001430,Female,0.0,0,1,0.0,4166,0.0,44.0,360.0,1,Semiurban,1.0
LP001431,Female,0.0,0,1,0.0,2137,8980.0,137.0,360.0,0,Semiurban,1.0
LP001432,Male,1.0,2,1,0.0,2957,0.0,81.0,360.0,1,Semiurban,1.0
LP001439,Male,1.0,0,0,0.0,4300,2014.0,194.0,360.0,1,Rural,1.0
LP001443,Female,0.0,0,1,0.0,3692,0.0,93.0,360.0,0,Rural,1.0
LP001448,,1.0,3+,1,0.0,23803,0.0,370.0,360.0,1,Rural,1.0
LP001449,Male,0.0,0,1,0.0,3865,1640.0,0.0,360.0,1,Rural,1.0
LP001451,Male,1.0,1,1,1.0,10513,3850.0,160.0,180.0,0,Urban,0.0
LP001465,Male,1.0,0,1,0.0,6080,2569.0,182.0,360.0,0,Rural,0.0
LP001469,Male,0.0,0,1,1.0,20166,0.0,650.0,480.0,0,Urban,1.0
LP001473,Male,0.0,0,1,0.0,2014,1929.0,74.0,360.0,1,Urban,1.0
LP001478,Male,0.0,0,1,0.0,2718,0.0,70.0,360.0,1,Semiurban,1.0
LP001482,Male,1.0,0,1,1.0,3459,0.0,25.0,120.0,1,Semiurban,1.0
LP001487,Male,0.0,0,1,0.0,4895,0.0,102.0,360.0,1,Semiurban,1.0
LP001488,Male,1.0,3+,1,0.0,4000,7750.0,290.0,360.0,1,Semiurban,0.0
LP001489,Female,1.0,0,1,0.0,4583,0.0,84.0,360.0,1,Rural,0.0
LP001491,Male,1.0,2,1,1.0,3316,3500.0,88.0,360.0,1,Urban,1.0
LP001492,Male,0.0,0,1,0.0,14999,0.0,242.0,360.0,0,Semiurban,0.0
LP001493,Male,1.0,2,0,0.0,4200,1430.0,129.0,360.0,1,Rural,0.0
LP001497,Male,1.0,2,1,0.0,5042,2083.0,185.0,360.0,1,Rural,0.0
LP001498,Male,0.0,0,1,0.0,5417,0.0,168.0,360.0,1,Urban,1.0
LP001504,Male,0.0,0,1,1.0,6950,0.0,175.0,180.0,1,Semiurban,1.0
LP001507,Male,1.0,0,1,0.0,2698,2034.0,122.0,360.0,1,Semiurban,1.0
LP001508,Male,1.0,2,1,0.0,11757,0.0,187.0,180.0,1,Urban,1.0
LP001514,Female,1.0,0,1,0.0,2330,4486.0,100.0,360.0,1,Semiurban,1.0
LP001516,Female,1.0,2,1,0.0,14866,0.0,70.0,360.0,1,Urban,1.0
LP001518,Male,1.0,1,1,0.0,1538,1425.0,30.0,360.0,1,Urban,1.0
LP001519,Female,0.0,0,1,0.0,10000,1666.0,225.0,360.0,1,Rural,0.0
LP001520,Male,1.0,0,1,0.0,4860,830.0,125.0,360.0,1,Semiurban,1.0
LP001528,Male,0.0,0,1,0.0,6277,0.0,118.0,360.0,0,Rural,0.0
LP001529,Male,1.0,0,1,1.0,2577,3750.0,152.0,360.0,1,Rural,1.0
LP001531,Male,0.0,0,1,0.0,9166,0.0,244.0,360.0,1,Urban,0.0
LP001532,Male,1.0,2,0,0.0,2281,0.0,113.0,360.0,1,Rural,0.0
LP001535,Male,0.0,0,1,0.0,3254,0.0,50.0,360.0,1,Urban,1.0
LP001536,Male,1.0,3+,1,0.0,39999,0.0,600.0,180.0,0,Semiurban,1.0
LP001541,Male,1.0,1,1,0.0,6000,0.0,160.0,360.0,0,Rural,1.0
LP001543,Male,1.0,1,1,0.0,9538,0.0,187.0,360.0,1,Urban,1.0
LP001546,Male,0.0,0,1,0.0,2980,2083.0,120.0,360.0,1,Rural,1.0
LP001552,Male,1.0,0,1,0.0,4583,5625.0,255.0,360.0,1,Semiurban,1.0
LP001560,Male,1.0,0,0,0.0,1863,1041.0,98.0,360.0,1,Semiurban,1.0
LP001562,Male,1.0,0,1,0.0,7933,0.0,275.0,360.0,1,Urban,0.0
LP001565,Male,1.0,1,1,0.0,3089,1280.0,121.0,360.0,0,Semiurban,0.0
LP001570,Male,1.0,2,1,0.0,4167,1447.0,158.0,360.0,1,Rural,1.0
LP001572,Male,1.0,0,1,0.0,9323,0.0,75.0,180.0,1,Urban,1.0
LP001574,Male,1.0,0,1,0.0,3707,3166.0,182.0,,1,Rural,1.0
LP001577,Female,1.0,0,1,0.0,4583,0.0,112.0,360.0,1,Rural,0.0
LP001578,Male,1.0,0,1,0.0,2439,3333.0,129.0,360.0,1,Rural,1.0
LP001579,Male,0.0,0,1,0.0,2237,0.0,63.0,480.0,0,Semiurban,0.0
LP001580,Male,1.0,2,1,0.0,8000,0.0,200.0,360.0,1,Semiurban,1.0
LP001581,Male,1.0,0,0,0.0,1820,1769.0,95.0,360.0,1,Rural,1.0
LP001585,,1.0,3+,1,0.0,51763,0.0,700.0,300.0,1,Urban,1.0
LP001586,Male,1.0,3+,0,0.0,3522,0.0,81.0,180.0,1,Rural,0.0
LP001594,Male,1.0,0,1,0.0,5708,5625.0,187.0,360.0,1,Semiurban,1.0
LP001603,Male,1.0,0,0,1.0,4344,736.0,87.0,360.0,1,Semiurban,0.0
LP001606,Male,1.0,0,1,0.0,3497,1964.0,116.0,360.0,1,Rural,1.0
LP001608,Male,1.0,2,1,0.0,2045,1619.0,101.0,360.0,1,Rural,1.0
LP001610,Male,1.0,3+,1,0.0,5516,11300.0,495.0,360.0,0,Semiurban,0.0
LP001616,Male,1.0,1,1,0.0,3750,0.0,116.0,360.0,1,Semiurban,1.0
LP001630,Male,0.0,0,0,0.0,2333,1451.0,102.0,480.0,0,Urban,0.0
LP001633,Male,1.0,1,1,0.0,6400,7250.0,180.0,360.0,0,Urban,0.0
LP001634,Male,0.0,0,1,0.0,1916,5063.0,67.0,360.0,0,Rural,0.0
LP001636,Male,1.0,0,1,0.0,4600,0.0,73.0,180.0,1,Semiurban,1.0
LP001637,Male,1.0,1,1,0.0,33846,0.0,260.0,360.0,1,Semiurban,0.0
LP001639,Female,1.0,0,1,0.0,3625,0.0,108.0,360.0,1,Semiurban,1.0
LP001640,Male,1.0,0,1,1.0,39147,4750.0,120.0,360.0,1,Semiurban,1.0
LP001641,Male,1.0,1,1,1.0,2178,0.0,66.0,300.0,0,Rural,0.0
LP001643,Male,1.0,0,1,0.0,2383,2138.0,58.0,360.0,0,Rural,1.0
LP001644,,1.0,0,1,1.0,674,5296.0,168.0,360.0,1,Rural,1.0
LP001647,Male,1.0,0,1,0.0,9328,0.0,188.0,180.0,1,Rural,1.0
LP001653,Male,0.0,0,0,0.0,4885,0.0,48.0,360.0,1,Rural,1.0
LP001656,Male,0.0,0,1,0.0,12000,0.0,164.0,360.0,1,Semiurban,0.0
LP001657,Male,1.0,0,0,0.0,6033,0.0,160.0,360.0,1,Urban,0.0
LP001658,Male,0.0,0,1,0.0,3858,0.0,76.0,360.0,1,Semiurban,1.0
LP001664,Male,0.0,0,1,0.0,4191,0.0,120.0,360.0,1,Rural,1.0
LP001665,Male,1.0,1,1,0.0,3125,2583.0,170.0,360.0,1,Semiurban,0.0
LP001666,Male,0.0,0,1,0.0,8333,3750.0,187.0,360.0,1,Rural,1.0
LP001669,Female,0.0,0,0,0.0,1907,2365.0,120.0,,1,Urban,1.0
LP001671,Female,1.0,0,1,0.0,3416,2816.0,113.0,360.0,0,Semiurban,1.0
LP001673,Male,0.0,0,1,1.0,11000,0.0,83.0,360.0,1,Urban,0.0
LP001674,Male,1.0,1,0,0.0,2600,2500.0,90.0,360.0,1,Semiurban,1.0
LP001677,Male,0.0,2,1,0.0,4923,0.0,166.0,360.0,0,Semiurban,1.0
LP001682,Male,1.0,3+,0,0.0,3992,0.0,0.0,180.0,1,Urban,0.0
LP001688,Male,1.0,1,0,0.0,3500,1083.0,135.0,360.0,1,Urban,1.0
LP001691,Male,1.0,2,0,0.0,3917,0.0,124.0,360.0,1,Semiurban,1.0
LP001692,Female,0.0,0,0,0.0,4408,0.0,120.0,360.0,1,Semiurban,1.0
LP001693,Female,0.0,0,1,0.0,3244,0.0,80.0,360.0,1,Urban,1.0
LP001698,Male,0.0,0,0,0.0,3975,2531.0,55.0,360.0,1,Rural,1.0
LP001699,Male,0.0,0,1,0.0,2479,0.0,59.0,360.0,1,Urban,1.0
LP001702,Male,0.0,0,1,0.0,3418,0.0,127.0,360.0,1,Semiurban,0.0
LP001708,Female,0.0,0,1,0.0,10000,0.0,214.0,360.0,1,Semiurban,0.0
LP001711,Male,1.0,3+,1,0.0,3430,1250.0,128.0,360.0,0,Semiurban,0.0
LP001713,Male,1.0,1,1,1.0,7787,0.0,240.0,360.0,1,Urban,1.0
LP001715,Male,1.0,3+,0,1.0,5703,0.0,130.0,360.0,1,Rural,1.0
LP001716,Male,1.0,0,1,0.0,3173,3021.0,137.0,360.0,1,Urban,1.0
LP001720,Male,1.0,3+,0,0.0,3850,983.0,100.0,360.0,1,Semiurban,1.0
LP001722,Male,1.0,0,1,0.0,150,1800.0,135.0,360.0,1,Rural,0.0
LP001726,Male,1.0,0,1,0.0,3727,1775.0,131.0,360.0,1,Semiurban,1.0
LP001732,Male,1.0,2,1,0.0,5000,0.0,72.0,360.0,0,Semiurban,0.0
LP001734,Female,1.0,2,1,0.0,4283,2383.0,127.0,360.0,0,Semiurban,1.0
LP001736,Male,1.0,0,1,0.0,2221,0.0,60.0,360.0,0,Urban,0.0
LP001743,Male,1.0,2,1,0.0,4009,1717.0,116.0,360.0,1,Semiurban,1.0
LP001744,Male,0.0,0,1,0.0,2971,2791.0,144.0,360.0,1,Semiurban,1.0
LP001749,Male,1.0,0,1,0.0,7578,1010.0,175.0,,1,Semiurban,1.0
LP001750,Male,1.0,0,1,0.0,6250,0.0,128.0,360.0,1,Semiurban,1.0
LP001751,Male,1.0,0,1,0.0,3250,0.0,170.0,360.0,1,Rural,0.0
LP001754,Male,1.0,,0,1.0,4735,0.0,138.0,360.0,1,Urban,0.0
LP001758,Male,1.0,2,1,0.0,6250,1695.0,210.0,360.0,1,Semiurban,1.0
LP001760,Male,0.0,,1,0.0,4758,0.0,158.0,480.0,1,Semiurban,1.0
LP001761,Male,0.0,0,1,1.0,6400,0.0,200.0,360.0,1,Rural,1.0
LP001765,Male,1.0,1,1,0.0,2491,2054.0,104.0,360.0,1,Semiurban,1.0
LP001768,Male,1.0,0,1,0.0,3716,0.0,42.0,180.0,1,Rural,1.0
LP001770,Male,0.0,0,0,0.0,3189,2598.0,120.0,,1,Rural,1.0
LP001776,Female,0.0,0,1,0.0,8333,0.0,280.0,360.0,1,Semiurban,1.0
LP001778,Male,1.0,1,1,0.0,3155,1779.0,140.0,360.0,1,Semiurban,1.0
LP001784,Male,1.0,1,1,0.0,5500,1260.0,170.0,360.0,1,Rural,1.0
LP001786,Male,1.0,0,1,0.0,5746,0.0,255.0,360.0,0,Urban,0.0
LP001788,Female,0.0,0,1,1.0,3463,0.0,122.0,360.0,0,Urban,1.0
LP001790,Female,0.0,1,1,0.0,3812,0.0,112.0,360.0,1,Rural,1.0
LP001792,Male,1.0,1,1,0.0,3315,0.0,96.0,360.0,1,Semiurban,1.0
LP001798,Male,1.0,2,1,0.0,5819,5000.0,120.0,360.0,1,Rural,1.0
LP001800,Male,1.0,1,0,0.0,2510,1983.0,140.0,180.0,1,Urban,0.0
LP001806,Male,0.0,0,1,0.0,2965,5701.0,155.0,60.0,1,Urban,1.0
LP001807,Male,1.0,2,1,1.0,6250,1300.0,108.0,360.0,1,Rural,1.0
LP001811,Male,1.0,0,0,0.0,3406,4417.0,123.0,360.0,1,Semiurban,1.0
LP001813,Male,0.0,0,1,1.0,6050,4333.0,120.0,180.0,1,Urban,0.0
LP001814,Male,1.0,2,1,0.0,9703,0.0,112.0,360.0,1,Urban,1.0
LP001819,Male,1.0,1,0,0.0,6608,0.0,137.0,180.0,1,Urban,1.0
LP001824,Male,1.0,1,1,0.0,2882,1843.0,123.0,480.0,1,Semiurban,1.0
LP001825,Male,1.0,0,1,0.0,1809,1868.0,90.0,360.0,1,Urban,1.0
LP001835,Male,1.0,0,0,0.0,1668,3890.0,201.0,360.0,0,Semiurban,0.0
LP001836,Female,0.0,2,1,0.0,3427,0.0,138.0,360.0,1,Urban,0.0
LP001841,Male,0.0,0,0,1.0,2583,2167.0,104.0,360.0,1,Rural,1.0
LP001843,Male,1.0,1,0,0.0,2661,7101.0,279.0,180.0,1,Semiurban,1.0
LP001844,Male,0.0,0,1,1.0,16250,0.0,192.0,360.0,0,Urban,0.0
LP001846,Female,0.0,3+,1,0.0,3083,0.0,255.0,360.0,1,Rural,1.0
LP001849,Male,0.0,0,0,0.0,6045,0.0,115.0,360.0,0,Rural,0.0
LP001854,Male,1.0,3+,1,0.0,5250,0.0,94.0,360.0,1,Urban,0.0
LP001859,Male,1.0,0,1,0.0,14683,2100.0,304.0,360.0,1,Rural,0.0
LP001864,Male,1.0,3+,0,0.0,4931,0.0,128.0,360.0,0,Semiurban,0.0
LP001865,Male,1.0,1,1,0.0,6083,4250.0,330.0,360.0,0,Urban,1.0
LP001868,Male,0.0,0,1,0.0,2060,2209.0,134.0,360.0,1,Semiurban,1.0
LP001870,Female,0.0,1,1,0.0,3481,0.0,155.0,36.0,1,Semiurban,0.0
LP001871,Female,0.0,0,1,0.0,7200,0.0,120.0,360.0,1,Rural,1.0
LP001872,Male,0.0,0,1,1.0,5166,0.0,128.0,360.0,1,Semiurban,1.0
LP001875,Male,0.0,0,1,0.0,4095,3447.0,151.0,360.0,1,Rural,1.0
LP001877,Male,1.0,2,1,0.0,4708,1387.0,150.0,360.0,1,Semiurban,1.0
LP001882,Male,1.0,3+,1,0.0,4333,1811.0,160.0,360.0,0,Urban,1.0
LP001883,Female,0.0,0,1,0.0,3418,0.0,135.0,360.0,1,Rural,0.0
LP001884,Female,0.0,1,1,0.0,2876,1560.0,90.0,360.0,1,Urban,1.0
LP001888,Female,0.0,0,1,0.0,3237,0.0,30.0,360.0,1,Urban,1.0
LP001891,Male,1.0,0,1,0.0,11146,0.0,136.0,360.0,1,Urban,1.0
LP001892,Male,0.0,0,1,0.0,2833,1857.0,126.0,360.0,1,Rural,1.0
LP001894,Male,1.0,0,1,0.0,2620,2223.0,150.0,360.0,1,Semiurban,1.0
LP001896,Male,1.0,2,1,0.0,3900,0.0,90.0,360.0,1,Semiurban,1.0
LP001900,Male,1.0,1,1,0.0,2750,1842.0,115.0,360.0,1,Semiurban,1.0
LP001903,Male,1.0,0,1,0.0,3993,3274.0,207.0,360.0,1,Semiurban,1.0
LP001904,Male,1.0,0,1,0.0,3103,1300.0,80.0,360.0,1,Urban,1.0
LP001907,Male,1.0,0,1,0.0,14583,0.0,436.0,360.0,1,Semiurban,1.0
LP001908,Female,1.0,0,0,0.0,4100,0.0,124.0,360.0,0,Rural,1.0
LP001910,Male,0.0,1,0,1.0,4053,2426.0,158.0,360.0,0,Urban,0.0
LP001914,Male,1.0,0,1,0.0,3927,800.0,112.0,360.0,1,Semiurban,1.0
LP001915,Male,1.0,2,1,0.0,2301,985.7999878,78.0,180.0,1,Urban,1.0
LP001917,Female,0.0,0,1,0.0,1811,1666.0,54.0,360.0,1,Urban,1.0
LP001922,Male,1.0,0,1,0.0,20667,0.0,0.0,360.0,1,Rural,0.0
LP001924,Male,0.0,0,1,0.0,3158,3053.0,89.0,360.0,1,Rural,1.0
LP001925,Female,0.0,0,1,1.0,2600,1717.0,99.0,300.0,1,Semiurban,0.0
LP001926,Male,1.0,0,1,0.0,3704,2000.0,120.0,360.0,1,Rural,1.0
LP001931,Female,0.0,0,1,0.0,4124,0.0,115.0,360.0,1,Semiurban,1.0
LP001935,Male,0.0,0,1,0.0,9508,0.0,187.0,360.0,1,Rural,1.0
LP001936,Male,1.0,0,1,0.0,3075,2416.0,139.0,360.0,1,Rural,1.0
LP001938,Male,1.0,2,1,0.0,4400,0.0,127.0,360.0,0,Semiurban,0.0
LP001940,Male,1.0,2,1,0.0,3153,1560.0,134.0,360.0,1,Urban,1.0
LP001945,Female,0.0,,1,0.0,5417,0.0,143.0,480.0,0,Urban,0.0
LP001947,Male,1.0,0,1,0.0,2383,3334.0,172.0,360.0,1,Semiurban,1.0
LP001949,Male,1.0,3+,1,0.0,4416,1250.0,110.0,360.0,1,Urban,1.0
LP001953,Male,1.0,1,1,0.0,6875,0.0,200.0,360.0,1,Semiurban,1.0
LP001954,Female,1.0,1,1,0.0,4666,0.0,135.0,360.0,1,Urban,1.0
LP001955,Female,0.0,0,1,0.0,5000,2541.0,151.0,480.0,1,Rural,0.0
LP001963,Male,1.0,1,1,0.0,2014,2925.0,113.0,360.0,1,Urban,0.0
LP001964,Male,1.0,0,0,0.0,1800,2934.0,93.0,360.0,0,Urban,0.0
LP001972,Male,1.0,,0,0.0,2875,1750.0,105.0,360.0,1,Semiurban,1.0
LP001974,Female,0.0,0,1,0.0,5000,0.0,132.0,360.0,1,Rural,1.0
LP001977,Male,1.0,1,1,0.0,1625,1803.0,96.0,360.0,1,Urban,1.0
LP001978,Male,0.0,0,1,0.0,4000,2500.0,140.0,360.0,1,Rural,1.0
LP001990,Male,0.0,0,0,0.0,2000,0.0,0.0,360.0,1,Urban,0.0
LP001993,Female,0.0,0,1,0.0,3762,1666.0,135.0,360.0,1,Rural,1.0
LP001994,Female,0.0,0,1,0.0,2400,1863.0,104.0,360.0,0,Urban,0.0
LP001996,Male,0.0,0,1,0.0,20233,0.0,480.0,360.0,1,Rural,0.0
LP001998,Male,1.0,2,0,0.0,7667,0.0,185.0,360.0,0,Rural,1.0
LP002002,Female,0.0,0,1,0.0,2917,0.0,84.0,360.0,1,Semiurban,1.0
LP002004,Male,0.0,0,0,0.0,2927,2405.0,111.0,360.0,1,Semiurban,1.0
LP002006,Female,0.0,0,1,0.0,2507,0.0,56.0,360.0,1,Rural,1.0
LP002008,Male,1.0,2,1,1.0,5746,0.0,144.0,84.0,0,Rural,1.0
LP002024,,1.0,0,1,0.0,2473,1843.0,159.0,360.0,1,Rural,0.0
LP002031,Male,1.0,1,0,0.0,3399,1640.0,111.0,180.0,1,Urban,1.0
LP002035,Male,1.0,2,1,0.0,3717,0.0,120.0,360.0,1,Semiurban,1.0
LP002036,Male,1.0,0,1,0.0,2058,2134.0,88.0,360.0,0,Urban,1.0
LP002043,Female,0.0,1,1,0.0,3541,0.0,112.0,360.0,0,Semiurban,1.0
LP002050,Male,1.0,1,1,1.0,10000,0.0,155.0,360.0,1,Rural,0.0
LP002051,Male,1.0,0,1,0.0,2400,2167.0,115.0,360.0,1,Semiurban,1.0
LP002053,Male,1.0,3+,1,0.0,4342,189.0,124.0,360.0,1,Semiurban,1.0
LP002054,Male,1.0,2,0,0.0,3601,1590.0,0.0,360.0,1,Rural,1.0
LP002055,Female,0.0,0,1,0.0,3166,2985.0,132.0,360.0,0,Rural,1.0
LP002065,Male,1.0,3+,1,0.0,15000,0.0,300.0,360.0,1,Rural,1.0
LP002067,Male,1.0,1,1,1.0,8666,4983.0,376.0,360.0,0,Rural,0.0
LP002068,Male,0.0,0,1,0.0,4917,0.0,130.0,360.0,0,Rural,1.0
LP002082,Male,1.0,0,1,1.0,5818,2160.0,184.0,360.0,1,Semiurban,1.0
LP002086,Female,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002087,Female,0.0,0,1,0.0,2500,0.0,67.0,360.0,1,Urban,1.0
LP002097,Male,0.0,1,1,0.0,4384,1793.0,117.0,360.0,1,Urban,1.0
LP002098,Male,0.0,0,1,0.0,2935,0.0,98.0,360.0,1,Semiurban,1.0
LP002100,Male,0.0,,1,0.0,2833,0.0,71.0,360.0,1,Urban,1.0
LP002101,Male,1.0,0,1,0.0,63337,0.0,490.0,180.0,1,Urban,1.0
LP002103,,1.0,1,1,1.0,9833,1833.0,182.0,180.0,1,Urban,1.0
LP002106,Male,1.0,,1,1.0,5503,4490.0,70.0,,1,Semiurban,1.0
LP002110,Male,1.0,1,1,0.0,5250,688.0,160.0,360.0,1,Rural,1.0
LP002112,Male,1.0,2,1,1.0,2500,4600.0,176.0,360.0,1,Rural,1.0
LP002113,Female,0.0,3+,0,0.0,1830,0.0,0.0,360.0,0,Urban,0.0
LP002114,Female,0.0,0,1,0.0,4160,0.0,71.0,360.0,1,Semiurban,1.0
LP002115,Male,1.0,3+,0,0.0,2647,1587.0,173.0,360.0,1,Rural,0.0
LP002116,Female,0.0,0,1,0.0,2378,0.0,46.0,360.0,1,Rural,0.0
LP002119,Male,1.0,1,0,0.0,4554,1229.0,158.0,360.0,1,Urban,1.0
LP002126,Male,1.0,3+,0,0.0,3173,0.0,74.0,360.0,1,Semiurban,1.0
LP002128,Male,1.0,2,1,0.0,2583,2330.0,125.0,360.0,1,Rural,1.0
LP002129,Male,1.0,0,1,0.0,2499,2458.0,160.0,360.0,1,Semiurban,1.0
LP002130,Male,1.0,,0,0.0,3523,3230.0,152.0,360.0,0,Rural,0.0
LP002131,Male,1.0,2,0,0.0,3083,2168.0,126.0,360.0,1,Urban,1.0
LP002137,Male,1.0,0,1,0.0,6333,4583.0,259.0,360.0,0,Semiurban,1.0
LP002138,Male,1.0,0,1,0.0,2625,6250.0,187.0,360.0,1,Rural,1.0
LP002139,Male,1.0,0,1,0.0,9083,0.0,228.0,360.0,1,Semiurban,1.0
LP002140,Male,0.0,0,1,0.0,8750,4167.0,308.0,360.0,1,Rural,0.0
LP002141,Male,1.0,3+,1,0.0,2666,2083.0,95.0,360.0,1,Rural,1.0
LP002142,Female,1.0,0,1,1.0,5500,0.0,105.0,360.0,0,Rural,0.0
LP002143,Female,1.0,0,1,0.0,2423,505.0,130.0,360.0,1,Semiurban,1.0
LP002144,Female,0.0,,1,0.0,3813,0.0,116.0,180.0,1,Urban,1.0
LP002149,Male,1.0,2,1,0.0,8333,3167.0,165.0,360.0,1,Rural,1.0
LP002151,Male,1.0,1,1,0.0,3875,0.0,67.0,360.0,1,Urban,0.0
LP002158,Male,1.0,0,0,0.0,3000,1666.0,100.0,480.0,0,Urban,0.0
LP002160,Male,1.0,3+,1,0.0,5167,3167.0,200.0,360.0,1,Semiurban,1.0
LP002161,Female,0.0,1,1,0.0,4723,0.0,81.0,360.0,1,Semiurban,0.0
LP002170,Male,1.0,2,1,0.0,5000,3667.0,236.0,360.0,1,Semiurban,1.0
LP002175,Male,1.0,0,1,0.0,4750,2333.0,130.0,360.0,1,Urban,1.0
LP002178,Male,1.0,0,1,0.0,3013,3033.0,95.0,300.0,0,Urban,1.0
LP002180,Male,0.0,0,1,1.0,6822,0.0,141.0,360.0,1,Rural,1.0
LP002181,Male,0.0,0,0,0.0,6216,0.0,133.0,360.0,1,Rural,0.0
LP002187,Male,0.0,0,1,0.0,2500,0.0,96.0,480.0,1,Semiurban,0.0
LP002188,Male,0.0,0,1,0.0,5124,0.0,124.0,,0,Rural,0.0
LP002190,Male,1.0,1,1,0.0,6325,0.0,175.0,360.0,1,Semiurban,1.0
LP002191,Male,1.0,0,1,0.0,19730,5266.0,570.0,360.0,1,Rural,0.0
LP002194,Female,0.0,0,1,1.0,15759,0.0,55.0,360.0,1,Semiurban,1.0
LP002197,Male,1.0,2,1,0.0,5185,0.0,155.0,360.0,1,Semiurban,1.0
LP002201,Male,1.0,2,1,1.0,9323,7873.0,380.0,300.0,1,Rural,1.0
LP002205,Male,0.0,1,1,0.0,3062,1987.0,111.0,180.0,0,Urban,0.0
LP002209,Female,0.0,0,1,0.0,2764,1459.0,110.0,360.0,1,Urban,1.0
LP002211,Male,1.0,0,1,0.0,4817,923.0,120.0,180.0,1,Urban,1.0
LP002219,Male,1.0,3+,1,0.0,8750,4996.0,130.0,360.0,1,Rural,1.0
LP002223,Male,1.0,0,1,0.0,4310,0.0,130.0,360.0,0,Semiurban,1.0
LP002224,Male,0.0,0,1,0.0,3069,0.0,71.0,480.0,1,Urban,0.0
LP002225,Male,1.0,2,1,0.0,5391,0.0,130.0,360.0,1,Urban,1.0
LP002226,Male,1.0,0,1,0.0,3333,2500.0,128.0,360.0,1,Semiurban,1.0
LP002229,Male,0.0,0,1,0.0,5941,4232.0,296.0,360.0,1,Semiurban,1.0
LP002231,Female,0.0,0,1,0.0,6000,0.0,156.0,360.0,1,Urban,1.0
LP002234,Male,0.0,0,1,1.0,7167,0.0,128.0,360.0,1,Urban,1.0
LP002236,Male,1.0,2,1,0.0,4566,0.0,100.0,360.0,1,Urban,0.0
LP002237,Male,0.0,1,1,0.0,3667,0.0,113.0,180.0,1,Urban,1.0
LP002239,Male,0.0,0,0,0.0,2346,1600.0,132.0,360.0,1,Semiurban,1.0
LP002243,Male,1.0,0,0,0.0,3010,3136.0,0.0,360.0,0,Urban,0.0
LP002244,Male,1.0,0,1,0.0,2333,2417.0,136.0,360.0,1,Urban,1.0
LP002250,Male,1.0,0,1,0.0,5488,0.0,125.0,360.0,1,Rural,1.0
LP002255,Male,0.0,3+,1,0.0,9167,0.0,185.0,360.0,1,Rural,1.0
LP002262,Male,1.0,3+,1,0.0,9504,0.0,275.0,360.0,1,Rural,1.0
LP002263,Male,1.0,0,1,0.0,2583,2115.0,120.0,360.0,0,Urban,1.0
LP002265,Male,1.0,2,0,0.0,1993,1625.0,113.0,180.0,1,Semiurban,1.0
LP002266,Male,1.0,2,1,0.0,3100,1400.0,113.0,360.0,1,Urban,1.0
LP002272,Male,1.0,2,1,0.0,3276,484.0,135.0,360.0,0,Semiurban,1.0
LP002277,Female,0.0,0,1,0.0,3180,0.0,71.0,360.0,0,Urban,0.0
LP002281,Male,1.0,0,1,0.0,3033,1459.0,95.0,360.0,1,Urban,1.0
LP002284,Male,0.0,0,0,0.0,3902,1666.0,109.0,360.0,1,Rural,1.0
LP002287,Female,0.0,0,1,0.0,1500,1800.0,103.0,360.0,0,Semiurban,0.0
LP002288,Male,1.0,2,0,0.0,2889,0.0,45.0,180.0,0,Urban,0.0
LP002296,Male,0.0,0,0,0.0,2755,0.0,65.0,300.0,1,Rural,0.0
LP002297,Male,0.0,0,1,0.0,2500,20000.0,103.0,360.0,1,Semiurban,1.0
LP002300,Female,0.0,0,0,0.0,1963,0.0,53.0,360.0,1,Semiurban,1.0
LP002301,Female,0.0,0,1,1.0,7441,0.0,194.0,360.0,1,Rural,0.0
LP002305,Female,0.0,0,1,0.0,4547,0.0,115.0,360.0,1,Semiurban,1.0
LP002308,Male,1.0,0,0,0.0,2167,2400.0,115.0,360.0,1,Urban,1.0
LP002314,Female,0.0,0,0,0.0,2213,0.0,66.0,360.0,1,Rural,1.0
LP002315,Male,1.0,1,1,0.0,8300,0.0,152.0,300.0,0,Semiurban,0.0
LP002317,Male,1.0,3+,1,0.0,81000,0.0,360.0,360.0,0,Rural,0.0
LP002318,Female,0.0,1,0,1.0,3867,0.0,62.0,360.0,1,Semiurban,0.0
LP002319,Male,1.0,0,1,0.0,6256,0.0,160.0,360.0,0,Urban,1.0
LP002328,Male,1.0,0,0,0.0,6096,0.0,218.0,360.0,0,Rural,0.0
LP002332,Male,1.0,0,0,0.0,2253,2033.0,110.0,360.0,1,Rural,1.0
LP002335,Female,1.0,0,0,0.0,2149,3237.0,178.0,360.0,0,Semiurban,0.0
LP002337,Female,0.0,0,1,0.0,2995,0.0,60.0,360.0,1,Urban,1.0
LP002341,Female,0.0,1,1,0.0,2600,0.0,160.0,360.0,1,Urban,0.0
LP002342,Male,1.0,2,1,1.0,1600,20000.0,239.0,360.0,1,Urban,0.0
LP002345,Male,1.0,0,1,0.0,1025,2773.0,112.0,360.0,1,Rural,1.0
LP002347,Male,1.0,0,1,0.0,3246,1417.0,138.0,360.0,1,Semiurban,1.0
LP002348,Male,1.0,0,1,0.0,5829,0.0,138.0,360.0,1,Rural,1.0
LP002357,Female,0.0,0,0,0.0,2720,0.0,80.0,,0,Urban,0.0
LP002361,Male,1.0,0,1,0.0,1820,1719.0,100.0,360.0,1,Urban,1.0
LP002362,Male,1.0,1,1,0.0,7250,1667.0,110.0,,0,Urban,0.0
LP002364,Male,1.0,0,1,0.0,14880,0.0,96.0,360.0,1,Semiurban,1.0
LP002366,Male,1.0,0,1,0.0,2666,4300.0,121.0,360.0,1,Rural,1.0
LP002367,Female,0.0,1,0,0.0,4606,0.0,81.0,360.0,1,Rural,0.0
LP002368,Male,1.0,2,1,0.0,5935,0.0,133.0,360.0,1,Semiurban,1.0
LP002369,Male,1.0,0,1,0.0,2920,16.12000084,87.0,360.0,1,Rural,1.0
LP002370,Male,0.0,0,0,0.0,2717,0.0,60.0,180.0,1,Urban,1.0
LP002377,Female,0.0,1,1,1.0,8624,0.0,150.0,360.0,1,Semiurban,1.0
LP002379,Male,0.0,0,1,0.0,6500,0.0,105.0,360.0,0,Rural,0.0
LP002386,Male,0.0,0,1,0.0,12876,0.0,405.0,360.0,1,Semiurban,1.0
LP002387,Male,1.0,0,1,0.0,2425,2340.0,143.0,360.0,1,Semiurban,1.0
LP002390,Male,0.0,0,1,0.0,3750,0.0,100.0,360.0,1,Urban,1.0
LP002393,Female,0.0,,1,0.0,10047,0.0,0.0,240.0,1,Semiurban,1.0
LP002398,Male,0.0,0,1,0.0,1926,1851.0,50.0,360.0,1,Semiurban,1.0
LP002401,Male,1.0,0,1,0.0,2213,1125.0,0.0,360.0,1,Urban,1.0
LP002403,Male,0.0,0,1,1.0,10416,0.0,187.0,360.0,0,Urban,0.0
LP002407,Female,1.0,0,0,1.0,7142,0.0,138.0,360.0,1,Rural,1.0
LP002408,Male,0.0,0,1,0.0,3660,5064.0,187.0,360.0,1,Semiurban,1.0
LP002409,Male,1.0,0,1,0.0,7901,1833.0,180.0,360.0,1,Rural,1.0
LP002418,Male,0.0,3+,0,0.0,4707,1993.0,148.0,360.0,1,Semiurban,1.0
LP002422,Male,0.0,1,1,0.0,37719,0.0,152.0,360.0,1,Semiurban,1.0
LP002424,Male,1.0,0,1,0.0,7333,8333.0,175.0,300.0,0,Rural,1.0
LP002429,Male,1.0,1,1,1.0,3466,1210.0,130.0,360.0,1,Rural,1.0
LP002434,Male,1.0,2,0,0.0,4652,0.0,110.0,360.0,1,Rural,1.0
LP002435,Male,1.0,0,1,0.0,3539,1376.0,55.0,360.0,1,Rural,0.0
LP002443,Male,1.0,2,1,0.0,3340,1710.0,150.0,360.0,0,Rural,0.0
LP002444,Male,0.0,1,0,1.0,2769,1542.0,190.0,360.0,0,Semiurban,0.0
LP002446,Male,1.0,2,0,0.0,2309,1255.0,125.0,360.0,0,Rural,0.0
LP002447,Male,1.0,2,0,0.0,1958,1456.0,60.0,300.0,0,Urban,1.0
LP002448,Male,1.0,0,1,0.0,3948,1733.0,149.0,360.0,0,Rural,0.0
LP002449,Male,1.0,0,1,0.0,2483,2466.0,90.0,180.0,0,Rural,1.0
LP002453,Male,0.0,0,1,1.0,7085,0.0,84.0,360.0,1,Semiurban,1.0
LP002455,Male,1.0,2,1,0.0,3859,0.0,96.0,360.0,1,Semiurban,1.0
LP002459,Male,1.0,0,1,0.0,4301,0.0,118.0,360.0,1,Urban,1.0
LP002467,Male,1.0,0,1,0.0,3708,2569.0,173.0,360.0,1,Urban,0.0
LP002472,Male,0.0,2,1,0.0,4354,0.0,136.0,360.0,1,Rural,1.0
LP002473,Male,1.0,0,1,0.0,8334,0.0,160.0,360.0,1,Semiurban,0.0
LP002478,,1.0,0,1,1.0,2083,4083.0,160.0,360.0,0,Semiurban,1.0
LP002484,Male,1.0,3+,1,0.0,7740,0.0,128.0,180.0,1,Urban,1.0
LP002487,Male,1.0,0,1,0.0,3015,2188.0,153.0,360.0,1,Rural,1.0
LP002489,Female,0.0,1,0,0.0,5191,0.0,132.0,360.0,1,Semiurban,1.0
LP002493,Male,0.0,0,1,0.0,4166,0.0,98.0,360.0,0,Semiurban,0.0
LP002494,Male,0.0,0,1,0.0,6000,0.0,140.0,360.0,1,Rural,1.0
LP002500,Male,1.0,3+,0,0.0,2947,1664.0,70.0,180.0,0,Urban,0.0
LP002501,,1.0,0,1,0.0,16692,0.0,110.0,360.0,1,Semiurban,1.0
LP002502,Female,1.0,2,0,0.0,210,2917.0,98.0,360.0,1,Semiurban,1.0
LP002505,Male,1.0,0,1,0.0,4333,2451.0,110.0,360.0,1,Urban,0.0
LP002515,Male,1.0,1,1,1.0,3450,2079.0,162.0,360.0,1,Semiurban,1.0
LP002517,Male,1.0,1,0,0.0,2653,1500.0,113.0,180.0,0,Rural,0.0
LP002519,Male,1.0,3+,1,0.0,4691,0.0,100.0,360.0,1,Semiurban,1.0
LP002522,Female,0.0,0,1,1.0,2500,0.0,93.0,360.0,0,Urban,1.0
LP002524,Male,0.0,2,1,0.0,5532,4648.0,162.0,360.0,1,Rural,1.0
LP002527,Male,1.0,2,1,1.0,16525,1014.0,150.0,360.0,1,Rural,1.0
LP002529,Male,1.0,2,1,0.0,6700,1750.0,230.0,300.0,1,Semiurban,1.0
LP002530,,1.0,2,1,0.0,2873,1872.0,132.0,360.0,0,Semiurban,0.0
LP002531,Male,1.0,1,1,1.0,16667,2250.0,86.0,360.0,1,Semiurban,1.0
LP002533,Male,1.0,2,1,0.0,2947,1603.0,0.0,360.0,1,Urban,0.0
LP002534,Female,0.0,0,0,0.0,4350,0.0,154.0,360.0,1,Rural,1.0
LP002536,Male,1.0,3+,0,0.0,3095,0.0,113.0,360.0,1,Rural,1.0
LP002537,Male,1.0,0,1,0.0,2083,3150.0,128.0,360.0,1,Semiurban,1.0
LP002541,Male,1.0,0,1,0.0,10833,0.0,234.0,360.0,1,Semiurban,1.0
LP002543,Male,1.0,2,1,0.0,8333,0.0,246.0,360.0,1,Semiurban,1.0
LP002544,Male,1.0,1,0,0.0,1958,2436.0,131.0,360.0,1,Rural,1.0
LP002545,Male,0.0,2,1,0.0,3547,0.0,80.0,360.0,0,Rural,0.0
LP002547,Male,1.0,1,1,0.0,18333,0.0,500.0,360.0,1,Urban,0.0
LP002555,Male,1.0,2,1,1.0,4583,2083.0,160.0,360.0,1,Semiurban,1.0
LP002556,Male,0.0,0,1,0.0,2435,0.0,75.0,360.0,1,Urban,0.0
LP002560,Male,0.0,0,0,0.0,2699,2785.0,96.0,360.0,0,Semiurban,1.0
LP002562,Male,1.0,1,0,0.0,5333,1131.0,186.0,360.0,0,Urban,1.0
LP002571,Male,0.0,0,0,0.0,3691,0.0,110.0,360.0,1,Rural,1.0
LP002582,Female,0.0,0,0,1.0,17263,0.0,225.0,360.0,1,Semiurban,1.0
LP002585,Male,1.0,0,1,0.0,3597,2157.0,119.0,360.0,0,Rural,0.0
LP002586,Female,1.0,1,1,0.0,3326,913.0,105.0,84.0,1,Semiurban,1.0
LP002587,Male,1.0,0,0,0.0,2600,1700.0,107.0,360.0,1,Rural,1.0
LP002588,Male,1.0,0,1,0.0,4625,2857.0,111.0,12.0,0,Urban,1.0
LP002600,Male,1.0,1,1,1.0,2895,0.0,95.0,360.0,1,Semiurban,1.0
LP002602,Male,0.0,0,1,0.0,6283,4416.0,209.0,360.0,0,Rural,0.0
LP002603,Female,0.0,0,1,0.0,645,3683.0,113.0,480.0,1,Rural,1.0
LP002606,Female,0.0,0,1,0.0,3159,0.0,100.0,360.0,1,Semiurban,1.0
LP002615,Male,1.0,2,1,0.0,4865,5624.0,208.0,360.0,1,Semiurban,1.0
LP002618,Male,1.0,1,0,0.0,4050,5302.0,138.0,360.0,0,Rural,0.0
LP002619,Male,1.0,0,0,0.0,3814,1483.0,124.0,300.0,1,Semiurban,1.0
LP002622,Male,1.0,2,1,0.0,3510,4416.0,243.0,360.0,1,Rural,1.0
LP002624,Male,1.0,0,1,0.0,20833,6667.0,480.0,360.0,0,Urban,1.0
LP002625,,0.0,0,1,0.0,3583,0.0,96.0,360.0,1,Urban,0.0
LP002626,Male,1.0,0,1,1.0,2479,3013.0,188.0,360.0,1,Urban,1.0
LP002634,Female,0.0,1,1,0.0,13262,0.0,40.0,360.0,1,Urban,1.0
LP002637,Male,0.0,0,0,0.0,3598,1287.0,100.0,360.0,1,Rural,0.0
LP002640,Male,1.0,1,1,0.0,6065,2004.0,250.0,360.0,1,Semiurban,1.0
LP002643,Male,1.0,2,1,0.0,3283,2035.0,148.0,360.0,1,Urban,1.0
LP002648,Male,1.0,0,1,0.0,2130,6666.0,70.0,180.0,1,Semiurban,0.0
LP002652,Male,0.0,0,1,0.0,5815,3666.0,311.0,360.0,1,Rural,0.0
LP002659,Male,1.0,3+,1,0.0,3466,3428.0,150.0,360.0,1,Rural,1.0
LP002670,Female,1.0,2,1,0.0,2031,1632.0,113.0,480.0,1,Semiurban,1.0
LP002682,Male,1.0,,0,0.0,3074,1800.0,123.0,360.0,0,Semiurban,0.0
LP002683,Male,0.0,0,1,0.0,4683,1915.0,185.0,360.0,1,Semiurban,0.0
LP002684,Female,0.0,0,0,0.0,3400,0.0,95.0,360.0,1,Rural,0.0
LP002689,Male,1.0,2,0,0.0,2192,1742.0,45.0,360.0,1,Semiurban,1.0
LP002690,Male,0.0,0,1,0.0,2500,0.0,55.0,360.0,1,Semiurban,1.0
LP002692,Male,1.0,3+,1,1.0,5677,1424.0,100.0,360.0,1,Rural,1.0
LP002693,Male,1.0,2,1,1.0,7948,7166.0,480.0,360.0,1,Rural,1.0
LP002697,Male,0.0,0,1,0.0,4680,2087.0,0.0,360.0,1,Semiurban,0.0
LP002699,Male,1.0,2,1,1.0,17500,0.0,400.0,360.0,1,Rural,1.0
LP002705,Male,1.0,0,1,0.0,3775,0.0,110.0,360.0,1,Semiurban,1.0
LP002706,Male,1.0,1,0,0.0,5285,1430.0,161.0,360.0,0,Semiurban,1.0
LP002714,Male,0.0,1,0,0.0,2679,1302.0,94.0,360.0,1,Semiurban,1.0
LP002716,Male,0.0,0,0,0.0,6783,0.0,130.0,360.0,1,Semiurban,1.0
LP002717,Male,1.0,0,1,0.0,1025,5500.0,216.0,360.0,0,Rural,1.0
LP002720,Male,1.0,3+,1,0.0,4281,0.0,100.0,360.0,1,Urban,1.0
LP002723,Male,0.0,2,1,0.0,3588,0.0,110.0,360.0,0,Rural,0.0
LP002729,Male,0.0,1,1,0.0,11250,0.0,196.0,360.0,0,Semiurban,0.0
LP002731,Female,0.0,0,0,1.0,18165,0.0,125.0,360.0,1,Urban,1.0
LP002732,Male,0.0,0,0,0.0,2550,2042.0,126.0,360.0,1,Rural,1.0
LP002734,Male,1.0,0,1,0.0,6133,3906.0,324.0,360.0,1,Urban,1.0
LP002738,Male,0.0,2,1,0.0,3617,0.0,107.0,360.0,1,Semiurban,1.0
LP002739,Male,1.0,0,0,0.0,2917,536.0,66.0,360.0,1,Rural,0.0
LP002740,Male,1.0,3+,1,0.0,6417,0.0,157.0,180.0,1,Rural,1.0
LP002741,Female,1.0,1,1,0.0,4608,2845.0,140.0,180.0,1,Semiurban,1.0
LP002743,Female,0.0,0,1,0.0,2138,0.0,99.0,360.0,0,Semiurban,0.0
LP002753,Female,0.0,1,1,0.0,3652,0.0,95.0,360.0,1,Semiurban,1.0
LP002755,Male,1.0,1,0,0.0,2239,2524.0,128.0,360.0,1,Urban,1.0
LP002757,Female,1.0,0,0,0.0,3017,663.0,102.0,360.0,0,Semiurban,1.0
LP002767,Male,1.0,0,1,0.0,2768,1950.0,155.0,360.0,1,Rural,1.0
LP002768,Male,0.0,0,0,0.0,3358,0.0,80.0,36.0,1,Semiurban,0.0
LP002772,Male,0.0,0,1,0.0,2526,1783.0,145.0,360.0,1,Rural,1.0
LP002776,Female,0.0,0,1,0.0,5000,0.0,103.0,360.0,0,Semiurban,0.0
LP002777,Male,1.0,0,1,0.0,2785,2016.0,110.0,360.0,1,Rural,1.0
LP002778,Male,1.0,2,1,1.0,6633,0.0,0.0,360.0,0,Rural,0.0
LP002784,Male,1.0,1,0,0.0,2492,2375.0,0.0,360.0,1,Rural,1.0
LP002785,Male,1.0,1,1,0.0,3333,3250.0,158.0,360.0,1,Urban,1.0
LP002788,Male,1.0,0,0,0.0,2454,2333.0,181.0,360.0,0,Urban,0.0
LP002789,Male,1.0,0,1,0.0,3593,4266.0,132.0,180.0,0,Rural,0.0
LP002792,Male,1.0,1,1,0.0,5468,1032.0,26.0,360.0,1,Semiurban,1.0
LP002794,Female,0.0,0,1,0.0,2667,1625.0,84.0,360.0,0,Urban,1.0
LP002795,Male,1.0,3+,1,1.0,10139,0.0,260.0,360.0,1,Semiurban,1.0
LP002798,Male,1.0,0,1,0.0,3887,2669.0,162.0,360.0,1,Semiurban,1.0
LP002804,Female,1.0,0,1,0.0,4180,2306.0,182.0,360.0,1,Semiurban,1.0
LP002807,Male,1.0,2,0,0.0,3675,242.0,108.0,360.0,1,Semiurban,1.0
LP002813,Female,1.0,1,1,1.0,19484,0.0,600.0,360.0,1,Semiurban,1.0
LP002820,Male,1.0,0,1,0.0,5923,2054.0,211.0,360.0,1,Rural,1.0
LP002821,Male,0.0,0,0,1.0,5800,0.0,132.0,360.0,1,Semiurban,1.0
LP002832,Male,1.0,2,1,0.0,8799,0.0,258.0,360.0,0,Urban,0.0
LP002833,Male,1.0,0,0,0.0,4467,0.0,120.0,360.0,0,Rural,1.0
LP002836,Male,0.0,0,1,0.0,3333,0.0,70.0,360.0,1,Urban,1.0
LP002837,Male,1.0,3+,1,0.0,3400,2500.0,123.0,360.0,0,Rural,0.0
LP002840,Female,0.0,0,1,0.0,2378,0.0,9.0,360.0,1,Urban,0.0
LP002841,Male,1.0,0,1,0.0,3166,2064.0,104.0,360.0,0,Urban,0.0
LP002842,Male,1.0,1,1,0.0,3417,1750.0,186.0,360.0,1,Urban,1.0
LP002847,Male,1.0,,1,0.0,5116,1451.0,165.0,360.0,0,Urban,0.0
LP002855,Male,1.0,2,1,0.0,16666,0.0,275.0,360.0,1,Urban,1.0
LP002862,Male,1.0,2,0,0.0,6125,1625.0,187.0,480.0,1,Semiurban,0.0
LP002863,Male,1.0,3+,1,0.0,6406,0.0,150.0,360.0,1,Semiurban,0.0
LP002868,Male,1.0,2,1,0.0,3159,461.0,108.0,84.0,1,Urban,1.0
LP002872,,1.0,0,1,0.0,3087,2210.0,136.0,360.0,0,Semiurban,0.0
LP002874,Male,0.0,0,1,0.0,3229,2739.0,110.0,360.0,1,Urban,1.0
LP002877,Male,1.0,1,1,0.0,1782,2232.0,107.0,360.0,1,Rural,1.0
LP002888,Male,0.0,0,1,0.0,3182,2917.0,161.0,360.0,1,Urban,1.0
LP002892,Male,1.0,2,1,0.0,6540,0.0,205.0,360.0,1,Semiurban,1.0
LP002893,Male,0.0,0,1,0.0,1836,33837.0,90.0,360.0,1,Urban,0.0
LP002894,Female,1.0,0,1,0.0,3166,0.0,36.0,360.0,1,Semiurban,1.0
LP002898,Male,1.0,1,1,0.0,1880,0.0,61.0,360.0,0,Rural,0.0
LP002911,Male,1.0,1,1,0.0,2787,1917.0,146.0,360.0,0,Rural,0.0
LP002912,Male,1.0,1,1,0.0,4283,3000.0,172.0,84.0,1,Rural,0.0
LP002916,Male,1.0,0,1,0.0,2297,1522.0,104.0,360.0,1,Urban,1.0
LP002917,Female,0.0,0,0,0.0,2165,0.0,70.0,360.0,1,Semiurban,1.0
LP002925,,0.0,0,1,0.0,4750,0.0,94.0,360.0,1,Semiurban,1.0
LP002926,Male,1.0,2,1,1.0,2726,0.0,106.0,360.0,0,Semiurban,0.0
LP002928,Male,1.0,0,1,0.0,3000,3416.0,56.0,180.0,1,Semiurban,1.0
LP002931,Male,1.0,2,1,1.0,6000,0.0,205.0,240.0,1,Semiurban,0.0
LP002933,,0.0,3+,1,1.0,9357,0.0,292.0,360.0,1,Semiurban,1.0
LP002936,Male,1.0,0,1,0.0,3859,3300.0,142.0,180.0,1,Rural,1.0
LP002938,Male,1.0,0,1,1.0,16120,0.0,260.0,360.0,1,Urban,1.0
LP002940,Male,0.0,0,0,0.0,3833,0.0,110.0,360.0,1,Rural,1.0
LP002941,Male,1.0,2,0,1.0,6383,1000.0,187.0,360.0,1,Rural,0.0
LP002943,Male,0.0,,1,0.0,2987,0.0,88.0,360.0,0,Semiurban,0.0
LP002945,Male,1.0,0,1,1.0,9963,0.0,180.0,360.0,1,Rural,1.0
LP002948,Male,1.0,2,1,0.0,5780,0.0,192.0,360.0,1,Urban,1.0
LP002949,Female,0.0,3+,1,0.0,416,41667.0,350.0,180.0,0,Urban,0.0
LP002950,Male,1.0,0,0,0.0,2894,2792.0,155.0,360.0,1,Rural,1.0
LP002953,Male,1.0,3+,1,0.0,5703,0.0,128.0,360.0,1,Urban,1.0
LP002958,Male,0.0,0,1,0.0,3676,4301.0,172.0,360.0,1,Rural,1.0
LP002959,Female,1.0,1,1,0.0,12000,0.0,496.0,360.0,1,Semiurban,1.0
LP002960,Male,1.0,0,0,0.0,2400,3800.0,0.0,180.0,1,Urban,0.0
LP002961,Male,1.0,1,1,0.0,3400,2500.0,173.0,360.0,1,Semiurban,1.0
LP002964,Male,1.0,2,0,0.0,3987,1411.0,157.0,360.0,1,Rural,1.0
LP002974,Male,1.0,0,1,0.0,3232,1950.0,108.0,360.0,1,Rural,1.0
LP002978,Female,0.0,0,1,0.0,2900,0.0,71.0,360.0,1,Rural,1.0
LP002979,Male,1.0,3+,1,0.0,4106,0.0,40.0,180.0,1,Rural,1.0
LP002983,Male,1.0,1,1,0.0,8072,240.0,253.0,360.0,1,Urban,1.0
LP002984,Male,1.0,2,1,0.0,7583,0.0,187.0,360.0,1,Urban,1.0
LP002990,Female,0.0,0,1,1.0,4583,0.0,133.0,360.0,0,Semiurban,0.0
1 Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status
2 LP001002 Male 0.0 0 1 0.0 5849 0.0 360.0 1.0 0 Y 0.0
3 LP001003 Male 1.0 1 1 0.0 4583 1508.0 128.0 360.0 1 Rural 0.0
4 LP001005 Male 1.0 0 1 1.0 3000 0.0 66.0 360.0 1 Urban 1.0
5 LP001006 Male 1.0 0 0 0.0 2583 2358.0 120.0 360.0 1 Urban 1.0
6 LP001008 Male 0.0 0 1 0.0 6000 0.0 141.0 360.0 1 Urban 1.0
7 LP001011 Male 1.0 2 1 1.0 5417 4196.0 267.0 360.0 1 Urban 1.0
8 LP001013 Male 1.0 0 0 0.0 2333 1516.0 95.0 360.0 1 Urban 1.0
9 LP001014 Male 1.0 3+ 1 0.0 3036 2504.0 158.0 360.0 0 Semiurban 0.0
10 LP001018 Male 1.0 2 1 0.0 4006 1526.0 168.0 360.0 1 Urban 1.0
11 LP001020 Male 1.0 1 1 0.0 12841 10968.0 349.0 360.0 1 Semiurban 0.0
12 LP001024 Male 1.0 2 1 0.0 3200 700.0 70.0 360.0 1 Urban 1.0
13 LP001027 Male 1.0 2 1 0.0 2500 1840.0 109.0 360.0 1 Urban 1.0
14 LP001028 Male 1.0 2 1 0.0 3073 8106.0 200.0 360.0 1 Urban 1.0
15 LP001029 Male 0.0 0 1 0.0 1853 2840.0 114.0 360.0 1 Rural 0.0
16 LP001030 Male 1.0 2 1 0.0 1299 1086.0 17.0 120.0 1 Urban 1.0
17 LP001032 Male 0.0 0 1 0.0 4950 0.0 125.0 360.0 1 Urban 1.0
18 LP001034 Male 0.0 1 0 0.0 3596 0.0 100.0 240.0 0 Urban 1.0
19 LP001036 Female 0.0 0 1 0.0 3510 0.0 76.0 360.0 0 Urban 0.0
20 LP001038 Male 1.0 0 0 0.0 4887 0.0 133.0 360.0 1 Rural 0.0
21 LP001041 Male 1.0 0 1 0.0 2600 3500.0 115.0 1 Urban 1.0
22 LP001043 Male 1.0 0 0 0.0 7660 0.0 104.0 360.0 0 Urban 0.0
23 LP001046 Male 1.0 1 1 0.0 5955 5625.0 315.0 360.0 1 Urban 1.0
24 LP001047 Male 1.0 0 0 0.0 2600 1911.0 116.0 360.0 0 Semiurban 0.0
25 LP001050 1.0 2 0 0.0 3365 1917.0 112.0 360.0 0 Rural 0.0
26 LP001052 Male 1.0 1 1 0.0 3717 2925.0 151.0 360.0 0 Semiurban 0.0
27 LP001066 Male 1.0 0 1 1.0 9560 0.0 191.0 360.0 1 Semiurban 1.0
28 LP001068 Male 1.0 0 1 0.0 2799 2253.0 122.0 360.0 1 Semiurban 1.0
29 LP001073 Male 1.0 2 0 0.0 4226 1040.0 110.0 360.0 1 Urban 1.0
30 LP001086 Male 0.0 0 0 0.0 1442 0.0 35.0 360.0 1 Urban 0.0
31 LP001087 Female 0.0 2 1 0.0 3750 2083.0 120.0 360.0 1 Semiurban 1.0
32 LP001091 Male 1.0 1 1 0.0 4166 3369.0 201.0 360.0 0 Urban 0.0
33 LP001095 Male 0.0 0 1 0.0 3167 0.0 74.0 360.0 1 Urban 0.0
34 LP001097 Male 0.0 1 1 1.0 4692 0.0 106.0 360.0 1 Rural 0.0
35 LP001098 Male 1.0 0 1 0.0 3500 1667.0 114.0 360.0 1 Semiurban 1.0
36 LP001100 Male 0.0 3+ 1 0.0 12500 3000.0 320.0 360.0 1 Rural 0.0
37 LP001106 Male 1.0 0 1 0.0 2275 2067.0 0.0 360.0 1 Urban 1.0
38 LP001109 Male 1.0 0 1 0.0 1828 1330.0 100.0 0 Urban 0.0
39 LP001112 Female 1.0 0 1 0.0 3667 1459.0 144.0 360.0 1 Semiurban 1.0
40 LP001114 Male 0.0 0 1 0.0 4166 7210.0 184.0 360.0 1 Urban 1.0
41 LP001116 Male 0.0 0 0 0.0 3748 1668.0 110.0 360.0 1 Semiurban 1.0
42 LP001119 Male 0.0 0 1 0.0 3600 0.0 80.0 360.0 1 Urban 0.0
43 LP001120 Male 0.0 0 1 0.0 1800 1213.0 47.0 360.0 1 Urban 1.0
44 LP001123 Male 1.0 0 1 0.0 2400 0.0 75.0 360.0 0 Urban 1.0
45 LP001131 Male 1.0 0 1 0.0 3941 2336.0 134.0 360.0 1 Semiurban 1.0
46 LP001136 Male 1.0 0 0 1.0 4695 0.0 96.0 1 Urban 1.0
47 LP001137 Female 0.0 0 1 0.0 3410 0.0 88.0 1 Urban 1.0
48 LP001138 Male 1.0 1 1 0.0 5649 0.0 44.0 360.0 1 Urban 1.0
49 LP001144 Male 1.0 0 1 0.0 5821 0.0 144.0 360.0 1 Urban 1.0
50 LP001146 Female 1.0 0 1 0.0 2645 3440.0 120.0 360.0 0 Urban 0.0
51 LP001151 Female 0.0 0 1 0.0 4000 2275.0 144.0 360.0 1 Semiurban 1.0
52 LP001155 Female 1.0 0 0 0.0 1928 1644.0 100.0 360.0 1 Semiurban 1.0
53 LP001157 Female 0.0 0 1 0.0 3086 0.0 120.0 360.0 1 Semiurban 1.0
54 LP001164 Female 0.0 0 1 0.0 4230 0.0 112.0 360.0 1 Semiurban 0.0
55 LP001179 Male 1.0 2 1 0.0 4616 0.0 134.0 360.0 1 Urban 0.0
56 LP001186 Female 1.0 1 1 1.0 11500 0.0 286.0 360.0 0 Urban 0.0
57 LP001194 Male 1.0 2 1 0.0 2708 1167.0 97.0 360.0 1 Semiurban 1.0
58 LP001195 Male 1.0 0 1 0.0 2132 1591.0 96.0 360.0 1 Semiurban 1.0
59 LP001197 Male 1.0 0 1 0.0 3366 2200.0 135.0 360.0 1 Rural 0.0
60 LP001198 Male 1.0 1 1 0.0 8080 2250.0 180.0 360.0 1 Urban 1.0
61 LP001199 Male 1.0 2 0 0.0 3357 2859.0 144.0 360.0 1 Urban 1.0
62 LP001205 Male 1.0 0 1 0.0 2500 3796.0 120.0 360.0 1 Urban 1.0
63 LP001206 Male 1.0 3+ 1 0.0 3029 0.0 99.0 360.0 1 Urban 1.0
64 LP001207 Male 1.0 0 0 1.0 2609 3449.0 165.0 180.0 0 Rural 0.0
65 LP001213 Male 1.0 1 1 0.0 4945 0.0 0.0 360.0 0 Rural 0.0
66 LP001222 Female 0.0 0 1 0.0 4166 0.0 116.0 360.0 0 Semiurban 0.0
67 LP001225 Male 1.0 0 1 0.0 5726 4595.0 258.0 360.0 1 Semiurban 0.0
68 LP001228 Male 0.0 0 0 0.0 3200 2254.0 126.0 180.0 0 Urban 0.0
69 LP001233 Male 1.0 1 1 0.0 10750 0.0 312.0 360.0 1 Urban 1.0
70 LP001238 Male 1.0 3+ 0 1.0 7100 0.0 125.0 60.0 1 Urban 1.0
71 LP001241 Female 0.0 0 1 0.0 4300 0.0 136.0 360.0 0 Semiurban 0.0
72 LP001243 Male 1.0 0 1 0.0 3208 3066.0 172.0 360.0 1 Urban 1.0
73 LP001245 Male 1.0 2 0 1.0 1875 1875.0 97.0 360.0 1 Semiurban 1.0
74 LP001248 Male 0.0 0 1 0.0 3500 0.0 81.0 300.0 1 Semiurban 1.0
75 LP001250 Male 1.0 3+ 0 0.0 4755 0.0 95.0 0 Semiurban 0.0
76 LP001253 Male 1.0 3+ 1 1.0 5266 1774.0 187.0 360.0 1 Semiurban 1.0
77 LP001255 Male 0.0 0 1 0.0 3750 0.0 113.0 480.0 1 Urban 0.0
78 LP001256 Male 0.0 0 1 0.0 3750 4750.0 176.0 360.0 1 Urban 0.0
79 LP001259 Male 1.0 1 1 1.0 1000 3022.0 110.0 360.0 1 Urban 0.0
80 LP001263 Male 1.0 3+ 1 0.0 3167 4000.0 180.0 300.0 0 Semiurban 0.0
81 LP001264 Male 1.0 3+ 0 1.0 3333 2166.0 130.0 360.0 0 Semiurban 1.0
82 LP001265 Female 0.0 0 1 0.0 3846 0.0 111.0 360.0 1 Semiurban 1.0
83 LP001266 Male 1.0 1 1 1.0 2395 0.0 0.0 360.0 1 Semiurban 1.0
84 LP001267 Female 1.0 2 1 0.0 1378 1881.0 167.0 360.0 1 Urban 0.0
85 LP001273 Male 1.0 0 1 0.0 6000 2250.0 265.0 360.0 0 Semiurban 0.0
86 LP001275 Male 1.0 1 1 0.0 3988 0.0 50.0 240.0 1 Urban 1.0
87 LP001279 Male 0.0 0 1 0.0 2366 2531.0 136.0 360.0 1 Semiurban 1.0
88 LP001280 Male 1.0 2 0 0.0 3333 2000.0 99.0 360.0 0 Semiurban 1.0
89 LP001282 Male 1.0 0 1 0.0 2500 2118.0 104.0 360.0 1 Semiurban 1.0
90 LP001289 Male 0.0 0 1 0.0 8566 0.0 210.0 360.0 1 Urban 1.0
91 LP001310 Male 1.0 0 1 0.0 5695 4167.0 175.0 360.0 1 Semiurban 1.0
92 LP001316 Male 1.0 0 1 0.0 2958 2900.0 131.0 360.0 1 Semiurban 1.0
93 LP001318 Male 1.0 2 1 0.0 6250 5654.0 188.0 180.0 1 Semiurban 1.0
94 LP001319 Male 1.0 2 0 0.0 3273 1820.0 81.0 360.0 1 Urban 1.0
95 LP001322 Male 0.0 0 1 0.0 4133 0.0 122.0 360.0 1 Semiurban 1.0
96 LP001325 Male 0.0 0 0 0.0 3620 0.0 25.0 120.0 1 Semiurban 1.0
97 LP001326 Male 0.0 0 1 0.0 6782 0.0 0.0 360.0 0 Urban 0.0
98 LP001327 Female 1.0 0 1 0.0 2484 2302.0 137.0 360.0 1 Semiurban 1.0
99 LP001333 Male 1.0 0 1 0.0 1977 997.0 50.0 360.0 1 Semiurban 1.0
100 LP001334 Male 1.0 0 0 0.0 4188 0.0 115.0 180.0 1 Semiurban 1.0
101 LP001343 Male 1.0 0 1 0.0 1759 3541.0 131.0 360.0 1 Semiurban 1.0
102 LP001345 Male 1.0 2 0 0.0 4288 3263.0 133.0 180.0 1 Urban 1.0
103 LP001349 Male 0.0 0 1 0.0 4843 3806.0 151.0 360.0 1 Semiurban 1.0
104 LP001350 Male 1.0 1 0.0 13650 0.0 0.0 360.0 1 Urban 1.0
105 LP001356 Male 1.0 0 1 0.0 4652 3583.0 0.0 360.0 1 Semiurban 1.0
106 LP001357 Male 0.0 1 0.0 3816 754.0 160.0 360.0 1 Urban 1.0
107 LP001367 Male 1.0 1 1 0.0 3052 1030.0 100.0 360.0 1 Urban 1.0
108 LP001369 Male 1.0 2 1 0.0 11417 1126.0 225.0 360.0 1 Urban 1.0
109 LP001370 Male 0.0 0 0 0.0 7333 0.0 120.0 360.0 1 Rural 0.0
110 LP001379 Male 1.0 2 1 0.0 3800 3600.0 216.0 360.0 0 Urban 0.0
111 LP001384 Male 1.0 3+ 0 0.0 2071 754.0 94.0 480.0 1 Semiurban 1.0
112 LP001385 Male 0.0 0 1 0.0 5316 0.0 136.0 360.0 1 Urban 1.0
113 LP001387 Female 1.0 0 1 0.0 2929 2333.0 139.0 360.0 1 Semiurban 1.0
114 LP001391 Male 1.0 0 0 0.0 3572 4114.0 152.0 0 Rural 0.0
115 LP001392 Female 0.0 1 1 1.0 7451 0.0 0.0 360.0 1 Semiurban 1.0
116 LP001398 Male 0.0 0 1 0.0 5050 0.0 118.0 360.0 1 Semiurban 1.0
117 LP001401 Male 1.0 1 1 0.0 14583 0.0 185.0 180.0 1 Rural 1.0
118 LP001404 Female 1.0 0 1 0.0 3167 2283.0 154.0 360.0 1 Semiurban 1.0
119 LP001405 Male 1.0 1 1 0.0 2214 1398.0 85.0 360.0 0 Urban 1.0
120 LP001421 Male 1.0 0 1 0.0 5568 2142.0 175.0 360.0 1 Rural 0.0
121 LP001422 Female 0.0 0 1 0.0 10408 0.0 259.0 360.0 1 Urban 1.0
122 LP001426 Male 1.0 1 0.0 5667 2667.0 180.0 360.0 1 Rural 1.0
123 LP001430 Female 0.0 0 1 0.0 4166 0.0 44.0 360.0 1 Semiurban 1.0
124 LP001431 Female 0.0 0 1 0.0 2137 8980.0 137.0 360.0 0 Semiurban 1.0
125 LP001432 Male 1.0 2 1 0.0 2957 0.0 81.0 360.0 1 Semiurban 1.0
126 LP001439 Male 1.0 0 0 0.0 4300 2014.0 194.0 360.0 1 Rural 1.0
127 LP001443 Female 0.0 0 1 0.0 3692 0.0 93.0 360.0 0 Rural 1.0
128 LP001448 1.0 3+ 1 0.0 23803 0.0 370.0 360.0 1 Rural 1.0
129 LP001449 Male 0.0 0 1 0.0 3865 1640.0 0.0 360.0 1 Rural 1.0
130 LP001451 Male 1.0 1 1 1.0 10513 3850.0 160.0 180.0 0 Urban 0.0
131 LP001465 Male 1.0 0 1 0.0 6080 2569.0 182.0 360.0 0 Rural 0.0
132 LP001469 Male 0.0 0 1 1.0 20166 0.0 650.0 480.0 0 Urban 1.0
133 LP001473 Male 0.0 0 1 0.0 2014 1929.0 74.0 360.0 1 Urban 1.0
134 LP001478 Male 0.0 0 1 0.0 2718 0.0 70.0 360.0 1 Semiurban 1.0
135 LP001482 Male 1.0 0 1 1.0 3459 0.0 25.0 120.0 1 Semiurban 1.0
136 LP001487 Male 0.0 0 1 0.0 4895 0.0 102.0 360.0 1 Semiurban 1.0
137 LP001488 Male 1.0 3+ 1 0.0 4000 7750.0 290.0 360.0 1 Semiurban 0.0
138 LP001489 Female 1.0 0 1 0.0 4583 0.0 84.0 360.0 1 Rural 0.0
139 LP001491 Male 1.0 2 1 1.0 3316 3500.0 88.0 360.0 1 Urban 1.0
140 LP001492 Male 0.0 0 1 0.0 14999 0.0 242.0 360.0 0 Semiurban 0.0
141 LP001493 Male 1.0 2 0 0.0 4200 1430.0 129.0 360.0 1 Rural 0.0
142 LP001497 Male 1.0 2 1 0.0 5042 2083.0 185.0 360.0 1 Rural 0.0
143 LP001498 Male 0.0 0 1 0.0 5417 0.0 168.0 360.0 1 Urban 1.0
144 LP001504 Male 0.0 0 1 1.0 6950 0.0 175.0 180.0 1 Semiurban 1.0
145 LP001507 Male 1.0 0 1 0.0 2698 2034.0 122.0 360.0 1 Semiurban 1.0
146 LP001508 Male 1.0 2 1 0.0 11757 0.0 187.0 180.0 1 Urban 1.0
147 LP001514 Female 1.0 0 1 0.0 2330 4486.0 100.0 360.0 1 Semiurban 1.0
148 LP001516 Female 1.0 2 1 0.0 14866 0.0 70.0 360.0 1 Urban 1.0
149 LP001518 Male 1.0 1 1 0.0 1538 1425.0 30.0 360.0 1 Urban 1.0
150 LP001519 Female 0.0 0 1 0.0 10000 1666.0 225.0 360.0 1 Rural 0.0
151 LP001520 Male 1.0 0 1 0.0 4860 830.0 125.0 360.0 1 Semiurban 1.0
152 LP001528 Male 0.0 0 1 0.0 6277 0.0 118.0 360.0 0 Rural 0.0
153 LP001529 Male 1.0 0 1 1.0 2577 3750.0 152.0 360.0 1 Rural 1.0
154 LP001531 Male 0.0 0 1 0.0 9166 0.0 244.0 360.0 1 Urban 0.0
155 LP001532 Male 1.0 2 0 0.0 2281 0.0 113.0 360.0 1 Rural 0.0
156 LP001535 Male 0.0 0 1 0.0 3254 0.0 50.0 360.0 1 Urban 1.0
157 LP001536 Male 1.0 3+ 1 0.0 39999 0.0 600.0 180.0 0 Semiurban 1.0
158 LP001541 Male 1.0 1 1 0.0 6000 0.0 160.0 360.0 0 Rural 1.0
159 LP001543 Male 1.0 1 1 0.0 9538 0.0 187.0 360.0 1 Urban 1.0
160 LP001546 Male 0.0 0 1 0.0 2980 2083.0 120.0 360.0 1 Rural 1.0
161 LP001552 Male 1.0 0 1 0.0 4583 5625.0 255.0 360.0 1 Semiurban 1.0
162 LP001560 Male 1.0 0 0 0.0 1863 1041.0 98.0 360.0 1 Semiurban 1.0
163 LP001562 Male 1.0 0 1 0.0 7933 0.0 275.0 360.0 1 Urban 0.0
164 LP001565 Male 1.0 1 1 0.0 3089 1280.0 121.0 360.0 0 Semiurban 0.0
165 LP001570 Male 1.0 2 1 0.0 4167 1447.0 158.0 360.0 1 Rural 1.0
166 LP001572 Male 1.0 0 1 0.0 9323 0.0 75.0 180.0 1 Urban 1.0
167 LP001574 Male 1.0 0 1 0.0 3707 3166.0 182.0 1 Rural 1.0
168 LP001577 Female 1.0 0 1 0.0 4583 0.0 112.0 360.0 1 Rural 0.0
169 LP001578 Male 1.0 0 1 0.0 2439 3333.0 129.0 360.0 1 Rural 1.0
170 LP001579 Male 0.0 0 1 0.0 2237 0.0 63.0 480.0 0 Semiurban 0.0
171 LP001580 Male 1.0 2 1 0.0 8000 0.0 200.0 360.0 1 Semiurban 1.0
172 LP001581 Male 1.0 0 0 0.0 1820 1769.0 95.0 360.0 1 Rural 1.0
173 LP001585 1.0 3+ 1 0.0 51763 0.0 700.0 300.0 1 Urban 1.0
174 LP001586 Male 1.0 3+ 0 0.0 3522 0.0 81.0 180.0 1 Rural 0.0
175 LP001594 Male 1.0 0 1 0.0 5708 5625.0 187.0 360.0 1 Semiurban 1.0
176 LP001603 Male 1.0 0 0 1.0 4344 736.0 87.0 360.0 1 Semiurban 0.0
177 LP001606 Male 1.0 0 1 0.0 3497 1964.0 116.0 360.0 1 Rural 1.0
178 LP001608 Male 1.0 2 1 0.0 2045 1619.0 101.0 360.0 1 Rural 1.0
179 LP001610 Male 1.0 3+ 1 0.0 5516 11300.0 495.0 360.0 0 Semiurban 0.0
180 LP001616 Male 1.0 1 1 0.0 3750 0.0 116.0 360.0 1 Semiurban 1.0
181 LP001630 Male 0.0 0 0 0.0 2333 1451.0 102.0 480.0 0 Urban 0.0
182 LP001633 Male 1.0 1 1 0.0 6400 7250.0 180.0 360.0 0 Urban 0.0
183 LP001634 Male 0.0 0 1 0.0 1916 5063.0 67.0 360.0 0 Rural 0.0
184 LP001636 Male 1.0 0 1 0.0 4600 0.0 73.0 180.0 1 Semiurban 1.0
185 LP001637 Male 1.0 1 1 0.0 33846 0.0 260.0 360.0 1 Semiurban 0.0
186 LP001639 Female 1.0 0 1 0.0 3625 0.0 108.0 360.0 1 Semiurban 1.0
187 LP001640 Male 1.0 0 1 1.0 39147 4750.0 120.0 360.0 1 Semiurban 1.0
188 LP001641 Male 1.0 1 1 1.0 2178 0.0 66.0 300.0 0 Rural 0.0
189 LP001643 Male 1.0 0 1 0.0 2383 2138.0 58.0 360.0 0 Rural 1.0
190 LP001644 1.0 0 1 1.0 674 5296.0 168.0 360.0 1 Rural 1.0
191 LP001647 Male 1.0 0 1 0.0 9328 0.0 188.0 180.0 1 Rural 1.0
192 LP001653 Male 0.0 0 0 0.0 4885 0.0 48.0 360.0 1 Rural 1.0
193 LP001656 Male 0.0 0 1 0.0 12000 0.0 164.0 360.0 1 Semiurban 0.0
194 LP001657 Male 1.0 0 0 0.0 6033 0.0 160.0 360.0 1 Urban 0.0
195 LP001658 Male 0.0 0 1 0.0 3858 0.0 76.0 360.0 1 Semiurban 1.0
196 LP001664 Male 0.0 0 1 0.0 4191 0.0 120.0 360.0 1 Rural 1.0
197 LP001665 Male 1.0 1 1 0.0 3125 2583.0 170.0 360.0 1 Semiurban 0.0
198 LP001666 Male 0.0 0 1 0.0 8333 3750.0 187.0 360.0 1 Rural 1.0
199 LP001669 Female 0.0 0 0 0.0 1907 2365.0 120.0 1 Urban 1.0
200 LP001671 Female 1.0 0 1 0.0 3416 2816.0 113.0 360.0 0 Semiurban 1.0
201 LP001673 Male 0.0 0 1 1.0 11000 0.0 83.0 360.0 1 Urban 0.0
202 LP001674 Male 1.0 1 0 0.0 2600 2500.0 90.0 360.0 1 Semiurban 1.0
203 LP001677 Male 0.0 2 1 0.0 4923 0.0 166.0 360.0 0 Semiurban 1.0
204 LP001682 Male 1.0 3+ 0 0.0 3992 0.0 0.0 180.0 1 Urban 0.0
205 LP001688 Male 1.0 1 0 0.0 3500 1083.0 135.0 360.0 1 Urban 1.0
206 LP001691 Male 1.0 2 0 0.0 3917 0.0 124.0 360.0 1 Semiurban 1.0
207 LP001692 Female 0.0 0 0 0.0 4408 0.0 120.0 360.0 1 Semiurban 1.0
208 LP001693 Female 0.0 0 1 0.0 3244 0.0 80.0 360.0 1 Urban 1.0
209 LP001698 Male 0.0 0 0 0.0 3975 2531.0 55.0 360.0 1 Rural 1.0
210 LP001699 Male 0.0 0 1 0.0 2479 0.0 59.0 360.0 1 Urban 1.0
211 LP001702 Male 0.0 0 1 0.0 3418 0.0 127.0 360.0 1 Semiurban 0.0
212 LP001708 Female 0.0 0 1 0.0 10000 0.0 214.0 360.0 1 Semiurban 0.0
213 LP001711 Male 1.0 3+ 1 0.0 3430 1250.0 128.0 360.0 0 Semiurban 0.0
214 LP001713 Male 1.0 1 1 1.0 7787 0.0 240.0 360.0 1 Urban 1.0
215 LP001715 Male 1.0 3+ 0 1.0 5703 0.0 130.0 360.0 1 Rural 1.0
216 LP001716 Male 1.0 0 1 0.0 3173 3021.0 137.0 360.0 1 Urban 1.0
217 LP001720 Male 1.0 3+ 0 0.0 3850 983.0 100.0 360.0 1 Semiurban 1.0
218 LP001722 Male 1.0 0 1 0.0 150 1800.0 135.0 360.0 1 Rural 0.0
219 LP001726 Male 1.0 0 1 0.0 3727 1775.0 131.0 360.0 1 Semiurban 1.0
220 LP001732 Male 1.0 2 1 0.0 5000 0.0 72.0 360.0 0 Semiurban 0.0
221 LP001734 Female 1.0 2 1 0.0 4283 2383.0 127.0 360.0 0 Semiurban 1.0
222 LP001736 Male 1.0 0 1 0.0 2221 0.0 60.0 360.0 0 Urban 0.0
223 LP001743 Male 1.0 2 1 0.0 4009 1717.0 116.0 360.0 1 Semiurban 1.0
224 LP001744 Male 0.0 0 1 0.0 2971 2791.0 144.0 360.0 1 Semiurban 1.0
225 LP001749 Male 1.0 0 1 0.0 7578 1010.0 175.0 1 Semiurban 1.0
226 LP001750 Male 1.0 0 1 0.0 6250 0.0 128.0 360.0 1 Semiurban 1.0
227 LP001751 Male 1.0 0 1 0.0 3250 0.0 170.0 360.0 1 Rural 0.0
228 LP001754 Male 1.0 0 1.0 4735 0.0 138.0 360.0 1 Urban 0.0
229 LP001758 Male 1.0 2 1 0.0 6250 1695.0 210.0 360.0 1 Semiurban 1.0
230 LP001760 Male 0.0 1 0.0 4758 0.0 158.0 480.0 1 Semiurban 1.0
231 LP001761 Male 0.0 0 1 1.0 6400 0.0 200.0 360.0 1 Rural 1.0
232 LP001765 Male 1.0 1 1 0.0 2491 2054.0 104.0 360.0 1 Semiurban 1.0
233 LP001768 Male 1.0 0 1 0.0 3716 0.0 42.0 180.0 1 Rural 1.0
234 LP001770 Male 0.0 0 0 0.0 3189 2598.0 120.0 1 Rural 1.0
235 LP001776 Female 0.0 0 1 0.0 8333 0.0 280.0 360.0 1 Semiurban 1.0
236 LP001778 Male 1.0 1 1 0.0 3155 1779.0 140.0 360.0 1 Semiurban 1.0
237 LP001784 Male 1.0 1 1 0.0 5500 1260.0 170.0 360.0 1 Rural 1.0
238 LP001786 Male 1.0 0 1 0.0 5746 0.0 255.0 360.0 0 Urban 0.0
239 LP001788 Female 0.0 0 1 1.0 3463 0.0 122.0 360.0 0 Urban 1.0
240 LP001790 Female 0.0 1 1 0.0 3812 0.0 112.0 360.0 1 Rural 1.0
241 LP001792 Male 1.0 1 1 0.0 3315 0.0 96.0 360.0 1 Semiurban 1.0
242 LP001798 Male 1.0 2 1 0.0 5819 5000.0 120.0 360.0 1 Rural 1.0
243 LP001800 Male 1.0 1 0 0.0 2510 1983.0 140.0 180.0 1 Urban 0.0
244 LP001806 Male 0.0 0 1 0.0 2965 5701.0 155.0 60.0 1 Urban 1.0
245 LP001807 Male 1.0 2 1 1.0 6250 1300.0 108.0 360.0 1 Rural 1.0
246 LP001811 Male 1.0 0 0 0.0 3406 4417.0 123.0 360.0 1 Semiurban 1.0
247 LP001813 Male 0.0 0 1 1.0 6050 4333.0 120.0 180.0 1 Urban 0.0
248 LP001814 Male 1.0 2 1 0.0 9703 0.0 112.0 360.0 1 Urban 1.0
249 LP001819 Male 1.0 1 0 0.0 6608 0.0 137.0 180.0 1 Urban 1.0
250 LP001824 Male 1.0 1 1 0.0 2882 1843.0 123.0 480.0 1 Semiurban 1.0
251 LP001825 Male 1.0 0 1 0.0 1809 1868.0 90.0 360.0 1 Urban 1.0
252 LP001835 Male 1.0 0 0 0.0 1668 3890.0 201.0 360.0 0 Semiurban 0.0
253 LP001836 Female 0.0 2 1 0.0 3427 0.0 138.0 360.0 1 Urban 0.0
254 LP001841 Male 0.0 0 0 1.0 2583 2167.0 104.0 360.0 1 Rural 1.0
255 LP001843 Male 1.0 1 0 0.0 2661 7101.0 279.0 180.0 1 Semiurban 1.0
256 LP001844 Male 0.0 0 1 1.0 16250 0.0 192.0 360.0 0 Urban 0.0
257 LP001846 Female 0.0 3+ 1 0.0 3083 0.0 255.0 360.0 1 Rural 1.0
258 LP001849 Male 0.0 0 0 0.0 6045 0.0 115.0 360.0 0 Rural 0.0
259 LP001854 Male 1.0 3+ 1 0.0 5250 0.0 94.0 360.0 1 Urban 0.0
260 LP001859 Male 1.0 0 1 0.0 14683 2100.0 304.0 360.0 1 Rural 0.0
261 LP001864 Male 1.0 3+ 0 0.0 4931 0.0 128.0 360.0 0 Semiurban 0.0
262 LP001865 Male 1.0 1 1 0.0 6083 4250.0 330.0 360.0 0 Urban 1.0
263 LP001868 Male 0.0 0 1 0.0 2060 2209.0 134.0 360.0 1 Semiurban 1.0
264 LP001870 Female 0.0 1 1 0.0 3481 0.0 155.0 36.0 1 Semiurban 0.0
265 LP001871 Female 0.0 0 1 0.0 7200 0.0 120.0 360.0 1 Rural 1.0
266 LP001872 Male 0.0 0 1 1.0 5166 0.0 128.0 360.0 1 Semiurban 1.0
267 LP001875 Male 0.0 0 1 0.0 4095 3447.0 151.0 360.0 1 Rural 1.0
268 LP001877 Male 1.0 2 1 0.0 4708 1387.0 150.0 360.0 1 Semiurban 1.0
269 LP001882 Male 1.0 3+ 1 0.0 4333 1811.0 160.0 360.0 0 Urban 1.0
270 LP001883 Female 0.0 0 1 0.0 3418 0.0 135.0 360.0 1 Rural 0.0
271 LP001884 Female 0.0 1 1 0.0 2876 1560.0 90.0 360.0 1 Urban 1.0
272 LP001888 Female 0.0 0 1 0.0 3237 0.0 30.0 360.0 1 Urban 1.0
273 LP001891 Male 1.0 0 1 0.0 11146 0.0 136.0 360.0 1 Urban 1.0
274 LP001892 Male 0.0 0 1 0.0 2833 1857.0 126.0 360.0 1 Rural 1.0
275 LP001894 Male 1.0 0 1 0.0 2620 2223.0 150.0 360.0 1 Semiurban 1.0
276 LP001896 Male 1.0 2 1 0.0 3900 0.0 90.0 360.0 1 Semiurban 1.0
277 LP001900 Male 1.0 1 1 0.0 2750 1842.0 115.0 360.0 1 Semiurban 1.0
278 LP001903 Male 1.0 0 1 0.0 3993 3274.0 207.0 360.0 1 Semiurban 1.0
279 LP001904 Male 1.0 0 1 0.0 3103 1300.0 80.0 360.0 1 Urban 1.0
280 LP001907 Male 1.0 0 1 0.0 14583 0.0 436.0 360.0 1 Semiurban 1.0
281 LP001908 Female 1.0 0 0 0.0 4100 0.0 124.0 360.0 0 Rural 1.0
282 LP001910 Male 0.0 1 0 1.0 4053 2426.0 158.0 360.0 0 Urban 0.0
283 LP001914 Male 1.0 0 1 0.0 3927 800.0 112.0 360.0 1 Semiurban 1.0
284 LP001915 Male 1.0 2 1 0.0 2301 985.7999878 78.0 180.0 1 Urban 1.0
285 LP001917 Female 0.0 0 1 0.0 1811 1666.0 54.0 360.0 1 Urban 1.0
286 LP001922 Male 1.0 0 1 0.0 20667 0.0 0.0 360.0 1 Rural 0.0
287 LP001924 Male 0.0 0 1 0.0 3158 3053.0 89.0 360.0 1 Rural 1.0
288 LP001925 Female 0.0 0 1 1.0 2600 1717.0 99.0 300.0 1 Semiurban 0.0
289 LP001926 Male 1.0 0 1 0.0 3704 2000.0 120.0 360.0 1 Rural 1.0
290 LP001931 Female 0.0 0 1 0.0 4124 0.0 115.0 360.0 1 Semiurban 1.0
291 LP001935 Male 0.0 0 1 0.0 9508 0.0 187.0 360.0 1 Rural 1.0
292 LP001936 Male 1.0 0 1 0.0 3075 2416.0 139.0 360.0 1 Rural 1.0
293 LP001938 Male 1.0 2 1 0.0 4400 0.0 127.0 360.0 0 Semiurban 0.0
294 LP001940 Male 1.0 2 1 0.0 3153 1560.0 134.0 360.0 1 Urban 1.0
295 LP001945 Female 0.0 1 0.0 5417 0.0 143.0 480.0 0 Urban 0.0
296 LP001947 Male 1.0 0 1 0.0 2383 3334.0 172.0 360.0 1 Semiurban 1.0
297 LP001949 Male 1.0 3+ 1 0.0 4416 1250.0 110.0 360.0 1 Urban 1.0
298 LP001953 Male 1.0 1 1 0.0 6875 0.0 200.0 360.0 1 Semiurban 1.0
299 LP001954 Female 1.0 1 1 0.0 4666 0.0 135.0 360.0 1 Urban 1.0
300 LP001955 Female 0.0 0 1 0.0 5000 2541.0 151.0 480.0 1 Rural 0.0
301 LP001963 Male 1.0 1 1 0.0 2014 2925.0 113.0 360.0 1 Urban 0.0
302 LP001964 Male 1.0 0 0 0.0 1800 2934.0 93.0 360.0 0 Urban 0.0
303 LP001972 Male 1.0 0 0.0 2875 1750.0 105.0 360.0 1 Semiurban 1.0
304 LP001974 Female 0.0 0 1 0.0 5000 0.0 132.0 360.0 1 Rural 1.0
305 LP001977 Male 1.0 1 1 0.0 1625 1803.0 96.0 360.0 1 Urban 1.0
306 LP001978 Male 0.0 0 1 0.0 4000 2500.0 140.0 360.0 1 Rural 1.0
307 LP001990 Male 0.0 0 0 0.0 2000 0.0 0.0 360.0 1 Urban 0.0
308 LP001993 Female 0.0 0 1 0.0 3762 1666.0 135.0 360.0 1 Rural 1.0
309 LP001994 Female 0.0 0 1 0.0 2400 1863.0 104.0 360.0 0 Urban 0.0
310 LP001996 Male 0.0 0 1 0.0 20233 0.0 480.0 360.0 1 Rural 0.0
311 LP001998 Male 1.0 2 0 0.0 7667 0.0 185.0 360.0 0 Rural 1.0
312 LP002002 Female 0.0 0 1 0.0 2917 0.0 84.0 360.0 1 Semiurban 1.0
313 LP002004 Male 0.0 0 0 0.0 2927 2405.0 111.0 360.0 1 Semiurban 1.0
314 LP002006 Female 0.0 0 1 0.0 2507 0.0 56.0 360.0 1 Rural 1.0
315 LP002008 Male 1.0 2 1 1.0 5746 0.0 144.0 84.0 0 Rural 1.0
316 LP002024 1.0 0 1 0.0 2473 1843.0 159.0 360.0 1 Rural 0.0
317 LP002031 Male 1.0 1 0 0.0 3399 1640.0 111.0 180.0 1 Urban 1.0
318 LP002035 Male 1.0 2 1 0.0 3717 0.0 120.0 360.0 1 Semiurban 1.0
319 LP002036 Male 1.0 0 1 0.0 2058 2134.0 88.0 360.0 0 Urban 1.0
320 LP002043 Female 0.0 1 1 0.0 3541 0.0 112.0 360.0 0 Semiurban 1.0
321 LP002050 Male 1.0 1 1 1.0 10000 0.0 155.0 360.0 1 Rural 0.0
322 LP002051 Male 1.0 0 1 0.0 2400 2167.0 115.0 360.0 1 Semiurban 1.0
323 LP002053 Male 1.0 3+ 1 0.0 4342 189.0 124.0 360.0 1 Semiurban 1.0
324 LP002054 Male 1.0 2 0 0.0 3601 1590.0 0.0 360.0 1 Rural 1.0
325 LP002055 Female 0.0 0 1 0.0 3166 2985.0 132.0 360.0 0 Rural 1.0
326 LP002065 Male 1.0 3+ 1 0.0 15000 0.0 300.0 360.0 1 Rural 1.0
327 LP002067 Male 1.0 1 1 1.0 8666 4983.0 376.0 360.0 0 Rural 0.0
328 LP002068 Male 0.0 0 1 0.0 4917 0.0 130.0 360.0 0 Rural 1.0
329 LP002082 Male 1.0 0 1 1.0 5818 2160.0 184.0 360.0 1 Semiurban 1.0
330 LP002086 Female 1.0 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
331 LP002087 Female 0.0 0 1 0.0 2500 0.0 67.0 360.0 1 Urban 1.0
332 LP002097 Male 0.0 1 1 0.0 4384 1793.0 117.0 360.0 1 Urban 1.0
333 LP002098 Male 0.0 0 1 0.0 2935 0.0 98.0 360.0 1 Semiurban 1.0
334 LP002100 Male 0.0 1 0.0 2833 0.0 71.0 360.0 1 Urban 1.0
335 LP002101 Male 1.0 0 1 0.0 63337 0.0 490.0 180.0 1 Urban 1.0
336 LP002103 1.0 1 1 1.0 9833 1833.0 182.0 180.0 1 Urban 1.0
337 LP002106 Male 1.0 1 1.0 5503 4490.0 70.0 1 Semiurban 1.0
338 LP002110 Male 1.0 1 1 0.0 5250 688.0 160.0 360.0 1 Rural 1.0
339 LP002112 Male 1.0 2 1 1.0 2500 4600.0 176.0 360.0 1 Rural 1.0
340 LP002113 Female 0.0 3+ 0 0.0 1830 0.0 0.0 360.0 0 Urban 0.0
341 LP002114 Female 0.0 0 1 0.0 4160 0.0 71.0 360.0 1 Semiurban 1.0
342 LP002115 Male 1.0 3+ 0 0.0 2647 1587.0 173.0 360.0 1 Rural 0.0
343 LP002116 Female 0.0 0 1 0.0 2378 0.0 46.0 360.0 1 Rural 0.0
344 LP002119 Male 1.0 1 0 0.0 4554 1229.0 158.0 360.0 1 Urban 1.0
345 LP002126 Male 1.0 3+ 0 0.0 3173 0.0 74.0 360.0 1 Semiurban 1.0
346 LP002128 Male 1.0 2 1 0.0 2583 2330.0 125.0 360.0 1 Rural 1.0
347 LP002129 Male 1.0 0 1 0.0 2499 2458.0 160.0 360.0 1 Semiurban 1.0
348 LP002130 Male 1.0 0 0.0 3523 3230.0 152.0 360.0 0 Rural 0.0
349 LP002131 Male 1.0 2 0 0.0 3083 2168.0 126.0 360.0 1 Urban 1.0
350 LP002137 Male 1.0 0 1 0.0 6333 4583.0 259.0 360.0 0 Semiurban 1.0
351 LP002138 Male 1.0 0 1 0.0 2625 6250.0 187.0 360.0 1 Rural 1.0
352 LP002139 Male 1.0 0 1 0.0 9083 0.0 228.0 360.0 1 Semiurban 1.0
353 LP002140 Male 0.0 0 1 0.0 8750 4167.0 308.0 360.0 1 Rural 0.0
354 LP002141 Male 1.0 3+ 1 0.0 2666 2083.0 95.0 360.0 1 Rural 1.0
355 LP002142 Female 1.0 0 1 1.0 5500 0.0 105.0 360.0 0 Rural 0.0
356 LP002143 Female 1.0 0 1 0.0 2423 505.0 130.0 360.0 1 Semiurban 1.0
357 LP002144 Female 0.0 1 0.0 3813 0.0 116.0 180.0 1 Urban 1.0
358 LP002149 Male 1.0 2 1 0.0 8333 3167.0 165.0 360.0 1 Rural 1.0
359 LP002151 Male 1.0 1 1 0.0 3875 0.0 67.0 360.0 1 Urban 0.0
360 LP002158 Male 1.0 0 0 0.0 3000 1666.0 100.0 480.0 0 Urban 0.0
361 LP002160 Male 1.0 3+ 1 0.0 5167 3167.0 200.0 360.0 1 Semiurban 1.0
362 LP002161 Female 0.0 1 1 0.0 4723 0.0 81.0 360.0 1 Semiurban 0.0
363 LP002170 Male 1.0 2 1 0.0 5000 3667.0 236.0 360.0 1 Semiurban 1.0
364 LP002175 Male 1.0 0 1 0.0 4750 2333.0 130.0 360.0 1 Urban 1.0
365 LP002178 Male 1.0 0 1 0.0 3013 3033.0 95.0 300.0 0 Urban 1.0
366 LP002180 Male 0.0 0 1 1.0 6822 0.0 141.0 360.0 1 Rural 1.0
367 LP002181 Male 0.0 0 0 0.0 6216 0.0 133.0 360.0 1 Rural 0.0
368 LP002187 Male 0.0 0 1 0.0 2500 0.0 96.0 480.0 1 Semiurban 0.0
369 LP002188 Male 0.0 0 1 0.0 5124 0.0 124.0 0 Rural 0.0
370 LP002190 Male 1.0 1 1 0.0 6325 0.0 175.0 360.0 1 Semiurban 1.0
371 LP002191 Male 1.0 0 1 0.0 19730 5266.0 570.0 360.0 1 Rural 0.0
372 LP002194 Female 0.0 0 1 1.0 15759 0.0 55.0 360.0 1 Semiurban 1.0
373 LP002197 Male 1.0 2 1 0.0 5185 0.0 155.0 360.0 1 Semiurban 1.0
374 LP002201 Male 1.0 2 1 1.0 9323 7873.0 380.0 300.0 1 Rural 1.0
375 LP002205 Male 0.0 1 1 0.0 3062 1987.0 111.0 180.0 0 Urban 0.0
376 LP002209 Female 0.0 0 1 0.0 2764 1459.0 110.0 360.0 1 Urban 1.0
377 LP002211 Male 1.0 0 1 0.0 4817 923.0 120.0 180.0 1 Urban 1.0
378 LP002219 Male 1.0 3+ 1 0.0 8750 4996.0 130.0 360.0 1 Rural 1.0
379 LP002223 Male 1.0 0 1 0.0 4310 0.0 130.0 360.0 0 Semiurban 1.0
380 LP002224 Male 0.0 0 1 0.0 3069 0.0 71.0 480.0 1 Urban 0.0
381 LP002225 Male 1.0 2 1 0.0 5391 0.0 130.0 360.0 1 Urban 1.0
382 LP002226 Male 1.0 0 1 0.0 3333 2500.0 128.0 360.0 1 Semiurban 1.0
383 LP002229 Male 0.0 0 1 0.0 5941 4232.0 296.0 360.0 1 Semiurban 1.0
384 LP002231 Female 0.0 0 1 0.0 6000 0.0 156.0 360.0 1 Urban 1.0
385 LP002234 Male 0.0 0 1 1.0 7167 0.0 128.0 360.0 1 Urban 1.0
386 LP002236 Male 1.0 2 1 0.0 4566 0.0 100.0 360.0 1 Urban 0.0
387 LP002237 Male 0.0 1 1 0.0 3667 0.0 113.0 180.0 1 Urban 1.0
388 LP002239 Male 0.0 0 0 0.0 2346 1600.0 132.0 360.0 1 Semiurban 1.0
389 LP002243 Male 1.0 0 0 0.0 3010 3136.0 0.0 360.0 0 Urban 0.0
390 LP002244 Male 1.0 0 1 0.0 2333 2417.0 136.0 360.0 1 Urban 1.0
391 LP002250 Male 1.0 0 1 0.0 5488 0.0 125.0 360.0 1 Rural 1.0
392 LP002255 Male 0.0 3+ 1 0.0 9167 0.0 185.0 360.0 1 Rural 1.0
393 LP002262 Male 1.0 3+ 1 0.0 9504 0.0 275.0 360.0 1 Rural 1.0
394 LP002263 Male 1.0 0 1 0.0 2583 2115.0 120.0 360.0 0 Urban 1.0
395 LP002265 Male 1.0 2 0 0.0 1993 1625.0 113.0 180.0 1 Semiurban 1.0
396 LP002266 Male 1.0 2 1 0.0 3100 1400.0 113.0 360.0 1 Urban 1.0
397 LP002272 Male 1.0 2 1 0.0 3276 484.0 135.0 360.0 0 Semiurban 1.0
398 LP002277 Female 0.0 0 1 0.0 3180 0.0 71.0 360.0 0 Urban 0.0
399 LP002281 Male 1.0 0 1 0.0 3033 1459.0 95.0 360.0 1 Urban 1.0
400 LP002284 Male 0.0 0 0 0.0 3902 1666.0 109.0 360.0 1 Rural 1.0
401 LP002287 Female 0.0 0 1 0.0 1500 1800.0 103.0 360.0 0 Semiurban 0.0
402 LP002288 Male 1.0 2 0 0.0 2889 0.0 45.0 180.0 0 Urban 0.0
403 LP002296 Male 0.0 0 0 0.0 2755 0.0 65.0 300.0 1 Rural 0.0
404 LP002297 Male 0.0 0 1 0.0 2500 20000.0 103.0 360.0 1 Semiurban 1.0
405 LP002300 Female 0.0 0 0 0.0 1963 0.0 53.0 360.0 1 Semiurban 1.0
406 LP002301 Female 0.0 0 1 1.0 7441 0.0 194.0 360.0 1 Rural 0.0
407 LP002305 Female 0.0 0 1 0.0 4547 0.0 115.0 360.0 1 Semiurban 1.0
408 LP002308 Male 1.0 0 0 0.0 2167 2400.0 115.0 360.0 1 Urban 1.0
409 LP002314 Female 0.0 0 0 0.0 2213 0.0 66.0 360.0 1 Rural 1.0
410 LP002315 Male 1.0 1 1 0.0 8300 0.0 152.0 300.0 0 Semiurban 0.0
411 LP002317 Male 1.0 3+ 1 0.0 81000 0.0 360.0 360.0 0 Rural 0.0
412 LP002318 Female 0.0 1 0 1.0 3867 0.0 62.0 360.0 1 Semiurban 0.0
413 LP002319 Male 1.0 0 1 0.0 6256 0.0 160.0 360.0 0 Urban 1.0
414 LP002328 Male 1.0 0 0 0.0 6096 0.0 218.0 360.0 0 Rural 0.0
415 LP002332 Male 1.0 0 0 0.0 2253 2033.0 110.0 360.0 1 Rural 1.0
416 LP002335 Female 1.0 0 0 0.0 2149 3237.0 178.0 360.0 0 Semiurban 0.0
417 LP002337 Female 0.0 0 1 0.0 2995 0.0 60.0 360.0 1 Urban 1.0
418 LP002341 Female 0.0 1 1 0.0 2600 0.0 160.0 360.0 1 Urban 0.0
419 LP002342 Male 1.0 2 1 1.0 1600 20000.0 239.0 360.0 1 Urban 0.0
420 LP002345 Male 1.0 0 1 0.0 1025 2773.0 112.0 360.0 1 Rural 1.0
421 LP002347 Male 1.0 0 1 0.0 3246 1417.0 138.0 360.0 1 Semiurban 1.0
422 LP002348 Male 1.0 0 1 0.0 5829 0.0 138.0 360.0 1 Rural 1.0
423 LP002357 Female 0.0 0 0 0.0 2720 0.0 80.0 0 Urban 0.0
424 LP002361 Male 1.0 0 1 0.0 1820 1719.0 100.0 360.0 1 Urban 1.0
425 LP002362 Male 1.0 1 1 0.0 7250 1667.0 110.0 0 Urban 0.0
426 LP002364 Male 1.0 0 1 0.0 14880 0.0 96.0 360.0 1 Semiurban 1.0
427 LP002366 Male 1.0 0 1 0.0 2666 4300.0 121.0 360.0 1 Rural 1.0
428 LP002367 Female 0.0 1 0 0.0 4606 0.0 81.0 360.0 1 Rural 0.0
429 LP002368 Male 1.0 2 1 0.0 5935 0.0 133.0 360.0 1 Semiurban 1.0
430 LP002369 Male 1.0 0 1 0.0 2920 16.12000084 87.0 360.0 1 Rural 1.0
431 LP002370 Male 0.0 0 0 0.0 2717 0.0 60.0 180.0 1 Urban 1.0
432 LP002377 Female 0.0 1 1 1.0 8624 0.0 150.0 360.0 1 Semiurban 1.0
433 LP002379 Male 0.0 0 1 0.0 6500 0.0 105.0 360.0 0 Rural 0.0
434 LP002386 Male 0.0 0 1 0.0 12876 0.0 405.0 360.0 1 Semiurban 1.0
435 LP002387 Male 1.0 0 1 0.0 2425 2340.0 143.0 360.0 1 Semiurban 1.0
436 LP002390 Male 0.0 0 1 0.0 3750 0.0 100.0 360.0 1 Urban 1.0
437 LP002393 Female 0.0 1 0.0 10047 0.0 0.0 240.0 1 Semiurban 1.0
438 LP002398 Male 0.0 0 1 0.0 1926 1851.0 50.0 360.0 1 Semiurban 1.0
439 LP002401 Male 1.0 0 1 0.0 2213 1125.0 0.0 360.0 1 Urban 1.0
440 LP002403 Male 0.0 0 1 1.0 10416 0.0 187.0 360.0 0 Urban 0.0
441 LP002407 Female 1.0 0 0 1.0 7142 0.0 138.0 360.0 1 Rural 1.0
442 LP002408 Male 0.0 0 1 0.0 3660 5064.0 187.0 360.0 1 Semiurban 1.0
443 LP002409 Male 1.0 0 1 0.0 7901 1833.0 180.0 360.0 1 Rural 1.0
444 LP002418 Male 0.0 3+ 0 0.0 4707 1993.0 148.0 360.0 1 Semiurban 1.0
445 LP002422 Male 0.0 1 1 0.0 37719 0.0 152.0 360.0 1 Semiurban 1.0
446 LP002424 Male 1.0 0 1 0.0 7333 8333.0 175.0 300.0 0 Rural 1.0
447 LP002429 Male 1.0 1 1 1.0 3466 1210.0 130.0 360.0 1 Rural 1.0
448 LP002434 Male 1.0 2 0 0.0 4652 0.0 110.0 360.0 1 Rural 1.0
449 LP002435 Male 1.0 0 1 0.0 3539 1376.0 55.0 360.0 1 Rural 0.0
450 LP002443 Male 1.0 2 1 0.0 3340 1710.0 150.0 360.0 0 Rural 0.0
451 LP002444 Male 0.0 1 0 1.0 2769 1542.0 190.0 360.0 0 Semiurban 0.0
452 LP002446 Male 1.0 2 0 0.0 2309 1255.0 125.0 360.0 0 Rural 0.0
453 LP002447 Male 1.0 2 0 0.0 1958 1456.0 60.0 300.0 0 Urban 1.0
454 LP002448 Male 1.0 0 1 0.0 3948 1733.0 149.0 360.0 0 Rural 0.0
455 LP002449 Male 1.0 0 1 0.0 2483 2466.0 90.0 180.0 0 Rural 1.0
456 LP002453 Male 0.0 0 1 1.0 7085 0.0 84.0 360.0 1 Semiurban 1.0
457 LP002455 Male 1.0 2 1 0.0 3859 0.0 96.0 360.0 1 Semiurban 1.0
458 LP002459 Male 1.0 0 1 0.0 4301 0.0 118.0 360.0 1 Urban 1.0
459 LP002467 Male 1.0 0 1 0.0 3708 2569.0 173.0 360.0 1 Urban 0.0
460 LP002472 Male 0.0 2 1 0.0 4354 0.0 136.0 360.0 1 Rural 1.0
461 LP002473 Male 1.0 0 1 0.0 8334 0.0 160.0 360.0 1 Semiurban 0.0
462 LP002478 1.0 0 1 1.0 2083 4083.0 160.0 360.0 0 Semiurban 1.0
463 LP002484 Male 1.0 3+ 1 0.0 7740 0.0 128.0 180.0 1 Urban 1.0
464 LP002487 Male 1.0 0 1 0.0 3015 2188.0 153.0 360.0 1 Rural 1.0
465 LP002489 Female 0.0 1 0 0.0 5191 0.0 132.0 360.0 1 Semiurban 1.0
466 LP002493 Male 0.0 0 1 0.0 4166 0.0 98.0 360.0 0 Semiurban 0.0
467 LP002494 Male 0.0 0 1 0.0 6000 0.0 140.0 360.0 1 Rural 1.0
468 LP002500 Male 1.0 3+ 0 0.0 2947 1664.0 70.0 180.0 0 Urban 0.0
469 LP002501 1.0 0 1 0.0 16692 0.0 110.0 360.0 1 Semiurban 1.0
470 LP002502 Female 1.0 2 0 0.0 210 2917.0 98.0 360.0 1 Semiurban 1.0
471 LP002505 Male 1.0 0 1 0.0 4333 2451.0 110.0 360.0 1 Urban 0.0
472 LP002515 Male 1.0 1 1 1.0 3450 2079.0 162.0 360.0 1 Semiurban 1.0
473 LP002517 Male 1.0 1 0 0.0 2653 1500.0 113.0 180.0 0 Rural 0.0
474 LP002519 Male 1.0 3+ 1 0.0 4691 0.0 100.0 360.0 1 Semiurban 1.0
475 LP002522 Female 0.0 0 1 1.0 2500 0.0 93.0 360.0 0 Urban 1.0
476 LP002524 Male 0.0 2 1 0.0 5532 4648.0 162.0 360.0 1 Rural 1.0
477 LP002527 Male 1.0 2 1 1.0 16525 1014.0 150.0 360.0 1 Rural 1.0
478 LP002529 Male 1.0 2 1 0.0 6700 1750.0 230.0 300.0 1 Semiurban 1.0
479 LP002530 1.0 2 1 0.0 2873 1872.0 132.0 360.0 0 Semiurban 0.0
480 LP002531 Male 1.0 1 1 1.0 16667 2250.0 86.0 360.0 1 Semiurban 1.0
481 LP002533 Male 1.0 2 1 0.0 2947 1603.0 0.0 360.0 1 Urban 0.0
482 LP002534 Female 0.0 0 0 0.0 4350 0.0 154.0 360.0 1 Rural 1.0
483 LP002536 Male 1.0 3+ 0 0.0 3095 0.0 113.0 360.0 1 Rural 1.0
484 LP002537 Male 1.0 0 1 0.0 2083 3150.0 128.0 360.0 1 Semiurban 1.0
485 LP002541 Male 1.0 0 1 0.0 10833 0.0 234.0 360.0 1 Semiurban 1.0
486 LP002543 Male 1.0 2 1 0.0 8333 0.0 246.0 360.0 1 Semiurban 1.0
487 LP002544 Male 1.0 1 0 0.0 1958 2436.0 131.0 360.0 1 Rural 1.0
488 LP002545 Male 0.0 2 1 0.0 3547 0.0 80.0 360.0 0 Rural 0.0
489 LP002547 Male 1.0 1 1 0.0 18333 0.0 500.0 360.0 1 Urban 0.0
490 LP002555 Male 1.0 2 1 1.0 4583 2083.0 160.0 360.0 1 Semiurban 1.0
491 LP002556 Male 0.0 0 1 0.0 2435 0.0 75.0 360.0 1 Urban 0.0
492 LP002560 Male 0.0 0 0 0.0 2699 2785.0 96.0 360.0 0 Semiurban 1.0
493 LP002562 Male 1.0 1 0 0.0 5333 1131.0 186.0 360.0 0 Urban 1.0
494 LP002571 Male 0.0 0 0 0.0 3691 0.0 110.0 360.0 1 Rural 1.0
495 LP002582 Female 0.0 0 0 1.0 17263 0.0 225.0 360.0 1 Semiurban 1.0
496 LP002585 Male 1.0 0 1 0.0 3597 2157.0 119.0 360.0 0 Rural 0.0
497 LP002586 Female 1.0 1 1 0.0 3326 913.0 105.0 84.0 1 Semiurban 1.0
498 LP002587 Male 1.0 0 0 0.0 2600 1700.0 107.0 360.0 1 Rural 1.0
499 LP002588 Male 1.0 0 1 0.0 4625 2857.0 111.0 12.0 0 Urban 1.0
500 LP002600 Male 1.0 1 1 1.0 2895 0.0 95.0 360.0 1 Semiurban 1.0
501 LP002602 Male 0.0 0 1 0.0 6283 4416.0 209.0 360.0 0 Rural 0.0
502 LP002603 Female 0.0 0 1 0.0 645 3683.0 113.0 480.0 1 Rural 1.0
503 LP002606 Female 0.0 0 1 0.0 3159 0.0 100.0 360.0 1 Semiurban 1.0
504 LP002615 Male 1.0 2 1 0.0 4865 5624.0 208.0 360.0 1 Semiurban 1.0
505 LP002618 Male 1.0 1 0 0.0 4050 5302.0 138.0 360.0 0 Rural 0.0
506 LP002619 Male 1.0 0 0 0.0 3814 1483.0 124.0 300.0 1 Semiurban 1.0
507 LP002622 Male 1.0 2 1 0.0 3510 4416.0 243.0 360.0 1 Rural 1.0
508 LP002624 Male 1.0 0 1 0.0 20833 6667.0 480.0 360.0 0 Urban 1.0
509 LP002625 0.0 0 1 0.0 3583 0.0 96.0 360.0 1 Urban 0.0
510 LP002626 Male 1.0 0 1 1.0 2479 3013.0 188.0 360.0 1 Urban 1.0
511 LP002634 Female 0.0 1 1 0.0 13262 0.0 40.0 360.0 1 Urban 1.0
512 LP002637 Male 0.0 0 0 0.0 3598 1287.0 100.0 360.0 1 Rural 0.0
513 LP002640 Male 1.0 1 1 0.0 6065 2004.0 250.0 360.0 1 Semiurban 1.0
514 LP002643 Male 1.0 2 1 0.0 3283 2035.0 148.0 360.0 1 Urban 1.0
515 LP002648 Male 1.0 0 1 0.0 2130 6666.0 70.0 180.0 1 Semiurban 0.0
516 LP002652 Male 0.0 0 1 0.0 5815 3666.0 311.0 360.0 1 Rural 0.0
517 LP002659 Male 1.0 3+ 1 0.0 3466 3428.0 150.0 360.0 1 Rural 1.0
518 LP002670 Female 1.0 2 1 0.0 2031 1632.0 113.0 480.0 1 Semiurban 1.0
519 LP002682 Male 1.0 0 0.0 3074 1800.0 123.0 360.0 0 Semiurban 0.0
520 LP002683 Male 0.0 0 1 0.0 4683 1915.0 185.0 360.0 1 Semiurban 0.0
521 LP002684 Female 0.0 0 0 0.0 3400 0.0 95.0 360.0 1 Rural 0.0
522 LP002689 Male 1.0 2 0 0.0 2192 1742.0 45.0 360.0 1 Semiurban 1.0
523 LP002690 Male 0.0 0 1 0.0 2500 0.0 55.0 360.0 1 Semiurban 1.0
524 LP002692 Male 1.0 3+ 1 1.0 5677 1424.0 100.0 360.0 1 Rural 1.0
525 LP002693 Male 1.0 2 1 1.0 7948 7166.0 480.0 360.0 1 Rural 1.0
526 LP002697 Male 0.0 0 1 0.0 4680 2087.0 0.0 360.0 1 Semiurban 0.0
527 LP002699 Male 1.0 2 1 1.0 17500 0.0 400.0 360.0 1 Rural 1.0
528 LP002705 Male 1.0 0 1 0.0 3775 0.0 110.0 360.0 1 Semiurban 1.0
529 LP002706 Male 1.0 1 0 0.0 5285 1430.0 161.0 360.0 0 Semiurban 1.0
530 LP002714 Male 0.0 1 0 0.0 2679 1302.0 94.0 360.0 1 Semiurban 1.0
531 LP002716 Male 0.0 0 0 0.0 6783 0.0 130.0 360.0 1 Semiurban 1.0
532 LP002717 Male 1.0 0 1 0.0 1025 5500.0 216.0 360.0 0 Rural 1.0
533 LP002720 Male 1.0 3+ 1 0.0 4281 0.0 100.0 360.0 1 Urban 1.0
534 LP002723 Male 0.0 2 1 0.0 3588 0.0 110.0 360.0 0 Rural 0.0
535 LP002729 Male 0.0 1 1 0.0 11250 0.0 196.0 360.0 0 Semiurban 0.0
536 LP002731 Female 0.0 0 0 1.0 18165 0.0 125.0 360.0 1 Urban 1.0
537 LP002732 Male 0.0 0 0 0.0 2550 2042.0 126.0 360.0 1 Rural 1.0
538 LP002734 Male 1.0 0 1 0.0 6133 3906.0 324.0 360.0 1 Urban 1.0
539 LP002738 Male 0.0 2 1 0.0 3617 0.0 107.0 360.0 1 Semiurban 1.0
540 LP002739 Male 1.0 0 0 0.0 2917 536.0 66.0 360.0 1 Rural 0.0
541 LP002740 Male 1.0 3+ 1 0.0 6417 0.0 157.0 180.0 1 Rural 1.0
542 LP002741 Female 1.0 1 1 0.0 4608 2845.0 140.0 180.0 1 Semiurban 1.0
543 LP002743 Female 0.0 0 1 0.0 2138 0.0 99.0 360.0 0 Semiurban 0.0
544 LP002753 Female 0.0 1 1 0.0 3652 0.0 95.0 360.0 1 Semiurban 1.0
545 LP002755 Male 1.0 1 0 0.0 2239 2524.0 128.0 360.0 1 Urban 1.0
546 LP002757 Female 1.0 0 0 0.0 3017 663.0 102.0 360.0 0 Semiurban 1.0
547 LP002767 Male 1.0 0 1 0.0 2768 1950.0 155.0 360.0 1 Rural 1.0
548 LP002768 Male 0.0 0 0 0.0 3358 0.0 80.0 36.0 1 Semiurban 0.0
549 LP002772 Male 0.0 0 1 0.0 2526 1783.0 145.0 360.0 1 Rural 1.0
550 LP002776 Female 0.0 0 1 0.0 5000 0.0 103.0 360.0 0 Semiurban 0.0
551 LP002777 Male 1.0 0 1 0.0 2785 2016.0 110.0 360.0 1 Rural 1.0
552 LP002778 Male 1.0 2 1 1.0 6633 0.0 0.0 360.0 0 Rural 0.0
553 LP002784 Male 1.0 1 0 0.0 2492 2375.0 0.0 360.0 1 Rural 1.0
554 LP002785 Male 1.0 1 1 0.0 3333 3250.0 158.0 360.0 1 Urban 1.0
555 LP002788 Male 1.0 0 0 0.0 2454 2333.0 181.0 360.0 0 Urban 0.0
556 LP002789 Male 1.0 0 1 0.0 3593 4266.0 132.0 180.0 0 Rural 0.0
557 LP002792 Male 1.0 1 1 0.0 5468 1032.0 26.0 360.0 1 Semiurban 1.0
558 LP002794 Female 0.0 0 1 0.0 2667 1625.0 84.0 360.0 0 Urban 1.0
559 LP002795 Male 1.0 3+ 1 1.0 10139 0.0 260.0 360.0 1 Semiurban 1.0
560 LP002798 Male 1.0 0 1 0.0 3887 2669.0 162.0 360.0 1 Semiurban 1.0
561 LP002804 Female 1.0 0 1 0.0 4180 2306.0 182.0 360.0 1 Semiurban 1.0
562 LP002807 Male 1.0 2 0 0.0 3675 242.0 108.0 360.0 1 Semiurban 1.0
563 LP002813 Female 1.0 1 1 1.0 19484 0.0 600.0 360.0 1 Semiurban 1.0
564 LP002820 Male 1.0 0 1 0.0 5923 2054.0 211.0 360.0 1 Rural 1.0
565 LP002821 Male 0.0 0 0 1.0 5800 0.0 132.0 360.0 1 Semiurban 1.0
566 LP002832 Male 1.0 2 1 0.0 8799 0.0 258.0 360.0 0 Urban 0.0
567 LP002833 Male 1.0 0 0 0.0 4467 0.0 120.0 360.0 0 Rural 1.0
568 LP002836 Male 0.0 0 1 0.0 3333 0.0 70.0 360.0 1 Urban 1.0
569 LP002837 Male 1.0 3+ 1 0.0 3400 2500.0 123.0 360.0 0 Rural 0.0
570 LP002840 Female 0.0 0 1 0.0 2378 0.0 9.0 360.0 1 Urban 0.0
571 LP002841 Male 1.0 0 1 0.0 3166 2064.0 104.0 360.0 0 Urban 0.0
572 LP002842 Male 1.0 1 1 0.0 3417 1750.0 186.0 360.0 1 Urban 1.0
573 LP002847 Male 1.0 1 0.0 5116 1451.0 165.0 360.0 0 Urban 0.0
574 LP002855 Male 1.0 2 1 0.0 16666 0.0 275.0 360.0 1 Urban 1.0
575 LP002862 Male 1.0 2 0 0.0 6125 1625.0 187.0 480.0 1 Semiurban 0.0
576 LP002863 Male 1.0 3+ 1 0.0 6406 0.0 150.0 360.0 1 Semiurban 0.0
577 LP002868 Male 1.0 2 1 0.0 3159 461.0 108.0 84.0 1 Urban 1.0
578 LP002872 1.0 0 1 0.0 3087 2210.0 136.0 360.0 0 Semiurban 0.0
579 LP002874 Male 0.0 0 1 0.0 3229 2739.0 110.0 360.0 1 Urban 1.0
580 LP002877 Male 1.0 1 1 0.0 1782 2232.0 107.0 360.0 1 Rural 1.0
581 LP002888 Male 0.0 0 1 0.0 3182 2917.0 161.0 360.0 1 Urban 1.0
582 LP002892 Male 1.0 2 1 0.0 6540 0.0 205.0 360.0 1 Semiurban 1.0
583 LP002893 Male 0.0 0 1 0.0 1836 33837.0 90.0 360.0 1 Urban 0.0
584 LP002894 Female 1.0 0 1 0.0 3166 0.0 36.0 360.0 1 Semiurban 1.0
585 LP002898 Male 1.0 1 1 0.0 1880 0.0 61.0 360.0 0 Rural 0.0
586 LP002911 Male 1.0 1 1 0.0 2787 1917.0 146.0 360.0 0 Rural 0.0
587 LP002912 Male 1.0 1 1 0.0 4283 3000.0 172.0 84.0 1 Rural 0.0
588 LP002916 Male 1.0 0 1 0.0 2297 1522.0 104.0 360.0 1 Urban 1.0
589 LP002917 Female 0.0 0 0 0.0 2165 0.0 70.0 360.0 1 Semiurban 1.0
590 LP002925 0.0 0 1 0.0 4750 0.0 94.0 360.0 1 Semiurban 1.0
591 LP002926 Male 1.0 2 1 1.0 2726 0.0 106.0 360.0 0 Semiurban 0.0
592 LP002928 Male 1.0 0 1 0.0 3000 3416.0 56.0 180.0 1 Semiurban 1.0
593 LP002931 Male 1.0 2 1 1.0 6000 0.0 205.0 240.0 1 Semiurban 0.0
594 LP002933 0.0 3+ 1 1.0 9357 0.0 292.0 360.0 1 Semiurban 1.0
595 LP002936 Male 1.0 0 1 0.0 3859 3300.0 142.0 180.0 1 Rural 1.0
596 LP002938 Male 1.0 0 1 1.0 16120 0.0 260.0 360.0 1 Urban 1.0
597 LP002940 Male 0.0 0 0 0.0 3833 0.0 110.0 360.0 1 Rural 1.0
598 LP002941 Male 1.0 2 0 1.0 6383 1000.0 187.0 360.0 1 Rural 0.0
599 LP002943 Male 0.0 1 0.0 2987 0.0 88.0 360.0 0 Semiurban 0.0
600 LP002945 Male 1.0 0 1 1.0 9963 0.0 180.0 360.0 1 Rural 1.0
601 LP002948 Male 1.0 2 1 0.0 5780 0.0 192.0 360.0 1 Urban 1.0
602 LP002949 Female 0.0 3+ 1 0.0 416 41667.0 350.0 180.0 0 Urban 0.0
603 LP002950 Male 1.0 0 0 0.0 2894 2792.0 155.0 360.0 1 Rural 1.0
604 LP002953 Male 1.0 3+ 1 0.0 5703 0.0 128.0 360.0 1 Urban 1.0
605 LP002958 Male 0.0 0 1 0.0 3676 4301.0 172.0 360.0 1 Rural 1.0
606 LP002959 Female 1.0 1 1 0.0 12000 0.0 496.0 360.0 1 Semiurban 1.0
607 LP002960 Male 1.0 0 0 0.0 2400 3800.0 0.0 180.0 1 Urban 0.0
608 LP002961 Male 1.0 1 1 0.0 3400 2500.0 173.0 360.0 1 Semiurban 1.0
609 LP002964 Male 1.0 2 0 0.0 3987 1411.0 157.0 360.0 1 Rural 1.0
610 LP002974 Male 1.0 0 1 0.0 3232 1950.0 108.0 360.0 1 Rural 1.0
611 LP002978 Female 0.0 0 1 0.0 2900 0.0 71.0 360.0 1 Rural 1.0
612 LP002979 Male 1.0 3+ 1 0.0 4106 0.0 40.0 180.0 1 Rural 1.0
613 LP002983 Male 1.0 1 1 0.0 8072 240.0 253.0 360.0 1 Urban 1.0
614 LP002984 Male 1.0 2 1 0.0 7583 0.0 187.0 360.0 1 Urban 1.0
615 LP002990 Female 0.0 0 1 1.0 4583 0.0 133.0 360.0 0 Semiurban 0.0

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 680 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 452 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View File

@@ -0,0 +1,64 @@
Вариант 2
Задание:
Предсказание категории возраста дома (housingMedianAge) на основе других признаков, таких как широта, долгота, общее количество комнат и т.д.
Данные:
Данный набор данных использовался во второй главе недавней книги Аурелиена Жерона "Практическое машинное обучение с помощью Scikit-Learn и TensorFlow". Он служит отличным введением в реализацию алгоритмов машинного обучения, потому что требует минимальной предварительной обработки данных, содержит легко понимаемый список переменных и находится в оптимальном размере, который не слишком мал и не слишком большой.
Данные содержат информацию о домах в определенном районе Калифорнии и некоторую сводную статистику на основе данных переписи 1990 года. Следует отметить, что данные не прошли предварительную очистку, и для них требуются некоторые этапы предварительной обработки. Столбцы включают в себя следующие переменные, их названия весьма наглядно описывают их суть:
долгота longitude
широта latitude
средний возраст жилья median_house_value
общее количество комнат total_rooms
общее количество спален total_bedrooms
население population
домохозяйства households
медианный доход median_income
Запуск:
Запустите файл lab3.py
Описание программы:
1. Загружает набор данных из файла 'housing.csv', который содержит информацию о домах в Калифорнии, включая их координаты, возраст, количество комнат, население, доход и другие характеристики.
2. Удаляет строки с нулевыми значениями из набора данных для чистоты анализа.
3. Выбирает набор признаков (features) из данных, которые будут использоваться для обучения моделей регрессии и классификации.
4. Определяет задачу регрессии, где целевой переменной (target) является 'housing_median_age', и задачу классификации, где целевой переменной является 'housing_median_age'.
5. Разделяет данные на обучающий и тестовый наборы для обеих задач с использованием функции train_test_split. Тестовый набор составляет 1% от исходных данных.
6. Создает и обучает дерево решений для регрессии и классификации с использованием моделей DecisionTreeRegressor и DecisionTreeClassifier.
7. Предсказывает значения целевой переменной на тестовых наборах для обеих задач.
8. Оценивает качество моделей с помощью среднеквадратичной ошибки (MSE) для регрессии и точности (accuracy) для классификации.
9. Выводит среднеквадратичную ошибку для регрессии и точность для классификации, а также важности признаков для обеих задач.
Результаты:
![Alt text](1.png)
Выводы:
Для задачи регрессии, где целью было предсказать возраст жилья (housing_median_age), модель дерева решений показала среднюю ошибку (MSE) равную 117.65. Это означает, что модель регрессии вполне приемлемо предсказывает возраст жилья на основе выбранных признаков.
Для задачи классификации, где целью было предсказать стоимость жилья (housing_median_age), модель дерева решений показала низкую точность, всего 8.29%. Это свидетельствует о том, что модель классификации не справляется с предсказанием стоимости жилья на основе выбранных признаков. Низкая точность указывает на необходимость улучшения модели или выбора других методов для решения задачи классификации.
Анализ важности признаков для задачи регрессии показал, что наибольший вклад в предсказание возраста жилья вносят признаки 'longitude', 'latitude' и 'total_rooms'. Эти признаки оказывают наибольшее влияние на результаты модели.
Для задачи классификации наибольший вклад в предсказание стоимости жилья вносят признаки 'median_income', 'longitude' и 'latitude'. Эти признаки имеют наибольшее значение при определении классов стоимости жилья.
В целом, результаты указывают на успешное решение задачи регрессии с использованием модели дерева решений. Однако задача классификации требует дополнительных улучшений.

View File

@@ -0,0 +1,48 @@
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
# Загрузка данных
data = pd.read_csv('titanic.csv', index_col='PassengerId')
# Функция для преобразования пола в числовое значение
def Sex_to_bool(sex):
if sex == "male":
return 0
return 1
# Преобразование пола в числовое значение
data['Sex'] = data['Sex'].apply(Sex_to_bool)
# Отбор строк с непустыми значениями
# Отбор строк с непустыми значениями
data = data.loc[~data['Name'].isna()
& ~data['Age'].isna()
& ~data['Sex'].isna()
& ~data['Survived'].isna()]
# Отбор нужных столбцов
features = data[['Name', 'Sex', 'Age']]
# Применение Label Encoding к столбцу 'Name'
label_encoder = LabelEncoder()
features['Name'] = label_encoder.fit_transform(features['Name'])
# Определение целевой переменной
y = data['Survived']
# Создание и обучение дерева решений
clf = DecisionTreeClassifier(random_state=241)
clf.fit(features, y)
# Получение важностей признаков
importance = clf.feature_importances_
# Печать важности каждого признака
print("Важность 'Name':", importance[0])
print("Важность 'Sex':", importance[1])
print("Важность 'Age':", importance[2])

View File

@@ -0,0 +1,77 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, accuracy_score
# Загрузка данных
data = pd.read_csv('housing.csv')
data = data.dropna()
# Отбор нужных столбцов
features = data[
['longitude', 'latitude', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income']]
# Задача регрессии
target_regression = data['housing_median_age']
# Разделение данных на обучающий и тестовый наборы для регрессии
X_train_regression, X_test_regression, y_train_regression, y_test_regression = train_test_split(features,
target_regression,
test_size=0.01,
random_state=241)
# Создание и обучение дерева решений для регрессии
clf_regression = DecisionTreeRegressor(random_state=241)
clf_regression.fit(X_train_regression, y_train_regression)
# Предсказание на тестовом наборе для регрессии
y_pred_regression = clf_regression.predict(X_test_regression)
# Оценка качества модели для регрессии (MSE)
mse_regression = mean_squared_error(y_test_regression, y_pred_regression)
print("Средняя ошибка для регрессии:", mse_regression)
# Задача классификации
target_classification = data['median_house_value']
# Разделение данных на обучающий и тестовый наборы для классификации
X_train_classification, X_test_classification, y_train_classification, y_test_classification = train_test_split(
features, target_classification, test_size=0.01, random_state=241)
# Создание и обучение дерева классификации
clf_classification = DecisionTreeClassifier(random_state=241)
clf_classification.fit(X_train_classification, y_train_classification)
# Предсказание на тестовом наборе для классификации
y_pred_classification = clf_classification.predict(X_test_classification)
# Оценка качества модели для классификации (точность)
accuracy_classification = accuracy_score(y_test_classification, y_pred_classification)
print("Точность для классификации: {:.2f}%".format(accuracy_classification * 100))
# Важности признаков для регрессии
importance_regression = clf_regression.feature_importances_
print("Важность для регрессии")
# Печать важности каждого признака для регрессии
print("Важность 'longitude':", importance_regression[0]) # За западную долготу дома
print("Важность 'latitude':", importance_regression[1]) # За северную широту дома
print("Важность 'total_rooms':", importance_regression[2]) # За общее количество комнат в блоке
print("Важность 'total_bedrooms':", importance_regression[3]) # За общее количество спален в блоке
print("Важность 'population':", importance_regression[4]) # За общее количество проживающих в блоке
print("Важность 'households':", importance_regression[5]) # За общее количество домохозяйств в блоке
print("Важность 'median_income':", importance_regression[6]) # За медианный доход домохозяйств в блоке
# Важности признаков для классификации
importance_classification = clf_classification.feature_importances_
print()
print("Важность для классификации")
# Печать важности каждого признака для классификации
print("Важность 'longitude':", importance_classification[0]) # За западную долготу дома
print("Важность 'latitude':", importance_classification[1]) # За северную широту дома
print("Важность 'total_rooms':", importance_classification[2]) # За общее количество комнат в блоке
print("Важность 'total_bedrooms':", importance_classification[3]) # За общее количество спален в блоке
print("Важность 'population':", importance_classification[4]) # За общее количество проживающих в блоке
print("Важность 'households':", importance_classification[5]) # За общее количество домохозяйств в блоке
print("Важность 'median_income':", importance_classification[6]) # За медианный доход домохозяйств в блоке

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 KiB

View File

@@ -0,0 +1,224 @@
## Лабораторная работа 7. Вариант 4.
### Задание
- Выбрать художественный текст и обучить на нем рекуррентную нейронную сеть
для решения задачи генерации.
- Подобрать архитектуру и параметры так,
чтобы приблизиться к максимально осмысленному результату.
- Подобрать компромиссную архитектуру, справляющуюся
достаточно хорошо русским и английским текстами.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
Результат выполнения программы будет выведен в консоль.
> **Warning**
>
> Данное решение использует конфигурацию, созданную на основе комплектующих машины, на которых она запущена. Запуск программы на машинах с отличной конфигурацией может привести к ошибкам.
### Используемые технологии
- Библиотека `numpy`, используемая для обработки массивов данных и вычислений
- Библиотека `sys`, используемая для потокового вывода данных в консоль.
- Библиотека `nltk` - (Natural Language Toolkit) библиотека для обработки естественного языка, используемая для предобработки текста:
- `RegexpTokenizer` - инструмент для токенизации текста на основе регулярных выражений.
- `stopwords` - коллекция стоп-слов корпуса языка.
- Библиотека `tensorflow` - открытая библиотека глубокого обучения, используемая для создания и обучения моделеи машинного обучения, основанной на рекурентной нейронной сети.
- Библиотека `keras` - высокоуровневая библиотека глубокого обучения:
- `Sequential` - класс, который представляет собой линейную стековую модель нейронной сети.
- `Dense`, используемый для создания слоя, в котором каждый нейрон соединен со всеми нейронами в предыдущем слое.
- `Dropout` - метод регуляризации, который применяется в нейронных сетях для борьбы с переобучением. Он заключается во временном исключении случайно выбранных нейронов во время обучения модели.
- `LSTM` - (Long Short-Term Memory) тип рекуррентной нейронной сети, который используется для обработки последовательностей данных. Он отличается от обычных рекуррентных нейронных сетей (RNN) своей способностью эффективно улавливать долгосрочные зависимости в последовательностях.
### Описание работы
#### Предобработка текстовых данных
Нам нужно преобразовать наш вводимый текст в числа, а затем обучить модель последовательностям этих чисел.
Для начала загрузим текстовые данные. У нас это будет небольшое современное художественное произведение примерно на 180 строк тектса:
```python
file = open("P:\\ULSTU\\ИИС\\Лабораторные\\Lab7\\texts\\text-ru.txt", encoding='utf-8').read()
```
Теперь переведём текст в нижний регистр, и создадим токены из слов с помощью `NLTK`.
```python
input = input.lower()
tokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize(input)
```
Отфильтруем список токенов и оставим только те токены, которых нет в списке стоп-слов или общих слов русского корпуса, дающих мало информации о рассматриваемом предложении, с помощью `NLTK`:
```python
filtered = filter(lambda token: token not in stopwords.words('russian'), tokens)
```
Теперь преобразуем символы нашего текста в числа:
- Отсортируем список из набора всех символов, которые появляются во входном тексте.
- Получим числа, представляющие символы с помощью `enumerate`.
- Создадим словарь, в котором хранятся символы и числа, которые их представляют.
```python
chars = sorted(list(set(processed_inputs)))
char_to_num = dict((c, i) for i, c in enumerate(chars))
input_len = len(processed_inputs)
vocab_len = len(chars)
```
Также сохраним общее кол-во символов и размер словаря для создания набора данных.
#### Создание набора данных
Для начала необходимо задать длину последовательности (одно полное отображение входных символов в целые числа). Укажем её размер равный 100.
Теперь необходимо пройти весь список входов и преобразовать символы в числа, для создания групп последовательностей входных и выходных данных для обучения:
```python
seq_length = 100
x_data = []
y_data = []
for i in range(0, input_len - seq_length, 1):
in_seq = processed_inputs[i:i + seq_length]
out_seq = processed_inputs[i + seq_length]
x_data.append([char_to_num[char] for char in in_seq])
y_data.append(char_to_num[out_seq])
n_patterns = len(x_data)
print("Кол-во паттернов:", n_patterns)
```
Также выведем общее кол-во обучающих последовательностей (паттернов).
Преобразуем входные последовательности в обработанный массив `numpy`, с преобразованием значений массива `numpy` в числа с плавающей запятой, чтобы функция активации сигмоида, которую использует рекурентная нейронная сеть, могла интерпретировать их и выводить вероятности от 0 до 1.
```python
X = np.reshape(x_data, (n_patterns, seq_length, 1))
X = X / float(vocab_len)
y = np_utils.to_categorical(y_data)
```
#### Разработка архитектуры модели
Создадим модель `LSTM` типа `Sequential` и добавим слои:
```python
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
```
- 1й слой - слой в 256 нейронов по размерности входных данных с обратными зависимостями.
- 2й слой - слой в 256 нейронов с обратными зависимостями
- 3й слой - слой в 256 нейронов
Между каждыми слоями используется функция `Dropout` для случайного исключения нейронов с вероятностью 0.2 в целях борьбы с переобучением.
После этого компилируем модель и обучаем. Лучшие модели с наименьшими ошибками определения связей символов будут сохраняться в файл. Добавим функцию для вывода сгенерированного текста:
```python
start = np.random.randint(0, len(x_data) - 1)
pattern = x_data[start]
print("Случайная выборка:")
print("\"", ''.join([num_to_char[value] for value in pattern]), "\"")
for i in range(1000):
x = np.reshape(pattern, (1, len(pattern), 1))
x = x / float(vocab_len)
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
result = num_to_char[index]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
```
В качестве стартового набора для генерации используем случайную выборку слов текста.
#### Оптимизация модели
Рекурентные нейронные сети основаны на матричных вычислениях, которых в данной модели огромное количество. Процессор обрабатывает такие данные достаточно медленно (к примеру на данной машине время выполнение одной эпохи обучения ресурсами процессора было около 50 минут). Однако, рекурентные сети способны учиться и на графических картах.
На данной машине установлена GPU NVidia GTX 980Ti с графической памятью DDR6 на 4Гб. Чтобы использовать её для вычислений, необходимо установить ПО от NVidia - `CUDA` и драйвер `cudnn`. После этого необходимо установить `tensorflow` с поддержкой GPU, задать ему конфигурации машины и настроить распределённую архитектуру вычислений:
```python
strategy = tf.distribute.MultiWorkerMirroredStrategy()
with strategy.scope():
parallel_model = model
parallel_model.fit(X, y, epochs=200, batch_size=256, callbacks=desired_callbacks)
```
Данная стратегия распределяет вычисления на ЦП и ГП в зависимости от их загруженности. С ней время одной эпохи обучения скратилось до 50 секунд.
Нагрузка на ЦП и ГП во время обучения:
![](1.png "")
#### Генерация текста
Информация о входных данных:
```
Общее кол-во символов: 31258
Размер словаря: 34
Кол-во паттернов: 31158
```
Сгенерируем русский текст на 5 эпохах обучения:
```
Epoch 1/5
122/122 [==============================] - ETA: 0s - loss: 3.1638
Epoch 1: loss improved from inf to 3.16378, saving model to model_weights_saved.hdf5
...
Epoch 5/5
122/122 [==============================] - ETA: 0s - loss: 3.0314
Epoch 5: loss improved from 3.08348 to 3.03140, saving model to model_weights_saved.hdf5
Случайная выборка:
" ти могли привлекать чужой взгляд сводить ума молить помиловании тёмные полосы тени высоких деревьев "
ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо ооо
```
На 5ти эпохах обучения получается абсолютно бессвязный текст, слова логически не сгенерированы. Сгенерируем русский текст на 10 эпохах обучения:
```
Epoch 1/10
122/122 [==============================] - ETA: 0s - loss: 3.1625
Epoch 1: loss improved from inf to 3.16249, saving model to model_weights_saved.hdf5
...
Epoch 10/10
122/122 [==============================] - ETA: 0s - loss: 2.7291
Epoch 10: loss improved from 2.78984 to 2.72912, saving model to model_weights_saved.hdf5
Случайная выборка:
" чески осматривая огромный двор откуда выскочить таким страхом оглядываются охранники стоящие высоких "
пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо пооооо поооо
```
На 10 эпохах обучения результат генерации текста получился таким же неудовлетворительным, что и на 5. Сгенерируем русский текст на 50 эпохах обучения:
```
Epoch 1/50
122/122 [==============================] - ETA: 0s - loss: 3.1663
Epoch 1: loss improved from inf to 3.16626, saving model to model_weights_saved.hdf5
...
Epoch 50/50
122/122 [==============================] - ETA: 0s - loss: 0.7051
Epoch 50: loss improved from 0.72650 to 0.70508, saving model to model_weights_saved.hdf5
Случайная выборка:
" небольшом экране здешние пейзажи конца жизни будут вынуждать молодого парня отчетливо ощущать очаров "
ание восторг всё сильнее становится рринесеть семе выподить делает принуатию весас корорый держа свой взгляд видляд жверя кишь счрали одного всемательно поститался фртографию выстрогои джухёк одлом бысоких деревьев обнаружить гедрм доого нову поптитал ррдинается сроровняе кемечелия срику тэхён поношался кажртванног выродить деухёк льфа видот отвечает тэхён выглядит сраки делал сочни пассавляет камену невероятно красивый вслух подобного поведения отнышие своим ведлм доооге начинает прднимая нугань мальчика сочно поднуся альфе каждый анетасалтся обреть ссрашивает голову слышит приближающиеся шаги полностью ззменной ботсване моральную физическую боль машина останавливается постояения своем волос пугеляни соснойно проазаться мевольно прогодит леметт рену тозну тэхёна оокучается пририсенную скоро боле гзга смотрит вооруженный взгляд жиего произносит мюди обращают внимание альфа рутаньство сронцно просиает сочно подбородок вынуждая чонгука просно подобного поведения отнышие водитель сразу
```
На 50 эпохах обучения результат генерации текста заметно лучше, чем на 10: присутствуют слова и даже связанные по смыслу словосочетания. В словах замечается большое кол-во ошибок и связанных полных предложений пока всё ещё нет. Сгенерируем русский текст на 100 эпохах обучения:
```
Epoch 1/100
122/122 [==============================] - ETA: 0s - loss: 3.1675
Epoch 1: loss improved from inf to 3.16754, saving model to model_weights_saved.hdf5
...
Epoch 100/100
122/122 [==============================] - ETA: 0s - loss: 0.2224
Epoch 100: loss did not improve from 0.22002
Случайная выборка:
" ь правильнее ещё никто делал чон рено нему настолько близко находится живёт одной комнате смеет боят "
ься зверя которого спас воспитал тигр лишь шутку укусить причиняя сильной боли ези кажется настал день придётся попрощаться своей короткой жизнью точно думал умрёт клыков тигра подобные ужасы голову лезли диего замечая чуя кусок мяса ускоряет свой шаг издает негромкий рык сильнее напугать мальчика который прежнему надеется разумные мысли чонгука стоящего позади останавливаться собирается суждено умереть сегодня пусть ези смело доает язык внесний подирают грооко пидел дома простудой жуткой болью костях мог летать сеул экзамены занимался круглосуточно очередным беспокойством произносит понимая это альфе понравится джухёк кидает злобный взгляд угрожая суженными зрачками очерчивая скулы омега поджимает губы всё равно отстраняется брата крепче обнимает слегка хмурит брови зная очередном отказе тэхён пошёл рано африканскую школу поэтому корейскую закончил семнадцать лет самым младшим классе находясь первом курсе журналистики омега остаётся самым мелким парнишкой среди своих одногруппников
```
На 100 эпохах обучения мы получили пракически полносвязный текст со связями не только внутри предложений, но и между ними. При прочтении данного текста можно понять некую историю. Ошибок в словах практически нет. При этом, степень похожести оригинального и сгенерированного текста не более 60%, а значит, модель не переобучилась и сама генерирует более-менее связный текст. На этом эксперименты генерации русского текста завершены.
Сгенерируем английский текст на 100 эпохах обучения:
```
Epoch 1/100
104/104 [==============================] - ETA: 0s - loss: 2.9685
Epoch 1: loss improved from inf to 2.96853, saving model to model_weights_saved.hdf5
...
Epoch 100/100
104/104 [==============================] - ETA: 0s - loss: 0.1609
Epoch 100: loss improved from 0.16124 to 0.16091, saving model to model_weights_saved.hdf5
Случайная выборка:
"brother never return seoul juhyuk chuckles turns around noticing taxi driver two bright suitcases "
belonging taehyung elder kim gives younger one suspicious look approaches driver black jeep takes suitcases quietly thanking taehyung nods taxi driver seat smiles thanking omega turns back home causing tears gather corners honey colored eyes relaxes whole body takes warm air lungs looking around house front definitely changed four years taehyung become beautiful although like changes clearly visible outside apparently everything become different inside senior brother definitely done good job improving everything concerns hearth also neighboring houses taehyung considerable pocket money definitely came handy nothing secretly transferred juhyuk sense come back alpha asks seriously comes closer dreaming biting lip dreaming forbid grunting cheerfully takes suitcase brother leaves house man narrows eyes looks carefully taehyung retreating back thinking soon following omega first enter house holding breath pursing lips hurts slightly juhyuk hurry glances younger reason worries reaction caref
```
На 100 эпохах обучения английский текст сгенерировался также удовлетворительно, как и русский.
### Вывод
Модель рекурентной нейронной сети, созданная в рамках данной лабороторной, на 100 эпохах обучения показала хорошие результаты в генерации русского и английского текста. Потери связей символов в обоих случаях были меньше 1. На 50-60 % текст получился оригинальный, а значит модель не переобучилась.
Таким образом, спроектированная архитектура рекурентной нейронной сети подходит для генерации текстов.

View File

@@ -0,0 +1,97 @@
import sys
import numpy as np
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
file = open("P:\\ULSTU\\ИИС\\Лабораторные\\Lab7\\texts\\text-en.txt", encoding='utf-8').read()
def tokenize_words(input):
# переводим весть текст в строчные буквы
input = input.lower()
# инициализируем токенизатор
tokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize(input)
# выбираем и выбрасываем все стоп слова, находящиеся в списке стоп слов русского языка
filtered = filter(lambda token: token not in stopwords.words('english'), tokens)
return " ".join(filtered)
if __name__ == '__main__':
# предобрабатываем текст, создаём токены
processed_inputs = tokenize_words(file)
chars = sorted(list(set(processed_inputs)))
char_to_num = dict((c, i) for i, c in enumerate(chars))
input_len = len(processed_inputs)
vocab_len = len(chars)
print("Общее кол-во символов:", input_len)
print("Размер словаря:", vocab_len)
seq_length = 100
x_data = []
y_data = []
for i in range(0, input_len - seq_length, 1):
in_seq = processed_inputs[i:i + seq_length]
out_seq = processed_inputs[i + seq_length]
x_data.append([char_to_num[char] for char in in_seq])
y_data.append(char_to_num[out_seq])
n_patterns = len(x_data)
print("Кол-во паттернов:", n_patterns)
X = np.reshape(x_data, (n_patterns, seq_length, 1))
X = X / float(vocab_len)
y = np_utils.to_categorical(y_data)
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
filepath = "model_weights_saved.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
desired_callbacks = [checkpoint]
# Создание распределенной стратегии
strategy = tf.distribute.MultiWorkerMirroredStrategy()
# Распределение модели на устройства
with strategy.scope():
parallel_model = model
# Обучение модели на GPU и CPU
parallel_model.fit(X, y, epochs=100, batch_size=256, callbacks=desired_callbacks)
model.load_weights(filepath)
model.compile(loss='categorical_crossentropy', optimizer='adam')
num_to_char = dict((i, c) for i, c in enumerate(chars))
start = np.random.randint(0, len(x_data) - 1)
pattern = x_data[start]
print("Случайная выборка:")
print("\"", ''.join([num_to_char[value] for value in pattern]), "\"")
for i in range(1000):
x = np.reshape(pattern, (1, len(pattern), 1))
x = x / float(vocab_len)
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
result = num_to_char[index]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]

Binary file not shown.

View File

@@ -0,0 +1,178 @@
Today there is no peace in the yard again, because the predatory beast is no longer sleeping.
Everyone in toxic territory bites their tongue, as if waiting for them all to be torn to shreds: cruelly and bloodthirsty. They turn around: frantically and fearfully. The blood runs cold in their veins, their hearts beat dully in their chests, and devils dance before their eyes.
No one allows them to move from their place and take shelter even behind tall trees nearby. They may be found there too. They hear very quiet steps, and all this is just imagination, built on fear and fear, which pulsate with acute pain in their temples. They whisper words to the gods they believe in and worship, and since these people are still alive on this earth, they probably hear them. But it seems to them that if they move too sharply one more time, they will be found and nothing resembling a person will be left behind. A thought like this excites and drives you crazy more and more with every worthless minute, saturated with cowardice.
The only owner of the territory where the frightened and timid are located, occasionally outlines their silhouettes with a cold gaze and admires how much fear lives in them just because of one living creature. They don't know anything about courage. He sometimes gets sick of such behavior, but he is not going to blame these people for anything, since he is the only one here who knows not only human language. He grew up in such conditions, was raised differently: unusual and wild for the rest of the inhabitants of the planet. Almost from birth, he studied those things because of which they might consider him crazy, a madman in this toxic territory. And poison flows through the earth only because of lifestyle, views, principles, traditions.
Alpha looks at the armed guards of his house - they fought, saw many deaths, but still have fear in their chests - now he keeps his expressive eyes on the orange setting sun, which illuminates the whole of Botswana with its dim light, and later returns to his hands with two large sharp knives. He sharpens them loudly against each other, notices the bright shine and reflection of his face. Sees the one whom many people on this earth fear. He built a terrible reputation for himself.
The man again turns away from his occupation, puts the bladed weapon down on the rocky ground and turns his head. He hears approaching steps and completely switches to this sound. A dark-skinned alpha of about twelve years old is shaking all over, and beads of sweat are rolling down his temples. The tray he holds in his childish hands makes noise along with his heart. He is afraid, but tries to hide it in front of the owner of the poisonous territory. And he sees everything, does not get angry, only feels how interest awakens in him. This boy, moving in his direction, is now terrified, afraid of a living creature, but continues to walk towards him, periodically examining the huge yard from where he can jump out. The guards standing at the tall iron lattice gates look back with the same fear.
They are all children. They're all the same.
The boy approaches and immediately lowers his intimidated gaze, chewing his lips and having no idea where he should start. He is new here: not even a week has passed since his arrival in this huge house.
“Sir...” his childish voice can be heard very quietly, and the older one just arches his eyebrow. “Chon-Reno,” he recalls how his dad told him that the owner of the house prefers to be called by his last name. “Your...” he holds the tray a little forward and realizes that he has again forgotten the name of the alcohol that fills the small crystal glass. “Your...” he repeats and swallows saliva. - What you asked.
“Rum,” Chon-Reno helps him. “This is rum, Ezi,” he takes a glass of drink and nods. The boy looks up at him in surprise, not expecting the man to remember his name. - Why are you so afraid? — narrows his bright gray eyes, bowing his head slightly.
Yezi bats his thick black eyelashes.
Does the senior alpha really not know why everyone in this territory is scared right now? Even God himself knows about this.
The Lion God should also guess...
“You released Diego,” he says as if trying to convey to Reno the full depth of his madness.
“Hes not a monster,” the steely voice frightens.
- He's a predator, sir...
The corners of the elders dry lips twitch a little, and his indifferent gaze is averted to the side.
His predator.
Diego is nowhere to be seen. His boy is having fun, content with walking on the ground, the clean evening air and the big orange sun that gives its warm light. The beast catches his rays and growls. He is also a living creature, and just like people, he wants to be free and let go, but unlike pitiful people, he is not a coward and is not afraid of what God has created. Stronger, wiser and more dangerous. This powerful predator is finally heard: the sounds it makes attract Renos precious attention, and the dark-skinned boy is forced to flinch and turn around, roaming around the territory with huge, frightened eyes. Fear dances in his blood, and his heart beats like a pitiful bird driven into a corner. He shudders from conflicting sensations, which the man next to him notices.
He-Renault looks blankly at Bello Jesi, the twelve-year-old alpha from a poor family who works in this large mansion. The man has known him for a couple of days, and he still has not gotten used to the usual way of life of the owner of this center of horror and madness.
“Yessi,” he coldly calls and receives due attention to himself. “Go into the house, ask to put meat for Diego,” the younger one quickly nods and is about to leave. “And you will bring it to me yourself,” and these words already seemed much more terrible.
“What?...” he asks again, not believing.
- You heard me.
But it seems that I misheard.
A terrible feeling of cowardice and resentment is swarming in his chest, but Ezi cant object or express his reluctance to go out into the yard a second time, and even with a raw piece of meat for a predator. He can only vaguely nod to the elder again and hastily go to the stairs leading to the doors of the mansion.
And the owner of the house himself chuckles at the boys timid reaction. Without taking a sip, he puts the glass of rum on the ground and rises from the small chair. Kneading his neck with his palm, on which the face of a lion is drawn in detail, the alpha is precisely preparing for a brutal, bloody battle. Again. His gray eyes are bright and calm, but interest in what is to come will sparkle in his pupils after a couple of minutes. Running the tip of his tongue along his lower lip, Chon-Reno's gaze runs around the vast courtyard, where his beloved figure is not yet visible - it is heard so clearly and loudly that it is impossible to hide his admiration and sincere love. But these sounds do nothing to calm the guards at the gate. They are not used to them. They will never get used to it because they didnt raise him like Jungkook did.
When Yezi finally comes out of the house, holding a small tray with a piece of meat in his hands, Reno grins again and puts his hands behind his back. He waits for him, looks at him and hears from afar how he desperately breaks the little alphas chest. He is getting closer to him, often looks around and whispers something under his breath. Is it really prayers? The man quirks an eyebrow and turns his head, hearing another loud roar that he could only be proud of. His boy has grown up a lot and become strong, which is why he scares everyone so much. Maybe Chon-Reno's sounds make him smile contentedly, but for Yezi they make him want to hide behind one of the columns. Only Reno himself is waiting for him, and he cannot afford to fulfill what he wants, otherwise the truth will receive its well-deserved punishment. And thats the last thing I want right now.
Every resident of Botswana has already heard about harsh methods of retribution for disobedience.
“Sir, heres the meat,” Yezi whispers, standing opposite the man and feeling tears welling up in his expressive eyes. -Can I go into the house now?..
A child's heart just begs for dad.
- No, - frost and cold.
From such an answer, the boy tightens his grip and bites his lip until it hurts, and then obediently turns his gaze to where Jungkook is looking.
Now Diego's eyes appear in the semi-darkness.
Fear beats like a second heart in your chest, and your throat suddenly dries up. Ezi wants to run away from here when he sees that a predatory animal is coming out from around the corner of the mansion, showing that he is also the owner here. He looks at the dark-skinned boy and the tall man standing next to him, showing a proud smile on his dry lips. His steps are slow, confident, because he knows his worth well and how majestic he now looks under the orange light of the sunset sky. He walks boldly and gracefully, piercing with a sharp gaze, sensing food somewhere near him. The look is wild, free, omnipotent. The stripes, smoothly located on his velvet fur, could always attract someone else's gaze, drive him crazy and beg for mercy. The dark stripes are shadows from tall trees, and between them are the yellow reflections of the African sun. The whole appearance of the beast is peaceful, but for some reason it sends a terrible shiver through the skin.
So handsome and young. Reno is unable to take his interested gaze away from him, just like poor Ezi, who is frozen. This is the first time he sees the beast so well and clearly; before that, he had only heard about the powerful Diego, whose appearance forces everyone to believe in God. Even ordinary steps hypnotize everyone in this area.
Jungkook looks down at Bello Yezi and chuckles.
“Bring him his snack closer,” the boy swallows his saliva nervously and looks up at Chon-Reno, dumbfounded. “The only way to escape from a predator is to feed him something else,” Ezi reads instructively to him something that Ezi does not believe in, and the elder squats down in front of him, looking into his glassy, rounded eyes. “You dont want to be eaten by him, do you?” - he is silent. “Then give him what he wants and he wont hurt you.”
“Sir, please,” he begs in a trembling voice. “Hes a tiger, I never approached them...” he tells him the obvious, hoping for pity. - Is it dangerous…
— Take this meat to Diego, Ezi, firmly and undeniably.
In an instant, the boy becomes more afraid of Chon-Reno Jungkook than of the huge young tiger slowly moving towards them.
“I cant…” he whispers quietly, looking only into the gray eyes opposite.
Who could? Apparently, only the owner of this beast himself.
- You're not up toIm lying to say that,” Jungkook tilts his head slightly to his shoulder. “You havent even come close to him, which means you dont know for sure whether you can or not,” Yezi purses his lips. “Forward,” he orders, nodding towards Diego.
The Bengal tiger is getting closer to them, continues to move and keeps its yellow eyes only on a person it does not know. He sees it for the first time, which is why he analyzes it so predatorily, forcing Ezi to hold her breath and finally take a tense step forward. To Diego.
He is also closely watched by Reno, who calmly gets back to his feet and straightens his back. The boy is holding up really well. Jungkook was already hoping that he would burst into tears and just storm out of here. He wouldnt follow him: its not for him to judge a teenager for a completely significant and logical fear. Not everyone here dares to approach Diego and feed him. To be more correct, no one has ever done this before. Only Chon-Reno is so close to him: he lives in the same room with him and does not even dare to be afraid of this beast, which he himself saved, and raised himself. A tiger can bite him only as a joke, without causing severe pain. But it seems to Yezi that the day has come when he will have to say goodbye to his short life. I certainly didnt think that I would die from the fangs of a tiger. Such horrors never entered his head.
Diego, noticing and smelling a piece of meat, quickens his pace and emits a low growl, which can only scare the boy more, who still hopes for the reasonable thoughts of Jungkook standing behind, but is not going to stop.
If you are destined to die today, so be it.
Yezi already boldly looks into the eyes of the tiger approaching him and stops a couple of meters from Chon-Reno, squatting down and keeping his gaze on the incredibly beautiful beast. The senior alpha is even a little surprised at this bold step, watching what is happening and grinning slightly. The younger one bites his lower lip and looks down at the scarlet piece of meat on the silver tray, which he places on the rocky ground, taking an uncertain small step back. He closes his eyes painfully and clenches his fingers tightly into a fist, already beginning to feel the non-existent pain brought to him in the near future by a hungry tiger. During these seconds, he manages to say goodbye to his parents, whispers asking them for forgiveness for all his mistakes, listening to the approaching steps. It seems his heart will stop before the beast approaches.
But…
The sun-kissed tiger - Diego - roars throughout the yard, majestically scattering the birds in the trees and on the roof of the mansion. Ezi opens his eyelids in fear and sees in front of him the evil face and huge mouth of an animal, which in the next second sinks its fangs into a piece of raw meat. He doesn't stop growling at the boy, as if he's trying to tell him something. But the teenager only looks dumbfounded into the yellow eyes and forgets to breathe, falling on his heel to the ground and opening his mouth. Diego just takes the meat and runs to the side, throws his snack away from the boy, lies down next to her and calmly begins to lick and eat his favorite delicacy, depriving Ezi of the thought of possible death. With pleasure and a growl, he tears off small pieces, immediately swallowing them and sometimes glancing at his owner.
Jungkook smiles weakly, looking at the tiger and hiding both hands in the pockets of his black cargo pants. He slowly turns his gaze from him to the boy lying on the ground and looking with the same shock at the quiet Diego, who no longer pays any attention to him. The beast is busy with his real food, and not with the person who brought it to him. Probably, only Jungkook was convinced until the last seconds that Diego would not touch Yesi.
He never doubts his tiger and his lions.
He knows their every move in advance.
The dark-skinned boy and many foreigners expect that every African speaks to animals as equals, understands their thoughts and language. But there are few like them in all of Botswana. Units. And among them, at the top stands Chon-Reno Jungkook - the Lion God. Only Bello Ezi now seems that the man, at twenty-eight years old, has also become the patron saint of tigers.
The young alpha has difficulty getting up from the ground, looking away from Diego and turning to his owner, who was looking at him so sharply and piercingly. Now Jungkook is approaching them: calmly and slowly. But Yezi is no longer afraid, as if the tiger gave him incredible courage because of his proximity to him. Alpha believes in such tales heard from other people's lips. He also believes in that terrifying feeling that is stored in the chest of a man who has the face of a lion depicted in black ink on his neck. The true lion god. This God stands a meter away from the no longer frightened boy, but delighted with what he saw two minutes ago. Of course, he was amazed at how close the young Bengal tiger was to him. I would run to tell this story to my friends and classmates, but they would never believe it, so the important memory will settle deep in my heart.
“Sir...” Yezi begins in shock, swallowing his saliva. “Diego didnt touch me,” he looks at Jungkook, who chuckled under his breath. - Why? He could...
A couple of seconds would be enough for the beast to tear him bloodthirsty to pieces.
-You fed him what something else remained untouched,” a deep, heavy voice is heard. “The fangs and claws did not penetrate you only for this reason.” “Hes a predator, not a killer,” Yezi relaxes a little and nods briefly, remembering his words. “He needs food, not someones death,” Reno, having finished, looks at his striped boy.
“Hes very handsome,” Ezi admits quietly, also looking in the direction of the beast.
Jungkook looks down at him and grins.
“Incredibly beautiful,” he confirms out loud.
Yesi smiles and ultimately does not conceal the question:
-Can I go now?..
Reno nods without a word.
Yezi smiles broadly and takes the tray from the ground, after which he runs into the huge mansion, wanting to tell his father, who is in charge of the kitchen, about what happened.
The bright rays of the setting African sun play fabulously on the striped coat. Jungkook is currently fascinated by the sight in front of him. Diego has grown a lot. He is only a year and a half old, but he is the size of an adult tiger. Its hard to believe that not so long ago the animal was a small animal, and it constantly hovered next to Chon-Reno, did not really leave him: it climbed, playfully growled and bit its owners legs, wanting to attract proper attention to itself. Got used to Jungkook too quickly. After Jungkook took him to himself, wounded by adult animals, two weeks were enough for the tiger cub to trust completely and secretly climb onto the alphas chest at night. And when he couldnt sleep, he scratched and bit his chin, forcing Jungkook to wake up. And he woke up, played, fed and returned back to bed, followed by little Diego with his majestic gait.
To this day the tiger does the same.
Jungkook, with a smile on his lips, slowly approaches the animal, which with wild appetite throws the remaining small piece of meat into its mouth. Diego himself jumps up and runs to his owner, who is squatting. The tiger immediately climbs on him, as if with a real human hug, and playfully begins to roar, causing Reno to smile wider, clapping and stroking the animals stomach with his large palm. He does not calm down, he already runs his tongue along the alphas neck - showing his true love for him. Jungkook lowers himself to the ground and runs both hands through the tigers soft fur, paying due attention to the place behind the ears, just as Diego loves. With such affection he becomes a kitten. He spins around, licks where he wants, and nuzzles Chon-Renos chin, who laughs at this behavior. No one will ever dare to scold him for this.
“Youre getting heavier and heavier every day, Diego,” Jungkook chuckles and continues to stroke him. “Youre scaring everyone around with your appearance, big boy,” the tiger pulls back and walks around the man, already pressing against his back and running his tongue along the nape of his brown hair. “Youll never scare me alone, dont even count on my fear,” Reno turns his head to Diego. He growls at him quietly, as if responding to the words spoken. “You and I are two predators, and only God knows which of us is more dangerous.”
And Chon-Reno already knows who is more dangerous on this earth.
And so he lived: playing pranks in his dreams out of boredom, enduring torment and disappointment. Once again he promised himself to return home soon. Only there will he find salvation, peace in his heart, luck - a piece of happiness.
This place will make him forget all the sorrows and all the pain, will make him feel as if he drank a bottle of wine.
Another click and another divine frame saved on the flash drive of an expensive new camera. Honey eyes instantly catch on to the photograph taken, which is displayed on the small screen. The local landscapes will force the young guy to clearly feel charm, delight and admiration until the end of his life. By looking at these beauties, a person is able to get rid of any infection and pain. Here the blind will become sighted, the deaf will learn the world of sounds. The clear blue sky, the warm November sun, tall and short trees, wild animals running around the territory, everything—everything forced me to smile and relax.
The young alpha, driving a black jeep, which was easy to drive on rough roads, turns his head to the omega sitting in the passenger seat, who is examining the photograph taken with a slight smile on his lips. Among the ashen silky hair, the pure rays of the immense sun are tangled. Sliding lower, they decide to touch open areas of light skin, as if they are deliberately highlighting noticeable marks on the body.
From the first seconds, the driver was attracted by one striking feature of this guy. This quickly caught my eye. All the way, the man cannot find the strength to get curiosity out of his head: he either watches the road, or turns his gaze to the passenger, secretly looking at more than just a pretty face.
I had never been able to see something like this before.
This involuntarily frightens, frightens, forces you to think and construct your own theories in your thoughts, but an African hardly dares to ask. Perhaps the omega does not want to talk about it, hides something and feels pain when strangers pay attention.
Alpha chews his lower lip and looks at the road, lightly pressing the pedal. Omega bats his eyelashes and slowly turns his head, looking at the driver. He thought that it seemed to him that the guy was examining him in detail for a fairly clear reason, but now he was finally convinced of this. He immediately panics, ashamed of his unscrupulous behavior. Meanwhile, the omega is simply embarrassed, covers himself with a light blush and pulls the deep neckline of his white T-shirt up, slightly covering the sharp collarbones that he had just carefully examined. This action makes both of them even more awkward.
Kim Taehyung can't really hide anything. All he has to do is come to terms with this - he has been doing this for seven years.
“Sorry,” the driver says quietly and purses his lips. - I shouldn't have.
“You are not the first and not the last,” Taehyung purses his lips in a slight smile and looks kindly at the alpha. “I should get used to this kind of attention by now, dont worry,” he chuckles and looks at the camera screen, adjusting the colors.
“Its not ugly,” he decides to give a compliment and is afraid of the guys reaction, hearing a quiet laugh. “True,” he nods several times, keeping his eyes on the road. - Rather, it is very unusual, mysterious...
“There is no mystery in this,” Taehyung answers and smiles softly.
Everything is elementary.
But everyone keeps asking the question: “What is this?” No matter who you meet, they will definitely ask you, and he will calmly answer. He wasn't tired of it. Each time it amazes me more and more with its history.
How did you survive?
The dark-skinned alpha no longer touches on this topic, and Taehyung simply points the camera at the incredible landscapes. It still takes my breath away: everything around me looks too beautiful, too unreal. He takes several photographs at once for his archive and only after a while realizes that they will very soon arrive at the right place. This thought makes a flame ignite not only in honeyed eyes, but also in the very heart. The guy takes photographs of his favorite view from here too; there are definitely no city streets next to him. This is not Hong Kong, which quickly fell in love. This is not New York, where I rushed for a week. This is not even Seoul, where he began to build his new life. This is something truly beautiful, real, divine, untouched by the modern gaze. Here you can see the past.
The driver immediately notices such a reaction and raises the corner of his lips, looking at the omega. On his face. He no longer crosses the line and doesnt look down where he shouldnt. He analyzes only the eyes, looking painstakingly into the distance, because of which Taehyung cannot contain the desire to smile even wider. He hastily turns off his camera and is simply content with the view. The further they drive, the more they see wild animals resting and walking in the vast grassy area. Taehyung looks out the open window, noticing a curious zebra not too far away, batting his thick eyelashes and looking at the jeep passing by. When they find themselves further away from this beast, the omega still turns around and laughs, seeing that the zebra is still looking at him.
How I missed you...
From love for this place in the chest, the flowers open up, as if after a long sleep.
— Is this your first time in Botswana? - asks the driver.
Taehyung, breaking into a happy smile, turns to him.
- Why did you think that?
— You are fascinated by the local view.
Here anyone will be delighted with what they see.
Birds fly above them and sing loudly. There are only animals around: parents and their cubs. On one of the tall trees you can find a cheetah hiding from the scorching African sun. While driving along the rough road, Taehyung managed to see a family of elephants calmly drinking water. The omega captured them in a photograph after leaving the jeep for a couple of minutes.
“This is my home,” Taehyung answers proudly, lifting his chin a little and taking in the view in front of him through the windshield. “I was born here,” a wide, snow-white smile sparkles on his lips. - I came to my homeland.
Born in a magical and terribly beautiful world. The first steps were taken on this land, in Botswana the omega began to babble incomprehensible words, it was here that he learned a lot, and to this day he remembers every little thing that was hammered into his head not only by his parents, but also by other residents of the state in South Africa. Taehyung kept all the details in his head and heart, took them with him to another country and returned back without forgetting anything. And now he only understands how much he missed his native continent, all his acquaintances, classmates and friends with whom he grew up.
But most of all, Taehyung missed his blood. According to his older brother, who is now, apparently, standing on the street and waiting for him to return home after four years.
Taehyung counted the hours until the long-awaited trip. And here it is, before his eyes all the beauty that he dreams of on sweet nights.
Alpha is really surprised by this fact. I didnt at all expect to hear that this fair-haired guy was from South Africa, since he didnt look like one, and thought he was a tourist. Alpha is an ordinary taxi driver, and Taehyung was his first client today. Early in the morning, with a wide smile and a camera in his hands, he jumped into a black jeep, dictating the address and immediately offering money.
“Ill be honest, I couldnt even think that you were local with alpha eyebrows and grins.
“Looking at an Asian man, no one would think he was Botswanan,” Taehyung shrugs, never stopping to smile.
“I didnt mean your race,” the driver immediately corrects him in a kind and gentle tone.
Omega arches an eyebrow and looks at the dark-skinned alpha in confusion, gradually plunging into his confused thoughts. The words spoken in his direction had a strange effect on him: they forced him to think and involuntarily swallow his saliva.
Most of all, he was afraid that in another country he would cease to be who he truly is. With all his might he kept within himself the origins, traditions and customs of African lands, what he was taught from birth. Parents made kind, peace-loving, honest people out of their sons, depriving both of them of greed and malice. Regardless of the actual nation, they tried to cultivate the soul of the African in them.
Taehyung feels like he still is. Four years of living in South Korea did not take away his heart and soul.
Kim Taehyung was a Botswana and will be one even in another world.
Only after a while the omegas gaze falls on his own expensive white shoes and denim shorts of the same color just above the knees. On her right wrist sparkles a diamond bracelet, given by her grandfather, which he could not refuse, although he is still ashamed to wear it. He is afraid to find out what the price of this jewelry is. He received it two months ago as a gift for his eighteenth birthday. He refused, begged him to remove such a bracelet from his eyes, assuring him that he could manage without it and live happily, but dads father was too generous towards his youngest grandson, with whom he lived under the same roof for four years. Taehyung received and, most likely, will receive things, jewelry, and large sums on his card in Botswana from his grandfather. He doesnt want this at all on African soil, unless he intends to withdraw this money for those in need.
And it was enough for him that he just finally got out of Seoul. I was able to return to my native land. He wants to smell like Africa again, and Africa wants to smell like him.
Absorbed in his thoughts and worries, Taehyung does not have time to notice how they arrived at the right place. The place where he was born and where he grew up until he was fourteen years old. The jeep drives at low speed into a small settlement with quite a few neat, simple houses. It's calm and homely here. There is a chance to be saved here. Here Taehyung, surrounded by his past, will be able to breathe deeply. He will even try to forget the horror that happened to him seven years ago.
Forgives Botswana all moral and physical pain.
The car stops somewhere in the middle of an empty street, and it is at that moment that Taehyungs heart begins to beat twice as fast. The driver quickly turns off the engine and gets out, heading to the trunk to help the omega with his suitcases, and Taehyung remains sitting in the seat. Its scary to go out, to some extent even ashamed. He has not set foot on this land for such a long time that he now considers himself unworthy to walk these African streets again, as if he had betrayed them and exchanged them for Seoul ones.
My brother didn't do that. Taehyung - yes, and it makes me sick. But at that time, others made decisions for him.
His lips stretch into a gentle and weak smile, and his hand reaches for the door handle, which he dares to open after a couple of seconds. He fixes his light eyes on the already visible figure. The guy, who is eight years older than Taehyung, stands with his arms crossed over his chest, smiling at the corner of his lips and looking at the face of his younger brother. Omega closes the door behind him and adjusts the camera strap that hangs around his neck. They look at each other and just smile widely, not believing their own hearts, which tell them that they are together again in this territory. Taehyung still feels like he's in a dream. He wanted this so much. Hundreds of times the guy asked to return to his native land and was refused just as many times, so soon the omega began to doubt the possibility of returning home.
“Juhyuk...” he says on an exhale.
Taehyung throws the camera on his back and runs up to his brother first, bumping into him. The alpha laughs hoarsely and puts all his strength into the hug, at the same time kissing the ashen top of the head with all his love for this person. Omega is very tiny next to him, just as he was in childhood. Hasn't changed at all. He always stands on his tiptoes when he tries to hug Juhyuk, who is touched and strokes his back with his palm. Taehyung smiles brightly as the alpha easily lifts him off the ground and holds him tightly in his arms, leaving short kisses on his shoulder. Omega pulls back slightly and looks at him, radiating one warmth and sincere happiness that the elder Kim had been missing for six months.
Six months apart. For six months they were in torment without each other.
“Taehyung,” the omega finally hears his voice. Juhyuk lowers the guy to the ground and kisses his forehead. “Angel,” the younger one looks up at him and wrinkles his nose, smiling.
A man can be so gentle and affectionate with him.
“I was really looking forward to this trip.”
“It seems to me that I will hardly find the strength to let you go again.”
Omega laughs slyly and takes a step to the side to see standing small, but beautiful and neat house.
“Dont look,” Taehyung answers, looking at his brother. — What if I never return to Seoul, Juhyuk? — he chuckles and turns around, noticing a taxi driver with two bright suitcases belonging to Taehyung.
The elder Kim gives the younger one a suspicious look, after which he approaches the driver of the black jeep and takes the suitcases from him, quietly thanking him. Taehyung nods to the taxi driver from his seat and smiles, thanking him. Omega turns back to his home, causing tears to gather in the corners of his honey-colored eyes. He relaxes his whole body and takes in warm air into his lungs, looking around the house in front of him. He definitely changed in the four years that Taehyung wasnt here. He has become more beautiful, although he was like that before, but now changes are clearly visible in him on the outside, apparently, everything has become different on the inside. Senior Brother has definitely done a good job of improving everything here. And this concerns not only their hearth, but also neighboring houses.
Taehyung's considerable pocket money definitely came in handy. It was not for nothing that he secretly transferred them to Juhyuk.
- In what sense will you not come back? - the alpha asks seriously when he comes closer.
“Im just dreaming...” biting my lip.
- Are you dreaming?
- Do you forbid it? - Grunting cheerfully, he takes the suitcase from his brother and leaves for the house.
The man narrows his eyes and looks carefully at Taehyungs retreating back, thinking and soon following him. Omega is the first to enter the house, holding his breath and pursing his lips until it hurts slightly. Juhyuk is in no hurry, glances at the younger and for some reason worries about his reaction. He carefully steps on the new wooden floor and very slowly looks around, batting his black eyelashes with interest.
Four years…
Taehyung has really lost hope that he will return to this house again. One side of him asked to come back, the other was afraid. Previously there were four of them, now there are only two of them.
Juhyuk closes the doors behind him, never taking his eyes off his brother for a second. Concentrates completely on him. Its important for him to know that Taehyung still enjoys being here, regardless of some changes. Nothing really has changed: it has become more beautiful and cleaner. Juhyuk tried very hard to put his house in order and completely immersed himself in this matter. I was distracted by physical labor, I didnt want to let pain and sadness get to me after I was left completely alone in South Africa. After my grandfather took his younger brother to live with him in Seoul.
Dad's father expected that the fourteen-year-old would be much better off in Korea than in Botswana. There, the young omega would try to think about other things, devote time to various creative activities, since in Seoul there is such an opportunity, in Botswana there is no. Taehyung did just that, or rather, he simply listened to his grandfather and went to the school, which was crowded with students, unlike African schools. There were not so many children in school in my homeland, not even half. Therefore, at first Taehyung was very constrained around his peers: it took him quite a long time to get used to such big changes, and sometimes he was afraid to be in such large companies. They didn't look like Botswanans. Completely different people: they have a different lifestyle, different views and strange behavior.
But at some point Taehyung realized that he just had a different heart.
It was a very quiet six months. At night, under the blanket, he cried, trembled all over and moved his wet peach lips, asking for his brother. Grandfather tried to take Juhyuk with him, but the alpha categorically refused such an offer. At that time he was twenty-two years old, and he had the right to decide for himself what was best for him. The grandfather did not insist, he only warned that he would definitely help him with money. And Juhyuk sometimes flew to Seoul just for Taehyung. And it was only during these periods that the younger brother truly felt good, as if nothing terrible had happened in his short life.
“Beautiful,” Taehyung says with a smile, looking at the alpha.
The elder lets out a quiet chuckle and leaves the suitcases against the wall, moving closer to the omega.
- I'm glad you think so.
“Its still the same comfort as before,” he sighs in fascination, continuing to look around. - Still the same warm atmosphere...
There was no such warmth in Seoul.
“I was afraid you wouldnt like it,” says Juhyuk. “I tried not to change anything too much, so as not to deprive this house of its past.”
His words make Taehyung feel warmer.
“You really have preserved the past in this little magical house.”
“Our memories will not disappear from here.”
The younger Kim turns his head towards the soft cream sofa and pays attention to the small glass table next to it. You dont have to look at him for long; he quickly notices his own photograph in a small frame. It's a selfie, and my brother actually printed it out, framed it, and put it in a prominent place. Taehyung smiles widely in the photo, because he then took a photo specifically for Juhyuk, who was suffocating without him in Botswana, and the omega quickly turned on the front camera and improved his brothers mood with his smile.
“Juhyuk,” the alpha hums questioningly, looking at Taehyung, who has approached slowly striding towards the sofa and keeping his gaze on the framed photo. “I want to stay,” he says with fear, fearing the elders reaction. “Im not drawn back to Seoul,” he bites his lip until it hurts and looks at his brother.
The alpha sighs and approaches him, taking the angelic face into his large palms and starting to examine every millimeter. So pale. The skin is light, not the same as before.
Korea took away one of his highlights. A few years ago, the color was dark, tanned due to the hot African sun, but as soon as he went to another continent, he immediately turned pale. But still he did not stop shining with beauty. His facial features are unique, unusual, and to some extent rough. Juhyuk will never get tired of telling his brother how handsome he is, but he will continue to be shy and kick him with his fists so that the alpha will stop. Juhyuk is too gentle and kind to him, but also strict, like a real big brother.
Only now I really want to argue with him and insist on my desire.
“How many more times do we have to raise this topic, Taehyung?” — Juhyuk asks, stroking the omegas cheekbone with his thumb.
- Until you agree...
“Stop it,” a little harsher.
Taehyung chews his lips and looks him straight in the eye, after which the alpha pulls away and sits on the sofa.
The elder Kim does not accept his brother's ardent, real desire to stay at home. It is unbearable.
It is unbearable to live where the heart does not lie.
“Juhyuk...” he whispers pleadingly, sitting down next to him.
“Ive told you the answer many times,” the alpha says calmly.
“And every time I dont like him.”
“But he wont change,” he says sharply, slightly pursing his lips.
Taehyung reaches out to his brother and puts his head on his chest, lifting his legs onto the sofa. Curls up like a ball.
“Youre unfair to me,” he frowns at the alpha, weakly hugging him.
He always refuses Taehyung's request to stay. Omega has been begging for the third year, but he still doesnt get the words he needs. Juhyuk becomes gloomy when he hears such words from him, changes his tone of voice and literally breaks Taehyungs little dreams. He is still surprised that the alpha allowed him to fly to his homeland at least for a while, in order to relax and take his mind off his studies. Omega tried very hard: he sobbed into the phone like crazy and shouted at his brother, trying to convey how much he missed him. His whole face was so swollen from crying that Juhyuk, seeing him so disappointed on his phone screen, decided to just give up after a couple of days and allowed him to visit South Africa four years later.
“Youre the one whos being unfair to yourself,” Joohyuk says and looks straight into his honey eyes. “You have no future here, so you better think about your studies, which I will never allow you to quit,” Taehyung shrinks a little from such a tone. “You came here to relax and will definitely come back.”
Omega, with every living cell of his body, does not want to fly to Korea. He lives there with his grandfather in a huge mansion, and, probably, any resident of Africa would dream of being in such a place, but not Taehyung. Loves his grandfather, but his heart is definitely drawn to Botswana. Here he is much more comfortable and warmer in every sense. Not only the soul took a long time to get used to the new environment, but also the body itself. Due to climate change, Taehyung was often sick and sat at home with a cold and terrible pain in his bones.
“I could fly to Seoul only for exams, but I would study here around the clock...” he says with another concern, already realizing that the alpha will not like this.
Juhyuk gives him an angry look, narrowed pupils threatening and outlining his cheekbones. Omega purses his lips and still does not move away from his brother, only hugs him tighter and frowns slightly, knowing about another refusal.
Taehyung went to an African school early, so he graduated from a Korean school at the age of seventeen, which is why he was the youngest in his class. And now, being in his first year of journalism, the omega remains the smallest guy among his classmates. This is not scary, since Taehyung tried to find a common language with the guys, wanted to join their team, and he really managed to do this in a couple of months. The relationship between them was so good that some of the guys, including Taehyung himself, agreed to fly to Beijing in November. And when the trip was already approaching, Kim heard the long-awaited words from his older brother, who pleased him that the omega could fly to Botswana for a while. Taehyung didnt spend a minute thinking and immediately chose South Africa, throwing China out of his mind.
“No,” kisses the younger alpha on the forehead.
“Youre disgusting, Juhyuk,” Taehyung snorts, rolling his eyes and rubbing his head against someone elses chest.
He laughs hoarsely.
- Nasty?
“Thats right,” he immediately confirms. “I dont want to leave you here alone,” he sighs, closing his eyelids. — I should be in Botswana.
My parents have not been around for four years, and the two of them must live together, and not be scattered across different continents.
“Botswana is not the same anymore, angel,” he hugs his younger brother.
Taehyung doesnt understand and looks at Joohyuk questioningly. But instead of answering, the alpha only twitches the corner of his lips and touches his knuckles cheeks.
This movement quickly drives away bad thoughts about home from the guy.

View File

@@ -0,0 +1,178 @@
Сегодня во дворе вновь не стоит покой, ведь хищный зверь уже не спит.
Каждый, находящийся на ядовитой территории, прикусывает свой язык, точно ждёт, когда их всех в клочья разорвут: жестоко и кровожадно. Оборачиваются по сторонам: судорожно и пугливо. В их венах кровь стынет, сердце глухо бьётся в груди, и черти перед глазами пляшут.
Никто им не позволяет сдвинуться с места и укрыться хотя бы за высокими деревьями поблизости. Их могут и там обнаружить. Они слышат очень тихие шаги, и всё это лишь воображение, построенное на страхе и испуге, которые пульсируют острой болью в висках. Шепчут слова богам, в которых они верят и которым поклоняются, и раз эти люди все ещё живы на этой земле, то, вероятно, их слышат. Но им самим кажется, что если двинутся лишний раз слишком резко, то их смогут найти и не оставят ничего похожего на человека. Мысль подобная будоражит и сводит с ума всё сильнее с каждой никчемной минутой, пропитанной трусостью.
Единственный хозяин территории, где находятся запуганные, несмелые, изредка очерчивает их силуэты холодным взглядом и восхищается тем, сколько в них страха живёт только из-за одного живого существа. Они ничего не знают о смелости. Ему порой бывает тошно от подобного поведения, но винить этих людей ни в чём не собирается, так как он один тут знает язык не только человеческий. Он вырос в таких условиях, был воспитан по-другому: необычно и дико для остальных жителей планеты. Почти с рождения учился тем вещам, из-за которых могут посчитать его сумасшедшим, безумцем на этой ядовитой территории. А яд протекает по земле только из-за образа жизни, взглядов, принципов, традиций.
Альфа смотрит на вооруженных охранников его дома — те воевали, видели множество смертей, но по-прежнему имеют страх в груди, — теперь выразительные глаза держит на оранжевом заходящем солнце, которое своим тусклым светом освещает всю Ботсвану, и позже возвращает к своим рукам с двумя большими острыми ножами. Их он звонко точит друг об друга, замечает яркий блеск и отражение своего лица. Видит того, кого боятся многие люди на этой земле. Сам себе построил ужасающую репутацию.
Мужчина вновь отвлекается от своего занятия, откладывает холодное оружие на каменистую землю и поворачивает голову. Слышит приближающиеся шаги и полностью переключается на этот звук. Темнокожий альфа лет двенадцати всем телом трясётся, и по вискам его капельки пота катятся. Поднос, который он держит в своих детских руках, шумит вместе с его сердцем. Боится, но пытается скрыть это перед хозяином ядовитой территории. А тот всё видит, не злится, только лишь чувствует, как пробуждается в нём интерес. Этот парнишка, двигающийся в его сторону, до ужаса сейчас напуган, страшится живого существа, но продолжает идти к нему, периодически осматривая огромный двор, откуда может выскочить он. С таким же страхом оглядываются и охранники, стоящие у высоких железных решетчатых ворот.
Они все дети. Они все одинаковые.
Мальчишка приближается и сразу опускает запуганный взгляд, жуя губы и понятия не имея, с чего ему нужно начать. Здесь он новенький: не прошла и неделя с его прибытия в этот огромный дом.
— Сэр… — совсем негромко слышится его детский голос, а старший только выгибает бровь. — Чон-Рено, — вспоминает, как папа говорил ему, что хозяин дома больше предпочитает, чтобы его звали по фамилии. — Ваш… — он протягивает поднос чуть вперёд и понимает, что снова забыл, как называется алкоголь, наполняющий небольшой хрустальный стакан. — Ваш… — повторяет и проглатывает слюну. — То, что вы просили.
— Ром, — помогает ему Чон-Рено. — Это ром, Ези, — берёт стакан с напитком и кивает. Мальчик поднимает на него удивлённые глаза, не рассчитывая, что мужчина будет помнить его имя. — Почему ты так боишься? — сужает свои ярко-серые глаза, немного склонив голову.
Ези хлопает густыми чёрными ресницами.
Неужто старший альфа действительно не знает, почему всем на этой территории сейчас страшно? Даже сам Бог об этом догадывается.
Должен и львиный Бог догадаться…
— Вы выпустили Диего, — произносит это так, точно пытается донести до Рено всю глубину его безумия.
— Он не монстр, — стальной голос пугает.
— Он хищник, сэр…
Уголки сухих губ старшего немного дёргаются, и безразличный отводится взгляд в сторону.
Его хищник.
Диего поблизости не видно. Его мальчик развлекается, довольствуется хождением по земле, чистым вечерним воздухом и большим оранжевым солнцем, которое дарит свой теплый свет. Зверь его лучи ловит и рычит. Тоже живое существо, и оно точно так же, как и люди, желает быть свободным и отпущенным, но в отличие от жалких людей, он не трус и не боится созданного Богом. Сильнее, мудрее и опаснее. Этого могущественного хищника наконец слышно: звуки, которые он издаёт, привлекают драгоценное внимание Рено, а темнокожего мальчишку заставляют вздрогнуть и обернуться, огромными напуганными глазами шастая по территории. Страх у него танцует в крови, и сердце бьётся загнанной в угол жалкой пташкой. Он содрогается от противоречивых ощущений, что замечает и мужчина рядом с ним.
Чон-Рено бесцветно смотрит на Белло Ези, на двенадцатилетнего альфу из бедной семьи, работающей в этом большом особняке. Мужчина знаком с ним пару дней, и тот ещё никак не привыкнет к обычному образу жизни хозяина этого очага ужаса и безумия.
— Ези, — холодно призывает и получает должное внимание к себе. — Пойди в дом, попроси положить мясо для Диего, — младший быстро кивает и собирается уйти. — И принесёшь мне его сам, — а эти слова уже казались намного страшнее.
— Что?.. — переспрашивает, не веря.
— Ты меня услышал.
Но кажется, что ослышался.
В груди копошится ужасное чувство трусости и обиды, но Ези никак не может возразить или высказать своё нежелание выходить во двор во второй раз, да и ещё с сырым куском мяса для хищника. Ему остаётся только невнятно опять кивнуть старшему и торопливо пойти к лестнице, ведущей к дверям особняка.
А сам владелец дома хмыкает на пугливую реакцию мальчишки. Он, не сделав глотка, опускает стакан рома на землю и поднимается с небольшого кресла. Разминая ладонью шею, на которой детально прорисована морда льва, альфа точно готовится к жестокому кровопролитному бою. Опять. Его серые глаза яркие, спокойные, однако заинтересованность в предстоящем через пару минут в зрачках мелко блестит. Проводя кончиком языка по нижней губе, Чон-Рено взглядом бегает по обширному двору, где пока не виднеется любимая фигура — она слышится так чётко и громко, что невозможно скрыть своё восхищение и искреннюю любовь. Но эти звуки нисколько не могут успокоить охранников у ворот. Они к ним не привыкли. Никогда не привыкнут, потому что не воспитали его, как это сделал Чонгук.
Когда из дома наконец-то выходит Ези, держа в руках небольшой поднос с куском мяса, Рено вновь усмехается и заводит руки за спину. Ожидает его, смотрит и издалека слышит, как отчаянно ломает сердце грудную клетку маленькому альфе. Тот всё ближе к нему, часто оглядывается по сторонам и что-то шепчет себе под нос. Неужели молитвы? Мужчина сгибает бровь и поворачивает голову, слыша ещё один громкий рёв, которым он мог только гордиться. Его мальчик очень подрос, стал крепким, поэтому всех так пугает. Может быть, у Чон-Рено его звуки вызывают довольную улыбку, но у Ези они вызывают желание спрятаться за одну из колонн. Только его ждёт сам Рено, и он не может себе позволить выполнить желаемое, иначе правда получит заслуженное наказание. А этого сейчас хочется меньше всего.
Уже каждый житель Ботсваны наслышан о жёстких методах расплаты за непослушание.
— Сэр, вот мясо, — шепчет Ези, становясь напротив мужчины и чувствуя, как слёзы подступают к выразительным глазам. — Можно я уже пойду в дом?..
Детское сердце так и просится к папе.
— Нет, — мороз и холод.
Мальчик от подобного ответа сильнее сжимается и прикусывает до боли губу, а затем послушно переводит взгляд туда, куда смотрит Чонгук.
Теперь глаза Диего появляются в полутьме.
Страх бьется в груди вторым сердцем, в горле резко пересыхает. Ези хочет убежать отсюда, когда видит, что хищное животное выходит из-за угла особняка, показывает, что здесь является тоже хозяином. Он смотрит на темнокожего мальчика и стоящего рядом с ним высокого мужчину, показывающего гордую улыбку на сухих губах. Шаги его, медленные, уверенные, ведь он хорошо знает себе цену и как величественно он сейчас выглядит под оранжевым светом закатного неба. Гуляет смело и грациозно, пронзает острым взглядом, чуя еду где-то рядом с собой. Взгляд — дикий, свободный, всесильный. Полоски, плавно расположенные на его бархатной шерсти, всегда могли привлекать чужой взгляд, сводить с ума и молить о помиловании. Тёмные полосы — тени от высоких деревьев, а между ними горят желтые блики африканского солнца. Весь вид зверя умиротворённый, но от него почему-то дрожь бежит кошмарно по коже.
Так красив и молод. Рено от него заинтересованный взор отвести не в состоянии, как и застывший бедный Ези. Он впервые видит зверя так хорошо и чётко, до этого был лишь наслышан о могущественном Диего, чей внешний вид вынуждает каждого поверить в Бога. Даже обыкновенные шаги гипнотизируют всех на этой территории.
Чонгук опускает глаза на Белло Ези и хмыкает.
— Поднеси ему поближе его закуску, — мальчик глотает нервно слюну и ошарашенно смотрит снизу вверх на Чон-Рено. — Единственный способ спастись от хищника — скормить ему что-нибудь другое, — читает поучительно ему то, во что Ези не верит, и старший опускается на корточки перед ним, заглядывая в стеклянные округлившиеся глаза. — Ты не хочешь быть съеденным им, ведь так? — тот молчит. — Тогда дай ему то, что он хочет, и он тебя не тронет.
— Сэр, пожалуйста, — молит его дрожащим голосом. — Он тигр, я никогда к ним не подходил… — говорит ему очевидные вещи, надеясь на жалость. — Это опасно…
— Отнеси Диего это мясо, Ези, — твёрдо и неоспоримо.
В миг мальчику становится страшнее от Чон-Рено Чонгука, нежели от огромного молодого тигра, медленно движущегося в их сторону.
— Я не могу… — тихо шепчет, смотря лишь в серые глаза напротив.
А кто бы смог? Видимо, только сам хозяин этого зверя.
— Ты не должен так говорить, — Чонгук немного наклоняет голову к плечу. — Ты ведь даже не приблизился к нему, значит, и не знаешь точно, можешь или же нет, — Ези поджимает губы. — Вперёд, — приказывает, кивнув в сторону Диего.
Бенгальский тигр всё ближе к ним, продолжает двигаться и держит свои жёлтые глаза только на незнакомом ему человеке. Впервые видит, поэтому так хищно анализирует, заставляя Ези затаить дыхание и сделать наконец-то напряженный шаг вперёд. К Диего.
За ним внимательно наблюдает и Рено, который спокойно встаёт обратно на ноги и выпрямляется в спине. Мальчик правда хорошо держится. Чонгук уже рассчитывал, что он расплачется и просто унесётся отсюда. За ним бы не пошёл: не ему судить подростка за вполне существенный и логичный страх. Не каждый здесь решается подходить к Диего и кормить его. А правильнее, так ещё никто не делал. Только Чон-Рено к нему настолько близко находится: живёт с ним в одной комнате и не смеет даже бояться этого зверя, которого сам спас, сам и воспитал. Тигр его лишь в шутку может укусить, не причиняя сильной боли. Но Ези кажется, что настал тот день, когда ему придётся попрощаться со своей короткой жизнью. Уж точно не думал, что умрёт от клыков тигра. Подобные ужасы ему в голову никогда не лезли.
Диего, замечая и чуя кусок мяса, ускоряет свой шаг и издает негромкий рык, что может только сильнее напугать мальчика, который по-прежнему надеется на разумные мысли Чонгука, стоящего позади, но останавливаться не собирается.
Раз суждено умереть сегодня, пусть так и будет.
Ези уже смело смотрит в глаза приближающемуся к нему тигру и останавливается в паре метров от Чон-Рено, опускаясь на корточки и держа свой взгляд на безумно красивом звере. Этому смелому шагу старший альфа даже немного удивляется, наблюдая за происходящим и слегка ухмыляясь. Младший прикусывает нижнюю губу и опускает взор на алый кусок мяса на серебряном подносе, который он кладёт на каменистую землю, делая неуверенный маленький шаг назад. Он до боли жмурит глаза и сжимает крепко пальцы в кулак, уже начиная чувствовать несуществующую боль, принесенную ему в скором будущем голодным тигром. За эти секунды успевает попрощаться со своими родителями, шепотом просит прощения у них за все свои оплошности, слушая приближающиеся шаги. У него, кажется, сердце остановится раньше, чем зверь подойдёт.
Но…
Солнцем целованный тигр — Диего — рычит на весь двор, величественно разгоняя птиц на деревьях и на крыше особняка. Ези испуганно распахивает веки и видит перед собой злую морду и огромную пасть животного, которое всаживает в следующую секунду клыки в кусок сырого мяса. Он не прекращает рычать на мальчика, точно пытается что-то ему сказать этим. Но подросток только ошарашенно смотрит в жёлтые глаза и забывает дышать, падая пятой точкой на землю и открывая рот. Диего лишь забирает мясо и отбегает в сторону, швыряет свою закуску подальше от мальчишки, ложится рядом с ней и спокойно начинает облизывать и поедать любимое лакомство, лишая Ези мысли о возможной смерти. С удовольствием и рычанием отрывает маленькие кусочки, сразу же их проглатывая и иногда поглядывая на своего хозяина.
Чонгук слабо улыбается, смотря на тигра и пряча обе руки в карманы чёрных брюк-карго. Он медленно переводит с него взгляд на мальчика, лежащего на земле и глядевшего с прежним шоком на тихого Диего, который больше не обращает на него никакого внимания. Зверь занят своей настоящей едой, а не человеком, который поднёс её ему. Наверное, только Чонгук до последних секунд был убеждён, что Диего не тронет Ези.
В своём тигре и в своих львах никогда не сомневается.
Каждое их движение наперёд знает.
Темнокожий мальчик и многие иностранцы рассчитывают, что каждый африканец разговаривает с животными на равных, понимает их мысли и язык. Но во всей Ботсване мало таких. Единицы. И среди них на вершине стоит Чон-Рено Чонгук — львиный Бог. Только Белло Ези сейчас кажется, что мужчина в свои двадцать восемь лет стал ещё и покровителем тигров.
У молодого альфы с трудом получается подняться с земли, отвести взгляд от Диего и обернуться к его хозяину, смотревшему так остро и пронзительно на него. Теперь Чонгук к ним приближается: спокойно и медленно. Но Ези больше не боится, будто тигр одарил его невероятной храбростью из-за близости с ним. Альфа верит в подобные сказки, услышанные из чужих уст. Верит и в то ужасающее чувство, что хранится в груди мужчины, у кого на шее чёрными чернилами изображена морда льва. Истинный львиный Бог. Этот Бог становится в метре от уже не напуганного мальчика, а восхищенного увиденным две минуты назад. Конечно же, его поразило то, как близко к нему был молодой бенгальский тигр. Эту историю друзьям и одноклассникам рассказывать побежал бы, но те ни за что не поверят, поэтому важное воспоминание поселит глубоко в сердце.
— Сэр… — шокировано начинает Ези, глотнув слюну. — Диего не тронул меня, — смотрит на Чонгука, хмыкнувшего себе под нос. — Почему? Он ведь мог…
Хватило бы пары секунд, чтобы зверь кровожадно растерзал его.
— Ты скормил ему что-то другое и остался нетронутым, — раздаётся басистый тяжелый голос. — Клыки и когти не всадились в тебя лишь по этой причине. Он хищник, а не убийца, — Ези немного расслабляется и коротко кивает, запоминая его слова. — Ему нужна еда — не чья-то смерть, — Рено, закончив, смотрит уже на своего полосатого мальчика.
— Он очень красивый, — тихо признается Ези, тоже взглянув в сторону зверя.
Чонгук опускает на него глаза и усмехается.
— Невероятно красивый, — вслух подтверждает.
Ези улыбается и в конечном итоге не таит в себе вопрос:
Могу я теперь пойти?..
Рено кивает без слов.
Ези широко улыбается и берёт с земли поднос, после чего бежит в огромный особняк, желая рассказать о случившемся своему отцу, который отвечает за кухню.
На полосатой шерсти сказочно играют яркие лучи заходящего африканского солнца. Чонгук в данный момент очарован этим видом перед собой. Диего сильно подрос. Ему только полтора года, но размеры у него, как у взрослого тигра. Сложно поверить, что не так давно зверь был зверьком, совсем крохотным, и постоянно вился рядом с Чон-Рено, не отходил толком от него: лез, игриво рычал и кусал хозяина за ноги, желая привлечь должное внимание к себе. Привык к Чонгуку слишком быстро. После того, как Чонгук забрал его раненным взрослыми зверями к себе, тигрёнку хватило две недели, чтобы довериться полностью и тайно залезать на грудь альфы по ночам. А когда не мог уснуть, царапал и кусал за подбородок, вынуждая Чонгука проснуться. И тот просыпался, играл, кормил и возвращался обратно в постель, а за ним и маленький Диего своей величественной походкой.
По сей день тигр делает то же самое.
Чонгук с улыбкой на губах медленно подходит к животному, которое с диким аппетитом закидывает в рот оставшийся маленький кусок мяса. Диего сам подрывается с места и бежит к своему хозяину, присевшему на корточки. Тигр сразу лезет на него, будто с настоящими человеческими объятиями, игриво начинает издавать рыки, отчего Рено шире улыбается, хлопая и гладя большой ладонью зверя по животу. Тот не успокаивается, уже языком проводит по шее альфы — показывает свою истинную любовь к нему. Чонгук опускается на землю и двумя руками ведет по мягкой шерсти тигра, уделяя положенное внимание месту за ушами, как Диего и любит. С подобной лаской становится котёнком. Крутится, облизывает, где хочет, и тычется носом в подбородок Чон-Рено, который смеётся над таким поведением. Его за такое никогда никто не посмеет поругать.
С каждым днём тяжелее и тяжелее становишься, Диего, — хмыкает Чонгук и продолжает гладить его. — Своим видом всех вокруг пугаешь, большой мальчик, — тигр отстраняется и обходит мужчину, уже прижимаясь к его спине и проводя языком по загривку русых волос. — Одного меня никогда не вспугнёшь, даже не рассчитывай на мой страх, — Рено поворачивает голову к Диего. Тот на него тихо рычит, словно отвечает на сказанные слова. — Мы с тобой два хищника, и одному Богу известно, кто из нас опаснее.
А Чон-Рено уже знает, кто опаснее на этой земле.
Так и жил: шалил в мечтах со скуки, терпел муки и разочарования. В который раз дал он себе слово скорее вернуться домой. Лишь там обретёт спасение, покой в сердце, повезет — кусочек счастья.
Это место заставит его забыть все печали и всю боль, разрешит чувствовать себя так, будто он выпил бутылку вина.
Очередной щелчок и очередной сохраненный божественный кадр на флешке дорогого нового фотоаппарата. Медовые глаза мгновенно цепляются за сделанную фотографию, что высвечивается на небольшом экране. Здешние пейзажи до конца жизни будут вынуждать молодого парня отчетливо ощущать очарование, восторг и восхищение. Взглянув на эти красоты, человек в состоянии избавиться от любой заразы и боли. Здесь ослепшие станут зрячими, оглохшие познают мир звуков. Чистое голубое небо, тёплое ноябрьское солнце, высокие и низкорослые деревья, бегающие по территории дикие животные, всё — всё вынуждало улыбнуться и расслабиться.
Молодой альфа за рулем чёрного джипа, на котором было легко передвигаться по неровным дорогам, поворачивает голову к сидящему на пассажирском сидении омеге, который рассматривает с легкой улыбкой на губах сделанную фотографию. Среди пепельных шелковистых волос путаются чистые лучи необъятного солнца. Скользя ниже, они решаются трогать открытые участки светлой кожи, точно специально освещают заметные следы на теле.
Водителя с первых секунд привлекла одна яркая черта этого парня. Это быстро бросилось в глаза. Всю дорогу мужчина не находит сил выкинуть из головы любопытство: то следит за дорогой, то переводит взгляд на пассажира, тайно рассматривая не только симпатичное лицо.
Прежде не удавалось подобное увидеть.
Это поневоле устрашает, пугает, вынуждает задуматься и свои теории в мыслях построить, а спросить африканец вряд ли осмелится. Возможно, омега не хочет говорить об этом, скрывает что-то и чувствует боль, когда посторонние люди обращают внимание.
Альфа жуёт нижнюю губу и смотрит на дорогу, несильно нажимая на педаль. Омега хлопает ресницами и медленно поворачивает голову, взглянув на водителя. Рассчитывал, что ему кажется, что парень его детально рассматривает по довольно ясной причине, но теперь окончательно убедился в этом. Тот сразу паникует, стыдясь своего бессовестного поведения. А омега тем временем просто смущается, покрывается легким румянцем и тянет глубокий вырез белой футболки вверх, слегка прикрывая острые ключицы, которые только что внимательно исследовали. Обоим от этого действия становится ещё более неловко.
У Ким Тэхёна толком ничего не получается скрыть. Остаётся смириться — этим он занимается на протяжении семи лет.
— Извините, — тихо говорит водитель и поджимает губы. — Я не должен был.
— Вы не первый и не последний, — тянет губы в легкой улыбке Тэхён и смотрит по-доброму на альфу. — Я должен уже привыкнуть к подобному вниманию, не переживайте, — хмыкает и переводит взгляд на экран фотоаппарата, настраивая цвета.
— Это не некрасиво, — решается на комплимент и боится реакции парня, слыша тихий смех. — Правда, — кивает несколько раз он, следя за дорогой. — Скорее, это очень необычно, загадочно…
В этом нет никакой загадки, — отвечает Тэхён и мягко улыбается.
Всё элементарно.
Но все продолжают задавать вопрос: «Что это?» С кем бы ни познакомился — обязательно спросят, а он спокойно ответит. Ему не надоело. С каждым разом всё сильнее и сильнее поражает своей историей.
Как выжил?
Темнокожий альфа больше не затрагивает эту тему, да и Тэхён просто направляет камеру на невероятные пейзажи. До сих пор дух захватывает: слишком красивым, слишком нереальным всё вокруг выглядит. Он делает сразу несколько фотографий для своего архива и лишь через некоторое время понимает, что они совсем скоро прибудут к нужному месту. Эта мысль заставляет зажечься пламя не только в медовых глазах, но и в самом сердце. Парень и отсюда фотографирует любимый вид, рядом с ним точно не стоят городские улицы. Это не Гонконг, который быстро полюбился. Это не Нью-Йорк, куда помчался на неделю. Это даже не Сеул, где начал строить свою новую жизнь. Это нечто поистине красивое, настоящее, божественное, не тронутое современным взглядом. Тут можно увидеть прошлое.
Водитель сразу замечает подобную реакцию и приподнимает уголок губ, смотря на омегу. На его лицо. Больше не переходит черту и не опускает взгляд куда не положено. Анализирует лишь глаза, глядевшие кропотливо в даль, из-за которой у Тэхёна не получается сдержать в себе желание ещё шире улыбнуться. Он спешно отключает свой фотоаппарат и просто довольствуется видом. Чем дальше они едут, тем больше видят диких животных, отдыхающих и гуляющих по бескрайней травянистой местности. Тэхён выглядывает в открытое окно, замечая не слишком далеко любопытную зебру, которая хлопает густыми ресницами и глядит на проезжающий мимо джип. Когда они оказываются уже дальше от этого зверя, омега всё же оборачивается и смеётся, видя, что зебра до сих пор смотрит на него.
Как же скучал…
От любви к этому месту в груди цветы раскрываются, точно после долгого сна.
— Вы впервые в Ботсване? — спрашивает водитель.
Тэхён, расплываясь в счастливой улыбке, поворачивается к нему.
— Почему вы так подумали?
— Вы очарованы местным видом.
Тут любой в восторг от увиденного придёт.
Птицы над ними летают и громко поют. Вокруг одни животные: родители и их детеныши. На одном из высоких деревьев можно обнаружить гепарда, прячущегося от палящего африканского солнца. Пока ехали по неровной дороге, Тэхёну удалось увидеть семейство слонов, пьющих спокойно воду. Их омега запечатлел на фотографии, выйдя из джипа на пару минут.
— Это мой дом, — с гордостью отвечает Тэхён, приподнимая немного подбородок и впитывая глазами вид перед собой через лобовое стекло. — Я здесь родился, — на губах сверкает широкая белоснежная улыбка. — Я приехал на Родину.
Родился в волшебном и до жути красивом мире. Первые шаги были проделаны на этой земле, в Ботсване омега начал лепетать невнятные слова, именно здесь многому научился, и по сей день он помнит каждую мелочь, которую в голову вбивали не только его родители, но и другие жители государства в Южной Африке. Тэхён хранил в голове и сердце все детали, унёс их вместе с собой в другую страну и вернулся обратно, ничего не позабыв. И сейчас только понимает, насколько сильно он скучал по родному континенту, по всем знакомым, одноклассникам и друзьям, с которыми рос.
Но больше всего Тэхён соскучился по своей кровинке. По старшему брату, что сейчас, видимо, на улице стоит и ждёт его возвращения домой спустя четыре года.
Тэхён часы считал до долгожданной поездки. И вот она, перед глазами вся красота, снящаяся ему сладкими ночами.
Альфа действительно удивляется озвученному факту. Нисколько не ожидал услышать, что этот светлый паренёк родом из Южной Африки, поскольку таковым не выглядит, и считал его туристом. Альфа ведь обыкновенный таксист, и Тэхён у него был первым клиентом сегодня. Рано утром с широкой улыбкой и фотоаппаратом в руках запрыгнул в чёрный джип, диктуя адрес и сразу предлагая деньги.
— Признаюсь честно, я не мог и подумать, что вы местный, — дергает бровями альфа и усмехается.
— Взглянув на азиата, никто бы не решил, что он ботсванец, — пожимает плечами Тэхён, ни на секунду не прекращая улыбаться.
— Я не имел в виду вашу расу, — сразу поправляет его добрым и мягким тоном водитель.
Омега выгибает бровь и в неясности смотрит на темнокожего альфу, постепенно погружаясь в свои запутанные мысли. Сказанные в его сторону слова странным образом повлияли на него: вынудили задуматься и невольно проглотить слюну.
Больше всего боялся, что в другой стране прекратит быть тем, кем истинно является. Всеми силами держал в себе истоки, традиции и нравы африканских земель, то, чему его с рождения учили. Родители из своих сыновей делали добрых, миролюбивых, честных людей, лишая обоих алчности и злобы. Независимо от настоящей нации, они пытались взрастить в них душу африканца.
Тэхён чувствует, что и ныне таков. Четыре года жизни в Южной Корее не отняли у него сердце вместе с душой.
Ким Тэхён был ботсванцем и будет являться им даже на другом свете.
Только через некоторое время взгляд омеги падает на собственную дорогую белую обувь и такого же цвета джинсовые шорты чуть выше колен. На правом запястье сверкает бриллиантовый браслет, подаренный дедом, от которого отказаться не мог, хотя до сих пор стыдится его носить. Узнать боится, какова цена этого украшения. Он его получил два месяца назад в качестве подарка на свой восемнадцатый день рождения. Отнекивался, умолял убрать с глаз подобный браслет, уверяя, что и без него обойдется и будет жить счастливо, однако отец папы уж чересчур щедр по отношению к своему младшему внуку, с которым четыре года жил под одной крышей. Тэхён получал и, вероятнее всего, будет получать и в Ботсване от деда вещи, украшения, крупные суммы на карту. Ему этого совершенно не хочется на африканской земле, если только не собирается снимать эти деньги для нуждающихся.
А ему самому хватило и того, что он просто, наконец-то, выбрался из Сеула. Смог вернуться на родную землю. Он хочет вновь пахнуть Африкой, а Африка — им.
Поглощенный своими мыслями и тревогами, Тэхён не успевает заметить, как они приехали к нужному месту. Месту, где он родился и где рос до четырнадцати лет. Джип на низкой скорости въезжает в маленькое поселение с довольно большим количеством аккуратных простых домов. Здесь спокойно и по-домашнему уютно. Здесь есть шанс спастись. Здесь у Тэхёна, окруженного своим прошлым, получится дышать полной грудью. Он даже постарается забыть тот ужас, случившийся с ним семь лет назад.
Простит Ботсване всю моральную и физическую боль.
Машина останавливается где-то посередине пустой улицы, и именно в этот момент сердце Тэхёна начинает биться в два раза быстрее. Водитель быстро глушит мотор и выходит, направляясь к багажнику, дабы помочь омеге с его чемоданами, а Тэхён так и остаётся сидеть на сиденье. Страшно выходить, в какой-то степени даже стыдно. Он такое долгое время не ступал на эту землю, что сейчас считает себя недостойным вновь шагать по этим африканским улицам, точно предал их и обменял на сеульские.
Брат так не поступил. Тэхён — да, и от этого тошно. Но на тот момент решения за него принимали другие.
Губы растягиваются в нежной и слабой улыбке, а рука тянется к ручке двери, которую он через пару секунд осмеливается открыть. Свои светлые глаза останавливает на уже виднеющейся фигуре. Парень, что старше Тэхёна на восемь лет, стоит со скрещёнными на груди руками, улыбаясь уголком губ и разглядывая лицо своего младшего брата. Омега закрывает за собой дверь и поправляет ремешок от фотоаппарата, что висит у него на шее. Смотрят друг на друга и лишь улыбаются широко, не веря собственным сердцам, которые сообщают им, что вновь на этой территории они вместе. Тэхён всё ещё чувствует себя во сне. Он так желал этого. Сотни раз парень просился на родную землю и столько же раз ему отказывали, что вскоре омега начал сомневаться в возможности возвращения домой.
— Джухёк... — на выдохе произносит.
Тэхён закидывает фотоаппарат на спину и подбегает к брату первым, врезаясь в него. Альфа хрипло смеётся и все силы вкладывает в объятия, заодно целуя в пепельную макушку со всей своей любовью к этому человеку. Омега рядом с ним совсем крохотный, как это было в детстве. Нисколько не изменился. Вечно на носочки встаёт, когда пытается обнять Джухёка, который умиляется и поглаживает ладонью спину. Тэхён ярко улыбается, когда альфа легко поднимает его с земли и сжимает крепко в руках, оставляя короткие поцелуи на плече. Омега слегка отстраняется и смотрит на него, излучая одно тепло и искреннее счастье, которого старшему Киму так не хватало шесть месяцев.
Полгода в разлуке. Полгода в мучениях друг без друга находились.
— Тэхён, — наконец-то слышит его голос омега. Джухёк опускает парня на землю и целует в лоб. — Ангел, — младший поднимает на него глаза и морщит нос, улыбаясь.
Так нежен и ласков с ним бывает мужчина.
— Я ужасно ждал этой поездки.
— Мне кажется, я вряд ли найду силы, чтобы вновь отпустить тебя.
Омега хитро смеётся и делает шаг в сторону, чтобы увидеть стоящий маленький, но красивый и аккуратный дом.
— И не ищи, — отвечает Тэхён, взглянув на брата. — Вдруг я больше не вернусь в Сеул, Джухёк? — хмыкает и оборачивается, замечая таксиста с двумя яркими чемоданами, принадлежащими Тэхёну.
Старший Ким окидывает младшего подозрительным взглядом, после чего подходит к водителю чёрного джипа и берёт у него чемоданы, тихо поблагодарив. Тэхён со своего места кивает таксисту и улыбается, благодаря. Омега снова поворачивается к родному дому, отчего в уголках медовых глаз собираются слёзы. Всем телом расслабляется и вбирает в легкие тёплый воздух, оглядывая дом перед собой. Он-то точно поменялся за четыре года, пока Тэхёна здесь не было. Стал красивее, хотя и раньше был таким, но сейчас в нём чётко заметны изменения снаружи, видимо, и внутри всё стало по-другому. Старший брат определённо хорошо постарался улучшить здесь всё. И дело касается не только лишь их очага, но и соседних домов.
Немалые карманные деньги Тэхёна точно пошли на пользу. Не зря он их тайно перечислял Джухёку.
В каком смысле не вернешься обратно? — серьёзно спрашивает альфа, когда подходит ближе.
— Просто мечтаю… — прикусывая губу.
— Мечтаешь?
А ты запрещаешь? — весело хмыкая, забирает у брата чемодан и уходит к дому.
Мужчина щурит глаза и смотрит внимательно на отдаляющуюся спину Тэхёна, задумываясь и идя вскоре за ним. Омега первым входит в дом, затаивая дыхание и поджимая до легкой боли губы. Джухёк же не торопится, поглядывает на младшего и почему-то переживает из-за его реакции. Тот осторожно ступает по новому деревянному полу и очень медленно оглядывается по сторонам, заинтересованно хлопая чёрными ресницами.
Четыре года…
Тэхён правда уже потерял надежду, что вернется опять в этот дом. Одна его сторона просилась обратно, вторая — боялась. Раньше они жили вчетвером, сейчас их только двое.
Джухёк закрывает двери за собой, ни на секунду не отводя от брата глаз. Полностью на нём сосредотачивается. Ему важно знать, что Тэхёну до сих пор приятно здесь находиться, независимо от некоторых изменений. Толком ничего не поменялось: стало красивее и чище. Джухёк очень постарался навести порядок в своём доме, окончательно погрузился в это дело. Отвлекался физическим трудом, не хотел подпускать к себе боль и грусть после того, как остался совсем один в Южной Африке. После того, как родной дед забрал младшего брата к себе в Сеул.
Отец папы рассчитывал, что четырнадцатилетнему подростку будет в Корее намного лучше, нежели в Ботсване. Там молодой омега попытался бы думать о других вещах, уделил бы время различным творческим занятиям, так как в Сеуле есть такая возможность, в Ботсване — нет. Тэхён так и поступил, точнее, просто послушался деда и пошёл в школу, которая была забита учениками, в отличие от африканских школ. В школе на родине не было настолько много детей, и половины даже. Поэтому поначалу Тэхён был очень скован рядом со сверстниками: привыкал к таким большим изменениям довольно долго, порой и боялся находиться в настолько больших компаниях. Они не были похожи на жителей Ботсваны. Абсолютно разные люди: у них другой образ жизни, отличные взгляды и странное поведение.
Но в какой-то момент Тэхён понял, что это у него просто другое сердце.
Полгода был очень тихим. По ночам под одеялом плакал, дрожал всем телом и шевелил мокрыми персиковыми губами, просясь к брату. Дед пытался забрать к себе и Джухёка, но альфа категорически отказывался от подобного предложения. На тот момент ему было двадцать два года, и он вправе был решать сам, что для него лучше. Дед не стал настаивать, лишь предупредил, что обязательно будет помогать ему с деньгами. А Джухёк временами прилетал в Сеул только ради Тэхёна. И единственно в эти периоды младший брат поистине чувствовал себя хорошо, словно ничего ужасного не произошло в его короткой жизни.
— Красиво, — с улыбкой проговаривает Тэхён, посмотрев на альфу.
Старший издает тихий смешок и оставляет чемоданы у стены, подходя ближе к омеге.
— Я рад, что ты так считаешь.
— Тут по-прежнему тот же уют, что и раньше, — очарованно вздыхает, продолжая осматриваться. — Всё та же теплая атмосфера…
В Сеуле такого тепла не было.
— Боялся, что тебе не понравится, — говорит Джухёк. — Я пытался особо ничего не менять, дабы не лишить этот дом прошлого.
От его слов Тэхёну теплее становится.
— Ты правда сохранил прошлое в этом маленьком волшебном доме.
— Наши воспоминания отсюда не исчезнут.
Младший Ким поворачивает голову в сторону мягкого кремового дивана, обращает внимание на маленький стеклянный столик рядом с ним. Долго оглядывать его не приходится, быстро замечает свою собственную фотографию в небольшой рамке. Это селфи, и брат действительно распечатал его, наградив рамкой и поставив на видное место. Тэхён на фотографии широко улыбается, ведь он тогда сфотографировался именно для Джухёка, который задыхался без него в Ботсване, а омега быстро включил фронтальную камеру и улучшил настроение брата своей улыбкой.
— Джухёк, — альфа вопросительно мычит, смотря на Тэхёна, подошедшего медленным шагом к дивану и удерживающего взгляд на фото в рамке. — Я хочу остаться, — со страхом произносит, опасаясь реакции старшего. — Меня не тянет обратно в Сеул, — прикусывает до боли губу и глядит на брата.
Альфа вздыхает и подходит к нему, взяв ангельское лицо в свои большие ладони и начав рассматривать каждый миллиметр. Такой бледный. Кожа светлая, не такая, как раньше.
Корея отняла у него одну из его изюминок. Несколько лет назад цвет был смуглым, загорелым из-за жаркого африканского солнца, но стоило ему отправиться на другой континент, так сразу побледнел. Но всё равно не прекратил блистать красотой. Черты его лица уникальные, необычные, в какой-то степени грубые. Джухёку никогда не надоест повторять брату, насколько он красив, а тот так и продолжит стесняться и пинать его кулаками, чтобы альфа прекратил. Джухёк слишком нежен и добр к нему, но также и строг, как настоящий старший брат.
Только сейчас хочется действительно с ним поспорить и настоять на своем желании.
— Сколько раз нам ещё поднимать эту тему, Тэхён? — спрашивает Джухёк, оглаживая большим пальцем скулу омеги.
— Пока ты не согласишься…
— Прекрати, — чуть жёстче.
Тэхён жует губы и смотрит ему прямо в глаза, после чего альфа отстраняется и садится на диван.
Старший Ким не принимает ярое настоящее желание брата остаться дома. Это невыносимо.
Невыносимо жить там, где сердце не лежит.
— Джухёк… — с мольбой шепчет, присаживаясь рядом.
— Я много раз говорил тебе ответ, — спокойно произносит альфа.
— И каждый раз он мне не нравится.
Но он не поменяется, — резко бросает, несильно поджав губы.
Тэхён тянется к брату и кладёт голову на его грудь, поднимая ноги на диван. Сворачивается, как клубочек.
— Ты несправедлив ко мне, — хмуро смотрит на альфу, слабо обнимая его.
Он всё время отказывает Тэхёну в просьбе остаться. Омега третий год умоляет, но нужных слов так и не получает. Джухёк мрачнеет, когда слышит от него подобные слова, меняет тон голоса и буквально ломает маленькие мечты Тэхёна. Тот до сих пор удивлен, что альфа разрешил ему прилететь хотя бы на некоторое время на Родину, дабы отдохнуть и отвлечься от учёбы. Омега очень усердно старался: рыдал в трубку, как ненормальный, и кричал на брата, пытаясь донести, насколько же сильно скучает по нему. Всё лицо у него тогда от слёз опухло так, что Джухёк, увидев его таким разочарованным на экране своего телефона, через пару дней решил просто сдаться и позволил посетить Южную Африку спустя четыре года.
— Это ты несправедлив к себе, — говорит Джухёк и смотрит прямо в медовые глаза. — У тебя здесь нет будущего, поэтому лучше думай о своей учёбе, которую я тебе ни за что не позволю бросить, — Тэхён от подобного тона немного сжимается. — Приехал ты сюда отдохнуть и обязательно вернешься обратно.
Омега каждой живой клеткой своего организма не желает улетать в Корею. Он живёт там с дедом в огромном особняке, и, наверное, любой житель Африки мечтал бы оказаться в подобном месте, но только не Тэхён. Любит своего деда, но сердце определенно тянет в Ботсвану. Здесь ему куда комфортнее и теплее во всех смыслах. Не только душа долго привыкала к новой обстановке, но и само тело. Из-за смены климата Тэхён часто болел и сидел дома с простудой и жуткой болью в костях.
— Я мог бы летать в Сеул только на экзамены, а занимался бы круглосуточно тут… — с очередным беспокойством произносит, уже понимая, что это альфе не понравится.
Джухёк кидает на него злобный взгляд, угрожая суженными зрачками и очерчивая скулы. Омега поджимает губы и всё равно не отстраняется от брата, только крепче обнимает его и слегка хмурит брови, зная об очередном отказе.
Тэхён пошёл рано в африканскую школу, поэтому и корейскую закончил в семнадцать лет, из-за чего был самым младшим в классе. И сейчас, находясь на первом курсе журналистики, омега так и остаётся самым мелким парнишкой среди своих одногруппников. Это нестрашно, так как Тэхён попытался найти общий язык с ребятами, хотел влиться в их коллектив, и это действительно удалось сделать за пару месяцев. Отношения настолько хорошо между ними сложилось, что некоторые из ребят, в том числе и сам Тэхён, договорились слетать в Пекин в ноябре. И когда поездка была уже на носу, Ким услышал долгожданные слова от старшего брата, который обрадовал его тем, что омега может прилететь на время в Ботсвану. Тэхён и минуты не уделил размышлениям и сразу выбрал Южную Африку, выкинув из головы Китай.
— Нет, — целует в лоб младшего альфа.
— Противный ты, Джухёк, — фыркает Тэхён, закатывая глаза и потираясь головой о чужую грудь.
Тот хрипло смеётся.
— Противный?
— Верно, — сразу подтверждает. — Не хочу оставлять тебя здесь одного, — вздыхает, прикрывая веки. — Я должен находиться в Ботсване.
Родителей рядом нет четыре года, и они вдвоём обязаны жить вместе, а не быть раскинутыми по разным континентам.
— Ботсвана уже не та, ангел, — обнимает младшего брата.
Тэхён не понимает и поднимает на Джухёка вопросительный взгляд. Но вместо ответа альфа лишь дергает уголком губ и касается костяшками пальцев его щеки.
Это движение быстро отгоняет от парня плохие мысли о доме.

View File

@@ -0,0 +1,42 @@
## Лабораторная работа 2. Вариант 5.
### Задание
Выполнить ранжирование признаков. Отобразить получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Провести анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению?
Модели:
- Гребневая регрессия `Ridge`,
- Рекурсивное сокращение признаков `Recursive Feature Elimination RFE`,
- Сокращение признаков Случайными деревьями `Random Forest Regressor`
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
```
python main.py
```
### Используемые технологии
- `numpy` (псевдоним `np`): NumPy - это библиотека для научных вычислений в Python.
- `sklearn` (scikit-learn): Scikit-learn - это библиотека для машинного обучения и анализа данных в Python. Из данной библиотеки были использованы следующие модули:
- `LinearRegression` - линейная регрессия - это алгоритм машинного обучения, используемый для задач бинарной классификации.
- `Ridge` - инструмент работы с моделью "Гребневая регрессия"
- `RFE` - инструмент оценки важности признаков "Рекурсивное сокращение признаков"
- `RandomForestRegressor` - инструмент работы с моделью "Регрессор случайного леса"
### Описание работы
1. Программа генерирует данные для обучения моделей, содержащие матрицу признаков X и вектор целевой переменной y.
1. Создает DataFrame data, в котором столбцы представляют признаки, а последний столбец - целевую переменную.
1. Разделяет данные на матрицу признаков X и вектор целевой переменной y
1. Создает список обученных моделей для ранжирования признаков: гребневой регрессии, рекурсивного сокращения признаков и сокращения признаков случайными деревьями.
1. Создает словарь model_scores для хранения оценок каждой модели.
1. Выводит оценки признаков каждой модели и их средние оценки.
1. Находит четыре наиболее важных признака по средней оценке и выводит их индексы и значения.
### Результат работы
![](ridge.png "Гребневая регрессия")
![](rfe.png "Рекурсивное сокращение признаков")
![](rfr.png "Сокращение признаков Случайными деревьями")
![](res.png "Четыре самых важных")
### Вывод
Четыре наиболее важных признака, определенных на основе средних оценок, включают
Признак 1, Признак 3, Признак 12 и Признак 6.

View File

@@ -0,0 +1,67 @@
import numpy as np
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.linear_model import Ridge, LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler
''' Задание
Используя код из [1](пункт «Решение задачи ранжирования признаков», стр. 205), выполните ранжирование признаков с
помощью указанных по вариантумоделей. Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и
среднюю оценку. Проведите анализ получившихся результатов. Какие четырепризнака оказались самыми важными по среднему
значению? (Названия\индексы признаков и будут ответом на задание).
Вариант 5.
Гребневая регрессия (Ridge), Рекурсивное сокращение признаков (Recursive Feature Elimination RFE),
Сокращение признаков Случайными деревьями (Random Forest Regressor).
'''
# создание данных
random_state = np.random.RandomState(2)
X, y = make_regression(n_samples=750, n_features=15, noise=0.1, random_state=random_state)
data = pd.DataFrame(X, columns=[f'Признак {i}' for i in range(X.shape[1])])
data['Целевая переменная'] = y
X = data.drop('Целевая переменная', axis=1)
y = data['Целевая переменная']
ridge = Ridge(alpha=1) # Гребневая регрессия
ridge.fit(X, y)
recFE = RFE(LinearRegression(), n_features_to_select=1) # Рекурсивное сокращение признаков
recFE.fit(X, y)
rfr = RandomForestRegressor() # Сокращение признаков Случайными деревьями
rfr.fit(X, y)
models = [('Ridge', ridge),
('RFE', recFE),
('RFR', rfr)]
model_scores = []
for name, model in models:
if name == 'Ridge':
coef = model.coef_
normalized_coef = MinMaxScaler().fit_transform(coef.reshape(-1, 1))
model_scores.append((name, normalized_coef.flatten()))
elif name == 'RFE':
rankings = model.ranking_
normalized_rankings = 1 - (rankings - 1) / (np.max(rankings) - 1)
model_scores.append((name, normalized_rankings))
elif name == 'RFR':
feature_importances = model.feature_importances_
normalized_importances = MinMaxScaler().fit_transform(feature_importances.reshape(-1, 1))
model_scores.append((name, normalized_importances.flatten()))
for name, scores in model_scores:
print(f"{name} оценки признаков:")
for feature, score in enumerate(scores, start=1):
print(f"Признак {feature}: {score:.2f}")
print(f"Средняя оценка: {np.mean(scores):.2f}")
all_feature_scores = np.mean(list(map(lambda x: x[1], model_scores)), axis=0)
sorted_features = sorted(enumerate(all_feature_scores, start=1), key=lambda x: x[1], reverse=True)
top_features = sorted_features[:4]
print("Четыре наиболее важных признака:")
for feature, score in top_features:
print(f"Признак {feature}: {score:.2f}")

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,93 @@
## Лабораторная работа 3. Вариант 4.
### Задание
Выполнить ранжирование признаков и решить с помощью библиотечной реализации дерева решений
задачу классификации на 99% данных из курсовой работы. Проверить
работу модели на оставшемся проценте, сделать вывод.
Модель:
- Дерево решений `DecisionTreeClassifier`.
### Как запустить
Для запуска программы необходимо с помощью командной строки в корневой директории файлов прокета прописать:
``` python
python main.py
```
### Используемые технологии
- Библиотека `pandas`, используемая для работы с данными для анализа scv формата.
- `sklearn` (scikit-learn): Scikit-learn - это библиотека для машинного обучения и анализа данных в Python. Из данной библиотеки были использованы следующие модули:
- `metrics` - набор инструменов для оценки моделей
- `DecisionTreeClassifier` - классификатор, реализующий алгоритм дерева решений. Дерево решений - это модель машинного обучения, которая разбивает данные на рекурсивные решения на основе значений признаков. Она используется для задач классификации и регрессии.
- `accuracy_score` -функция из scikit-learn, которая используется для оценки производительности модели классификации путем вычисления доли правильно классифицированных примеров (точности) на тестовом наборе данных.
- `train_test_split` - это функция из scikit-learn, используемая для разделения набора данных на обучающий и тестовый наборы.
- `LabelEncoder` - это класс из scikit-learn, используемый для преобразования категориальных признаков (например, строки) в числовые значения.
### Описание работы
#### Описание набора данных
Набор данных: набор данных о цене автомобиля в автопарке.
Названия столбцов набора данных и их описание:
- Id: Уникальный идентификатор для каждого автомобиля в списке.
- Price: Ценовой диапазон автомобилей с конкретными ценниками и подсчетами. (111000 - 77500000)
- Company Name: Название компании-производителя автомобилей с указанием процентной доли представительства каждой компании.
- Model Name: Название модели автомобилей с указанием процентного соотношения каждой модели.
- Model Year: Диапазон лет выпуска автомобилей с указанием количества и процентных соотношений. (1990 - 2019)
- Location: Местоположение автомобилей с указанием регионов, где они доступны для покупки, а также их процентное соотношение.
- Mileage: Информация о пробеге автомобилей с указанием диапазонов пробега, количества и процентов. (1 - 999999)
- Engine Type: Описания типов двигателей с процентными соотношениями для каждого типа.
- Engine Capacity: Мощность двигателя варьируется в зависимости от количества и процентов. (16 - 6600)
- Color: Цветовое распределение автомобилей с указанием процентных соотношений для каждого цвета.
- Assembly: Импорт или местный рынок.
- Body Type: Тип кузова.
- Transmission Type: Тип трансмиссии.
- Registration Status: Статус регистрации.
Ссылка на страницу набора на kuggle: [Ultimate Car Price Prediction Dataset](https://www.kaggle.com/datasets/mohidabdulrehman/ultimate-car-price-prediction-dataset/data)
#### Оцифровка и нормализация данных
Для нормальной работы с данными, необходимо исключить из них все нечисловые значения.
После этого, представить все строковые значения параметров как числовые и очистить датасет от "мусора".
Для удаления нечисловых значений воспользуемся функцией `.dropna()`.
Так же мы удаляем первый столбец `Id`, так как при открытии файла в `pd` он сам нумерует строки.
Все нечисловые значения мы преобразуем в числовые с помощью `LabelEncoder`:
```python
label_encoder = LabelEncoder()
data['Location'] = label_encoder.fit_transform(data['Location'])
data['Company Name'] = label_encoder.fit_transform(data['Company Name'])
data['Model Name'] = label_encoder.fit_transform(data['Model Name'])
data['Engine Type'] = label_encoder.fit_transform(data['Engine Type'])
data['Color'] = label_encoder.fit_transform(data['Color'])
data['Assembly'] = label_encoder.fit_transform(data['Assembly'])
data['Body Type'] = label_encoder.fit_transform(data['Body Type'])
data['Transmission Type'] = label_encoder.fit_transform(data['Transmission Type'])
data['Registration Status'] = label_encoder.fit_transform(data['Registration Status'])
```
#### Выявление значимых параметров
```python
# Оценка важности признаков
feature_importances = clf.feature_importances_
feature_importance_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)
```
#### Решение задачи кластеризации на полном наборе признаков
Чтобы решить задачу кластеризации моделью `DecisionTreeClassifier`, воспользуемся методом `.predict()`.
```python
clf = DecisionTreeClassifier(max_depth=5, random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```
#### Оценка эффективности
Для оценки точности модели будем использовать встроенный инструмент `accuracy_score`:
```python
accuracy = accuracy_score(y_test, y_pred)
```
#### Результаты
![](accuracy.png "Точность")
![](important.png "Важность признаков")

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -0,0 +1,78 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
''' Названия столбцов набора данных и их описание:
Id: Уникальный идентификатор для каждого автомобиля в списке.
Price: Ценовой диапазон автомобилей с конкретными ценниками и подсчетами. (111000 - 77500000)
Company Name: Название компании-производителя автомобилей с указанием процентной доли представительства каждой компании.
Model Name: Название модели автомобилей с указанием процентного соотношения каждой модели.
Model Year: Диапазон лет выпуска автомобилей с указанием количества и процентных соотношений. (1990 - 2019)
Location: Местоположение автомобилей с указанием регионов, где они доступны для покупки, а также их процентное соотношение.
Mileage: Информация о пробеге автомобилей с указанием диапазонов пробега, количества и процентов. (1 - 999999)
Engine Type: Описания типов двигателей с процентными соотношениями для каждого типа.
Engine Capacity: Мощность двигателя варьируется в зависимости от количества и процентов. (16 - 6600)
Color: Цветовое распределение автомобилей с указанием процентных соотношений для каждого цвета.
'''
# Загрузите данные из вашей курсовой работы, предположим, что у вас есть файл CSV.
data = pd.read_csv('Data_pakwheels.csv')
data.pop("Id")
data.dropna(inplace=True) # Удаление строки с пропущенными значениями.
# Преобразуйте категориальные признаки в числовые. Используйте, например, one-hot encoding.
# data = pd.get_dummies(data, columns=['Company Name', 'Model Name', 'Location', 'Engine Type', 'Color'])
# Создайте объект LabelEncoder
label_encoder = LabelEncoder()
data['Location'] = label_encoder.fit_transform(data['Location'])
data['Company Name'] = label_encoder.fit_transform(data['Company Name'])
data['Model Name'] = label_encoder.fit_transform(data['Model Name'])
data['Engine Type'] = label_encoder.fit_transform(data['Engine Type'])
data['Color'] = label_encoder.fit_transform(data['Color'])
data['Assembly'] = label_encoder.fit_transform(data['Assembly'])
data['Body Type'] = label_encoder.fit_transform(data['Body Type'])
data['Transmission Type'] = label_encoder.fit_transform(data['Transmission Type'])
data['Registration Status'] = label_encoder.fit_transform(data['Registration Status'])
# Разделение данных на обучающий набор и тестовый набор. Мы будем использовать 99% данных для обучения.
train_data, test_data = train_test_split(data, test_size=0.01, random_state=42)
# Определите целевую переменную (то, что вы пытаетесь предсказать, например, 'Price').
X_train = train_data.drop(columns=['Price'])
y_train = train_data['Price']
X_test = test_data.drop(columns=['Price'])
y_test = test_data['Price']
# Создание и обучение модели DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# Оценка важности признаков
feature_importances = clf.feature_importances_
# Создание DataFrame с именами признаков и их важностью
feature_importance_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})
# Сортировка признаков по убыванию важности
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)
# Вывод ранжированных признаков
print(feature_importance_df)
clf = DecisionTreeClassifier(max_depth=5, random_state=42)
# Обучите модель на обучающем наборе данных
clf.fit(X_train, y_train)
# Предсказание целевой переменной на тестовом наборе данных
y_pred = clf.predict(X_test)
# Оцените производительность модели с помощью различных метрик
accuracy = accuracy_score(y_test, y_pred)
print(f'Точность модели: {accuracy}')

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,125 @@
,Name,Primary Attribute,Roles,Herald Picks,Herald Wins,Herald Win Rate,Guardian Picks,Guardian Wins,Guardian Win Rate,Crusader Picks,Crusader Wins,Crusader Win Rate,Archon Picks,Archon Wins,Archon Win Rate,Legend Picks,Legend Wins,Legend Win Rate,Ancient Picks,Ancient Wins,Ancient Win Rate,Divine Picks,Divine Wins,Divine Win Rate,Immortal Picks,Immortal Wins,Immortal Win Rate
0,Abaddon,all,"Support, Carry, Durable",1111,575,51.76,6408,3309,51.64,13811,7050,51.05,16497,8530,51.71,11360,5877,51.73,5571,2893,51.93,2632,1345,51.1,991,497,50.15
1,Alchemist,str,"Carry, Support, Durable, Disabler, Initiator, Nuker",1119,486,43.43,6370,2883,45.26,12238,5617,45.9,13028,6130,47.05,8455,4055,47.96,4120,1984,48.16,2021,1023,50.62,860,424,49.3
2,Ancient Apparition,int,"Support, Disabler, Nuker",2146,1073,50.0,13697,7069,51.61,30673,16118,52.55,35145,18219,51.84,23114,12166,52.63,10688,5528,51.72,5035,2573,51.1,2134,1076,50.42
3,Anti-Mage,agi,"Carry, Escape, Nuker",3765,1818,48.29,22050,10774,48.86,47371,23304,49.19,49115,24074,49.02,28599,13991,48.92,12303,5958,48.43,4866,2349,48.27,1502,751,50.0
4,Arc Warden,agi,"Carry, Escape, Nuker",1448,704,48.62,8047,4162,51.72,14946,7982,53.41,14711,7875,53.53,9472,5167,54.55,4323,2309,53.41,2104,1148,54.56,789,435,55.13
5,Axe,str,"Initiator, Durable, Disabler, Carry",5343,2880,53.9,32652,17719,54.27,71010,37736,53.14,77869,40559,52.09,49182,25079,50.99,22637,11353,50.15,10114,5000,49.44,3795,1837,48.41
6,Bane,all,"Support, Disabler, Nuker, Durable",745,334,44.83,4983,2422,48.61,11332,5504,48.57,13633,6767,49.64,10132,5032,49.66,5596,2861,51.13,3028,1555,51.35,1958,1055,53.88
7,Batrider,all,"Initiator, Disabler, Escape",349,136,38.97,1983,812,40.95,4053,1595,39.35,4725,1861,39.39,3173,1275,40.18,1678,731,43.56,802,362,45.14,497,227,45.67
8,Beastmaster,all,"Initiator, Disabler, Durable, Nuker",402,174,43.28,2447,1060,43.32,5787,2569,44.39,6930,3092,44.62,5288,2389,45.18,2816,1274,45.24,1593,752,47.21,1176,539,45.83
9,Bloodseeker,agi,"Carry, Disabler, Nuker, Initiator",2765,1382,49.98,12589,6270,49.81,21781,10683,49.05,20961,10420,49.71,13035,6430,49.33,6210,3006,48.41,2941,1475,50.15,1465,718,49.01
10,Bounty Hunter,agi,"Escape, Nuker",3852,1868,48.49,19609,9535,48.63,36362,17600,48.4,37059,18314,49.42,22934,11518,50.22,10584,5276,49.85,5105,2594,50.81,2498,1325,53.04
11,Brewmaster,all,"Carry, Initiator, Durable, Disabler, Nuker",545,280,51.38,3564,1745,48.96,8941,4388,49.08,12340,6111,49.52,11185,5623,50.27,7645,3906,51.09,4812,2478,51.5,3533,1820,51.51
12,Bristleback,str,"Carry, Durable, Initiator, Nuker",5884,3262,55.44,27952,14587,52.19,48847,24379,49.91,46702,22927,49.09,27466,13319,48.49,12398,5969,48.14,5865,2915,49.7,2639,1304,49.41
13,Broodmother,all,"Carry, Pusher, Escape, Nuker",456,173,37.94,2048,842,41.11,3444,1462,42.45,3392,1448,42.69,2193,1048,47.79,1203,602,50.04,795,422,53.08,453,230,50.77
14,Centaur Warrunner,str,"Durable, Initiator, Disabler, Nuker, Escape",1721,911,52.93,11754,6266,53.31,28691,15201,52.98,35369,18741,52.99,25393,13468,53.04,12653,6607,52.22,6124,3181,51.94,2442,1243,50.9
15,Chaos Knight,str,"Carry, Disabler, Durable, Pusher, Initiator",3032,1639,54.06,16762,8931,53.28,31892,17139,53.74,30697,16435,53.54,18217,9810,53.85,8572,4620,53.9,4230,2291,54.16,1750,943,53.89
16,Chen,all,"Support, Pusher",284,125,44.01,1450,678,46.76,2969,1345,45.3,3258,1604,49.23,2641,1331,50.4,1488,767,51.55,970,512,52.78,770,448,58.18
17,Clinkz,agi,"Carry, Escape, Pusher",3151,1608,51.03,13891,7141,51.41,25465,12938,50.81,27327,14066,51.47,18846,9726,51.61,9452,4890,51.74,4765,2475,51.94,2093,1052,50.26
18,Clockwerk,all,"Initiator, Disabler, Durable, Nuker",816,397,48.65,5860,2837,48.41,14478,6929,47.86,18466,8843,47.89,13143,6301,47.94,6612,3169,47.93,3286,1581,48.11,1378,658,47.75
19,Crystal Maiden,int,"Support, Disabler, Nuker",4821,2529,52.46,26584,13626,51.26,52168,26040,49.92,52258,25365,48.54,30690,14848,48.38,13295,6404,48.17,5602,2680,47.84,1638,771,47.07
20,Dark Seer,all,"Initiator, Escape, Disabler",627,320,51.04,3675,1884,51.27,7881,3803,48.26,9589,4844,50.52,7186,3573,49.72,3902,1983,50.82,2145,1095,51.05,1217,593,48.73
21,Dark Willow,all,"Support, Nuker, Disabler, Escape",2654,1293,48.72,13829,6657,48.14,28142,13480,47.9,32114,15785,49.15,23100,11331,49.05,12052,5909,49.03,6400,3182,49.72,3708,1915,51.65
22,Dawnbreaker,str,"Carry, Durable",1746,875,50.11,12297,6105,49.65,32398,15921,49.14,44846,21936,48.91,35474,17441,49.17,19770,9832,49.73,10637,5263,49.48,6339,3173,50.06
23,Dazzle,all,"Support, Nuker, Disabler",2827,1418,50.16,19852,9758,49.15,48236,23691,49.11,56417,27798,49.27,38159,18642,48.85,18695,9199,49.21,8530,4239,49.7,3382,1654,48.91
24,Death Prophet,int,"Carry, Pusher, Nuker, Disabler",1372,659,48.03,6643,3145,47.34,11987,5729,47.79,12268,5856,47.73,7455,3606,48.37,3591,1698,47.28,1872,902,48.18,926,459,49.57
25,Disruptor,int,"Support, Disabler, Nuker, Initiator",1541,757,49.12,11104,5331,48.01,27746,13542,48.81,33742,16310,48.34,23173,11096,47.88,10907,5201,47.68,4859,2255,46.41,1863,861,46.22
26,Doom,str,"Carry, Disabler, Initiator, Durable, Nuker",1049,474,45.19,6112,2767,45.27,13700,6056,44.2,15454,6925,44.81,10727,4842,45.14,5444,2451,45.02,2979,1348,45.25,1545,731,47.31
27,Dragon Knight,str,"Carry, Pusher, Durable, Disabler, Initiator, Nuker",1950,942,48.31,10643,5274,49.55,20451,9733,47.59,20326,9671,47.58,11674,5544,47.49,4979,2355,47.3,2024,973,48.07,725,341,47.03
28,Drow Ranger,agi,"Carry, Disabler, Pusher",5737,2904,50.62,29675,14831,49.98,57655,28573,49.56,56682,27927,49.27,34310,16607,48.4,15050,7171,47.65,5947,2815,47.33,1768,788,44.57
29,Earth Spirit,str,"Nuker, Escape, Disabler, Initiator, Durable",1038,465,44.8,7420,3276,44.15,20807,9432,45.33,30107,14166,47.05,25314,12148,47.99,14579,7041,48.3,7678,3802,49.52,4379,2169,49.53
30,Earthshaker,str,"Support, Initiator, Disabler, Nuker",5012,2455,48.98,29784,14662,49.23,67050,33111,49.38,79963,39843,49.83,57108,28961,50.71,28650,14591,50.93,14186,7296,51.43,6151,3165,51.46
31,Elder Titan,str,"Initiator, Disabler, Nuker, Durable",471,212,45.01,2551,1248,48.92,5213,2570,49.3,5572,2809,50.41,3847,1942,50.48,1964,998,50.81,1124,613,54.54,550,292,53.09
32,Ember Spirit,agi,"Carry, Escape, Nuker, Disabler, Initiator",1514,635,41.94,9180,3836,41.79,20578,8738,42.46,25152,10844,43.11,17703,7814,44.14,8538,3793,44.42,4265,1892,44.36,2065,928,44.94
33,Enchantress,int,"Support, Pusher, Durable, Disabler",1794,848,47.27,8050,3622,44.99,12921,5686,44.01,11673,4974,42.61,6863,2840,41.38,2948,1212,41.11,1434,654,45.61,806,318,39.45
34,Enigma,all,"Disabler, Initiator, Pusher",1317,588,44.65,6937,3171,45.71,12908,5979,46.32,11687,5428,46.44,6194,2839,45.83,2493,1127,45.21,938,437,46.59,338,159,47.04
35,Faceless Void,agi,"Carry, Initiator, Disabler, Escape, Durable",4323,2043,47.26,25618,11902,46.46,54581,25874,47.4,60671,28993,47.79,40137,19611,48.86,19376,9620,49.65,9579,4828,50.4,4439,2256,50.82
36,Grimstroke,int,"Support, Nuker, Disabler, Escape",1455,694,47.7,9714,4789,49.3,24688,12430,50.35,32027,16094,50.25,23193,11795,50.86,12102,6100,50.4,6191,3047,49.22,3449,1666,48.3
37,Gyrocopter,agi,"Carry, Nuker, Disabler",2560,1213,47.38,16589,7882,47.51,42072,20358,48.39,54200,26229,48.39,39414,19053,48.34,20164,9781,48.51,10164,4937,48.57,5241,2507,47.83
38,Hoodwink,agi,"Support, Nuker, Escape, Disabler",2420,1126,46.53,14034,6800,48.45,31382,14964,47.68,35684,16966,47.55,22626,10651,47.07,9949,4690,47.14,4349,2089,48.03,1533,703,45.86
39,Huskar,str,"Carry, Durable, Initiator",3501,1603,45.79,14234,6639,46.64,22794,10912,47.87,21801,10763,49.37,13811,6919,50.1,6769,3535,52.22,3556,1822,51.24,1936,993,51.29
40,Invoker,all,"Carry, Nuker, Disabler, Escape, Pusher",4330,2042,47.16,27625,13176,47.7,69035,33863,49.05,86745,43479,50.12,61821,31510,50.97,31459,16321,51.88,15431,8195,53.11,7852,4148,52.83
41,Io,all,"Support, Escape, Nuker",1274,615,48.27,6158,2999,48.7,12762,6247,48.95,14216,7024,49.41,9564,4843,50.64,5301,2685,50.65,2789,1463,52.46,1464,773,52.8
42,Jakiro,int,"Support, Nuker, Pusher, Disabler",3147,1708,54.27,22718,12413,54.64,56736,30984,54.61,70038,37473,53.5,46389,24997,53.89,22084,11639,52.7,9838,5103,51.87,3282,1729,52.68
43,Juggernaut,agi,"Carry, Pusher, Escape",5585,2711,48.54,30394,14800,48.69,62313,30581,49.08,65590,32344,49.31,39235,19326,49.26,16334,8012,49.05,6419,3066,47.76,1576,731,46.38
44,Keeper of the Light,int,"Support, Nuker, Disabler",896,353,39.4,5051,2216,43.87,10452,4579,43.81,11614,5322,45.82,7870,3627,46.09,4268,2001,46.88,2147,1043,48.58,1333,588,44.11
45,Kunkka,str,"Carry, Support, Disabler, Initiator, Durable, Nuker",2251,1124,49.93,13474,6828,50.68,31210,16196,51.89,39691,21293,53.65,30314,16458,54.29,15706,8793,55.98,7884,4339,55.04,3458,1898,54.89
46,Legion Commander,str,"Carry, Disabler, Initiator, Durable, Nuker",6263,3264,52.12,37100,19157,51.64,81491,41557,51.0,91431,46558,50.92,59383,29917,50.38,27945,13917,49.8,13193,6587,49.93,5601,2745,49.01
47,Leshrac,int,"Carry, Support, Nuker, Pusher, Disabler",674,316,46.88,3872,1799,46.46,7490,3433,45.83,7903,3604,45.6,5322,2526,47.46,2687,1298,48.31,1325,647,48.83,721,357,49.51
48,Lich,int,"Support, Nuker",2700,1412,52.3,16646,8820,52.99,37785,19685,52.1,45471,23554,51.8,31203,16108,51.62,15530,7821,50.36,7243,3597,49.66,2520,1258,49.92
49,Lifestealer,str,"Carry, Durable, Escape, Disabler",2515,1213,48.23,14131,6978,49.38,29724,14627,49.21,31211,15581,49.92,18970,9481,49.98,8689,4400,50.64,3630,1821,50.17,1229,617,50.2
50,Lina,int,"Support, Carry, Nuker, Disabler",4512,2030,44.99,21927,10156,46.32,45301,21210,46.82,54229,25956,47.86,40016,19138,47.83,21072,10112,47.99,10481,5031,48.0,4369,2138,48.94
51,Lion,int,"Support, Disabler, Nuker, Initiator",6204,2855,46.02,37869,17465,46.12,80124,36649,45.74,84390,38176,45.24,50720,22914,45.18,21698,9784,45.09,9308,4280,45.98,3220,1496,46.46
52,Lone Druid,all,"Carry, Pusher, Durable",909,483,53.14,4714,2421,51.36,10987,5858,53.32,14580,7968,54.65,11810,6490,54.95,7241,3971,54.84,4024,2240,55.67,2303,1259,54.67
53,Luna,agi,"Carry, Nuker, Pusher",1927,904,46.91,9091,4271,46.98,16571,7922,47.81,16035,7615,47.49,9728,4634,47.64,4463,2103,47.12,1912,911,47.65,719,322,44.78
54,Lycan,all,"Carry, Pusher, Durable, Escape",374,174,46.52,1894,915,48.31,3691,1744,47.25,3824,1905,49.82,2694,1332,49.44,1460,753,51.58,827,411,49.7,532,289,54.32
55,Magnus,all,"Initiator, Disabler, Nuker, Escape",770,339,44.03,5789,2651,45.79,17837,7954,44.59,26126,12058,46.15,20634,9592,46.49,10574,5056,47.82,4565,2073,45.41,1606,751,46.76
56,Marci,all,"Support, Carry, Initiator, Disabler, Escape",1370,620,45.26,7092,3252,45.85,15199,7240,47.63,18485,8874,48.01,13308,6305,47.38,7176,3476,48.44,3689,1882,51.02,1746,883,50.57
57,Mars,str,"Carry, Initiator, Disabler, Durable",862,375,43.5,5719,2529,44.22,15156,6756,44.58,20719,9369,45.22,16419,7387,44.99,9044,4052,44.8,4536,2093,46.14,1926,868,45.07
58,Medusa,agi,"Carry, Disabler, Durable",1898,902,47.52,9289,4512,48.57,16504,7818,47.37,14796,6886,46.54,7488,3449,46.06,2775,1270,45.77,1073,482,44.92,394,184,46.7
59,Meepo,agi,"Carry, Escape, Nuker, Disabler, Initiator, Pusher",1004,523,52.09,3970,1990,50.13,6904,3587,51.96,7166,3646,50.88,4906,2563,52.24,2383,1282,53.8,1139,588,51.62,585,300,51.28
60,Mirana,all,"Carry, Support, Escape, Nuker, Disabler",2499,1193,47.74,16954,8135,47.98,39985,19097,47.76,45169,21554,47.72,28467,13456,47.27,12800,6047,47.24,5272,2500,47.42,1824,874,47.92
61,Monkey King,agi,"Carry, Escape, Disabler, Initiator",3191,1384,43.37,17306,7544,43.59,35734,16113,45.09,40778,18322,44.93,27558,12630,45.83,14034,6433,45.84,6650,3152,47.4,3040,1440,47.37
62,Morphling,agi,"Carry, Escape, Durable, Nuker, Disabler",1521,690,45.36,8620,4006,46.47,18075,8161,45.15,20414,9235,45.24,14395,6530,45.36,7697,3551,46.13,4432,2050,46.25,2560,1190,46.48
63,Muerta,int,"Carry, Nuker, Disabler",2130,1089,51.13,10787,5740,53.21,22602,11898,52.64,27609,14495,52.5,20175,10465,51.87,10662,5518,51.75,5462,2759,50.51,2948,1517,51.46
64,Naga Siren,agi,"Carry, Support, Pusher, Disabler, Initiator, Escape",1502,804,53.53,6495,3356,51.67,10423,5234,50.22,9830,4929,50.14,6057,2971,49.05,3216,1675,52.08,1855,933,50.3,1242,634,51.05
65,Nature's Prophet,int,"Carry, Pusher, Escape, Nuker",5991,3029,50.56,36433,18143,49.8,83118,42095,50.64,100341,51268,51.09,69436,35870,51.66,34256,17858,52.13,16585,8745,52.73,7182,3755,52.28
66,Necrophos,int,"Carry, Nuker, Durable, Disabler",4776,2702,56.57,28535,15771,55.27,62186,34285,55.13,70212,38163,54.35,46539,24708,53.09,21607,11302,52.31,9677,4994,51.61,3418,1733,50.7
67,Night Stalker,str,"Carry, Initiator, Durable, Disabler, Nuker",1189,594,49.96,7868,3892,49.47,19446,10004,51.45,25524,13506,52.91,20138,10828,53.77,10767,5651,52.48,5499,2889,52.54,2415,1257,52.05
68,Nyx Assassin,all,"Disabler, Nuker, Initiator, Escape",1718,867,50.47,10925,5525,50.57,27207,14073,51.73,34684,18059,52.07,25736,13572,52.74,13313,7093,53.28,6485,3444,53.11,2852,1468,51.47
69,Ogre Magi,str,"Support, Nuker, Disabler, Durable, Initiator",5331,2845,53.37,31507,16299,51.73,62954,32248,51.22,61758,31373,50.8,33746,16988,50.34,13262,6654,50.17,4861,2420,49.78,1271,654,51.46
70,Omniknight,str,"Support, Durable, Nuker",975,479,49.13,6426,3109,48.38,14641,7319,49.99,17258,8731,50.59,11695,5916,50.59,5746,2993,52.09,2870,1469,51.18,1333,656,49.21
71,Oracle,int,"Support, Nuker, Disabler, Escape",796,384,48.24,4857,2417,49.76,13141,6645,50.57,18944,9853,52.01,15221,7964,52.32,8356,4458,53.35,4475,2380,53.18,1905,1018,53.44
72,Outworld Destroyer,int,"Carry, Nuker, Disabler",2226,1118,50.22,13388,6864,51.27,33284,17362,52.16,43991,23377,53.14,32021,16994,53.07,16655,8724,52.38,8123,4218,51.93,3176,1649,51.92
73,Pangolier,all,"Carry, Nuker, Disabler, Durable, Escape, Initiator",1156,534,46.19,7189,3209,44.64,17802,7937,44.58,25785,11677,45.29,21727,10144,46.69,13064,6351,48.61,7567,3737,49.39,5275,2734,51.83
74,Phantom Assassin,agi,"Carry, Escape",8553,4426,51.75,48549,25553,52.63,104756,54881,52.39,119332,62511,52.38,79140,41143,51.99,37399,19325,51.67,17774,9077,51.07,7819,3856,49.32
75,Phantom Lancer,agi,"Carry, Escape, Pusher, Nuker",3641,1960,53.83,19550,10374,53.06,38576,20633,53.49,41505,22310,53.75,26401,14268,54.04,12437,6590,52.99,5708,2985,52.3,2383,1243,52.16
76,Phoenix,all,"Support, Nuker, Initiator, Escape, Disabler",743,315,42.4,5231,2471,47.24,13950,6633,47.55,18350,8864,48.31,13972,6715,48.06,7787,3761,48.3,4322,2132,49.33,2610,1325,50.77
77,Primal Beast,str,"Initiator, Durable, Disabler",1455,701,48.18,9333,4448,47.66,22800,11058,48.5,30084,14643,48.67,24307,11993,49.34,13970,6991,50.04,7742,3890,50.25,4625,2407,52.04
78,Puck,int,"Initiator, Disabler, Escape, Nuker",871,399,45.81,5773,2628,45.52,16596,7578,45.66,24480,11315,46.22,20070,9497,47.32,11023,5298,48.06,5656,2714,47.98,2555,1200,46.97
79,Pudge,str,"Disabler, Initiator, Durable, Nuker",7677,3796,49.45,50891,24776,48.68,114784,56289,49.04,129604,63097,48.68,85800,41542,48.42,41730,20239,48.5,19823,9530,48.08,7112,3431,48.24
80,Pugna,int,"Nuker, Pusher",2075,944,45.49,9998,4695,46.96,18962,8958,47.24,20240,9965,49.23,12807,6199,48.4,5825,2855,49.01,2758,1387,50.29,1195,592,49.54
81,Queen of Pain,int,"Carry, Nuker, Escape",2287,1100,48.1,15119,7354,48.64,37137,18118,48.79,47706,23657,49.59,35500,18018,50.75,18405,9289,50.47,9243,4689,50.73,4227,2113,49.99
82,Razor,agi,"Carry, Durable, Nuker, Pusher",2470,1231,49.84,12000,5964,49.7,24666,12142,49.23,30334,14844,48.94,21832,10558,48.36,11917,5679,47.65,6092,2912,47.8,3144,1551,49.33
83,Riki,agi,"Carry, Escape, Disabler",3684,1929,52.36,19022,9891,52.0,35638,18582,52.14,33908,17415,51.36,20194,10312,51.06,8726,4377,50.16,3735,1855,49.67,1160,559,48.19
84,Rubick,int,"Support, Disabler, Nuker",3090,1404,45.44,21639,9303,42.99,57417,24590,42.83,74874,32603,43.54,55186,24219,43.89,28206,12568,44.56,13732,6106,44.47,5764,2642,45.84
85,Sand King,all,"Initiator, Disabler, Support, Nuker, Escape",2633,1513,57.46,13097,7323,55.91,25271,13807,54.64,26724,14323,53.6,17384,9144,52.6,7907,4104,51.9,3394,1719,50.65,1211,611,50.45
86,Shadow Demon,int,"Support, Disabler, Initiator, Nuker",547,236,43.14,3252,1426,43.85,7920,3524,44.49,9752,4551,46.67,7404,3467,46.83,3956,1876,47.42,2076,1004,48.36,1054,497,47.15
87,Shadow Fiend,agi,"Carry, Nuker",5051,2544,50.37,27255,14064,51.6,58589,29830,50.91,65429,33097,50.58,41810,21189,50.68,18766,9401,50.1,8232,4000,48.59,3016,1430,47.41
88,Shadow Shaman,int,"Support, Pusher, Disabler, Nuker, Initiator",5323,2795,52.51,29733,15606,52.49,58894,31236,53.04,58765,30895,52.57,34475,18242,52.91,15166,7986,52.66,6377,3323,52.11,2413,1253,51.93
89,Silencer,int,"Carry, Support, Disabler, Initiator, Nuker",4229,2324,54.95,27878,14960,53.66,61698,33081,53.62,65256,34458,52.8,38589,19853,51.45,16889,8653,51.23,6836,3416,49.97,2236,1105,49.42
90,Skywrath Mage,int,"Support, Nuker, Disabler",4000,2030,50.75,22783,11675,51.24,46512,23624,50.79,51329,25706,50.08,34167,17364,50.82,16693,8415,50.41,8496,4208,49.53,4389,2069,47.14
91,Slardar,str,"Carry, Durable, Initiator, Disabler, Escape",3935,2129,54.1,21523,11602,53.91,43947,23701,53.93,47721,25633,53.71,29887,16132,53.98,14233,7722,54.25,6530,3467,53.09,2322,1205,51.89
92,Slark,agi,"Carry, Escape, Disabler, Nuker",4815,2521,52.36,29413,14762,50.19,64004,31771,49.64,70173,34411,49.04,44780,21926,48.96,20864,10270,49.22,9969,4962,49.77,4565,2394,52.44
93,Snapfire,all,"Support, Nuker, Disabler, Escape",1524,682,44.75,10646,4576,42.98,27103,12120,44.72,34711,15412,44.4,24351,10786,44.29,11723,5131,43.77,5227,2294,43.89,1987,868,43.68
94,Sniper,agi,"Carry, Nuker",8022,4079,50.85,44508,22727,51.06,88690,45223,50.99,87190,44086,50.56,47411,23648,49.88,18092,8924,49.33,6130,3040,49.59,1370,662,48.32
95,Spectre,agi,"Carry, Durable, Escape",3454,2008,58.14,22097,12356,55.92,49157,26961,54.85,55914,30100,53.83,36321,19338,53.24,16946,8960,52.87,7921,4163,52.56,2568,1370,53.35
96,Spirit Breaker,str,"Carry, Initiator, Disabler, Durable, Escape",4788,2423,50.61,26662,13530,50.75,56535,28908,51.13,63991,32249,50.4,42512,21357,50.24,20119,9926,49.34,9499,4814,50.68,3761,1884,50.09
97,Storm Spirit,int,"Carry, Escape, Nuker, Initiator, Disabler",2202,1001,45.46,11656,5197,44.59,25644,11806,46.04,30968,14210,45.89,21680,10197,47.03,10810,5025,46.48,5278,2382,45.13,2363,1122,47.48
98,Sven,str,"Carry, Disabler, Initiator, Durable, Nuker",3552,1761,49.58,19792,9744,49.23,41296,20478,49.59,48709,24228,49.74,35460,17828,50.28,19795,10065,50.85,11014,5655,51.34,6701,3387,50.54
99,Techies,all,"Nuker, Disabler",2356,1131,48.01,13105,6245,47.65,27293,12893,47.24,29180,13507,46.29,18216,8407,46.15,8266,3771,45.62,3459,1644,47.53,1319,591,44.81
100,Templar Assassin,agi,"Carry, Escape",2142,955,44.58,10932,4758,43.52,21211,9445,44.53,23928,10909,45.59,17399,8242,47.37,9567,4656,48.67,5525,2708,49.01,3524,1775,50.37
101,Terrorblade,agi,"Carry, Pusher, Nuker",1115,484,43.41,5686,2430,42.74,10856,4638,42.72,11518,5041,43.77,8059,3540,43.93,4192,1827,43.58,2419,1082,44.73,1621,700,43.18
102,Tidehunter,str,"Initiator, Durable, Disabler, Nuker, Carry",1835,855,46.59,11159,5369,48.11,26222,12699,48.43,30735,14879,48.41,20523,9727,47.4,9731,4740,48.71,4426,2079,46.97,1998,936,46.85
103,Timbersaw,all,"Nuker, Durable, Escape",1050,448,42.67,5854,2584,44.14,12301,5391,43.83,14295,6097,42.65,9697,4217,43.49,4992,2163,43.33,2419,1021,42.21,1139,471,41.35
104,Tinker,int,"Carry, Nuker, Pusher",2106,944,44.82,11058,5200,47.02,24263,11826,48.74,27531,13614,49.45,19017,9732,51.18,9416,4875,51.77,4700,2466,52.47,1951,1036,53.1
105,Tiny,str,"Carry, Nuker, Pusher, Initiator, Durable, Disabler",1434,654,45.61,7742,3452,44.59,15936,6950,43.61,17139,7468,43.57,11269,4991,44.29,5485,2491,45.41,2599,1216,46.79,1058,519,49.05
106,Treant Protector,str,"Support, Initiator, Durable, Disabler, Escape",1646,899,54.62,11430,5881,51.45,28752,15124,52.6,36093,19344,53.59,28762,15532,54.0,16751,9227,55.08,9870,5468,55.4,6801,3855,56.68
107,Troll Warlord,agi,"Carry, Pusher, Disabler, Durable",3176,1720,54.16,14007,7445,53.15,24729,13022,52.66,25424,13228,52.03,17362,9030,52.01,9427,4913,52.12,4767,2499,52.42,2341,1242,53.05
108,Tusk,str,"Initiator, Disabler, Nuker",1263,565,44.73,8338,3777,45.3,19642,8869,45.15,25308,11520,45.52,18927,8853,46.77,10100,4820,47.72,5220,2502,47.93,2350,1157,49.23
109,Underlord,str,"Support, Nuker, Disabler, Durable, Escape",797,405,50.82,4583,2341,51.08,10067,5057,50.23,11650,5786,49.67,7224,3561,49.29,3310,1591,48.07,1368,673,49.2,395,190,48.1
110,Undying,str,"Support, Durable, Disabler, Nuker",3170,1620,51.1,19403,10116,52.14,40582,21110,52.02,40850,21182,51.85,23985,12454,51.92,10395,5389,51.84,4541,2336,51.44,2064,1012,49.03
111,Ursa,agi,"Carry, Durable, Disabler",2801,1273,45.45,15132,7038,46.51,33269,15478,46.52,40822,19264,47.19,29348,14011,47.74,15262,7375,48.32,7507,3622,48.25,3004,1473,49.03
112,Vengeful Spirit,all,"Support, Initiator, Disabler, Nuker, Escape",2186,1108,50.69,15817,8285,52.38,41843,21809,52.12,57524,30476,52.98,45512,24120,53.0,25581,13382,52.31,13758,7121,51.76,8276,4303,51.99
113,Venomancer,all,"Support, Nuker, Initiator, Pusher, Disabler",2309,1187,51.41,14669,7463,50.88,34787,18020,51.8,41797,21690,51.89,28706,15085,52.55,13974,7338,52.51,6538,3495,53.46,2794,1459,52.22
114,Viper,agi,"Carry, Durable, Initiator, Disabler",4100,2057,50.17,18991,9510,50.08,33517,16923,50.49,32728,16677,50.96,18537,9427,50.86,7851,3928,50.03,3260,1652,50.67,1176,610,51.87
115,Visage,all,"Support, Nuker, Durable, Disabler, Pusher",331,171,51.66,1638,813,49.63,3240,1577,48.67,3840,1986,51.72,3108,1609,51.77,1995,1055,52.88,1309,702,53.63,858,457,53.26
116,Void Spirit,all,"Carry, Escape, Nuker, Disabler",1565,727,46.45,8672,4096,47.23,20010,9694,48.45,25213,12376,49.09,18817,9231,49.06,10026,4920,49.07,4788,2319,48.43,2006,964,48.06
117,Warlock,int,"Support, Initiator, Disabler",2547,1369,53.75,18931,10331,54.57,49795,26999,54.22,66697,36220,54.31,48401,25668,53.03,24999,12942,51.77,12575,6356,50.54,6183,2934,47.45
118,Weaver,agi,"Carry, Escape",2818,1389,49.29,13873,6770,48.8,23493,11571,49.25,21545,10694,49.64,12911,6427,49.78,5809,2928,50.4,2960,1455,49.16,1303,719,55.18
119,Windranger,all,"Carry, Support, Disabler, Escape, Nuker",3861,1814,46.98,19934,9223,46.27,40644,18807,46.27,44476,20652,46.43,28952,13508,46.66,13418,6297,46.93,5898,2782,47.17,2374,1142,48.1
120,Winter Wyvern,all,"Support, Disabler, Nuker",821,371,45.19,5168,2424,46.9,10544,5014,47.55,11184,5308,47.46,7426,3512,47.29,3730,1854,49.71,1862,934,50.16,944,464,49.15
121,Witch Doctor,int,"Support, Nuker, Disabler",7504,4173,55.61,45501,25616,56.3,99664,54963,55.15,111382,60421,54.25,71830,37860,52.71,33164,17334,52.27,14610,7442,50.94,4196,2076,49.48
122,Wraith King,str,"Carry, Support, Durable, Disabler, Initiator",4175,2266,54.28,26362,14516,55.06,58733,32403,55.17,66283,36503,55.07,42360,23083,54.49,19084,10251,53.72,8334,4315,51.78,2707,1376,50.83
123,Zeus,int,"Nuker, Carry",4132,2106,50.97,23721,12487,52.64,51568,27475,53.28,58333,31078,53.28,37821,20047,53.0,17901,9504,53.09,8539,4459,52.22,3400,1791,52.68
1 Name Primary Attribute Roles Herald Picks Herald Wins Herald Win Rate Guardian Picks Guardian Wins Guardian Win Rate Crusader Picks Crusader Wins Crusader Win Rate Archon Picks Archon Wins Archon Win Rate Legend Picks Legend Wins Legend Win Rate Ancient Picks Ancient Wins Ancient Win Rate Divine Picks Divine Wins Divine Win Rate Immortal Picks Immortal Wins Immortal Win Rate
2 0 Abaddon all Support, Carry, Durable 1111 575 51.76 6408 3309 51.64 13811 7050 51.05 16497 8530 51.71 11360 5877 51.73 5571 2893 51.93 2632 1345 51.1 991 497 50.15
3 1 Alchemist str Carry, Support, Durable, Disabler, Initiator, Nuker 1119 486 43.43 6370 2883 45.26 12238 5617 45.9 13028 6130 47.05 8455 4055 47.96 4120 1984 48.16 2021 1023 50.62 860 424 49.3
4 2 Ancient Apparition int Support, Disabler, Nuker 2146 1073 50.0 13697 7069 51.61 30673 16118 52.55 35145 18219 51.84 23114 12166 52.63 10688 5528 51.72 5035 2573 51.1 2134 1076 50.42
5 3 Anti-Mage agi Carry, Escape, Nuker 3765 1818 48.29 22050 10774 48.86 47371 23304 49.19 49115 24074 49.02 28599 13991 48.92 12303 5958 48.43 4866 2349 48.27 1502 751 50.0
6 4 Arc Warden agi Carry, Escape, Nuker 1448 704 48.62 8047 4162 51.72 14946 7982 53.41 14711 7875 53.53 9472 5167 54.55 4323 2309 53.41 2104 1148 54.56 789 435 55.13
7 5 Axe str Initiator, Durable, Disabler, Carry 5343 2880 53.9 32652 17719 54.27 71010 37736 53.14 77869 40559 52.09 49182 25079 50.99 22637 11353 50.15 10114 5000 49.44 3795 1837 48.41
8 6 Bane all Support, Disabler, Nuker, Durable 745 334 44.83 4983 2422 48.61 11332 5504 48.57 13633 6767 49.64 10132 5032 49.66 5596 2861 51.13 3028 1555 51.35 1958 1055 53.88
9 7 Batrider all Initiator, Disabler, Escape 349 136 38.97 1983 812 40.95 4053 1595 39.35 4725 1861 39.39 3173 1275 40.18 1678 731 43.56 802 362 45.14 497 227 45.67
10 8 Beastmaster all Initiator, Disabler, Durable, Nuker 402 174 43.28 2447 1060 43.32 5787 2569 44.39 6930 3092 44.62 5288 2389 45.18 2816 1274 45.24 1593 752 47.21 1176 539 45.83
11 9 Bloodseeker agi Carry, Disabler, Nuker, Initiator 2765 1382 49.98 12589 6270 49.81 21781 10683 49.05 20961 10420 49.71 13035 6430 49.33 6210 3006 48.41 2941 1475 50.15 1465 718 49.01
12 10 Bounty Hunter agi Escape, Nuker 3852 1868 48.49 19609 9535 48.63 36362 17600 48.4 37059 18314 49.42 22934 11518 50.22 10584 5276 49.85 5105 2594 50.81 2498 1325 53.04
13 11 Brewmaster all Carry, Initiator, Durable, Disabler, Nuker 545 280 51.38 3564 1745 48.96 8941 4388 49.08 12340 6111 49.52 11185 5623 50.27 7645 3906 51.09 4812 2478 51.5 3533 1820 51.51
14 12 Bristleback str Carry, Durable, Initiator, Nuker 5884 3262 55.44 27952 14587 52.19 48847 24379 49.91 46702 22927 49.09 27466 13319 48.49 12398 5969 48.14 5865 2915 49.7 2639 1304 49.41
15 13 Broodmother all Carry, Pusher, Escape, Nuker 456 173 37.94 2048 842 41.11 3444 1462 42.45 3392 1448 42.69 2193 1048 47.79 1203 602 50.04 795 422 53.08 453 230 50.77
16 14 Centaur Warrunner str Durable, Initiator, Disabler, Nuker, Escape 1721 911 52.93 11754 6266 53.31 28691 15201 52.98 35369 18741 52.99 25393 13468 53.04 12653 6607 52.22 6124 3181 51.94 2442 1243 50.9
17 15 Chaos Knight str Carry, Disabler, Durable, Pusher, Initiator 3032 1639 54.06 16762 8931 53.28 31892 17139 53.74 30697 16435 53.54 18217 9810 53.85 8572 4620 53.9 4230 2291 54.16 1750 943 53.89
18 16 Chen all Support, Pusher 284 125 44.01 1450 678 46.76 2969 1345 45.3 3258 1604 49.23 2641 1331 50.4 1488 767 51.55 970 512 52.78 770 448 58.18
19 17 Clinkz agi Carry, Escape, Pusher 3151 1608 51.03 13891 7141 51.41 25465 12938 50.81 27327 14066 51.47 18846 9726 51.61 9452 4890 51.74 4765 2475 51.94 2093 1052 50.26
20 18 Clockwerk all Initiator, Disabler, Durable, Nuker 816 397 48.65 5860 2837 48.41 14478 6929 47.86 18466 8843 47.89 13143 6301 47.94 6612 3169 47.93 3286 1581 48.11 1378 658 47.75
21 19 Crystal Maiden int Support, Disabler, Nuker 4821 2529 52.46 26584 13626 51.26 52168 26040 49.92 52258 25365 48.54 30690 14848 48.38 13295 6404 48.17 5602 2680 47.84 1638 771 47.07
22 20 Dark Seer all Initiator, Escape, Disabler 627 320 51.04 3675 1884 51.27 7881 3803 48.26 9589 4844 50.52 7186 3573 49.72 3902 1983 50.82 2145 1095 51.05 1217 593 48.73
23 21 Dark Willow all Support, Nuker, Disabler, Escape 2654 1293 48.72 13829 6657 48.14 28142 13480 47.9 32114 15785 49.15 23100 11331 49.05 12052 5909 49.03 6400 3182 49.72 3708 1915 51.65
24 22 Dawnbreaker str Carry, Durable 1746 875 50.11 12297 6105 49.65 32398 15921 49.14 44846 21936 48.91 35474 17441 49.17 19770 9832 49.73 10637 5263 49.48 6339 3173 50.06
25 23 Dazzle all Support, Nuker, Disabler 2827 1418 50.16 19852 9758 49.15 48236 23691 49.11 56417 27798 49.27 38159 18642 48.85 18695 9199 49.21 8530 4239 49.7 3382 1654 48.91
26 24 Death Prophet int Carry, Pusher, Nuker, Disabler 1372 659 48.03 6643 3145 47.34 11987 5729 47.79 12268 5856 47.73 7455 3606 48.37 3591 1698 47.28 1872 902 48.18 926 459 49.57
27 25 Disruptor int Support, Disabler, Nuker, Initiator 1541 757 49.12 11104 5331 48.01 27746 13542 48.81 33742 16310 48.34 23173 11096 47.88 10907 5201 47.68 4859 2255 46.41 1863 861 46.22
28 26 Doom str Carry, Disabler, Initiator, Durable, Nuker 1049 474 45.19 6112 2767 45.27 13700 6056 44.2 15454 6925 44.81 10727 4842 45.14 5444 2451 45.02 2979 1348 45.25 1545 731 47.31
29 27 Dragon Knight str Carry, Pusher, Durable, Disabler, Initiator, Nuker 1950 942 48.31 10643 5274 49.55 20451 9733 47.59 20326 9671 47.58 11674 5544 47.49 4979 2355 47.3 2024 973 48.07 725 341 47.03
30 28 Drow Ranger agi Carry, Disabler, Pusher 5737 2904 50.62 29675 14831 49.98 57655 28573 49.56 56682 27927 49.27 34310 16607 48.4 15050 7171 47.65 5947 2815 47.33 1768 788 44.57
31 29 Earth Spirit str Nuker, Escape, Disabler, Initiator, Durable 1038 465 44.8 7420 3276 44.15 20807 9432 45.33 30107 14166 47.05 25314 12148 47.99 14579 7041 48.3 7678 3802 49.52 4379 2169 49.53
32 30 Earthshaker str Support, Initiator, Disabler, Nuker 5012 2455 48.98 29784 14662 49.23 67050 33111 49.38 79963 39843 49.83 57108 28961 50.71 28650 14591 50.93 14186 7296 51.43 6151 3165 51.46
33 31 Elder Titan str Initiator, Disabler, Nuker, Durable 471 212 45.01 2551 1248 48.92 5213 2570 49.3 5572 2809 50.41 3847 1942 50.48 1964 998 50.81 1124 613 54.54 550 292 53.09
34 32 Ember Spirit agi Carry, Escape, Nuker, Disabler, Initiator 1514 635 41.94 9180 3836 41.79 20578 8738 42.46 25152 10844 43.11 17703 7814 44.14 8538 3793 44.42 4265 1892 44.36 2065 928 44.94
35 33 Enchantress int Support, Pusher, Durable, Disabler 1794 848 47.27 8050 3622 44.99 12921 5686 44.01 11673 4974 42.61 6863 2840 41.38 2948 1212 41.11 1434 654 45.61 806 318 39.45
36 34 Enigma all Disabler, Initiator, Pusher 1317 588 44.65 6937 3171 45.71 12908 5979 46.32 11687 5428 46.44 6194 2839 45.83 2493 1127 45.21 938 437 46.59 338 159 47.04
37 35 Faceless Void agi Carry, Initiator, Disabler, Escape, Durable 4323 2043 47.26 25618 11902 46.46 54581 25874 47.4 60671 28993 47.79 40137 19611 48.86 19376 9620 49.65 9579 4828 50.4 4439 2256 50.82
38 36 Grimstroke int Support, Nuker, Disabler, Escape 1455 694 47.7 9714 4789 49.3 24688 12430 50.35 32027 16094 50.25 23193 11795 50.86 12102 6100 50.4 6191 3047 49.22 3449 1666 48.3
39 37 Gyrocopter agi Carry, Nuker, Disabler 2560 1213 47.38 16589 7882 47.51 42072 20358 48.39 54200 26229 48.39 39414 19053 48.34 20164 9781 48.51 10164 4937 48.57 5241 2507 47.83
40 38 Hoodwink agi Support, Nuker, Escape, Disabler 2420 1126 46.53 14034 6800 48.45 31382 14964 47.68 35684 16966 47.55 22626 10651 47.07 9949 4690 47.14 4349 2089 48.03 1533 703 45.86
41 39 Huskar str Carry, Durable, Initiator 3501 1603 45.79 14234 6639 46.64 22794 10912 47.87 21801 10763 49.37 13811 6919 50.1 6769 3535 52.22 3556 1822 51.24 1936 993 51.29
42 40 Invoker all Carry, Nuker, Disabler, Escape, Pusher 4330 2042 47.16 27625 13176 47.7 69035 33863 49.05 86745 43479 50.12 61821 31510 50.97 31459 16321 51.88 15431 8195 53.11 7852 4148 52.83
43 41 Io all Support, Escape, Nuker 1274 615 48.27 6158 2999 48.7 12762 6247 48.95 14216 7024 49.41 9564 4843 50.64 5301 2685 50.65 2789 1463 52.46 1464 773 52.8
44 42 Jakiro int Support, Nuker, Pusher, Disabler 3147 1708 54.27 22718 12413 54.64 56736 30984 54.61 70038 37473 53.5 46389 24997 53.89 22084 11639 52.7 9838 5103 51.87 3282 1729 52.68
45 43 Juggernaut agi Carry, Pusher, Escape 5585 2711 48.54 30394 14800 48.69 62313 30581 49.08 65590 32344 49.31 39235 19326 49.26 16334 8012 49.05 6419 3066 47.76 1576 731 46.38
46 44 Keeper of the Light int Support, Nuker, Disabler 896 353 39.4 5051 2216 43.87 10452 4579 43.81 11614 5322 45.82 7870 3627 46.09 4268 2001 46.88 2147 1043 48.58 1333 588 44.11
47 45 Kunkka str Carry, Support, Disabler, Initiator, Durable, Nuker 2251 1124 49.93 13474 6828 50.68 31210 16196 51.89 39691 21293 53.65 30314 16458 54.29 15706 8793 55.98 7884 4339 55.04 3458 1898 54.89
48 46 Legion Commander str Carry, Disabler, Initiator, Durable, Nuker 6263 3264 52.12 37100 19157 51.64 81491 41557 51.0 91431 46558 50.92 59383 29917 50.38 27945 13917 49.8 13193 6587 49.93 5601 2745 49.01
49 47 Leshrac int Carry, Support, Nuker, Pusher, Disabler 674 316 46.88 3872 1799 46.46 7490 3433 45.83 7903 3604 45.6 5322 2526 47.46 2687 1298 48.31 1325 647 48.83 721 357 49.51
50 48 Lich int Support, Nuker 2700 1412 52.3 16646 8820 52.99 37785 19685 52.1 45471 23554 51.8 31203 16108 51.62 15530 7821 50.36 7243 3597 49.66 2520 1258 49.92
51 49 Lifestealer str Carry, Durable, Escape, Disabler 2515 1213 48.23 14131 6978 49.38 29724 14627 49.21 31211 15581 49.92 18970 9481 49.98 8689 4400 50.64 3630 1821 50.17 1229 617 50.2
52 50 Lina int Support, Carry, Nuker, Disabler 4512 2030 44.99 21927 10156 46.32 45301 21210 46.82 54229 25956 47.86 40016 19138 47.83 21072 10112 47.99 10481 5031 48.0 4369 2138 48.94
53 51 Lion int Support, Disabler, Nuker, Initiator 6204 2855 46.02 37869 17465 46.12 80124 36649 45.74 84390 38176 45.24 50720 22914 45.18 21698 9784 45.09 9308 4280 45.98 3220 1496 46.46
54 52 Lone Druid all Carry, Pusher, Durable 909 483 53.14 4714 2421 51.36 10987 5858 53.32 14580 7968 54.65 11810 6490 54.95 7241 3971 54.84 4024 2240 55.67 2303 1259 54.67
55 53 Luna agi Carry, Nuker, Pusher 1927 904 46.91 9091 4271 46.98 16571 7922 47.81 16035 7615 47.49 9728 4634 47.64 4463 2103 47.12 1912 911 47.65 719 322 44.78
56 54 Lycan all Carry, Pusher, Durable, Escape 374 174 46.52 1894 915 48.31 3691 1744 47.25 3824 1905 49.82 2694 1332 49.44 1460 753 51.58 827 411 49.7 532 289 54.32
57 55 Magnus all Initiator, Disabler, Nuker, Escape 770 339 44.03 5789 2651 45.79 17837 7954 44.59 26126 12058 46.15 20634 9592 46.49 10574 5056 47.82 4565 2073 45.41 1606 751 46.76
58 56 Marci all Support, Carry, Initiator, Disabler, Escape 1370 620 45.26 7092 3252 45.85 15199 7240 47.63 18485 8874 48.01 13308 6305 47.38 7176 3476 48.44 3689 1882 51.02 1746 883 50.57
59 57 Mars str Carry, Initiator, Disabler, Durable 862 375 43.5 5719 2529 44.22 15156 6756 44.58 20719 9369 45.22 16419 7387 44.99 9044 4052 44.8 4536 2093 46.14 1926 868 45.07
60 58 Medusa agi Carry, Disabler, Durable 1898 902 47.52 9289 4512 48.57 16504 7818 47.37 14796 6886 46.54 7488 3449 46.06 2775 1270 45.77 1073 482 44.92 394 184 46.7
61 59 Meepo agi Carry, Escape, Nuker, Disabler, Initiator, Pusher 1004 523 52.09 3970 1990 50.13 6904 3587 51.96 7166 3646 50.88 4906 2563 52.24 2383 1282 53.8 1139 588 51.62 585 300 51.28
62 60 Mirana all Carry, Support, Escape, Nuker, Disabler 2499 1193 47.74 16954 8135 47.98 39985 19097 47.76 45169 21554 47.72 28467 13456 47.27 12800 6047 47.24 5272 2500 47.42 1824 874 47.92
63 61 Monkey King agi Carry, Escape, Disabler, Initiator 3191 1384 43.37 17306 7544 43.59 35734 16113 45.09 40778 18322 44.93 27558 12630 45.83 14034 6433 45.84 6650 3152 47.4 3040 1440 47.37
64 62 Morphling agi Carry, Escape, Durable, Nuker, Disabler 1521 690 45.36 8620 4006 46.47 18075 8161 45.15 20414 9235 45.24 14395 6530 45.36 7697 3551 46.13 4432 2050 46.25 2560 1190 46.48
65 63 Muerta int Carry, Nuker, Disabler 2130 1089 51.13 10787 5740 53.21 22602 11898 52.64 27609 14495 52.5 20175 10465 51.87 10662 5518 51.75 5462 2759 50.51 2948 1517 51.46
66 64 Naga Siren agi Carry, Support, Pusher, Disabler, Initiator, Escape 1502 804 53.53 6495 3356 51.67 10423 5234 50.22 9830 4929 50.14 6057 2971 49.05 3216 1675 52.08 1855 933 50.3 1242 634 51.05
67 65 Nature's Prophet int Carry, Pusher, Escape, Nuker 5991 3029 50.56 36433 18143 49.8 83118 42095 50.64 100341 51268 51.09 69436 35870 51.66 34256 17858 52.13 16585 8745 52.73 7182 3755 52.28
68 66 Necrophos int Carry, Nuker, Durable, Disabler 4776 2702 56.57 28535 15771 55.27 62186 34285 55.13 70212 38163 54.35 46539 24708 53.09 21607 11302 52.31 9677 4994 51.61 3418 1733 50.7
69 67 Night Stalker str Carry, Initiator, Durable, Disabler, Nuker 1189 594 49.96 7868 3892 49.47 19446 10004 51.45 25524 13506 52.91 20138 10828 53.77 10767 5651 52.48 5499 2889 52.54 2415 1257 52.05
70 68 Nyx Assassin all Disabler, Nuker, Initiator, Escape 1718 867 50.47 10925 5525 50.57 27207 14073 51.73 34684 18059 52.07 25736 13572 52.74 13313 7093 53.28 6485 3444 53.11 2852 1468 51.47
71 69 Ogre Magi str Support, Nuker, Disabler, Durable, Initiator 5331 2845 53.37 31507 16299 51.73 62954 32248 51.22 61758 31373 50.8 33746 16988 50.34 13262 6654 50.17 4861 2420 49.78 1271 654 51.46
72 70 Omniknight str Support, Durable, Nuker 975 479 49.13 6426 3109 48.38 14641 7319 49.99 17258 8731 50.59 11695 5916 50.59 5746 2993 52.09 2870 1469 51.18 1333 656 49.21
73 71 Oracle int Support, Nuker, Disabler, Escape 796 384 48.24 4857 2417 49.76 13141 6645 50.57 18944 9853 52.01 15221 7964 52.32 8356 4458 53.35 4475 2380 53.18 1905 1018 53.44
74 72 Outworld Destroyer int Carry, Nuker, Disabler 2226 1118 50.22 13388 6864 51.27 33284 17362 52.16 43991 23377 53.14 32021 16994 53.07 16655 8724 52.38 8123 4218 51.93 3176 1649 51.92
75 73 Pangolier all Carry, Nuker, Disabler, Durable, Escape, Initiator 1156 534 46.19 7189 3209 44.64 17802 7937 44.58 25785 11677 45.29 21727 10144 46.69 13064 6351 48.61 7567 3737 49.39 5275 2734 51.83
76 74 Phantom Assassin agi Carry, Escape 8553 4426 51.75 48549 25553 52.63 104756 54881 52.39 119332 62511 52.38 79140 41143 51.99 37399 19325 51.67 17774 9077 51.07 7819 3856 49.32
77 75 Phantom Lancer agi Carry, Escape, Pusher, Nuker 3641 1960 53.83 19550 10374 53.06 38576 20633 53.49 41505 22310 53.75 26401 14268 54.04 12437 6590 52.99 5708 2985 52.3 2383 1243 52.16
78 76 Phoenix all Support, Nuker, Initiator, Escape, Disabler 743 315 42.4 5231 2471 47.24 13950 6633 47.55 18350 8864 48.31 13972 6715 48.06 7787 3761 48.3 4322 2132 49.33 2610 1325 50.77
79 77 Primal Beast str Initiator, Durable, Disabler 1455 701 48.18 9333 4448 47.66 22800 11058 48.5 30084 14643 48.67 24307 11993 49.34 13970 6991 50.04 7742 3890 50.25 4625 2407 52.04
80 78 Puck int Initiator, Disabler, Escape, Nuker 871 399 45.81 5773 2628 45.52 16596 7578 45.66 24480 11315 46.22 20070 9497 47.32 11023 5298 48.06 5656 2714 47.98 2555 1200 46.97
81 79 Pudge str Disabler, Initiator, Durable, Nuker 7677 3796 49.45 50891 24776 48.68 114784 56289 49.04 129604 63097 48.68 85800 41542 48.42 41730 20239 48.5 19823 9530 48.08 7112 3431 48.24
82 80 Pugna int Nuker, Pusher 2075 944 45.49 9998 4695 46.96 18962 8958 47.24 20240 9965 49.23 12807 6199 48.4 5825 2855 49.01 2758 1387 50.29 1195 592 49.54
83 81 Queen of Pain int Carry, Nuker, Escape 2287 1100 48.1 15119 7354 48.64 37137 18118 48.79 47706 23657 49.59 35500 18018 50.75 18405 9289 50.47 9243 4689 50.73 4227 2113 49.99
84 82 Razor agi Carry, Durable, Nuker, Pusher 2470 1231 49.84 12000 5964 49.7 24666 12142 49.23 30334 14844 48.94 21832 10558 48.36 11917 5679 47.65 6092 2912 47.8 3144 1551 49.33
85 83 Riki agi Carry, Escape, Disabler 3684 1929 52.36 19022 9891 52.0 35638 18582 52.14 33908 17415 51.36 20194 10312 51.06 8726 4377 50.16 3735 1855 49.67 1160 559 48.19
86 84 Rubick int Support, Disabler, Nuker 3090 1404 45.44 21639 9303 42.99 57417 24590 42.83 74874 32603 43.54 55186 24219 43.89 28206 12568 44.56 13732 6106 44.47 5764 2642 45.84
87 85 Sand King all Initiator, Disabler, Support, Nuker, Escape 2633 1513 57.46 13097 7323 55.91 25271 13807 54.64 26724 14323 53.6 17384 9144 52.6 7907 4104 51.9 3394 1719 50.65 1211 611 50.45
88 86 Shadow Demon int Support, Disabler, Initiator, Nuker 547 236 43.14 3252 1426 43.85 7920 3524 44.49 9752 4551 46.67 7404 3467 46.83 3956 1876 47.42 2076 1004 48.36 1054 497 47.15
89 87 Shadow Fiend agi Carry, Nuker 5051 2544 50.37 27255 14064 51.6 58589 29830 50.91 65429 33097 50.58 41810 21189 50.68 18766 9401 50.1 8232 4000 48.59 3016 1430 47.41
90 88 Shadow Shaman int Support, Pusher, Disabler, Nuker, Initiator 5323 2795 52.51 29733 15606 52.49 58894 31236 53.04 58765 30895 52.57 34475 18242 52.91 15166 7986 52.66 6377 3323 52.11 2413 1253 51.93
91 89 Silencer int Carry, Support, Disabler, Initiator, Nuker 4229 2324 54.95 27878 14960 53.66 61698 33081 53.62 65256 34458 52.8 38589 19853 51.45 16889 8653 51.23 6836 3416 49.97 2236 1105 49.42
92 90 Skywrath Mage int Support, Nuker, Disabler 4000 2030 50.75 22783 11675 51.24 46512 23624 50.79 51329 25706 50.08 34167 17364 50.82 16693 8415 50.41 8496 4208 49.53 4389 2069 47.14
93 91 Slardar str Carry, Durable, Initiator, Disabler, Escape 3935 2129 54.1 21523 11602 53.91 43947 23701 53.93 47721 25633 53.71 29887 16132 53.98 14233 7722 54.25 6530 3467 53.09 2322 1205 51.89
94 92 Slark agi Carry, Escape, Disabler, Nuker 4815 2521 52.36 29413 14762 50.19 64004 31771 49.64 70173 34411 49.04 44780 21926 48.96 20864 10270 49.22 9969 4962 49.77 4565 2394 52.44
95 93 Snapfire all Support, Nuker, Disabler, Escape 1524 682 44.75 10646 4576 42.98 27103 12120 44.72 34711 15412 44.4 24351 10786 44.29 11723 5131 43.77 5227 2294 43.89 1987 868 43.68
96 94 Sniper agi Carry, Nuker 8022 4079 50.85 44508 22727 51.06 88690 45223 50.99 87190 44086 50.56 47411 23648 49.88 18092 8924 49.33 6130 3040 49.59 1370 662 48.32
97 95 Spectre agi Carry, Durable, Escape 3454 2008 58.14 22097 12356 55.92 49157 26961 54.85 55914 30100 53.83 36321 19338 53.24 16946 8960 52.87 7921 4163 52.56 2568 1370 53.35
98 96 Spirit Breaker str Carry, Initiator, Disabler, Durable, Escape 4788 2423 50.61 26662 13530 50.75 56535 28908 51.13 63991 32249 50.4 42512 21357 50.24 20119 9926 49.34 9499 4814 50.68 3761 1884 50.09
99 97 Storm Spirit int Carry, Escape, Nuker, Initiator, Disabler 2202 1001 45.46 11656 5197 44.59 25644 11806 46.04 30968 14210 45.89 21680 10197 47.03 10810 5025 46.48 5278 2382 45.13 2363 1122 47.48
100 98 Sven str Carry, Disabler, Initiator, Durable, Nuker 3552 1761 49.58 19792 9744 49.23 41296 20478 49.59 48709 24228 49.74 35460 17828 50.28 19795 10065 50.85 11014 5655 51.34 6701 3387 50.54
101 99 Techies all Nuker, Disabler 2356 1131 48.01 13105 6245 47.65 27293 12893 47.24 29180 13507 46.29 18216 8407 46.15 8266 3771 45.62 3459 1644 47.53 1319 591 44.81
102 100 Templar Assassin agi Carry, Escape 2142 955 44.58 10932 4758 43.52 21211 9445 44.53 23928 10909 45.59 17399 8242 47.37 9567 4656 48.67 5525 2708 49.01 3524 1775 50.37
103 101 Terrorblade agi Carry, Pusher, Nuker 1115 484 43.41 5686 2430 42.74 10856 4638 42.72 11518 5041 43.77 8059 3540 43.93 4192 1827 43.58 2419 1082 44.73 1621 700 43.18
104 102 Tidehunter str Initiator, Durable, Disabler, Nuker, Carry 1835 855 46.59 11159 5369 48.11 26222 12699 48.43 30735 14879 48.41 20523 9727 47.4 9731 4740 48.71 4426 2079 46.97 1998 936 46.85
105 103 Timbersaw all Nuker, Durable, Escape 1050 448 42.67 5854 2584 44.14 12301 5391 43.83 14295 6097 42.65 9697 4217 43.49 4992 2163 43.33 2419 1021 42.21 1139 471 41.35
106 104 Tinker int Carry, Nuker, Pusher 2106 944 44.82 11058 5200 47.02 24263 11826 48.74 27531 13614 49.45 19017 9732 51.18 9416 4875 51.77 4700 2466 52.47 1951 1036 53.1
107 105 Tiny str Carry, Nuker, Pusher, Initiator, Durable, Disabler 1434 654 45.61 7742 3452 44.59 15936 6950 43.61 17139 7468 43.57 11269 4991 44.29 5485 2491 45.41 2599 1216 46.79 1058 519 49.05
108 106 Treant Protector str Support, Initiator, Durable, Disabler, Escape 1646 899 54.62 11430 5881 51.45 28752 15124 52.6 36093 19344 53.59 28762 15532 54.0 16751 9227 55.08 9870 5468 55.4 6801 3855 56.68
109 107 Troll Warlord agi Carry, Pusher, Disabler, Durable 3176 1720 54.16 14007 7445 53.15 24729 13022 52.66 25424 13228 52.03 17362 9030 52.01 9427 4913 52.12 4767 2499 52.42 2341 1242 53.05
110 108 Tusk str Initiator, Disabler, Nuker 1263 565 44.73 8338 3777 45.3 19642 8869 45.15 25308 11520 45.52 18927 8853 46.77 10100 4820 47.72 5220 2502 47.93 2350 1157 49.23
111 109 Underlord str Support, Nuker, Disabler, Durable, Escape 797 405 50.82 4583 2341 51.08 10067 5057 50.23 11650 5786 49.67 7224 3561 49.29 3310 1591 48.07 1368 673 49.2 395 190 48.1
112 110 Undying str Support, Durable, Disabler, Nuker 3170 1620 51.1 19403 10116 52.14 40582 21110 52.02 40850 21182 51.85 23985 12454 51.92 10395 5389 51.84 4541 2336 51.44 2064 1012 49.03
113 111 Ursa agi Carry, Durable, Disabler 2801 1273 45.45 15132 7038 46.51 33269 15478 46.52 40822 19264 47.19 29348 14011 47.74 15262 7375 48.32 7507 3622 48.25 3004 1473 49.03
114 112 Vengeful Spirit all Support, Initiator, Disabler, Nuker, Escape 2186 1108 50.69 15817 8285 52.38 41843 21809 52.12 57524 30476 52.98 45512 24120 53.0 25581 13382 52.31 13758 7121 51.76 8276 4303 51.99
115 113 Venomancer all Support, Nuker, Initiator, Pusher, Disabler 2309 1187 51.41 14669 7463 50.88 34787 18020 51.8 41797 21690 51.89 28706 15085 52.55 13974 7338 52.51 6538 3495 53.46 2794 1459 52.22
116 114 Viper agi Carry, Durable, Initiator, Disabler 4100 2057 50.17 18991 9510 50.08 33517 16923 50.49 32728 16677 50.96 18537 9427 50.86 7851 3928 50.03 3260 1652 50.67 1176 610 51.87
117 115 Visage all Support, Nuker, Durable, Disabler, Pusher 331 171 51.66 1638 813 49.63 3240 1577 48.67 3840 1986 51.72 3108 1609 51.77 1995 1055 52.88 1309 702 53.63 858 457 53.26
118 116 Void Spirit all Carry, Escape, Nuker, Disabler 1565 727 46.45 8672 4096 47.23 20010 9694 48.45 25213 12376 49.09 18817 9231 49.06 10026 4920 49.07 4788 2319 48.43 2006 964 48.06
119 117 Warlock int Support, Initiator, Disabler 2547 1369 53.75 18931 10331 54.57 49795 26999 54.22 66697 36220 54.31 48401 25668 53.03 24999 12942 51.77 12575 6356 50.54 6183 2934 47.45
120 118 Weaver agi Carry, Escape 2818 1389 49.29 13873 6770 48.8 23493 11571 49.25 21545 10694 49.64 12911 6427 49.78 5809 2928 50.4 2960 1455 49.16 1303 719 55.18
121 119 Windranger all Carry, Support, Disabler, Escape, Nuker 3861 1814 46.98 19934 9223 46.27 40644 18807 46.27 44476 20652 46.43 28952 13508 46.66 13418 6297 46.93 5898 2782 47.17 2374 1142 48.1
122 120 Winter Wyvern all Support, Disabler, Nuker 821 371 45.19 5168 2424 46.9 10544 5014 47.55 11184 5308 47.46 7426 3512 47.29 3730 1854 49.71 1862 934 50.16 944 464 49.15
123 121 Witch Doctor int Support, Nuker, Disabler 7504 4173 55.61 45501 25616 56.3 99664 54963 55.15 111382 60421 54.25 71830 37860 52.71 33164 17334 52.27 14610 7442 50.94 4196 2076 49.48
124 122 Wraith King str Carry, Support, Durable, Disabler, Initiator 4175 2266 54.28 26362 14516 55.06 58733 32403 55.17 66283 36503 55.07 42360 23083 54.49 19084 10251 53.72 8334 4315 51.78 2707 1376 50.83
125 123 Zeus int Nuker, Carry 4132 2106 50.97 23721 12487 52.64 51568 27475 53.28 58333 31078 53.28 37821 20047 53.0 17901 9504 53.09 8539 4459 52.22 3400 1791 52.68

View File

@@ -0,0 +1,35 @@
## Задание
Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных. Проверьте работу модели на оставшемся проценте, сделайте вывод
## Как запустить лабораторную
Запустить файл main.py
## Используемые технологии
Библиотеки pandas, scikit-learn, их компоненты
## Описание лабораторной (программы)
Данный код берет данные из датасета о персонажах Dota 2, где описаны атрибуты персонажей, их роли, название, и как часто их пикают и какой у них винрейт на каждом звании в Доте, от реркута до титана.
В моем случае была поставлена задача определить винрейт персонажа на ранге рекрут в зависимости от его атрибута, роли (я взяла 2 - саппорт или керри), и того, как часто его берут на рекрутах.
Программа берет столбцы Herald Win Rate, Primary Attribute, Herald Picks и Roles, далее проводит фильтрацию столбца Roles и выбирает тех персонажей, у которых есть роль support или carry. Затем создает
два новых столбца - isCarry и isSupport, так как в столбце Roles несколько значений и его нужно удалить.
Затем данные делятся на обучающую и тестовую выборки и выясняется зависимость винрейта от остальных признаков.
В конце программа выводит, насколько важны были выбранные признаки при определении винрейта и точность модели.
## Результат
В результате получаем следующее:
Feature Importances: [0.08035262 0.82893841 0.00453277 0.08617619]
Score: 0.23055568233652535
Вывод: самым значимым признаком при определении винрейта стал признак Primary Attribute. На фоне других признаков его значимость сильно выделяется, все остальные признаки уже играют очень маленькую роль.
Точность модели вышла относительно низкой, но это легко объясняется тем, что в Доте невозможно точно предсказать винрейт персонажа, основываясь на подобных признаках. Винрейт предсказывается только лишь тем, какие персонажи сильны в данной мете, что зависит от их скиллов и изменений патча, не описанных в датасете (но и нет такого датасета, где они могли бы быть описаны).
Тем не менее, данная программа дала понять, что на рекрутах на винрейт персонажа сильно влияет его главный атрибут.

View File

@@ -0,0 +1,47 @@
import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
# Загрузка данных
data = pd.read_csv("Current_Pub_Meta.csv")
# Отбор нужных столбцов
selected_columns = ['Herald Win Rate', 'Primary Attribute', 'Herald Picks', 'Roles']
data = data[selected_columns]
# Фильтрация по ролям Carry и Support
data = data[data['Roles'].apply(lambda x: 'Carry' in x or 'Support' in x)]
# Создание столбцов для каждой роли и заполнение их значениями 1 или 0
data['IsCarry'] = data['Roles'].apply(lambda x: 1 if 'Carry' in x else 0)
data['IsSupport'] = data['Roles'].apply(lambda x: 1 if 'Support' in x else 0)
# Удаление столбца Roles
data.drop('Roles', axis=1, inplace=True)
# Замена категориальных переменных на числовые
data['Primary Attribute'] = data['Primary Attribute'].map({'str': 0, 'all': 1, 'int': 2, 'agi': 3})
# Разделение данных на обучающую и тестовую выборки
X = data.drop('Herald Win Rate', axis=1)
y = data['Herald Win Rate']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Обучение модели
model = DecisionTreeRegressor()
model.fit(X_train, y_train)
# Прогноз на тестовой выборке
y_pred = model.predict(X_test)
# Вывод обработанных данных
print("Обработанные данные:")
print(data)
# Оценка значимости признаков
feature_importances = model.feature_importances_
print("Feature Importances:", feature_importances)
# Оценка score модели
score = model.score(X_test, y_test)
print("Score:", score)

View File

@@ -0,0 +1,125 @@
,Name,Primary Attribute,Roles,Herald Picks,Herald Wins,Herald Win Rate,Guardian Picks,Guardian Wins,Guardian Win Rate,Crusader Picks,Crusader Wins,Crusader Win Rate,Archon Picks,Archon Wins,Archon Win Rate,Legend Picks,Legend Wins,Legend Win Rate,Ancient Picks,Ancient Wins,Ancient Win Rate,Divine Picks,Divine Wins,Divine Win Rate,Immortal Picks,Immortal Wins,Immortal Win Rate
0,Abaddon,all,"Support, Carry, Durable",1111,575,51.76,6408,3309,51.64,13811,7050,51.05,16497,8530,51.71,11360,5877,51.73,5571,2893,51.93,2632,1345,51.1,991,497,50.15
1,Alchemist,str,"Carry, Support, Durable, Disabler, Initiator, Nuker",1119,486,43.43,6370,2883,45.26,12238,5617,45.9,13028,6130,47.05,8455,4055,47.96,4120,1984,48.16,2021,1023,50.62,860,424,49.3
2,Ancient Apparition,int,"Support, Disabler, Nuker",2146,1073,50.0,13697,7069,51.61,30673,16118,52.55,35145,18219,51.84,23114,12166,52.63,10688,5528,51.72,5035,2573,51.1,2134,1076,50.42
3,Anti-Mage,agi,"Carry, Escape, Nuker",3765,1818,48.29,22050,10774,48.86,47371,23304,49.19,49115,24074,49.02,28599,13991,48.92,12303,5958,48.43,4866,2349,48.27,1502,751,50.0
4,Arc Warden,agi,"Carry, Escape, Nuker",1448,704,48.62,8047,4162,51.72,14946,7982,53.41,14711,7875,53.53,9472,5167,54.55,4323,2309,53.41,2104,1148,54.56,789,435,55.13
5,Axe,str,"Initiator, Durable, Disabler, Carry",5343,2880,53.9,32652,17719,54.27,71010,37736,53.14,77869,40559,52.09,49182,25079,50.99,22637,11353,50.15,10114,5000,49.44,3795,1837,48.41
6,Bane,all,"Support, Disabler, Nuker, Durable",745,334,44.83,4983,2422,48.61,11332,5504,48.57,13633,6767,49.64,10132,5032,49.66,5596,2861,51.13,3028,1555,51.35,1958,1055,53.88
7,Batrider,all,"Initiator, Disabler, Escape",349,136,38.97,1983,812,40.95,4053,1595,39.35,4725,1861,39.39,3173,1275,40.18,1678,731,43.56,802,362,45.14,497,227,45.67
8,Beastmaster,all,"Initiator, Disabler, Durable, Nuker",402,174,43.28,2447,1060,43.32,5787,2569,44.39,6930,3092,44.62,5288,2389,45.18,2816,1274,45.24,1593,752,47.21,1176,539,45.83
9,Bloodseeker,agi,"Carry, Disabler, Nuker, Initiator",2765,1382,49.98,12589,6270,49.81,21781,10683,49.05,20961,10420,49.71,13035,6430,49.33,6210,3006,48.41,2941,1475,50.15,1465,718,49.01
10,Bounty Hunter,agi,"Escape, Nuker",3852,1868,48.49,19609,9535,48.63,36362,17600,48.4,37059,18314,49.42,22934,11518,50.22,10584,5276,49.85,5105,2594,50.81,2498,1325,53.04
11,Brewmaster,all,"Carry, Initiator, Durable, Disabler, Nuker",545,280,51.38,3564,1745,48.96,8941,4388,49.08,12340,6111,49.52,11185,5623,50.27,7645,3906,51.09,4812,2478,51.5,3533,1820,51.51
12,Bristleback,str,"Carry, Durable, Initiator, Nuker",5884,3262,55.44,27952,14587,52.19,48847,24379,49.91,46702,22927,49.09,27466,13319,48.49,12398,5969,48.14,5865,2915,49.7,2639,1304,49.41
13,Broodmother,all,"Carry, Pusher, Escape, Nuker",456,173,37.94,2048,842,41.11,3444,1462,42.45,3392,1448,42.69,2193,1048,47.79,1203,602,50.04,795,422,53.08,453,230,50.77
14,Centaur Warrunner,str,"Durable, Initiator, Disabler, Nuker, Escape",1721,911,52.93,11754,6266,53.31,28691,15201,52.98,35369,18741,52.99,25393,13468,53.04,12653,6607,52.22,6124,3181,51.94,2442,1243,50.9
15,Chaos Knight,str,"Carry, Disabler, Durable, Pusher, Initiator",3032,1639,54.06,16762,8931,53.28,31892,17139,53.74,30697,16435,53.54,18217,9810,53.85,8572,4620,53.9,4230,2291,54.16,1750,943,53.89
16,Chen,all,"Support, Pusher",284,125,44.01,1450,678,46.76,2969,1345,45.3,3258,1604,49.23,2641,1331,50.4,1488,767,51.55,970,512,52.78,770,448,58.18
17,Clinkz,agi,"Carry, Escape, Pusher",3151,1608,51.03,13891,7141,51.41,25465,12938,50.81,27327,14066,51.47,18846,9726,51.61,9452,4890,51.74,4765,2475,51.94,2093,1052,50.26
18,Clockwerk,all,"Initiator, Disabler, Durable, Nuker",816,397,48.65,5860,2837,48.41,14478,6929,47.86,18466,8843,47.89,13143,6301,47.94,6612,3169,47.93,3286,1581,48.11,1378,658,47.75
19,Crystal Maiden,int,"Support, Disabler, Nuker",4821,2529,52.46,26584,13626,51.26,52168,26040,49.92,52258,25365,48.54,30690,14848,48.38,13295,6404,48.17,5602,2680,47.84,1638,771,47.07
20,Dark Seer,all,"Initiator, Escape, Disabler",627,320,51.04,3675,1884,51.27,7881,3803,48.26,9589,4844,50.52,7186,3573,49.72,3902,1983,50.82,2145,1095,51.05,1217,593,48.73
21,Dark Willow,all,"Support, Nuker, Disabler, Escape",2654,1293,48.72,13829,6657,48.14,28142,13480,47.9,32114,15785,49.15,23100,11331,49.05,12052,5909,49.03,6400,3182,49.72,3708,1915,51.65
22,Dawnbreaker,str,"Carry, Durable",1746,875,50.11,12297,6105,49.65,32398,15921,49.14,44846,21936,48.91,35474,17441,49.17,19770,9832,49.73,10637,5263,49.48,6339,3173,50.06
23,Dazzle,all,"Support, Nuker, Disabler",2827,1418,50.16,19852,9758,49.15,48236,23691,49.11,56417,27798,49.27,38159,18642,48.85,18695,9199,49.21,8530,4239,49.7,3382,1654,48.91
24,Death Prophet,int,"Carry, Pusher, Nuker, Disabler",1372,659,48.03,6643,3145,47.34,11987,5729,47.79,12268,5856,47.73,7455,3606,48.37,3591,1698,47.28,1872,902,48.18,926,459,49.57
25,Disruptor,int,"Support, Disabler, Nuker, Initiator",1541,757,49.12,11104,5331,48.01,27746,13542,48.81,33742,16310,48.34,23173,11096,47.88,10907,5201,47.68,4859,2255,46.41,1863,861,46.22
26,Doom,str,"Carry, Disabler, Initiator, Durable, Nuker",1049,474,45.19,6112,2767,45.27,13700,6056,44.2,15454,6925,44.81,10727,4842,45.14,5444,2451,45.02,2979,1348,45.25,1545,731,47.31
27,Dragon Knight,str,"Carry, Pusher, Durable, Disabler, Initiator, Nuker",1950,942,48.31,10643,5274,49.55,20451,9733,47.59,20326,9671,47.58,11674,5544,47.49,4979,2355,47.3,2024,973,48.07,725,341,47.03
28,Drow Ranger,agi,"Carry, Disabler, Pusher",5737,2904,50.62,29675,14831,49.98,57655,28573,49.56,56682,27927,49.27,34310,16607,48.4,15050,7171,47.65,5947,2815,47.33,1768,788,44.57
29,Earth Spirit,str,"Nuker, Escape, Disabler, Initiator, Durable",1038,465,44.8,7420,3276,44.15,20807,9432,45.33,30107,14166,47.05,25314,12148,47.99,14579,7041,48.3,7678,3802,49.52,4379,2169,49.53
30,Earthshaker,str,"Support, Initiator, Disabler, Nuker",5012,2455,48.98,29784,14662,49.23,67050,33111,49.38,79963,39843,49.83,57108,28961,50.71,28650,14591,50.93,14186,7296,51.43,6151,3165,51.46
31,Elder Titan,str,"Initiator, Disabler, Nuker, Durable",471,212,45.01,2551,1248,48.92,5213,2570,49.3,5572,2809,50.41,3847,1942,50.48,1964,998,50.81,1124,613,54.54,550,292,53.09
32,Ember Spirit,agi,"Carry, Escape, Nuker, Disabler, Initiator",1514,635,41.94,9180,3836,41.79,20578,8738,42.46,25152,10844,43.11,17703,7814,44.14,8538,3793,44.42,4265,1892,44.36,2065,928,44.94
33,Enchantress,int,"Support, Pusher, Durable, Disabler",1794,848,47.27,8050,3622,44.99,12921,5686,44.01,11673,4974,42.61,6863,2840,41.38,2948,1212,41.11,1434,654,45.61,806,318,39.45
34,Enigma,all,"Disabler, Initiator, Pusher",1317,588,44.65,6937,3171,45.71,12908,5979,46.32,11687,5428,46.44,6194,2839,45.83,2493,1127,45.21,938,437,46.59,338,159,47.04
35,Faceless Void,agi,"Carry, Initiator, Disabler, Escape, Durable",4323,2043,47.26,25618,11902,46.46,54581,25874,47.4,60671,28993,47.79,40137,19611,48.86,19376,9620,49.65,9579,4828,50.4,4439,2256,50.82
36,Grimstroke,int,"Support, Nuker, Disabler, Escape",1455,694,47.7,9714,4789,49.3,24688,12430,50.35,32027,16094,50.25,23193,11795,50.86,12102,6100,50.4,6191,3047,49.22,3449,1666,48.3
37,Gyrocopter,agi,"Carry, Nuker, Disabler",2560,1213,47.38,16589,7882,47.51,42072,20358,48.39,54200,26229,48.39,39414,19053,48.34,20164,9781,48.51,10164,4937,48.57,5241,2507,47.83
38,Hoodwink,agi,"Support, Nuker, Escape, Disabler",2420,1126,46.53,14034,6800,48.45,31382,14964,47.68,35684,16966,47.55,22626,10651,47.07,9949,4690,47.14,4349,2089,48.03,1533,703,45.86
39,Huskar,str,"Carry, Durable, Initiator",3501,1603,45.79,14234,6639,46.64,22794,10912,47.87,21801,10763,49.37,13811,6919,50.1,6769,3535,52.22,3556,1822,51.24,1936,993,51.29
40,Invoker,all,"Carry, Nuker, Disabler, Escape, Pusher",4330,2042,47.16,27625,13176,47.7,69035,33863,49.05,86745,43479,50.12,61821,31510,50.97,31459,16321,51.88,15431,8195,53.11,7852,4148,52.83
41,Io,all,"Support, Escape, Nuker",1274,615,48.27,6158,2999,48.7,12762,6247,48.95,14216,7024,49.41,9564,4843,50.64,5301,2685,50.65,2789,1463,52.46,1464,773,52.8
42,Jakiro,int,"Support, Nuker, Pusher, Disabler",3147,1708,54.27,22718,12413,54.64,56736,30984,54.61,70038,37473,53.5,46389,24997,53.89,22084,11639,52.7,9838,5103,51.87,3282,1729,52.68
43,Juggernaut,agi,"Carry, Pusher, Escape",5585,2711,48.54,30394,14800,48.69,62313,30581,49.08,65590,32344,49.31,39235,19326,49.26,16334,8012,49.05,6419,3066,47.76,1576,731,46.38
44,Keeper of the Light,int,"Support, Nuker, Disabler",896,353,39.4,5051,2216,43.87,10452,4579,43.81,11614,5322,45.82,7870,3627,46.09,4268,2001,46.88,2147,1043,48.58,1333,588,44.11
45,Kunkka,str,"Carry, Support, Disabler, Initiator, Durable, Nuker",2251,1124,49.93,13474,6828,50.68,31210,16196,51.89,39691,21293,53.65,30314,16458,54.29,15706,8793,55.98,7884,4339,55.04,3458,1898,54.89
46,Legion Commander,str,"Carry, Disabler, Initiator, Durable, Nuker",6263,3264,52.12,37100,19157,51.64,81491,41557,51.0,91431,46558,50.92,59383,29917,50.38,27945,13917,49.8,13193,6587,49.93,5601,2745,49.01
47,Leshrac,int,"Carry, Support, Nuker, Pusher, Disabler",674,316,46.88,3872,1799,46.46,7490,3433,45.83,7903,3604,45.6,5322,2526,47.46,2687,1298,48.31,1325,647,48.83,721,357,49.51
48,Lich,int,"Support, Nuker",2700,1412,52.3,16646,8820,52.99,37785,19685,52.1,45471,23554,51.8,31203,16108,51.62,15530,7821,50.36,7243,3597,49.66,2520,1258,49.92
49,Lifestealer,str,"Carry, Durable, Escape, Disabler",2515,1213,48.23,14131,6978,49.38,29724,14627,49.21,31211,15581,49.92,18970,9481,49.98,8689,4400,50.64,3630,1821,50.17,1229,617,50.2
50,Lina,int,"Support, Carry, Nuker, Disabler",4512,2030,44.99,21927,10156,46.32,45301,21210,46.82,54229,25956,47.86,40016,19138,47.83,21072,10112,47.99,10481,5031,48.0,4369,2138,48.94
51,Lion,int,"Support, Disabler, Nuker, Initiator",6204,2855,46.02,37869,17465,46.12,80124,36649,45.74,84390,38176,45.24,50720,22914,45.18,21698,9784,45.09,9308,4280,45.98,3220,1496,46.46
52,Lone Druid,all,"Carry, Pusher, Durable",909,483,53.14,4714,2421,51.36,10987,5858,53.32,14580,7968,54.65,11810,6490,54.95,7241,3971,54.84,4024,2240,55.67,2303,1259,54.67
53,Luna,agi,"Carry, Nuker, Pusher",1927,904,46.91,9091,4271,46.98,16571,7922,47.81,16035,7615,47.49,9728,4634,47.64,4463,2103,47.12,1912,911,47.65,719,322,44.78
54,Lycan,all,"Carry, Pusher, Durable, Escape",374,174,46.52,1894,915,48.31,3691,1744,47.25,3824,1905,49.82,2694,1332,49.44,1460,753,51.58,827,411,49.7,532,289,54.32
55,Magnus,all,"Initiator, Disabler, Nuker, Escape",770,339,44.03,5789,2651,45.79,17837,7954,44.59,26126,12058,46.15,20634,9592,46.49,10574,5056,47.82,4565,2073,45.41,1606,751,46.76
56,Marci,all,"Support, Carry, Initiator, Disabler, Escape",1370,620,45.26,7092,3252,45.85,15199,7240,47.63,18485,8874,48.01,13308,6305,47.38,7176,3476,48.44,3689,1882,51.02,1746,883,50.57
57,Mars,str,"Carry, Initiator, Disabler, Durable",862,375,43.5,5719,2529,44.22,15156,6756,44.58,20719,9369,45.22,16419,7387,44.99,9044,4052,44.8,4536,2093,46.14,1926,868,45.07
58,Medusa,agi,"Carry, Disabler, Durable",1898,902,47.52,9289,4512,48.57,16504,7818,47.37,14796,6886,46.54,7488,3449,46.06,2775,1270,45.77,1073,482,44.92,394,184,46.7
59,Meepo,agi,"Carry, Escape, Nuker, Disabler, Initiator, Pusher",1004,523,52.09,3970,1990,50.13,6904,3587,51.96,7166,3646,50.88,4906,2563,52.24,2383,1282,53.8,1139,588,51.62,585,300,51.28
60,Mirana,all,"Carry, Support, Escape, Nuker, Disabler",2499,1193,47.74,16954,8135,47.98,39985,19097,47.76,45169,21554,47.72,28467,13456,47.27,12800,6047,47.24,5272,2500,47.42,1824,874,47.92
61,Monkey King,agi,"Carry, Escape, Disabler, Initiator",3191,1384,43.37,17306,7544,43.59,35734,16113,45.09,40778,18322,44.93,27558,12630,45.83,14034,6433,45.84,6650,3152,47.4,3040,1440,47.37
62,Morphling,agi,"Carry, Escape, Durable, Nuker, Disabler",1521,690,45.36,8620,4006,46.47,18075,8161,45.15,20414,9235,45.24,14395,6530,45.36,7697,3551,46.13,4432,2050,46.25,2560,1190,46.48
63,Muerta,int,"Carry, Nuker, Disabler",2130,1089,51.13,10787,5740,53.21,22602,11898,52.64,27609,14495,52.5,20175,10465,51.87,10662,5518,51.75,5462,2759,50.51,2948,1517,51.46
64,Naga Siren,agi,"Carry, Support, Pusher, Disabler, Initiator, Escape",1502,804,53.53,6495,3356,51.67,10423,5234,50.22,9830,4929,50.14,6057,2971,49.05,3216,1675,52.08,1855,933,50.3,1242,634,51.05
65,Nature's Prophet,int,"Carry, Pusher, Escape, Nuker",5991,3029,50.56,36433,18143,49.8,83118,42095,50.64,100341,51268,51.09,69436,35870,51.66,34256,17858,52.13,16585,8745,52.73,7182,3755,52.28
66,Necrophos,int,"Carry, Nuker, Durable, Disabler",4776,2702,56.57,28535,15771,55.27,62186,34285,55.13,70212,38163,54.35,46539,24708,53.09,21607,11302,52.31,9677,4994,51.61,3418,1733,50.7
67,Night Stalker,str,"Carry, Initiator, Durable, Disabler, Nuker",1189,594,49.96,7868,3892,49.47,19446,10004,51.45,25524,13506,52.91,20138,10828,53.77,10767,5651,52.48,5499,2889,52.54,2415,1257,52.05
68,Nyx Assassin,all,"Disabler, Nuker, Initiator, Escape",1718,867,50.47,10925,5525,50.57,27207,14073,51.73,34684,18059,52.07,25736,13572,52.74,13313,7093,53.28,6485,3444,53.11,2852,1468,51.47
69,Ogre Magi,str,"Support, Nuker, Disabler, Durable, Initiator",5331,2845,53.37,31507,16299,51.73,62954,32248,51.22,61758,31373,50.8,33746,16988,50.34,13262,6654,50.17,4861,2420,49.78,1271,654,51.46
70,Omniknight,str,"Support, Durable, Nuker",975,479,49.13,6426,3109,48.38,14641,7319,49.99,17258,8731,50.59,11695,5916,50.59,5746,2993,52.09,2870,1469,51.18,1333,656,49.21
71,Oracle,int,"Support, Nuker, Disabler, Escape",796,384,48.24,4857,2417,49.76,13141,6645,50.57,18944,9853,52.01,15221,7964,52.32,8356,4458,53.35,4475,2380,53.18,1905,1018,53.44
72,Outworld Destroyer,int,"Carry, Nuker, Disabler",2226,1118,50.22,13388,6864,51.27,33284,17362,52.16,43991,23377,53.14,32021,16994,53.07,16655,8724,52.38,8123,4218,51.93,3176,1649,51.92
73,Pangolier,all,"Carry, Nuker, Disabler, Durable, Escape, Initiator",1156,534,46.19,7189,3209,44.64,17802,7937,44.58,25785,11677,45.29,21727,10144,46.69,13064,6351,48.61,7567,3737,49.39,5275,2734,51.83
74,Phantom Assassin,agi,"Carry, Escape",8553,4426,51.75,48549,25553,52.63,104756,54881,52.39,119332,62511,52.38,79140,41143,51.99,37399,19325,51.67,17774,9077,51.07,7819,3856,49.32
75,Phantom Lancer,agi,"Carry, Escape, Pusher, Nuker",3641,1960,53.83,19550,10374,53.06,38576,20633,53.49,41505,22310,53.75,26401,14268,54.04,12437,6590,52.99,5708,2985,52.3,2383,1243,52.16
76,Phoenix,all,"Support, Nuker, Initiator, Escape, Disabler",743,315,42.4,5231,2471,47.24,13950,6633,47.55,18350,8864,48.31,13972,6715,48.06,7787,3761,48.3,4322,2132,49.33,2610,1325,50.77
77,Primal Beast,str,"Initiator, Durable, Disabler",1455,701,48.18,9333,4448,47.66,22800,11058,48.5,30084,14643,48.67,24307,11993,49.34,13970,6991,50.04,7742,3890,50.25,4625,2407,52.04
78,Puck,int,"Initiator, Disabler, Escape, Nuker",871,399,45.81,5773,2628,45.52,16596,7578,45.66,24480,11315,46.22,20070,9497,47.32,11023,5298,48.06,5656,2714,47.98,2555,1200,46.97
79,Pudge,str,"Disabler, Initiator, Durable, Nuker",7677,3796,49.45,50891,24776,48.68,114784,56289,49.04,129604,63097,48.68,85800,41542,48.42,41730,20239,48.5,19823,9530,48.08,7112,3431,48.24
80,Pugna,int,"Nuker, Pusher",2075,944,45.49,9998,4695,46.96,18962,8958,47.24,20240,9965,49.23,12807,6199,48.4,5825,2855,49.01,2758,1387,50.29,1195,592,49.54
81,Queen of Pain,int,"Carry, Nuker, Escape",2287,1100,48.1,15119,7354,48.64,37137,18118,48.79,47706,23657,49.59,35500,18018,50.75,18405,9289,50.47,9243,4689,50.73,4227,2113,49.99
82,Razor,agi,"Carry, Durable, Nuker, Pusher",2470,1231,49.84,12000,5964,49.7,24666,12142,49.23,30334,14844,48.94,21832,10558,48.36,11917,5679,47.65,6092,2912,47.8,3144,1551,49.33
83,Riki,agi,"Carry, Escape, Disabler",3684,1929,52.36,19022,9891,52.0,35638,18582,52.14,33908,17415,51.36,20194,10312,51.06,8726,4377,50.16,3735,1855,49.67,1160,559,48.19
84,Rubick,int,"Support, Disabler, Nuker",3090,1404,45.44,21639,9303,42.99,57417,24590,42.83,74874,32603,43.54,55186,24219,43.89,28206,12568,44.56,13732,6106,44.47,5764,2642,45.84
85,Sand King,all,"Initiator, Disabler, Support, Nuker, Escape",2633,1513,57.46,13097,7323,55.91,25271,13807,54.64,26724,14323,53.6,17384,9144,52.6,7907,4104,51.9,3394,1719,50.65,1211,611,50.45
86,Shadow Demon,int,"Support, Disabler, Initiator, Nuker",547,236,43.14,3252,1426,43.85,7920,3524,44.49,9752,4551,46.67,7404,3467,46.83,3956,1876,47.42,2076,1004,48.36,1054,497,47.15
87,Shadow Fiend,agi,"Carry, Nuker",5051,2544,50.37,27255,14064,51.6,58589,29830,50.91,65429,33097,50.58,41810,21189,50.68,18766,9401,50.1,8232,4000,48.59,3016,1430,47.41
88,Shadow Shaman,int,"Support, Pusher, Disabler, Nuker, Initiator",5323,2795,52.51,29733,15606,52.49,58894,31236,53.04,58765,30895,52.57,34475,18242,52.91,15166,7986,52.66,6377,3323,52.11,2413,1253,51.93
89,Silencer,int,"Carry, Support, Disabler, Initiator, Nuker",4229,2324,54.95,27878,14960,53.66,61698,33081,53.62,65256,34458,52.8,38589,19853,51.45,16889,8653,51.23,6836,3416,49.97,2236,1105,49.42
90,Skywrath Mage,int,"Support, Nuker, Disabler",4000,2030,50.75,22783,11675,51.24,46512,23624,50.79,51329,25706,50.08,34167,17364,50.82,16693,8415,50.41,8496,4208,49.53,4389,2069,47.14
91,Slardar,str,"Carry, Durable, Initiator, Disabler, Escape",3935,2129,54.1,21523,11602,53.91,43947,23701,53.93,47721,25633,53.71,29887,16132,53.98,14233,7722,54.25,6530,3467,53.09,2322,1205,51.89
92,Slark,agi,"Carry, Escape, Disabler, Nuker",4815,2521,52.36,29413,14762,50.19,64004,31771,49.64,70173,34411,49.04,44780,21926,48.96,20864,10270,49.22,9969,4962,49.77,4565,2394,52.44
93,Snapfire,all,"Support, Nuker, Disabler, Escape",1524,682,44.75,10646,4576,42.98,27103,12120,44.72,34711,15412,44.4,24351,10786,44.29,11723,5131,43.77,5227,2294,43.89,1987,868,43.68
94,Sniper,agi,"Carry, Nuker",8022,4079,50.85,44508,22727,51.06,88690,45223,50.99,87190,44086,50.56,47411,23648,49.88,18092,8924,49.33,6130,3040,49.59,1370,662,48.32
95,Spectre,agi,"Carry, Durable, Escape",3454,2008,58.14,22097,12356,55.92,49157,26961,54.85,55914,30100,53.83,36321,19338,53.24,16946,8960,52.87,7921,4163,52.56,2568,1370,53.35
96,Spirit Breaker,str,"Carry, Initiator, Disabler, Durable, Escape",4788,2423,50.61,26662,13530,50.75,56535,28908,51.13,63991,32249,50.4,42512,21357,50.24,20119,9926,49.34,9499,4814,50.68,3761,1884,50.09
97,Storm Spirit,int,"Carry, Escape, Nuker, Initiator, Disabler",2202,1001,45.46,11656,5197,44.59,25644,11806,46.04,30968,14210,45.89,21680,10197,47.03,10810,5025,46.48,5278,2382,45.13,2363,1122,47.48
98,Sven,str,"Carry, Disabler, Initiator, Durable, Nuker",3552,1761,49.58,19792,9744,49.23,41296,20478,49.59,48709,24228,49.74,35460,17828,50.28,19795,10065,50.85,11014,5655,51.34,6701,3387,50.54
99,Techies,all,"Nuker, Disabler",2356,1131,48.01,13105,6245,47.65,27293,12893,47.24,29180,13507,46.29,18216,8407,46.15,8266,3771,45.62,3459,1644,47.53,1319,591,44.81
100,Templar Assassin,agi,"Carry, Escape",2142,955,44.58,10932,4758,43.52,21211,9445,44.53,23928,10909,45.59,17399,8242,47.37,9567,4656,48.67,5525,2708,49.01,3524,1775,50.37
101,Terrorblade,agi,"Carry, Pusher, Nuker",1115,484,43.41,5686,2430,42.74,10856,4638,42.72,11518,5041,43.77,8059,3540,43.93,4192,1827,43.58,2419,1082,44.73,1621,700,43.18
102,Tidehunter,str,"Initiator, Durable, Disabler, Nuker, Carry",1835,855,46.59,11159,5369,48.11,26222,12699,48.43,30735,14879,48.41,20523,9727,47.4,9731,4740,48.71,4426,2079,46.97,1998,936,46.85
103,Timbersaw,all,"Nuker, Durable, Escape",1050,448,42.67,5854,2584,44.14,12301,5391,43.83,14295,6097,42.65,9697,4217,43.49,4992,2163,43.33,2419,1021,42.21,1139,471,41.35
104,Tinker,int,"Carry, Nuker, Pusher",2106,944,44.82,11058,5200,47.02,24263,11826,48.74,27531,13614,49.45,19017,9732,51.18,9416,4875,51.77,4700,2466,52.47,1951,1036,53.1
105,Tiny,str,"Carry, Nuker, Pusher, Initiator, Durable, Disabler",1434,654,45.61,7742,3452,44.59,15936,6950,43.61,17139,7468,43.57,11269,4991,44.29,5485,2491,45.41,2599,1216,46.79,1058,519,49.05
106,Treant Protector,str,"Support, Initiator, Durable, Disabler, Escape",1646,899,54.62,11430,5881,51.45,28752,15124,52.6,36093,19344,53.59,28762,15532,54.0,16751,9227,55.08,9870,5468,55.4,6801,3855,56.68
107,Troll Warlord,agi,"Carry, Pusher, Disabler, Durable",3176,1720,54.16,14007,7445,53.15,24729,13022,52.66,25424,13228,52.03,17362,9030,52.01,9427,4913,52.12,4767,2499,52.42,2341,1242,53.05
108,Tusk,str,"Initiator, Disabler, Nuker",1263,565,44.73,8338,3777,45.3,19642,8869,45.15,25308,11520,45.52,18927,8853,46.77,10100,4820,47.72,5220,2502,47.93,2350,1157,49.23
109,Underlord,str,"Support, Nuker, Disabler, Durable, Escape",797,405,50.82,4583,2341,51.08,10067,5057,50.23,11650,5786,49.67,7224,3561,49.29,3310,1591,48.07,1368,673,49.2,395,190,48.1
110,Undying,str,"Support, Durable, Disabler, Nuker",3170,1620,51.1,19403,10116,52.14,40582,21110,52.02,40850,21182,51.85,23985,12454,51.92,10395,5389,51.84,4541,2336,51.44,2064,1012,49.03
111,Ursa,agi,"Carry, Durable, Disabler",2801,1273,45.45,15132,7038,46.51,33269,15478,46.52,40822,19264,47.19,29348,14011,47.74,15262,7375,48.32,7507,3622,48.25,3004,1473,49.03
112,Vengeful Spirit,all,"Support, Initiator, Disabler, Nuker, Escape",2186,1108,50.69,15817,8285,52.38,41843,21809,52.12,57524,30476,52.98,45512,24120,53.0,25581,13382,52.31,13758,7121,51.76,8276,4303,51.99
113,Venomancer,all,"Support, Nuker, Initiator, Pusher, Disabler",2309,1187,51.41,14669,7463,50.88,34787,18020,51.8,41797,21690,51.89,28706,15085,52.55,13974,7338,52.51,6538,3495,53.46,2794,1459,52.22
114,Viper,agi,"Carry, Durable, Initiator, Disabler",4100,2057,50.17,18991,9510,50.08,33517,16923,50.49,32728,16677,50.96,18537,9427,50.86,7851,3928,50.03,3260,1652,50.67,1176,610,51.87
115,Visage,all,"Support, Nuker, Durable, Disabler, Pusher",331,171,51.66,1638,813,49.63,3240,1577,48.67,3840,1986,51.72,3108,1609,51.77,1995,1055,52.88,1309,702,53.63,858,457,53.26
116,Void Spirit,all,"Carry, Escape, Nuker, Disabler",1565,727,46.45,8672,4096,47.23,20010,9694,48.45,25213,12376,49.09,18817,9231,49.06,10026,4920,49.07,4788,2319,48.43,2006,964,48.06
117,Warlock,int,"Support, Initiator, Disabler",2547,1369,53.75,18931,10331,54.57,49795,26999,54.22,66697,36220,54.31,48401,25668,53.03,24999,12942,51.77,12575,6356,50.54,6183,2934,47.45
118,Weaver,agi,"Carry, Escape",2818,1389,49.29,13873,6770,48.8,23493,11571,49.25,21545,10694,49.64,12911,6427,49.78,5809,2928,50.4,2960,1455,49.16,1303,719,55.18
119,Windranger,all,"Carry, Support, Disabler, Escape, Nuker",3861,1814,46.98,19934,9223,46.27,40644,18807,46.27,44476,20652,46.43,28952,13508,46.66,13418,6297,46.93,5898,2782,47.17,2374,1142,48.1
120,Winter Wyvern,all,"Support, Disabler, Nuker",821,371,45.19,5168,2424,46.9,10544,5014,47.55,11184,5308,47.46,7426,3512,47.29,3730,1854,49.71,1862,934,50.16,944,464,49.15
121,Witch Doctor,int,"Support, Nuker, Disabler",7504,4173,55.61,45501,25616,56.3,99664,54963,55.15,111382,60421,54.25,71830,37860,52.71,33164,17334,52.27,14610,7442,50.94,4196,2076,49.48
122,Wraith King,str,"Carry, Support, Durable, Disabler, Initiator",4175,2266,54.28,26362,14516,55.06,58733,32403,55.17,66283,36503,55.07,42360,23083,54.49,19084,10251,53.72,8334,4315,51.78,2707,1376,50.83
123,Zeus,int,"Nuker, Carry",4132,2106,50.97,23721,12487,52.64,51568,27475,53.28,58333,31078,53.28,37821,20047,53.0,17901,9504,53.09,8539,4459,52.22,3400,1791,52.68
1 Name Primary Attribute Roles Herald Picks Herald Wins Herald Win Rate Guardian Picks Guardian Wins Guardian Win Rate Crusader Picks Crusader Wins Crusader Win Rate Archon Picks Archon Wins Archon Win Rate Legend Picks Legend Wins Legend Win Rate Ancient Picks Ancient Wins Ancient Win Rate Divine Picks Divine Wins Divine Win Rate Immortal Picks Immortal Wins Immortal Win Rate
2 0 Abaddon all Support, Carry, Durable 1111 575 51.76 6408 3309 51.64 13811 7050 51.05 16497 8530 51.71 11360 5877 51.73 5571 2893 51.93 2632 1345 51.1 991 497 50.15
3 1 Alchemist str Carry, Support, Durable, Disabler, Initiator, Nuker 1119 486 43.43 6370 2883 45.26 12238 5617 45.9 13028 6130 47.05 8455 4055 47.96 4120 1984 48.16 2021 1023 50.62 860 424 49.3
4 2 Ancient Apparition int Support, Disabler, Nuker 2146 1073 50.0 13697 7069 51.61 30673 16118 52.55 35145 18219 51.84 23114 12166 52.63 10688 5528 51.72 5035 2573 51.1 2134 1076 50.42
5 3 Anti-Mage agi Carry, Escape, Nuker 3765 1818 48.29 22050 10774 48.86 47371 23304 49.19 49115 24074 49.02 28599 13991 48.92 12303 5958 48.43 4866 2349 48.27 1502 751 50.0
6 4 Arc Warden agi Carry, Escape, Nuker 1448 704 48.62 8047 4162 51.72 14946 7982 53.41 14711 7875 53.53 9472 5167 54.55 4323 2309 53.41 2104 1148 54.56 789 435 55.13
7 5 Axe str Initiator, Durable, Disabler, Carry 5343 2880 53.9 32652 17719 54.27 71010 37736 53.14 77869 40559 52.09 49182 25079 50.99 22637 11353 50.15 10114 5000 49.44 3795 1837 48.41
8 6 Bane all Support, Disabler, Nuker, Durable 745 334 44.83 4983 2422 48.61 11332 5504 48.57 13633 6767 49.64 10132 5032 49.66 5596 2861 51.13 3028 1555 51.35 1958 1055 53.88
9 7 Batrider all Initiator, Disabler, Escape 349 136 38.97 1983 812 40.95 4053 1595 39.35 4725 1861 39.39 3173 1275 40.18 1678 731 43.56 802 362 45.14 497 227 45.67
10 8 Beastmaster all Initiator, Disabler, Durable, Nuker 402 174 43.28 2447 1060 43.32 5787 2569 44.39 6930 3092 44.62 5288 2389 45.18 2816 1274 45.24 1593 752 47.21 1176 539 45.83
11 9 Bloodseeker agi Carry, Disabler, Nuker, Initiator 2765 1382 49.98 12589 6270 49.81 21781 10683 49.05 20961 10420 49.71 13035 6430 49.33 6210 3006 48.41 2941 1475 50.15 1465 718 49.01
12 10 Bounty Hunter agi Escape, Nuker 3852 1868 48.49 19609 9535 48.63 36362 17600 48.4 37059 18314 49.42 22934 11518 50.22 10584 5276 49.85 5105 2594 50.81 2498 1325 53.04
13 11 Brewmaster all Carry, Initiator, Durable, Disabler, Nuker 545 280 51.38 3564 1745 48.96 8941 4388 49.08 12340 6111 49.52 11185 5623 50.27 7645 3906 51.09 4812 2478 51.5 3533 1820 51.51
14 12 Bristleback str Carry, Durable, Initiator, Nuker 5884 3262 55.44 27952 14587 52.19 48847 24379 49.91 46702 22927 49.09 27466 13319 48.49 12398 5969 48.14 5865 2915 49.7 2639 1304 49.41
15 13 Broodmother all Carry, Pusher, Escape, Nuker 456 173 37.94 2048 842 41.11 3444 1462 42.45 3392 1448 42.69 2193 1048 47.79 1203 602 50.04 795 422 53.08 453 230 50.77
16 14 Centaur Warrunner str Durable, Initiator, Disabler, Nuker, Escape 1721 911 52.93 11754 6266 53.31 28691 15201 52.98 35369 18741 52.99 25393 13468 53.04 12653 6607 52.22 6124 3181 51.94 2442 1243 50.9
17 15 Chaos Knight str Carry, Disabler, Durable, Pusher, Initiator 3032 1639 54.06 16762 8931 53.28 31892 17139 53.74 30697 16435 53.54 18217 9810 53.85 8572 4620 53.9 4230 2291 54.16 1750 943 53.89
18 16 Chen all Support, Pusher 284 125 44.01 1450 678 46.76 2969 1345 45.3 3258 1604 49.23 2641 1331 50.4 1488 767 51.55 970 512 52.78 770 448 58.18
19 17 Clinkz agi Carry, Escape, Pusher 3151 1608 51.03 13891 7141 51.41 25465 12938 50.81 27327 14066 51.47 18846 9726 51.61 9452 4890 51.74 4765 2475 51.94 2093 1052 50.26
20 18 Clockwerk all Initiator, Disabler, Durable, Nuker 816 397 48.65 5860 2837 48.41 14478 6929 47.86 18466 8843 47.89 13143 6301 47.94 6612 3169 47.93 3286 1581 48.11 1378 658 47.75
21 19 Crystal Maiden int Support, Disabler, Nuker 4821 2529 52.46 26584 13626 51.26 52168 26040 49.92 52258 25365 48.54 30690 14848 48.38 13295 6404 48.17 5602 2680 47.84 1638 771 47.07
22 20 Dark Seer all Initiator, Escape, Disabler 627 320 51.04 3675 1884 51.27 7881 3803 48.26 9589 4844 50.52 7186 3573 49.72 3902 1983 50.82 2145 1095 51.05 1217 593 48.73
23 21 Dark Willow all Support, Nuker, Disabler, Escape 2654 1293 48.72 13829 6657 48.14 28142 13480 47.9 32114 15785 49.15 23100 11331 49.05 12052 5909 49.03 6400 3182 49.72 3708 1915 51.65
24 22 Dawnbreaker str Carry, Durable 1746 875 50.11 12297 6105 49.65 32398 15921 49.14 44846 21936 48.91 35474 17441 49.17 19770 9832 49.73 10637 5263 49.48 6339 3173 50.06
25 23 Dazzle all Support, Nuker, Disabler 2827 1418 50.16 19852 9758 49.15 48236 23691 49.11 56417 27798 49.27 38159 18642 48.85 18695 9199 49.21 8530 4239 49.7 3382 1654 48.91
26 24 Death Prophet int Carry, Pusher, Nuker, Disabler 1372 659 48.03 6643 3145 47.34 11987 5729 47.79 12268 5856 47.73 7455 3606 48.37 3591 1698 47.28 1872 902 48.18 926 459 49.57
27 25 Disruptor int Support, Disabler, Nuker, Initiator 1541 757 49.12 11104 5331 48.01 27746 13542 48.81 33742 16310 48.34 23173 11096 47.88 10907 5201 47.68 4859 2255 46.41 1863 861 46.22
28 26 Doom str Carry, Disabler, Initiator, Durable, Nuker 1049 474 45.19 6112 2767 45.27 13700 6056 44.2 15454 6925 44.81 10727 4842 45.14 5444 2451 45.02 2979 1348 45.25 1545 731 47.31
29 27 Dragon Knight str Carry, Pusher, Durable, Disabler, Initiator, Nuker 1950 942 48.31 10643 5274 49.55 20451 9733 47.59 20326 9671 47.58 11674 5544 47.49 4979 2355 47.3 2024 973 48.07 725 341 47.03
30 28 Drow Ranger agi Carry, Disabler, Pusher 5737 2904 50.62 29675 14831 49.98 57655 28573 49.56 56682 27927 49.27 34310 16607 48.4 15050 7171 47.65 5947 2815 47.33 1768 788 44.57
31 29 Earth Spirit str Nuker, Escape, Disabler, Initiator, Durable 1038 465 44.8 7420 3276 44.15 20807 9432 45.33 30107 14166 47.05 25314 12148 47.99 14579 7041 48.3 7678 3802 49.52 4379 2169 49.53
32 30 Earthshaker str Support, Initiator, Disabler, Nuker 5012 2455 48.98 29784 14662 49.23 67050 33111 49.38 79963 39843 49.83 57108 28961 50.71 28650 14591 50.93 14186 7296 51.43 6151 3165 51.46
33 31 Elder Titan str Initiator, Disabler, Nuker, Durable 471 212 45.01 2551 1248 48.92 5213 2570 49.3 5572 2809 50.41 3847 1942 50.48 1964 998 50.81 1124 613 54.54 550 292 53.09
34 32 Ember Spirit agi Carry, Escape, Nuker, Disabler, Initiator 1514 635 41.94 9180 3836 41.79 20578 8738 42.46 25152 10844 43.11 17703 7814 44.14 8538 3793 44.42 4265 1892 44.36 2065 928 44.94
35 33 Enchantress int Support, Pusher, Durable, Disabler 1794 848 47.27 8050 3622 44.99 12921 5686 44.01 11673 4974 42.61 6863 2840 41.38 2948 1212 41.11 1434 654 45.61 806 318 39.45
36 34 Enigma all Disabler, Initiator, Pusher 1317 588 44.65 6937 3171 45.71 12908 5979 46.32 11687 5428 46.44 6194 2839 45.83 2493 1127 45.21 938 437 46.59 338 159 47.04
37 35 Faceless Void agi Carry, Initiator, Disabler, Escape, Durable 4323 2043 47.26 25618 11902 46.46 54581 25874 47.4 60671 28993 47.79 40137 19611 48.86 19376 9620 49.65 9579 4828 50.4 4439 2256 50.82
38 36 Grimstroke int Support, Nuker, Disabler, Escape 1455 694 47.7 9714 4789 49.3 24688 12430 50.35 32027 16094 50.25 23193 11795 50.86 12102 6100 50.4 6191 3047 49.22 3449 1666 48.3
39 37 Gyrocopter agi Carry, Nuker, Disabler 2560 1213 47.38 16589 7882 47.51 42072 20358 48.39 54200 26229 48.39 39414 19053 48.34 20164 9781 48.51 10164 4937 48.57 5241 2507 47.83
40 38 Hoodwink agi Support, Nuker, Escape, Disabler 2420 1126 46.53 14034 6800 48.45 31382 14964 47.68 35684 16966 47.55 22626 10651 47.07 9949 4690 47.14 4349 2089 48.03 1533 703 45.86
41 39 Huskar str Carry, Durable, Initiator 3501 1603 45.79 14234 6639 46.64 22794 10912 47.87 21801 10763 49.37 13811 6919 50.1 6769 3535 52.22 3556 1822 51.24 1936 993 51.29
42 40 Invoker all Carry, Nuker, Disabler, Escape, Pusher 4330 2042 47.16 27625 13176 47.7 69035 33863 49.05 86745 43479 50.12 61821 31510 50.97 31459 16321 51.88 15431 8195 53.11 7852 4148 52.83
43 41 Io all Support, Escape, Nuker 1274 615 48.27 6158 2999 48.7 12762 6247 48.95 14216 7024 49.41 9564 4843 50.64 5301 2685 50.65 2789 1463 52.46 1464 773 52.8
44 42 Jakiro int Support, Nuker, Pusher, Disabler 3147 1708 54.27 22718 12413 54.64 56736 30984 54.61 70038 37473 53.5 46389 24997 53.89 22084 11639 52.7 9838 5103 51.87 3282 1729 52.68
45 43 Juggernaut agi Carry, Pusher, Escape 5585 2711 48.54 30394 14800 48.69 62313 30581 49.08 65590 32344 49.31 39235 19326 49.26 16334 8012 49.05 6419 3066 47.76 1576 731 46.38
46 44 Keeper of the Light int Support, Nuker, Disabler 896 353 39.4 5051 2216 43.87 10452 4579 43.81 11614 5322 45.82 7870 3627 46.09 4268 2001 46.88 2147 1043 48.58 1333 588 44.11
47 45 Kunkka str Carry, Support, Disabler, Initiator, Durable, Nuker 2251 1124 49.93 13474 6828 50.68 31210 16196 51.89 39691 21293 53.65 30314 16458 54.29 15706 8793 55.98 7884 4339 55.04 3458 1898 54.89
48 46 Legion Commander str Carry, Disabler, Initiator, Durable, Nuker 6263 3264 52.12 37100 19157 51.64 81491 41557 51.0 91431 46558 50.92 59383 29917 50.38 27945 13917 49.8 13193 6587 49.93 5601 2745 49.01
49 47 Leshrac int Carry, Support, Nuker, Pusher, Disabler 674 316 46.88 3872 1799 46.46 7490 3433 45.83 7903 3604 45.6 5322 2526 47.46 2687 1298 48.31 1325 647 48.83 721 357 49.51
50 48 Lich int Support, Nuker 2700 1412 52.3 16646 8820 52.99 37785 19685 52.1 45471 23554 51.8 31203 16108 51.62 15530 7821 50.36 7243 3597 49.66 2520 1258 49.92
51 49 Lifestealer str Carry, Durable, Escape, Disabler 2515 1213 48.23 14131 6978 49.38 29724 14627 49.21 31211 15581 49.92 18970 9481 49.98 8689 4400 50.64 3630 1821 50.17 1229 617 50.2
52 50 Lina int Support, Carry, Nuker, Disabler 4512 2030 44.99 21927 10156 46.32 45301 21210 46.82 54229 25956 47.86 40016 19138 47.83 21072 10112 47.99 10481 5031 48.0 4369 2138 48.94
53 51 Lion int Support, Disabler, Nuker, Initiator 6204 2855 46.02 37869 17465 46.12 80124 36649 45.74 84390 38176 45.24 50720 22914 45.18 21698 9784 45.09 9308 4280 45.98 3220 1496 46.46
54 52 Lone Druid all Carry, Pusher, Durable 909 483 53.14 4714 2421 51.36 10987 5858 53.32 14580 7968 54.65 11810 6490 54.95 7241 3971 54.84 4024 2240 55.67 2303 1259 54.67
55 53 Luna agi Carry, Nuker, Pusher 1927 904 46.91 9091 4271 46.98 16571 7922 47.81 16035 7615 47.49 9728 4634 47.64 4463 2103 47.12 1912 911 47.65 719 322 44.78
56 54 Lycan all Carry, Pusher, Durable, Escape 374 174 46.52 1894 915 48.31 3691 1744 47.25 3824 1905 49.82 2694 1332 49.44 1460 753 51.58 827 411 49.7 532 289 54.32
57 55 Magnus all Initiator, Disabler, Nuker, Escape 770 339 44.03 5789 2651 45.79 17837 7954 44.59 26126 12058 46.15 20634 9592 46.49 10574 5056 47.82 4565 2073 45.41 1606 751 46.76
58 56 Marci all Support, Carry, Initiator, Disabler, Escape 1370 620 45.26 7092 3252 45.85 15199 7240 47.63 18485 8874 48.01 13308 6305 47.38 7176 3476 48.44 3689 1882 51.02 1746 883 50.57
59 57 Mars str Carry, Initiator, Disabler, Durable 862 375 43.5 5719 2529 44.22 15156 6756 44.58 20719 9369 45.22 16419 7387 44.99 9044 4052 44.8 4536 2093 46.14 1926 868 45.07
60 58 Medusa agi Carry, Disabler, Durable 1898 902 47.52 9289 4512 48.57 16504 7818 47.37 14796 6886 46.54 7488 3449 46.06 2775 1270 45.77 1073 482 44.92 394 184 46.7
61 59 Meepo agi Carry, Escape, Nuker, Disabler, Initiator, Pusher 1004 523 52.09 3970 1990 50.13 6904 3587 51.96 7166 3646 50.88 4906 2563 52.24 2383 1282 53.8 1139 588 51.62 585 300 51.28
62 60 Mirana all Carry, Support, Escape, Nuker, Disabler 2499 1193 47.74 16954 8135 47.98 39985 19097 47.76 45169 21554 47.72 28467 13456 47.27 12800 6047 47.24 5272 2500 47.42 1824 874 47.92
63 61 Monkey King agi Carry, Escape, Disabler, Initiator 3191 1384 43.37 17306 7544 43.59 35734 16113 45.09 40778 18322 44.93 27558 12630 45.83 14034 6433 45.84 6650 3152 47.4 3040 1440 47.37
64 62 Morphling agi Carry, Escape, Durable, Nuker, Disabler 1521 690 45.36 8620 4006 46.47 18075 8161 45.15 20414 9235 45.24 14395 6530 45.36 7697 3551 46.13 4432 2050 46.25 2560 1190 46.48
65 63 Muerta int Carry, Nuker, Disabler 2130 1089 51.13 10787 5740 53.21 22602 11898 52.64 27609 14495 52.5 20175 10465 51.87 10662 5518 51.75 5462 2759 50.51 2948 1517 51.46
66 64 Naga Siren agi Carry, Support, Pusher, Disabler, Initiator, Escape 1502 804 53.53 6495 3356 51.67 10423 5234 50.22 9830 4929 50.14 6057 2971 49.05 3216 1675 52.08 1855 933 50.3 1242 634 51.05
67 65 Nature's Prophet int Carry, Pusher, Escape, Nuker 5991 3029 50.56 36433 18143 49.8 83118 42095 50.64 100341 51268 51.09 69436 35870 51.66 34256 17858 52.13 16585 8745 52.73 7182 3755 52.28
68 66 Necrophos int Carry, Nuker, Durable, Disabler 4776 2702 56.57 28535 15771 55.27 62186 34285 55.13 70212 38163 54.35 46539 24708 53.09 21607 11302 52.31 9677 4994 51.61 3418 1733 50.7
69 67 Night Stalker str Carry, Initiator, Durable, Disabler, Nuker 1189 594 49.96 7868 3892 49.47 19446 10004 51.45 25524 13506 52.91 20138 10828 53.77 10767 5651 52.48 5499 2889 52.54 2415 1257 52.05
70 68 Nyx Assassin all Disabler, Nuker, Initiator, Escape 1718 867 50.47 10925 5525 50.57 27207 14073 51.73 34684 18059 52.07 25736 13572 52.74 13313 7093 53.28 6485 3444 53.11 2852 1468 51.47
71 69 Ogre Magi str Support, Nuker, Disabler, Durable, Initiator 5331 2845 53.37 31507 16299 51.73 62954 32248 51.22 61758 31373 50.8 33746 16988 50.34 13262 6654 50.17 4861 2420 49.78 1271 654 51.46
72 70 Omniknight str Support, Durable, Nuker 975 479 49.13 6426 3109 48.38 14641 7319 49.99 17258 8731 50.59 11695 5916 50.59 5746 2993 52.09 2870 1469 51.18 1333 656 49.21
73 71 Oracle int Support, Nuker, Disabler, Escape 796 384 48.24 4857 2417 49.76 13141 6645 50.57 18944 9853 52.01 15221 7964 52.32 8356 4458 53.35 4475 2380 53.18 1905 1018 53.44
74 72 Outworld Destroyer int Carry, Nuker, Disabler 2226 1118 50.22 13388 6864 51.27 33284 17362 52.16 43991 23377 53.14 32021 16994 53.07 16655 8724 52.38 8123 4218 51.93 3176 1649 51.92
75 73 Pangolier all Carry, Nuker, Disabler, Durable, Escape, Initiator 1156 534 46.19 7189 3209 44.64 17802 7937 44.58 25785 11677 45.29 21727 10144 46.69 13064 6351 48.61 7567 3737 49.39 5275 2734 51.83
76 74 Phantom Assassin agi Carry, Escape 8553 4426 51.75 48549 25553 52.63 104756 54881 52.39 119332 62511 52.38 79140 41143 51.99 37399 19325 51.67 17774 9077 51.07 7819 3856 49.32
77 75 Phantom Lancer agi Carry, Escape, Pusher, Nuker 3641 1960 53.83 19550 10374 53.06 38576 20633 53.49 41505 22310 53.75 26401 14268 54.04 12437 6590 52.99 5708 2985 52.3 2383 1243 52.16
78 76 Phoenix all Support, Nuker, Initiator, Escape, Disabler 743 315 42.4 5231 2471 47.24 13950 6633 47.55 18350 8864 48.31 13972 6715 48.06 7787 3761 48.3 4322 2132 49.33 2610 1325 50.77
79 77 Primal Beast str Initiator, Durable, Disabler 1455 701 48.18 9333 4448 47.66 22800 11058 48.5 30084 14643 48.67 24307 11993 49.34 13970 6991 50.04 7742 3890 50.25 4625 2407 52.04
80 78 Puck int Initiator, Disabler, Escape, Nuker 871 399 45.81 5773 2628 45.52 16596 7578 45.66 24480 11315 46.22 20070 9497 47.32 11023 5298 48.06 5656 2714 47.98 2555 1200 46.97
81 79 Pudge str Disabler, Initiator, Durable, Nuker 7677 3796 49.45 50891 24776 48.68 114784 56289 49.04 129604 63097 48.68 85800 41542 48.42 41730 20239 48.5 19823 9530 48.08 7112 3431 48.24
82 80 Pugna int Nuker, Pusher 2075 944 45.49 9998 4695 46.96 18962 8958 47.24 20240 9965 49.23 12807 6199 48.4 5825 2855 49.01 2758 1387 50.29 1195 592 49.54
83 81 Queen of Pain int Carry, Nuker, Escape 2287 1100 48.1 15119 7354 48.64 37137 18118 48.79 47706 23657 49.59 35500 18018 50.75 18405 9289 50.47 9243 4689 50.73 4227 2113 49.99
84 82 Razor agi Carry, Durable, Nuker, Pusher 2470 1231 49.84 12000 5964 49.7 24666 12142 49.23 30334 14844 48.94 21832 10558 48.36 11917 5679 47.65 6092 2912 47.8 3144 1551 49.33
85 83 Riki agi Carry, Escape, Disabler 3684 1929 52.36 19022 9891 52.0 35638 18582 52.14 33908 17415 51.36 20194 10312 51.06 8726 4377 50.16 3735 1855 49.67 1160 559 48.19
86 84 Rubick int Support, Disabler, Nuker 3090 1404 45.44 21639 9303 42.99 57417 24590 42.83 74874 32603 43.54 55186 24219 43.89 28206 12568 44.56 13732 6106 44.47 5764 2642 45.84
87 85 Sand King all Initiator, Disabler, Support, Nuker, Escape 2633 1513 57.46 13097 7323 55.91 25271 13807 54.64 26724 14323 53.6 17384 9144 52.6 7907 4104 51.9 3394 1719 50.65 1211 611 50.45
88 86 Shadow Demon int Support, Disabler, Initiator, Nuker 547 236 43.14 3252 1426 43.85 7920 3524 44.49 9752 4551 46.67 7404 3467 46.83 3956 1876 47.42 2076 1004 48.36 1054 497 47.15
89 87 Shadow Fiend agi Carry, Nuker 5051 2544 50.37 27255 14064 51.6 58589 29830 50.91 65429 33097 50.58 41810 21189 50.68 18766 9401 50.1 8232 4000 48.59 3016 1430 47.41
90 88 Shadow Shaman int Support, Pusher, Disabler, Nuker, Initiator 5323 2795 52.51 29733 15606 52.49 58894 31236 53.04 58765 30895 52.57 34475 18242 52.91 15166 7986 52.66 6377 3323 52.11 2413 1253 51.93
91 89 Silencer int Carry, Support, Disabler, Initiator, Nuker 4229 2324 54.95 27878 14960 53.66 61698 33081 53.62 65256 34458 52.8 38589 19853 51.45 16889 8653 51.23 6836 3416 49.97 2236 1105 49.42
92 90 Skywrath Mage int Support, Nuker, Disabler 4000 2030 50.75 22783 11675 51.24 46512 23624 50.79 51329 25706 50.08 34167 17364 50.82 16693 8415 50.41 8496 4208 49.53 4389 2069 47.14
93 91 Slardar str Carry, Durable, Initiator, Disabler, Escape 3935 2129 54.1 21523 11602 53.91 43947 23701 53.93 47721 25633 53.71 29887 16132 53.98 14233 7722 54.25 6530 3467 53.09 2322 1205 51.89
94 92 Slark agi Carry, Escape, Disabler, Nuker 4815 2521 52.36 29413 14762 50.19 64004 31771 49.64 70173 34411 49.04 44780 21926 48.96 20864 10270 49.22 9969 4962 49.77 4565 2394 52.44
95 93 Snapfire all Support, Nuker, Disabler, Escape 1524 682 44.75 10646 4576 42.98 27103 12120 44.72 34711 15412 44.4 24351 10786 44.29 11723 5131 43.77 5227 2294 43.89 1987 868 43.68
96 94 Sniper agi Carry, Nuker 8022 4079 50.85 44508 22727 51.06 88690 45223 50.99 87190 44086 50.56 47411 23648 49.88 18092 8924 49.33 6130 3040 49.59 1370 662 48.32
97 95 Spectre agi Carry, Durable, Escape 3454 2008 58.14 22097 12356 55.92 49157 26961 54.85 55914 30100 53.83 36321 19338 53.24 16946 8960 52.87 7921 4163 52.56 2568 1370 53.35
98 96 Spirit Breaker str Carry, Initiator, Disabler, Durable, Escape 4788 2423 50.61 26662 13530 50.75 56535 28908 51.13 63991 32249 50.4 42512 21357 50.24 20119 9926 49.34 9499 4814 50.68 3761 1884 50.09
99 97 Storm Spirit int Carry, Escape, Nuker, Initiator, Disabler 2202 1001 45.46 11656 5197 44.59 25644 11806 46.04 30968 14210 45.89 21680 10197 47.03 10810 5025 46.48 5278 2382 45.13 2363 1122 47.48
100 98 Sven str Carry, Disabler, Initiator, Durable, Nuker 3552 1761 49.58 19792 9744 49.23 41296 20478 49.59 48709 24228 49.74 35460 17828 50.28 19795 10065 50.85 11014 5655 51.34 6701 3387 50.54
101 99 Techies all Nuker, Disabler 2356 1131 48.01 13105 6245 47.65 27293 12893 47.24 29180 13507 46.29 18216 8407 46.15 8266 3771 45.62 3459 1644 47.53 1319 591 44.81
102 100 Templar Assassin agi Carry, Escape 2142 955 44.58 10932 4758 43.52 21211 9445 44.53 23928 10909 45.59 17399 8242 47.37 9567 4656 48.67 5525 2708 49.01 3524 1775 50.37
103 101 Terrorblade agi Carry, Pusher, Nuker 1115 484 43.41 5686 2430 42.74 10856 4638 42.72 11518 5041 43.77 8059 3540 43.93 4192 1827 43.58 2419 1082 44.73 1621 700 43.18
104 102 Tidehunter str Initiator, Durable, Disabler, Nuker, Carry 1835 855 46.59 11159 5369 48.11 26222 12699 48.43 30735 14879 48.41 20523 9727 47.4 9731 4740 48.71 4426 2079 46.97 1998 936 46.85
105 103 Timbersaw all Nuker, Durable, Escape 1050 448 42.67 5854 2584 44.14 12301 5391 43.83 14295 6097 42.65 9697 4217 43.49 4992 2163 43.33 2419 1021 42.21 1139 471 41.35
106 104 Tinker int Carry, Nuker, Pusher 2106 944 44.82 11058 5200 47.02 24263 11826 48.74 27531 13614 49.45 19017 9732 51.18 9416 4875 51.77 4700 2466 52.47 1951 1036 53.1
107 105 Tiny str Carry, Nuker, Pusher, Initiator, Durable, Disabler 1434 654 45.61 7742 3452 44.59 15936 6950 43.61 17139 7468 43.57 11269 4991 44.29 5485 2491 45.41 2599 1216 46.79 1058 519 49.05
108 106 Treant Protector str Support, Initiator, Durable, Disabler, Escape 1646 899 54.62 11430 5881 51.45 28752 15124 52.6 36093 19344 53.59 28762 15532 54.0 16751 9227 55.08 9870 5468 55.4 6801 3855 56.68
109 107 Troll Warlord agi Carry, Pusher, Disabler, Durable 3176 1720 54.16 14007 7445 53.15 24729 13022 52.66 25424 13228 52.03 17362 9030 52.01 9427 4913 52.12 4767 2499 52.42 2341 1242 53.05
110 108 Tusk str Initiator, Disabler, Nuker 1263 565 44.73 8338 3777 45.3 19642 8869 45.15 25308 11520 45.52 18927 8853 46.77 10100 4820 47.72 5220 2502 47.93 2350 1157 49.23
111 109 Underlord str Support, Nuker, Disabler, Durable, Escape 797 405 50.82 4583 2341 51.08 10067 5057 50.23 11650 5786 49.67 7224 3561 49.29 3310 1591 48.07 1368 673 49.2 395 190 48.1
112 110 Undying str Support, Durable, Disabler, Nuker 3170 1620 51.1 19403 10116 52.14 40582 21110 52.02 40850 21182 51.85 23985 12454 51.92 10395 5389 51.84 4541 2336 51.44 2064 1012 49.03
113 111 Ursa agi Carry, Durable, Disabler 2801 1273 45.45 15132 7038 46.51 33269 15478 46.52 40822 19264 47.19 29348 14011 47.74 15262 7375 48.32 7507 3622 48.25 3004 1473 49.03
114 112 Vengeful Spirit all Support, Initiator, Disabler, Nuker, Escape 2186 1108 50.69 15817 8285 52.38 41843 21809 52.12 57524 30476 52.98 45512 24120 53.0 25581 13382 52.31 13758 7121 51.76 8276 4303 51.99
115 113 Venomancer all Support, Nuker, Initiator, Pusher, Disabler 2309 1187 51.41 14669 7463 50.88 34787 18020 51.8 41797 21690 51.89 28706 15085 52.55 13974 7338 52.51 6538 3495 53.46 2794 1459 52.22
116 114 Viper agi Carry, Durable, Initiator, Disabler 4100 2057 50.17 18991 9510 50.08 33517 16923 50.49 32728 16677 50.96 18537 9427 50.86 7851 3928 50.03 3260 1652 50.67 1176 610 51.87
117 115 Visage all Support, Nuker, Durable, Disabler, Pusher 331 171 51.66 1638 813 49.63 3240 1577 48.67 3840 1986 51.72 3108 1609 51.77 1995 1055 52.88 1309 702 53.63 858 457 53.26
118 116 Void Spirit all Carry, Escape, Nuker, Disabler 1565 727 46.45 8672 4096 47.23 20010 9694 48.45 25213 12376 49.09 18817 9231 49.06 10026 4920 49.07 4788 2319 48.43 2006 964 48.06
119 117 Warlock int Support, Initiator, Disabler 2547 1369 53.75 18931 10331 54.57 49795 26999 54.22 66697 36220 54.31 48401 25668 53.03 24999 12942 51.77 12575 6356 50.54 6183 2934 47.45
120 118 Weaver agi Carry, Escape 2818 1389 49.29 13873 6770 48.8 23493 11571 49.25 21545 10694 49.64 12911 6427 49.78 5809 2928 50.4 2960 1455 49.16 1303 719 55.18
121 119 Windranger all Carry, Support, Disabler, Escape, Nuker 3861 1814 46.98 19934 9223 46.27 40644 18807 46.27 44476 20652 46.43 28952 13508 46.66 13418 6297 46.93 5898 2782 47.17 2374 1142 48.1
122 120 Winter Wyvern all Support, Disabler, Nuker 821 371 45.19 5168 2424 46.9 10544 5014 47.55 11184 5308 47.46 7426 3512 47.29 3730 1854 49.71 1862 934 50.16 944 464 49.15
123 121 Witch Doctor int Support, Nuker, Disabler 7504 4173 55.61 45501 25616 56.3 99664 54963 55.15 111382 60421 54.25 71830 37860 52.71 33164 17334 52.27 14610 7442 50.94 4196 2076 49.48
124 122 Wraith King str Carry, Support, Durable, Disabler, Initiator 4175 2266 54.28 26362 14516 55.06 58733 32403 55.17 66283 36503 55.07 42360 23083 54.49 19084 10251 53.72 8334 4315 51.78 2707 1376 50.83
125 123 Zeus int Nuker, Carry 4132 2106 50.97 23721 12487 52.64 51568 27475 53.28 58333 31078 53.28 37821 20047 53.0 17901 9504 53.09 8539 4459 52.22 3400 1791 52.68

Binary file not shown.

After

Width:  |  Height:  |  Size: 197 KiB

View File

@@ -0,0 +1,31 @@
## Задание
Использовать метод кластеризациипо варианту для данных из таблицы 1 по варианту(таблица 9),самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо он подходит для решения сформулированной вами задачи
Вариант 6 - dendogram
## Как запустить лабораторную
Запустить файл main.py
## Используемые технологии
Библиотеки pandas, matplotlib, scipy, их компоненты
## Описание лабораторной (программы)
Данный код берет данные из датасета о персонажах Dota 2, где описаны атрибуты персонажей, их роли, название, и как часто их пикают и какой у них винрейт на каждом звании в Доте, от реркута до титана.
В моем случае была поставлена задача сгруппировать персонажей по их винрейту и частоте их пиков на определенных рангах.
Программа берет столбцы Name, Herald Win Rate, Herald Picks, создает матрицу для анализа и вычисляет матрицу связей, а затем выводит дендограмму, где персонажи объединены по тому, как часто их пикают и какой у них винрейт.
## Результат
В результате получаем дендограмму, где персонажи сгруппированы по частоте пиков и винрейту. Наглядное представление оказалось очень точным и такой способ решения поставленной задачи выполнил свою работу хорошо.
Например, на диаграмме ниже можно обратить внимание на то, что на ранге рекрут персонажи Phantom Asassin, Witch Doctor, Sniper и Pudge стоят вместе в правом нижнем углу. Такое наблюдение говорит о том, что датасет очень приближен к реальным данным и составлен правильно, а так же о том, что программа работает верно и выдает правильный, приближенный к реальности, результат.
![heraldInfo.png](heraldInfo.png)
Если же посмотреть на результат по данным для ранга титан, можно увидеть других героев, объединенных друг с другом по тому же приципу.
![ImmortalInfo.png](ImmortalInfo.png)
Сначала я хотела объединить героев по их винрейту на всех рангах, но такая информация не несет в себе много смысла, поэтому задача, которую я описала выше, сформулирована правильно, несет в себе смысл и решается заданным способом.
Такую статистику можно посмотреть по любому из рангов, заменив в коде слово Herald на интересующий ранг.

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

View File

@@ -0,0 +1,29 @@
import pandas as pd
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
# Загрузка данных
data = pd.read_csv('Current_Pub_Meta.csv')
# Выбор нужных столбцов
selected_columns = ['Name', 'Herald Picks', 'Herald Win Rate']
data = data[selected_columns]
# Создание матрицы для анализа
matrix = data.drop('Name', axis=1).values
# Вычисление матрицы связей
linked = linkage(matrix, 'ward')
# Рисование дендрограммы
plt.figure(figsize=(10, 6))
dendrogram(linked,
orientation='top',
labels=data['Name'].tolist(),
distance_sort='descending',
show_leaf_counts=True)
plt.title('Dendrogram of Hero Win Percentage')
plt.xlabel('Heroes')
plt.ylabel('Distance')
plt.xticks(rotation=90)
plt.show()

View File

@@ -0,0 +1,125 @@
,Name,Primary Attribute,Roles,Herald Picks,Herald Wins,Herald Win Rate,Guardian Picks,Guardian Wins,Guardian Win Rate,Crusader Picks,Crusader Wins,Crusader Win Rate,Archon Picks,Archon Wins,Archon Win Rate,Legend Picks,Legend Wins,Legend Win Rate,Ancient Picks,Ancient Wins,Ancient Win Rate,Divine Picks,Divine Wins,Divine Win Rate,Immortal Picks,Immortal Wins,Immortal Win Rate
0,Abaddon,all,"Support, Carry, Durable",1111,575,51.76,6408,3309,51.64,13811,7050,51.05,16497,8530,51.71,11360,5877,51.73,5571,2893,51.93,2632,1345,51.1,991,497,50.15
1,Alchemist,str,"Carry, Support, Durable, Disabler, Initiator, Nuker",1119,486,43.43,6370,2883,45.26,12238,5617,45.9,13028,6130,47.05,8455,4055,47.96,4120,1984,48.16,2021,1023,50.62,860,424,49.3
2,Ancient Apparition,int,"Support, Disabler, Nuker",2146,1073,50.0,13697,7069,51.61,30673,16118,52.55,35145,18219,51.84,23114,12166,52.63,10688,5528,51.72,5035,2573,51.1,2134,1076,50.42
3,Anti-Mage,agi,"Carry, Escape, Nuker",3765,1818,48.29,22050,10774,48.86,47371,23304,49.19,49115,24074,49.02,28599,13991,48.92,12303,5958,48.43,4866,2349,48.27,1502,751,50.0
4,Arc Warden,agi,"Carry, Escape, Nuker",1448,704,48.62,8047,4162,51.72,14946,7982,53.41,14711,7875,53.53,9472,5167,54.55,4323,2309,53.41,2104,1148,54.56,789,435,55.13
5,Axe,str,"Initiator, Durable, Disabler, Carry",5343,2880,53.9,32652,17719,54.27,71010,37736,53.14,77869,40559,52.09,49182,25079,50.99,22637,11353,50.15,10114,5000,49.44,3795,1837,48.41
6,Bane,all,"Support, Disabler, Nuker, Durable",745,334,44.83,4983,2422,48.61,11332,5504,48.57,13633,6767,49.64,10132,5032,49.66,5596,2861,51.13,3028,1555,51.35,1958,1055,53.88
7,Batrider,all,"Initiator, Disabler, Escape",349,136,38.97,1983,812,40.95,4053,1595,39.35,4725,1861,39.39,3173,1275,40.18,1678,731,43.56,802,362,45.14,497,227,45.67
8,Beastmaster,all,"Initiator, Disabler, Durable, Nuker",402,174,43.28,2447,1060,43.32,5787,2569,44.39,6930,3092,44.62,5288,2389,45.18,2816,1274,45.24,1593,752,47.21,1176,539,45.83
9,Bloodseeker,agi,"Carry, Disabler, Nuker, Initiator",2765,1382,49.98,12589,6270,49.81,21781,10683,49.05,20961,10420,49.71,13035,6430,49.33,6210,3006,48.41,2941,1475,50.15,1465,718,49.01
10,Bounty Hunter,agi,"Escape, Nuker",3852,1868,48.49,19609,9535,48.63,36362,17600,48.4,37059,18314,49.42,22934,11518,50.22,10584,5276,49.85,5105,2594,50.81,2498,1325,53.04
11,Brewmaster,all,"Carry, Initiator, Durable, Disabler, Nuker",545,280,51.38,3564,1745,48.96,8941,4388,49.08,12340,6111,49.52,11185,5623,50.27,7645,3906,51.09,4812,2478,51.5,3533,1820,51.51
12,Bristleback,str,"Carry, Durable, Initiator, Nuker",5884,3262,55.44,27952,14587,52.19,48847,24379,49.91,46702,22927,49.09,27466,13319,48.49,12398,5969,48.14,5865,2915,49.7,2639,1304,49.41
13,Broodmother,all,"Carry, Pusher, Escape, Nuker",456,173,37.94,2048,842,41.11,3444,1462,42.45,3392,1448,42.69,2193,1048,47.79,1203,602,50.04,795,422,53.08,453,230,50.77
14,Centaur Warrunner,str,"Durable, Initiator, Disabler, Nuker, Escape",1721,911,52.93,11754,6266,53.31,28691,15201,52.98,35369,18741,52.99,25393,13468,53.04,12653,6607,52.22,6124,3181,51.94,2442,1243,50.9
15,Chaos Knight,str,"Carry, Disabler, Durable, Pusher, Initiator",3032,1639,54.06,16762,8931,53.28,31892,17139,53.74,30697,16435,53.54,18217,9810,53.85,8572,4620,53.9,4230,2291,54.16,1750,943,53.89
16,Chen,all,"Support, Pusher",284,125,44.01,1450,678,46.76,2969,1345,45.3,3258,1604,49.23,2641,1331,50.4,1488,767,51.55,970,512,52.78,770,448,58.18
17,Clinkz,agi,"Carry, Escape, Pusher",3151,1608,51.03,13891,7141,51.41,25465,12938,50.81,27327,14066,51.47,18846,9726,51.61,9452,4890,51.74,4765,2475,51.94,2093,1052,50.26
18,Clockwerk,all,"Initiator, Disabler, Durable, Nuker",816,397,48.65,5860,2837,48.41,14478,6929,47.86,18466,8843,47.89,13143,6301,47.94,6612,3169,47.93,3286,1581,48.11,1378,658,47.75
19,Crystal Maiden,int,"Support, Disabler, Nuker",4821,2529,52.46,26584,13626,51.26,52168,26040,49.92,52258,25365,48.54,30690,14848,48.38,13295,6404,48.17,5602,2680,47.84,1638,771,47.07
20,Dark Seer,all,"Initiator, Escape, Disabler",627,320,51.04,3675,1884,51.27,7881,3803,48.26,9589,4844,50.52,7186,3573,49.72,3902,1983,50.82,2145,1095,51.05,1217,593,48.73
21,Dark Willow,all,"Support, Nuker, Disabler, Escape",2654,1293,48.72,13829,6657,48.14,28142,13480,47.9,32114,15785,49.15,23100,11331,49.05,12052,5909,49.03,6400,3182,49.72,3708,1915,51.65
22,Dawnbreaker,str,"Carry, Durable",1746,875,50.11,12297,6105,49.65,32398,15921,49.14,44846,21936,48.91,35474,17441,49.17,19770,9832,49.73,10637,5263,49.48,6339,3173,50.06
23,Dazzle,all,"Support, Nuker, Disabler",2827,1418,50.16,19852,9758,49.15,48236,23691,49.11,56417,27798,49.27,38159,18642,48.85,18695,9199,49.21,8530,4239,49.7,3382,1654,48.91
24,Death Prophet,int,"Carry, Pusher, Nuker, Disabler",1372,659,48.03,6643,3145,47.34,11987,5729,47.79,12268,5856,47.73,7455,3606,48.37,3591,1698,47.28,1872,902,48.18,926,459,49.57
25,Disruptor,int,"Support, Disabler, Nuker, Initiator",1541,757,49.12,11104,5331,48.01,27746,13542,48.81,33742,16310,48.34,23173,11096,47.88,10907,5201,47.68,4859,2255,46.41,1863,861,46.22
26,Doom,str,"Carry, Disabler, Initiator, Durable, Nuker",1049,474,45.19,6112,2767,45.27,13700,6056,44.2,15454,6925,44.81,10727,4842,45.14,5444,2451,45.02,2979,1348,45.25,1545,731,47.31
27,Dragon Knight,str,"Carry, Pusher, Durable, Disabler, Initiator, Nuker",1950,942,48.31,10643,5274,49.55,20451,9733,47.59,20326,9671,47.58,11674,5544,47.49,4979,2355,47.3,2024,973,48.07,725,341,47.03
28,Drow Ranger,agi,"Carry, Disabler, Pusher",5737,2904,50.62,29675,14831,49.98,57655,28573,49.56,56682,27927,49.27,34310,16607,48.4,15050,7171,47.65,5947,2815,47.33,1768,788,44.57
29,Earth Spirit,str,"Nuker, Escape, Disabler, Initiator, Durable",1038,465,44.8,7420,3276,44.15,20807,9432,45.33,30107,14166,47.05,25314,12148,47.99,14579,7041,48.3,7678,3802,49.52,4379,2169,49.53
30,Earthshaker,str,"Support, Initiator, Disabler, Nuker",5012,2455,48.98,29784,14662,49.23,67050,33111,49.38,79963,39843,49.83,57108,28961,50.71,28650,14591,50.93,14186,7296,51.43,6151,3165,51.46
31,Elder Titan,str,"Initiator, Disabler, Nuker, Durable",471,212,45.01,2551,1248,48.92,5213,2570,49.3,5572,2809,50.41,3847,1942,50.48,1964,998,50.81,1124,613,54.54,550,292,53.09
32,Ember Spirit,agi,"Carry, Escape, Nuker, Disabler, Initiator",1514,635,41.94,9180,3836,41.79,20578,8738,42.46,25152,10844,43.11,17703,7814,44.14,8538,3793,44.42,4265,1892,44.36,2065,928,44.94
33,Enchantress,int,"Support, Pusher, Durable, Disabler",1794,848,47.27,8050,3622,44.99,12921,5686,44.01,11673,4974,42.61,6863,2840,41.38,2948,1212,41.11,1434,654,45.61,806,318,39.45
34,Enigma,all,"Disabler, Initiator, Pusher",1317,588,44.65,6937,3171,45.71,12908,5979,46.32,11687,5428,46.44,6194,2839,45.83,2493,1127,45.21,938,437,46.59,338,159,47.04
35,Faceless Void,agi,"Carry, Initiator, Disabler, Escape, Durable",4323,2043,47.26,25618,11902,46.46,54581,25874,47.4,60671,28993,47.79,40137,19611,48.86,19376,9620,49.65,9579,4828,50.4,4439,2256,50.82
36,Grimstroke,int,"Support, Nuker, Disabler, Escape",1455,694,47.7,9714,4789,49.3,24688,12430,50.35,32027,16094,50.25,23193,11795,50.86,12102,6100,50.4,6191,3047,49.22,3449,1666,48.3
37,Gyrocopter,agi,"Carry, Nuker, Disabler",2560,1213,47.38,16589,7882,47.51,42072,20358,48.39,54200,26229,48.39,39414,19053,48.34,20164,9781,48.51,10164,4937,48.57,5241,2507,47.83
38,Hoodwink,agi,"Support, Nuker, Escape, Disabler",2420,1126,46.53,14034,6800,48.45,31382,14964,47.68,35684,16966,47.55,22626,10651,47.07,9949,4690,47.14,4349,2089,48.03,1533,703,45.86
39,Huskar,str,"Carry, Durable, Initiator",3501,1603,45.79,14234,6639,46.64,22794,10912,47.87,21801,10763,49.37,13811,6919,50.1,6769,3535,52.22,3556,1822,51.24,1936,993,51.29
40,Invoker,all,"Carry, Nuker, Disabler, Escape, Pusher",4330,2042,47.16,27625,13176,47.7,69035,33863,49.05,86745,43479,50.12,61821,31510,50.97,31459,16321,51.88,15431,8195,53.11,7852,4148,52.83
41,Io,all,"Support, Escape, Nuker",1274,615,48.27,6158,2999,48.7,12762,6247,48.95,14216,7024,49.41,9564,4843,50.64,5301,2685,50.65,2789,1463,52.46,1464,773,52.8
42,Jakiro,int,"Support, Nuker, Pusher, Disabler",3147,1708,54.27,22718,12413,54.64,56736,30984,54.61,70038,37473,53.5,46389,24997,53.89,22084,11639,52.7,9838,5103,51.87,3282,1729,52.68
43,Juggernaut,agi,"Carry, Pusher, Escape",5585,2711,48.54,30394,14800,48.69,62313,30581,49.08,65590,32344,49.31,39235,19326,49.26,16334,8012,49.05,6419,3066,47.76,1576,731,46.38
44,Keeper of the Light,int,"Support, Nuker, Disabler",896,353,39.4,5051,2216,43.87,10452,4579,43.81,11614,5322,45.82,7870,3627,46.09,4268,2001,46.88,2147,1043,48.58,1333,588,44.11
45,Kunkka,str,"Carry, Support, Disabler, Initiator, Durable, Nuker",2251,1124,49.93,13474,6828,50.68,31210,16196,51.89,39691,21293,53.65,30314,16458,54.29,15706,8793,55.98,7884,4339,55.04,3458,1898,54.89
46,Legion Commander,str,"Carry, Disabler, Initiator, Durable, Nuker",6263,3264,52.12,37100,19157,51.64,81491,41557,51.0,91431,46558,50.92,59383,29917,50.38,27945,13917,49.8,13193,6587,49.93,5601,2745,49.01
47,Leshrac,int,"Carry, Support, Nuker, Pusher, Disabler",674,316,46.88,3872,1799,46.46,7490,3433,45.83,7903,3604,45.6,5322,2526,47.46,2687,1298,48.31,1325,647,48.83,721,357,49.51
48,Lich,int,"Support, Nuker",2700,1412,52.3,16646,8820,52.99,37785,19685,52.1,45471,23554,51.8,31203,16108,51.62,15530,7821,50.36,7243,3597,49.66,2520,1258,49.92
49,Lifestealer,str,"Carry, Durable, Escape, Disabler",2515,1213,48.23,14131,6978,49.38,29724,14627,49.21,31211,15581,49.92,18970,9481,49.98,8689,4400,50.64,3630,1821,50.17,1229,617,50.2
50,Lina,int,"Support, Carry, Nuker, Disabler",4512,2030,44.99,21927,10156,46.32,45301,21210,46.82,54229,25956,47.86,40016,19138,47.83,21072,10112,47.99,10481,5031,48.0,4369,2138,48.94
51,Lion,int,"Support, Disabler, Nuker, Initiator",6204,2855,46.02,37869,17465,46.12,80124,36649,45.74,84390,38176,45.24,50720,22914,45.18,21698,9784,45.09,9308,4280,45.98,3220,1496,46.46
52,Lone Druid,all,"Carry, Pusher, Durable",909,483,53.14,4714,2421,51.36,10987,5858,53.32,14580,7968,54.65,11810,6490,54.95,7241,3971,54.84,4024,2240,55.67,2303,1259,54.67
53,Luna,agi,"Carry, Nuker, Pusher",1927,904,46.91,9091,4271,46.98,16571,7922,47.81,16035,7615,47.49,9728,4634,47.64,4463,2103,47.12,1912,911,47.65,719,322,44.78
54,Lycan,all,"Carry, Pusher, Durable, Escape",374,174,46.52,1894,915,48.31,3691,1744,47.25,3824,1905,49.82,2694,1332,49.44,1460,753,51.58,827,411,49.7,532,289,54.32
55,Magnus,all,"Initiator, Disabler, Nuker, Escape",770,339,44.03,5789,2651,45.79,17837,7954,44.59,26126,12058,46.15,20634,9592,46.49,10574,5056,47.82,4565,2073,45.41,1606,751,46.76
56,Marci,all,"Support, Carry, Initiator, Disabler, Escape",1370,620,45.26,7092,3252,45.85,15199,7240,47.63,18485,8874,48.01,13308,6305,47.38,7176,3476,48.44,3689,1882,51.02,1746,883,50.57
57,Mars,str,"Carry, Initiator, Disabler, Durable",862,375,43.5,5719,2529,44.22,15156,6756,44.58,20719,9369,45.22,16419,7387,44.99,9044,4052,44.8,4536,2093,46.14,1926,868,45.07
58,Medusa,agi,"Carry, Disabler, Durable",1898,902,47.52,9289,4512,48.57,16504,7818,47.37,14796,6886,46.54,7488,3449,46.06,2775,1270,45.77,1073,482,44.92,394,184,46.7
59,Meepo,agi,"Carry, Escape, Nuker, Disabler, Initiator, Pusher",1004,523,52.09,3970,1990,50.13,6904,3587,51.96,7166,3646,50.88,4906,2563,52.24,2383,1282,53.8,1139,588,51.62,585,300,51.28
60,Mirana,all,"Carry, Support, Escape, Nuker, Disabler",2499,1193,47.74,16954,8135,47.98,39985,19097,47.76,45169,21554,47.72,28467,13456,47.27,12800,6047,47.24,5272,2500,47.42,1824,874,47.92
61,Monkey King,agi,"Carry, Escape, Disabler, Initiator",3191,1384,43.37,17306,7544,43.59,35734,16113,45.09,40778,18322,44.93,27558,12630,45.83,14034,6433,45.84,6650,3152,47.4,3040,1440,47.37
62,Morphling,agi,"Carry, Escape, Durable, Nuker, Disabler",1521,690,45.36,8620,4006,46.47,18075,8161,45.15,20414,9235,45.24,14395,6530,45.36,7697,3551,46.13,4432,2050,46.25,2560,1190,46.48
63,Muerta,int,"Carry, Nuker, Disabler",2130,1089,51.13,10787,5740,53.21,22602,11898,52.64,27609,14495,52.5,20175,10465,51.87,10662,5518,51.75,5462,2759,50.51,2948,1517,51.46
64,Naga Siren,agi,"Carry, Support, Pusher, Disabler, Initiator, Escape",1502,804,53.53,6495,3356,51.67,10423,5234,50.22,9830,4929,50.14,6057,2971,49.05,3216,1675,52.08,1855,933,50.3,1242,634,51.05
65,Nature's Prophet,int,"Carry, Pusher, Escape, Nuker",5991,3029,50.56,36433,18143,49.8,83118,42095,50.64,100341,51268,51.09,69436,35870,51.66,34256,17858,52.13,16585,8745,52.73,7182,3755,52.28
66,Necrophos,int,"Carry, Nuker, Durable, Disabler",4776,2702,56.57,28535,15771,55.27,62186,34285,55.13,70212,38163,54.35,46539,24708,53.09,21607,11302,52.31,9677,4994,51.61,3418,1733,50.7
67,Night Stalker,str,"Carry, Initiator, Durable, Disabler, Nuker",1189,594,49.96,7868,3892,49.47,19446,10004,51.45,25524,13506,52.91,20138,10828,53.77,10767,5651,52.48,5499,2889,52.54,2415,1257,52.05
68,Nyx Assassin,all,"Disabler, Nuker, Initiator, Escape",1718,867,50.47,10925,5525,50.57,27207,14073,51.73,34684,18059,52.07,25736,13572,52.74,13313,7093,53.28,6485,3444,53.11,2852,1468,51.47
69,Ogre Magi,str,"Support, Nuker, Disabler, Durable, Initiator",5331,2845,53.37,31507,16299,51.73,62954,32248,51.22,61758,31373,50.8,33746,16988,50.34,13262,6654,50.17,4861,2420,49.78,1271,654,51.46
70,Omniknight,str,"Support, Durable, Nuker",975,479,49.13,6426,3109,48.38,14641,7319,49.99,17258,8731,50.59,11695,5916,50.59,5746,2993,52.09,2870,1469,51.18,1333,656,49.21
71,Oracle,int,"Support, Nuker, Disabler, Escape",796,384,48.24,4857,2417,49.76,13141,6645,50.57,18944,9853,52.01,15221,7964,52.32,8356,4458,53.35,4475,2380,53.18,1905,1018,53.44
72,Outworld Destroyer,int,"Carry, Nuker, Disabler",2226,1118,50.22,13388,6864,51.27,33284,17362,52.16,43991,23377,53.14,32021,16994,53.07,16655,8724,52.38,8123,4218,51.93,3176,1649,51.92
73,Pangolier,all,"Carry, Nuker, Disabler, Durable, Escape, Initiator",1156,534,46.19,7189,3209,44.64,17802,7937,44.58,25785,11677,45.29,21727,10144,46.69,13064,6351,48.61,7567,3737,49.39,5275,2734,51.83
74,Phantom Assassin,agi,"Carry, Escape",8553,4426,51.75,48549,25553,52.63,104756,54881,52.39,119332,62511,52.38,79140,41143,51.99,37399,19325,51.67,17774,9077,51.07,7819,3856,49.32
75,Phantom Lancer,agi,"Carry, Escape, Pusher, Nuker",3641,1960,53.83,19550,10374,53.06,38576,20633,53.49,41505,22310,53.75,26401,14268,54.04,12437,6590,52.99,5708,2985,52.3,2383,1243,52.16
76,Phoenix,all,"Support, Nuker, Initiator, Escape, Disabler",743,315,42.4,5231,2471,47.24,13950,6633,47.55,18350,8864,48.31,13972,6715,48.06,7787,3761,48.3,4322,2132,49.33,2610,1325,50.77
77,Primal Beast,str,"Initiator, Durable, Disabler",1455,701,48.18,9333,4448,47.66,22800,11058,48.5,30084,14643,48.67,24307,11993,49.34,13970,6991,50.04,7742,3890,50.25,4625,2407,52.04
78,Puck,int,"Initiator, Disabler, Escape, Nuker",871,399,45.81,5773,2628,45.52,16596,7578,45.66,24480,11315,46.22,20070,9497,47.32,11023,5298,48.06,5656,2714,47.98,2555,1200,46.97
79,Pudge,str,"Disabler, Initiator, Durable, Nuker",7677,3796,49.45,50891,24776,48.68,114784,56289,49.04,129604,63097,48.68,85800,41542,48.42,41730,20239,48.5,19823,9530,48.08,7112,3431,48.24
80,Pugna,int,"Nuker, Pusher",2075,944,45.49,9998,4695,46.96,18962,8958,47.24,20240,9965,49.23,12807,6199,48.4,5825,2855,49.01,2758,1387,50.29,1195,592,49.54
81,Queen of Pain,int,"Carry, Nuker, Escape",2287,1100,48.1,15119,7354,48.64,37137,18118,48.79,47706,23657,49.59,35500,18018,50.75,18405,9289,50.47,9243,4689,50.73,4227,2113,49.99
82,Razor,agi,"Carry, Durable, Nuker, Pusher",2470,1231,49.84,12000,5964,49.7,24666,12142,49.23,30334,14844,48.94,21832,10558,48.36,11917,5679,47.65,6092,2912,47.8,3144,1551,49.33
83,Riki,agi,"Carry, Escape, Disabler",3684,1929,52.36,19022,9891,52.0,35638,18582,52.14,33908,17415,51.36,20194,10312,51.06,8726,4377,50.16,3735,1855,49.67,1160,559,48.19
84,Rubick,int,"Support, Disabler, Nuker",3090,1404,45.44,21639,9303,42.99,57417,24590,42.83,74874,32603,43.54,55186,24219,43.89,28206,12568,44.56,13732,6106,44.47,5764,2642,45.84
85,Sand King,all,"Initiator, Disabler, Support, Nuker, Escape",2633,1513,57.46,13097,7323,55.91,25271,13807,54.64,26724,14323,53.6,17384,9144,52.6,7907,4104,51.9,3394,1719,50.65,1211,611,50.45
86,Shadow Demon,int,"Support, Disabler, Initiator, Nuker",547,236,43.14,3252,1426,43.85,7920,3524,44.49,9752,4551,46.67,7404,3467,46.83,3956,1876,47.42,2076,1004,48.36,1054,497,47.15
87,Shadow Fiend,agi,"Carry, Nuker",5051,2544,50.37,27255,14064,51.6,58589,29830,50.91,65429,33097,50.58,41810,21189,50.68,18766,9401,50.1,8232,4000,48.59,3016,1430,47.41
88,Shadow Shaman,int,"Support, Pusher, Disabler, Nuker, Initiator",5323,2795,52.51,29733,15606,52.49,58894,31236,53.04,58765,30895,52.57,34475,18242,52.91,15166,7986,52.66,6377,3323,52.11,2413,1253,51.93
89,Silencer,int,"Carry, Support, Disabler, Initiator, Nuker",4229,2324,54.95,27878,14960,53.66,61698,33081,53.62,65256,34458,52.8,38589,19853,51.45,16889,8653,51.23,6836,3416,49.97,2236,1105,49.42
90,Skywrath Mage,int,"Support, Nuker, Disabler",4000,2030,50.75,22783,11675,51.24,46512,23624,50.79,51329,25706,50.08,34167,17364,50.82,16693,8415,50.41,8496,4208,49.53,4389,2069,47.14
91,Slardar,str,"Carry, Durable, Initiator, Disabler, Escape",3935,2129,54.1,21523,11602,53.91,43947,23701,53.93,47721,25633,53.71,29887,16132,53.98,14233,7722,54.25,6530,3467,53.09,2322,1205,51.89
92,Slark,agi,"Carry, Escape, Disabler, Nuker",4815,2521,52.36,29413,14762,50.19,64004,31771,49.64,70173,34411,49.04,44780,21926,48.96,20864,10270,49.22,9969,4962,49.77,4565,2394,52.44
93,Snapfire,all,"Support, Nuker, Disabler, Escape",1524,682,44.75,10646,4576,42.98,27103,12120,44.72,34711,15412,44.4,24351,10786,44.29,11723,5131,43.77,5227,2294,43.89,1987,868,43.68
94,Sniper,agi,"Carry, Nuker",8022,4079,50.85,44508,22727,51.06,88690,45223,50.99,87190,44086,50.56,47411,23648,49.88,18092,8924,49.33,6130,3040,49.59,1370,662,48.32
95,Spectre,agi,"Carry, Durable, Escape",3454,2008,58.14,22097,12356,55.92,49157,26961,54.85,55914,30100,53.83,36321,19338,53.24,16946,8960,52.87,7921,4163,52.56,2568,1370,53.35
96,Spirit Breaker,str,"Carry, Initiator, Disabler, Durable, Escape",4788,2423,50.61,26662,13530,50.75,56535,28908,51.13,63991,32249,50.4,42512,21357,50.24,20119,9926,49.34,9499,4814,50.68,3761,1884,50.09
97,Storm Spirit,int,"Carry, Escape, Nuker, Initiator, Disabler",2202,1001,45.46,11656,5197,44.59,25644,11806,46.04,30968,14210,45.89,21680,10197,47.03,10810,5025,46.48,5278,2382,45.13,2363,1122,47.48
98,Sven,str,"Carry, Disabler, Initiator, Durable, Nuker",3552,1761,49.58,19792,9744,49.23,41296,20478,49.59,48709,24228,49.74,35460,17828,50.28,19795,10065,50.85,11014,5655,51.34,6701,3387,50.54
99,Techies,all,"Nuker, Disabler",2356,1131,48.01,13105,6245,47.65,27293,12893,47.24,29180,13507,46.29,18216,8407,46.15,8266,3771,45.62,3459,1644,47.53,1319,591,44.81
100,Templar Assassin,agi,"Carry, Escape",2142,955,44.58,10932,4758,43.52,21211,9445,44.53,23928,10909,45.59,17399,8242,47.37,9567,4656,48.67,5525,2708,49.01,3524,1775,50.37
101,Terrorblade,agi,"Carry, Pusher, Nuker",1115,484,43.41,5686,2430,42.74,10856,4638,42.72,11518,5041,43.77,8059,3540,43.93,4192,1827,43.58,2419,1082,44.73,1621,700,43.18
102,Tidehunter,str,"Initiator, Durable, Disabler, Nuker, Carry",1835,855,46.59,11159,5369,48.11,26222,12699,48.43,30735,14879,48.41,20523,9727,47.4,9731,4740,48.71,4426,2079,46.97,1998,936,46.85
103,Timbersaw,all,"Nuker, Durable, Escape",1050,448,42.67,5854,2584,44.14,12301,5391,43.83,14295,6097,42.65,9697,4217,43.49,4992,2163,43.33,2419,1021,42.21,1139,471,41.35
104,Tinker,int,"Carry, Nuker, Pusher",2106,944,44.82,11058,5200,47.02,24263,11826,48.74,27531,13614,49.45,19017,9732,51.18,9416,4875,51.77,4700,2466,52.47,1951,1036,53.1
105,Tiny,str,"Carry, Nuker, Pusher, Initiator, Durable, Disabler",1434,654,45.61,7742,3452,44.59,15936,6950,43.61,17139,7468,43.57,11269,4991,44.29,5485,2491,45.41,2599,1216,46.79,1058,519,49.05
106,Treant Protector,str,"Support, Initiator, Durable, Disabler, Escape",1646,899,54.62,11430,5881,51.45,28752,15124,52.6,36093,19344,53.59,28762,15532,54.0,16751,9227,55.08,9870,5468,55.4,6801,3855,56.68
107,Troll Warlord,agi,"Carry, Pusher, Disabler, Durable",3176,1720,54.16,14007,7445,53.15,24729,13022,52.66,25424,13228,52.03,17362,9030,52.01,9427,4913,52.12,4767,2499,52.42,2341,1242,53.05
108,Tusk,str,"Initiator, Disabler, Nuker",1263,565,44.73,8338,3777,45.3,19642,8869,45.15,25308,11520,45.52,18927,8853,46.77,10100,4820,47.72,5220,2502,47.93,2350,1157,49.23
109,Underlord,str,"Support, Nuker, Disabler, Durable, Escape",797,405,50.82,4583,2341,51.08,10067,5057,50.23,11650,5786,49.67,7224,3561,49.29,3310,1591,48.07,1368,673,49.2,395,190,48.1
110,Undying,str,"Support, Durable, Disabler, Nuker",3170,1620,51.1,19403,10116,52.14,40582,21110,52.02,40850,21182,51.85,23985,12454,51.92,10395,5389,51.84,4541,2336,51.44,2064,1012,49.03
111,Ursa,agi,"Carry, Durable, Disabler",2801,1273,45.45,15132,7038,46.51,33269,15478,46.52,40822,19264,47.19,29348,14011,47.74,15262,7375,48.32,7507,3622,48.25,3004,1473,49.03
112,Vengeful Spirit,all,"Support, Initiator, Disabler, Nuker, Escape",2186,1108,50.69,15817,8285,52.38,41843,21809,52.12,57524,30476,52.98,45512,24120,53.0,25581,13382,52.31,13758,7121,51.76,8276,4303,51.99
113,Venomancer,all,"Support, Nuker, Initiator, Pusher, Disabler",2309,1187,51.41,14669,7463,50.88,34787,18020,51.8,41797,21690,51.89,28706,15085,52.55,13974,7338,52.51,6538,3495,53.46,2794,1459,52.22
114,Viper,agi,"Carry, Durable, Initiator, Disabler",4100,2057,50.17,18991,9510,50.08,33517,16923,50.49,32728,16677,50.96,18537,9427,50.86,7851,3928,50.03,3260,1652,50.67,1176,610,51.87
115,Visage,all,"Support, Nuker, Durable, Disabler, Pusher",331,171,51.66,1638,813,49.63,3240,1577,48.67,3840,1986,51.72,3108,1609,51.77,1995,1055,52.88,1309,702,53.63,858,457,53.26
116,Void Spirit,all,"Carry, Escape, Nuker, Disabler",1565,727,46.45,8672,4096,47.23,20010,9694,48.45,25213,12376,49.09,18817,9231,49.06,10026,4920,49.07,4788,2319,48.43,2006,964,48.06
117,Warlock,int,"Support, Initiator, Disabler",2547,1369,53.75,18931,10331,54.57,49795,26999,54.22,66697,36220,54.31,48401,25668,53.03,24999,12942,51.77,12575,6356,50.54,6183,2934,47.45
118,Weaver,agi,"Carry, Escape",2818,1389,49.29,13873,6770,48.8,23493,11571,49.25,21545,10694,49.64,12911,6427,49.78,5809,2928,50.4,2960,1455,49.16,1303,719,55.18
119,Windranger,all,"Carry, Support, Disabler, Escape, Nuker",3861,1814,46.98,19934,9223,46.27,40644,18807,46.27,44476,20652,46.43,28952,13508,46.66,13418,6297,46.93,5898,2782,47.17,2374,1142,48.1
120,Winter Wyvern,all,"Support, Disabler, Nuker",821,371,45.19,5168,2424,46.9,10544,5014,47.55,11184,5308,47.46,7426,3512,47.29,3730,1854,49.71,1862,934,50.16,944,464,49.15
121,Witch Doctor,int,"Support, Nuker, Disabler",7504,4173,55.61,45501,25616,56.3,99664,54963,55.15,111382,60421,54.25,71830,37860,52.71,33164,17334,52.27,14610,7442,50.94,4196,2076,49.48
122,Wraith King,str,"Carry, Support, Durable, Disabler, Initiator",4175,2266,54.28,26362,14516,55.06,58733,32403,55.17,66283,36503,55.07,42360,23083,54.49,19084,10251,53.72,8334,4315,51.78,2707,1376,50.83
123,Zeus,int,"Nuker, Carry",4132,2106,50.97,23721,12487,52.64,51568,27475,53.28,58333,31078,53.28,37821,20047,53.0,17901,9504,53.09,8539,4459,52.22,3400,1791,52.68
1 Name Primary Attribute Roles Herald Picks Herald Wins Herald Win Rate Guardian Picks Guardian Wins Guardian Win Rate Crusader Picks Crusader Wins Crusader Win Rate Archon Picks Archon Wins Archon Win Rate Legend Picks Legend Wins Legend Win Rate Ancient Picks Ancient Wins Ancient Win Rate Divine Picks Divine Wins Divine Win Rate Immortal Picks Immortal Wins Immortal Win Rate
2 0 Abaddon all Support, Carry, Durable 1111 575 51.76 6408 3309 51.64 13811 7050 51.05 16497 8530 51.71 11360 5877 51.73 5571 2893 51.93 2632 1345 51.1 991 497 50.15
3 1 Alchemist str Carry, Support, Durable, Disabler, Initiator, Nuker 1119 486 43.43 6370 2883 45.26 12238 5617 45.9 13028 6130 47.05 8455 4055 47.96 4120 1984 48.16 2021 1023 50.62 860 424 49.3
4 2 Ancient Apparition int Support, Disabler, Nuker 2146 1073 50.0 13697 7069 51.61 30673 16118 52.55 35145 18219 51.84 23114 12166 52.63 10688 5528 51.72 5035 2573 51.1 2134 1076 50.42
5 3 Anti-Mage agi Carry, Escape, Nuker 3765 1818 48.29 22050 10774 48.86 47371 23304 49.19 49115 24074 49.02 28599 13991 48.92 12303 5958 48.43 4866 2349 48.27 1502 751 50.0
6 4 Arc Warden agi Carry, Escape, Nuker 1448 704 48.62 8047 4162 51.72 14946 7982 53.41 14711 7875 53.53 9472 5167 54.55 4323 2309 53.41 2104 1148 54.56 789 435 55.13
7 5 Axe str Initiator, Durable, Disabler, Carry 5343 2880 53.9 32652 17719 54.27 71010 37736 53.14 77869 40559 52.09 49182 25079 50.99 22637 11353 50.15 10114 5000 49.44 3795 1837 48.41
8 6 Bane all Support, Disabler, Nuker, Durable 745 334 44.83 4983 2422 48.61 11332 5504 48.57 13633 6767 49.64 10132 5032 49.66 5596 2861 51.13 3028 1555 51.35 1958 1055 53.88
9 7 Batrider all Initiator, Disabler, Escape 349 136 38.97 1983 812 40.95 4053 1595 39.35 4725 1861 39.39 3173 1275 40.18 1678 731 43.56 802 362 45.14 497 227 45.67
10 8 Beastmaster all Initiator, Disabler, Durable, Nuker 402 174 43.28 2447 1060 43.32 5787 2569 44.39 6930 3092 44.62 5288 2389 45.18 2816 1274 45.24 1593 752 47.21 1176 539 45.83
11 9 Bloodseeker agi Carry, Disabler, Nuker, Initiator 2765 1382 49.98 12589 6270 49.81 21781 10683 49.05 20961 10420 49.71 13035 6430 49.33 6210 3006 48.41 2941 1475 50.15 1465 718 49.01
12 10 Bounty Hunter agi Escape, Nuker 3852 1868 48.49 19609 9535 48.63 36362 17600 48.4 37059 18314 49.42 22934 11518 50.22 10584 5276 49.85 5105 2594 50.81 2498 1325 53.04
13 11 Brewmaster all Carry, Initiator, Durable, Disabler, Nuker 545 280 51.38 3564 1745 48.96 8941 4388 49.08 12340 6111 49.52 11185 5623 50.27 7645 3906 51.09 4812 2478 51.5 3533 1820 51.51
14 12 Bristleback str Carry, Durable, Initiator, Nuker 5884 3262 55.44 27952 14587 52.19 48847 24379 49.91 46702 22927 49.09 27466 13319 48.49 12398 5969 48.14 5865 2915 49.7 2639 1304 49.41
15 13 Broodmother all Carry, Pusher, Escape, Nuker 456 173 37.94 2048 842 41.11 3444 1462 42.45 3392 1448 42.69 2193 1048 47.79 1203 602 50.04 795 422 53.08 453 230 50.77
16 14 Centaur Warrunner str Durable, Initiator, Disabler, Nuker, Escape 1721 911 52.93 11754 6266 53.31 28691 15201 52.98 35369 18741 52.99 25393 13468 53.04 12653 6607 52.22 6124 3181 51.94 2442 1243 50.9
17 15 Chaos Knight str Carry, Disabler, Durable, Pusher, Initiator 3032 1639 54.06 16762 8931 53.28 31892 17139 53.74 30697 16435 53.54 18217 9810 53.85 8572 4620 53.9 4230 2291 54.16 1750 943 53.89
18 16 Chen all Support, Pusher 284 125 44.01 1450 678 46.76 2969 1345 45.3 3258 1604 49.23 2641 1331 50.4 1488 767 51.55 970 512 52.78 770 448 58.18
19 17 Clinkz agi Carry, Escape, Pusher 3151 1608 51.03 13891 7141 51.41 25465 12938 50.81 27327 14066 51.47 18846 9726 51.61 9452 4890 51.74 4765 2475 51.94 2093 1052 50.26
20 18 Clockwerk all Initiator, Disabler, Durable, Nuker 816 397 48.65 5860 2837 48.41 14478 6929 47.86 18466 8843 47.89 13143 6301 47.94 6612 3169 47.93 3286 1581 48.11 1378 658 47.75
21 19 Crystal Maiden int Support, Disabler, Nuker 4821 2529 52.46 26584 13626 51.26 52168 26040 49.92 52258 25365 48.54 30690 14848 48.38 13295 6404 48.17 5602 2680 47.84 1638 771 47.07
22 20 Dark Seer all Initiator, Escape, Disabler 627 320 51.04 3675 1884 51.27 7881 3803 48.26 9589 4844 50.52 7186 3573 49.72 3902 1983 50.82 2145 1095 51.05 1217 593 48.73
23 21 Dark Willow all Support, Nuker, Disabler, Escape 2654 1293 48.72 13829 6657 48.14 28142 13480 47.9 32114 15785 49.15 23100 11331 49.05 12052 5909 49.03 6400 3182 49.72 3708 1915 51.65
24 22 Dawnbreaker str Carry, Durable 1746 875 50.11 12297 6105 49.65 32398 15921 49.14 44846 21936 48.91 35474 17441 49.17 19770 9832 49.73 10637 5263 49.48 6339 3173 50.06
25 23 Dazzle all Support, Nuker, Disabler 2827 1418 50.16 19852 9758 49.15 48236 23691 49.11 56417 27798 49.27 38159 18642 48.85 18695 9199 49.21 8530 4239 49.7 3382 1654 48.91
26 24 Death Prophet int Carry, Pusher, Nuker, Disabler 1372 659 48.03 6643 3145 47.34 11987 5729 47.79 12268 5856 47.73 7455 3606 48.37 3591 1698 47.28 1872 902 48.18 926 459 49.57
27 25 Disruptor int Support, Disabler, Nuker, Initiator 1541 757 49.12 11104 5331 48.01 27746 13542 48.81 33742 16310 48.34 23173 11096 47.88 10907 5201 47.68 4859 2255 46.41 1863 861 46.22
28 26 Doom str Carry, Disabler, Initiator, Durable, Nuker 1049 474 45.19 6112 2767 45.27 13700 6056 44.2 15454 6925 44.81 10727 4842 45.14 5444 2451 45.02 2979 1348 45.25 1545 731 47.31
29 27 Dragon Knight str Carry, Pusher, Durable, Disabler, Initiator, Nuker 1950 942 48.31 10643 5274 49.55 20451 9733 47.59 20326 9671 47.58 11674 5544 47.49 4979 2355 47.3 2024 973 48.07 725 341 47.03
30 28 Drow Ranger agi Carry, Disabler, Pusher 5737 2904 50.62 29675 14831 49.98 57655 28573 49.56 56682 27927 49.27 34310 16607 48.4 15050 7171 47.65 5947 2815 47.33 1768 788 44.57
31 29 Earth Spirit str Nuker, Escape, Disabler, Initiator, Durable 1038 465 44.8 7420 3276 44.15 20807 9432 45.33 30107 14166 47.05 25314 12148 47.99 14579 7041 48.3 7678 3802 49.52 4379 2169 49.53
32 30 Earthshaker str Support, Initiator, Disabler, Nuker 5012 2455 48.98 29784 14662 49.23 67050 33111 49.38 79963 39843 49.83 57108 28961 50.71 28650 14591 50.93 14186 7296 51.43 6151 3165 51.46
33 31 Elder Titan str Initiator, Disabler, Nuker, Durable 471 212 45.01 2551 1248 48.92 5213 2570 49.3 5572 2809 50.41 3847 1942 50.48 1964 998 50.81 1124 613 54.54 550 292 53.09
34 32 Ember Spirit agi Carry, Escape, Nuker, Disabler, Initiator 1514 635 41.94 9180 3836 41.79 20578 8738 42.46 25152 10844 43.11 17703 7814 44.14 8538 3793 44.42 4265 1892 44.36 2065 928 44.94
35 33 Enchantress int Support, Pusher, Durable, Disabler 1794 848 47.27 8050 3622 44.99 12921 5686 44.01 11673 4974 42.61 6863 2840 41.38 2948 1212 41.11 1434 654 45.61 806 318 39.45
36 34 Enigma all Disabler, Initiator, Pusher 1317 588 44.65 6937 3171 45.71 12908 5979 46.32 11687 5428 46.44 6194 2839 45.83 2493 1127 45.21 938 437 46.59 338 159 47.04
37 35 Faceless Void agi Carry, Initiator, Disabler, Escape, Durable 4323 2043 47.26 25618 11902 46.46 54581 25874 47.4 60671 28993 47.79 40137 19611 48.86 19376 9620 49.65 9579 4828 50.4 4439 2256 50.82
38 36 Grimstroke int Support, Nuker, Disabler, Escape 1455 694 47.7 9714 4789 49.3 24688 12430 50.35 32027 16094 50.25 23193 11795 50.86 12102 6100 50.4 6191 3047 49.22 3449 1666 48.3
39 37 Gyrocopter agi Carry, Nuker, Disabler 2560 1213 47.38 16589 7882 47.51 42072 20358 48.39 54200 26229 48.39 39414 19053 48.34 20164 9781 48.51 10164 4937 48.57 5241 2507 47.83
40 38 Hoodwink agi Support, Nuker, Escape, Disabler 2420 1126 46.53 14034 6800 48.45 31382 14964 47.68 35684 16966 47.55 22626 10651 47.07 9949 4690 47.14 4349 2089 48.03 1533 703 45.86
41 39 Huskar str Carry, Durable, Initiator 3501 1603 45.79 14234 6639 46.64 22794 10912 47.87 21801 10763 49.37 13811 6919 50.1 6769 3535 52.22 3556 1822 51.24 1936 993 51.29
42 40 Invoker all Carry, Nuker, Disabler, Escape, Pusher 4330 2042 47.16 27625 13176 47.7 69035 33863 49.05 86745 43479 50.12 61821 31510 50.97 31459 16321 51.88 15431 8195 53.11 7852 4148 52.83
43 41 Io all Support, Escape, Nuker 1274 615 48.27 6158 2999 48.7 12762 6247 48.95 14216 7024 49.41 9564 4843 50.64 5301 2685 50.65 2789 1463 52.46 1464 773 52.8
44 42 Jakiro int Support, Nuker, Pusher, Disabler 3147 1708 54.27 22718 12413 54.64 56736 30984 54.61 70038 37473 53.5 46389 24997 53.89 22084 11639 52.7 9838 5103 51.87 3282 1729 52.68
45 43 Juggernaut agi Carry, Pusher, Escape 5585 2711 48.54 30394 14800 48.69 62313 30581 49.08 65590 32344 49.31 39235 19326 49.26 16334 8012 49.05 6419 3066 47.76 1576 731 46.38
46 44 Keeper of the Light int Support, Nuker, Disabler 896 353 39.4 5051 2216 43.87 10452 4579 43.81 11614 5322 45.82 7870 3627 46.09 4268 2001 46.88 2147 1043 48.58 1333 588 44.11
47 45 Kunkka str Carry, Support, Disabler, Initiator, Durable, Nuker 2251 1124 49.93 13474 6828 50.68 31210 16196 51.89 39691 21293 53.65 30314 16458 54.29 15706 8793 55.98 7884 4339 55.04 3458 1898 54.89
48 46 Legion Commander str Carry, Disabler, Initiator, Durable, Nuker 6263 3264 52.12 37100 19157 51.64 81491 41557 51.0 91431 46558 50.92 59383 29917 50.38 27945 13917 49.8 13193 6587 49.93 5601 2745 49.01
49 47 Leshrac int Carry, Support, Nuker, Pusher, Disabler 674 316 46.88 3872 1799 46.46 7490 3433 45.83 7903 3604 45.6 5322 2526 47.46 2687 1298 48.31 1325 647 48.83 721 357 49.51
50 48 Lich int Support, Nuker 2700 1412 52.3 16646 8820 52.99 37785 19685 52.1 45471 23554 51.8 31203 16108 51.62 15530 7821 50.36 7243 3597 49.66 2520 1258 49.92
51 49 Lifestealer str Carry, Durable, Escape, Disabler 2515 1213 48.23 14131 6978 49.38 29724 14627 49.21 31211 15581 49.92 18970 9481 49.98 8689 4400 50.64 3630 1821 50.17 1229 617 50.2
52 50 Lina int Support, Carry, Nuker, Disabler 4512 2030 44.99 21927 10156 46.32 45301 21210 46.82 54229 25956 47.86 40016 19138 47.83 21072 10112 47.99 10481 5031 48.0 4369 2138 48.94
53 51 Lion int Support, Disabler, Nuker, Initiator 6204 2855 46.02 37869 17465 46.12 80124 36649 45.74 84390 38176 45.24 50720 22914 45.18 21698 9784 45.09 9308 4280 45.98 3220 1496 46.46
54 52 Lone Druid all Carry, Pusher, Durable 909 483 53.14 4714 2421 51.36 10987 5858 53.32 14580 7968 54.65 11810 6490 54.95 7241 3971 54.84 4024 2240 55.67 2303 1259 54.67
55 53 Luna agi Carry, Nuker, Pusher 1927 904 46.91 9091 4271 46.98 16571 7922 47.81 16035 7615 47.49 9728 4634 47.64 4463 2103 47.12 1912 911 47.65 719 322 44.78
56 54 Lycan all Carry, Pusher, Durable, Escape 374 174 46.52 1894 915 48.31 3691 1744 47.25 3824 1905 49.82 2694 1332 49.44 1460 753 51.58 827 411 49.7 532 289 54.32
57 55 Magnus all Initiator, Disabler, Nuker, Escape 770 339 44.03 5789 2651 45.79 17837 7954 44.59 26126 12058 46.15 20634 9592 46.49 10574 5056 47.82 4565 2073 45.41 1606 751 46.76
58 56 Marci all Support, Carry, Initiator, Disabler, Escape 1370 620 45.26 7092 3252 45.85 15199 7240 47.63 18485 8874 48.01 13308 6305 47.38 7176 3476 48.44 3689 1882 51.02 1746 883 50.57
59 57 Mars str Carry, Initiator, Disabler, Durable 862 375 43.5 5719 2529 44.22 15156 6756 44.58 20719 9369 45.22 16419 7387 44.99 9044 4052 44.8 4536 2093 46.14 1926 868 45.07
60 58 Medusa agi Carry, Disabler, Durable 1898 902 47.52 9289 4512 48.57 16504 7818 47.37 14796 6886 46.54 7488 3449 46.06 2775 1270 45.77 1073 482 44.92 394 184 46.7
61 59 Meepo agi Carry, Escape, Nuker, Disabler, Initiator, Pusher 1004 523 52.09 3970 1990 50.13 6904 3587 51.96 7166 3646 50.88 4906 2563 52.24 2383 1282 53.8 1139 588 51.62 585 300 51.28
62 60 Mirana all Carry, Support, Escape, Nuker, Disabler 2499 1193 47.74 16954 8135 47.98 39985 19097 47.76 45169 21554 47.72 28467 13456 47.27 12800 6047 47.24 5272 2500 47.42 1824 874 47.92
63 61 Monkey King agi Carry, Escape, Disabler, Initiator 3191 1384 43.37 17306 7544 43.59 35734 16113 45.09 40778 18322 44.93 27558 12630 45.83 14034 6433 45.84 6650 3152 47.4 3040 1440 47.37
64 62 Morphling agi Carry, Escape, Durable, Nuker, Disabler 1521 690 45.36 8620 4006 46.47 18075 8161 45.15 20414 9235 45.24 14395 6530 45.36 7697 3551 46.13 4432 2050 46.25 2560 1190 46.48
65 63 Muerta int Carry, Nuker, Disabler 2130 1089 51.13 10787 5740 53.21 22602 11898 52.64 27609 14495 52.5 20175 10465 51.87 10662 5518 51.75 5462 2759 50.51 2948 1517 51.46
66 64 Naga Siren agi Carry, Support, Pusher, Disabler, Initiator, Escape 1502 804 53.53 6495 3356 51.67 10423 5234 50.22 9830 4929 50.14 6057 2971 49.05 3216 1675 52.08 1855 933 50.3 1242 634 51.05
67 65 Nature's Prophet int Carry, Pusher, Escape, Nuker 5991 3029 50.56 36433 18143 49.8 83118 42095 50.64 100341 51268 51.09 69436 35870 51.66 34256 17858 52.13 16585 8745 52.73 7182 3755 52.28
68 66 Necrophos int Carry, Nuker, Durable, Disabler 4776 2702 56.57 28535 15771 55.27 62186 34285 55.13 70212 38163 54.35 46539 24708 53.09 21607 11302 52.31 9677 4994 51.61 3418 1733 50.7
69 67 Night Stalker str Carry, Initiator, Durable, Disabler, Nuker 1189 594 49.96 7868 3892 49.47 19446 10004 51.45 25524 13506 52.91 20138 10828 53.77 10767 5651 52.48 5499 2889 52.54 2415 1257 52.05
70 68 Nyx Assassin all Disabler, Nuker, Initiator, Escape 1718 867 50.47 10925 5525 50.57 27207 14073 51.73 34684 18059 52.07 25736 13572 52.74 13313 7093 53.28 6485 3444 53.11 2852 1468 51.47
71 69 Ogre Magi str Support, Nuker, Disabler, Durable, Initiator 5331 2845 53.37 31507 16299 51.73 62954 32248 51.22 61758 31373 50.8 33746 16988 50.34 13262 6654 50.17 4861 2420 49.78 1271 654 51.46
72 70 Omniknight str Support, Durable, Nuker 975 479 49.13 6426 3109 48.38 14641 7319 49.99 17258 8731 50.59 11695 5916 50.59 5746 2993 52.09 2870 1469 51.18 1333 656 49.21
73 71 Oracle int Support, Nuker, Disabler, Escape 796 384 48.24 4857 2417 49.76 13141 6645 50.57 18944 9853 52.01 15221 7964 52.32 8356 4458 53.35 4475 2380 53.18 1905 1018 53.44
74 72 Outworld Destroyer int Carry, Nuker, Disabler 2226 1118 50.22 13388 6864 51.27 33284 17362 52.16 43991 23377 53.14 32021 16994 53.07 16655 8724 52.38 8123 4218 51.93 3176 1649 51.92
75 73 Pangolier all Carry, Nuker, Disabler, Durable, Escape, Initiator 1156 534 46.19 7189 3209 44.64 17802 7937 44.58 25785 11677 45.29 21727 10144 46.69 13064 6351 48.61 7567 3737 49.39 5275 2734 51.83
76 74 Phantom Assassin agi Carry, Escape 8553 4426 51.75 48549 25553 52.63 104756 54881 52.39 119332 62511 52.38 79140 41143 51.99 37399 19325 51.67 17774 9077 51.07 7819 3856 49.32
77 75 Phantom Lancer agi Carry, Escape, Pusher, Nuker 3641 1960 53.83 19550 10374 53.06 38576 20633 53.49 41505 22310 53.75 26401 14268 54.04 12437 6590 52.99 5708 2985 52.3 2383 1243 52.16
78 76 Phoenix all Support, Nuker, Initiator, Escape, Disabler 743 315 42.4 5231 2471 47.24 13950 6633 47.55 18350 8864 48.31 13972 6715 48.06 7787 3761 48.3 4322 2132 49.33 2610 1325 50.77
79 77 Primal Beast str Initiator, Durable, Disabler 1455 701 48.18 9333 4448 47.66 22800 11058 48.5 30084 14643 48.67 24307 11993 49.34 13970 6991 50.04 7742 3890 50.25 4625 2407 52.04
80 78 Puck int Initiator, Disabler, Escape, Nuker 871 399 45.81 5773 2628 45.52 16596 7578 45.66 24480 11315 46.22 20070 9497 47.32 11023 5298 48.06 5656 2714 47.98 2555 1200 46.97
81 79 Pudge str Disabler, Initiator, Durable, Nuker 7677 3796 49.45 50891 24776 48.68 114784 56289 49.04 129604 63097 48.68 85800 41542 48.42 41730 20239 48.5 19823 9530 48.08 7112 3431 48.24
82 80 Pugna int Nuker, Pusher 2075 944 45.49 9998 4695 46.96 18962 8958 47.24 20240 9965 49.23 12807 6199 48.4 5825 2855 49.01 2758 1387 50.29 1195 592 49.54
83 81 Queen of Pain int Carry, Nuker, Escape 2287 1100 48.1 15119 7354 48.64 37137 18118 48.79 47706 23657 49.59 35500 18018 50.75 18405 9289 50.47 9243 4689 50.73 4227 2113 49.99
84 82 Razor agi Carry, Durable, Nuker, Pusher 2470 1231 49.84 12000 5964 49.7 24666 12142 49.23 30334 14844 48.94 21832 10558 48.36 11917 5679 47.65 6092 2912 47.8 3144 1551 49.33
85 83 Riki agi Carry, Escape, Disabler 3684 1929 52.36 19022 9891 52.0 35638 18582 52.14 33908 17415 51.36 20194 10312 51.06 8726 4377 50.16 3735 1855 49.67 1160 559 48.19
86 84 Rubick int Support, Disabler, Nuker 3090 1404 45.44 21639 9303 42.99 57417 24590 42.83 74874 32603 43.54 55186 24219 43.89 28206 12568 44.56 13732 6106 44.47 5764 2642 45.84
87 85 Sand King all Initiator, Disabler, Support, Nuker, Escape 2633 1513 57.46 13097 7323 55.91 25271 13807 54.64 26724 14323 53.6 17384 9144 52.6 7907 4104 51.9 3394 1719 50.65 1211 611 50.45
88 86 Shadow Demon int Support, Disabler, Initiator, Nuker 547 236 43.14 3252 1426 43.85 7920 3524 44.49 9752 4551 46.67 7404 3467 46.83 3956 1876 47.42 2076 1004 48.36 1054 497 47.15
89 87 Shadow Fiend agi Carry, Nuker 5051 2544 50.37 27255 14064 51.6 58589 29830 50.91 65429 33097 50.58 41810 21189 50.68 18766 9401 50.1 8232 4000 48.59 3016 1430 47.41
90 88 Shadow Shaman int Support, Pusher, Disabler, Nuker, Initiator 5323 2795 52.51 29733 15606 52.49 58894 31236 53.04 58765 30895 52.57 34475 18242 52.91 15166 7986 52.66 6377 3323 52.11 2413 1253 51.93
91 89 Silencer int Carry, Support, Disabler, Initiator, Nuker 4229 2324 54.95 27878 14960 53.66 61698 33081 53.62 65256 34458 52.8 38589 19853 51.45 16889 8653 51.23 6836 3416 49.97 2236 1105 49.42
92 90 Skywrath Mage int Support, Nuker, Disabler 4000 2030 50.75 22783 11675 51.24 46512 23624 50.79 51329 25706 50.08 34167 17364 50.82 16693 8415 50.41 8496 4208 49.53 4389 2069 47.14
93 91 Slardar str Carry, Durable, Initiator, Disabler, Escape 3935 2129 54.1 21523 11602 53.91 43947 23701 53.93 47721 25633 53.71 29887 16132 53.98 14233 7722 54.25 6530 3467 53.09 2322 1205 51.89
94 92 Slark agi Carry, Escape, Disabler, Nuker 4815 2521 52.36 29413 14762 50.19 64004 31771 49.64 70173 34411 49.04 44780 21926 48.96 20864 10270 49.22 9969 4962 49.77 4565 2394 52.44
95 93 Snapfire all Support, Nuker, Disabler, Escape 1524 682 44.75 10646 4576 42.98 27103 12120 44.72 34711 15412 44.4 24351 10786 44.29 11723 5131 43.77 5227 2294 43.89 1987 868 43.68
96 94 Sniper agi Carry, Nuker 8022 4079 50.85 44508 22727 51.06 88690 45223 50.99 87190 44086 50.56 47411 23648 49.88 18092 8924 49.33 6130 3040 49.59 1370 662 48.32
97 95 Spectre agi Carry, Durable, Escape 3454 2008 58.14 22097 12356 55.92 49157 26961 54.85 55914 30100 53.83 36321 19338 53.24 16946 8960 52.87 7921 4163 52.56 2568 1370 53.35
98 96 Spirit Breaker str Carry, Initiator, Disabler, Durable, Escape 4788 2423 50.61 26662 13530 50.75 56535 28908 51.13 63991 32249 50.4 42512 21357 50.24 20119 9926 49.34 9499 4814 50.68 3761 1884 50.09
99 97 Storm Spirit int Carry, Escape, Nuker, Initiator, Disabler 2202 1001 45.46 11656 5197 44.59 25644 11806 46.04 30968 14210 45.89 21680 10197 47.03 10810 5025 46.48 5278 2382 45.13 2363 1122 47.48
100 98 Sven str Carry, Disabler, Initiator, Durable, Nuker 3552 1761 49.58 19792 9744 49.23 41296 20478 49.59 48709 24228 49.74 35460 17828 50.28 19795 10065 50.85 11014 5655 51.34 6701 3387 50.54
101 99 Techies all Nuker, Disabler 2356 1131 48.01 13105 6245 47.65 27293 12893 47.24 29180 13507 46.29 18216 8407 46.15 8266 3771 45.62 3459 1644 47.53 1319 591 44.81
102 100 Templar Assassin agi Carry, Escape 2142 955 44.58 10932 4758 43.52 21211 9445 44.53 23928 10909 45.59 17399 8242 47.37 9567 4656 48.67 5525 2708 49.01 3524 1775 50.37
103 101 Terrorblade agi Carry, Pusher, Nuker 1115 484 43.41 5686 2430 42.74 10856 4638 42.72 11518 5041 43.77 8059 3540 43.93 4192 1827 43.58 2419 1082 44.73 1621 700 43.18
104 102 Tidehunter str Initiator, Durable, Disabler, Nuker, Carry 1835 855 46.59 11159 5369 48.11 26222 12699 48.43 30735 14879 48.41 20523 9727 47.4 9731 4740 48.71 4426 2079 46.97 1998 936 46.85
105 103 Timbersaw all Nuker, Durable, Escape 1050 448 42.67 5854 2584 44.14 12301 5391 43.83 14295 6097 42.65 9697 4217 43.49 4992 2163 43.33 2419 1021 42.21 1139 471 41.35
106 104 Tinker int Carry, Nuker, Pusher 2106 944 44.82 11058 5200 47.02 24263 11826 48.74 27531 13614 49.45 19017 9732 51.18 9416 4875 51.77 4700 2466 52.47 1951 1036 53.1
107 105 Tiny str Carry, Nuker, Pusher, Initiator, Durable, Disabler 1434 654 45.61 7742 3452 44.59 15936 6950 43.61 17139 7468 43.57 11269 4991 44.29 5485 2491 45.41 2599 1216 46.79 1058 519 49.05
108 106 Treant Protector str Support, Initiator, Durable, Disabler, Escape 1646 899 54.62 11430 5881 51.45 28752 15124 52.6 36093 19344 53.59 28762 15532 54.0 16751 9227 55.08 9870 5468 55.4 6801 3855 56.68
109 107 Troll Warlord agi Carry, Pusher, Disabler, Durable 3176 1720 54.16 14007 7445 53.15 24729 13022 52.66 25424 13228 52.03 17362 9030 52.01 9427 4913 52.12 4767 2499 52.42 2341 1242 53.05
110 108 Tusk str Initiator, Disabler, Nuker 1263 565 44.73 8338 3777 45.3 19642 8869 45.15 25308 11520 45.52 18927 8853 46.77 10100 4820 47.72 5220 2502 47.93 2350 1157 49.23
111 109 Underlord str Support, Nuker, Disabler, Durable, Escape 797 405 50.82 4583 2341 51.08 10067 5057 50.23 11650 5786 49.67 7224 3561 49.29 3310 1591 48.07 1368 673 49.2 395 190 48.1
112 110 Undying str Support, Durable, Disabler, Nuker 3170 1620 51.1 19403 10116 52.14 40582 21110 52.02 40850 21182 51.85 23985 12454 51.92 10395 5389 51.84 4541 2336 51.44 2064 1012 49.03
113 111 Ursa agi Carry, Durable, Disabler 2801 1273 45.45 15132 7038 46.51 33269 15478 46.52 40822 19264 47.19 29348 14011 47.74 15262 7375 48.32 7507 3622 48.25 3004 1473 49.03
114 112 Vengeful Spirit all Support, Initiator, Disabler, Nuker, Escape 2186 1108 50.69 15817 8285 52.38 41843 21809 52.12 57524 30476 52.98 45512 24120 53.0 25581 13382 52.31 13758 7121 51.76 8276 4303 51.99
115 113 Venomancer all Support, Nuker, Initiator, Pusher, Disabler 2309 1187 51.41 14669 7463 50.88 34787 18020 51.8 41797 21690 51.89 28706 15085 52.55 13974 7338 52.51 6538 3495 53.46 2794 1459 52.22
116 114 Viper agi Carry, Durable, Initiator, Disabler 4100 2057 50.17 18991 9510 50.08 33517 16923 50.49 32728 16677 50.96 18537 9427 50.86 7851 3928 50.03 3260 1652 50.67 1176 610 51.87
117 115 Visage all Support, Nuker, Durable, Disabler, Pusher 331 171 51.66 1638 813 49.63 3240 1577 48.67 3840 1986 51.72 3108 1609 51.77 1995 1055 52.88 1309 702 53.63 858 457 53.26
118 116 Void Spirit all Carry, Escape, Nuker, Disabler 1565 727 46.45 8672 4096 47.23 20010 9694 48.45 25213 12376 49.09 18817 9231 49.06 10026 4920 49.07 4788 2319 48.43 2006 964 48.06
119 117 Warlock int Support, Initiator, Disabler 2547 1369 53.75 18931 10331 54.57 49795 26999 54.22 66697 36220 54.31 48401 25668 53.03 24999 12942 51.77 12575 6356 50.54 6183 2934 47.45
120 118 Weaver agi Carry, Escape 2818 1389 49.29 13873 6770 48.8 23493 11571 49.25 21545 10694 49.64 12911 6427 49.78 5809 2928 50.4 2960 1455 49.16 1303 719 55.18
121 119 Windranger all Carry, Support, Disabler, Escape, Nuker 3861 1814 46.98 19934 9223 46.27 40644 18807 46.27 44476 20652 46.43 28952 13508 46.66 13418 6297 46.93 5898 2782 47.17 2374 1142 48.1
122 120 Winter Wyvern all Support, Disabler, Nuker 821 371 45.19 5168 2424 46.9 10544 5014 47.55 11184 5308 47.46 7426 3512 47.29 3730 1854 49.71 1862 934 50.16 944 464 49.15
123 121 Witch Doctor int Support, Nuker, Disabler 7504 4173 55.61 45501 25616 56.3 99664 54963 55.15 111382 60421 54.25 71830 37860 52.71 33164 17334 52.27 14610 7442 50.94 4196 2076 49.48
124 122 Wraith King str Carry, Support, Durable, Disabler, Initiator 4175 2266 54.28 26362 14516 55.06 58733 32403 55.17 66283 36503 55.07 42360 23083 54.49 19084 10251 53.72 8334 4315 51.78 2707 1376 50.83
125 123 Zeus int Nuker, Carry 4132 2106 50.97 23721 12487 52.64 51568 27475 53.28 58333 31078 53.28 37821 20047 53.0 17901 9504 53.09 8539 4459 52.22 3400 1791 52.68

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.2 KiB

View File

@@ -0,0 +1,42 @@
## Задание
Использовать регрессию по варианту для данных из таблицы 1 по варианту(таблица 10),самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит для решения сформулированной вами задачи
Вариант 6 - полиномиальная регрессия
## Как запустить лабораторную
Запустить файл main.py
## Используемые технологии
Библиотеки pandas, matplotlib, scikit-learn, их компоненты
## Описание лабораторной (программы)
Данный код берет данные из датасета о персонажах Dota 2, где описаны атрибуты персонажей, их роли, название, и как часто их пикают и какой у них винрейт на каждом звании в Доте, от реркута до титана.
В моем случае была поставлена задача предсказать винрейт персонажа по тому, как часто его берут и по его винрейту на
смежных рангах (просто предсказать винрейт по тому, как часто его берут, нельзя, потому что винрейт зависит от текущей меты)
Программа берет столбцы Name, Archon Picks, Archon Win Rate, Legend Picks, Legend Win Rate, Ancient Picks, Ancient Win Rate.
Все столбцы, кроме Name и Legend Win Rate, нужны для того чтобы обучить модель. Legend Win Rate -
данные, которые нужно предсказать. Name - столбец для вывода результатов.
Дальше все по дефолту - программа делит данные на обучающую и тестовые выборки, просиходит
применение данных для обучения, затем обучаем модель. После этого происходит то же самое с тестовыми данными и затем выводится
оценка качества модели.
В конце программа строит график, где показывает точки обучающей и тестовой выборки, но к тестовой выборки я решила добавить названия
персонажей, чтобы график был более наглядным, но в то же время не перегруженным.
## Результат
В результате получаем график, который показывает результаты обучающей и тестовой выборок.
![diagram.png](diagram.png)
Помимо этого, программа вводит оценку качества модели:
![R2Score.png](R2Score.png)
Из чего можно сделать вывод, что модель работает очень хорошо и успешно решает поставленную задачу.
Это объясняется тем, что модели было предоставлено достаточно большое количество признаков, по которым можно предсказать
интересующие нас данные. Кроме того, винрейт персонажей взят со смежных рангов.
Если взять винрейт персонажей на рангах, которые
находятся далеко от целевого, модель будет работать хуже, потому что чем больше разница в рангах, тем более разный винрейт у персонажей.
Также, если бы было взято меньше признаков, оценка качества модели так же была бы ниже.

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

View File

@@ -0,0 +1,47 @@
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Загрузка данных
data = pd.read_csv('Current_Pub_Meta.csv')
X = data[['Archon Picks', 'Archon Win Rate', 'Legend Picks', 'Ancient Picks', 'Ancient Win Rate']]
y = data['Legend Win Rate']
names = data['Name']
# Разбиваем данные на обучающую и тестовую выборки
X_train, X_test, y_train, y_test, names_train, names_test = train_test_split(X, y, names, test_size=0.1, random_state=42)
# Применяем полиномиальные признаки к обучающим данным
poly_features = PolynomialFeatures(degree=2)
X_train_poly = poly_features.fit_transform(X_train)
# Создаем и обучаем модель полиномиальной регрессии
poly_model = LinearRegression()
poly_model.fit(X_train_poly, y_train)
# Применяем полиномиальные признаки к тестовым данным и делаем предсказания
X_test_poly = poly_features.transform(X_test)
y_pred = poly_model.predict(X_test_poly)
# Оценка качества модели на тестовых данных
r2 = poly_model.score(X_test_poly, y_test)
print(f"R-квадрат: {r2}")
# Построение графика с именами персонажей
plt.figure(figsize=(10, 6))
plt.title('Корреляция между выбором персонажей и победами в ранге "Legend"')
plt.grid(True)
plt.scatter(X_train['Legend Picks'], y_train, color='blue', alpha=0.5, label='Обучающая выборка')
plt.scatter(X_test['Legend Picks'], y_test, color='red', alpha=0.5, label='Тестовая выборка')
# Добавляем имена персонажей на график
for i, name in enumerate(names_test):
plt.annotate(name, (X_test['Legend Picks'].iloc[i], y_pred[i]), fontsize=8, alpha=0.7, color='black')
plt.xlabel('Legend Picks')
plt.ylabel('Legend Win Rate')
plt.legend()
plt.show()

View File

@@ -0,0 +1,125 @@
,Name,Primary Attribute,Roles,Herald Picks,Herald Wins,Herald Win Rate,Guardian Picks,Guardian Wins,Guardian Win Rate,Crusader Picks,Crusader Wins,Crusader Win Rate,Archon Picks,Archon Wins,Archon Win Rate,Legend Picks,Legend Wins,Legend Win Rate,Ancient Picks,Ancient Wins,Ancient Win Rate,Divine Picks,Divine Wins,Divine Win Rate,Immortal Picks,Immortal Wins,Immortal Win Rate
0,Abaddon,all,"Support, Carry, Durable",1111,575,51.76,6408,3309,51.64,13811,7050,51.05,16497,8530,51.71,11360,5877,51.73,5571,2893,51.93,2632,1345,51.1,991,497,50.15
1,Alchemist,str,"Carry, Support, Durable, Disabler, Initiator, Nuker",1119,486,43.43,6370,2883,45.26,12238,5617,45.9,13028,6130,47.05,8455,4055,47.96,4120,1984,48.16,2021,1023,50.62,860,424,49.3
2,Ancient Apparition,int,"Support, Disabler, Nuker",2146,1073,50.0,13697,7069,51.61,30673,16118,52.55,35145,18219,51.84,23114,12166,52.63,10688,5528,51.72,5035,2573,51.1,2134,1076,50.42
3,Anti-Mage,agi,"Carry, Escape, Nuker",3765,1818,48.29,22050,10774,48.86,47371,23304,49.19,49115,24074,49.02,28599,13991,48.92,12303,5958,48.43,4866,2349,48.27,1502,751,50.0
4,Arc Warden,agi,"Carry, Escape, Nuker",1448,704,48.62,8047,4162,51.72,14946,7982,53.41,14711,7875,53.53,9472,5167,54.55,4323,2309,53.41,2104,1148,54.56,789,435,55.13
5,Axe,str,"Initiator, Durable, Disabler, Carry",5343,2880,53.9,32652,17719,54.27,71010,37736,53.14,77869,40559,52.09,49182,25079,50.99,22637,11353,50.15,10114,5000,49.44,3795,1837,48.41
6,Bane,all,"Support, Disabler, Nuker, Durable",745,334,44.83,4983,2422,48.61,11332,5504,48.57,13633,6767,49.64,10132,5032,49.66,5596,2861,51.13,3028,1555,51.35,1958,1055,53.88
7,Batrider,all,"Initiator, Disabler, Escape",349,136,38.97,1983,812,40.95,4053,1595,39.35,4725,1861,39.39,3173,1275,40.18,1678,731,43.56,802,362,45.14,497,227,45.67
8,Beastmaster,all,"Initiator, Disabler, Durable, Nuker",402,174,43.28,2447,1060,43.32,5787,2569,44.39,6930,3092,44.62,5288,2389,45.18,2816,1274,45.24,1593,752,47.21,1176,539,45.83
9,Bloodseeker,agi,"Carry, Disabler, Nuker, Initiator",2765,1382,49.98,12589,6270,49.81,21781,10683,49.05,20961,10420,49.71,13035,6430,49.33,6210,3006,48.41,2941,1475,50.15,1465,718,49.01
10,Bounty Hunter,agi,"Escape, Nuker",3852,1868,48.49,19609,9535,48.63,36362,17600,48.4,37059,18314,49.42,22934,11518,50.22,10584,5276,49.85,5105,2594,50.81,2498,1325,53.04
11,Brewmaster,all,"Carry, Initiator, Durable, Disabler, Nuker",545,280,51.38,3564,1745,48.96,8941,4388,49.08,12340,6111,49.52,11185,5623,50.27,7645,3906,51.09,4812,2478,51.5,3533,1820,51.51
12,Bristleback,str,"Carry, Durable, Initiator, Nuker",5884,3262,55.44,27952,14587,52.19,48847,24379,49.91,46702,22927,49.09,27466,13319,48.49,12398,5969,48.14,5865,2915,49.7,2639,1304,49.41
13,Broodmother,all,"Carry, Pusher, Escape, Nuker",456,173,37.94,2048,842,41.11,3444,1462,42.45,3392,1448,42.69,2193,1048,47.79,1203,602,50.04,795,422,53.08,453,230,50.77
14,Centaur Warrunner,str,"Durable, Initiator, Disabler, Nuker, Escape",1721,911,52.93,11754,6266,53.31,28691,15201,52.98,35369,18741,52.99,25393,13468,53.04,12653,6607,52.22,6124,3181,51.94,2442,1243,50.9
15,Chaos Knight,str,"Carry, Disabler, Durable, Pusher, Initiator",3032,1639,54.06,16762,8931,53.28,31892,17139,53.74,30697,16435,53.54,18217,9810,53.85,8572,4620,53.9,4230,2291,54.16,1750,943,53.89
16,Chen,all,"Support, Pusher",284,125,44.01,1450,678,46.76,2969,1345,45.3,3258,1604,49.23,2641,1331,50.4,1488,767,51.55,970,512,52.78,770,448,58.18
17,Clinkz,agi,"Carry, Escape, Pusher",3151,1608,51.03,13891,7141,51.41,25465,12938,50.81,27327,14066,51.47,18846,9726,51.61,9452,4890,51.74,4765,2475,51.94,2093,1052,50.26
18,Clockwerk,all,"Initiator, Disabler, Durable, Nuker",816,397,48.65,5860,2837,48.41,14478,6929,47.86,18466,8843,47.89,13143,6301,47.94,6612,3169,47.93,3286,1581,48.11,1378,658,47.75
19,Crystal Maiden,int,"Support, Disabler, Nuker",4821,2529,52.46,26584,13626,51.26,52168,26040,49.92,52258,25365,48.54,30690,14848,48.38,13295,6404,48.17,5602,2680,47.84,1638,771,47.07
20,Dark Seer,all,"Initiator, Escape, Disabler",627,320,51.04,3675,1884,51.27,7881,3803,48.26,9589,4844,50.52,7186,3573,49.72,3902,1983,50.82,2145,1095,51.05,1217,593,48.73
21,Dark Willow,all,"Support, Nuker, Disabler, Escape",2654,1293,48.72,13829,6657,48.14,28142,13480,47.9,32114,15785,49.15,23100,11331,49.05,12052,5909,49.03,6400,3182,49.72,3708,1915,51.65
22,Dawnbreaker,str,"Carry, Durable",1746,875,50.11,12297,6105,49.65,32398,15921,49.14,44846,21936,48.91,35474,17441,49.17,19770,9832,49.73,10637,5263,49.48,6339,3173,50.06
23,Dazzle,all,"Support, Nuker, Disabler",2827,1418,50.16,19852,9758,49.15,48236,23691,49.11,56417,27798,49.27,38159,18642,48.85,18695,9199,49.21,8530,4239,49.7,3382,1654,48.91
24,Death Prophet,int,"Carry, Pusher, Nuker, Disabler",1372,659,48.03,6643,3145,47.34,11987,5729,47.79,12268,5856,47.73,7455,3606,48.37,3591,1698,47.28,1872,902,48.18,926,459,49.57
25,Disruptor,int,"Support, Disabler, Nuker, Initiator",1541,757,49.12,11104,5331,48.01,27746,13542,48.81,33742,16310,48.34,23173,11096,47.88,10907,5201,47.68,4859,2255,46.41,1863,861,46.22
26,Doom,str,"Carry, Disabler, Initiator, Durable, Nuker",1049,474,45.19,6112,2767,45.27,13700,6056,44.2,15454,6925,44.81,10727,4842,45.14,5444,2451,45.02,2979,1348,45.25,1545,731,47.31
27,Dragon Knight,str,"Carry, Pusher, Durable, Disabler, Initiator, Nuker",1950,942,48.31,10643,5274,49.55,20451,9733,47.59,20326,9671,47.58,11674,5544,47.49,4979,2355,47.3,2024,973,48.07,725,341,47.03
28,Drow Ranger,agi,"Carry, Disabler, Pusher",5737,2904,50.62,29675,14831,49.98,57655,28573,49.56,56682,27927,49.27,34310,16607,48.4,15050,7171,47.65,5947,2815,47.33,1768,788,44.57
29,Earth Spirit,str,"Nuker, Escape, Disabler, Initiator, Durable",1038,465,44.8,7420,3276,44.15,20807,9432,45.33,30107,14166,47.05,25314,12148,47.99,14579,7041,48.3,7678,3802,49.52,4379,2169,49.53
30,Earthshaker,str,"Support, Initiator, Disabler, Nuker",5012,2455,48.98,29784,14662,49.23,67050,33111,49.38,79963,39843,49.83,57108,28961,50.71,28650,14591,50.93,14186,7296,51.43,6151,3165,51.46
31,Elder Titan,str,"Initiator, Disabler, Nuker, Durable",471,212,45.01,2551,1248,48.92,5213,2570,49.3,5572,2809,50.41,3847,1942,50.48,1964,998,50.81,1124,613,54.54,550,292,53.09
32,Ember Spirit,agi,"Carry, Escape, Nuker, Disabler, Initiator",1514,635,41.94,9180,3836,41.79,20578,8738,42.46,25152,10844,43.11,17703,7814,44.14,8538,3793,44.42,4265,1892,44.36,2065,928,44.94
33,Enchantress,int,"Support, Pusher, Durable, Disabler",1794,848,47.27,8050,3622,44.99,12921,5686,44.01,11673,4974,42.61,6863,2840,41.38,2948,1212,41.11,1434,654,45.61,806,318,39.45
34,Enigma,all,"Disabler, Initiator, Pusher",1317,588,44.65,6937,3171,45.71,12908,5979,46.32,11687,5428,46.44,6194,2839,45.83,2493,1127,45.21,938,437,46.59,338,159,47.04
35,Faceless Void,agi,"Carry, Initiator, Disabler, Escape, Durable",4323,2043,47.26,25618,11902,46.46,54581,25874,47.4,60671,28993,47.79,40137,19611,48.86,19376,9620,49.65,9579,4828,50.4,4439,2256,50.82
36,Grimstroke,int,"Support, Nuker, Disabler, Escape",1455,694,47.7,9714,4789,49.3,24688,12430,50.35,32027,16094,50.25,23193,11795,50.86,12102,6100,50.4,6191,3047,49.22,3449,1666,48.3
37,Gyrocopter,agi,"Carry, Nuker, Disabler",2560,1213,47.38,16589,7882,47.51,42072,20358,48.39,54200,26229,48.39,39414,19053,48.34,20164,9781,48.51,10164,4937,48.57,5241,2507,47.83
38,Hoodwink,agi,"Support, Nuker, Escape, Disabler",2420,1126,46.53,14034,6800,48.45,31382,14964,47.68,35684,16966,47.55,22626,10651,47.07,9949,4690,47.14,4349,2089,48.03,1533,703,45.86
39,Huskar,str,"Carry, Durable, Initiator",3501,1603,45.79,14234,6639,46.64,22794,10912,47.87,21801,10763,49.37,13811,6919,50.1,6769,3535,52.22,3556,1822,51.24,1936,993,51.29
40,Invoker,all,"Carry, Nuker, Disabler, Escape, Pusher",4330,2042,47.16,27625,13176,47.7,69035,33863,49.05,86745,43479,50.12,61821,31510,50.97,31459,16321,51.88,15431,8195,53.11,7852,4148,52.83
41,Io,all,"Support, Escape, Nuker",1274,615,48.27,6158,2999,48.7,12762,6247,48.95,14216,7024,49.41,9564,4843,50.64,5301,2685,50.65,2789,1463,52.46,1464,773,52.8
42,Jakiro,int,"Support, Nuker, Pusher, Disabler",3147,1708,54.27,22718,12413,54.64,56736,30984,54.61,70038,37473,53.5,46389,24997,53.89,22084,11639,52.7,9838,5103,51.87,3282,1729,52.68
43,Juggernaut,agi,"Carry, Pusher, Escape",5585,2711,48.54,30394,14800,48.69,62313,30581,49.08,65590,32344,49.31,39235,19326,49.26,16334,8012,49.05,6419,3066,47.76,1576,731,46.38
44,Keeper of the Light,int,"Support, Nuker, Disabler",896,353,39.4,5051,2216,43.87,10452,4579,43.81,11614,5322,45.82,7870,3627,46.09,4268,2001,46.88,2147,1043,48.58,1333,588,44.11
45,Kunkka,str,"Carry, Support, Disabler, Initiator, Durable, Nuker",2251,1124,49.93,13474,6828,50.68,31210,16196,51.89,39691,21293,53.65,30314,16458,54.29,15706,8793,55.98,7884,4339,55.04,3458,1898,54.89
46,Legion Commander,str,"Carry, Disabler, Initiator, Durable, Nuker",6263,3264,52.12,37100,19157,51.64,81491,41557,51.0,91431,46558,50.92,59383,29917,50.38,27945,13917,49.8,13193,6587,49.93,5601,2745,49.01
47,Leshrac,int,"Carry, Support, Nuker, Pusher, Disabler",674,316,46.88,3872,1799,46.46,7490,3433,45.83,7903,3604,45.6,5322,2526,47.46,2687,1298,48.31,1325,647,48.83,721,357,49.51
48,Lich,int,"Support, Nuker",2700,1412,52.3,16646,8820,52.99,37785,19685,52.1,45471,23554,51.8,31203,16108,51.62,15530,7821,50.36,7243,3597,49.66,2520,1258,49.92
49,Lifestealer,str,"Carry, Durable, Escape, Disabler",2515,1213,48.23,14131,6978,49.38,29724,14627,49.21,31211,15581,49.92,18970,9481,49.98,8689,4400,50.64,3630,1821,50.17,1229,617,50.2
50,Lina,int,"Support, Carry, Nuker, Disabler",4512,2030,44.99,21927,10156,46.32,45301,21210,46.82,54229,25956,47.86,40016,19138,47.83,21072,10112,47.99,10481,5031,48.0,4369,2138,48.94
51,Lion,int,"Support, Disabler, Nuker, Initiator",6204,2855,46.02,37869,17465,46.12,80124,36649,45.74,84390,38176,45.24,50720,22914,45.18,21698,9784,45.09,9308,4280,45.98,3220,1496,46.46
52,Lone Druid,all,"Carry, Pusher, Durable",909,483,53.14,4714,2421,51.36,10987,5858,53.32,14580,7968,54.65,11810,6490,54.95,7241,3971,54.84,4024,2240,55.67,2303,1259,54.67
53,Luna,agi,"Carry, Nuker, Pusher",1927,904,46.91,9091,4271,46.98,16571,7922,47.81,16035,7615,47.49,9728,4634,47.64,4463,2103,47.12,1912,911,47.65,719,322,44.78
54,Lycan,all,"Carry, Pusher, Durable, Escape",374,174,46.52,1894,915,48.31,3691,1744,47.25,3824,1905,49.82,2694,1332,49.44,1460,753,51.58,827,411,49.7,532,289,54.32
55,Magnus,all,"Initiator, Disabler, Nuker, Escape",770,339,44.03,5789,2651,45.79,17837,7954,44.59,26126,12058,46.15,20634,9592,46.49,10574,5056,47.82,4565,2073,45.41,1606,751,46.76
56,Marci,all,"Support, Carry, Initiator, Disabler, Escape",1370,620,45.26,7092,3252,45.85,15199,7240,47.63,18485,8874,48.01,13308,6305,47.38,7176,3476,48.44,3689,1882,51.02,1746,883,50.57
57,Mars,str,"Carry, Initiator, Disabler, Durable",862,375,43.5,5719,2529,44.22,15156,6756,44.58,20719,9369,45.22,16419,7387,44.99,9044,4052,44.8,4536,2093,46.14,1926,868,45.07
58,Medusa,agi,"Carry, Disabler, Durable",1898,902,47.52,9289,4512,48.57,16504,7818,47.37,14796,6886,46.54,7488,3449,46.06,2775,1270,45.77,1073,482,44.92,394,184,46.7
59,Meepo,agi,"Carry, Escape, Nuker, Disabler, Initiator, Pusher",1004,523,52.09,3970,1990,50.13,6904,3587,51.96,7166,3646,50.88,4906,2563,52.24,2383,1282,53.8,1139,588,51.62,585,300,51.28
60,Mirana,all,"Carry, Support, Escape, Nuker, Disabler",2499,1193,47.74,16954,8135,47.98,39985,19097,47.76,45169,21554,47.72,28467,13456,47.27,12800,6047,47.24,5272,2500,47.42,1824,874,47.92
61,Monkey King,agi,"Carry, Escape, Disabler, Initiator",3191,1384,43.37,17306,7544,43.59,35734,16113,45.09,40778,18322,44.93,27558,12630,45.83,14034,6433,45.84,6650,3152,47.4,3040,1440,47.37
62,Morphling,agi,"Carry, Escape, Durable, Nuker, Disabler",1521,690,45.36,8620,4006,46.47,18075,8161,45.15,20414,9235,45.24,14395,6530,45.36,7697,3551,46.13,4432,2050,46.25,2560,1190,46.48
63,Muerta,int,"Carry, Nuker, Disabler",2130,1089,51.13,10787,5740,53.21,22602,11898,52.64,27609,14495,52.5,20175,10465,51.87,10662,5518,51.75,5462,2759,50.51,2948,1517,51.46
64,Naga Siren,agi,"Carry, Support, Pusher, Disabler, Initiator, Escape",1502,804,53.53,6495,3356,51.67,10423,5234,50.22,9830,4929,50.14,6057,2971,49.05,3216,1675,52.08,1855,933,50.3,1242,634,51.05
65,Nature's Prophet,int,"Carry, Pusher, Escape, Nuker",5991,3029,50.56,36433,18143,49.8,83118,42095,50.64,100341,51268,51.09,69436,35870,51.66,34256,17858,52.13,16585,8745,52.73,7182,3755,52.28
66,Necrophos,int,"Carry, Nuker, Durable, Disabler",4776,2702,56.57,28535,15771,55.27,62186,34285,55.13,70212,38163,54.35,46539,24708,53.09,21607,11302,52.31,9677,4994,51.61,3418,1733,50.7
67,Night Stalker,str,"Carry, Initiator, Durable, Disabler, Nuker",1189,594,49.96,7868,3892,49.47,19446,10004,51.45,25524,13506,52.91,20138,10828,53.77,10767,5651,52.48,5499,2889,52.54,2415,1257,52.05
68,Nyx Assassin,all,"Disabler, Nuker, Initiator, Escape",1718,867,50.47,10925,5525,50.57,27207,14073,51.73,34684,18059,52.07,25736,13572,52.74,13313,7093,53.28,6485,3444,53.11,2852,1468,51.47
69,Ogre Magi,str,"Support, Nuker, Disabler, Durable, Initiator",5331,2845,53.37,31507,16299,51.73,62954,32248,51.22,61758,31373,50.8,33746,16988,50.34,13262,6654,50.17,4861,2420,49.78,1271,654,51.46
70,Omniknight,str,"Support, Durable, Nuker",975,479,49.13,6426,3109,48.38,14641,7319,49.99,17258,8731,50.59,11695,5916,50.59,5746,2993,52.09,2870,1469,51.18,1333,656,49.21
71,Oracle,int,"Support, Nuker, Disabler, Escape",796,384,48.24,4857,2417,49.76,13141,6645,50.57,18944,9853,52.01,15221,7964,52.32,8356,4458,53.35,4475,2380,53.18,1905,1018,53.44
72,Outworld Destroyer,int,"Carry, Nuker, Disabler",2226,1118,50.22,13388,6864,51.27,33284,17362,52.16,43991,23377,53.14,32021,16994,53.07,16655,8724,52.38,8123,4218,51.93,3176,1649,51.92
73,Pangolier,all,"Carry, Nuker, Disabler, Durable, Escape, Initiator",1156,534,46.19,7189,3209,44.64,17802,7937,44.58,25785,11677,45.29,21727,10144,46.69,13064,6351,48.61,7567,3737,49.39,5275,2734,51.83
74,Phantom Assassin,agi,"Carry, Escape",8553,4426,51.75,48549,25553,52.63,104756,54881,52.39,119332,62511,52.38,79140,41143,51.99,37399,19325,51.67,17774,9077,51.07,7819,3856,49.32
75,Phantom Lancer,agi,"Carry, Escape, Pusher, Nuker",3641,1960,53.83,19550,10374,53.06,38576,20633,53.49,41505,22310,53.75,26401,14268,54.04,12437,6590,52.99,5708,2985,52.3,2383,1243,52.16
76,Phoenix,all,"Support, Nuker, Initiator, Escape, Disabler",743,315,42.4,5231,2471,47.24,13950,6633,47.55,18350,8864,48.31,13972,6715,48.06,7787,3761,48.3,4322,2132,49.33,2610,1325,50.77
77,Primal Beast,str,"Initiator, Durable, Disabler",1455,701,48.18,9333,4448,47.66,22800,11058,48.5,30084,14643,48.67,24307,11993,49.34,13970,6991,50.04,7742,3890,50.25,4625,2407,52.04
78,Puck,int,"Initiator, Disabler, Escape, Nuker",871,399,45.81,5773,2628,45.52,16596,7578,45.66,24480,11315,46.22,20070,9497,47.32,11023,5298,48.06,5656,2714,47.98,2555,1200,46.97
79,Pudge,str,"Disabler, Initiator, Durable, Nuker",7677,3796,49.45,50891,24776,48.68,114784,56289,49.04,129604,63097,48.68,85800,41542,48.42,41730,20239,48.5,19823,9530,48.08,7112,3431,48.24
80,Pugna,int,"Nuker, Pusher",2075,944,45.49,9998,4695,46.96,18962,8958,47.24,20240,9965,49.23,12807,6199,48.4,5825,2855,49.01,2758,1387,50.29,1195,592,49.54
81,Queen of Pain,int,"Carry, Nuker, Escape",2287,1100,48.1,15119,7354,48.64,37137,18118,48.79,47706,23657,49.59,35500,18018,50.75,18405,9289,50.47,9243,4689,50.73,4227,2113,49.99
82,Razor,agi,"Carry, Durable, Nuker, Pusher",2470,1231,49.84,12000,5964,49.7,24666,12142,49.23,30334,14844,48.94,21832,10558,48.36,11917,5679,47.65,6092,2912,47.8,3144,1551,49.33
83,Riki,agi,"Carry, Escape, Disabler",3684,1929,52.36,19022,9891,52.0,35638,18582,52.14,33908,17415,51.36,20194,10312,51.06,8726,4377,50.16,3735,1855,49.67,1160,559,48.19
84,Rubick,int,"Support, Disabler, Nuker",3090,1404,45.44,21639,9303,42.99,57417,24590,42.83,74874,32603,43.54,55186,24219,43.89,28206,12568,44.56,13732,6106,44.47,5764,2642,45.84
85,Sand King,all,"Initiator, Disabler, Support, Nuker, Escape",2633,1513,57.46,13097,7323,55.91,25271,13807,54.64,26724,14323,53.6,17384,9144,52.6,7907,4104,51.9,3394,1719,50.65,1211,611,50.45
86,Shadow Demon,int,"Support, Disabler, Initiator, Nuker",547,236,43.14,3252,1426,43.85,7920,3524,44.49,9752,4551,46.67,7404,3467,46.83,3956,1876,47.42,2076,1004,48.36,1054,497,47.15
87,Shadow Fiend,agi,"Carry, Nuker",5051,2544,50.37,27255,14064,51.6,58589,29830,50.91,65429,33097,50.58,41810,21189,50.68,18766,9401,50.1,8232,4000,48.59,3016,1430,47.41
88,Shadow Shaman,int,"Support, Pusher, Disabler, Nuker, Initiator",5323,2795,52.51,29733,15606,52.49,58894,31236,53.04,58765,30895,52.57,34475,18242,52.91,15166,7986,52.66,6377,3323,52.11,2413,1253,51.93
89,Silencer,int,"Carry, Support, Disabler, Initiator, Nuker",4229,2324,54.95,27878,14960,53.66,61698,33081,53.62,65256,34458,52.8,38589,19853,51.45,16889,8653,51.23,6836,3416,49.97,2236,1105,49.42
90,Skywrath Mage,int,"Support, Nuker, Disabler",4000,2030,50.75,22783,11675,51.24,46512,23624,50.79,51329,25706,50.08,34167,17364,50.82,16693,8415,50.41,8496,4208,49.53,4389,2069,47.14
91,Slardar,str,"Carry, Durable, Initiator, Disabler, Escape",3935,2129,54.1,21523,11602,53.91,43947,23701,53.93,47721,25633,53.71,29887,16132,53.98,14233,7722,54.25,6530,3467,53.09,2322,1205,51.89
92,Slark,agi,"Carry, Escape, Disabler, Nuker",4815,2521,52.36,29413,14762,50.19,64004,31771,49.64,70173,34411,49.04,44780,21926,48.96,20864,10270,49.22,9969,4962,49.77,4565,2394,52.44
93,Snapfire,all,"Support, Nuker, Disabler, Escape",1524,682,44.75,10646,4576,42.98,27103,12120,44.72,34711,15412,44.4,24351,10786,44.29,11723,5131,43.77,5227,2294,43.89,1987,868,43.68
94,Sniper,agi,"Carry, Nuker",8022,4079,50.85,44508,22727,51.06,88690,45223,50.99,87190,44086,50.56,47411,23648,49.88,18092,8924,49.33,6130,3040,49.59,1370,662,48.32
95,Spectre,agi,"Carry, Durable, Escape",3454,2008,58.14,22097,12356,55.92,49157,26961,54.85,55914,30100,53.83,36321,19338,53.24,16946,8960,52.87,7921,4163,52.56,2568,1370,53.35
96,Spirit Breaker,str,"Carry, Initiator, Disabler, Durable, Escape",4788,2423,50.61,26662,13530,50.75,56535,28908,51.13,63991,32249,50.4,42512,21357,50.24,20119,9926,49.34,9499,4814,50.68,3761,1884,50.09
97,Storm Spirit,int,"Carry, Escape, Nuker, Initiator, Disabler",2202,1001,45.46,11656,5197,44.59,25644,11806,46.04,30968,14210,45.89,21680,10197,47.03,10810,5025,46.48,5278,2382,45.13,2363,1122,47.48
98,Sven,str,"Carry, Disabler, Initiator, Durable, Nuker",3552,1761,49.58,19792,9744,49.23,41296,20478,49.59,48709,24228,49.74,35460,17828,50.28,19795,10065,50.85,11014,5655,51.34,6701,3387,50.54
99,Techies,all,"Nuker, Disabler",2356,1131,48.01,13105,6245,47.65,27293,12893,47.24,29180,13507,46.29,18216,8407,46.15,8266,3771,45.62,3459,1644,47.53,1319,591,44.81
100,Templar Assassin,agi,"Carry, Escape",2142,955,44.58,10932,4758,43.52,21211,9445,44.53,23928,10909,45.59,17399,8242,47.37,9567,4656,48.67,5525,2708,49.01,3524,1775,50.37
101,Terrorblade,agi,"Carry, Pusher, Nuker",1115,484,43.41,5686,2430,42.74,10856,4638,42.72,11518,5041,43.77,8059,3540,43.93,4192,1827,43.58,2419,1082,44.73,1621,700,43.18
102,Tidehunter,str,"Initiator, Durable, Disabler, Nuker, Carry",1835,855,46.59,11159,5369,48.11,26222,12699,48.43,30735,14879,48.41,20523,9727,47.4,9731,4740,48.71,4426,2079,46.97,1998,936,46.85
103,Timbersaw,all,"Nuker, Durable, Escape",1050,448,42.67,5854,2584,44.14,12301,5391,43.83,14295,6097,42.65,9697,4217,43.49,4992,2163,43.33,2419,1021,42.21,1139,471,41.35
104,Tinker,int,"Carry, Nuker, Pusher",2106,944,44.82,11058,5200,47.02,24263,11826,48.74,27531,13614,49.45,19017,9732,51.18,9416,4875,51.77,4700,2466,52.47,1951,1036,53.1
105,Tiny,str,"Carry, Nuker, Pusher, Initiator, Durable, Disabler",1434,654,45.61,7742,3452,44.59,15936,6950,43.61,17139,7468,43.57,11269,4991,44.29,5485,2491,45.41,2599,1216,46.79,1058,519,49.05
106,Treant Protector,str,"Support, Initiator, Durable, Disabler, Escape",1646,899,54.62,11430,5881,51.45,28752,15124,52.6,36093,19344,53.59,28762,15532,54.0,16751,9227,55.08,9870,5468,55.4,6801,3855,56.68
107,Troll Warlord,agi,"Carry, Pusher, Disabler, Durable",3176,1720,54.16,14007,7445,53.15,24729,13022,52.66,25424,13228,52.03,17362,9030,52.01,9427,4913,52.12,4767,2499,52.42,2341,1242,53.05
108,Tusk,str,"Initiator, Disabler, Nuker",1263,565,44.73,8338,3777,45.3,19642,8869,45.15,25308,11520,45.52,18927,8853,46.77,10100,4820,47.72,5220,2502,47.93,2350,1157,49.23
109,Underlord,str,"Support, Nuker, Disabler, Durable, Escape",797,405,50.82,4583,2341,51.08,10067,5057,50.23,11650,5786,49.67,7224,3561,49.29,3310,1591,48.07,1368,673,49.2,395,190,48.1
110,Undying,str,"Support, Durable, Disabler, Nuker",3170,1620,51.1,19403,10116,52.14,40582,21110,52.02,40850,21182,51.85,23985,12454,51.92,10395,5389,51.84,4541,2336,51.44,2064,1012,49.03
111,Ursa,agi,"Carry, Durable, Disabler",2801,1273,45.45,15132,7038,46.51,33269,15478,46.52,40822,19264,47.19,29348,14011,47.74,15262,7375,48.32,7507,3622,48.25,3004,1473,49.03
112,Vengeful Spirit,all,"Support, Initiator, Disabler, Nuker, Escape",2186,1108,50.69,15817,8285,52.38,41843,21809,52.12,57524,30476,52.98,45512,24120,53.0,25581,13382,52.31,13758,7121,51.76,8276,4303,51.99
113,Venomancer,all,"Support, Nuker, Initiator, Pusher, Disabler",2309,1187,51.41,14669,7463,50.88,34787,18020,51.8,41797,21690,51.89,28706,15085,52.55,13974,7338,52.51,6538,3495,53.46,2794,1459,52.22
114,Viper,agi,"Carry, Durable, Initiator, Disabler",4100,2057,50.17,18991,9510,50.08,33517,16923,50.49,32728,16677,50.96,18537,9427,50.86,7851,3928,50.03,3260,1652,50.67,1176,610,51.87
115,Visage,all,"Support, Nuker, Durable, Disabler, Pusher",331,171,51.66,1638,813,49.63,3240,1577,48.67,3840,1986,51.72,3108,1609,51.77,1995,1055,52.88,1309,702,53.63,858,457,53.26
116,Void Spirit,all,"Carry, Escape, Nuker, Disabler",1565,727,46.45,8672,4096,47.23,20010,9694,48.45,25213,12376,49.09,18817,9231,49.06,10026,4920,49.07,4788,2319,48.43,2006,964,48.06
117,Warlock,int,"Support, Initiator, Disabler",2547,1369,53.75,18931,10331,54.57,49795,26999,54.22,66697,36220,54.31,48401,25668,53.03,24999,12942,51.77,12575,6356,50.54,6183,2934,47.45
118,Weaver,agi,"Carry, Escape",2818,1389,49.29,13873,6770,48.8,23493,11571,49.25,21545,10694,49.64,12911,6427,49.78,5809,2928,50.4,2960,1455,49.16,1303,719,55.18
119,Windranger,all,"Carry, Support, Disabler, Escape, Nuker",3861,1814,46.98,19934,9223,46.27,40644,18807,46.27,44476,20652,46.43,28952,13508,46.66,13418,6297,46.93,5898,2782,47.17,2374,1142,48.1
120,Winter Wyvern,all,"Support, Disabler, Nuker",821,371,45.19,5168,2424,46.9,10544,5014,47.55,11184,5308,47.46,7426,3512,47.29,3730,1854,49.71,1862,934,50.16,944,464,49.15
121,Witch Doctor,int,"Support, Nuker, Disabler",7504,4173,55.61,45501,25616,56.3,99664,54963,55.15,111382,60421,54.25,71830,37860,52.71,33164,17334,52.27,14610,7442,50.94,4196,2076,49.48
122,Wraith King,str,"Carry, Support, Durable, Disabler, Initiator",4175,2266,54.28,26362,14516,55.06,58733,32403,55.17,66283,36503,55.07,42360,23083,54.49,19084,10251,53.72,8334,4315,51.78,2707,1376,50.83
123,Zeus,int,"Nuker, Carry",4132,2106,50.97,23721,12487,52.64,51568,27475,53.28,58333,31078,53.28,37821,20047,53.0,17901,9504,53.09,8539,4459,52.22,3400,1791,52.68
1 Name Primary Attribute Roles Herald Picks Herald Wins Herald Win Rate Guardian Picks Guardian Wins Guardian Win Rate Crusader Picks Crusader Wins Crusader Win Rate Archon Picks Archon Wins Archon Win Rate Legend Picks Legend Wins Legend Win Rate Ancient Picks Ancient Wins Ancient Win Rate Divine Picks Divine Wins Divine Win Rate Immortal Picks Immortal Wins Immortal Win Rate
2 0 Abaddon all Support, Carry, Durable 1111 575 51.76 6408 3309 51.64 13811 7050 51.05 16497 8530 51.71 11360 5877 51.73 5571 2893 51.93 2632 1345 51.1 991 497 50.15
3 1 Alchemist str Carry, Support, Durable, Disabler, Initiator, Nuker 1119 486 43.43 6370 2883 45.26 12238 5617 45.9 13028 6130 47.05 8455 4055 47.96 4120 1984 48.16 2021 1023 50.62 860 424 49.3
4 2 Ancient Apparition int Support, Disabler, Nuker 2146 1073 50.0 13697 7069 51.61 30673 16118 52.55 35145 18219 51.84 23114 12166 52.63 10688 5528 51.72 5035 2573 51.1 2134 1076 50.42
5 3 Anti-Mage agi Carry, Escape, Nuker 3765 1818 48.29 22050 10774 48.86 47371 23304 49.19 49115 24074 49.02 28599 13991 48.92 12303 5958 48.43 4866 2349 48.27 1502 751 50.0
6 4 Arc Warden agi Carry, Escape, Nuker 1448 704 48.62 8047 4162 51.72 14946 7982 53.41 14711 7875 53.53 9472 5167 54.55 4323 2309 53.41 2104 1148 54.56 789 435 55.13
7 5 Axe str Initiator, Durable, Disabler, Carry 5343 2880 53.9 32652 17719 54.27 71010 37736 53.14 77869 40559 52.09 49182 25079 50.99 22637 11353 50.15 10114 5000 49.44 3795 1837 48.41
8 6 Bane all Support, Disabler, Nuker, Durable 745 334 44.83 4983 2422 48.61 11332 5504 48.57 13633 6767 49.64 10132 5032 49.66 5596 2861 51.13 3028 1555 51.35 1958 1055 53.88
9 7 Batrider all Initiator, Disabler, Escape 349 136 38.97 1983 812 40.95 4053 1595 39.35 4725 1861 39.39 3173 1275 40.18 1678 731 43.56 802 362 45.14 497 227 45.67
10 8 Beastmaster all Initiator, Disabler, Durable, Nuker 402 174 43.28 2447 1060 43.32 5787 2569 44.39 6930 3092 44.62 5288 2389 45.18 2816 1274 45.24 1593 752 47.21 1176 539 45.83
11 9 Bloodseeker agi Carry, Disabler, Nuker, Initiator 2765 1382 49.98 12589 6270 49.81 21781 10683 49.05 20961 10420 49.71 13035 6430 49.33 6210 3006 48.41 2941 1475 50.15 1465 718 49.01
12 10 Bounty Hunter agi Escape, Nuker 3852 1868 48.49 19609 9535 48.63 36362 17600 48.4 37059 18314 49.42 22934 11518 50.22 10584 5276 49.85 5105 2594 50.81 2498 1325 53.04
13 11 Brewmaster all Carry, Initiator, Durable, Disabler, Nuker 545 280 51.38 3564 1745 48.96 8941 4388 49.08 12340 6111 49.52 11185 5623 50.27 7645 3906 51.09 4812 2478 51.5 3533 1820 51.51
14 12 Bristleback str Carry, Durable, Initiator, Nuker 5884 3262 55.44 27952 14587 52.19 48847 24379 49.91 46702 22927 49.09 27466 13319 48.49 12398 5969 48.14 5865 2915 49.7 2639 1304 49.41
15 13 Broodmother all Carry, Pusher, Escape, Nuker 456 173 37.94 2048 842 41.11 3444 1462 42.45 3392 1448 42.69 2193 1048 47.79 1203 602 50.04 795 422 53.08 453 230 50.77
16 14 Centaur Warrunner str Durable, Initiator, Disabler, Nuker, Escape 1721 911 52.93 11754 6266 53.31 28691 15201 52.98 35369 18741 52.99 25393 13468 53.04 12653 6607 52.22 6124 3181 51.94 2442 1243 50.9
17 15 Chaos Knight str Carry, Disabler, Durable, Pusher, Initiator 3032 1639 54.06 16762 8931 53.28 31892 17139 53.74 30697 16435 53.54 18217 9810 53.85 8572 4620 53.9 4230 2291 54.16 1750 943 53.89
18 16 Chen all Support, Pusher 284 125 44.01 1450 678 46.76 2969 1345 45.3 3258 1604 49.23 2641 1331 50.4 1488 767 51.55 970 512 52.78 770 448 58.18
19 17 Clinkz agi Carry, Escape, Pusher 3151 1608 51.03 13891 7141 51.41 25465 12938 50.81 27327 14066 51.47 18846 9726 51.61 9452 4890 51.74 4765 2475 51.94 2093 1052 50.26
20 18 Clockwerk all Initiator, Disabler, Durable, Nuker 816 397 48.65 5860 2837 48.41 14478 6929 47.86 18466 8843 47.89 13143 6301 47.94 6612 3169 47.93 3286 1581 48.11 1378 658 47.75
21 19 Crystal Maiden int Support, Disabler, Nuker 4821 2529 52.46 26584 13626 51.26 52168 26040 49.92 52258 25365 48.54 30690 14848 48.38 13295 6404 48.17 5602 2680 47.84 1638 771 47.07
22 20 Dark Seer all Initiator, Escape, Disabler 627 320 51.04 3675 1884 51.27 7881 3803 48.26 9589 4844 50.52 7186 3573 49.72 3902 1983 50.82 2145 1095 51.05 1217 593 48.73
23 21 Dark Willow all Support, Nuker, Disabler, Escape 2654 1293 48.72 13829 6657 48.14 28142 13480 47.9 32114 15785 49.15 23100 11331 49.05 12052 5909 49.03 6400 3182 49.72 3708 1915 51.65
24 22 Dawnbreaker str Carry, Durable 1746 875 50.11 12297 6105 49.65 32398 15921 49.14 44846 21936 48.91 35474 17441 49.17 19770 9832 49.73 10637 5263 49.48 6339 3173 50.06
25 23 Dazzle all Support, Nuker, Disabler 2827 1418 50.16 19852 9758 49.15 48236 23691 49.11 56417 27798 49.27 38159 18642 48.85 18695 9199 49.21 8530 4239 49.7 3382 1654 48.91
26 24 Death Prophet int Carry, Pusher, Nuker, Disabler 1372 659 48.03 6643 3145 47.34 11987 5729 47.79 12268 5856 47.73 7455 3606 48.37 3591 1698 47.28 1872 902 48.18 926 459 49.57
27 25 Disruptor int Support, Disabler, Nuker, Initiator 1541 757 49.12 11104 5331 48.01 27746 13542 48.81 33742 16310 48.34 23173 11096 47.88 10907 5201 47.68 4859 2255 46.41 1863 861 46.22
28 26 Doom str Carry, Disabler, Initiator, Durable, Nuker 1049 474 45.19 6112 2767 45.27 13700 6056 44.2 15454 6925 44.81 10727 4842 45.14 5444 2451 45.02 2979 1348 45.25 1545 731 47.31
29 27 Dragon Knight str Carry, Pusher, Durable, Disabler, Initiator, Nuker 1950 942 48.31 10643 5274 49.55 20451 9733 47.59 20326 9671 47.58 11674 5544 47.49 4979 2355 47.3 2024 973 48.07 725 341 47.03
30 28 Drow Ranger agi Carry, Disabler, Pusher 5737 2904 50.62 29675 14831 49.98 57655 28573 49.56 56682 27927 49.27 34310 16607 48.4 15050 7171 47.65 5947 2815 47.33 1768 788 44.57
31 29 Earth Spirit str Nuker, Escape, Disabler, Initiator, Durable 1038 465 44.8 7420 3276 44.15 20807 9432 45.33 30107 14166 47.05 25314 12148 47.99 14579 7041 48.3 7678 3802 49.52 4379 2169 49.53
32 30 Earthshaker str Support, Initiator, Disabler, Nuker 5012 2455 48.98 29784 14662 49.23 67050 33111 49.38 79963 39843 49.83 57108 28961 50.71 28650 14591 50.93 14186 7296 51.43 6151 3165 51.46
33 31 Elder Titan str Initiator, Disabler, Nuker, Durable 471 212 45.01 2551 1248 48.92 5213 2570 49.3 5572 2809 50.41 3847 1942 50.48 1964 998 50.81 1124 613 54.54 550 292 53.09
34 32 Ember Spirit agi Carry, Escape, Nuker, Disabler, Initiator 1514 635 41.94 9180 3836 41.79 20578 8738 42.46 25152 10844 43.11 17703 7814 44.14 8538 3793 44.42 4265 1892 44.36 2065 928 44.94
35 33 Enchantress int Support, Pusher, Durable, Disabler 1794 848 47.27 8050 3622 44.99 12921 5686 44.01 11673 4974 42.61 6863 2840 41.38 2948 1212 41.11 1434 654 45.61 806 318 39.45
36 34 Enigma all Disabler, Initiator, Pusher 1317 588 44.65 6937 3171 45.71 12908 5979 46.32 11687 5428 46.44 6194 2839 45.83 2493 1127 45.21 938 437 46.59 338 159 47.04
37 35 Faceless Void agi Carry, Initiator, Disabler, Escape, Durable 4323 2043 47.26 25618 11902 46.46 54581 25874 47.4 60671 28993 47.79 40137 19611 48.86 19376 9620 49.65 9579 4828 50.4 4439 2256 50.82
38 36 Grimstroke int Support, Nuker, Disabler, Escape 1455 694 47.7 9714 4789 49.3 24688 12430 50.35 32027 16094 50.25 23193 11795 50.86 12102 6100 50.4 6191 3047 49.22 3449 1666 48.3
39 37 Gyrocopter agi Carry, Nuker, Disabler 2560 1213 47.38 16589 7882 47.51 42072 20358 48.39 54200 26229 48.39 39414 19053 48.34 20164 9781 48.51 10164 4937 48.57 5241 2507 47.83
40 38 Hoodwink agi Support, Nuker, Escape, Disabler 2420 1126 46.53 14034 6800 48.45 31382 14964 47.68 35684 16966 47.55 22626 10651 47.07 9949 4690 47.14 4349 2089 48.03 1533 703 45.86
41 39 Huskar str Carry, Durable, Initiator 3501 1603 45.79 14234 6639 46.64 22794 10912 47.87 21801 10763 49.37 13811 6919 50.1 6769 3535 52.22 3556 1822 51.24 1936 993 51.29
42 40 Invoker all Carry, Nuker, Disabler, Escape, Pusher 4330 2042 47.16 27625 13176 47.7 69035 33863 49.05 86745 43479 50.12 61821 31510 50.97 31459 16321 51.88 15431 8195 53.11 7852 4148 52.83
43 41 Io all Support, Escape, Nuker 1274 615 48.27 6158 2999 48.7 12762 6247 48.95 14216 7024 49.41 9564 4843 50.64 5301 2685 50.65 2789 1463 52.46 1464 773 52.8
44 42 Jakiro int Support, Nuker, Pusher, Disabler 3147 1708 54.27 22718 12413 54.64 56736 30984 54.61 70038 37473 53.5 46389 24997 53.89 22084 11639 52.7 9838 5103 51.87 3282 1729 52.68
45 43 Juggernaut agi Carry, Pusher, Escape 5585 2711 48.54 30394 14800 48.69 62313 30581 49.08 65590 32344 49.31 39235 19326 49.26 16334 8012 49.05 6419 3066 47.76 1576 731 46.38
46 44 Keeper of the Light int Support, Nuker, Disabler 896 353 39.4 5051 2216 43.87 10452 4579 43.81 11614 5322 45.82 7870 3627 46.09 4268 2001 46.88 2147 1043 48.58 1333 588 44.11
47 45 Kunkka str Carry, Support, Disabler, Initiator, Durable, Nuker 2251 1124 49.93 13474 6828 50.68 31210 16196 51.89 39691 21293 53.65 30314 16458 54.29 15706 8793 55.98 7884 4339 55.04 3458 1898 54.89
48 46 Legion Commander str Carry, Disabler, Initiator, Durable, Nuker 6263 3264 52.12 37100 19157 51.64 81491 41557 51.0 91431 46558 50.92 59383 29917 50.38 27945 13917 49.8 13193 6587 49.93 5601 2745 49.01
49 47 Leshrac int Carry, Support, Nuker, Pusher, Disabler 674 316 46.88 3872 1799 46.46 7490 3433 45.83 7903 3604 45.6 5322 2526 47.46 2687 1298 48.31 1325 647 48.83 721 357 49.51
50 48 Lich int Support, Nuker 2700 1412 52.3 16646 8820 52.99 37785 19685 52.1 45471 23554 51.8 31203 16108 51.62 15530 7821 50.36 7243 3597 49.66 2520 1258 49.92
51 49 Lifestealer str Carry, Durable, Escape, Disabler 2515 1213 48.23 14131 6978 49.38 29724 14627 49.21 31211 15581 49.92 18970 9481 49.98 8689 4400 50.64 3630 1821 50.17 1229 617 50.2
52 50 Lina int Support, Carry, Nuker, Disabler 4512 2030 44.99 21927 10156 46.32 45301 21210 46.82 54229 25956 47.86 40016 19138 47.83 21072 10112 47.99 10481 5031 48.0 4369 2138 48.94
53 51 Lion int Support, Disabler, Nuker, Initiator 6204 2855 46.02 37869 17465 46.12 80124 36649 45.74 84390 38176 45.24 50720 22914 45.18 21698 9784 45.09 9308 4280 45.98 3220 1496 46.46
54 52 Lone Druid all Carry, Pusher, Durable 909 483 53.14 4714 2421 51.36 10987 5858 53.32 14580 7968 54.65 11810 6490 54.95 7241 3971 54.84 4024 2240 55.67 2303 1259 54.67
55 53 Luna agi Carry, Nuker, Pusher 1927 904 46.91 9091 4271 46.98 16571 7922 47.81 16035 7615 47.49 9728 4634 47.64 4463 2103 47.12 1912 911 47.65 719 322 44.78
56 54 Lycan all Carry, Pusher, Durable, Escape 374 174 46.52 1894 915 48.31 3691 1744 47.25 3824 1905 49.82 2694 1332 49.44 1460 753 51.58 827 411 49.7 532 289 54.32
57 55 Magnus all Initiator, Disabler, Nuker, Escape 770 339 44.03 5789 2651 45.79 17837 7954 44.59 26126 12058 46.15 20634 9592 46.49 10574 5056 47.82 4565 2073 45.41 1606 751 46.76
58 56 Marci all Support, Carry, Initiator, Disabler, Escape 1370 620 45.26 7092 3252 45.85 15199 7240 47.63 18485 8874 48.01 13308 6305 47.38 7176 3476 48.44 3689 1882 51.02 1746 883 50.57
59 57 Mars str Carry, Initiator, Disabler, Durable 862 375 43.5 5719 2529 44.22 15156 6756 44.58 20719 9369 45.22 16419 7387 44.99 9044 4052 44.8 4536 2093 46.14 1926 868 45.07
60 58 Medusa agi Carry, Disabler, Durable 1898 902 47.52 9289 4512 48.57 16504 7818 47.37 14796 6886 46.54 7488 3449 46.06 2775 1270 45.77 1073 482 44.92 394 184 46.7
61 59 Meepo agi Carry, Escape, Nuker, Disabler, Initiator, Pusher 1004 523 52.09 3970 1990 50.13 6904 3587 51.96 7166 3646 50.88 4906 2563 52.24 2383 1282 53.8 1139 588 51.62 585 300 51.28
62 60 Mirana all Carry, Support, Escape, Nuker, Disabler 2499 1193 47.74 16954 8135 47.98 39985 19097 47.76 45169 21554 47.72 28467 13456 47.27 12800 6047 47.24 5272 2500 47.42 1824 874 47.92
63 61 Monkey King agi Carry, Escape, Disabler, Initiator 3191 1384 43.37 17306 7544 43.59 35734 16113 45.09 40778 18322 44.93 27558 12630 45.83 14034 6433 45.84 6650 3152 47.4 3040 1440 47.37
64 62 Morphling agi Carry, Escape, Durable, Nuker, Disabler 1521 690 45.36 8620 4006 46.47 18075 8161 45.15 20414 9235 45.24 14395 6530 45.36 7697 3551 46.13 4432 2050 46.25 2560 1190 46.48
65 63 Muerta int Carry, Nuker, Disabler 2130 1089 51.13 10787 5740 53.21 22602 11898 52.64 27609 14495 52.5 20175 10465 51.87 10662 5518 51.75 5462 2759 50.51 2948 1517 51.46
66 64 Naga Siren agi Carry, Support, Pusher, Disabler, Initiator, Escape 1502 804 53.53 6495 3356 51.67 10423 5234 50.22 9830 4929 50.14 6057 2971 49.05 3216 1675 52.08 1855 933 50.3 1242 634 51.05
67 65 Nature's Prophet int Carry, Pusher, Escape, Nuker 5991 3029 50.56 36433 18143 49.8 83118 42095 50.64 100341 51268 51.09 69436 35870 51.66 34256 17858 52.13 16585 8745 52.73 7182 3755 52.28
68 66 Necrophos int Carry, Nuker, Durable, Disabler 4776 2702 56.57 28535 15771 55.27 62186 34285 55.13 70212 38163 54.35 46539 24708 53.09 21607 11302 52.31 9677 4994 51.61 3418 1733 50.7
69 67 Night Stalker str Carry, Initiator, Durable, Disabler, Nuker 1189 594 49.96 7868 3892 49.47 19446 10004 51.45 25524 13506 52.91 20138 10828 53.77 10767 5651 52.48 5499 2889 52.54 2415 1257 52.05
70 68 Nyx Assassin all Disabler, Nuker, Initiator, Escape 1718 867 50.47 10925 5525 50.57 27207 14073 51.73 34684 18059 52.07 25736 13572 52.74 13313 7093 53.28 6485 3444 53.11 2852 1468 51.47
71 69 Ogre Magi str Support, Nuker, Disabler, Durable, Initiator 5331 2845 53.37 31507 16299 51.73 62954 32248 51.22 61758 31373 50.8 33746 16988 50.34 13262 6654 50.17 4861 2420 49.78 1271 654 51.46
72 70 Omniknight str Support, Durable, Nuker 975 479 49.13 6426 3109 48.38 14641 7319 49.99 17258 8731 50.59 11695 5916 50.59 5746 2993 52.09 2870 1469 51.18 1333 656 49.21
73 71 Oracle int Support, Nuker, Disabler, Escape 796 384 48.24 4857 2417 49.76 13141 6645 50.57 18944 9853 52.01 15221 7964 52.32 8356 4458 53.35 4475 2380 53.18 1905 1018 53.44
74 72 Outworld Destroyer int Carry, Nuker, Disabler 2226 1118 50.22 13388 6864 51.27 33284 17362 52.16 43991 23377 53.14 32021 16994 53.07 16655 8724 52.38 8123 4218 51.93 3176 1649 51.92
75 73 Pangolier all Carry, Nuker, Disabler, Durable, Escape, Initiator 1156 534 46.19 7189 3209 44.64 17802 7937 44.58 25785 11677 45.29 21727 10144 46.69 13064 6351 48.61 7567 3737 49.39 5275 2734 51.83
76 74 Phantom Assassin agi Carry, Escape 8553 4426 51.75 48549 25553 52.63 104756 54881 52.39 119332 62511 52.38 79140 41143 51.99 37399 19325 51.67 17774 9077 51.07 7819 3856 49.32
77 75 Phantom Lancer agi Carry, Escape, Pusher, Nuker 3641 1960 53.83 19550 10374 53.06 38576 20633 53.49 41505 22310 53.75 26401 14268 54.04 12437 6590 52.99 5708 2985 52.3 2383 1243 52.16
78 76 Phoenix all Support, Nuker, Initiator, Escape, Disabler 743 315 42.4 5231 2471 47.24 13950 6633 47.55 18350 8864 48.31 13972 6715 48.06 7787 3761 48.3 4322 2132 49.33 2610 1325 50.77
79 77 Primal Beast str Initiator, Durable, Disabler 1455 701 48.18 9333 4448 47.66 22800 11058 48.5 30084 14643 48.67 24307 11993 49.34 13970 6991 50.04 7742 3890 50.25 4625 2407 52.04
80 78 Puck int Initiator, Disabler, Escape, Nuker 871 399 45.81 5773 2628 45.52 16596 7578 45.66 24480 11315 46.22 20070 9497 47.32 11023 5298 48.06 5656 2714 47.98 2555 1200 46.97
81 79 Pudge str Disabler, Initiator, Durable, Nuker 7677 3796 49.45 50891 24776 48.68 114784 56289 49.04 129604 63097 48.68 85800 41542 48.42 41730 20239 48.5 19823 9530 48.08 7112 3431 48.24
82 80 Pugna int Nuker, Pusher 2075 944 45.49 9998 4695 46.96 18962 8958 47.24 20240 9965 49.23 12807 6199 48.4 5825 2855 49.01 2758 1387 50.29 1195 592 49.54
83 81 Queen of Pain int Carry, Nuker, Escape 2287 1100 48.1 15119 7354 48.64 37137 18118 48.79 47706 23657 49.59 35500 18018 50.75 18405 9289 50.47 9243 4689 50.73 4227 2113 49.99
84 82 Razor agi Carry, Durable, Nuker, Pusher 2470 1231 49.84 12000 5964 49.7 24666 12142 49.23 30334 14844 48.94 21832 10558 48.36 11917 5679 47.65 6092 2912 47.8 3144 1551 49.33
85 83 Riki agi Carry, Escape, Disabler 3684 1929 52.36 19022 9891 52.0 35638 18582 52.14 33908 17415 51.36 20194 10312 51.06 8726 4377 50.16 3735 1855 49.67 1160 559 48.19
86 84 Rubick int Support, Disabler, Nuker 3090 1404 45.44 21639 9303 42.99 57417 24590 42.83 74874 32603 43.54 55186 24219 43.89 28206 12568 44.56 13732 6106 44.47 5764 2642 45.84
87 85 Sand King all Initiator, Disabler, Support, Nuker, Escape 2633 1513 57.46 13097 7323 55.91 25271 13807 54.64 26724 14323 53.6 17384 9144 52.6 7907 4104 51.9 3394 1719 50.65 1211 611 50.45
88 86 Shadow Demon int Support, Disabler, Initiator, Nuker 547 236 43.14 3252 1426 43.85 7920 3524 44.49 9752 4551 46.67 7404 3467 46.83 3956 1876 47.42 2076 1004 48.36 1054 497 47.15
89 87 Shadow Fiend agi Carry, Nuker 5051 2544 50.37 27255 14064 51.6 58589 29830 50.91 65429 33097 50.58 41810 21189 50.68 18766 9401 50.1 8232 4000 48.59 3016 1430 47.41
90 88 Shadow Shaman int Support, Pusher, Disabler, Nuker, Initiator 5323 2795 52.51 29733 15606 52.49 58894 31236 53.04 58765 30895 52.57 34475 18242 52.91 15166 7986 52.66 6377 3323 52.11 2413 1253 51.93
91 89 Silencer int Carry, Support, Disabler, Initiator, Nuker 4229 2324 54.95 27878 14960 53.66 61698 33081 53.62 65256 34458 52.8 38589 19853 51.45 16889 8653 51.23 6836 3416 49.97 2236 1105 49.42
92 90 Skywrath Mage int Support, Nuker, Disabler 4000 2030 50.75 22783 11675 51.24 46512 23624 50.79 51329 25706 50.08 34167 17364 50.82 16693 8415 50.41 8496 4208 49.53 4389 2069 47.14
93 91 Slardar str Carry, Durable, Initiator, Disabler, Escape 3935 2129 54.1 21523 11602 53.91 43947 23701 53.93 47721 25633 53.71 29887 16132 53.98 14233 7722 54.25 6530 3467 53.09 2322 1205 51.89
94 92 Slark agi Carry, Escape, Disabler, Nuker 4815 2521 52.36 29413 14762 50.19 64004 31771 49.64 70173 34411 49.04 44780 21926 48.96 20864 10270 49.22 9969 4962 49.77 4565 2394 52.44
95 93 Snapfire all Support, Nuker, Disabler, Escape 1524 682 44.75 10646 4576 42.98 27103 12120 44.72 34711 15412 44.4 24351 10786 44.29 11723 5131 43.77 5227 2294 43.89 1987 868 43.68
96 94 Sniper agi Carry, Nuker 8022 4079 50.85 44508 22727 51.06 88690 45223 50.99 87190 44086 50.56 47411 23648 49.88 18092 8924 49.33 6130 3040 49.59 1370 662 48.32
97 95 Spectre agi Carry, Durable, Escape 3454 2008 58.14 22097 12356 55.92 49157 26961 54.85 55914 30100 53.83 36321 19338 53.24 16946 8960 52.87 7921 4163 52.56 2568 1370 53.35
98 96 Spirit Breaker str Carry, Initiator, Disabler, Durable, Escape 4788 2423 50.61 26662 13530 50.75 56535 28908 51.13 63991 32249 50.4 42512 21357 50.24 20119 9926 49.34 9499 4814 50.68 3761 1884 50.09
99 97 Storm Spirit int Carry, Escape, Nuker, Initiator, Disabler 2202 1001 45.46 11656 5197 44.59 25644 11806 46.04 30968 14210 45.89 21680 10197 47.03 10810 5025 46.48 5278 2382 45.13 2363 1122 47.48
100 98 Sven str Carry, Disabler, Initiator, Durable, Nuker 3552 1761 49.58 19792 9744 49.23 41296 20478 49.59 48709 24228 49.74 35460 17828 50.28 19795 10065 50.85 11014 5655 51.34 6701 3387 50.54
101 99 Techies all Nuker, Disabler 2356 1131 48.01 13105 6245 47.65 27293 12893 47.24 29180 13507 46.29 18216 8407 46.15 8266 3771 45.62 3459 1644 47.53 1319 591 44.81
102 100 Templar Assassin agi Carry, Escape 2142 955 44.58 10932 4758 43.52 21211 9445 44.53 23928 10909 45.59 17399 8242 47.37 9567 4656 48.67 5525 2708 49.01 3524 1775 50.37
103 101 Terrorblade agi Carry, Pusher, Nuker 1115 484 43.41 5686 2430 42.74 10856 4638 42.72 11518 5041 43.77 8059 3540 43.93 4192 1827 43.58 2419 1082 44.73 1621 700 43.18
104 102 Tidehunter str Initiator, Durable, Disabler, Nuker, Carry 1835 855 46.59 11159 5369 48.11 26222 12699 48.43 30735 14879 48.41 20523 9727 47.4 9731 4740 48.71 4426 2079 46.97 1998 936 46.85
105 103 Timbersaw all Nuker, Durable, Escape 1050 448 42.67 5854 2584 44.14 12301 5391 43.83 14295 6097 42.65 9697 4217 43.49 4992 2163 43.33 2419 1021 42.21 1139 471 41.35
106 104 Tinker int Carry, Nuker, Pusher 2106 944 44.82 11058 5200 47.02 24263 11826 48.74 27531 13614 49.45 19017 9732 51.18 9416 4875 51.77 4700 2466 52.47 1951 1036 53.1
107 105 Tiny str Carry, Nuker, Pusher, Initiator, Durable, Disabler 1434 654 45.61 7742 3452 44.59 15936 6950 43.61 17139 7468 43.57 11269 4991 44.29 5485 2491 45.41 2599 1216 46.79 1058 519 49.05
108 106 Treant Protector str Support, Initiator, Durable, Disabler, Escape 1646 899 54.62 11430 5881 51.45 28752 15124 52.6 36093 19344 53.59 28762 15532 54.0 16751 9227 55.08 9870 5468 55.4 6801 3855 56.68
109 107 Troll Warlord agi Carry, Pusher, Disabler, Durable 3176 1720 54.16 14007 7445 53.15 24729 13022 52.66 25424 13228 52.03 17362 9030 52.01 9427 4913 52.12 4767 2499 52.42 2341 1242 53.05
110 108 Tusk str Initiator, Disabler, Nuker 1263 565 44.73 8338 3777 45.3 19642 8869 45.15 25308 11520 45.52 18927 8853 46.77 10100 4820 47.72 5220 2502 47.93 2350 1157 49.23
111 109 Underlord str Support, Nuker, Disabler, Durable, Escape 797 405 50.82 4583 2341 51.08 10067 5057 50.23 11650 5786 49.67 7224 3561 49.29 3310 1591 48.07 1368 673 49.2 395 190 48.1
112 110 Undying str Support, Durable, Disabler, Nuker 3170 1620 51.1 19403 10116 52.14 40582 21110 52.02 40850 21182 51.85 23985 12454 51.92 10395 5389 51.84 4541 2336 51.44 2064 1012 49.03
113 111 Ursa agi Carry, Durable, Disabler 2801 1273 45.45 15132 7038 46.51 33269 15478 46.52 40822 19264 47.19 29348 14011 47.74 15262 7375 48.32 7507 3622 48.25 3004 1473 49.03
114 112 Vengeful Spirit all Support, Initiator, Disabler, Nuker, Escape 2186 1108 50.69 15817 8285 52.38 41843 21809 52.12 57524 30476 52.98 45512 24120 53.0 25581 13382 52.31 13758 7121 51.76 8276 4303 51.99
115 113 Venomancer all Support, Nuker, Initiator, Pusher, Disabler 2309 1187 51.41 14669 7463 50.88 34787 18020 51.8 41797 21690 51.89 28706 15085 52.55 13974 7338 52.51 6538 3495 53.46 2794 1459 52.22
116 114 Viper agi Carry, Durable, Initiator, Disabler 4100 2057 50.17 18991 9510 50.08 33517 16923 50.49 32728 16677 50.96 18537 9427 50.86 7851 3928 50.03 3260 1652 50.67 1176 610 51.87
117 115 Visage all Support, Nuker, Durable, Disabler, Pusher 331 171 51.66 1638 813 49.63 3240 1577 48.67 3840 1986 51.72 3108 1609 51.77 1995 1055 52.88 1309 702 53.63 858 457 53.26
118 116 Void Spirit all Carry, Escape, Nuker, Disabler 1565 727 46.45 8672 4096 47.23 20010 9694 48.45 25213 12376 49.09 18817 9231 49.06 10026 4920 49.07 4788 2319 48.43 2006 964 48.06
119 117 Warlock int Support, Initiator, Disabler 2547 1369 53.75 18931 10331 54.57 49795 26999 54.22 66697 36220 54.31 48401 25668 53.03 24999 12942 51.77 12575 6356 50.54 6183 2934 47.45
120 118 Weaver agi Carry, Escape 2818 1389 49.29 13873 6770 48.8 23493 11571 49.25 21545 10694 49.64 12911 6427 49.78 5809 2928 50.4 2960 1455 49.16 1303 719 55.18
121 119 Windranger all Carry, Support, Disabler, Escape, Nuker 3861 1814 46.98 19934 9223 46.27 40644 18807 46.27 44476 20652 46.43 28952 13508 46.66 13418 6297 46.93 5898 2782 47.17 2374 1142 48.1
122 120 Winter Wyvern all Support, Disabler, Nuker 821 371 45.19 5168 2424 46.9 10544 5014 47.55 11184 5308 47.46 7426 3512 47.29 3730 1854 49.71 1862 934 50.16 944 464 49.15
123 121 Witch Doctor int Support, Nuker, Disabler 7504 4173 55.61 45501 25616 56.3 99664 54963 55.15 111382 60421 54.25 71830 37860 52.71 33164 17334 52.27 14610 7442 50.94 4196 2076 49.48
124 122 Wraith King str Carry, Support, Durable, Disabler, Initiator 4175 2266 54.28 26362 14516 55.06 58733 32403 55.17 66283 36503 55.07 42360 23083 54.49 19084 10251 53.72 8334 4315 51.78 2707 1376 50.83
125 123 Zeus int Nuker, Carry 4132 2106 50.97 23721 12487 52.64 51568 27475 53.28 58333 31078 53.28 37821 20047 53.0 17901 9504 53.09 8539 4459 52.22 3400 1791 52.68

View File

@@ -0,0 +1,92 @@
## Задание
Использовать нейронную сеть MLPClassifier для данных из таблицы 1 по
варианту, самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо она подходит для решения сформулированной вами задачи
## Как запустить лабораторную
Запустить файл main.py
## Используемые технологии
Библиотеки pandas, scikit-learn, их компоненты
## Описание лабораторной (программы)
Данный код берет данные из датасета о персонажах Dota 2, где описаны атрибуты персонажей, их роли, название, и как часто их пикают и какой у них винрейт на каждом звании в Доте, от реркута до титана.
В моем случае была поставлена задача понять, можно ли определить позицию персонажа (всего в игре есть 5 позиций -
carry, mid, offlane, support, full support), по его главному атрибуту и по тому, какие роли он выполняет в игре. Учитывая
то, что Dota 2 имеет 124 персонажа, все они очень разные, поэтому была вероятность, что модель не установит зависимость и
не будет работать в принципе. Именно поэтому я посчитала данную задачу довольно интересной. В моем датасете присутствует информация о главном атрибуте персонажа и его ролях, но нет
информации о том, на каких позициях он играется. Поэтому для выяснения этого списка я обратилась к внешним ресурсам
и занесла информацию об этом в программу вручную. Это можно увидеть в коде в месте, где определяются роли.
![positions.png](positions.png)
Программа берет столбцы Name, Roles, PrimaryAttribute из датасета. Так как в столбце Roles есть 9 значений, которые прописаны
в разном количестве и разные у каждого персонажа, нужно было создать 9 дополнительных столбцов, где для каждого персонажа
выставлялось 1, если такая роль присутствует в его описании и 0, если ее нет.
Пример:
data['IsDurable'] = data['Roles'].apply(lambda x: 1 if 'Durable' in x else 0)
Далее столбец Roles был удален.
Так как PrimaryAttribute указан в строковом значении, он так же был переведен в числовое значение.
После этого нужно было заполнить столбцы posCarry, posMid, posOfflane, posSupport, posFullSupport. Если персонаж есть в списке
персонажей с этой позицией, там проставлялась 1, 0 - если нет.
В итоге получился датасет, где есть имя персонажа, его главный атрибут в виде числа, его роли (1 - если есть, 0 - если нет)
и то же самое с позициями.
Далее датафрейм делится на признаки (все столбцы, кроме столбцов с позициями) и метки (столбцы с позициями). Метки переводятся в числовой формат с помощью LabelEncoder(), иначе программа не может с ними работать.
Данные делятся на обучающую и тестовую выборку.
Модель создается таким образом потому, что если ставить меньшее число итераций или скрытых слоев, то она не успевала обучаться.
model = MLPClassifier(hidden_layer_sizes=(128, 128, 128), activation='relu', max_iter=1000, random_state=42)
Затем происходит предсказание позиций для тестовой выборки и оценка работы модели с помощью accuracy_score и classification_report
## Результат
В результате получаем следующее:
![accuracy.png](accuracy.png)
Оценка модели имеет относительно низкое значение. Однако, как было сказано ранее, она могла не работать в принципе, поэтому
я считаю это достаточно неплохим результатом и поставленная цель была выполнена - было выяснено, что позиция персонажа
все-таки зависит от его атрибута и ролей, которые он выполняет по игре, хоть эта зависимость и не 100% явная. Если бы она
была явная, например, все персонажи с атрибутом "сила" - это позиция offlane, тогда работа модели была бы значительно лучше.
Далее мы получаем classification report:
![classificationReport.png](classificationReport.png)
В данном отчете представлены 5 классов, то есть позиции (0, 1, 2, 3, 4). Для каждого класса представлены значения точности,
полноты и F1-оценки, вычисленные с использованием соответствующих метрик. Также показана поддержка класса, которая
представляет собой количество образцов, принадлежащих этому классу.
Precision (точность) - это метрика, которая оценивает долю правильно классифицированных объектов из всех объектов, которые модель отнесла к данному классу. Она измеряет, насколько точно модель предсказывает положительные классы.
Recall (полнота) - это метрика, которая оценивает долю правильно классифицированных объектов, отнесенных моделью к данному классу, относительно всех объектов, принадлежащих к данному классу. Она измеряет, насколько полно модель находит положительные классы.
F1-мера (F1-score) - это гармоническое среднее между precision и recall. Она используется для объединения оценок точности и полноты в единую метрику. F1-мера принимает значение между 0 и 1, где 1 - это идеальное значение, означающее, что модель идеально находит и точно классифицирует объекты положительного класса
micro avg - средневзвешенное значение точности, полноты и F1-оценки во всех классах, подсчитанное по общему количеству образцов.
macro avg - среднее значение точности, полноты и F1-оценки по всем классам, без учета количества образцов.
weighted avg - средневзвешенное значение точности, полноты и F1-оценки по всем классам, учитывая количество образцов.
samples avg - средневзвешенное значение точности, полноты и F1-оценки по всем классам, учитывая количество образцов
класса (если образец может принадлежать нескольким классам).
Из данного отчета можно сделать вывод о том, что по атрибутам и ролям в игре модель точно выявила персонажей для позиции
mid и offlane, но при этом, при работе с объектами, модель пропустила больше всего объектов, относящихся к этим классам,
и занесла их в другие классы, из-за чего снизилась precision других классов. Мы сами должны выбирать, что важнее - точность или полнота,
и в моем случае важнее точность, ведь изначально стоял вопрос о том, сможет ли модель определить, что к чему относится. Но низкие
значения полноты говорят о том, что низкое значение accuracy вполне оправдано, и хоть модель и может выявить, какие объекты к каким классам относятся,
делает она это не совсем "пОлно" и пропускает некоторые объекты.
Что касается признаков micro avg, macro avg, weighted avg, samples avg - все они показывают неплохие результаты относительно
ожиданий по поводу работы модели. Я думаю, что для поставленной задачи значения этих показателей довольно высоки.
Вывод: точность и показатели из отчета вышли достаточно хорошими относительно поставленной задачи, также был получен ответ на вопрос
зависит ли позиция персонажа от его атрибута и роли. Следовательно, с задачей разработанная модель справилась.

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

View File

@@ -0,0 +1,76 @@
import pandas as pd
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score, classification_report
# Чтение данных из файла Current_Pub_Meta.csv
current_pub_meta = pd.read_csv('Current_Pub_Meta.csv')
# Создаем пустой DataFrame для хранения данных
data = pd.DataFrame(columns=['Name', 'Roles', 'Primary Attribute', 'IsDurable', 'IsSupport', 'IsCarry', 'IsDisabler',
'IsInitiator', 'IsNuker', 'IsEscaper', 'IsPusher', 'posCarry', 'posMid',
'posOfflane', 'posSupport', 'posHardSupport'])
# Добавление новых столбцов из файла в датафрейм data
data['Name'] = current_pub_meta['Name']
data['Roles'] = current_pub_meta['Roles']
data['Primary Attribute'] = current_pub_meta['Primary Attribute']
data['Primary Attribute'] = data['Primary Attribute'].map({'str': 0, 'all': 1, 'int': 2, 'agi': 3})
data['IsDurable'] = data['Roles'].apply(lambda x: 1 if 'Durable' in x else 0)
data['IsCarry'] = data['Roles'].apply(lambda x: 1 if 'Carry' in x else 0)
data['IsSupport'] = data['Roles'].apply(lambda x: 1 if 'Support' in x else 0)
data['IsDisabler'] = data['Roles'].apply(lambda x: 1 if 'Disabler' in x else 0)
data['IsInitiator'] = data['Roles'].apply(lambda x: 1 if 'Initiator' in x else 0)
data['IsNuker'] = data['Roles'].apply(lambda x: 1 if 'Nuker' in x else 0)
data['IsEscaper'] = data['Roles'].apply(lambda x: 1 if 'Escaper' in x else 0)
data['IsPusher'] = data['Roles'].apply(lambda x: 1 if 'Pusher' in x else 0)
#Удаление столбца Roles
data.drop('Roles', axis=1, inplace=True)
# Создаем список персонажей на каждую позицию
roles = {
'posHardSupport': ['Undying', 'Pudge', 'Marci', 'Grimstroke', 'Elder Titan', 'Warlock', 'Dazzle', 'Witch Doctor', 'Vengeful Spirit', 'Ancient Apparition', 'Disruptor', 'Keeper of the Light', 'Rubick', 'Jakiro', 'Oracle', 'Visage', 'Silencer', 'Shadow Demon', 'Chen', 'Winter Wyvern', 'Bane', 'Treant Protector', 'Io', 'Enchantress', 'Naga Siren'],
'posSupport': ['Venomancer', 'Tusk', 'Tiny', 'Spirit Breaker', 'Techies', 'Snapfire', 'Pudge', 'Muerta', 'Marci', 'Hoodwink', 'Grimstroke', 'Earth Spirit', 'Bounty Hunter', 'Crystal Maiden', 'Lion', 'Shadow Shaman', 'Lich', 'Ogre Magi', 'Warlock', 'Dazzle', 'Witch Doctor', 'Vengeful Spirit', 'Ancient Apparition', 'Disruptor', 'Keeper of the Light', 'Rubick', 'Jakiro', 'Oracle', 'Visage', 'Silencer', 'Shadow Demon', 'Chen', 'Winter Wyvern', 'Bane', 'Treant Protector', 'Io', 'Enchantress', 'Naga Siren', 'Earthshaker', 'Skywrath Mage', 'Leshrac', 'Shadow Fiend', 'Nyx Assassin', 'Pugna', 'Lina', 'Zeus', "Nature's Prophet", 'Dark Willow'],
'posOfflane': ['Wraith King', 'Spirit Breaker', 'Snapfire', 'Pudge', 'Primal Beast', 'Marci', 'Dragon Knight', 'Tidehunter', 'Centaur Warrunner', 'Dark Seer', 'Beastmaster', 'Mars', 'Brewmaster', 'Timbersaw', 'Bristleback', 'Abaddon', 'Axe', 'Enigma', 'Sand King', 'Clockwerk', 'Doom', 'Underlord', 'Omniknight', 'Legion Commander', "Nature's Prophet", 'Slardar', 'Faceless Void', 'Earthshaker', 'Pangolier', 'Pugna', 'Mars', 'Batrider', 'Windranger', 'Mirana', 'Beastmaster', 'Brewmaster', 'Phoenix', 'Beastmaster', 'Dark Seer', 'Lone Druid', 'Timbersaw', 'Broodmother', "Nature's Prophet", 'Magnus', 'Necrophos', 'Bloodseeker', 'Lycan'],
'posMid': ['Void Spirit', 'Pudge', 'Primal Beast', 'Earth Spirit', 'Dragon Knight', 'Arc Warden', 'Invoker', 'Storm Spirit', 'Shadow Fiend', 'Templar Assassin', 'Queen of Pain', 'Puck', 'Zeus', 'Tinker', 'Lina', 'Ember Spirit', 'Outworld Destroyer', 'Morphling', 'Leshrac', 'Sniper', 'Mirana', 'Viper', 'Death Prophet', 'Razor', 'Pugna', 'Skywrath Mage', "Nature's Prophet", 'Windranger', 'Batrider', 'Lina', 'Shadow Fiend', 'Templar Assassin', 'Ember Spirit', 'Huskar', 'Kunkka', 'Puck', 'Queen of Pain', 'Invoker', 'Storm Spirit', 'Outworld Devourer', 'Death Prophet', 'Razor', 'Lina', 'Sniper', 'Medusa', 'Leshrac', 'Viper'],
'posCarry': ['Pudge', 'Muerta', 'Monkey King', 'Drow Ranger', 'Alchemist', 'Anti-Mage', 'Spectre', 'Juggernaut', 'Phantom Assassin', 'Faceless Void', 'Phantom Lancer', 'Lifestealer', 'Slark', 'Terrorblade', 'Medusa', 'Luna', 'Shadow Fiend', 'Morphling', 'Templar Assassin', 'Ember Spirit', 'Naga Siren', 'Troll Warlord', 'Gyrocopter', 'Lone Druid', 'Ursa', 'Riki', 'Sven', 'Phantom Lancer', 'Chaos Knight', 'Night Stalker', 'Wraith King', 'Meepo', 'Troll Warlord', 'Juggernaut', 'Lifestealer', 'Templar Assassin', 'Ursa', 'Clinkz', 'Weaver', 'Riki', 'Spectre', 'Phantom Assassin', 'Naga Siren', 'Luna', 'Gyrocopter', 'Meepo', 'Lone Druid', 'Slark', 'Morphling', 'Terrorblade', 'Medusa', 'Faceless Void']
}
# Перебираем каждого героя и добавляем значения в соответствующие столбцы
for index, row in data.iterrows():
for role, characters in roles.items():
data.loc[index, role] = int(row['Name'] in characters)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
print(data)
# Разделение датафрейма на признаки и метки
X = data[['Primary Attribute', 'IsDurable', 'IsSupport', 'IsCarry', 'IsDisabler', 'IsInitiator', 'IsNuker', 'IsEscaper', 'IsPusher']]
y = data[['posCarry', 'posMid', 'posOfflane', 'posSupport', 'posHardSupport']]
# Преобразование меток в числовой формат
label_encoder = LabelEncoder()
y = y.apply(label_encoder.fit_transform)
# Разделение выборки на обучающую и тестовую
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
# Создание и обучение модели
model = MLPClassifier(hidden_layer_sizes=(128, 128, 128), activation='relu', max_iter=1000, random_state=42)
model.fit(X_train, y_train)
# Предсказание позиций для тестовой выборки
y_pred = model.predict(X_test)
# Оценка точности модели
accuracy = accuracy_score(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
print("Accuracy:", accuracy)
print('Classification Report:')
print(class_report)

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@@ -0,0 +1,54 @@
## Задание
Выбрать художественный текст (четные варианты русскоязычный, нечетные англоязычный) и обучить на нем рекуррентную
нейронную сеть для решения задачи генерации. Подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату.Далее разбиться на пары четный-нечетный вариант, обменяться разработанными сетями и проверить, как архитектура товарища справляется с вашим текстом.
## Как запустить лабораторную
Запустить файл main.py
## Используемые технологии
Библиотеки tensorflow, numpy, их компоненты
## Описание лабораторной (программы)
Данная лабораторная работа обучает модели для обработки русского и английского текста и решает задачу генерации.
Ниже будет описан алгоритм работы одной из моделей (вторая работает аналогично):
1. Читается текст из файла
2. Создается экземпляр Tokenizer для токенизации текста
3. С помощью метода fit_on_texts токенизатор анализирует текст и строит словарь уникальных слов
4. rus_vocab_size - длина словаря
5. C помощью метода text_to_sequences текст преобразуется в последовательность чисел
6. Создаются последовательности для обучения модели
7. Рассчитывается максимальная длина последовательности
8. Входные последовательности выравниваются до максимальной длины
9. С помощью функции to_categorical последовательности преобразуются в one-hot представление
10. Переменные x_rus_train, y_rus_train инициализируются соответствующими значениями
11. Такая же обработка текста происходит и для текста на английском языке
12. Происходит создание модели на русском языке:
- создается экземпляр модели Sequential
- добавляется слой Embedding, отображающий слова в векторы фиксированной длины
- добавляется слой LSTM с 512 нейронами
- добавляется слой Dense с функцией softmax для получения вероятности каждого слова в словаре
- модель компилируется
13. Происходит обучение модели через model.fit()
14. Все то же самое происходит для модели с английским языком
15. Определяется функция generate_text для генерации текста на основе всех заданных параметров
16. Выводятся результаты работы моделей и сгенерированные тексты
## Результат
Результат сгенерированного текста на русском языке: Помню просторный грязный двор и низкие домики обнесённые забором двор стоял у самой реки и по вёснам когда спадала полая вода он был усеян щепой и ракушками а иногда и другими куда более интересными вещами так однажды мы нашли туго набитую письмами сумку а потом вода принесла и осторожно положила на берег и самого почтальона он лежал на спине закинув руки как будто заслонясь от солнца ещё совсем молодой белокурый в форменной тужурке с блестящими пуговицами должно быть отправляясь в свой последний рейс почтальон начистил их мелом мелом мелом спадала щепой мелом мелом мелом мелом мелом спадала полая вода он ракушками а
Результат сгенерированного текста на английском языке: The old man was thin and gaunt with deep wrinkles in the back of his neck the brown blotches of the benevolent skin cancer the sun brings from its reflection on the tropic sea were on his cheeks the blotches ran well down the sides of his face and his hands had the deep creased scars from handling heavy fish on the cords but none of these scars were fresh they were as old as erosions in a fishless desert fishless desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert desert fishless
Результат потерь на тренировочных данных:
![res.png](res.png)
Вывод: можно заметить, что в сгенерированных текстах в конце слова повторяются. Это происходит потому, что в параметрах модели
указано сгенерировать 100 слов, хотя в тексте, по которому модель обучается, меньше слов. Поэтому сгенерированный текст сначала
соответствует тексту для обучения, а затем начинает выдавать рандомные слова. Но нужно отметить, что это слова, а не просто
набор букв и пробелы, которые получались при иных настройках моделей.
Так как у английской модели меньше потерь на тренировочных данных, чем у русской, то получается, что выполненная модель
обрабатывает английский текст чуть лучше, чем русский, но в результате обе модели выдали осмысленный текст, что связано с большим
числом нейронов и эпох, при помощи которых обучалась модель. Ведь когда было 20 эпох, а не 200, модель выдавала очень слабо осмысленный результат.

View File

@@ -0,0 +1,5 @@
The old man was thin and gaunt with deep wrinkles in the back of his neck. The
brown blotches of the benevolent skin cancer the sun brings from its reflection on the
tropic sea were on his cheeks. The blotches ran well down the sides of his face and his
hands had the deep-creased scars from handling heavy fish on the cords. But none of
these scars were fresh. They were as old as erosions in a fishless desert.

View File

@@ -0,0 +1,97 @@
import tensorflow as tf
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense, Embedding
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# Загрузка и предобработка данных на русском языке
with open("rus.txt", "r", encoding="utf-8") as f:
rus_text = f.read()
tokenizer_rus = Tokenizer()
tokenizer_rus.fit_on_texts([rus_text])
rus_vocab_size = len(tokenizer_rus.word_index) + 1
rus_sequences = tokenizer_rus.texts_to_sequences([rus_text])[0]
rus_input_sequences = []
rus_output_sequences = []
for i in range(1, len(rus_sequences)):
rus_input_sequences.append(rus_sequences[:i])
rus_output_sequences.append(rus_sequences[i])
rus_max_sequence_len = max([len(seq) for seq in rus_input_sequences])
rus_input_sequences = pad_sequences(rus_input_sequences, maxlen=rus_max_sequence_len)
x_rus_train = rus_input_sequences
y_rus_train = tf.keras.utils.to_categorical(rus_output_sequences, num_classes=rus_vocab_size)
# Загрузка и предобработка данных на английском языке
with open("eng.txt", "r", encoding="utf-8") as f:
eng_text = f.read()
tokenizer_eng = Tokenizer()
tokenizer_eng.fit_on_texts([eng_text])
eng_vocab_size = len(tokenizer_eng.word_index) + 1
eng_sequences = tokenizer_eng.texts_to_sequences([eng_text])[0]
eng_input_sequences = []
eng_output_sequences = []
for i in range(1, len(eng_sequences)):
eng_input_sequences.append(eng_sequences[:i])
eng_output_sequences.append(eng_sequences[i])
eng_max_sequence_len = max([len(seq) for seq in eng_input_sequences])
eng_input_sequences = pad_sequences(eng_input_sequences, maxlen=eng_max_sequence_len)
x_eng_train = eng_input_sequences
y_eng_train = tf.keras.utils.to_categorical(eng_output_sequences, num_classes=eng_vocab_size)
# Построение модели для русского языка
rus_model = Sequential()
rus_model.add(Embedding(rus_vocab_size, 256, input_length=rus_max_sequence_len))
rus_model.add(LSTM(512))
rus_model.add(Dense(rus_vocab_size, activation='softmax'))
rus_model.compile(loss='categorical_crossentropy', optimizer='adam')
# Обучение модели для русского языка
rus_history = rus_model.fit(x_rus_train, y_rus_train, batch_size=128, epochs=200)
# Построение модели для английского языка
eng_model = Sequential()
eng_model.add(Embedding(eng_vocab_size, 256, input_length=eng_max_sequence_len))
eng_model.add(LSTM(512))
eng_model.add(Dense(eng_vocab_size, activation='softmax'))
eng_model.compile(loss='categorical_crossentropy', optimizer='adam')
# Обучение модели для английского языка
eng_history = eng_model.fit(x_eng_train, y_eng_train, batch_size=128, epochs=200)
def generate_text(model, tokenizer, max_sequence_len, seed_text):
output_text = seed_text
for _ in range(100): # Генерируем 100 слов
encoded_text = tokenizer.texts_to_sequences([output_text])[0]
pad_encoded = pad_sequences([encoded_text], maxlen=max_sequence_len, truncating='pre')
pred_word_index = np.argmax(model.predict(pad_encoded), axis=-1)
pred_word = tokenizer.index_word[pred_word_index[0]]
output_text += " " + pred_word
return output_text
# Генерация текста для русской и английской моделей
rus_output_text = generate_text(rus_model, tokenizer_rus, rus_max_sequence_len, "Помню просторный")
eng_output_text = generate_text(eng_model, tokenizer_eng, eng_max_sequence_len, "The old man")
# Вывод результатов
print("Русская модель:")
print("Потери на тренировочных данных:", rus_history.history['loss'][-1])
print("Сгенерированный текст:")
print(rus_output_text)
print("Английская модель:")
print("Потери на тренировочных данных:", eng_history.history['loss'][-1])
print("Сгенерированный текст:")
print(eng_output_text)

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

View File

@@ -0,0 +1 @@
Помню просторный грязный двор и низкие домики, обнесённые забором. Двор стоял у самой реки, и по вёснам, когда спадала полая вода, он был усеян щепой и ракушками, а иногда и другими, куда более интересными вещами. Так, однажды мы нашли туго набитую письмами сумку, а потом вода принесла и осторожно положила на берег и самого почтальона. Он лежал на спине, закинув руки, как будто заслонясь от солнца, ещё совсем молодой, белокурый, в форменной тужурке с блестящими пуговицами: должно быть, отправляясь в свой последний рейс, почтальон начистил их мелом.

View File

@@ -0,0 +1,41 @@
### Вариант 9
### Задание на лабораторную работу:
Выбрать художественный текст (четные варианты русскоязычный, нечетные англоязычный) и
обучить на нем рекуррентную нейронную сеть для решения задачи генерации.
Подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату.
Далее разбиться на пары четный-нечетный вариант, обменяться разработанными сетями и проверить,
как архитектура товарища справляется с вашим текстом.
В завершении подобрать компромиссную архитектуру, справляющуюся достаточно хорошо с обоими видами
текстов.
### Как запустить лабораторную работу:
Выполняем файл gusev_vladislav_lab_7.py, решение будет в консоли.
### Технологии
Keras - это библиотека для Python, позволяющая легко и быстро создавать нейронные сети.
NumPy - библиотека для работы с многомерными массивами.
### По коду
1) Читаем файл с текстом
2) Создаем объект tokenizer для превращение текста в числа для нейронной сети.
3) Создаем модель нейронной сети с следующими аргументами:
- Embedding - это слой, который обычно используется для векторного представления категориальных данных, таких как слова или символы. Он позволяет нейронной сети изучать эмбеддинги, то есть отображение слов (или символов) в вектора низкой размерности. Это позволяет сети понимать семантические отношения между словами.
- LSTM - это слой, представляющий собой рекуррентный нейрон, который способен учитывать зависимости в последовательных данных. Он хорошо подходит для обработки последовательных данных, таких как текст.
- Dense - это полносвязный слой, который принимает входные данные и применяет весовые коэффициенты к ним. Этот слой часто используется в конце нейронных сетей для решения задачи классификации или регрессии.
4) Обучаем модель на 100 эпохах (итерациях по данным) и генерируем текст.
![img.png](img.png)
Английский 100 эпох
![img_1.png](img_1.png)
![img_3.png](img_3.png)
Русский 100 эпох
![img_2.png](img_2.png)
Русский 17 эпох
![img_4.png](img_4.png)
### По консоли
- Английский текст генерировался на 100 эпохах, начало получилось осмысленным, но чем ближе к концу тем хуже.
- Русский текст также генерировался на 100 эпохах, с многочисленными ошибками в словах. Русский текст,сгенерированный на 17 эпохах по ошибкам в словах оказался лучше, но всё равно не идеально.

View File

@@ -0,0 +1,61 @@
import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# Загрузка текста из файла
with open('text_ru.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Создание экземпляра Tokenizer
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts(text)
# Преобразование текста в последовательность чисел
sequences = tokenizer.texts_to_sequences(text)
# Подготовка обучающих данных
seq_length = 100
dataX, dataY = [], []
for i in range(0, len(sequences) - seq_length):
seq_in = sequences[i:i + seq_length]
seq_out = sequences[i + seq_length]
dataX.append(seq_in)
dataY.append(seq_out)
dataX = np.array(dataX)
dataY = np.array(dataY)
# Создание модели
vocab_size = len(tokenizer.word_index) + 1
embedding_dim = 256
rnn_units = 1024
model = Sequential()
model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=seq_length))
model.add(LSTM(units=rnn_units))
model.add(Dense(units=vocab_size, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
# Обучение модели
batch_size = 64
model.fit(dataX, dataY, epochs=17, batch_size=batch_size)
def generate_text(seed_text, gen_length):
generated_text = seed_text
for _ in range(gen_length):
sequence = tokenizer.texts_to_sequences([seed_text])[0]
sequence = pad_sequences([sequence], maxlen=seq_length)
prediction = model.predict(sequence)[0]
predicted_index = np.argmax(prediction)
predicted_char = tokenizer.index_word[predicted_index]
generated_text += predicted_char
seed_text += predicted_char
seed_text = seed_text[1:]
return generated_text
# Пример использования
generated_text = generate_text("Мультфильмы", 250)
print(generated_text)

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

View File

@@ -0,0 +1,21 @@
Do you like watching cartoons? Probably you do! But how did they come to be? Who invented them?
This is actually a very tough question. The first cartoons were created long before the TV.
For example, shadow play was a very popular form of entertainment in ancient China. Such shows looked almost like modern cartoons!
A toy called a flip book was made in the late 19th century. It was a small soft book with pictures.
Each picture was drawn in a slightly different5 way. When you bend this book and release the pages one by one, the images start to move.
Strictly speaking, they dont, but our eyes see it like that anyway. The first real cartoons were made using this trick, too!
In 1895 brothers Louis and Auguste Lumière created a cinematograph.
It was a camera and a film projector in one device. Using this device, many aspiring film directors started to create their own cartoons.
This developed into a full industry by 1910. Many cartoons of that era are forgotten now, but some are still with us.
For example, Felix the Cat was created by Otto Messmer in 1919, and hes still with us, more than a hundred years later.
Currently the rights to the character are held by DreamWorks Animation.
One of the pioneers in the industry was famous Walt Disney.
He was not afraid to experiment to make a cartoon, and his Snow White film was among the firsts to use a multiplane camera.
With its help the characters were able to move around the objects, creating an illusion of a 3D world.
Today most of the cartoons are made with computer animation. The last traditional Disney cartoon to date was Winnie the Pooh (2011).

View File

@@ -0,0 +1,21 @@
Вам нравится смотреть мультфильмы? Вероятно, так оно и есть! Но как они появились на свет? Кто их изобрел?
На самом деле это очень сложный вопрос. Первые мультфильмы были созданы задолго до появления телевидения.
Например, игра с тенью была очень популярной формой развлечения в Древнем Китае. Такие шоу выглядели почти как современные мультфильмы!
Игрушка под названием книжка-перевертыш была изготовлена в конце 19 века. Это была маленькая мягкая книжка с картинками.
Каждая картинка была нарисована немного по-разному. Когда вы сгибаете эту книгу и отпускаете страницы одну за другой, изображения начинают двигаться.
Строго говоря, это не так, но наши глаза все равно видят это именно так. Первые настоящие мультфильмы тоже были сделаны с использованием этого трюка!
В 1895 году братья Луи и Огюст Люмьер создали кинематограф.
Это была камера и кинопроектор в одном устройстве. Используя это устройство, многие начинающие режиссеры начали создавать свои собственные мультфильмы.
К 1910 году это развилось в полноценную индустрию. Многие мультфильмы той эпохи сейчас забыты, но некоторые все еще с нами.
Например, кот Феликс был создан Отто Мессмером в 1919 году, и он все еще с нами, более ста лет спустя.
В настоящее время правами на персонажа владеет DreamWorks Animation.
Одним из пионеров в этой отрасли был знаменитый Уолт Дисней.
Он не боялся экспериментировать при создании мультфильма, и его фильм "Белоснежка" был одним из первых, в котором использовалась многоплановая камера.
С его помощью персонажи смогли передвигаться по объектам, создавая иллюзию трехмерного мира.
Сегодня большинство мультфильмов создано с использованием компьютерной анимации. Последним традиционным диснеевским мультфильмом на сегодняшний день был "Винни-Пух" (2011).

View File

@@ -0,0 +1,53 @@
# Лабораторная работа №5
## ПИбд-41, Курмыза Павел
Датасет по варианту: https://www.kaggle.com/datasets/jessemostipak/hotel-booking-demand.
Данный набор данных содержит информацию о бронировании городской и курортной гостиниц и включает в себя такие
сведения, как время бронирования, продолжительность пребывания, количество взрослых, детей и/или младенцев, количество
свободных парковочных мест и т.д.
## Как запустить ЛР
- Запустить файл main.py
## Используемые технологии
- Язык программирования Python
- Библиотеки: sklearn, numpy, pandas
## Что делает программа
Программа решает задачу кластеризации на выбранном датасете: выделение наиболее прибыльных посетителей отелей на основе
их времени прибывания и средней цены одной ночи пребывания в отели. Решение достигается в несколько этапов:
- Предобработка данных
- Стандартизация данных и приведение их к виду, удобном для работы с моделями ML
- Использование модели кластеризации K-средних
- Визуализация полученных результатов и вывод
## Тестирование
Теперь мы рассмотрели задачу кластеризации K-средних, и проанализируем результаты каждого
кластера, чтобы определить наиболее прибыльных клиентов в нашем наборе данных на основе времени выполнения заказа и ADR.
Первая проблема, с которой мы сталкиваемся, когда хотим использовать кластеризацию с помощью K-средних, - это
определение оптимального количества кластеров, которые мы хотим получить в качестве результатов. Поэтому сначала для
определения количества кластеров мы использовали метод локтя:
![Кластеры](clusters.jpg)
Для определения оптимального количества кластеров необходимо выбрать значение k, после которого искажение начинает
линейно уменьшаться. Таким образом, мы пришли к выводу, что оптимальное количество кластеров для данных равно 4. Поэтому
мы запустили алгоритм K-средних на основе lead_time и ADR с количеством кластеров, равным 4, и вывели центры кластеров:
![Центры кластеров](centers.jpg)
## Вывод
Наиболее прибыльными считаются клиенты с наименьшим временем пребывания и наибольшим ADR, т.е. клиенты, попавшие в
зеленый кластер. В то время как красная категория показывает самый низкий ADR и самое высокое (наименее выгодное) время
пребывания. В нашем случае после визуализации графика мы можем задать такие вопросы, как: почему у
одних клиентов время пребывания меньше, чем у других? и есть ли вероятность, что клиенты в определенных странах
соответствуют этому профилю? и т.д. На все эти вопросы алгоритм кластеризации K-средних может и не ответить напрямую,
но сведение данных в отдельные кластеры обеспечивает надежную основу для постановки подобных вопросов.

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,81 @@
import pandas as pd
from sklearn.model_selection import train_test_split
import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
import sklearn.cluster as cluster
# Чтение данных датасета
df = pd.read_csv('hotel_bookings.csv')
# Удаление строк, содержащих отсутствующие значения
df = df[df['children'].notna()]
df = df[df['country'].notna()]
# Объединение столбцов 'arrival_date_year', 'arrival_date_month', 'arrival date day_of_month' в столбец
# 'arrival_date', содержащий день, месяц и год приезда клиента в формате datetime
df["arrival_date_month"] = pd.to_datetime(df['arrival_date_month'], format='%B').dt.month
df["arrival_date"] = pd.to_datetime({"year": df["arrival_date_year"].values,
"month": df["arrival_date_month"].values,
"day": df["arrival_date_day_of_month"].values})
df = df.drop(columns=['arrival_date_year', 'arrival_date_month', 'arrival_date_day_of_month'])
# Преобразование типа столбца reservation_status_date в datetime
df["reservation_status_date"] = pd.to_datetime(df["reservation_status_date"], format='%Y-%m-%d')
# Заполнение нулевых значений в столбцах средним значением каждого столбца
for column in ['agent', 'company', 'arrival_date']:
df[column] = df[column].fillna(df[column].mean())
# Удаляем повторяющиеся значения
df.drop_duplicates(inplace=True)
# Преобразование категориальных переменных в числовые переменные для того, чтобы модель могла с ними работать
categoricalV = ["hotel", "meal", "country", "market_segment", "distribution_channel", "reserved_room_type",
"assigned_room_type", "deposit_type", "customer_type"]
df[categoricalV[1:11]] = df[categoricalV[1:11]].astype('category')
df[categoricalV[1:11]] = df[categoricalV[1:11]].apply(lambda x: LabelEncoder().fit_transform(x))
df['hotel_Num'] = LabelEncoder().fit_transform(df['hotel'])
df['numerical_larrival_date'] = df['arrival_date'].map(dt.datetime.toordinal)
df['numerical_reservation_status_date'] = df['reservation_status_date'].map(dt.datetime.toordinal)
df["is_canceled"].replace({'not canceled': 0, 'canceled': 1}, inplace=True)
df["reservation_status"].replace({'Canceled': 0, 'Check-Out': 1, 'No-Show': 2}, inplace=True)
# Определение входных и выходных значений
usefull_columns = df.columns.difference(['hotel', 'hotel_Num', 'arrival_date', 'reservation_status_date'])
X = df[usefull_columns]
Y = df["hotel_Num"].astype(int)
# Деление данных на тестовую и обучающую выборки
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=150)
# Определение оптимального количества кластеров
df_Short = df[['lead_time', 'adr']]
K = range(1, 12)
wss = []
for k in K:
kmeans = cluster.KMeans(n_clusters=k, init="k-means++")
kmeans = kmeans.fit(df_Short)
wss_iter = kmeans.inertia_
wss.append(wss_iter)
mycenters = pd.DataFrame({'Clusters': K, 'WSS': wss})
sns.scatterplot(x='Clusters', y='WSS', data=mycenters, marker="+")
# Решение задачи кластеризации с использованием K-Means
kmeans = cluster.KMeans(n_clusters=4, init="k-means++")
kmeans = kmeans.fit(df[['lead_time', 'adr']])
df['Clusters'] = kmeans.labels_
# Визуализируем кластеры
sns.lmplot(x="lead_time", y="adr", hue='Clusters', data=df)
plt.ylim(0, 600)
plt.xlim(0, 800)
plt.show()

View File

@@ -0,0 +1,51 @@
# Лабораторная работа №6
## ПИбд-41, Курмыза Павел
Датасет по варианту: https://www.kaggle.com/datasets/jessemostipak/hotel-booking-demand.
Данный набор данных содержит информацию о бронировании городской и курортной гостиниц и включает в себя такие
сведения, как время бронирования, продолжительность пребывания, количество взрослых, детей и/или младенцев, количество
свободных парковочных мест и т.д.
## Как запустить ЛР
- Запустить файл main.py
## Используемые технологии
- Язык программирования Python
- Библиотеки: sklearn, numpy, pandas, xgboost, matplotlib, seaborn
## Что делает программа
Программа решает задачу классификации на выбранном датасете: определение гостиничного класса отеля (городской отель или
курортный отель). Решение достигается в несколько этапов:
- Предобработка данных
- Балансировка данных
- Стандартизация данных и приведение их к виду, удобном для работы с моделью ML
- Использование модели классификации MLPClassifier
- Оценка точности и специфичности данной модели классификации
## Тестирование
Для решения задачи классификации были выбрана модель MLPClassifier.
Оценка точности модели: 0.9778297119757453
![Отчет классификации](classification_report.jpg)
Оценка способности модели MLPClassifier предсказывать истинные положительные результаты (TP / (TP + FN)), также
известные как коэффициент чувствительности, и истинные отрицательные результаты (TN / (TN + FP)), также известный как
коэффициент специфичности через матрицу неточностей:
![Матрица неточностей](confusion_matrix.jpg)
Матрица неточностей подтверждает приведенную ранее оценку модели MLPClassifier. Кроме того, она указывает на
то, что помимо высокой точности, модель также имеет высокую специфичность.
## Вывод
По итогу тестирования было выявлено, что модель MLPClassifier подходит для решения поставленной задачи, на что указывают
высокая оценка точности (97%) и специфичности данной модели.

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

File diff suppressed because it is too large Load Diff

104
kurmyza_pavel_lab_6/main.py Normal file
View File

@@ -0,0 +1,104 @@
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import VarianceThreshold
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
from sklearn.neural_network import MLPClassifier
# Считываем датасет
ds = pd.read_csv('hotel_bookings.csv')
# Удаляем из датасета строки с пропущенными значениями столбцов country, children.
# Выбраны именно данные столбцы, так как, по информации из kaggle, только они могут содержать пропущеные значения
ds.dropna(axis=0, subset=['country', 'children'], inplace=True)
# Усредняем значения столбца agent, чтобы убрать его влияние на результат, так как столбец содержит неважные данные
moa = ds['agent'].mean()
ds['agent'].fillna(value=moa, axis=0, inplace=True)
# Заполняем пропущенные значения ячеек, чтобы исключить незаполненные
ds.fillna(method='pad', inplace=True)
ds.dropna(inplace=True, subset=['company'])
# Переводим столбцы, содержащие текстовые данные в числовое представление
hotel = LabelEncoder()
meal = LabelEncoder()
country = LabelEncoder()
market_segment = LabelEncoder()
distribution_channel = LabelEncoder()
reserved_room_type = LabelEncoder()
assigned_room_type = LabelEncoder()
deposit_type = LabelEncoder()
customer_type = LabelEncoder()
reservation_status = LabelEncoder()
reservation_status_date = LabelEncoder()
ds['hotel_n'] = hotel.fit_transform(ds['hotel'])
ds['arrival_date_month_n'] = hotel.fit_transform(ds['arrival_date_month'])
ds['meal_n'] = hotel.fit_transform(ds['meal'])
ds['country_n'] = hotel.fit_transform(ds['country'])
ds['market_segment_n'] = hotel.fit_transform(ds['market_segment'])
ds['distribution_channel_n'] = hotel.fit_transform(ds['distribution_channel'])
ds['reserved_room_type_n'] = hotel.fit_transform(ds['reserved_room_type'])
ds['assigned_room_type_n'] = hotel.fit_transform(ds['assigned_room_type'])
ds['deposit_type_n'] = hotel.fit_transform(ds['deposit_type'])
ds['customer_type_n'] = hotel.fit_transform(ds['customer_type'])
ds['reservation_status_n'] = hotel.fit_transform(ds['reservation_status'])
ds['reservation_status_date_n'] = hotel.fit_transform(ds['reservation_status_date'])
# Удаляем приведенные к числовым данным столбцы, они больше не нужны
ds.drop(
['hotel', 'arrival_date_month', 'meal', 'country', 'market_segment', 'distribution_channel', 'reserved_room_type',
'assigned_room_type', 'deposit_type', 'customer_type', 'reservation_status', 'reservation_status_date'], axis=1,
inplace=True)
# Производим балансировку данных таким образом, чтобы было одинаковое количество отелей всех классов
ds_0 = ds[ds['hotel_n'] == 0]
ds_1 = ds[ds['hotel_n'] == 1]
ds_0 = ds_0.sample(ds_1.shape[0])
ds = ds_0._append(ds_1, ignore_index=True)
# Полдготовка данных для выполнения модели
x = ds.drop('hotel_n', axis=1)
y = ds['hotel_n']
threshold = VarianceThreshold()
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
x_train = threshold.fit_transform(x_train)
x_test = threshold.transform(x_test)
# Производим стандартизацию данных и приводим их к виду, с которым работают модель классификации MLPClassifier
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
y_train = y_train.to_numpy()
y_test = y_test.to_numpy()
# Инициализируем модель MLPClassifier и обучаем её
mlp = MLPClassifier()
mlp.fit(x_train, y_train)
# Оценка точности моделей классификации
mlp_accuracy = mlp.score(x_test, y_test)
print(f"Оценка точности модели: {mlp_accuracy}")
# Оценка коэффициента специфичности через матрицу неточностей
y_pred = mlp.predict(x_test)
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(7, 5))
sns.heatmap(cm, annot=True)
plt.xlabel('Prediction')
plt.ylabel('Actual')
plt.show()
print(classification_report(y_test, y_pred))

View File

@@ -0,0 +1,118 @@
**Задание**
***
Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных. Проверьте работу модели на оставшемся проценте, сделайте вывод
**Как запустить лабораторную**
***
Запустить файл main.py
**Используемые технологии**
***
Библиотеки pandas, scikit-learn, matplotlib, их компоненты
**Описание лабораторной (программы)**
***
В данном коде мы создаем и обучаем модель дерева решений для прогнозирования инцидентов с НЛО на основе набора данных.
1. В первой строке кода мы загружаем данные из CSV-файла 'ufo_data_nuforc.csv' с помощью функции pd.read_csv(). Эти данные содержат информацию о различных инцидентах с НЛО.
2. Далее мы выбираем набор признаков, в данном случае, эти признаки - населенность и время, которые будут использоваться для обучения модели, и сохраняем их в переменную features.
3. Затем преобразуем категориальные признаки в числовой вид при помощи функции pd.get_dummies(). Это необходимо, так как модель дерева решений работает только с числовыми данными.
4. После этого мы разделяем данные на обучающую и тестовую выборки с помощью функции train_test_split(). Обучающая выборка будет использоваться для обучения модели, а тестовая - для проверки ее точности.
5. Создаем модель дерева решений с помощью класса DecisionTreeClassifier() из библиотеки sklearn.tree.
6. Обучаем модель на обучающей выборке с помощью метода fit(). В процессе обучения модель настраивает параметры дерева решений, чтобы лучше предсказывать целевой признак.
7. После обучения модели, мы производим прогнозы на тестовых данных с помощью метода predict().
8. Оцениваем точность модели на тестовой выборке с помощью метода accuracy_score() из библиотеки sklearn.metrics. Этот метод сравнивает фактические значения целевого признака с предсказанными и возвращает точность модели.
9. Наконец, выводим точность модели на тестовой выборке, чтобы оценить, насколько хорошо модель предсказывает инциденты с НЛО.
10. Также, код визуализирует данные в виде графика с помощью библиотеки matplotlib.pyplot, отображая фактические значения целевого признака и предсказания модели. Это помогает наглядно оценить, насколько близки предсказания модели к реальным значениям.
**Результат**
***
Точность модели на тестовой выборке: 0.1377245508982036
Прогнозы по оставшемуся проценту данных: 'cylinder' 'circle' 'sphere' 'disk' 'disk' 'fireball' 'disk' 'oval'
'circle' 'disk' 'disk' 'other' 'light' 'light' 'oval' 'fireball' 'light'
'rectangle' 'chevron' 'unknown' 'sphere' 'oval' 'light' 'circle'
'unknown' 'unknown' 'disk' 'triangle' 'triangle' 'unknown' 'formation'
'unknown' 'cigar' 'unknown' 'light' 'other' 'rectangle' 'light' 'other'
'light' 'cylinder' 'delta' 'sphere' 'other' 'changing' 'fireball'
'cylinder' 'cigar' 'circle' 'triangle' 'light' 'fireball' 'fireball'
'sphere' 'circle' 'light' 'chevron' 'oval' 'oval' 'light' 'unknown'
'triangle' 'other' 'rectangle' 'triangle' 'triangle' 'flash' 'unknown'
'sphere' 'unknown' 'other' 'circle' 'oval' 'light' 'oval' 'formation'
'sphere' 'triangle' 'changing' 'sphere' 'oval' 'unknown' 'circle'
'circle' 'flash' 'light' 'light' 'sphere' 'other' 'other' 'egg' 'unknown'
'other' 'light' 'light' 'disk' 'diamond' 'oval' 'unknown' 'light'
'triangle' 'other' 'light' 'disk' 'unknown' 'light' 'changing' 'sphere'
'triangle' 'circle' 'flash' 'sphere' 'light' 'unknown' 'oval' 'formation'
'light' 'circle' 'unknown' 'other' 'triangle' 'other' 'light' 'disk'
'formation' 'oval' 'triangle' 'triangle' 'light' 'formation' 'oval'
'light' 'light' 'oval' 'disk' 'sphere' 'egg' 'unknown' 'unknown'
'unknown' 'light' 'disk' 'changing' 'light' 'light' 'circle' 'circle'
'formation' 'light' 'light' 'cigar' 'light' 'triangle' 'oval' 'fireball'
'cylinder' 'other' 'circle' 'egg' 'changing' 'triangle' 'circle' 'other'
'oval' 'disk' 'light' 'flash' 'fireball' 'circle' 'circle' 'circle'
'circle' 'light' 'disk' 'fireball' 'other' 'sphere' 'light' 'changing'
'cigar' 'light' 'cylinder' 'rectangle' 'chevron' 'light' 'light' 'light'
'light' 'circle' 'circle' 'light' 'light' 'circle' 'sphere' 'triangle'
'light' 'egg' 'circle' 'fireball' 'sphere' 'sphere' 'triangle' 'light'
'other' 'cigar' 'sphere' 'sphere' 'fireball' 'light' 'light' 'disk'
'oval' 'oval' 'other' 'cigar' 'triangle' 'light' 'light' 'light' 'disk'
'light' 'light' 'light' 'light' 'other' 'light' 'teardrop' 'triangle'
'teardrop' 'fireball' 'sphere' 'cylinder' 'fireball' 'circle' 'egg'
'sphere' 'disk' 'chevron' 'triangle' 'light' 'other' 'light' 'circle'
'rectangle' 'fireball' 'formation' 'light' 'light' 'circle' 'light'
'light' 'formation' 'light' 'triangle' 'light' 'oval' 'light' 'unknown'
'fireball' 'diamond' 'light' 'circle' 'light' 'triangle' 'oval' 'oval'
'cylinder' 'circle' 'light' 'disk' 'light' 'sphere' 'circle' 'light'
'triangle' 'light' 'fireball' 'triangle' 'light' 'flash' 'triangle' 'egg'
'disk' 'oval' 'circle' 'flash' 'light' 'oval' 'sphere' 'light' 'triangle'
'other' 'chevron' 'other' 'circle' 'unknown' 'unknown' 'sphere' 'light'
'cigar' 'light' 'fireball' 'circle' 'diamond' 'fireball' 'triangle'
'diamond' 'sphere' 'circle' 'chevron' 'cylinder' 'light' 'circle'
'fireball' 'unknown' 'light' 'circle' 'fireball' 'light' 'fireball'
'fireball' 'fireball' 'light' 'sphere' 'light' 'sphere' 'sphere'
'formation' 'light' 'fireball' 'fireball' 'disk' 'disk' 'circle'
'rectangle' 'unknown' 'disk' 'unknown' 'disk' 'triangle' 'other' 'sphere'
'diamond' 'light' 'light' 'unknown' 'sphere' 'circle' 'disk' 'circle'
'oval' 'changing' 'other' 'other' 'disk' 'unknown' 'unknown' 'disk'
'rectangle' 'disk' 'light' 'oval' 'unknown' 'sphere' 'light' 'changing'
'disk' 'disk' 'other' 'other' 'disk' 'cylinder' 'disk' 'rectangle'
'light' 'disk' 'disk' 'light' 'fireball' 'formation' 'cigar' 'oval'
'fireball' 'unknown' 'disk' 'light' 'light' 'triangle' 'triangle' 'light'
'sphere' 'triangle' 'sphere' 'circle' 'light' 'oval' 'oval' 'circle'
'oval' 'rectangle' 'disk' 'oval' 'light' 'light' 'other' 'cigar'
'triangle' 'disk' 'cigar' 'other' 'triangle' 'egg' 'unknown' 'triangle'
'light' 'triangle' 'disk' 'changing' 'triangle' 'disk' 'disk' 'rectangle'
'other' 'triangle' 'triangle' 'formation' 'triangle' 'egg' 'sphere'
'fireball' 'triangle' 'rectangle' 'light' 'triangle' 'triangle' 'other'
'light' 'light' 'disk' 'fireball' 'light' 'disk' 'oval' 'triangle'
'other' 'fireball' 'light' 'light' 'triangle' 'unknown' 'cigar' 'light'
'unknown' 'chevron' 'formation' 'disk' 'cigar' 'light' 'sphere' 'cigar'
'unknown' 'triangle' 'other' 'light' 'light' 'triangle' 'diamond' 'light'
'triangle' 'oval' 'changing' 'light' 'flash' 'circle' 'oval' 'other'
'sphere' 'circle' 'triangle' 'unknown' 'teardrop' 'unknown' 'fireball'
'light' 'light' 'cigar' 'cigar' 'light' 'fireball' 'other' 'egg' 'light'
'other' 'unknown' 'unknown' 'changing' 'circle' 'light' 'other' 'unknown'
'unknown' 'light' 'other' 'light' 'unknown' 'cylinder' 'triangle'
'circle' 'light' 'circle' 'circle' 'circle' 'light' 'light' 'changing'
'changing' 'circle' 'circle' 'triangle' 'triangle' 'light' 'light'
'light' 'light' 'other' 'changing' 'triangle' 'cylinder' 'light'
'unknown' 'circle' 'disk' 'sphere' 'oval' 'formation' 'teardrop'
'triangle' 'chevron' 'light' 'unknown' 'unknown' 'other' 'egg' 'circle'
'oval' 'cigar' 'unknown' 'chevron' 'oval' 'cigar' 'fireball' 'circle'
'unknown' 'light' 'sphere' 'fireball' 'changing' 'light' 'circle'
'unknown' 'fireball' 'light' 'sphere' 'light' 'formation' 'circle'
'fireball' 'formation' 'formation' 'formation' 'light' 'other' 'light'
'light' 'circle' 'diamond' 'oval' 'circle' 'oval' 'triangle' 'light'
'disk' 'light' 'other' 'triangle' 'triangle' 'cylinder' 'disk' 'cylinder'
'light' 'oval' 'cigar' 'circle' 'disk' 'light' 'unknown' 'circle' 'other'
'light' 'light' 'light' 'unknown' 'triangle' 'other' 'disk' 'cylinder'
'triangle' 'oval' 'disk' 'light' 'triangle' 'circle' 'light' 'other'
'light' 'other' 'circle' 'disk' 'other' 'triangle' 'oval' 'unknown'
'light' 'triangle' 'unknown' 'circle' 'unknown' 'light' 'fireball'
'fireball' 'rectangle' 'light' 'formation' 'unknown' 'light' 'light'
'formation' 'fireball' 'light' 'light' 'other' 'unknown' 'light'
'triangle' 'fireball' 'triangle' 'triangle' 'flash' 'circle' 'triangle'
'disk' 'light' 'unknown' 'light' 'light' 'fireball' 'circle' 'unknown'
'unknown' 'circle' 'disk' 'chevron' 'disk' 'disk' 'triangle' 'light'
'light' 'disk'
***Вывод:*** Наша модель дерева решений показала низкую точность предсказаний (Точность модели на тестовой выборке: 0.1377245508982036), что означает, что она не очень хорошо предсказывает форму НЛО на основе выбранных признаков (население и время). Из-за чего можно сделать вывод, что возможно, эти признаки недостаточно информативны или недостаточно связаны с формой НЛО.

View File

@@ -0,0 +1,39 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
# Загрузка данных
data = pd.read_csv('ufo_sighting_data.csv')
# Выбор признаков
features = [ 'length_of_encounter_seconds', 'latitude', 'longitude']
target = 'UFO_shape'
# Удаление строк содержащих NaN
data.dropna(inplace=True)
# Удаление столбцов содержащих NaN
data.dropna(axis='columns', inplace=True)
# Разделение данных на обучающую и тестовую выборки
train_data, test_data, train_labels, test_labels = train_test_split(data[features], data[target], test_size=0.2, random_state=42)
# Создание и обучение модели дерева решений
model = DecisionTreeClassifier()
model.fit(train_data, train_labels)
# Прогнозирование на тестовой выборке
predictions = model.predict(test_data)
# Оценка точности модели
accuracy = accuracy_score(test_labels, predictions)
print('Точность модели на тестовой выборке:', accuracy)
# Прогнозирование на оставшемся проценте данных
remaining_data = data.drop(test_data.index)
remaining_predictions = model.predict(remaining_data[features])
# Вывод результатов
print('Прогнозы по оставшемуся проценту данных:', remaining_predictions)
# Сделайте необходимые выводы

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,26 @@
## Лабораторная работа №4
### Кластеризация
## Выполнил студент группы ПИбд-41 Липатов Илья
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (стартовая точка класс lab4)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* Кластеризирует данные о домах в Бостоне исходя из уровня преступности на душу населения в разбивке по городам и процента более низкого статуса населения. Ожидаем, что разбиение домов будет на три кластера.
### Примеры работы:
#### Результаты:
* Кластеризация разбила наши дома в Бостоне на три большие группы, как мы этого и ожидали, значит алгоритм с задачей справился.
![Result](result.png)

View File

@@ -0,0 +1,507 @@
CRIM,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV
0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0,15.30,396.90,4.98,24.00
0.02731,0.00,7.070,0,0.4690,6.4210,78.90,4.9671,2,242.0,17.80,396.90,9.14,21.60
0.02729,0.00,7.070,0,0.4690,7.1850,61.10,4.9671,2,242.0,17.80,392.83,4.03,34.70
0.03237,0.00,2.180,0,0.4580,6.9980,45.80,6.0622,3,222.0,18.70,394.63,2.94,33.40
0.06905,0.00,2.180,0,0.4580,7.1470,54.20,6.0622,3,222.0,18.70,396.90,5.33,36.20
0.02985,0.00,2.180,0,0.4580,6.4300,58.70,6.0622,3,222.0,18.70,394.12,5.21,28.70
0.08829,12.50,7.870,0,0.5240,6.0120,66.60,5.5605,5,311.0,15.20,395.60,12.43,22.90
0.14455,12.50,7.870,0,0.5240,6.1720,96.10,5.9505,5,311.0,15.20,396.90,19.15,27.10
0.21124,12.50,7.870,0,0.5240,5.6310,100.00,6.0821,5,311.0,15.20,386.63,29.93,16.50
0.17004,12.50,7.870,0,0.5240,6.0040,85.90,6.5921,5,311.0,15.20,386.71,17.10,18.90
0.22489,12.50,7.870,0,0.5240,6.3770,94.30,6.3467,5,311.0,15.20,392.52,20.45,15.00
0.11747,12.50,7.870,0,0.5240,6.0090,82.90,6.2267,5,311.0,15.20,396.90,13.27,18.90
0.09378,12.50,7.870,0,0.5240,5.8890,39.00,5.4509,5,311.0,15.20,390.50,15.71,21.70
0.62976,0.00,8.140,0,0.5380,5.9490,61.80,4.7075,4,307.0,21.00,396.90,8.26,20.40
0.63796,0.00,8.140,0,0.5380,6.0960,84.50,4.4619,4,307.0,21.00,380.02,10.26,18.20
0.62739,0.00,8.140,0,0.5380,5.8340,56.50,4.4986,4,307.0,21.00,395.62,8.47,19.90
1.05393,0.00,8.140,0,0.5380,5.9350,29.30,4.4986,4,307.0,21.00,386.85,6.58,23.10
0.78420,0.00,8.140,0,0.5380,5.9900,81.70,4.2579,4,307.0,21.00,386.75,14.67,17.50
0.80271,0.00,8.140,0,0.5380,5.4560,36.60,3.7965,4,307.0,21.00,288.99,11.69,20.20
0.72580,0.00,8.140,0,0.5380,5.7270,69.50,3.7965,4,307.0,21.00,390.95,11.28,18.20
1.25179,0.00,8.140,0,0.5380,5.5700,98.10,3.7979,4,307.0,21.00,376.57,21.02,13.60
0.85204,0.00,8.140,0,0.5380,5.9650,89.20,4.0123,4,307.0,21.00,392.53,13.83,19.60
1.23247,0.00,8.140,0,0.5380,6.1420,91.70,3.9769,4,307.0,21.00,396.90,18.72,15.20
0.98843,0.00,8.140,0,0.5380,5.8130,100.00,4.0952,4,307.0,21.00,394.54,19.88,14.50
0.75026,0.00,8.140,0,0.5380,5.9240,94.10,4.3996,4,307.0,21.00,394.33,16.30,15.60
0.84054,0.00,8.140,0,0.5380,5.5990,85.70,4.4546,4,307.0,21.00,303.42,16.51,13.90
0.67191,0.00,8.140,0,0.5380,5.8130,90.30,4.6820,4,307.0,21.00,376.88,14.81,16.60
0.95577,0.00,8.140,0,0.5380,6.0470,88.80,4.4534,4,307.0,21.00,306.38,17.28,14.80
0.77299,0.00,8.140,0,0.5380,6.4950,94.40,4.4547,4,307.0,21.00,387.94,12.80,18.40
1.00245,0.00,8.140,0,0.5380,6.6740,87.30,4.2390,4,307.0,21.00,380.23,11.98,21.00
1.13081,0.00,8.140,0,0.5380,5.7130,94.10,4.2330,4,307.0,21.00,360.17,22.60,12.70
1.35472,0.00,8.140,0,0.5380,6.0720,100.00,4.1750,4,307.0,21.00,376.73,13.04,14.50
1.38799,0.00,8.140,0,0.5380,5.9500,82.00,3.9900,4,307.0,21.00,232.60,27.71,13.20
1.15172,0.00,8.140,0,0.5380,5.7010,95.00,3.7872,4,307.0,21.00,358.77,18.35,13.10
1.61282,0.00,8.140,0,0.5380,6.0960,96.90,3.7598,4,307.0,21.00,248.31,20.34,13.50
0.06417,0.00,5.960,0,0.4990,5.9330,68.20,3.3603,5,279.0,19.20,396.90,9.68,18.90
0.09744,0.00,5.960,0,0.4990,5.8410,61.40,3.3779,5,279.0,19.20,377.56,11.41,20.00
0.08014,0.00,5.960,0,0.4990,5.8500,41.50,3.9342,5,279.0,19.20,396.90,8.77,21.00
0.17505,0.00,5.960,0,0.4990,5.9660,30.20,3.8473,5,279.0,19.20,393.43,10.13,24.70
0.02763,75.00,2.950,0,0.4280,6.5950,21.80,5.4011,3,252.0,18.30,395.63,4.32,30.80
0.03359,75.00,2.950,0,0.4280,7.0240,15.80,5.4011,3,252.0,18.30,395.62,1.98,34.90
0.12744,0.00,6.910,0,0.4480,6.7700,2.90,5.7209,3,233.0,17.90,385.41,4.84,26.60
0.14150,0.00,6.910,0,0.4480,6.1690,6.60,5.7209,3,233.0,17.90,383.37,5.81,25.30
0.15936,0.00,6.910,0,0.4480,6.2110,6.50,5.7209,3,233.0,17.90,394.46,7.44,24.70
0.12269,0.00,6.910,0,0.4480,6.0690,40.00,5.7209,3,233.0,17.90,389.39,9.55,21.20
0.17142,0.00,6.910,0,0.4480,5.6820,33.80,5.1004,3,233.0,17.90,396.90,10.21,19.30
0.18836,0.00,6.910,0,0.4480,5.7860,33.30,5.1004,3,233.0,17.90,396.90,14.15,20.00
0.22927,0.00,6.910,0,0.4480,6.0300,85.50,5.6894,3,233.0,17.90,392.74,18.80,16.60
0.25387,0.00,6.910,0,0.4480,5.3990,95.30,5.8700,3,233.0,17.90,396.90,30.81,14.40
0.21977,0.00,6.910,0,0.4480,5.6020,62.00,6.0877,3,233.0,17.90,396.90,16.20,19.40
0.08873,21.00,5.640,0,0.4390,5.9630,45.70,6.8147,4,243.0,16.80,395.56,13.45,19.70
0.04337,21.00,5.640,0,0.4390,6.1150,63.00,6.8147,4,243.0,16.80,393.97,9.43,20.50
0.05360,21.00,5.640,0,0.4390,6.5110,21.10,6.8147,4,243.0,16.80,396.90,5.28,25.00
0.04981,21.00,5.640,0,0.4390,5.9980,21.40,6.8147,4,243.0,16.80,396.90,8.43,23.40
0.01360,75.00,4.000,0,0.4100,5.8880,47.60,7.3197,3,469.0,21.10,396.90,14.80,18.90
0.01311,90.00,1.220,0,0.4030,7.2490,21.90,8.6966,5,226.0,17.90,395.93,4.81,35.40
0.02055,85.00,0.740,0,0.4100,6.3830,35.70,9.1876,2,313.0,17.30,396.90,5.77,24.70
0.01432,100.00,1.320,0,0.4110,6.8160,40.50,8.3248,5,256.0,15.10,392.90,3.95,31.60
0.15445,25.00,5.130,0,0.4530,6.1450,29.20,7.8148,8,284.0,19.70,390.68,6.86,23.30
0.10328,25.00,5.130,0,0.4530,5.9270,47.20,6.9320,8,284.0,19.70,396.90,9.22,19.60
0.14932,25.00,5.130,0,0.4530,5.7410,66.20,7.2254,8,284.0,19.70,395.11,13.15,18.70
0.17171,25.00,5.130,0,0.4530,5.9660,93.40,6.8185,8,284.0,19.70,378.08,14.44,16.00
0.11027,25.00,5.130,0,0.4530,6.4560,67.80,7.2255,8,284.0,19.70,396.90,6.73,22.20
0.12650,25.00,5.130,0,0.4530,6.7620,43.40,7.9809,8,284.0,19.70,395.58,9.50,25.00
0.01951,17.50,1.380,0,0.4161,7.1040,59.50,9.2229,3,216.0,18.60,393.24,8.05,33.00
0.03584,80.00,3.370,0,0.3980,6.2900,17.80,6.6115,4,337.0,16.10,396.90,4.67,23.50
0.04379,80.00,3.370,0,0.3980,5.7870,31.10,6.6115,4,337.0,16.10,396.90,10.24,19.40
0.05789,12.50,6.070,0,0.4090,5.8780,21.40,6.4980,4,345.0,18.90,396.21,8.10,22.00
0.13554,12.50,6.070,0,0.4090,5.5940,36.80,6.4980,4,345.0,18.90,396.90,13.09,17.40
0.12816,12.50,6.070,0,0.4090,5.8850,33.00,6.4980,4,345.0,18.90,396.90,8.79,20.90
0.08826,0.00,10.810,0,0.4130,6.4170,6.60,5.2873,4,305.0,19.20,383.73,6.72,24.20
0.15876,0.00,10.810,0,0.4130,5.9610,17.50,5.2873,4,305.0,19.20,376.94,9.88,21.70
0.09164,0.00,10.810,0,0.4130,6.0650,7.80,5.2873,4,305.0,19.20,390.91,5.52,22.80
0.19539,0.00,10.810,0,0.4130,6.2450,6.20,5.2873,4,305.0,19.20,377.17,7.54,23.40
0.07896,0.00,12.830,0,0.4370,6.2730,6.00,4.2515,5,398.0,18.70,394.92,6.78,24.10
0.09512,0.00,12.830,0,0.4370,6.2860,45.00,4.5026,5,398.0,18.70,383.23,8.94,21.40
0.10153,0.00,12.830,0,0.4370,6.2790,74.50,4.0522,5,398.0,18.70,373.66,11.97,20.00
0.08707,0.00,12.830,0,0.4370,6.1400,45.80,4.0905,5,398.0,18.70,386.96,10.27,20.80
0.05646,0.00,12.830,0,0.4370,6.2320,53.70,5.0141,5,398.0,18.70,386.40,12.34,21.20
0.08387,0.00,12.830,0,0.4370,5.8740,36.60,4.5026,5,398.0,18.70,396.06,9.10,20.30
0.04113,25.00,4.860,0,0.4260,6.7270,33.50,5.4007,4,281.0,19.00,396.90,5.29,28.00
0.04462,25.00,4.860,0,0.4260,6.6190,70.40,5.4007,4,281.0,19.00,395.63,7.22,23.90
0.03659,25.00,4.860,0,0.4260,6.3020,32.20,5.4007,4,281.0,19.00,396.90,6.72,24.80
0.03551,25.00,4.860,0,0.4260,6.1670,46.70,5.4007,4,281.0,19.00,390.64,7.51,22.90
0.05059,0.00,4.490,0,0.4490,6.3890,48.00,4.7794,3,247.0,18.50,396.90,9.62,23.90
0.05735,0.00,4.490,0,0.4490,6.6300,56.10,4.4377,3,247.0,18.50,392.30,6.53,26.60
0.05188,0.00,4.490,0,0.4490,6.0150,45.10,4.4272,3,247.0,18.50,395.99,12.86,22.50
0.07151,0.00,4.490,0,0.4490,6.1210,56.80,3.7476,3,247.0,18.50,395.15,8.44,22.20
0.05660,0.00,3.410,0,0.4890,7.0070,86.30,3.4217,2,270.0,17.80,396.90,5.50,23.60
0.05302,0.00,3.410,0,0.4890,7.0790,63.10,3.4145,2,270.0,17.80,396.06,5.70,28.70
0.04684,0.00,3.410,0,0.4890,6.4170,66.10,3.0923,2,270.0,17.80,392.18,8.81,22.60
0.03932,0.00,3.410,0,0.4890,6.4050,73.90,3.0921,2,270.0,17.80,393.55,8.20,22.00
0.04203,28.00,15.040,0,0.4640,6.4420,53.60,3.6659,4,270.0,18.20,395.01,8.16,22.90
0.02875,28.00,15.040,0,0.4640,6.2110,28.90,3.6659,4,270.0,18.20,396.33,6.21,25.00
0.04294,28.00,15.040,0,0.4640,6.2490,77.30,3.6150,4,270.0,18.20,396.90,10.59,20.60
0.12204,0.00,2.890,0,0.4450,6.6250,57.80,3.4952,2,276.0,18.00,357.98,6.65,28.40
0.11504,0.00,2.890,0,0.4450,6.1630,69.60,3.4952,2,276.0,18.00,391.83,11.34,21.40
0.12083,0.00,2.890,0,0.4450,8.0690,76.00,3.4952,2,276.0,18.00,396.90,4.21,38.70
0.08187,0.00,2.890,0,0.4450,7.8200,36.90,3.4952,2,276.0,18.00,393.53,3.57,43.80
0.06860,0.00,2.890,0,0.4450,7.4160,62.50,3.4952,2,276.0,18.00,396.90,6.19,33.20
0.14866,0.00,8.560,0,0.5200,6.7270,79.90,2.7778,5,384.0,20.90,394.76,9.42,27.50
0.11432,0.00,8.560,0,0.5200,6.7810,71.30,2.8561,5,384.0,20.90,395.58,7.67,26.50
0.22876,0.00,8.560,0,0.5200,6.4050,85.40,2.7147,5,384.0,20.90,70.80,10.63,18.60
0.21161,0.00,8.560,0,0.5200,6.1370,87.40,2.7147,5,384.0,20.90,394.47,13.44,19.30
0.13960,0.00,8.560,0,0.5200,6.1670,90.00,2.4210,5,384.0,20.90,392.69,12.33,20.10
0.13262,0.00,8.560,0,0.5200,5.8510,96.70,2.1069,5,384.0,20.90,394.05,16.47,19.50
0.17120,0.00,8.560,0,0.5200,5.8360,91.90,2.2110,5,384.0,20.90,395.67,18.66,19.50
0.13117,0.00,8.560,0,0.5200,6.1270,85.20,2.1224,5,384.0,20.90,387.69,14.09,20.40
0.12802,0.00,8.560,0,0.5200,6.4740,97.10,2.4329,5,384.0,20.90,395.24,12.27,19.80
0.26363,0.00,8.560,0,0.5200,6.2290,91.20,2.5451,5,384.0,20.90,391.23,15.55,19.40
0.10793,0.00,8.560,0,0.5200,6.1950,54.40,2.7778,5,384.0,20.90,393.49,13.00,21.70
0.10084,0.00,10.010,0,0.5470,6.7150,81.60,2.6775,6,432.0,17.80,395.59,10.16,22.80
0.12329,0.00,10.010,0,0.5470,5.9130,92.90,2.3534,6,432.0,17.80,394.95,16.21,18.80
0.22212,0.00,10.010,0,0.5470,6.0920,95.40,2.5480,6,432.0,17.80,396.90,17.09,18.70
0.14231,0.00,10.010,0,0.5470,6.2540,84.20,2.2565,6,432.0,17.80,388.74,10.45,18.50
0.17134,0.00,10.010,0,0.5470,5.9280,88.20,2.4631,6,432.0,17.80,344.91,15.76,18.30
0.13158,0.00,10.010,0,0.5470,6.1760,72.50,2.7301,6,432.0,17.80,393.30,12.04,21.20
0.15098,0.00,10.010,0,0.5470,6.0210,82.60,2.7474,6,432.0,17.80,394.51,10.30,19.20
0.13058,0.00,10.010,0,0.5470,5.8720,73.10,2.4775,6,432.0,17.80,338.63,15.37,20.40
0.14476,0.00,10.010,0,0.5470,5.7310,65.20,2.7592,6,432.0,17.80,391.50,13.61,19.30
0.06899,0.00,25.650,0,0.5810,5.8700,69.70,2.2577,2,188.0,19.10,389.15,14.37,22.00
0.07165,0.00,25.650,0,0.5810,6.0040,84.10,2.1974,2,188.0,19.10,377.67,14.27,20.30
0.09299,0.00,25.650,0,0.5810,5.9610,92.90,2.0869,2,188.0,19.10,378.09,17.93,20.50
0.15038,0.00,25.650,0,0.5810,5.8560,97.00,1.9444,2,188.0,19.10,370.31,25.41,17.30
0.09849,0.00,25.650,0,0.5810,5.8790,95.80,2.0063,2,188.0,19.10,379.38,17.58,18.80
0.16902,0.00,25.650,0,0.5810,5.9860,88.40,1.9929,2,188.0,19.10,385.02,14.81,21.40
0.38735,0.00,25.650,0,0.5810,5.6130,95.60,1.7572,2,188.0,19.10,359.29,27.26,15.70
0.25915,0.00,21.890,0,0.6240,5.6930,96.00,1.7883,4,437.0,21.20,392.11,17.19,16.20
0.32543,0.00,21.890,0,0.6240,6.4310,98.80,1.8125,4,437.0,21.20,396.90,15.39,18.00
0.88125,0.00,21.890,0,0.6240,5.6370,94.70,1.9799,4,437.0,21.20,396.90,18.34,14.30
0.34006,0.00,21.890,0,0.6240,6.4580,98.90,2.1185,4,437.0,21.20,395.04,12.60,19.20
1.19294,0.00,21.890,0,0.6240,6.3260,97.70,2.2710,4,437.0,21.20,396.90,12.26,19.60
0.59005,0.00,21.890,0,0.6240,6.3720,97.90,2.3274,4,437.0,21.20,385.76,11.12,23.00
0.32982,0.00,21.890,0,0.6240,5.8220,95.40,2.4699,4,437.0,21.20,388.69,15.03,18.40
0.97617,0.00,21.890,0,0.6240,5.7570,98.40,2.3460,4,437.0,21.20,262.76,17.31,15.60
0.55778,0.00,21.890,0,0.6240,6.3350,98.20,2.1107,4,437.0,21.20,394.67,16.96,18.10
0.32264,0.00,21.890,0,0.6240,5.9420,93.50,1.9669,4,437.0,21.20,378.25,16.90,17.40
0.35233,0.00,21.890,0,0.6240,6.4540,98.40,1.8498,4,437.0,21.20,394.08,14.59,17.10
0.24980,0.00,21.890,0,0.6240,5.8570,98.20,1.6686,4,437.0,21.20,392.04,21.32,13.30
0.54452,0.00,21.890,0,0.6240,6.1510,97.90,1.6687,4,437.0,21.20,396.90,18.46,17.80
0.29090,0.00,21.890,0,0.6240,6.1740,93.60,1.6119,4,437.0,21.20,388.08,24.16,14.00
1.62864,0.00,21.890,0,0.6240,5.0190,100.00,1.4394,4,437.0,21.20,396.90,34.41,14.40
3.32105,0.00,19.580,1,0.8710,5.4030,100.00,1.3216,5,403.0,14.70,396.90,26.82,13.40
4.09740,0.00,19.580,0,0.8710,5.4680,100.00,1.4118,5,403.0,14.70,396.90,26.42,15.60
2.77974,0.00,19.580,0,0.8710,4.9030,97.80,1.3459,5,403.0,14.70,396.90,29.29,11.80
2.37934,0.00,19.580,0,0.8710,6.1300,100.00,1.4191,5,403.0,14.70,172.91,27.80,13.80
2.15505,0.00,19.580,0,0.8710,5.6280,100.00,1.5166,5,403.0,14.70,169.27,16.65,15.60
2.36862,0.00,19.580,0,0.8710,4.9260,95.70,1.4608,5,403.0,14.70,391.71,29.53,14.60
2.33099,0.00,19.580,0,0.8710,5.1860,93.80,1.5296,5,403.0,14.70,356.99,28.32,17.80
2.73397,0.00,19.580,0,0.8710,5.5970,94.90,1.5257,5,403.0,14.70,351.85,21.45,15.40
1.65660,0.00,19.580,0,0.8710,6.1220,97.30,1.6180,5,403.0,14.70,372.80,14.10,21.50
1.49632,0.00,19.580,0,0.8710,5.4040,100.00,1.5916,5,403.0,14.70,341.60,13.28,19.60
1.12658,0.00,19.580,1,0.8710,5.0120,88.00,1.6102,5,403.0,14.70,343.28,12.12,15.30
2.14918,0.00,19.580,0,0.8710,5.7090,98.50,1.6232,5,403.0,14.70,261.95,15.79,19.40
1.41385,0.00,19.580,1,0.8710,6.1290,96.00,1.7494,5,403.0,14.70,321.02,15.12,17.00
3.53501,0.00,19.580,1,0.8710,6.1520,82.60,1.7455,5,403.0,14.70,88.01,15.02,15.60
2.44668,0.00,19.580,0,0.8710,5.2720,94.00,1.7364,5,403.0,14.70,88.63,16.14,13.10
1.22358,0.00,19.580,0,0.6050,6.9430,97.40,1.8773,5,403.0,14.70,363.43,4.59,41.30
1.34284,0.00,19.580,0,0.6050,6.0660,100.00,1.7573,5,403.0,14.70,353.89,6.43,24.30
1.42502,0.00,19.580,0,0.8710,6.5100,100.00,1.7659,5,403.0,14.70,364.31,7.39,23.30
1.27346,0.00,19.580,1,0.6050,6.2500,92.60,1.7984,5,403.0,14.70,338.92,5.50,27.00
1.46336,0.00,19.580,0,0.6050,7.4890,90.80,1.9709,5,403.0,14.70,374.43,1.73,50.00
1.83377,0.00,19.580,1,0.6050,7.8020,98.20,2.0407,5,403.0,14.70,389.61,1.92,50.00
1.51902,0.00,19.580,1,0.6050,8.3750,93.90,2.1620,5,403.0,14.70,388.45,3.32,50.00
2.24236,0.00,19.580,0,0.6050,5.8540,91.80,2.4220,5,403.0,14.70,395.11,11.64,22.70
2.92400,0.00,19.580,0,0.6050,6.1010,93.00,2.2834,5,403.0,14.70,240.16,9.81,25.00
2.01019,0.00,19.580,0,0.6050,7.9290,96.20,2.0459,5,403.0,14.70,369.30,3.70,50.00
1.80028,0.00,19.580,0,0.6050,5.8770,79.20,2.4259,5,403.0,14.70,227.61,12.14,23.80
2.30040,0.00,19.580,0,0.6050,6.3190,96.10,2.1000,5,403.0,14.70,297.09,11.10,23.80
2.44953,0.00,19.580,0,0.6050,6.4020,95.20,2.2625,5,403.0,14.70,330.04,11.32,22.30
1.20742,0.00,19.580,0,0.6050,5.8750,94.60,2.4259,5,403.0,14.70,292.29,14.43,17.40
2.31390,0.00,19.580,0,0.6050,5.8800,97.30,2.3887,5,403.0,14.70,348.13,12.03,19.10
0.13914,0.00,4.050,0,0.5100,5.5720,88.50,2.5961,5,296.0,16.60,396.90,14.69,23.10
0.09178,0.00,4.050,0,0.5100,6.4160,84.10,2.6463,5,296.0,16.60,395.50,9.04,23.60
0.08447,0.00,4.050,0,0.5100,5.8590,68.70,2.7019,5,296.0,16.60,393.23,9.64,22.60
0.06664,0.00,4.050,0,0.5100,6.5460,33.10,3.1323,5,296.0,16.60,390.96,5.33,29.40
0.07022,0.00,4.050,0,0.5100,6.0200,47.20,3.5549,5,296.0,16.60,393.23,10.11,23.20
0.05425,0.00,4.050,0,0.5100,6.3150,73.40,3.3175,5,296.0,16.60,395.60,6.29,24.60
0.06642,0.00,4.050,0,0.5100,6.8600,74.40,2.9153,5,296.0,16.60,391.27,6.92,29.90
0.05780,0.00,2.460,0,0.4880,6.9800,58.40,2.8290,3,193.0,17.80,396.90,5.04,37.20
0.06588,0.00,2.460,0,0.4880,7.7650,83.30,2.7410,3,193.0,17.80,395.56,7.56,39.80
0.06888,0.00,2.460,0,0.4880,6.1440,62.20,2.5979,3,193.0,17.80,396.90,9.45,36.20
0.09103,0.00,2.460,0,0.4880,7.1550,92.20,2.7006,3,193.0,17.80,394.12,4.82,37.90
0.10008,0.00,2.460,0,0.4880,6.5630,95.60,2.8470,3,193.0,17.80,396.90,5.68,32.50
0.08308,0.00,2.460,0,0.4880,5.6040,89.80,2.9879,3,193.0,17.80,391.00,13.98,26.40
0.06047,0.00,2.460,0,0.4880,6.1530,68.80,3.2797,3,193.0,17.80,387.11,13.15,29.60
0.05602,0.00,2.460,0,0.4880,7.8310,53.60,3.1992,3,193.0,17.80,392.63,4.45,50.00
0.07875,45.00,3.440,0,0.4370,6.7820,41.10,3.7886,5,398.0,15.20,393.87,6.68,32.00
0.12579,45.00,3.440,0,0.4370,6.5560,29.10,4.5667,5,398.0,15.20,382.84,4.56,29.80
0.08370,45.00,3.440,0,0.4370,7.1850,38.90,4.5667,5,398.0,15.20,396.90,5.39,34.90
0.09068,45.00,3.440,0,0.4370,6.9510,21.50,6.4798,5,398.0,15.20,377.68,5.10,37.00
0.06911,45.00,3.440,0,0.4370,6.7390,30.80,6.4798,5,398.0,15.20,389.71,4.69,30.50
0.08664,45.00,3.440,0,0.4370,7.1780,26.30,6.4798,5,398.0,15.20,390.49,2.87,36.40
0.02187,60.00,2.930,0,0.4010,6.8000,9.90,6.2196,1,265.0,15.60,393.37,5.03,31.10
0.01439,60.00,2.930,0,0.4010,6.6040,18.80,6.2196,1,265.0,15.60,376.70,4.38,29.10
0.01381,80.00,0.460,0,0.4220,7.8750,32.00,5.6484,4,255.0,14.40,394.23,2.97,50.00
0.04011,80.00,1.520,0,0.4040,7.2870,34.10,7.3090,2,329.0,12.60,396.90,4.08,33.30
0.04666,80.00,1.520,0,0.4040,7.1070,36.60,7.3090,2,329.0,12.60,354.31,8.61,30.30
0.03768,80.00,1.520,0,0.4040,7.2740,38.30,7.3090,2,329.0,12.60,392.20,6.62,34.60
0.03150,95.00,1.470,0,0.4030,6.9750,15.30,7.6534,3,402.0,17.00,396.90,4.56,34.90
0.01778,95.00,1.470,0,0.4030,7.1350,13.90,7.6534,3,402.0,17.00,384.30,4.45,32.90
0.03445,82.50,2.030,0,0.4150,6.1620,38.40,6.2700,2,348.0,14.70,393.77,7.43,24.10
0.02177,82.50,2.030,0,0.4150,7.6100,15.70,6.2700,2,348.0,14.70,395.38,3.11,42.30
0.03510,95.00,2.680,0,0.4161,7.8530,33.20,5.1180,4,224.0,14.70,392.78,3.81,48.50
0.02009,95.00,2.680,0,0.4161,8.0340,31.90,5.1180,4,224.0,14.70,390.55,2.88,50.00
0.13642,0.00,10.590,0,0.4890,5.8910,22.30,3.9454,4,277.0,18.60,396.90,10.87,22.60
0.22969,0.00,10.590,0,0.4890,6.3260,52.50,4.3549,4,277.0,18.60,394.87,10.97,24.40
0.25199,0.00,10.590,0,0.4890,5.7830,72.70,4.3549,4,277.0,18.60,389.43,18.06,22.50
0.13587,0.00,10.590,1,0.4890,6.0640,59.10,4.2392,4,277.0,18.60,381.32,14.66,24.40
0.43571,0.00,10.590,1,0.4890,5.3440,100.00,3.8750,4,277.0,18.60,396.90,23.09,20.00
0.17446,0.00,10.590,1,0.4890,5.9600,92.10,3.8771,4,277.0,18.60,393.25,17.27,21.70
0.37578,0.00,10.590,1,0.4890,5.4040,88.60,3.6650,4,277.0,18.60,395.24,23.98,19.30
0.21719,0.00,10.590,1,0.4890,5.8070,53.80,3.6526,4,277.0,18.60,390.94,16.03,22.40
0.14052,0.00,10.590,0,0.4890,6.3750,32.30,3.9454,4,277.0,18.60,385.81,9.38,28.10
0.28955,0.00,10.590,0,0.4890,5.4120,9.80,3.5875,4,277.0,18.60,348.93,29.55,23.70
0.19802,0.00,10.590,0,0.4890,6.1820,42.40,3.9454,4,277.0,18.60,393.63,9.47,25.00
0.04560,0.00,13.890,1,0.5500,5.8880,56.00,3.1121,5,276.0,16.40,392.80,13.51,23.30
0.07013,0.00,13.890,0,0.5500,6.6420,85.10,3.4211,5,276.0,16.40,392.78,9.69,28.70
0.11069,0.00,13.890,1,0.5500,5.9510,93.80,2.8893,5,276.0,16.40,396.90,17.92,21.50
0.11425,0.00,13.890,1,0.5500,6.3730,92.40,3.3633,5,276.0,16.40,393.74,10.50,23.00
0.35809,0.00,6.200,1,0.5070,6.9510,88.50,2.8617,8,307.0,17.40,391.70,9.71,26.70
0.40771,0.00,6.200,1,0.5070,6.1640,91.30,3.0480,8,307.0,17.40,395.24,21.46,21.70
0.62356,0.00,6.200,1,0.5070,6.8790,77.70,3.2721,8,307.0,17.40,390.39,9.93,27.50
0.61470,0.00,6.200,0,0.5070,6.6180,80.80,3.2721,8,307.0,17.40,396.90,7.60,30.10
0.31533,0.00,6.200,0,0.5040,8.2660,78.30,2.8944,8,307.0,17.40,385.05,4.14,44.80
0.52693,0.00,6.200,0,0.5040,8.7250,83.00,2.8944,8,307.0,17.40,382.00,4.63,50.00
0.38214,0.00,6.200,0,0.5040,8.0400,86.50,3.2157,8,307.0,17.40,387.38,3.13,37.60
0.41238,0.00,6.200,0,0.5040,7.1630,79.90,3.2157,8,307.0,17.40,372.08,6.36,31.60
0.29819,0.00,6.200,0,0.5040,7.6860,17.00,3.3751,8,307.0,17.40,377.51,3.92,46.70
0.44178,0.00,6.200,0,0.5040,6.5520,21.40,3.3751,8,307.0,17.40,380.34,3.76,31.50
0.53700,0.00,6.200,0,0.5040,5.9810,68.10,3.6715,8,307.0,17.40,378.35,11.65,24.30
0.46296,0.00,6.200,0,0.5040,7.4120,76.90,3.6715,8,307.0,17.40,376.14,5.25,31.70
0.57529,0.00,6.200,0,0.5070,8.3370,73.30,3.8384,8,307.0,17.40,385.91,2.47,41.70
0.33147,0.00,6.200,0,0.5070,8.2470,70.40,3.6519,8,307.0,17.40,378.95,3.95,48.30
0.44791,0.00,6.200,1,0.5070,6.7260,66.50,3.6519,8,307.0,17.40,360.20,8.05,29.00
0.33045,0.00,6.200,0,0.5070,6.0860,61.50,3.6519,8,307.0,17.40,376.75,10.88,24.00
0.52058,0.00,6.200,1,0.5070,6.6310,76.50,4.1480,8,307.0,17.40,388.45,9.54,25.10
0.51183,0.00,6.200,0,0.5070,7.3580,71.60,4.1480,8,307.0,17.40,390.07,4.73,31.50
0.08244,30.00,4.930,0,0.4280,6.4810,18.50,6.1899,6,300.0,16.60,379.41,6.36,23.70
0.09252,30.00,4.930,0,0.4280,6.6060,42.20,6.1899,6,300.0,16.60,383.78,7.37,23.30
0.11329,30.00,4.930,0,0.4280,6.8970,54.30,6.3361,6,300.0,16.60,391.25,11.38,22.00
0.10612,30.00,4.930,0,0.4280,6.0950,65.10,6.3361,6,300.0,16.60,394.62,12.40,20.10
0.10290,30.00,4.930,0,0.4280,6.3580,52.90,7.0355,6,300.0,16.60,372.75,11.22,22.20
0.12757,30.00,4.930,0,0.4280,6.3930,7.80,7.0355,6,300.0,16.60,374.71,5.19,23.70
0.20608,22.00,5.860,0,0.4310,5.5930,76.50,7.9549,7,330.0,19.10,372.49,12.50,17.60
0.19133,22.00,5.860,0,0.4310,5.6050,70.20,7.9549,7,330.0,19.10,389.13,18.46,18.50
0.33983,22.00,5.860,0,0.4310,6.1080,34.90,8.0555,7,330.0,19.10,390.18,9.16,24.30
0.19657,22.00,5.860,0,0.4310,6.2260,79.20,8.0555,7,330.0,19.10,376.14,10.15,20.50
0.16439,22.00,5.860,0,0.4310,6.4330,49.10,7.8265,7,330.0,19.10,374.71,9.52,24.50
0.19073,22.00,5.860,0,0.4310,6.7180,17.50,7.8265,7,330.0,19.10,393.74,6.56,26.20
0.14030,22.00,5.860,0,0.4310,6.4870,13.00,7.3967,7,330.0,19.10,396.28,5.90,24.40
0.21409,22.00,5.860,0,0.4310,6.4380,8.90,7.3967,7,330.0,19.10,377.07,3.59,24.80
0.08221,22.00,5.860,0,0.4310,6.9570,6.80,8.9067,7,330.0,19.10,386.09,3.53,29.60
0.36894,22.00,5.860,0,0.4310,8.2590,8.40,8.9067,7,330.0,19.10,396.90,3.54,42.80
0.04819,80.00,3.640,0,0.3920,6.1080,32.00,9.2203,1,315.0,16.40,392.89,6.57,21.90
0.03548,80.00,3.640,0,0.3920,5.8760,19.10,9.2203,1,315.0,16.40,395.18,9.25,20.90
0.01538,90.00,3.750,0,0.3940,7.4540,34.20,6.3361,3,244.0,15.90,386.34,3.11,44.00
0.61154,20.00,3.970,0,0.6470,8.7040,86.90,1.8010,5,264.0,13.00,389.70,5.12,50.00
0.66351,20.00,3.970,0,0.6470,7.3330,100.00,1.8946,5,264.0,13.00,383.29,7.79,36.00
0.65665,20.00,3.970,0,0.6470,6.8420,100.00,2.0107,5,264.0,13.00,391.93,6.90,30.10
0.54011,20.00,3.970,0,0.6470,7.2030,81.80,2.1121,5,264.0,13.00,392.80,9.59,33.80
0.53412,20.00,3.970,0,0.6470,7.5200,89.40,2.1398,5,264.0,13.00,388.37,7.26,43.10
0.52014,20.00,3.970,0,0.6470,8.3980,91.50,2.2885,5,264.0,13.00,386.86,5.91,48.80
0.82526,20.00,3.970,0,0.6470,7.3270,94.50,2.0788,5,264.0,13.00,393.42,11.25,31.00
0.55007,20.00,3.970,0,0.6470,7.2060,91.60,1.9301,5,264.0,13.00,387.89,8.10,36.50
0.76162,20.00,3.970,0,0.6470,5.5600,62.80,1.9865,5,264.0,13.00,392.40,10.45,22.80
0.78570,20.00,3.970,0,0.6470,7.0140,84.60,2.1329,5,264.0,13.00,384.07,14.79,30.70
0.57834,20.00,3.970,0,0.5750,8.2970,67.00,2.4216,5,264.0,13.00,384.54,7.44,50.00
0.54050,20.00,3.970,0,0.5750,7.4700,52.60,2.8720,5,264.0,13.00,390.30,3.16,43.50
0.09065,20.00,6.960,1,0.4640,5.9200,61.50,3.9175,3,223.0,18.60,391.34,13.65,20.70
0.29916,20.00,6.960,0,0.4640,5.8560,42.10,4.4290,3,223.0,18.60,388.65,13.00,21.10
0.16211,20.00,6.960,0,0.4640,6.2400,16.30,4.4290,3,223.0,18.60,396.90,6.59,25.20
0.11460,20.00,6.960,0,0.4640,6.5380,58.70,3.9175,3,223.0,18.60,394.96,7.73,24.40
0.22188,20.00,6.960,1,0.4640,7.6910,51.80,4.3665,3,223.0,18.60,390.77,6.58,35.20
0.05644,40.00,6.410,1,0.4470,6.7580,32.90,4.0776,4,254.0,17.60,396.90,3.53,32.40
0.09604,40.00,6.410,0,0.4470,6.8540,42.80,4.2673,4,254.0,17.60,396.90,2.98,32.00
0.10469,40.00,6.410,1,0.4470,7.2670,49.00,4.7872,4,254.0,17.60,389.25,6.05,33.20
0.06127,40.00,6.410,1,0.4470,6.8260,27.60,4.8628,4,254.0,17.60,393.45,4.16,33.10
0.07978,40.00,6.410,0,0.4470,6.4820,32.10,4.1403,4,254.0,17.60,396.90,7.19,29.10
0.21038,20.00,3.330,0,0.4429,6.8120,32.20,4.1007,5,216.0,14.90,396.90,4.85,35.10
0.03578,20.00,3.330,0,0.4429,7.8200,64.50,4.6947,5,216.0,14.90,387.31,3.76,45.40
0.03705,20.00,3.330,0,0.4429,6.9680,37.20,5.2447,5,216.0,14.90,392.23,4.59,35.40
0.06129,20.00,3.330,1,0.4429,7.6450,49.70,5.2119,5,216.0,14.90,377.07,3.01,46.00
0.01501,90.00,1.210,1,0.4010,7.9230,24.80,5.8850,1,198.0,13.60,395.52,3.16,50.00
0.00906,90.00,2.970,0,0.4000,7.0880,20.80,7.3073,1,285.0,15.30,394.72,7.85,32.20
0.01096,55.00,2.250,0,0.3890,6.4530,31.90,7.3073,1,300.0,15.30,394.72,8.23,22.00
0.01965,80.00,1.760,0,0.3850,6.2300,31.50,9.0892,1,241.0,18.20,341.60,12.93,20.10
0.03871,52.50,5.320,0,0.4050,6.2090,31.30,7.3172,6,293.0,16.60,396.90,7.14,23.20
0.04590,52.50,5.320,0,0.4050,6.3150,45.60,7.3172,6,293.0,16.60,396.90,7.60,22.30
0.04297,52.50,5.320,0,0.4050,6.5650,22.90,7.3172,6,293.0,16.60,371.72,9.51,24.80
0.03502,80.00,4.950,0,0.4110,6.8610,27.90,5.1167,4,245.0,19.20,396.90,3.33,28.50
0.07886,80.00,4.950,0,0.4110,7.1480,27.70,5.1167,4,245.0,19.20,396.90,3.56,37.30
0.03615,80.00,4.950,0,0.4110,6.6300,23.40,5.1167,4,245.0,19.20,396.90,4.70,27.90
0.08265,0.00,13.920,0,0.4370,6.1270,18.40,5.5027,4,289.0,16.00,396.90,8.58,23.90
0.08199,0.00,13.920,0,0.4370,6.0090,42.30,5.5027,4,289.0,16.00,396.90,10.40,21.70
0.12932,0.00,13.920,0,0.4370,6.6780,31.10,5.9604,4,289.0,16.00,396.90,6.27,28.60
0.05372,0.00,13.920,0,0.4370,6.5490,51.00,5.9604,4,289.0,16.00,392.85,7.39,27.10
0.14103,0.00,13.920,0,0.4370,5.7900,58.00,6.3200,4,289.0,16.00,396.90,15.84,20.30
0.06466,70.00,2.240,0,0.4000,6.3450,20.10,7.8278,5,358.0,14.80,368.24,4.97,22.50
0.05561,70.00,2.240,0,0.4000,7.0410,10.00,7.8278,5,358.0,14.80,371.58,4.74,29.00
0.04417,70.00,2.240,0,0.4000,6.8710,47.40,7.8278,5,358.0,14.80,390.86,6.07,24.80
0.03537,34.00,6.090,0,0.4330,6.5900,40.40,5.4917,7,329.0,16.10,395.75,9.50,22.00
0.09266,34.00,6.090,0,0.4330,6.4950,18.40,5.4917,7,329.0,16.10,383.61,8.67,26.40
0.10000,34.00,6.090,0,0.4330,6.9820,17.70,5.4917,7,329.0,16.10,390.43,4.86,33.10
0.05515,33.00,2.180,0,0.4720,7.2360,41.10,4.0220,7,222.0,18.40,393.68,6.93,36.10
0.05479,33.00,2.180,0,0.4720,6.6160,58.10,3.3700,7,222.0,18.40,393.36,8.93,28.40
0.07503,33.00,2.180,0,0.4720,7.4200,71.90,3.0992,7,222.0,18.40,396.90,6.47,33.40
0.04932,33.00,2.180,0,0.4720,6.8490,70.30,3.1827,7,222.0,18.40,396.90,7.53,28.20
0.49298,0.00,9.900,0,0.5440,6.6350,82.50,3.3175,4,304.0,18.40,396.90,4.54,22.80
0.34940,0.00,9.900,0,0.5440,5.9720,76.70,3.1025,4,304.0,18.40,396.24,9.97,20.30
2.63548,0.00,9.900,0,0.5440,4.9730,37.80,2.5194,4,304.0,18.40,350.45,12.64,16.10
0.79041,0.00,9.900,0,0.5440,6.1220,52.80,2.6403,4,304.0,18.40,396.90,5.98,22.10
0.26169,0.00,9.900,0,0.5440,6.0230,90.40,2.8340,4,304.0,18.40,396.30,11.72,19.40
0.26938,0.00,9.900,0,0.5440,6.2660,82.80,3.2628,4,304.0,18.40,393.39,7.90,21.60
0.36920,0.00,9.900,0,0.5440,6.5670,87.30,3.6023,4,304.0,18.40,395.69,9.28,23.80
0.25356,0.00,9.900,0,0.5440,5.7050,77.70,3.9450,4,304.0,18.40,396.42,11.50,16.20
0.31827,0.00,9.900,0,0.5440,5.9140,83.20,3.9986,4,304.0,18.40,390.70,18.33,17.80
0.24522,0.00,9.900,0,0.5440,5.7820,71.70,4.0317,4,304.0,18.40,396.90,15.94,19.80
0.40202,0.00,9.900,0,0.5440,6.3820,67.20,3.5325,4,304.0,18.40,395.21,10.36,23.10
0.47547,0.00,9.900,0,0.5440,6.1130,58.80,4.0019,4,304.0,18.40,396.23,12.73,21.00
0.16760,0.00,7.380,0,0.4930,6.4260,52.30,4.5404,5,287.0,19.60,396.90,7.20,23.80
0.18159,0.00,7.380,0,0.4930,6.3760,54.30,4.5404,5,287.0,19.60,396.90,6.87,23.10
0.35114,0.00,7.380,0,0.4930,6.0410,49.90,4.7211,5,287.0,19.60,396.90,7.70,20.40
0.28392,0.00,7.380,0,0.4930,5.7080,74.30,4.7211,5,287.0,19.60,391.13,11.74,18.50
0.34109,0.00,7.380,0,0.4930,6.4150,40.10,4.7211,5,287.0,19.60,396.90,6.12,25.00
0.19186,0.00,7.380,0,0.4930,6.4310,14.70,5.4159,5,287.0,19.60,393.68,5.08,24.60
0.30347,0.00,7.380,0,0.4930,6.3120,28.90,5.4159,5,287.0,19.60,396.90,6.15,23.00
0.24103,0.00,7.380,0,0.4930,6.0830,43.70,5.4159,5,287.0,19.60,396.90,12.79,22.20
0.06617,0.00,3.240,0,0.4600,5.8680,25.80,5.2146,4,430.0,16.90,382.44,9.97,19.30
0.06724,0.00,3.240,0,0.4600,6.3330,17.20,5.2146,4,430.0,16.90,375.21,7.34,22.60
0.04544,0.00,3.240,0,0.4600,6.1440,32.20,5.8736,4,430.0,16.90,368.57,9.09,19.80
0.05023,35.00,6.060,0,0.4379,5.7060,28.40,6.6407,1,304.0,16.90,394.02,12.43,17.10
0.03466,35.00,6.060,0,0.4379,6.0310,23.30,6.6407,1,304.0,16.90,362.25,7.83,19.40
0.05083,0.00,5.190,0,0.5150,6.3160,38.10,6.4584,5,224.0,20.20,389.71,5.68,22.20
0.03738,0.00,5.190,0,0.5150,6.3100,38.50,6.4584,5,224.0,20.20,389.40,6.75,20.70
0.03961,0.00,5.190,0,0.5150,6.0370,34.50,5.9853,5,224.0,20.20,396.90,8.01,21.10
0.03427,0.00,5.190,0,0.5150,5.8690,46.30,5.2311,5,224.0,20.20,396.90,9.80,19.50
0.03041,0.00,5.190,0,0.5150,5.8950,59.60,5.6150,5,224.0,20.20,394.81,10.56,18.50
0.03306,0.00,5.190,0,0.5150,6.0590,37.30,4.8122,5,224.0,20.20,396.14,8.51,20.60
0.05497,0.00,5.190,0,0.5150,5.9850,45.40,4.8122,5,224.0,20.20,396.90,9.74,19.00
0.06151,0.00,5.190,0,0.5150,5.9680,58.50,4.8122,5,224.0,20.20,396.90,9.29,18.70
0.01301,35.00,1.520,0,0.4420,7.2410,49.30,7.0379,1,284.0,15.50,394.74,5.49,32.70
0.02498,0.00,1.890,0,0.5180,6.5400,59.70,6.2669,1,422.0,15.90,389.96,8.65,16.50
0.02543,55.00,3.780,0,0.4840,6.6960,56.40,5.7321,5,370.0,17.60,396.90,7.18,23.90
0.03049,55.00,3.780,0,0.4840,6.8740,28.10,6.4654,5,370.0,17.60,387.97,4.61,31.20
0.03113,0.00,4.390,0,0.4420,6.0140,48.50,8.0136,3,352.0,18.80,385.64,10.53,17.50
0.06162,0.00,4.390,0,0.4420,5.8980,52.30,8.0136,3,352.0,18.80,364.61,12.67,17.20
0.01870,85.00,4.150,0,0.4290,6.5160,27.70,8.5353,4,351.0,17.90,392.43,6.36,23.10
0.01501,80.00,2.010,0,0.4350,6.6350,29.70,8.3440,4,280.0,17.00,390.94,5.99,24.50
0.02899,40.00,1.250,0,0.4290,6.9390,34.50,8.7921,1,335.0,19.70,389.85,5.89,26.60
0.06211,40.00,1.250,0,0.4290,6.4900,44.40,8.7921,1,335.0,19.70,396.90,5.98,22.90
0.07950,60.00,1.690,0,0.4110,6.5790,35.90,10.7103,4,411.0,18.30,370.78,5.49,24.10
0.07244,60.00,1.690,0,0.4110,5.8840,18.50,10.7103,4,411.0,18.30,392.33,7.79,18.60
0.01709,90.00,2.020,0,0.4100,6.7280,36.10,12.1265,5,187.0,17.00,384.46,4.50,30.10
0.04301,80.00,1.910,0,0.4130,5.6630,21.90,10.5857,4,334.0,22.00,382.80,8.05,18.20
0.10659,80.00,1.910,0,0.4130,5.9360,19.50,10.5857,4,334.0,22.00,376.04,5.57,20.60
8.98296,0.00,18.100,1,0.7700,6.2120,97.40,2.1222,24,666.0,20.20,377.73,17.60,17.80
3.84970,0.00,18.100,1,0.7700,6.3950,91.00,2.5052,24,666.0,20.20,391.34,13.27,21.70
5.20177,0.00,18.100,1,0.7700,6.1270,83.40,2.7227,24,666.0,20.20,395.43,11.48,22.70
4.26131,0.00,18.100,0,0.7700,6.1120,81.30,2.5091,24,666.0,20.20,390.74,12.67,22.60
4.54192,0.00,18.100,0,0.7700,6.3980,88.00,2.5182,24,666.0,20.20,374.56,7.79,25.00
3.83684,0.00,18.100,0,0.7700,6.2510,91.10,2.2955,24,666.0,20.20,350.65,14.19,19.90
3.67822,0.00,18.100,0,0.7700,5.3620,96.20,2.1036,24,666.0,20.20,380.79,10.19,20.80
4.22239,0.00,18.100,1,0.7700,5.8030,89.00,1.9047,24,666.0,20.20,353.04,14.64,16.80
3.47428,0.00,18.100,1,0.7180,8.7800,82.90,1.9047,24,666.0,20.20,354.55,5.29,21.90
4.55587,0.00,18.100,0,0.7180,3.5610,87.90,1.6132,24,666.0,20.20,354.70,7.12,27.50
3.69695,0.00,18.100,0,0.7180,4.9630,91.40,1.7523,24,666.0,20.20,316.03,14.00,21.90
13.52220,0.00,18.100,0,0.6310,3.8630,100.00,1.5106,24,666.0,20.20,131.42,13.33,23.10
4.89822,0.00,18.100,0,0.6310,4.9700,100.00,1.3325,24,666.0,20.20,375.52,3.26,50.00
5.66998,0.00,18.100,1,0.6310,6.6830,96.80,1.3567,24,666.0,20.20,375.33,3.73,50.00
6.53876,0.00,18.100,1,0.6310,7.0160,97.50,1.2024,24,666.0,20.20,392.05,2.96,50.00
9.23230,0.00,18.100,0,0.6310,6.2160,100.00,1.1691,24,666.0,20.20,366.15,9.53,50.00
8.26725,0.00,18.100,1,0.6680,5.8750,89.60,1.1296,24,666.0,20.20,347.88,8.88,50.00
11.10810,0.00,18.100,0,0.6680,4.9060,100.00,1.1742,24,666.0,20.20,396.90,34.77,13.80
18.49820,0.00,18.100,0,0.6680,4.1380,100.00,1.1370,24,666.0,20.20,396.90,37.97,13.80
19.60910,0.00,18.100,0,0.6710,7.3130,97.90,1.3163,24,666.0,20.20,396.90,13.44,15.00
15.28800,0.00,18.100,0,0.6710,6.6490,93.30,1.3449,24,666.0,20.20,363.02,23.24,13.90
9.82349,0.00,18.100,0,0.6710,6.7940,98.80,1.3580,24,666.0,20.20,396.90,21.24,13.30
23.64820,0.00,18.100,0,0.6710,6.3800,96.20,1.3861,24,666.0,20.20,396.90,23.69,13.10
17.86670,0.00,18.100,0,0.6710,6.2230,100.00,1.3861,24,666.0,20.20,393.74,21.78,10.20
88.97620,0.00,18.100,0,0.6710,6.9680,91.90,1.4165,24,666.0,20.20,396.90,17.21,10.40
15.87440,0.00,18.100,0,0.6710,6.5450,99.10,1.5192,24,666.0,20.20,396.90,21.08,10.90
9.18702,0.00,18.100,0,0.7000,5.5360,100.00,1.5804,24,666.0,20.20,396.90,23.60,11.30
7.99248,0.00,18.100,0,0.7000,5.5200,100.00,1.5331,24,666.0,20.20,396.90,24.56,12.30
20.08490,0.00,18.100,0,0.7000,4.3680,91.20,1.4395,24,666.0,20.20,285.83,30.63,8.80
16.81180,0.00,18.100,0,0.7000,5.2770,98.10,1.4261,24,666.0,20.20,396.90,30.81,7.20
24.39380,0.00,18.100,0,0.7000,4.6520,100.00,1.4672,24,666.0,20.20,396.90,28.28,10.50
22.59710,0.00,18.100,0,0.7000,5.0000,89.50,1.5184,24,666.0,20.20,396.90,31.99,7.40
14.33370,0.00,18.100,0,0.7000,4.8800,100.00,1.5895,24,666.0,20.20,372.92,30.62,10.20
8.15174,0.00,18.100,0,0.7000,5.3900,98.90,1.7281,24,666.0,20.20,396.90,20.85,11.50
6.96215,0.00,18.100,0,0.7000,5.7130,97.00,1.9265,24,666.0,20.20,394.43,17.11,15.10
5.29305,0.00,18.100,0,0.7000,6.0510,82.50,2.1678,24,666.0,20.20,378.38,18.76,23.20
11.57790,0.00,18.100,0,0.7000,5.0360,97.00,1.7700,24,666.0,20.20,396.90,25.68,9.70
8.64476,0.00,18.100,0,0.6930,6.1930,92.60,1.7912,24,666.0,20.20,396.90,15.17,13.80
13.35980,0.00,18.100,0,0.6930,5.8870,94.70,1.7821,24,666.0,20.20,396.90,16.35,12.70
8.71675,0.00,18.100,0,0.6930,6.4710,98.80,1.7257,24,666.0,20.20,391.98,17.12,13.10
5.87205,0.00,18.100,0,0.6930,6.4050,96.00,1.6768,24,666.0,20.20,396.90,19.37,12.50
7.67202,0.00,18.100,0,0.6930,5.7470,98.90,1.6334,24,666.0,20.20,393.10,19.92,8.50
38.35180,0.00,18.100,0,0.6930,5.4530,100.00,1.4896,24,666.0,20.20,396.90,30.59,5.00
9.91655,0.00,18.100,0,0.6930,5.8520,77.80,1.5004,24,666.0,20.20,338.16,29.97,6.30
25.04610,0.00,18.100,0,0.6930,5.9870,100.00,1.5888,24,666.0,20.20,396.90,26.77,5.60
14.23620,0.00,18.100,0,0.6930,6.3430,100.00,1.5741,24,666.0,20.20,396.90,20.32,7.20
9.59571,0.00,18.100,0,0.6930,6.4040,100.00,1.6390,24,666.0,20.20,376.11,20.31,12.10
24.80170,0.00,18.100,0,0.6930,5.3490,96.00,1.7028,24,666.0,20.20,396.90,19.77,8.30
41.52920,0.00,18.100,0,0.6930,5.5310,85.40,1.6074,24,666.0,20.20,329.46,27.38,8.50
67.92080,0.00,18.100,0,0.6930,5.6830,100.00,1.4254,24,666.0,20.20,384.97,22.98,5.00
20.71620,0.00,18.100,0,0.6590,4.1380,100.00,1.1781,24,666.0,20.20,370.22,23.34,11.90
11.95110,0.00,18.100,0,0.6590,5.6080,100.00,1.2852,24,666.0,20.20,332.09,12.13,27.90
7.40389,0.00,18.100,0,0.5970,5.6170,97.90,1.4547,24,666.0,20.20,314.64,26.40,17.20
14.43830,0.00,18.100,0,0.5970,6.8520,100.00,1.4655,24,666.0,20.20,179.36,19.78,27.50
51.13580,0.00,18.100,0,0.5970,5.7570,100.00,1.4130,24,666.0,20.20,2.60,10.11,15.00
14.05070,0.00,18.100,0,0.5970,6.6570,100.00,1.5275,24,666.0,20.20,35.05,21.22,17.20
18.81100,0.00,18.100,0,0.5970,4.6280,100.00,1.5539,24,666.0,20.20,28.79,34.37,17.90
28.65580,0.00,18.100,0,0.5970,5.1550,100.00,1.5894,24,666.0,20.20,210.97,20.08,16.30
45.74610,0.00,18.100,0,0.6930,4.5190,100.00,1.6582,24,666.0,20.20,88.27,36.98,7.00
18.08460,0.00,18.100,0,0.6790,6.4340,100.00,1.8347,24,666.0,20.20,27.25,29.05,7.20
10.83420,0.00,18.100,0,0.6790,6.7820,90.80,1.8195,24,666.0,20.20,21.57,25.79,7.50
25.94060,0.00,18.100,0,0.6790,5.3040,89.10,1.6475,24,666.0,20.20,127.36,26.64,10.40
73.53410,0.00,18.100,0,0.6790,5.9570,100.00,1.8026,24,666.0,20.20,16.45,20.62,8.80
11.81230,0.00,18.100,0,0.7180,6.8240,76.50,1.7940,24,666.0,20.20,48.45,22.74,8.40
11.08740,0.00,18.100,0,0.7180,6.4110,100.00,1.8589,24,666.0,20.20,318.75,15.02,16.70
7.02259,0.00,18.100,0,0.7180,6.0060,95.30,1.8746,24,666.0,20.20,319.98,15.70,14.20
12.04820,0.00,18.100,0,0.6140,5.6480,87.60,1.9512,24,666.0,20.20,291.55,14.10,20.80
7.05042,0.00,18.100,0,0.6140,6.1030,85.10,2.0218,24,666.0,20.20,2.52,23.29,13.40
8.79212,0.00,18.100,0,0.5840,5.5650,70.60,2.0635,24,666.0,20.20,3.65,17.16,11.70
15.86030,0.00,18.100,0,0.6790,5.8960,95.40,1.9096,24,666.0,20.20,7.68,24.39,8.30
12.24720,0.00,18.100,0,0.5840,5.8370,59.70,1.9976,24,666.0,20.20,24.65,15.69,10.20
37.66190,0.00,18.100,0,0.6790,6.2020,78.70,1.8629,24,666.0,20.20,18.82,14.52,10.90
7.36711,0.00,18.100,0,0.6790,6.1930,78.10,1.9356,24,666.0,20.20,96.73,21.52,11.00
9.33889,0.00,18.100,0,0.6790,6.3800,95.60,1.9682,24,666.0,20.20,60.72,24.08,9.50
8.49213,0.00,18.100,0,0.5840,6.3480,86.10,2.0527,24,666.0,20.20,83.45,17.64,14.50
10.06230,0.00,18.100,0,0.5840,6.8330,94.30,2.0882,24,666.0,20.20,81.33,19.69,14.10
6.44405,0.00,18.100,0,0.5840,6.4250,74.80,2.2004,24,666.0,20.20,97.95,12.03,16.10
5.58107,0.00,18.100,0,0.7130,6.4360,87.90,2.3158,24,666.0,20.20,100.19,16.22,14.30
13.91340,0.00,18.100,0,0.7130,6.2080,95.00,2.2222,24,666.0,20.20,100.63,15.17,11.70
11.16040,0.00,18.100,0,0.7400,6.6290,94.60,2.1247,24,666.0,20.20,109.85,23.27,13.40
14.42080,0.00,18.100,0,0.7400,6.4610,93.30,2.0026,24,666.0,20.20,27.49,18.05,9.60
15.17720,0.00,18.100,0,0.7400,6.1520,100.00,1.9142,24,666.0,20.20,9.32,26.45,8.70
13.67810,0.00,18.100,0,0.7400,5.9350,87.90,1.8206,24,666.0,20.20,68.95,34.02,8.40
9.39063,0.00,18.100,0,0.7400,5.6270,93.90,1.8172,24,666.0,20.20,396.90,22.88,12.80
22.05110,0.00,18.100,0,0.7400,5.8180,92.40,1.8662,24,666.0,20.20,391.45,22.11,10.50
9.72418,0.00,18.100,0,0.7400,6.4060,97.20,2.0651,24,666.0,20.20,385.96,19.52,17.10
5.66637,0.00,18.100,0,0.7400,6.2190,100.00,2.0048,24,666.0,20.20,395.69,16.59,18.40
9.96654,0.00,18.100,0,0.7400,6.4850,100.00,1.9784,24,666.0,20.20,386.73,18.85,15.40
12.80230,0.00,18.100,0,0.7400,5.8540,96.60,1.8956,24,666.0,20.20,240.52,23.79,10.80
10.67180,0.00,18.100,0,0.7400,6.4590,94.80,1.9879,24,666.0,20.20,43.06,23.98,11.80
6.28807,0.00,18.100,0,0.7400,6.3410,96.40,2.0720,24,666.0,20.20,318.01,17.79,14.90
9.92485,0.00,18.100,0,0.7400,6.2510,96.60,2.1980,24,666.0,20.20,388.52,16.44,12.60
9.32909,0.00,18.100,0,0.7130,6.1850,98.70,2.2616,24,666.0,20.20,396.90,18.13,14.10
7.52601,0.00,18.100,0,0.7130,6.4170,98.30,2.1850,24,666.0,20.20,304.21,19.31,13.00
6.71772,0.00,18.100,0,0.7130,6.7490,92.60,2.3236,24,666.0,20.20,0.32,17.44,13.40
5.44114,0.00,18.100,0,0.7130,6.6550,98.20,2.3552,24,666.0,20.20,355.29,17.73,15.20
5.09017,0.00,18.100,0,0.7130,6.2970,91.80,2.3682,24,666.0,20.20,385.09,17.27,16.10
8.24809,0.00,18.100,0,0.7130,7.3930,99.30,2.4527,24,666.0,20.20,375.87,16.74,17.80
9.51363,0.00,18.100,0,0.7130,6.7280,94.10,2.4961,24,666.0,20.20,6.68,18.71,14.90
4.75237,0.00,18.100,0,0.7130,6.5250,86.50,2.4358,24,666.0,20.20,50.92,18.13,14.10
4.66883,0.00,18.100,0,0.7130,5.9760,87.90,2.5806,24,666.0,20.20,10.48,19.01,12.70
8.20058,0.00,18.100,0,0.7130,5.9360,80.30,2.7792,24,666.0,20.20,3.50,16.94,13.50
7.75223,0.00,18.100,0,0.7130,6.3010,83.70,2.7831,24,666.0,20.20,272.21,16.23,14.90
6.80117,0.00,18.100,0,0.7130,6.0810,84.40,2.7175,24,666.0,20.20,396.90,14.70,20.00
4.81213,0.00,18.100,0,0.7130,6.7010,90.00,2.5975,24,666.0,20.20,255.23,16.42,16.40
3.69311,0.00,18.100,0,0.7130,6.3760,88.40,2.5671,24,666.0,20.20,391.43,14.65,17.70
6.65492,0.00,18.100,0,0.7130,6.3170,83.00,2.7344,24,666.0,20.20,396.90,13.99,19.50
5.82115,0.00,18.100,0,0.7130,6.5130,89.90,2.8016,24,666.0,20.20,393.82,10.29,20.20
7.83932,0.00,18.100,0,0.6550,6.2090,65.40,2.9634,24,666.0,20.20,396.90,13.22,21.40
3.16360,0.00,18.100,0,0.6550,5.7590,48.20,3.0665,24,666.0,20.20,334.40,14.13,19.90
3.77498,0.00,18.100,0,0.6550,5.9520,84.70,2.8715,24,666.0,20.20,22.01,17.15,19.00
4.42228,0.00,18.100,0,0.5840,6.0030,94.50,2.5403,24,666.0,20.20,331.29,21.32,19.10
15.57570,0.00,18.100,0,0.5800,5.9260,71.00,2.9084,24,666.0,20.20,368.74,18.13,19.10
13.07510,0.00,18.100,0,0.5800,5.7130,56.70,2.8237,24,666.0,20.20,396.90,14.76,20.10
4.34879,0.00,18.100,0,0.5800,6.1670,84.00,3.0334,24,666.0,20.20,396.90,16.29,19.90
4.03841,0.00,18.100,0,0.5320,6.2290,90.70,3.0993,24,666.0,20.20,395.33,12.87,19.60
3.56868,0.00,18.100,0,0.5800,6.4370,75.00,2.8965,24,666.0,20.20,393.37,14.36,23.20
4.64689,0.00,18.100,0,0.6140,6.9800,67.60,2.5329,24,666.0,20.20,374.68,11.66,29.80
8.05579,0.00,18.100,0,0.5840,5.4270,95.40,2.4298,24,666.0,20.20,352.58,18.14,13.80
6.39312,0.00,18.100,0,0.5840,6.1620,97.40,2.2060,24,666.0,20.20,302.76,24.10,13.30
4.87141,0.00,18.100,0,0.6140,6.4840,93.60,2.3053,24,666.0,20.20,396.21,18.68,16.70
15.02340,0.00,18.100,0,0.6140,5.3040,97.30,2.1007,24,666.0,20.20,349.48,24.91,12.00
10.23300,0.00,18.100,0,0.6140,6.1850,96.70,2.1705,24,666.0,20.20,379.70,18.03,14.60
14.33370,0.00,18.100,0,0.6140,6.2290,88.00,1.9512,24,666.0,20.20,383.32,13.11,21.40
5.82401,0.00,18.100,0,0.5320,6.2420,64.70,3.4242,24,666.0,20.20,396.90,10.74,23.00
5.70818,0.00,18.100,0,0.5320,6.7500,74.90,3.3317,24,666.0,20.20,393.07,7.74,23.70
5.73116,0.00,18.100,0,0.5320,7.0610,77.00,3.4106,24,666.0,20.20,395.28,7.01,25.00
2.81838,0.00,18.100,0,0.5320,5.7620,40.30,4.0983,24,666.0,20.20,392.92,10.42,21.80
2.37857,0.00,18.100,0,0.5830,5.8710,41.90,3.7240,24,666.0,20.20,370.73,13.34,20.60
3.67367,0.00,18.100,0,0.5830,6.3120,51.90,3.9917,24,666.0,20.20,388.62,10.58,21.20
5.69175,0.00,18.100,0,0.5830,6.1140,79.80,3.5459,24,666.0,20.20,392.68,14.98,19.10
4.83567,0.00,18.100,0,0.5830,5.9050,53.20,3.1523,24,666.0,20.20,388.22,11.45,20.60
0.15086,0.00,27.740,0,0.6090,5.4540,92.70,1.8209,4,711.0,20.10,395.09,18.06,15.20
0.18337,0.00,27.740,0,0.6090,5.4140,98.30,1.7554,4,711.0,20.10,344.05,23.97,7.00
0.20746,0.00,27.740,0,0.6090,5.0930,98.00,1.8226,4,711.0,20.10,318.43,29.68,8.10
0.10574,0.00,27.740,0,0.6090,5.9830,98.80,1.8681,4,711.0,20.10,390.11,18.07,13.60
0.11132,0.00,27.740,0,0.6090,5.9830,83.50,2.1099,4,711.0,20.10,396.90,13.35,20.10
0.17331,0.00,9.690,0,0.5850,5.7070,54.00,2.3817,6,391.0,19.20,396.90,12.01,21.80
0.27957,0.00,9.690,0,0.5850,5.9260,42.60,2.3817,6,391.0,19.20,396.90,13.59,24.50
0.17899,0.00,9.690,0,0.5850,5.6700,28.80,2.7986,6,391.0,19.20,393.29,17.60,23.10
0.28960,0.00,9.690,0,0.5850,5.3900,72.90,2.7986,6,391.0,19.20,396.90,21.14,19.70
0.26838,0.00,9.690,0,0.5850,5.7940,70.60,2.8927,6,391.0,19.20,396.90,14.10,18.30
0.23912,0.00,9.690,0,0.5850,6.0190,65.30,2.4091,6,391.0,19.20,396.90,12.92,21.20
0.17783,0.00,9.690,0,0.5850,5.5690,73.50,2.3999,6,391.0,19.20,395.77,15.10,17.50
0.22438,0.00,9.690,0,0.5850,6.0270,79.70,2.4982,6,391.0,19.20,396.90,14.33,16.80
0.06263,0.00,11.930,0,0.5730,6.5930,69.10,2.4786,1,273.0,21.00,391.99,9.67,22.40
0.04527,0.00,11.930,0,0.5730,6.1200,76.70,2.2875,1,273.0,21.00,396.90,9.08,20.60
0.06076,0.00,11.930,0,0.5730,6.9760,91.00,2.1675,1,273.0,21.00,396.90,5.64,23.90
0.10959,0.00,11.930,0,0.5730,6.7940,89.30,2.3889,1,273.0,21.00,393.45,6.48,22.00
0.04741,0.00,11.930,0,0.5730,6.0300,80.80,2.5050,1,273.0,21.00,396.90,7.88,11.90
1 CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
2 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00
3 0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60
4 0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70
5 0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94 33.40
6 0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622 3 222.0 18.70 396.90 5.33 36.20
7 0.02985 0.00 2.180 0 0.4580 6.4300 58.70 6.0622 3 222.0 18.70 394.12 5.21 28.70
8 0.08829 12.50 7.870 0 0.5240 6.0120 66.60 5.5605 5 311.0 15.20 395.60 12.43 22.90
9 0.14455 12.50 7.870 0 0.5240 6.1720 96.10 5.9505 5 311.0 15.20 396.90 19.15 27.10
10 0.21124 12.50 7.870 0 0.5240 5.6310 100.00 6.0821 5 311.0 15.20 386.63 29.93 16.50
11 0.17004 12.50 7.870 0 0.5240 6.0040 85.90 6.5921 5 311.0 15.20 386.71 17.10 18.90
12 0.22489 12.50 7.870 0 0.5240 6.3770 94.30 6.3467 5 311.0 15.20 392.52 20.45 15.00
13 0.11747 12.50 7.870 0 0.5240 6.0090 82.90 6.2267 5 311.0 15.20 396.90 13.27 18.90
14 0.09378 12.50 7.870 0 0.5240 5.8890 39.00 5.4509 5 311.0 15.20 390.50 15.71 21.70
15 0.62976 0.00 8.140 0 0.5380 5.9490 61.80 4.7075 4 307.0 21.00 396.90 8.26 20.40
16 0.63796 0.00 8.140 0 0.5380 6.0960 84.50 4.4619 4 307.0 21.00 380.02 10.26 18.20
17 0.62739 0.00 8.140 0 0.5380 5.8340 56.50 4.4986 4 307.0 21.00 395.62 8.47 19.90
18 1.05393 0.00 8.140 0 0.5380 5.9350 29.30 4.4986 4 307.0 21.00 386.85 6.58 23.10
19 0.78420 0.00 8.140 0 0.5380 5.9900 81.70 4.2579 4 307.0 21.00 386.75 14.67 17.50
20 0.80271 0.00 8.140 0 0.5380 5.4560 36.60 3.7965 4 307.0 21.00 288.99 11.69 20.20
21 0.72580 0.00 8.140 0 0.5380 5.7270 69.50 3.7965 4 307.0 21.00 390.95 11.28 18.20
22 1.25179 0.00 8.140 0 0.5380 5.5700 98.10 3.7979 4 307.0 21.00 376.57 21.02 13.60
23 0.85204 0.00 8.140 0 0.5380 5.9650 89.20 4.0123 4 307.0 21.00 392.53 13.83 19.60
24 1.23247 0.00 8.140 0 0.5380 6.1420 91.70 3.9769 4 307.0 21.00 396.90 18.72 15.20
25 0.98843 0.00 8.140 0 0.5380 5.8130 100.00 4.0952 4 307.0 21.00 394.54 19.88 14.50
26 0.75026 0.00 8.140 0 0.5380 5.9240 94.10 4.3996 4 307.0 21.00 394.33 16.30 15.60
27 0.84054 0.00 8.140 0 0.5380 5.5990 85.70 4.4546 4 307.0 21.00 303.42 16.51 13.90
28 0.67191 0.00 8.140 0 0.5380 5.8130 90.30 4.6820 4 307.0 21.00 376.88 14.81 16.60
29 0.95577 0.00 8.140 0 0.5380 6.0470 88.80 4.4534 4 307.0 21.00 306.38 17.28 14.80
30 0.77299 0.00 8.140 0 0.5380 6.4950 94.40 4.4547 4 307.0 21.00 387.94 12.80 18.40
31 1.00245 0.00 8.140 0 0.5380 6.6740 87.30 4.2390 4 307.0 21.00 380.23 11.98 21.00
32 1.13081 0.00 8.140 0 0.5380 5.7130 94.10 4.2330 4 307.0 21.00 360.17 22.60 12.70
33 1.35472 0.00 8.140 0 0.5380 6.0720 100.00 4.1750 4 307.0 21.00 376.73 13.04 14.50
34 1.38799 0.00 8.140 0 0.5380 5.9500 82.00 3.9900 4 307.0 21.00 232.60 27.71 13.20
35 1.15172 0.00 8.140 0 0.5380 5.7010 95.00 3.7872 4 307.0 21.00 358.77 18.35 13.10
36 1.61282 0.00 8.140 0 0.5380 6.0960 96.90 3.7598 4 307.0 21.00 248.31 20.34 13.50
37 0.06417 0.00 5.960 0 0.4990 5.9330 68.20 3.3603 5 279.0 19.20 396.90 9.68 18.90
38 0.09744 0.00 5.960 0 0.4990 5.8410 61.40 3.3779 5 279.0 19.20 377.56 11.41 20.00
39 0.08014 0.00 5.960 0 0.4990 5.8500 41.50 3.9342 5 279.0 19.20 396.90 8.77 21.00
40 0.17505 0.00 5.960 0 0.4990 5.9660 30.20 3.8473 5 279.0 19.20 393.43 10.13 24.70
41 0.02763 75.00 2.950 0 0.4280 6.5950 21.80 5.4011 3 252.0 18.30 395.63 4.32 30.80
42 0.03359 75.00 2.950 0 0.4280 7.0240 15.80 5.4011 3 252.0 18.30 395.62 1.98 34.90
43 0.12744 0.00 6.910 0 0.4480 6.7700 2.90 5.7209 3 233.0 17.90 385.41 4.84 26.60
44 0.14150 0.00 6.910 0 0.4480 6.1690 6.60 5.7209 3 233.0 17.90 383.37 5.81 25.30
45 0.15936 0.00 6.910 0 0.4480 6.2110 6.50 5.7209 3 233.0 17.90 394.46 7.44 24.70
46 0.12269 0.00 6.910 0 0.4480 6.0690 40.00 5.7209 3 233.0 17.90 389.39 9.55 21.20
47 0.17142 0.00 6.910 0 0.4480 5.6820 33.80 5.1004 3 233.0 17.90 396.90 10.21 19.30
48 0.18836 0.00 6.910 0 0.4480 5.7860 33.30 5.1004 3 233.0 17.90 396.90 14.15 20.00
49 0.22927 0.00 6.910 0 0.4480 6.0300 85.50 5.6894 3 233.0 17.90 392.74 18.80 16.60
50 0.25387 0.00 6.910 0 0.4480 5.3990 95.30 5.8700 3 233.0 17.90 396.90 30.81 14.40
51 0.21977 0.00 6.910 0 0.4480 5.6020 62.00 6.0877 3 233.0 17.90 396.90 16.20 19.40
52 0.08873 21.00 5.640 0 0.4390 5.9630 45.70 6.8147 4 243.0 16.80 395.56 13.45 19.70
53 0.04337 21.00 5.640 0 0.4390 6.1150 63.00 6.8147 4 243.0 16.80 393.97 9.43 20.50
54 0.05360 21.00 5.640 0 0.4390 6.5110 21.10 6.8147 4 243.0 16.80 396.90 5.28 25.00
55 0.04981 21.00 5.640 0 0.4390 5.9980 21.40 6.8147 4 243.0 16.80 396.90 8.43 23.40
56 0.01360 75.00 4.000 0 0.4100 5.8880 47.60 7.3197 3 469.0 21.10 396.90 14.80 18.90
57 0.01311 90.00 1.220 0 0.4030 7.2490 21.90 8.6966 5 226.0 17.90 395.93 4.81 35.40
58 0.02055 85.00 0.740 0 0.4100 6.3830 35.70 9.1876 2 313.0 17.30 396.90 5.77 24.70
59 0.01432 100.00 1.320 0 0.4110 6.8160 40.50 8.3248 5 256.0 15.10 392.90 3.95 31.60
60 0.15445 25.00 5.130 0 0.4530 6.1450 29.20 7.8148 8 284.0 19.70 390.68 6.86 23.30
61 0.10328 25.00 5.130 0 0.4530 5.9270 47.20 6.9320 8 284.0 19.70 396.90 9.22 19.60
62 0.14932 25.00 5.130 0 0.4530 5.7410 66.20 7.2254 8 284.0 19.70 395.11 13.15 18.70
63 0.17171 25.00 5.130 0 0.4530 5.9660 93.40 6.8185 8 284.0 19.70 378.08 14.44 16.00
64 0.11027 25.00 5.130 0 0.4530 6.4560 67.80 7.2255 8 284.0 19.70 396.90 6.73 22.20
65 0.12650 25.00 5.130 0 0.4530 6.7620 43.40 7.9809 8 284.0 19.70 395.58 9.50 25.00
66 0.01951 17.50 1.380 0 0.4161 7.1040 59.50 9.2229 3 216.0 18.60 393.24 8.05 33.00
67 0.03584 80.00 3.370 0 0.3980 6.2900 17.80 6.6115 4 337.0 16.10 396.90 4.67 23.50
68 0.04379 80.00 3.370 0 0.3980 5.7870 31.10 6.6115 4 337.0 16.10 396.90 10.24 19.40
69 0.05789 12.50 6.070 0 0.4090 5.8780 21.40 6.4980 4 345.0 18.90 396.21 8.10 22.00
70 0.13554 12.50 6.070 0 0.4090 5.5940 36.80 6.4980 4 345.0 18.90 396.90 13.09 17.40
71 0.12816 12.50 6.070 0 0.4090 5.8850 33.00 6.4980 4 345.0 18.90 396.90 8.79 20.90
72 0.08826 0.00 10.810 0 0.4130 6.4170 6.60 5.2873 4 305.0 19.20 383.73 6.72 24.20
73 0.15876 0.00 10.810 0 0.4130 5.9610 17.50 5.2873 4 305.0 19.20 376.94 9.88 21.70
74 0.09164 0.00 10.810 0 0.4130 6.0650 7.80 5.2873 4 305.0 19.20 390.91 5.52 22.80
75 0.19539 0.00 10.810 0 0.4130 6.2450 6.20 5.2873 4 305.0 19.20 377.17 7.54 23.40
76 0.07896 0.00 12.830 0 0.4370 6.2730 6.00 4.2515 5 398.0 18.70 394.92 6.78 24.10
77 0.09512 0.00 12.830 0 0.4370 6.2860 45.00 4.5026 5 398.0 18.70 383.23 8.94 21.40
78 0.10153 0.00 12.830 0 0.4370 6.2790 74.50 4.0522 5 398.0 18.70 373.66 11.97 20.00
79 0.08707 0.00 12.830 0 0.4370 6.1400 45.80 4.0905 5 398.0 18.70 386.96 10.27 20.80
80 0.05646 0.00 12.830 0 0.4370 6.2320 53.70 5.0141 5 398.0 18.70 386.40 12.34 21.20
81 0.08387 0.00 12.830 0 0.4370 5.8740 36.60 4.5026 5 398.0 18.70 396.06 9.10 20.30
82 0.04113 25.00 4.860 0 0.4260 6.7270 33.50 5.4007 4 281.0 19.00 396.90 5.29 28.00
83 0.04462 25.00 4.860 0 0.4260 6.6190 70.40 5.4007 4 281.0 19.00 395.63 7.22 23.90
84 0.03659 25.00 4.860 0 0.4260 6.3020 32.20 5.4007 4 281.0 19.00 396.90 6.72 24.80
85 0.03551 25.00 4.860 0 0.4260 6.1670 46.70 5.4007 4 281.0 19.00 390.64 7.51 22.90
86 0.05059 0.00 4.490 0 0.4490 6.3890 48.00 4.7794 3 247.0 18.50 396.90 9.62 23.90
87 0.05735 0.00 4.490 0 0.4490 6.6300 56.10 4.4377 3 247.0 18.50 392.30 6.53 26.60
88 0.05188 0.00 4.490 0 0.4490 6.0150 45.10 4.4272 3 247.0 18.50 395.99 12.86 22.50
89 0.07151 0.00 4.490 0 0.4490 6.1210 56.80 3.7476 3 247.0 18.50 395.15 8.44 22.20
90 0.05660 0.00 3.410 0 0.4890 7.0070 86.30 3.4217 2 270.0 17.80 396.90 5.50 23.60
91 0.05302 0.00 3.410 0 0.4890 7.0790 63.10 3.4145 2 270.0 17.80 396.06 5.70 28.70
92 0.04684 0.00 3.410 0 0.4890 6.4170 66.10 3.0923 2 270.0 17.80 392.18 8.81 22.60
93 0.03932 0.00 3.410 0 0.4890 6.4050 73.90 3.0921 2 270.0 17.80 393.55 8.20 22.00
94 0.04203 28.00 15.040 0 0.4640 6.4420 53.60 3.6659 4 270.0 18.20 395.01 8.16 22.90
95 0.02875 28.00 15.040 0 0.4640 6.2110 28.90 3.6659 4 270.0 18.20 396.33 6.21 25.00
96 0.04294 28.00 15.040 0 0.4640 6.2490 77.30 3.6150 4 270.0 18.20 396.90 10.59 20.60
97 0.12204 0.00 2.890 0 0.4450 6.6250 57.80 3.4952 2 276.0 18.00 357.98 6.65 28.40
98 0.11504 0.00 2.890 0 0.4450 6.1630 69.60 3.4952 2 276.0 18.00 391.83 11.34 21.40
99 0.12083 0.00 2.890 0 0.4450 8.0690 76.00 3.4952 2 276.0 18.00 396.90 4.21 38.70
100 0.08187 0.00 2.890 0 0.4450 7.8200 36.90 3.4952 2 276.0 18.00 393.53 3.57 43.80
101 0.06860 0.00 2.890 0 0.4450 7.4160 62.50 3.4952 2 276.0 18.00 396.90 6.19 33.20
102 0.14866 0.00 8.560 0 0.5200 6.7270 79.90 2.7778 5 384.0 20.90 394.76 9.42 27.50
103 0.11432 0.00 8.560 0 0.5200 6.7810 71.30 2.8561 5 384.0 20.90 395.58 7.67 26.50
104 0.22876 0.00 8.560 0 0.5200 6.4050 85.40 2.7147 5 384.0 20.90 70.80 10.63 18.60
105 0.21161 0.00 8.560 0 0.5200 6.1370 87.40 2.7147 5 384.0 20.90 394.47 13.44 19.30
106 0.13960 0.00 8.560 0 0.5200 6.1670 90.00 2.4210 5 384.0 20.90 392.69 12.33 20.10
107 0.13262 0.00 8.560 0 0.5200 5.8510 96.70 2.1069 5 384.0 20.90 394.05 16.47 19.50
108 0.17120 0.00 8.560 0 0.5200 5.8360 91.90 2.2110 5 384.0 20.90 395.67 18.66 19.50
109 0.13117 0.00 8.560 0 0.5200 6.1270 85.20 2.1224 5 384.0 20.90 387.69 14.09 20.40
110 0.12802 0.00 8.560 0 0.5200 6.4740 97.10 2.4329 5 384.0 20.90 395.24 12.27 19.80
111 0.26363 0.00 8.560 0 0.5200 6.2290 91.20 2.5451 5 384.0 20.90 391.23 15.55 19.40
112 0.10793 0.00 8.560 0 0.5200 6.1950 54.40 2.7778 5 384.0 20.90 393.49 13.00 21.70
113 0.10084 0.00 10.010 0 0.5470 6.7150 81.60 2.6775 6 432.0 17.80 395.59 10.16 22.80
114 0.12329 0.00 10.010 0 0.5470 5.9130 92.90 2.3534 6 432.0 17.80 394.95 16.21 18.80
115 0.22212 0.00 10.010 0 0.5470 6.0920 95.40 2.5480 6 432.0 17.80 396.90 17.09 18.70
116 0.14231 0.00 10.010 0 0.5470 6.2540 84.20 2.2565 6 432.0 17.80 388.74 10.45 18.50
117 0.17134 0.00 10.010 0 0.5470 5.9280 88.20 2.4631 6 432.0 17.80 344.91 15.76 18.30
118 0.13158 0.00 10.010 0 0.5470 6.1760 72.50 2.7301 6 432.0 17.80 393.30 12.04 21.20
119 0.15098 0.00 10.010 0 0.5470 6.0210 82.60 2.7474 6 432.0 17.80 394.51 10.30 19.20
120 0.13058 0.00 10.010 0 0.5470 5.8720 73.10 2.4775 6 432.0 17.80 338.63 15.37 20.40
121 0.14476 0.00 10.010 0 0.5470 5.7310 65.20 2.7592 6 432.0 17.80 391.50 13.61 19.30
122 0.06899 0.00 25.650 0 0.5810 5.8700 69.70 2.2577 2 188.0 19.10 389.15 14.37 22.00
123 0.07165 0.00 25.650 0 0.5810 6.0040 84.10 2.1974 2 188.0 19.10 377.67 14.27 20.30
124 0.09299 0.00 25.650 0 0.5810 5.9610 92.90 2.0869 2 188.0 19.10 378.09 17.93 20.50
125 0.15038 0.00 25.650 0 0.5810 5.8560 97.00 1.9444 2 188.0 19.10 370.31 25.41 17.30
126 0.09849 0.00 25.650 0 0.5810 5.8790 95.80 2.0063 2 188.0 19.10 379.38 17.58 18.80
127 0.16902 0.00 25.650 0 0.5810 5.9860 88.40 1.9929 2 188.0 19.10 385.02 14.81 21.40
128 0.38735 0.00 25.650 0 0.5810 5.6130 95.60 1.7572 2 188.0 19.10 359.29 27.26 15.70
129 0.25915 0.00 21.890 0 0.6240 5.6930 96.00 1.7883 4 437.0 21.20 392.11 17.19 16.20
130 0.32543 0.00 21.890 0 0.6240 6.4310 98.80 1.8125 4 437.0 21.20 396.90 15.39 18.00
131 0.88125 0.00 21.890 0 0.6240 5.6370 94.70 1.9799 4 437.0 21.20 396.90 18.34 14.30
132 0.34006 0.00 21.890 0 0.6240 6.4580 98.90 2.1185 4 437.0 21.20 395.04 12.60 19.20
133 1.19294 0.00 21.890 0 0.6240 6.3260 97.70 2.2710 4 437.0 21.20 396.90 12.26 19.60
134 0.59005 0.00 21.890 0 0.6240 6.3720 97.90 2.3274 4 437.0 21.20 385.76 11.12 23.00
135 0.32982 0.00 21.890 0 0.6240 5.8220 95.40 2.4699 4 437.0 21.20 388.69 15.03 18.40
136 0.97617 0.00 21.890 0 0.6240 5.7570 98.40 2.3460 4 437.0 21.20 262.76 17.31 15.60
137 0.55778 0.00 21.890 0 0.6240 6.3350 98.20 2.1107 4 437.0 21.20 394.67 16.96 18.10
138 0.32264 0.00 21.890 0 0.6240 5.9420 93.50 1.9669 4 437.0 21.20 378.25 16.90 17.40
139 0.35233 0.00 21.890 0 0.6240 6.4540 98.40 1.8498 4 437.0 21.20 394.08 14.59 17.10
140 0.24980 0.00 21.890 0 0.6240 5.8570 98.20 1.6686 4 437.0 21.20 392.04 21.32 13.30
141 0.54452 0.00 21.890 0 0.6240 6.1510 97.90 1.6687 4 437.0 21.20 396.90 18.46 17.80
142 0.29090 0.00 21.890 0 0.6240 6.1740 93.60 1.6119 4 437.0 21.20 388.08 24.16 14.00
143 1.62864 0.00 21.890 0 0.6240 5.0190 100.00 1.4394 4 437.0 21.20 396.90 34.41 14.40
144 3.32105 0.00 19.580 1 0.8710 5.4030 100.00 1.3216 5 403.0 14.70 396.90 26.82 13.40
145 4.09740 0.00 19.580 0 0.8710 5.4680 100.00 1.4118 5 403.0 14.70 396.90 26.42 15.60
146 2.77974 0.00 19.580 0 0.8710 4.9030 97.80 1.3459 5 403.0 14.70 396.90 29.29 11.80
147 2.37934 0.00 19.580 0 0.8710 6.1300 100.00 1.4191 5 403.0 14.70 172.91 27.80 13.80
148 2.15505 0.00 19.580 0 0.8710 5.6280 100.00 1.5166 5 403.0 14.70 169.27 16.65 15.60
149 2.36862 0.00 19.580 0 0.8710 4.9260 95.70 1.4608 5 403.0 14.70 391.71 29.53 14.60
150 2.33099 0.00 19.580 0 0.8710 5.1860 93.80 1.5296 5 403.0 14.70 356.99 28.32 17.80
151 2.73397 0.00 19.580 0 0.8710 5.5970 94.90 1.5257 5 403.0 14.70 351.85 21.45 15.40
152 1.65660 0.00 19.580 0 0.8710 6.1220 97.30 1.6180 5 403.0 14.70 372.80 14.10 21.50
153 1.49632 0.00 19.580 0 0.8710 5.4040 100.00 1.5916 5 403.0 14.70 341.60 13.28 19.60
154 1.12658 0.00 19.580 1 0.8710 5.0120 88.00 1.6102 5 403.0 14.70 343.28 12.12 15.30
155 2.14918 0.00 19.580 0 0.8710 5.7090 98.50 1.6232 5 403.0 14.70 261.95 15.79 19.40
156 1.41385 0.00 19.580 1 0.8710 6.1290 96.00 1.7494 5 403.0 14.70 321.02 15.12 17.00
157 3.53501 0.00 19.580 1 0.8710 6.1520 82.60 1.7455 5 403.0 14.70 88.01 15.02 15.60
158 2.44668 0.00 19.580 0 0.8710 5.2720 94.00 1.7364 5 403.0 14.70 88.63 16.14 13.10
159 1.22358 0.00 19.580 0 0.6050 6.9430 97.40 1.8773 5 403.0 14.70 363.43 4.59 41.30
160 1.34284 0.00 19.580 0 0.6050 6.0660 100.00 1.7573 5 403.0 14.70 353.89 6.43 24.30
161 1.42502 0.00 19.580 0 0.8710 6.5100 100.00 1.7659 5 403.0 14.70 364.31 7.39 23.30
162 1.27346 0.00 19.580 1 0.6050 6.2500 92.60 1.7984 5 403.0 14.70 338.92 5.50 27.00
163 1.46336 0.00 19.580 0 0.6050 7.4890 90.80 1.9709 5 403.0 14.70 374.43 1.73 50.00
164 1.83377 0.00 19.580 1 0.6050 7.8020 98.20 2.0407 5 403.0 14.70 389.61 1.92 50.00
165 1.51902 0.00 19.580 1 0.6050 8.3750 93.90 2.1620 5 403.0 14.70 388.45 3.32 50.00
166 2.24236 0.00 19.580 0 0.6050 5.8540 91.80 2.4220 5 403.0 14.70 395.11 11.64 22.70
167 2.92400 0.00 19.580 0 0.6050 6.1010 93.00 2.2834 5 403.0 14.70 240.16 9.81 25.00
168 2.01019 0.00 19.580 0 0.6050 7.9290 96.20 2.0459 5 403.0 14.70 369.30 3.70 50.00
169 1.80028 0.00 19.580 0 0.6050 5.8770 79.20 2.4259 5 403.0 14.70 227.61 12.14 23.80
170 2.30040 0.00 19.580 0 0.6050 6.3190 96.10 2.1000 5 403.0 14.70 297.09 11.10 23.80
171 2.44953 0.00 19.580 0 0.6050 6.4020 95.20 2.2625 5 403.0 14.70 330.04 11.32 22.30
172 1.20742 0.00 19.580 0 0.6050 5.8750 94.60 2.4259 5 403.0 14.70 292.29 14.43 17.40
173 2.31390 0.00 19.580 0 0.6050 5.8800 97.30 2.3887 5 403.0 14.70 348.13 12.03 19.10
174 0.13914 0.00 4.050 0 0.5100 5.5720 88.50 2.5961 5 296.0 16.60 396.90 14.69 23.10
175 0.09178 0.00 4.050 0 0.5100 6.4160 84.10 2.6463 5 296.0 16.60 395.50 9.04 23.60
176 0.08447 0.00 4.050 0 0.5100 5.8590 68.70 2.7019 5 296.0 16.60 393.23 9.64 22.60
177 0.06664 0.00 4.050 0 0.5100 6.5460 33.10 3.1323 5 296.0 16.60 390.96 5.33 29.40
178 0.07022 0.00 4.050 0 0.5100 6.0200 47.20 3.5549 5 296.0 16.60 393.23 10.11 23.20
179 0.05425 0.00 4.050 0 0.5100 6.3150 73.40 3.3175 5 296.0 16.60 395.60 6.29 24.60
180 0.06642 0.00 4.050 0 0.5100 6.8600 74.40 2.9153 5 296.0 16.60 391.27 6.92 29.90
181 0.05780 0.00 2.460 0 0.4880 6.9800 58.40 2.8290 3 193.0 17.80 396.90 5.04 37.20
182 0.06588 0.00 2.460 0 0.4880 7.7650 83.30 2.7410 3 193.0 17.80 395.56 7.56 39.80
183 0.06888 0.00 2.460 0 0.4880 6.1440 62.20 2.5979 3 193.0 17.80 396.90 9.45 36.20
184 0.09103 0.00 2.460 0 0.4880 7.1550 92.20 2.7006 3 193.0 17.80 394.12 4.82 37.90
185 0.10008 0.00 2.460 0 0.4880 6.5630 95.60 2.8470 3 193.0 17.80 396.90 5.68 32.50
186 0.08308 0.00 2.460 0 0.4880 5.6040 89.80 2.9879 3 193.0 17.80 391.00 13.98 26.40
187 0.06047 0.00 2.460 0 0.4880 6.1530 68.80 3.2797 3 193.0 17.80 387.11 13.15 29.60
188 0.05602 0.00 2.460 0 0.4880 7.8310 53.60 3.1992 3 193.0 17.80 392.63 4.45 50.00
189 0.07875 45.00 3.440 0 0.4370 6.7820 41.10 3.7886 5 398.0 15.20 393.87 6.68 32.00
190 0.12579 45.00 3.440 0 0.4370 6.5560 29.10 4.5667 5 398.0 15.20 382.84 4.56 29.80
191 0.08370 45.00 3.440 0 0.4370 7.1850 38.90 4.5667 5 398.0 15.20 396.90 5.39 34.90
192 0.09068 45.00 3.440 0 0.4370 6.9510 21.50 6.4798 5 398.0 15.20 377.68 5.10 37.00
193 0.06911 45.00 3.440 0 0.4370 6.7390 30.80 6.4798 5 398.0 15.20 389.71 4.69 30.50
194 0.08664 45.00 3.440 0 0.4370 7.1780 26.30 6.4798 5 398.0 15.20 390.49 2.87 36.40
195 0.02187 60.00 2.930 0 0.4010 6.8000 9.90 6.2196 1 265.0 15.60 393.37 5.03 31.10
196 0.01439 60.00 2.930 0 0.4010 6.6040 18.80 6.2196 1 265.0 15.60 376.70 4.38 29.10
197 0.01381 80.00 0.460 0 0.4220 7.8750 32.00 5.6484 4 255.0 14.40 394.23 2.97 50.00
198 0.04011 80.00 1.520 0 0.4040 7.2870 34.10 7.3090 2 329.0 12.60 396.90 4.08 33.30
199 0.04666 80.00 1.520 0 0.4040 7.1070 36.60 7.3090 2 329.0 12.60 354.31 8.61 30.30
200 0.03768 80.00 1.520 0 0.4040 7.2740 38.30 7.3090 2 329.0 12.60 392.20 6.62 34.60
201 0.03150 95.00 1.470 0 0.4030 6.9750 15.30 7.6534 3 402.0 17.00 396.90 4.56 34.90
202 0.01778 95.00 1.470 0 0.4030 7.1350 13.90 7.6534 3 402.0 17.00 384.30 4.45 32.90
203 0.03445 82.50 2.030 0 0.4150 6.1620 38.40 6.2700 2 348.0 14.70 393.77 7.43 24.10
204 0.02177 82.50 2.030 0 0.4150 7.6100 15.70 6.2700 2 348.0 14.70 395.38 3.11 42.30
205 0.03510 95.00 2.680 0 0.4161 7.8530 33.20 5.1180 4 224.0 14.70 392.78 3.81 48.50
206 0.02009 95.00 2.680 0 0.4161 8.0340 31.90 5.1180 4 224.0 14.70 390.55 2.88 50.00
207 0.13642 0.00 10.590 0 0.4890 5.8910 22.30 3.9454 4 277.0 18.60 396.90 10.87 22.60
208 0.22969 0.00 10.590 0 0.4890 6.3260 52.50 4.3549 4 277.0 18.60 394.87 10.97 24.40
209 0.25199 0.00 10.590 0 0.4890 5.7830 72.70 4.3549 4 277.0 18.60 389.43 18.06 22.50
210 0.13587 0.00 10.590 1 0.4890 6.0640 59.10 4.2392 4 277.0 18.60 381.32 14.66 24.40
211 0.43571 0.00 10.590 1 0.4890 5.3440 100.00 3.8750 4 277.0 18.60 396.90 23.09 20.00
212 0.17446 0.00 10.590 1 0.4890 5.9600 92.10 3.8771 4 277.0 18.60 393.25 17.27 21.70
213 0.37578 0.00 10.590 1 0.4890 5.4040 88.60 3.6650 4 277.0 18.60 395.24 23.98 19.30
214 0.21719 0.00 10.590 1 0.4890 5.8070 53.80 3.6526 4 277.0 18.60 390.94 16.03 22.40
215 0.14052 0.00 10.590 0 0.4890 6.3750 32.30 3.9454 4 277.0 18.60 385.81 9.38 28.10
216 0.28955 0.00 10.590 0 0.4890 5.4120 9.80 3.5875 4 277.0 18.60 348.93 29.55 23.70
217 0.19802 0.00 10.590 0 0.4890 6.1820 42.40 3.9454 4 277.0 18.60 393.63 9.47 25.00
218 0.04560 0.00 13.890 1 0.5500 5.8880 56.00 3.1121 5 276.0 16.40 392.80 13.51 23.30
219 0.07013 0.00 13.890 0 0.5500 6.6420 85.10 3.4211 5 276.0 16.40 392.78 9.69 28.70
220 0.11069 0.00 13.890 1 0.5500 5.9510 93.80 2.8893 5 276.0 16.40 396.90 17.92 21.50
221 0.11425 0.00 13.890 1 0.5500 6.3730 92.40 3.3633 5 276.0 16.40 393.74 10.50 23.00
222 0.35809 0.00 6.200 1 0.5070 6.9510 88.50 2.8617 8 307.0 17.40 391.70 9.71 26.70
223 0.40771 0.00 6.200 1 0.5070 6.1640 91.30 3.0480 8 307.0 17.40 395.24 21.46 21.70
224 0.62356 0.00 6.200 1 0.5070 6.8790 77.70 3.2721 8 307.0 17.40 390.39 9.93 27.50
225 0.61470 0.00 6.200 0 0.5070 6.6180 80.80 3.2721 8 307.0 17.40 396.90 7.60 30.10
226 0.31533 0.00 6.200 0 0.5040 8.2660 78.30 2.8944 8 307.0 17.40 385.05 4.14 44.80
227 0.52693 0.00 6.200 0 0.5040 8.7250 83.00 2.8944 8 307.0 17.40 382.00 4.63 50.00
228 0.38214 0.00 6.200 0 0.5040 8.0400 86.50 3.2157 8 307.0 17.40 387.38 3.13 37.60
229 0.41238 0.00 6.200 0 0.5040 7.1630 79.90 3.2157 8 307.0 17.40 372.08 6.36 31.60
230 0.29819 0.00 6.200 0 0.5040 7.6860 17.00 3.3751 8 307.0 17.40 377.51 3.92 46.70
231 0.44178 0.00 6.200 0 0.5040 6.5520 21.40 3.3751 8 307.0 17.40 380.34 3.76 31.50
232 0.53700 0.00 6.200 0 0.5040 5.9810 68.10 3.6715 8 307.0 17.40 378.35 11.65 24.30
233 0.46296 0.00 6.200 0 0.5040 7.4120 76.90 3.6715 8 307.0 17.40 376.14 5.25 31.70
234 0.57529 0.00 6.200 0 0.5070 8.3370 73.30 3.8384 8 307.0 17.40 385.91 2.47 41.70
235 0.33147 0.00 6.200 0 0.5070 8.2470 70.40 3.6519 8 307.0 17.40 378.95 3.95 48.30
236 0.44791 0.00 6.200 1 0.5070 6.7260 66.50 3.6519 8 307.0 17.40 360.20 8.05 29.00
237 0.33045 0.00 6.200 0 0.5070 6.0860 61.50 3.6519 8 307.0 17.40 376.75 10.88 24.00
238 0.52058 0.00 6.200 1 0.5070 6.6310 76.50 4.1480 8 307.0 17.40 388.45 9.54 25.10
239 0.51183 0.00 6.200 0 0.5070 7.3580 71.60 4.1480 8 307.0 17.40 390.07 4.73 31.50
240 0.08244 30.00 4.930 0 0.4280 6.4810 18.50 6.1899 6 300.0 16.60 379.41 6.36 23.70
241 0.09252 30.00 4.930 0 0.4280 6.6060 42.20 6.1899 6 300.0 16.60 383.78 7.37 23.30
242 0.11329 30.00 4.930 0 0.4280 6.8970 54.30 6.3361 6 300.0 16.60 391.25 11.38 22.00
243 0.10612 30.00 4.930 0 0.4280 6.0950 65.10 6.3361 6 300.0 16.60 394.62 12.40 20.10
244 0.10290 30.00 4.930 0 0.4280 6.3580 52.90 7.0355 6 300.0 16.60 372.75 11.22 22.20
245 0.12757 30.00 4.930 0 0.4280 6.3930 7.80 7.0355 6 300.0 16.60 374.71 5.19 23.70
246 0.20608 22.00 5.860 0 0.4310 5.5930 76.50 7.9549 7 330.0 19.10 372.49 12.50 17.60
247 0.19133 22.00 5.860 0 0.4310 5.6050 70.20 7.9549 7 330.0 19.10 389.13 18.46 18.50
248 0.33983 22.00 5.860 0 0.4310 6.1080 34.90 8.0555 7 330.0 19.10 390.18 9.16 24.30
249 0.19657 22.00 5.860 0 0.4310 6.2260 79.20 8.0555 7 330.0 19.10 376.14 10.15 20.50
250 0.16439 22.00 5.860 0 0.4310 6.4330 49.10 7.8265 7 330.0 19.10 374.71 9.52 24.50
251 0.19073 22.00 5.860 0 0.4310 6.7180 17.50 7.8265 7 330.0 19.10 393.74 6.56 26.20
252 0.14030 22.00 5.860 0 0.4310 6.4870 13.00 7.3967 7 330.0 19.10 396.28 5.90 24.40
253 0.21409 22.00 5.860 0 0.4310 6.4380 8.90 7.3967 7 330.0 19.10 377.07 3.59 24.80
254 0.08221 22.00 5.860 0 0.4310 6.9570 6.80 8.9067 7 330.0 19.10 386.09 3.53 29.60
255 0.36894 22.00 5.860 0 0.4310 8.2590 8.40 8.9067 7 330.0 19.10 396.90 3.54 42.80
256 0.04819 80.00 3.640 0 0.3920 6.1080 32.00 9.2203 1 315.0 16.40 392.89 6.57 21.90
257 0.03548 80.00 3.640 0 0.3920 5.8760 19.10 9.2203 1 315.0 16.40 395.18 9.25 20.90
258 0.01538 90.00 3.750 0 0.3940 7.4540 34.20 6.3361 3 244.0 15.90 386.34 3.11 44.00
259 0.61154 20.00 3.970 0 0.6470 8.7040 86.90 1.8010 5 264.0 13.00 389.70 5.12 50.00
260 0.66351 20.00 3.970 0 0.6470 7.3330 100.00 1.8946 5 264.0 13.00 383.29 7.79 36.00
261 0.65665 20.00 3.970 0 0.6470 6.8420 100.00 2.0107 5 264.0 13.00 391.93 6.90 30.10
262 0.54011 20.00 3.970 0 0.6470 7.2030 81.80 2.1121 5 264.0 13.00 392.80 9.59 33.80
263 0.53412 20.00 3.970 0 0.6470 7.5200 89.40 2.1398 5 264.0 13.00 388.37 7.26 43.10
264 0.52014 20.00 3.970 0 0.6470 8.3980 91.50 2.2885 5 264.0 13.00 386.86 5.91 48.80
265 0.82526 20.00 3.970 0 0.6470 7.3270 94.50 2.0788 5 264.0 13.00 393.42 11.25 31.00
266 0.55007 20.00 3.970 0 0.6470 7.2060 91.60 1.9301 5 264.0 13.00 387.89 8.10 36.50
267 0.76162 20.00 3.970 0 0.6470 5.5600 62.80 1.9865 5 264.0 13.00 392.40 10.45 22.80
268 0.78570 20.00 3.970 0 0.6470 7.0140 84.60 2.1329 5 264.0 13.00 384.07 14.79 30.70
269 0.57834 20.00 3.970 0 0.5750 8.2970 67.00 2.4216 5 264.0 13.00 384.54 7.44 50.00
270 0.54050 20.00 3.970 0 0.5750 7.4700 52.60 2.8720 5 264.0 13.00 390.30 3.16 43.50
271 0.09065 20.00 6.960 1 0.4640 5.9200 61.50 3.9175 3 223.0 18.60 391.34 13.65 20.70
272 0.29916 20.00 6.960 0 0.4640 5.8560 42.10 4.4290 3 223.0 18.60 388.65 13.00 21.10
273 0.16211 20.00 6.960 0 0.4640 6.2400 16.30 4.4290 3 223.0 18.60 396.90 6.59 25.20
274 0.11460 20.00 6.960 0 0.4640 6.5380 58.70 3.9175 3 223.0 18.60 394.96 7.73 24.40
275 0.22188 20.00 6.960 1 0.4640 7.6910 51.80 4.3665 3 223.0 18.60 390.77 6.58 35.20
276 0.05644 40.00 6.410 1 0.4470 6.7580 32.90 4.0776 4 254.0 17.60 396.90 3.53 32.40
277 0.09604 40.00 6.410 0 0.4470 6.8540 42.80 4.2673 4 254.0 17.60 396.90 2.98 32.00
278 0.10469 40.00 6.410 1 0.4470 7.2670 49.00 4.7872 4 254.0 17.60 389.25 6.05 33.20
279 0.06127 40.00 6.410 1 0.4470 6.8260 27.60 4.8628 4 254.0 17.60 393.45 4.16 33.10
280 0.07978 40.00 6.410 0 0.4470 6.4820 32.10 4.1403 4 254.0 17.60 396.90 7.19 29.10
281 0.21038 20.00 3.330 0 0.4429 6.8120 32.20 4.1007 5 216.0 14.90 396.90 4.85 35.10
282 0.03578 20.00 3.330 0 0.4429 7.8200 64.50 4.6947 5 216.0 14.90 387.31 3.76 45.40
283 0.03705 20.00 3.330 0 0.4429 6.9680 37.20 5.2447 5 216.0 14.90 392.23 4.59 35.40
284 0.06129 20.00 3.330 1 0.4429 7.6450 49.70 5.2119 5 216.0 14.90 377.07 3.01 46.00
285 0.01501 90.00 1.210 1 0.4010 7.9230 24.80 5.8850 1 198.0 13.60 395.52 3.16 50.00
286 0.00906 90.00 2.970 0 0.4000 7.0880 20.80 7.3073 1 285.0 15.30 394.72 7.85 32.20
287 0.01096 55.00 2.250 0 0.3890 6.4530 31.90 7.3073 1 300.0 15.30 394.72 8.23 22.00
288 0.01965 80.00 1.760 0 0.3850 6.2300 31.50 9.0892 1 241.0 18.20 341.60 12.93 20.10
289 0.03871 52.50 5.320 0 0.4050 6.2090 31.30 7.3172 6 293.0 16.60 396.90 7.14 23.20
290 0.04590 52.50 5.320 0 0.4050 6.3150 45.60 7.3172 6 293.0 16.60 396.90 7.60 22.30
291 0.04297 52.50 5.320 0 0.4050 6.5650 22.90 7.3172 6 293.0 16.60 371.72 9.51 24.80
292 0.03502 80.00 4.950 0 0.4110 6.8610 27.90 5.1167 4 245.0 19.20 396.90 3.33 28.50
293 0.07886 80.00 4.950 0 0.4110 7.1480 27.70 5.1167 4 245.0 19.20 396.90 3.56 37.30
294 0.03615 80.00 4.950 0 0.4110 6.6300 23.40 5.1167 4 245.0 19.20 396.90 4.70 27.90
295 0.08265 0.00 13.920 0 0.4370 6.1270 18.40 5.5027 4 289.0 16.00 396.90 8.58 23.90
296 0.08199 0.00 13.920 0 0.4370 6.0090 42.30 5.5027 4 289.0 16.00 396.90 10.40 21.70
297 0.12932 0.00 13.920 0 0.4370 6.6780 31.10 5.9604 4 289.0 16.00 396.90 6.27 28.60
298 0.05372 0.00 13.920 0 0.4370 6.5490 51.00 5.9604 4 289.0 16.00 392.85 7.39 27.10
299 0.14103 0.00 13.920 0 0.4370 5.7900 58.00 6.3200 4 289.0 16.00 396.90 15.84 20.30
300 0.06466 70.00 2.240 0 0.4000 6.3450 20.10 7.8278 5 358.0 14.80 368.24 4.97 22.50
301 0.05561 70.00 2.240 0 0.4000 7.0410 10.00 7.8278 5 358.0 14.80 371.58 4.74 29.00
302 0.04417 70.00 2.240 0 0.4000 6.8710 47.40 7.8278 5 358.0 14.80 390.86 6.07 24.80
303 0.03537 34.00 6.090 0 0.4330 6.5900 40.40 5.4917 7 329.0 16.10 395.75 9.50 22.00
304 0.09266 34.00 6.090 0 0.4330 6.4950 18.40 5.4917 7 329.0 16.10 383.61 8.67 26.40
305 0.10000 34.00 6.090 0 0.4330 6.9820 17.70 5.4917 7 329.0 16.10 390.43 4.86 33.10
306 0.05515 33.00 2.180 0 0.4720 7.2360 41.10 4.0220 7 222.0 18.40 393.68 6.93 36.10
307 0.05479 33.00 2.180 0 0.4720 6.6160 58.10 3.3700 7 222.0 18.40 393.36 8.93 28.40
308 0.07503 33.00 2.180 0 0.4720 7.4200 71.90 3.0992 7 222.0 18.40 396.90 6.47 33.40
309 0.04932 33.00 2.180 0 0.4720 6.8490 70.30 3.1827 7 222.0 18.40 396.90 7.53 28.20
310 0.49298 0.00 9.900 0 0.5440 6.6350 82.50 3.3175 4 304.0 18.40 396.90 4.54 22.80
311 0.34940 0.00 9.900 0 0.5440 5.9720 76.70 3.1025 4 304.0 18.40 396.24 9.97 20.30
312 2.63548 0.00 9.900 0 0.5440 4.9730 37.80 2.5194 4 304.0 18.40 350.45 12.64 16.10
313 0.79041 0.00 9.900 0 0.5440 6.1220 52.80 2.6403 4 304.0 18.40 396.90 5.98 22.10
314 0.26169 0.00 9.900 0 0.5440 6.0230 90.40 2.8340 4 304.0 18.40 396.30 11.72 19.40
315 0.26938 0.00 9.900 0 0.5440 6.2660 82.80 3.2628 4 304.0 18.40 393.39 7.90 21.60
316 0.36920 0.00 9.900 0 0.5440 6.5670 87.30 3.6023 4 304.0 18.40 395.69 9.28 23.80
317 0.25356 0.00 9.900 0 0.5440 5.7050 77.70 3.9450 4 304.0 18.40 396.42 11.50 16.20
318 0.31827 0.00 9.900 0 0.5440 5.9140 83.20 3.9986 4 304.0 18.40 390.70 18.33 17.80
319 0.24522 0.00 9.900 0 0.5440 5.7820 71.70 4.0317 4 304.0 18.40 396.90 15.94 19.80
320 0.40202 0.00 9.900 0 0.5440 6.3820 67.20 3.5325 4 304.0 18.40 395.21 10.36 23.10
321 0.47547 0.00 9.900 0 0.5440 6.1130 58.80 4.0019 4 304.0 18.40 396.23 12.73 21.00
322 0.16760 0.00 7.380 0 0.4930 6.4260 52.30 4.5404 5 287.0 19.60 396.90 7.20 23.80
323 0.18159 0.00 7.380 0 0.4930 6.3760 54.30 4.5404 5 287.0 19.60 396.90 6.87 23.10
324 0.35114 0.00 7.380 0 0.4930 6.0410 49.90 4.7211 5 287.0 19.60 396.90 7.70 20.40
325 0.28392 0.00 7.380 0 0.4930 5.7080 74.30 4.7211 5 287.0 19.60 391.13 11.74 18.50
326 0.34109 0.00 7.380 0 0.4930 6.4150 40.10 4.7211 5 287.0 19.60 396.90 6.12 25.00
327 0.19186 0.00 7.380 0 0.4930 6.4310 14.70 5.4159 5 287.0 19.60 393.68 5.08 24.60
328 0.30347 0.00 7.380 0 0.4930 6.3120 28.90 5.4159 5 287.0 19.60 396.90 6.15 23.00
329 0.24103 0.00 7.380 0 0.4930 6.0830 43.70 5.4159 5 287.0 19.60 396.90 12.79 22.20
330 0.06617 0.00 3.240 0 0.4600 5.8680 25.80 5.2146 4 430.0 16.90 382.44 9.97 19.30
331 0.06724 0.00 3.240 0 0.4600 6.3330 17.20 5.2146 4 430.0 16.90 375.21 7.34 22.60
332 0.04544 0.00 3.240 0 0.4600 6.1440 32.20 5.8736 4 430.0 16.90 368.57 9.09 19.80
333 0.05023 35.00 6.060 0 0.4379 5.7060 28.40 6.6407 1 304.0 16.90 394.02 12.43 17.10
334 0.03466 35.00 6.060 0 0.4379 6.0310 23.30 6.6407 1 304.0 16.90 362.25 7.83 19.40
335 0.05083 0.00 5.190 0 0.5150 6.3160 38.10 6.4584 5 224.0 20.20 389.71 5.68 22.20
336 0.03738 0.00 5.190 0 0.5150 6.3100 38.50 6.4584 5 224.0 20.20 389.40 6.75 20.70
337 0.03961 0.00 5.190 0 0.5150 6.0370 34.50 5.9853 5 224.0 20.20 396.90 8.01 21.10
338 0.03427 0.00 5.190 0 0.5150 5.8690 46.30 5.2311 5 224.0 20.20 396.90 9.80 19.50
339 0.03041 0.00 5.190 0 0.5150 5.8950 59.60 5.6150 5 224.0 20.20 394.81 10.56 18.50
340 0.03306 0.00 5.190 0 0.5150 6.0590 37.30 4.8122 5 224.0 20.20 396.14 8.51 20.60
341 0.05497 0.00 5.190 0 0.5150 5.9850 45.40 4.8122 5 224.0 20.20 396.90 9.74 19.00
342 0.06151 0.00 5.190 0 0.5150 5.9680 58.50 4.8122 5 224.0 20.20 396.90 9.29 18.70
343 0.01301 35.00 1.520 0 0.4420 7.2410 49.30 7.0379 1 284.0 15.50 394.74 5.49 32.70
344 0.02498 0.00 1.890 0 0.5180 6.5400 59.70 6.2669 1 422.0 15.90 389.96 8.65 16.50
345 0.02543 55.00 3.780 0 0.4840 6.6960 56.40 5.7321 5 370.0 17.60 396.90 7.18 23.90
346 0.03049 55.00 3.780 0 0.4840 6.8740 28.10 6.4654 5 370.0 17.60 387.97 4.61 31.20
347 0.03113 0.00 4.390 0 0.4420 6.0140 48.50 8.0136 3 352.0 18.80 385.64 10.53 17.50
348 0.06162 0.00 4.390 0 0.4420 5.8980 52.30 8.0136 3 352.0 18.80 364.61 12.67 17.20
349 0.01870 85.00 4.150 0 0.4290 6.5160 27.70 8.5353 4 351.0 17.90 392.43 6.36 23.10
350 0.01501 80.00 2.010 0 0.4350 6.6350 29.70 8.3440 4 280.0 17.00 390.94 5.99 24.50
351 0.02899 40.00 1.250 0 0.4290 6.9390 34.50 8.7921 1 335.0 19.70 389.85 5.89 26.60
352 0.06211 40.00 1.250 0 0.4290 6.4900 44.40 8.7921 1 335.0 19.70 396.90 5.98 22.90
353 0.07950 60.00 1.690 0 0.4110 6.5790 35.90 10.7103 4 411.0 18.30 370.78 5.49 24.10
354 0.07244 60.00 1.690 0 0.4110 5.8840 18.50 10.7103 4 411.0 18.30 392.33 7.79 18.60
355 0.01709 90.00 2.020 0 0.4100 6.7280 36.10 12.1265 5 187.0 17.00 384.46 4.50 30.10
356 0.04301 80.00 1.910 0 0.4130 5.6630 21.90 10.5857 4 334.0 22.00 382.80 8.05 18.20
357 0.10659 80.00 1.910 0 0.4130 5.9360 19.50 10.5857 4 334.0 22.00 376.04 5.57 20.60
358 8.98296 0.00 18.100 1 0.7700 6.2120 97.40 2.1222 24 666.0 20.20 377.73 17.60 17.80
359 3.84970 0.00 18.100 1 0.7700 6.3950 91.00 2.5052 24 666.0 20.20 391.34 13.27 21.70
360 5.20177 0.00 18.100 1 0.7700 6.1270 83.40 2.7227 24 666.0 20.20 395.43 11.48 22.70
361 4.26131 0.00 18.100 0 0.7700 6.1120 81.30 2.5091 24 666.0 20.20 390.74 12.67 22.60
362 4.54192 0.00 18.100 0 0.7700 6.3980 88.00 2.5182 24 666.0 20.20 374.56 7.79 25.00
363 3.83684 0.00 18.100 0 0.7700 6.2510 91.10 2.2955 24 666.0 20.20 350.65 14.19 19.90
364 3.67822 0.00 18.100 0 0.7700 5.3620 96.20 2.1036 24 666.0 20.20 380.79 10.19 20.80
365 4.22239 0.00 18.100 1 0.7700 5.8030 89.00 1.9047 24 666.0 20.20 353.04 14.64 16.80
366 3.47428 0.00 18.100 1 0.7180 8.7800 82.90 1.9047 24 666.0 20.20 354.55 5.29 21.90
367 4.55587 0.00 18.100 0 0.7180 3.5610 87.90 1.6132 24 666.0 20.20 354.70 7.12 27.50
368 3.69695 0.00 18.100 0 0.7180 4.9630 91.40 1.7523 24 666.0 20.20 316.03 14.00 21.90
369 13.52220 0.00 18.100 0 0.6310 3.8630 100.00 1.5106 24 666.0 20.20 131.42 13.33 23.10
370 4.89822 0.00 18.100 0 0.6310 4.9700 100.00 1.3325 24 666.0 20.20 375.52 3.26 50.00
371 5.66998 0.00 18.100 1 0.6310 6.6830 96.80 1.3567 24 666.0 20.20 375.33 3.73 50.00
372 6.53876 0.00 18.100 1 0.6310 7.0160 97.50 1.2024 24 666.0 20.20 392.05 2.96 50.00
373 9.23230 0.00 18.100 0 0.6310 6.2160 100.00 1.1691 24 666.0 20.20 366.15 9.53 50.00
374 8.26725 0.00 18.100 1 0.6680 5.8750 89.60 1.1296 24 666.0 20.20 347.88 8.88 50.00
375 11.10810 0.00 18.100 0 0.6680 4.9060 100.00 1.1742 24 666.0 20.20 396.90 34.77 13.80
376 18.49820 0.00 18.100 0 0.6680 4.1380 100.00 1.1370 24 666.0 20.20 396.90 37.97 13.80
377 19.60910 0.00 18.100 0 0.6710 7.3130 97.90 1.3163 24 666.0 20.20 396.90 13.44 15.00
378 15.28800 0.00 18.100 0 0.6710 6.6490 93.30 1.3449 24 666.0 20.20 363.02 23.24 13.90
379 9.82349 0.00 18.100 0 0.6710 6.7940 98.80 1.3580 24 666.0 20.20 396.90 21.24 13.30
380 23.64820 0.00 18.100 0 0.6710 6.3800 96.20 1.3861 24 666.0 20.20 396.90 23.69 13.10
381 17.86670 0.00 18.100 0 0.6710 6.2230 100.00 1.3861 24 666.0 20.20 393.74 21.78 10.20
382 88.97620 0.00 18.100 0 0.6710 6.9680 91.90 1.4165 24 666.0 20.20 396.90 17.21 10.40
383 15.87440 0.00 18.100 0 0.6710 6.5450 99.10 1.5192 24 666.0 20.20 396.90 21.08 10.90
384 9.18702 0.00 18.100 0 0.7000 5.5360 100.00 1.5804 24 666.0 20.20 396.90 23.60 11.30
385 7.99248 0.00 18.100 0 0.7000 5.5200 100.00 1.5331 24 666.0 20.20 396.90 24.56 12.30
386 20.08490 0.00 18.100 0 0.7000 4.3680 91.20 1.4395 24 666.0 20.20 285.83 30.63 8.80
387 16.81180 0.00 18.100 0 0.7000 5.2770 98.10 1.4261 24 666.0 20.20 396.90 30.81 7.20
388 24.39380 0.00 18.100 0 0.7000 4.6520 100.00 1.4672 24 666.0 20.20 396.90 28.28 10.50
389 22.59710 0.00 18.100 0 0.7000 5.0000 89.50 1.5184 24 666.0 20.20 396.90 31.99 7.40
390 14.33370 0.00 18.100 0 0.7000 4.8800 100.00 1.5895 24 666.0 20.20 372.92 30.62 10.20
391 8.15174 0.00 18.100 0 0.7000 5.3900 98.90 1.7281 24 666.0 20.20 396.90 20.85 11.50
392 6.96215 0.00 18.100 0 0.7000 5.7130 97.00 1.9265 24 666.0 20.20 394.43 17.11 15.10
393 5.29305 0.00 18.100 0 0.7000 6.0510 82.50 2.1678 24 666.0 20.20 378.38 18.76 23.20
394 11.57790 0.00 18.100 0 0.7000 5.0360 97.00 1.7700 24 666.0 20.20 396.90 25.68 9.70
395 8.64476 0.00 18.100 0 0.6930 6.1930 92.60 1.7912 24 666.0 20.20 396.90 15.17 13.80
396 13.35980 0.00 18.100 0 0.6930 5.8870 94.70 1.7821 24 666.0 20.20 396.90 16.35 12.70
397 8.71675 0.00 18.100 0 0.6930 6.4710 98.80 1.7257 24 666.0 20.20 391.98 17.12 13.10
398 5.87205 0.00 18.100 0 0.6930 6.4050 96.00 1.6768 24 666.0 20.20 396.90 19.37 12.50
399 7.67202 0.00 18.100 0 0.6930 5.7470 98.90 1.6334 24 666.0 20.20 393.10 19.92 8.50
400 38.35180 0.00 18.100 0 0.6930 5.4530 100.00 1.4896 24 666.0 20.20 396.90 30.59 5.00
401 9.91655 0.00 18.100 0 0.6930 5.8520 77.80 1.5004 24 666.0 20.20 338.16 29.97 6.30
402 25.04610 0.00 18.100 0 0.6930 5.9870 100.00 1.5888 24 666.0 20.20 396.90 26.77 5.60
403 14.23620 0.00 18.100 0 0.6930 6.3430 100.00 1.5741 24 666.0 20.20 396.90 20.32 7.20
404 9.59571 0.00 18.100 0 0.6930 6.4040 100.00 1.6390 24 666.0 20.20 376.11 20.31 12.10
405 24.80170 0.00 18.100 0 0.6930 5.3490 96.00 1.7028 24 666.0 20.20 396.90 19.77 8.30
406 41.52920 0.00 18.100 0 0.6930 5.5310 85.40 1.6074 24 666.0 20.20 329.46 27.38 8.50
407 67.92080 0.00 18.100 0 0.6930 5.6830 100.00 1.4254 24 666.0 20.20 384.97 22.98 5.00
408 20.71620 0.00 18.100 0 0.6590 4.1380 100.00 1.1781 24 666.0 20.20 370.22 23.34 11.90
409 11.95110 0.00 18.100 0 0.6590 5.6080 100.00 1.2852 24 666.0 20.20 332.09 12.13 27.90
410 7.40389 0.00 18.100 0 0.5970 5.6170 97.90 1.4547 24 666.0 20.20 314.64 26.40 17.20
411 14.43830 0.00 18.100 0 0.5970 6.8520 100.00 1.4655 24 666.0 20.20 179.36 19.78 27.50
412 51.13580 0.00 18.100 0 0.5970 5.7570 100.00 1.4130 24 666.0 20.20 2.60 10.11 15.00
413 14.05070 0.00 18.100 0 0.5970 6.6570 100.00 1.5275 24 666.0 20.20 35.05 21.22 17.20
414 18.81100 0.00 18.100 0 0.5970 4.6280 100.00 1.5539 24 666.0 20.20 28.79 34.37 17.90
415 28.65580 0.00 18.100 0 0.5970 5.1550 100.00 1.5894 24 666.0 20.20 210.97 20.08 16.30
416 45.74610 0.00 18.100 0 0.6930 4.5190 100.00 1.6582 24 666.0 20.20 88.27 36.98 7.00
417 18.08460 0.00 18.100 0 0.6790 6.4340 100.00 1.8347 24 666.0 20.20 27.25 29.05 7.20
418 10.83420 0.00 18.100 0 0.6790 6.7820 90.80 1.8195 24 666.0 20.20 21.57 25.79 7.50
419 25.94060 0.00 18.100 0 0.6790 5.3040 89.10 1.6475 24 666.0 20.20 127.36 26.64 10.40
420 73.53410 0.00 18.100 0 0.6790 5.9570 100.00 1.8026 24 666.0 20.20 16.45 20.62 8.80
421 11.81230 0.00 18.100 0 0.7180 6.8240 76.50 1.7940 24 666.0 20.20 48.45 22.74 8.40
422 11.08740 0.00 18.100 0 0.7180 6.4110 100.00 1.8589 24 666.0 20.20 318.75 15.02 16.70
423 7.02259 0.00 18.100 0 0.7180 6.0060 95.30 1.8746 24 666.0 20.20 319.98 15.70 14.20
424 12.04820 0.00 18.100 0 0.6140 5.6480 87.60 1.9512 24 666.0 20.20 291.55 14.10 20.80
425 7.05042 0.00 18.100 0 0.6140 6.1030 85.10 2.0218 24 666.0 20.20 2.52 23.29 13.40
426 8.79212 0.00 18.100 0 0.5840 5.5650 70.60 2.0635 24 666.0 20.20 3.65 17.16 11.70
427 15.86030 0.00 18.100 0 0.6790 5.8960 95.40 1.9096 24 666.0 20.20 7.68 24.39 8.30
428 12.24720 0.00 18.100 0 0.5840 5.8370 59.70 1.9976 24 666.0 20.20 24.65 15.69 10.20
429 37.66190 0.00 18.100 0 0.6790 6.2020 78.70 1.8629 24 666.0 20.20 18.82 14.52 10.90
430 7.36711 0.00 18.100 0 0.6790 6.1930 78.10 1.9356 24 666.0 20.20 96.73 21.52 11.00
431 9.33889 0.00 18.100 0 0.6790 6.3800 95.60 1.9682 24 666.0 20.20 60.72 24.08 9.50
432 8.49213 0.00 18.100 0 0.5840 6.3480 86.10 2.0527 24 666.0 20.20 83.45 17.64 14.50
433 10.06230 0.00 18.100 0 0.5840 6.8330 94.30 2.0882 24 666.0 20.20 81.33 19.69 14.10
434 6.44405 0.00 18.100 0 0.5840 6.4250 74.80 2.2004 24 666.0 20.20 97.95 12.03 16.10
435 5.58107 0.00 18.100 0 0.7130 6.4360 87.90 2.3158 24 666.0 20.20 100.19 16.22 14.30
436 13.91340 0.00 18.100 0 0.7130 6.2080 95.00 2.2222 24 666.0 20.20 100.63 15.17 11.70
437 11.16040 0.00 18.100 0 0.7400 6.6290 94.60 2.1247 24 666.0 20.20 109.85 23.27 13.40
438 14.42080 0.00 18.100 0 0.7400 6.4610 93.30 2.0026 24 666.0 20.20 27.49 18.05 9.60
439 15.17720 0.00 18.100 0 0.7400 6.1520 100.00 1.9142 24 666.0 20.20 9.32 26.45 8.70
440 13.67810 0.00 18.100 0 0.7400 5.9350 87.90 1.8206 24 666.0 20.20 68.95 34.02 8.40
441 9.39063 0.00 18.100 0 0.7400 5.6270 93.90 1.8172 24 666.0 20.20 396.90 22.88 12.80
442 22.05110 0.00 18.100 0 0.7400 5.8180 92.40 1.8662 24 666.0 20.20 391.45 22.11 10.50
443 9.72418 0.00 18.100 0 0.7400 6.4060 97.20 2.0651 24 666.0 20.20 385.96 19.52 17.10
444 5.66637 0.00 18.100 0 0.7400 6.2190 100.00 2.0048 24 666.0 20.20 395.69 16.59 18.40
445 9.96654 0.00 18.100 0 0.7400 6.4850 100.00 1.9784 24 666.0 20.20 386.73 18.85 15.40
446 12.80230 0.00 18.100 0 0.7400 5.8540 96.60 1.8956 24 666.0 20.20 240.52 23.79 10.80
447 10.67180 0.00 18.100 0 0.7400 6.4590 94.80 1.9879 24 666.0 20.20 43.06 23.98 11.80
448 6.28807 0.00 18.100 0 0.7400 6.3410 96.40 2.0720 24 666.0 20.20 318.01 17.79 14.90
449 9.92485 0.00 18.100 0 0.7400 6.2510 96.60 2.1980 24 666.0 20.20 388.52 16.44 12.60
450 9.32909 0.00 18.100 0 0.7130 6.1850 98.70 2.2616 24 666.0 20.20 396.90 18.13 14.10
451 7.52601 0.00 18.100 0 0.7130 6.4170 98.30 2.1850 24 666.0 20.20 304.21 19.31 13.00
452 6.71772 0.00 18.100 0 0.7130 6.7490 92.60 2.3236 24 666.0 20.20 0.32 17.44 13.40
453 5.44114 0.00 18.100 0 0.7130 6.6550 98.20 2.3552 24 666.0 20.20 355.29 17.73 15.20
454 5.09017 0.00 18.100 0 0.7130 6.2970 91.80 2.3682 24 666.0 20.20 385.09 17.27 16.10
455 8.24809 0.00 18.100 0 0.7130 7.3930 99.30 2.4527 24 666.0 20.20 375.87 16.74 17.80
456 9.51363 0.00 18.100 0 0.7130 6.7280 94.10 2.4961 24 666.0 20.20 6.68 18.71 14.90
457 4.75237 0.00 18.100 0 0.7130 6.5250 86.50 2.4358 24 666.0 20.20 50.92 18.13 14.10
458 4.66883 0.00 18.100 0 0.7130 5.9760 87.90 2.5806 24 666.0 20.20 10.48 19.01 12.70
459 8.20058 0.00 18.100 0 0.7130 5.9360 80.30 2.7792 24 666.0 20.20 3.50 16.94 13.50
460 7.75223 0.00 18.100 0 0.7130 6.3010 83.70 2.7831 24 666.0 20.20 272.21 16.23 14.90
461 6.80117 0.00 18.100 0 0.7130 6.0810 84.40 2.7175 24 666.0 20.20 396.90 14.70 20.00
462 4.81213 0.00 18.100 0 0.7130 6.7010 90.00 2.5975 24 666.0 20.20 255.23 16.42 16.40
463 3.69311 0.00 18.100 0 0.7130 6.3760 88.40 2.5671 24 666.0 20.20 391.43 14.65 17.70
464 6.65492 0.00 18.100 0 0.7130 6.3170 83.00 2.7344 24 666.0 20.20 396.90 13.99 19.50
465 5.82115 0.00 18.100 0 0.7130 6.5130 89.90 2.8016 24 666.0 20.20 393.82 10.29 20.20
466 7.83932 0.00 18.100 0 0.6550 6.2090 65.40 2.9634 24 666.0 20.20 396.90 13.22 21.40
467 3.16360 0.00 18.100 0 0.6550 5.7590 48.20 3.0665 24 666.0 20.20 334.40 14.13 19.90
468 3.77498 0.00 18.100 0 0.6550 5.9520 84.70 2.8715 24 666.0 20.20 22.01 17.15 19.00
469 4.42228 0.00 18.100 0 0.5840 6.0030 94.50 2.5403 24 666.0 20.20 331.29 21.32 19.10
470 15.57570 0.00 18.100 0 0.5800 5.9260 71.00 2.9084 24 666.0 20.20 368.74 18.13 19.10
471 13.07510 0.00 18.100 0 0.5800 5.7130 56.70 2.8237 24 666.0 20.20 396.90 14.76 20.10
472 4.34879 0.00 18.100 0 0.5800 6.1670 84.00 3.0334 24 666.0 20.20 396.90 16.29 19.90
473 4.03841 0.00 18.100 0 0.5320 6.2290 90.70 3.0993 24 666.0 20.20 395.33 12.87 19.60
474 3.56868 0.00 18.100 0 0.5800 6.4370 75.00 2.8965 24 666.0 20.20 393.37 14.36 23.20
475 4.64689 0.00 18.100 0 0.6140 6.9800 67.60 2.5329 24 666.0 20.20 374.68 11.66 29.80
476 8.05579 0.00 18.100 0 0.5840 5.4270 95.40 2.4298 24 666.0 20.20 352.58 18.14 13.80
477 6.39312 0.00 18.100 0 0.5840 6.1620 97.40 2.2060 24 666.0 20.20 302.76 24.10 13.30
478 4.87141 0.00 18.100 0 0.6140 6.4840 93.60 2.3053 24 666.0 20.20 396.21 18.68 16.70
479 15.02340 0.00 18.100 0 0.6140 5.3040 97.30 2.1007 24 666.0 20.20 349.48 24.91 12.00
480 10.23300 0.00 18.100 0 0.6140 6.1850 96.70 2.1705 24 666.0 20.20 379.70 18.03 14.60
481 14.33370 0.00 18.100 0 0.6140 6.2290 88.00 1.9512 24 666.0 20.20 383.32 13.11 21.40
482 5.82401 0.00 18.100 0 0.5320 6.2420 64.70 3.4242 24 666.0 20.20 396.90 10.74 23.00
483 5.70818 0.00 18.100 0 0.5320 6.7500 74.90 3.3317 24 666.0 20.20 393.07 7.74 23.70
484 5.73116 0.00 18.100 0 0.5320 7.0610 77.00 3.4106 24 666.0 20.20 395.28 7.01 25.00
485 2.81838 0.00 18.100 0 0.5320 5.7620 40.30 4.0983 24 666.0 20.20 392.92 10.42 21.80
486 2.37857 0.00 18.100 0 0.5830 5.8710 41.90 3.7240 24 666.0 20.20 370.73 13.34 20.60
487 3.67367 0.00 18.100 0 0.5830 6.3120 51.90 3.9917 24 666.0 20.20 388.62 10.58 21.20
488 5.69175 0.00 18.100 0 0.5830 6.1140 79.80 3.5459 24 666.0 20.20 392.68 14.98 19.10
489 4.83567 0.00 18.100 0 0.5830 5.9050 53.20 3.1523 24 666.0 20.20 388.22 11.45 20.60
490 0.15086 0.00 27.740 0 0.6090 5.4540 92.70 1.8209 4 711.0 20.10 395.09 18.06 15.20
491 0.18337 0.00 27.740 0 0.6090 5.4140 98.30 1.7554 4 711.0 20.10 344.05 23.97 7.00
492 0.20746 0.00 27.740 0 0.6090 5.0930 98.00 1.8226 4 711.0 20.10 318.43 29.68 8.10
493 0.10574 0.00 27.740 0 0.6090 5.9830 98.80 1.8681 4 711.0 20.10 390.11 18.07 13.60
494 0.11132 0.00 27.740 0 0.6090 5.9830 83.50 2.1099 4 711.0 20.10 396.90 13.35 20.10
495 0.17331 0.00 9.690 0 0.5850 5.7070 54.00 2.3817 6 391.0 19.20 396.90 12.01 21.80
496 0.27957 0.00 9.690 0 0.5850 5.9260 42.60 2.3817 6 391.0 19.20 396.90 13.59 24.50
497 0.17899 0.00 9.690 0 0.5850 5.6700 28.80 2.7986 6 391.0 19.20 393.29 17.60 23.10
498 0.28960 0.00 9.690 0 0.5850 5.3900 72.90 2.7986 6 391.0 19.20 396.90 21.14 19.70
499 0.26838 0.00 9.690 0 0.5850 5.7940 70.60 2.8927 6 391.0 19.20 396.90 14.10 18.30
500 0.23912 0.00 9.690 0 0.5850 6.0190 65.30 2.4091 6 391.0 19.20 396.90 12.92 21.20
501 0.17783 0.00 9.690 0 0.5850 5.5690 73.50 2.3999 6 391.0 19.20 395.77 15.10 17.50
502 0.22438 0.00 9.690 0 0.5850 6.0270 79.70 2.4982 6 391.0 19.20 396.90 14.33 16.80
503 0.06263 0.00 11.930 0 0.5730 6.5930 69.10 2.4786 1 273.0 21.00 391.99 9.67 22.40
504 0.04527 0.00 11.930 0 0.5730 6.1200 76.70 2.2875 1 273.0 21.00 396.90 9.08 20.60
505 0.06076 0.00 11.930 0 0.5730 6.9760 91.00 2.1675 1 273.0 21.00 396.90 5.64 23.90
506 0.10959 0.00 11.930 0 0.5730 6.7940 89.30 2.3889 1 273.0 21.00 393.45 6.48 22.00
507 0.04741 0.00 11.930 0 0.5730 6.0300 80.80 2.5050 1 273.0 21.00 396.90 7.88 11.90

View File

@@ -0,0 +1,36 @@
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
FILE_PATH = "boston.csv"
FEATURES = ['LSTAT', 'CRIM']
def plot_dendrogram(model, **kwargs):
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
for i, merge in enumerate(model.children_):
current_count = 0
for child_idx in merge:
if child_idx < n_samples:
current_count += 1
else:
current_count += counts[child_idx - n_samples]
counts[i] = current_count
linkage_matrix = np.column_stack(
[model.children_, model.distances_, counts]
).astype(float)
dendrogram(linkage_matrix, **kwargs)
data = pd.read_csv(FILE_PATH)
X = data[FEATURES]
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)
model = model.fit(X)
plt.title("Hierarchical Clustering Dendrogram for Boston House Prices")
plot_dendrogram(model, truncate_mode="level", p=2)
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@@ -0,0 +1,51 @@
## Лабораторная работа №5
### Регрессия
## Выполнил студент группы ПИбд-41 Липатов Илья
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (стартовая точка класс lab5)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* С помощью полиномиальной регрессии предсказывает среднюю стоимость домов в 1000 долларах [тыс. долларов] исходя из среднего количества комнат в жилом помещении, уровень преступности на душу населения в разбивке по городам и индекса доступности к радиальным магистралям.
* Выводит размер ошибки, оценку модели и полученное предсказание
### Примеры работы:
### Результаты:
Были проведены тесты с различными параметрами степени (от 1 до 6). По итогу степень ошибки большая, меньше всего она при степени равной 2 или 4 (при этом и оценка модели 0.68 и 0.55 соответственно).
#### Тесты
#### degree = 1
* Оценка качества: 0.4252542186083391
* Ошибка: 0.22653604605972913
#### degree = 2
* Оценка качества: 0.6835376807930289
* Ошибка: 0.1625504540569756
#### degree = 3
* Оценка качества: 0.5267438865953347
* Ошибка: 0.195302452251188
#### degree = 4
* Оценка качества: 0.5481932964142193
* Ошибка: 0.17852746450144702
#### degree = 5
* Оценка качества: -3.372087305867348
* Ошибка: 0.4163026401028063
#### degree = 6
* Оценка качества: -69.05174526020205
* Ошибка: 1.3125236408458876

View File

@@ -0,0 +1,507 @@
CRIM,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV
0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0,15.30,396.90,4.98,24.00
0.02731,0.00,7.070,0,0.4690,6.4210,78.90,4.9671,2,242.0,17.80,396.90,9.14,21.60
0.02729,0.00,7.070,0,0.4690,7.1850,61.10,4.9671,2,242.0,17.80,392.83,4.03,34.70
0.03237,0.00,2.180,0,0.4580,6.9980,45.80,6.0622,3,222.0,18.70,394.63,2.94,33.40
0.06905,0.00,2.180,0,0.4580,7.1470,54.20,6.0622,3,222.0,18.70,396.90,5.33,36.20
0.02985,0.00,2.180,0,0.4580,6.4300,58.70,6.0622,3,222.0,18.70,394.12,5.21,28.70
0.08829,12.50,7.870,0,0.5240,6.0120,66.60,5.5605,5,311.0,15.20,395.60,12.43,22.90
0.14455,12.50,7.870,0,0.5240,6.1720,96.10,5.9505,5,311.0,15.20,396.90,19.15,27.10
0.21124,12.50,7.870,0,0.5240,5.6310,100.00,6.0821,5,311.0,15.20,386.63,29.93,16.50
0.17004,12.50,7.870,0,0.5240,6.0040,85.90,6.5921,5,311.0,15.20,386.71,17.10,18.90
0.22489,12.50,7.870,0,0.5240,6.3770,94.30,6.3467,5,311.0,15.20,392.52,20.45,15.00
0.11747,12.50,7.870,0,0.5240,6.0090,82.90,6.2267,5,311.0,15.20,396.90,13.27,18.90
0.09378,12.50,7.870,0,0.5240,5.8890,39.00,5.4509,5,311.0,15.20,390.50,15.71,21.70
0.62976,0.00,8.140,0,0.5380,5.9490,61.80,4.7075,4,307.0,21.00,396.90,8.26,20.40
0.63796,0.00,8.140,0,0.5380,6.0960,84.50,4.4619,4,307.0,21.00,380.02,10.26,18.20
0.62739,0.00,8.140,0,0.5380,5.8340,56.50,4.4986,4,307.0,21.00,395.62,8.47,19.90
1.05393,0.00,8.140,0,0.5380,5.9350,29.30,4.4986,4,307.0,21.00,386.85,6.58,23.10
0.78420,0.00,8.140,0,0.5380,5.9900,81.70,4.2579,4,307.0,21.00,386.75,14.67,17.50
0.80271,0.00,8.140,0,0.5380,5.4560,36.60,3.7965,4,307.0,21.00,288.99,11.69,20.20
0.72580,0.00,8.140,0,0.5380,5.7270,69.50,3.7965,4,307.0,21.00,390.95,11.28,18.20
1.25179,0.00,8.140,0,0.5380,5.5700,98.10,3.7979,4,307.0,21.00,376.57,21.02,13.60
0.85204,0.00,8.140,0,0.5380,5.9650,89.20,4.0123,4,307.0,21.00,392.53,13.83,19.60
1.23247,0.00,8.140,0,0.5380,6.1420,91.70,3.9769,4,307.0,21.00,396.90,18.72,15.20
0.98843,0.00,8.140,0,0.5380,5.8130,100.00,4.0952,4,307.0,21.00,394.54,19.88,14.50
0.75026,0.00,8.140,0,0.5380,5.9240,94.10,4.3996,4,307.0,21.00,394.33,16.30,15.60
0.84054,0.00,8.140,0,0.5380,5.5990,85.70,4.4546,4,307.0,21.00,303.42,16.51,13.90
0.67191,0.00,8.140,0,0.5380,5.8130,90.30,4.6820,4,307.0,21.00,376.88,14.81,16.60
0.95577,0.00,8.140,0,0.5380,6.0470,88.80,4.4534,4,307.0,21.00,306.38,17.28,14.80
0.77299,0.00,8.140,0,0.5380,6.4950,94.40,4.4547,4,307.0,21.00,387.94,12.80,18.40
1.00245,0.00,8.140,0,0.5380,6.6740,87.30,4.2390,4,307.0,21.00,380.23,11.98,21.00
1.13081,0.00,8.140,0,0.5380,5.7130,94.10,4.2330,4,307.0,21.00,360.17,22.60,12.70
1.35472,0.00,8.140,0,0.5380,6.0720,100.00,4.1750,4,307.0,21.00,376.73,13.04,14.50
1.38799,0.00,8.140,0,0.5380,5.9500,82.00,3.9900,4,307.0,21.00,232.60,27.71,13.20
1.15172,0.00,8.140,0,0.5380,5.7010,95.00,3.7872,4,307.0,21.00,358.77,18.35,13.10
1.61282,0.00,8.140,0,0.5380,6.0960,96.90,3.7598,4,307.0,21.00,248.31,20.34,13.50
0.06417,0.00,5.960,0,0.4990,5.9330,68.20,3.3603,5,279.0,19.20,396.90,9.68,18.90
0.09744,0.00,5.960,0,0.4990,5.8410,61.40,3.3779,5,279.0,19.20,377.56,11.41,20.00
0.08014,0.00,5.960,0,0.4990,5.8500,41.50,3.9342,5,279.0,19.20,396.90,8.77,21.00
0.17505,0.00,5.960,0,0.4990,5.9660,30.20,3.8473,5,279.0,19.20,393.43,10.13,24.70
0.02763,75.00,2.950,0,0.4280,6.5950,21.80,5.4011,3,252.0,18.30,395.63,4.32,30.80
0.03359,75.00,2.950,0,0.4280,7.0240,15.80,5.4011,3,252.0,18.30,395.62,1.98,34.90
0.12744,0.00,6.910,0,0.4480,6.7700,2.90,5.7209,3,233.0,17.90,385.41,4.84,26.60
0.14150,0.00,6.910,0,0.4480,6.1690,6.60,5.7209,3,233.0,17.90,383.37,5.81,25.30
0.15936,0.00,6.910,0,0.4480,6.2110,6.50,5.7209,3,233.0,17.90,394.46,7.44,24.70
0.12269,0.00,6.910,0,0.4480,6.0690,40.00,5.7209,3,233.0,17.90,389.39,9.55,21.20
0.17142,0.00,6.910,0,0.4480,5.6820,33.80,5.1004,3,233.0,17.90,396.90,10.21,19.30
0.18836,0.00,6.910,0,0.4480,5.7860,33.30,5.1004,3,233.0,17.90,396.90,14.15,20.00
0.22927,0.00,6.910,0,0.4480,6.0300,85.50,5.6894,3,233.0,17.90,392.74,18.80,16.60
0.25387,0.00,6.910,0,0.4480,5.3990,95.30,5.8700,3,233.0,17.90,396.90,30.81,14.40
0.21977,0.00,6.910,0,0.4480,5.6020,62.00,6.0877,3,233.0,17.90,396.90,16.20,19.40
0.08873,21.00,5.640,0,0.4390,5.9630,45.70,6.8147,4,243.0,16.80,395.56,13.45,19.70
0.04337,21.00,5.640,0,0.4390,6.1150,63.00,6.8147,4,243.0,16.80,393.97,9.43,20.50
0.05360,21.00,5.640,0,0.4390,6.5110,21.10,6.8147,4,243.0,16.80,396.90,5.28,25.00
0.04981,21.00,5.640,0,0.4390,5.9980,21.40,6.8147,4,243.0,16.80,396.90,8.43,23.40
0.01360,75.00,4.000,0,0.4100,5.8880,47.60,7.3197,3,469.0,21.10,396.90,14.80,18.90
0.01311,90.00,1.220,0,0.4030,7.2490,21.90,8.6966,5,226.0,17.90,395.93,4.81,35.40
0.02055,85.00,0.740,0,0.4100,6.3830,35.70,9.1876,2,313.0,17.30,396.90,5.77,24.70
0.01432,100.00,1.320,0,0.4110,6.8160,40.50,8.3248,5,256.0,15.10,392.90,3.95,31.60
0.15445,25.00,5.130,0,0.4530,6.1450,29.20,7.8148,8,284.0,19.70,390.68,6.86,23.30
0.10328,25.00,5.130,0,0.4530,5.9270,47.20,6.9320,8,284.0,19.70,396.90,9.22,19.60
0.14932,25.00,5.130,0,0.4530,5.7410,66.20,7.2254,8,284.0,19.70,395.11,13.15,18.70
0.17171,25.00,5.130,0,0.4530,5.9660,93.40,6.8185,8,284.0,19.70,378.08,14.44,16.00
0.11027,25.00,5.130,0,0.4530,6.4560,67.80,7.2255,8,284.0,19.70,396.90,6.73,22.20
0.12650,25.00,5.130,0,0.4530,6.7620,43.40,7.9809,8,284.0,19.70,395.58,9.50,25.00
0.01951,17.50,1.380,0,0.4161,7.1040,59.50,9.2229,3,216.0,18.60,393.24,8.05,33.00
0.03584,80.00,3.370,0,0.3980,6.2900,17.80,6.6115,4,337.0,16.10,396.90,4.67,23.50
0.04379,80.00,3.370,0,0.3980,5.7870,31.10,6.6115,4,337.0,16.10,396.90,10.24,19.40
0.05789,12.50,6.070,0,0.4090,5.8780,21.40,6.4980,4,345.0,18.90,396.21,8.10,22.00
0.13554,12.50,6.070,0,0.4090,5.5940,36.80,6.4980,4,345.0,18.90,396.90,13.09,17.40
0.12816,12.50,6.070,0,0.4090,5.8850,33.00,6.4980,4,345.0,18.90,396.90,8.79,20.90
0.08826,0.00,10.810,0,0.4130,6.4170,6.60,5.2873,4,305.0,19.20,383.73,6.72,24.20
0.15876,0.00,10.810,0,0.4130,5.9610,17.50,5.2873,4,305.0,19.20,376.94,9.88,21.70
0.09164,0.00,10.810,0,0.4130,6.0650,7.80,5.2873,4,305.0,19.20,390.91,5.52,22.80
0.19539,0.00,10.810,0,0.4130,6.2450,6.20,5.2873,4,305.0,19.20,377.17,7.54,23.40
0.07896,0.00,12.830,0,0.4370,6.2730,6.00,4.2515,5,398.0,18.70,394.92,6.78,24.10
0.09512,0.00,12.830,0,0.4370,6.2860,45.00,4.5026,5,398.0,18.70,383.23,8.94,21.40
0.10153,0.00,12.830,0,0.4370,6.2790,74.50,4.0522,5,398.0,18.70,373.66,11.97,20.00
0.08707,0.00,12.830,0,0.4370,6.1400,45.80,4.0905,5,398.0,18.70,386.96,10.27,20.80
0.05646,0.00,12.830,0,0.4370,6.2320,53.70,5.0141,5,398.0,18.70,386.40,12.34,21.20
0.08387,0.00,12.830,0,0.4370,5.8740,36.60,4.5026,5,398.0,18.70,396.06,9.10,20.30
0.04113,25.00,4.860,0,0.4260,6.7270,33.50,5.4007,4,281.0,19.00,396.90,5.29,28.00
0.04462,25.00,4.860,0,0.4260,6.6190,70.40,5.4007,4,281.0,19.00,395.63,7.22,23.90
0.03659,25.00,4.860,0,0.4260,6.3020,32.20,5.4007,4,281.0,19.00,396.90,6.72,24.80
0.03551,25.00,4.860,0,0.4260,6.1670,46.70,5.4007,4,281.0,19.00,390.64,7.51,22.90
0.05059,0.00,4.490,0,0.4490,6.3890,48.00,4.7794,3,247.0,18.50,396.90,9.62,23.90
0.05735,0.00,4.490,0,0.4490,6.6300,56.10,4.4377,3,247.0,18.50,392.30,6.53,26.60
0.05188,0.00,4.490,0,0.4490,6.0150,45.10,4.4272,3,247.0,18.50,395.99,12.86,22.50
0.07151,0.00,4.490,0,0.4490,6.1210,56.80,3.7476,3,247.0,18.50,395.15,8.44,22.20
0.05660,0.00,3.410,0,0.4890,7.0070,86.30,3.4217,2,270.0,17.80,396.90,5.50,23.60
0.05302,0.00,3.410,0,0.4890,7.0790,63.10,3.4145,2,270.0,17.80,396.06,5.70,28.70
0.04684,0.00,3.410,0,0.4890,6.4170,66.10,3.0923,2,270.0,17.80,392.18,8.81,22.60
0.03932,0.00,3.410,0,0.4890,6.4050,73.90,3.0921,2,270.0,17.80,393.55,8.20,22.00
0.04203,28.00,15.040,0,0.4640,6.4420,53.60,3.6659,4,270.0,18.20,395.01,8.16,22.90
0.02875,28.00,15.040,0,0.4640,6.2110,28.90,3.6659,4,270.0,18.20,396.33,6.21,25.00
0.04294,28.00,15.040,0,0.4640,6.2490,77.30,3.6150,4,270.0,18.20,396.90,10.59,20.60
0.12204,0.00,2.890,0,0.4450,6.6250,57.80,3.4952,2,276.0,18.00,357.98,6.65,28.40
0.11504,0.00,2.890,0,0.4450,6.1630,69.60,3.4952,2,276.0,18.00,391.83,11.34,21.40
0.12083,0.00,2.890,0,0.4450,8.0690,76.00,3.4952,2,276.0,18.00,396.90,4.21,38.70
0.08187,0.00,2.890,0,0.4450,7.8200,36.90,3.4952,2,276.0,18.00,393.53,3.57,43.80
0.06860,0.00,2.890,0,0.4450,7.4160,62.50,3.4952,2,276.0,18.00,396.90,6.19,33.20
0.14866,0.00,8.560,0,0.5200,6.7270,79.90,2.7778,5,384.0,20.90,394.76,9.42,27.50
0.11432,0.00,8.560,0,0.5200,6.7810,71.30,2.8561,5,384.0,20.90,395.58,7.67,26.50
0.22876,0.00,8.560,0,0.5200,6.4050,85.40,2.7147,5,384.0,20.90,70.80,10.63,18.60
0.21161,0.00,8.560,0,0.5200,6.1370,87.40,2.7147,5,384.0,20.90,394.47,13.44,19.30
0.13960,0.00,8.560,0,0.5200,6.1670,90.00,2.4210,5,384.0,20.90,392.69,12.33,20.10
0.13262,0.00,8.560,0,0.5200,5.8510,96.70,2.1069,5,384.0,20.90,394.05,16.47,19.50
0.17120,0.00,8.560,0,0.5200,5.8360,91.90,2.2110,5,384.0,20.90,395.67,18.66,19.50
0.13117,0.00,8.560,0,0.5200,6.1270,85.20,2.1224,5,384.0,20.90,387.69,14.09,20.40
0.12802,0.00,8.560,0,0.5200,6.4740,97.10,2.4329,5,384.0,20.90,395.24,12.27,19.80
0.26363,0.00,8.560,0,0.5200,6.2290,91.20,2.5451,5,384.0,20.90,391.23,15.55,19.40
0.10793,0.00,8.560,0,0.5200,6.1950,54.40,2.7778,5,384.0,20.90,393.49,13.00,21.70
0.10084,0.00,10.010,0,0.5470,6.7150,81.60,2.6775,6,432.0,17.80,395.59,10.16,22.80
0.12329,0.00,10.010,0,0.5470,5.9130,92.90,2.3534,6,432.0,17.80,394.95,16.21,18.80
0.22212,0.00,10.010,0,0.5470,6.0920,95.40,2.5480,6,432.0,17.80,396.90,17.09,18.70
0.14231,0.00,10.010,0,0.5470,6.2540,84.20,2.2565,6,432.0,17.80,388.74,10.45,18.50
0.17134,0.00,10.010,0,0.5470,5.9280,88.20,2.4631,6,432.0,17.80,344.91,15.76,18.30
0.13158,0.00,10.010,0,0.5470,6.1760,72.50,2.7301,6,432.0,17.80,393.30,12.04,21.20
0.15098,0.00,10.010,0,0.5470,6.0210,82.60,2.7474,6,432.0,17.80,394.51,10.30,19.20
0.13058,0.00,10.010,0,0.5470,5.8720,73.10,2.4775,6,432.0,17.80,338.63,15.37,20.40
0.14476,0.00,10.010,0,0.5470,5.7310,65.20,2.7592,6,432.0,17.80,391.50,13.61,19.30
0.06899,0.00,25.650,0,0.5810,5.8700,69.70,2.2577,2,188.0,19.10,389.15,14.37,22.00
0.07165,0.00,25.650,0,0.5810,6.0040,84.10,2.1974,2,188.0,19.10,377.67,14.27,20.30
0.09299,0.00,25.650,0,0.5810,5.9610,92.90,2.0869,2,188.0,19.10,378.09,17.93,20.50
0.15038,0.00,25.650,0,0.5810,5.8560,97.00,1.9444,2,188.0,19.10,370.31,25.41,17.30
0.09849,0.00,25.650,0,0.5810,5.8790,95.80,2.0063,2,188.0,19.10,379.38,17.58,18.80
0.16902,0.00,25.650,0,0.5810,5.9860,88.40,1.9929,2,188.0,19.10,385.02,14.81,21.40
0.38735,0.00,25.650,0,0.5810,5.6130,95.60,1.7572,2,188.0,19.10,359.29,27.26,15.70
0.25915,0.00,21.890,0,0.6240,5.6930,96.00,1.7883,4,437.0,21.20,392.11,17.19,16.20
0.32543,0.00,21.890,0,0.6240,6.4310,98.80,1.8125,4,437.0,21.20,396.90,15.39,18.00
0.88125,0.00,21.890,0,0.6240,5.6370,94.70,1.9799,4,437.0,21.20,396.90,18.34,14.30
0.34006,0.00,21.890,0,0.6240,6.4580,98.90,2.1185,4,437.0,21.20,395.04,12.60,19.20
1.19294,0.00,21.890,0,0.6240,6.3260,97.70,2.2710,4,437.0,21.20,396.90,12.26,19.60
0.59005,0.00,21.890,0,0.6240,6.3720,97.90,2.3274,4,437.0,21.20,385.76,11.12,23.00
0.32982,0.00,21.890,0,0.6240,5.8220,95.40,2.4699,4,437.0,21.20,388.69,15.03,18.40
0.97617,0.00,21.890,0,0.6240,5.7570,98.40,2.3460,4,437.0,21.20,262.76,17.31,15.60
0.55778,0.00,21.890,0,0.6240,6.3350,98.20,2.1107,4,437.0,21.20,394.67,16.96,18.10
0.32264,0.00,21.890,0,0.6240,5.9420,93.50,1.9669,4,437.0,21.20,378.25,16.90,17.40
0.35233,0.00,21.890,0,0.6240,6.4540,98.40,1.8498,4,437.0,21.20,394.08,14.59,17.10
0.24980,0.00,21.890,0,0.6240,5.8570,98.20,1.6686,4,437.0,21.20,392.04,21.32,13.30
0.54452,0.00,21.890,0,0.6240,6.1510,97.90,1.6687,4,437.0,21.20,396.90,18.46,17.80
0.29090,0.00,21.890,0,0.6240,6.1740,93.60,1.6119,4,437.0,21.20,388.08,24.16,14.00
1.62864,0.00,21.890,0,0.6240,5.0190,100.00,1.4394,4,437.0,21.20,396.90,34.41,14.40
3.32105,0.00,19.580,1,0.8710,5.4030,100.00,1.3216,5,403.0,14.70,396.90,26.82,13.40
4.09740,0.00,19.580,0,0.8710,5.4680,100.00,1.4118,5,403.0,14.70,396.90,26.42,15.60
2.77974,0.00,19.580,0,0.8710,4.9030,97.80,1.3459,5,403.0,14.70,396.90,29.29,11.80
2.37934,0.00,19.580,0,0.8710,6.1300,100.00,1.4191,5,403.0,14.70,172.91,27.80,13.80
2.15505,0.00,19.580,0,0.8710,5.6280,100.00,1.5166,5,403.0,14.70,169.27,16.65,15.60
2.36862,0.00,19.580,0,0.8710,4.9260,95.70,1.4608,5,403.0,14.70,391.71,29.53,14.60
2.33099,0.00,19.580,0,0.8710,5.1860,93.80,1.5296,5,403.0,14.70,356.99,28.32,17.80
2.73397,0.00,19.580,0,0.8710,5.5970,94.90,1.5257,5,403.0,14.70,351.85,21.45,15.40
1.65660,0.00,19.580,0,0.8710,6.1220,97.30,1.6180,5,403.0,14.70,372.80,14.10,21.50
1.49632,0.00,19.580,0,0.8710,5.4040,100.00,1.5916,5,403.0,14.70,341.60,13.28,19.60
1.12658,0.00,19.580,1,0.8710,5.0120,88.00,1.6102,5,403.0,14.70,343.28,12.12,15.30
2.14918,0.00,19.580,0,0.8710,5.7090,98.50,1.6232,5,403.0,14.70,261.95,15.79,19.40
1.41385,0.00,19.580,1,0.8710,6.1290,96.00,1.7494,5,403.0,14.70,321.02,15.12,17.00
3.53501,0.00,19.580,1,0.8710,6.1520,82.60,1.7455,5,403.0,14.70,88.01,15.02,15.60
2.44668,0.00,19.580,0,0.8710,5.2720,94.00,1.7364,5,403.0,14.70,88.63,16.14,13.10
1.22358,0.00,19.580,0,0.6050,6.9430,97.40,1.8773,5,403.0,14.70,363.43,4.59,41.30
1.34284,0.00,19.580,0,0.6050,6.0660,100.00,1.7573,5,403.0,14.70,353.89,6.43,24.30
1.42502,0.00,19.580,0,0.8710,6.5100,100.00,1.7659,5,403.0,14.70,364.31,7.39,23.30
1.27346,0.00,19.580,1,0.6050,6.2500,92.60,1.7984,5,403.0,14.70,338.92,5.50,27.00
1.46336,0.00,19.580,0,0.6050,7.4890,90.80,1.9709,5,403.0,14.70,374.43,1.73,50.00
1.83377,0.00,19.580,1,0.6050,7.8020,98.20,2.0407,5,403.0,14.70,389.61,1.92,50.00
1.51902,0.00,19.580,1,0.6050,8.3750,93.90,2.1620,5,403.0,14.70,388.45,3.32,50.00
2.24236,0.00,19.580,0,0.6050,5.8540,91.80,2.4220,5,403.0,14.70,395.11,11.64,22.70
2.92400,0.00,19.580,0,0.6050,6.1010,93.00,2.2834,5,403.0,14.70,240.16,9.81,25.00
2.01019,0.00,19.580,0,0.6050,7.9290,96.20,2.0459,5,403.0,14.70,369.30,3.70,50.00
1.80028,0.00,19.580,0,0.6050,5.8770,79.20,2.4259,5,403.0,14.70,227.61,12.14,23.80
2.30040,0.00,19.580,0,0.6050,6.3190,96.10,2.1000,5,403.0,14.70,297.09,11.10,23.80
2.44953,0.00,19.580,0,0.6050,6.4020,95.20,2.2625,5,403.0,14.70,330.04,11.32,22.30
1.20742,0.00,19.580,0,0.6050,5.8750,94.60,2.4259,5,403.0,14.70,292.29,14.43,17.40
2.31390,0.00,19.580,0,0.6050,5.8800,97.30,2.3887,5,403.0,14.70,348.13,12.03,19.10
0.13914,0.00,4.050,0,0.5100,5.5720,88.50,2.5961,5,296.0,16.60,396.90,14.69,23.10
0.09178,0.00,4.050,0,0.5100,6.4160,84.10,2.6463,5,296.0,16.60,395.50,9.04,23.60
0.08447,0.00,4.050,0,0.5100,5.8590,68.70,2.7019,5,296.0,16.60,393.23,9.64,22.60
0.06664,0.00,4.050,0,0.5100,6.5460,33.10,3.1323,5,296.0,16.60,390.96,5.33,29.40
0.07022,0.00,4.050,0,0.5100,6.0200,47.20,3.5549,5,296.0,16.60,393.23,10.11,23.20
0.05425,0.00,4.050,0,0.5100,6.3150,73.40,3.3175,5,296.0,16.60,395.60,6.29,24.60
0.06642,0.00,4.050,0,0.5100,6.8600,74.40,2.9153,5,296.0,16.60,391.27,6.92,29.90
0.05780,0.00,2.460,0,0.4880,6.9800,58.40,2.8290,3,193.0,17.80,396.90,5.04,37.20
0.06588,0.00,2.460,0,0.4880,7.7650,83.30,2.7410,3,193.0,17.80,395.56,7.56,39.80
0.06888,0.00,2.460,0,0.4880,6.1440,62.20,2.5979,3,193.0,17.80,396.90,9.45,36.20
0.09103,0.00,2.460,0,0.4880,7.1550,92.20,2.7006,3,193.0,17.80,394.12,4.82,37.90
0.10008,0.00,2.460,0,0.4880,6.5630,95.60,2.8470,3,193.0,17.80,396.90,5.68,32.50
0.08308,0.00,2.460,0,0.4880,5.6040,89.80,2.9879,3,193.0,17.80,391.00,13.98,26.40
0.06047,0.00,2.460,0,0.4880,6.1530,68.80,3.2797,3,193.0,17.80,387.11,13.15,29.60
0.05602,0.00,2.460,0,0.4880,7.8310,53.60,3.1992,3,193.0,17.80,392.63,4.45,50.00
0.07875,45.00,3.440,0,0.4370,6.7820,41.10,3.7886,5,398.0,15.20,393.87,6.68,32.00
0.12579,45.00,3.440,0,0.4370,6.5560,29.10,4.5667,5,398.0,15.20,382.84,4.56,29.80
0.08370,45.00,3.440,0,0.4370,7.1850,38.90,4.5667,5,398.0,15.20,396.90,5.39,34.90
0.09068,45.00,3.440,0,0.4370,6.9510,21.50,6.4798,5,398.0,15.20,377.68,5.10,37.00
0.06911,45.00,3.440,0,0.4370,6.7390,30.80,6.4798,5,398.0,15.20,389.71,4.69,30.50
0.08664,45.00,3.440,0,0.4370,7.1780,26.30,6.4798,5,398.0,15.20,390.49,2.87,36.40
0.02187,60.00,2.930,0,0.4010,6.8000,9.90,6.2196,1,265.0,15.60,393.37,5.03,31.10
0.01439,60.00,2.930,0,0.4010,6.6040,18.80,6.2196,1,265.0,15.60,376.70,4.38,29.10
0.01381,80.00,0.460,0,0.4220,7.8750,32.00,5.6484,4,255.0,14.40,394.23,2.97,50.00
0.04011,80.00,1.520,0,0.4040,7.2870,34.10,7.3090,2,329.0,12.60,396.90,4.08,33.30
0.04666,80.00,1.520,0,0.4040,7.1070,36.60,7.3090,2,329.0,12.60,354.31,8.61,30.30
0.03768,80.00,1.520,0,0.4040,7.2740,38.30,7.3090,2,329.0,12.60,392.20,6.62,34.60
0.03150,95.00,1.470,0,0.4030,6.9750,15.30,7.6534,3,402.0,17.00,396.90,4.56,34.90
0.01778,95.00,1.470,0,0.4030,7.1350,13.90,7.6534,3,402.0,17.00,384.30,4.45,32.90
0.03445,82.50,2.030,0,0.4150,6.1620,38.40,6.2700,2,348.0,14.70,393.77,7.43,24.10
0.02177,82.50,2.030,0,0.4150,7.6100,15.70,6.2700,2,348.0,14.70,395.38,3.11,42.30
0.03510,95.00,2.680,0,0.4161,7.8530,33.20,5.1180,4,224.0,14.70,392.78,3.81,48.50
0.02009,95.00,2.680,0,0.4161,8.0340,31.90,5.1180,4,224.0,14.70,390.55,2.88,50.00
0.13642,0.00,10.590,0,0.4890,5.8910,22.30,3.9454,4,277.0,18.60,396.90,10.87,22.60
0.22969,0.00,10.590,0,0.4890,6.3260,52.50,4.3549,4,277.0,18.60,394.87,10.97,24.40
0.25199,0.00,10.590,0,0.4890,5.7830,72.70,4.3549,4,277.0,18.60,389.43,18.06,22.50
0.13587,0.00,10.590,1,0.4890,6.0640,59.10,4.2392,4,277.0,18.60,381.32,14.66,24.40
0.43571,0.00,10.590,1,0.4890,5.3440,100.00,3.8750,4,277.0,18.60,396.90,23.09,20.00
0.17446,0.00,10.590,1,0.4890,5.9600,92.10,3.8771,4,277.0,18.60,393.25,17.27,21.70
0.37578,0.00,10.590,1,0.4890,5.4040,88.60,3.6650,4,277.0,18.60,395.24,23.98,19.30
0.21719,0.00,10.590,1,0.4890,5.8070,53.80,3.6526,4,277.0,18.60,390.94,16.03,22.40
0.14052,0.00,10.590,0,0.4890,6.3750,32.30,3.9454,4,277.0,18.60,385.81,9.38,28.10
0.28955,0.00,10.590,0,0.4890,5.4120,9.80,3.5875,4,277.0,18.60,348.93,29.55,23.70
0.19802,0.00,10.590,0,0.4890,6.1820,42.40,3.9454,4,277.0,18.60,393.63,9.47,25.00
0.04560,0.00,13.890,1,0.5500,5.8880,56.00,3.1121,5,276.0,16.40,392.80,13.51,23.30
0.07013,0.00,13.890,0,0.5500,6.6420,85.10,3.4211,5,276.0,16.40,392.78,9.69,28.70
0.11069,0.00,13.890,1,0.5500,5.9510,93.80,2.8893,5,276.0,16.40,396.90,17.92,21.50
0.11425,0.00,13.890,1,0.5500,6.3730,92.40,3.3633,5,276.0,16.40,393.74,10.50,23.00
0.35809,0.00,6.200,1,0.5070,6.9510,88.50,2.8617,8,307.0,17.40,391.70,9.71,26.70
0.40771,0.00,6.200,1,0.5070,6.1640,91.30,3.0480,8,307.0,17.40,395.24,21.46,21.70
0.62356,0.00,6.200,1,0.5070,6.8790,77.70,3.2721,8,307.0,17.40,390.39,9.93,27.50
0.61470,0.00,6.200,0,0.5070,6.6180,80.80,3.2721,8,307.0,17.40,396.90,7.60,30.10
0.31533,0.00,6.200,0,0.5040,8.2660,78.30,2.8944,8,307.0,17.40,385.05,4.14,44.80
0.52693,0.00,6.200,0,0.5040,8.7250,83.00,2.8944,8,307.0,17.40,382.00,4.63,50.00
0.38214,0.00,6.200,0,0.5040,8.0400,86.50,3.2157,8,307.0,17.40,387.38,3.13,37.60
0.41238,0.00,6.200,0,0.5040,7.1630,79.90,3.2157,8,307.0,17.40,372.08,6.36,31.60
0.29819,0.00,6.200,0,0.5040,7.6860,17.00,3.3751,8,307.0,17.40,377.51,3.92,46.70
0.44178,0.00,6.200,0,0.5040,6.5520,21.40,3.3751,8,307.0,17.40,380.34,3.76,31.50
0.53700,0.00,6.200,0,0.5040,5.9810,68.10,3.6715,8,307.0,17.40,378.35,11.65,24.30
0.46296,0.00,6.200,0,0.5040,7.4120,76.90,3.6715,8,307.0,17.40,376.14,5.25,31.70
0.57529,0.00,6.200,0,0.5070,8.3370,73.30,3.8384,8,307.0,17.40,385.91,2.47,41.70
0.33147,0.00,6.200,0,0.5070,8.2470,70.40,3.6519,8,307.0,17.40,378.95,3.95,48.30
0.44791,0.00,6.200,1,0.5070,6.7260,66.50,3.6519,8,307.0,17.40,360.20,8.05,29.00
0.33045,0.00,6.200,0,0.5070,6.0860,61.50,3.6519,8,307.0,17.40,376.75,10.88,24.00
0.52058,0.00,6.200,1,0.5070,6.6310,76.50,4.1480,8,307.0,17.40,388.45,9.54,25.10
0.51183,0.00,6.200,0,0.5070,7.3580,71.60,4.1480,8,307.0,17.40,390.07,4.73,31.50
0.08244,30.00,4.930,0,0.4280,6.4810,18.50,6.1899,6,300.0,16.60,379.41,6.36,23.70
0.09252,30.00,4.930,0,0.4280,6.6060,42.20,6.1899,6,300.0,16.60,383.78,7.37,23.30
0.11329,30.00,4.930,0,0.4280,6.8970,54.30,6.3361,6,300.0,16.60,391.25,11.38,22.00
0.10612,30.00,4.930,0,0.4280,6.0950,65.10,6.3361,6,300.0,16.60,394.62,12.40,20.10
0.10290,30.00,4.930,0,0.4280,6.3580,52.90,7.0355,6,300.0,16.60,372.75,11.22,22.20
0.12757,30.00,4.930,0,0.4280,6.3930,7.80,7.0355,6,300.0,16.60,374.71,5.19,23.70
0.20608,22.00,5.860,0,0.4310,5.5930,76.50,7.9549,7,330.0,19.10,372.49,12.50,17.60
0.19133,22.00,5.860,0,0.4310,5.6050,70.20,7.9549,7,330.0,19.10,389.13,18.46,18.50
0.33983,22.00,5.860,0,0.4310,6.1080,34.90,8.0555,7,330.0,19.10,390.18,9.16,24.30
0.19657,22.00,5.860,0,0.4310,6.2260,79.20,8.0555,7,330.0,19.10,376.14,10.15,20.50
0.16439,22.00,5.860,0,0.4310,6.4330,49.10,7.8265,7,330.0,19.10,374.71,9.52,24.50
0.19073,22.00,5.860,0,0.4310,6.7180,17.50,7.8265,7,330.0,19.10,393.74,6.56,26.20
0.14030,22.00,5.860,0,0.4310,6.4870,13.00,7.3967,7,330.0,19.10,396.28,5.90,24.40
0.21409,22.00,5.860,0,0.4310,6.4380,8.90,7.3967,7,330.0,19.10,377.07,3.59,24.80
0.08221,22.00,5.860,0,0.4310,6.9570,6.80,8.9067,7,330.0,19.10,386.09,3.53,29.60
0.36894,22.00,5.860,0,0.4310,8.2590,8.40,8.9067,7,330.0,19.10,396.90,3.54,42.80
0.04819,80.00,3.640,0,0.3920,6.1080,32.00,9.2203,1,315.0,16.40,392.89,6.57,21.90
0.03548,80.00,3.640,0,0.3920,5.8760,19.10,9.2203,1,315.0,16.40,395.18,9.25,20.90
0.01538,90.00,3.750,0,0.3940,7.4540,34.20,6.3361,3,244.0,15.90,386.34,3.11,44.00
0.61154,20.00,3.970,0,0.6470,8.7040,86.90,1.8010,5,264.0,13.00,389.70,5.12,50.00
0.66351,20.00,3.970,0,0.6470,7.3330,100.00,1.8946,5,264.0,13.00,383.29,7.79,36.00
0.65665,20.00,3.970,0,0.6470,6.8420,100.00,2.0107,5,264.0,13.00,391.93,6.90,30.10
0.54011,20.00,3.970,0,0.6470,7.2030,81.80,2.1121,5,264.0,13.00,392.80,9.59,33.80
0.53412,20.00,3.970,0,0.6470,7.5200,89.40,2.1398,5,264.0,13.00,388.37,7.26,43.10
0.52014,20.00,3.970,0,0.6470,8.3980,91.50,2.2885,5,264.0,13.00,386.86,5.91,48.80
0.82526,20.00,3.970,0,0.6470,7.3270,94.50,2.0788,5,264.0,13.00,393.42,11.25,31.00
0.55007,20.00,3.970,0,0.6470,7.2060,91.60,1.9301,5,264.0,13.00,387.89,8.10,36.50
0.76162,20.00,3.970,0,0.6470,5.5600,62.80,1.9865,5,264.0,13.00,392.40,10.45,22.80
0.78570,20.00,3.970,0,0.6470,7.0140,84.60,2.1329,5,264.0,13.00,384.07,14.79,30.70
0.57834,20.00,3.970,0,0.5750,8.2970,67.00,2.4216,5,264.0,13.00,384.54,7.44,50.00
0.54050,20.00,3.970,0,0.5750,7.4700,52.60,2.8720,5,264.0,13.00,390.30,3.16,43.50
0.09065,20.00,6.960,1,0.4640,5.9200,61.50,3.9175,3,223.0,18.60,391.34,13.65,20.70
0.29916,20.00,6.960,0,0.4640,5.8560,42.10,4.4290,3,223.0,18.60,388.65,13.00,21.10
0.16211,20.00,6.960,0,0.4640,6.2400,16.30,4.4290,3,223.0,18.60,396.90,6.59,25.20
0.11460,20.00,6.960,0,0.4640,6.5380,58.70,3.9175,3,223.0,18.60,394.96,7.73,24.40
0.22188,20.00,6.960,1,0.4640,7.6910,51.80,4.3665,3,223.0,18.60,390.77,6.58,35.20
0.05644,40.00,6.410,1,0.4470,6.7580,32.90,4.0776,4,254.0,17.60,396.90,3.53,32.40
0.09604,40.00,6.410,0,0.4470,6.8540,42.80,4.2673,4,254.0,17.60,396.90,2.98,32.00
0.10469,40.00,6.410,1,0.4470,7.2670,49.00,4.7872,4,254.0,17.60,389.25,6.05,33.20
0.06127,40.00,6.410,1,0.4470,6.8260,27.60,4.8628,4,254.0,17.60,393.45,4.16,33.10
0.07978,40.00,6.410,0,0.4470,6.4820,32.10,4.1403,4,254.0,17.60,396.90,7.19,29.10
0.21038,20.00,3.330,0,0.4429,6.8120,32.20,4.1007,5,216.0,14.90,396.90,4.85,35.10
0.03578,20.00,3.330,0,0.4429,7.8200,64.50,4.6947,5,216.0,14.90,387.31,3.76,45.40
0.03705,20.00,3.330,0,0.4429,6.9680,37.20,5.2447,5,216.0,14.90,392.23,4.59,35.40
0.06129,20.00,3.330,1,0.4429,7.6450,49.70,5.2119,5,216.0,14.90,377.07,3.01,46.00
0.01501,90.00,1.210,1,0.4010,7.9230,24.80,5.8850,1,198.0,13.60,395.52,3.16,50.00
0.00906,90.00,2.970,0,0.4000,7.0880,20.80,7.3073,1,285.0,15.30,394.72,7.85,32.20
0.01096,55.00,2.250,0,0.3890,6.4530,31.90,7.3073,1,300.0,15.30,394.72,8.23,22.00
0.01965,80.00,1.760,0,0.3850,6.2300,31.50,9.0892,1,241.0,18.20,341.60,12.93,20.10
0.03871,52.50,5.320,0,0.4050,6.2090,31.30,7.3172,6,293.0,16.60,396.90,7.14,23.20
0.04590,52.50,5.320,0,0.4050,6.3150,45.60,7.3172,6,293.0,16.60,396.90,7.60,22.30
0.04297,52.50,5.320,0,0.4050,6.5650,22.90,7.3172,6,293.0,16.60,371.72,9.51,24.80
0.03502,80.00,4.950,0,0.4110,6.8610,27.90,5.1167,4,245.0,19.20,396.90,3.33,28.50
0.07886,80.00,4.950,0,0.4110,7.1480,27.70,5.1167,4,245.0,19.20,396.90,3.56,37.30
0.03615,80.00,4.950,0,0.4110,6.6300,23.40,5.1167,4,245.0,19.20,396.90,4.70,27.90
0.08265,0.00,13.920,0,0.4370,6.1270,18.40,5.5027,4,289.0,16.00,396.90,8.58,23.90
0.08199,0.00,13.920,0,0.4370,6.0090,42.30,5.5027,4,289.0,16.00,396.90,10.40,21.70
0.12932,0.00,13.920,0,0.4370,6.6780,31.10,5.9604,4,289.0,16.00,396.90,6.27,28.60
0.05372,0.00,13.920,0,0.4370,6.5490,51.00,5.9604,4,289.0,16.00,392.85,7.39,27.10
0.14103,0.00,13.920,0,0.4370,5.7900,58.00,6.3200,4,289.0,16.00,396.90,15.84,20.30
0.06466,70.00,2.240,0,0.4000,6.3450,20.10,7.8278,5,358.0,14.80,368.24,4.97,22.50
0.05561,70.00,2.240,0,0.4000,7.0410,10.00,7.8278,5,358.0,14.80,371.58,4.74,29.00
0.04417,70.00,2.240,0,0.4000,6.8710,47.40,7.8278,5,358.0,14.80,390.86,6.07,24.80
0.03537,34.00,6.090,0,0.4330,6.5900,40.40,5.4917,7,329.0,16.10,395.75,9.50,22.00
0.09266,34.00,6.090,0,0.4330,6.4950,18.40,5.4917,7,329.0,16.10,383.61,8.67,26.40
0.10000,34.00,6.090,0,0.4330,6.9820,17.70,5.4917,7,329.0,16.10,390.43,4.86,33.10
0.05515,33.00,2.180,0,0.4720,7.2360,41.10,4.0220,7,222.0,18.40,393.68,6.93,36.10
0.05479,33.00,2.180,0,0.4720,6.6160,58.10,3.3700,7,222.0,18.40,393.36,8.93,28.40
0.07503,33.00,2.180,0,0.4720,7.4200,71.90,3.0992,7,222.0,18.40,396.90,6.47,33.40
0.04932,33.00,2.180,0,0.4720,6.8490,70.30,3.1827,7,222.0,18.40,396.90,7.53,28.20
0.49298,0.00,9.900,0,0.5440,6.6350,82.50,3.3175,4,304.0,18.40,396.90,4.54,22.80
0.34940,0.00,9.900,0,0.5440,5.9720,76.70,3.1025,4,304.0,18.40,396.24,9.97,20.30
2.63548,0.00,9.900,0,0.5440,4.9730,37.80,2.5194,4,304.0,18.40,350.45,12.64,16.10
0.79041,0.00,9.900,0,0.5440,6.1220,52.80,2.6403,4,304.0,18.40,396.90,5.98,22.10
0.26169,0.00,9.900,0,0.5440,6.0230,90.40,2.8340,4,304.0,18.40,396.30,11.72,19.40
0.26938,0.00,9.900,0,0.5440,6.2660,82.80,3.2628,4,304.0,18.40,393.39,7.90,21.60
0.36920,0.00,9.900,0,0.5440,6.5670,87.30,3.6023,4,304.0,18.40,395.69,9.28,23.80
0.25356,0.00,9.900,0,0.5440,5.7050,77.70,3.9450,4,304.0,18.40,396.42,11.50,16.20
0.31827,0.00,9.900,0,0.5440,5.9140,83.20,3.9986,4,304.0,18.40,390.70,18.33,17.80
0.24522,0.00,9.900,0,0.5440,5.7820,71.70,4.0317,4,304.0,18.40,396.90,15.94,19.80
0.40202,0.00,9.900,0,0.5440,6.3820,67.20,3.5325,4,304.0,18.40,395.21,10.36,23.10
0.47547,0.00,9.900,0,0.5440,6.1130,58.80,4.0019,4,304.0,18.40,396.23,12.73,21.00
0.16760,0.00,7.380,0,0.4930,6.4260,52.30,4.5404,5,287.0,19.60,396.90,7.20,23.80
0.18159,0.00,7.380,0,0.4930,6.3760,54.30,4.5404,5,287.0,19.60,396.90,6.87,23.10
0.35114,0.00,7.380,0,0.4930,6.0410,49.90,4.7211,5,287.0,19.60,396.90,7.70,20.40
0.28392,0.00,7.380,0,0.4930,5.7080,74.30,4.7211,5,287.0,19.60,391.13,11.74,18.50
0.34109,0.00,7.380,0,0.4930,6.4150,40.10,4.7211,5,287.0,19.60,396.90,6.12,25.00
0.19186,0.00,7.380,0,0.4930,6.4310,14.70,5.4159,5,287.0,19.60,393.68,5.08,24.60
0.30347,0.00,7.380,0,0.4930,6.3120,28.90,5.4159,5,287.0,19.60,396.90,6.15,23.00
0.24103,0.00,7.380,0,0.4930,6.0830,43.70,5.4159,5,287.0,19.60,396.90,12.79,22.20
0.06617,0.00,3.240,0,0.4600,5.8680,25.80,5.2146,4,430.0,16.90,382.44,9.97,19.30
0.06724,0.00,3.240,0,0.4600,6.3330,17.20,5.2146,4,430.0,16.90,375.21,7.34,22.60
0.04544,0.00,3.240,0,0.4600,6.1440,32.20,5.8736,4,430.0,16.90,368.57,9.09,19.80
0.05023,35.00,6.060,0,0.4379,5.7060,28.40,6.6407,1,304.0,16.90,394.02,12.43,17.10
0.03466,35.00,6.060,0,0.4379,6.0310,23.30,6.6407,1,304.0,16.90,362.25,7.83,19.40
0.05083,0.00,5.190,0,0.5150,6.3160,38.10,6.4584,5,224.0,20.20,389.71,5.68,22.20
0.03738,0.00,5.190,0,0.5150,6.3100,38.50,6.4584,5,224.0,20.20,389.40,6.75,20.70
0.03961,0.00,5.190,0,0.5150,6.0370,34.50,5.9853,5,224.0,20.20,396.90,8.01,21.10
0.03427,0.00,5.190,0,0.5150,5.8690,46.30,5.2311,5,224.0,20.20,396.90,9.80,19.50
0.03041,0.00,5.190,0,0.5150,5.8950,59.60,5.6150,5,224.0,20.20,394.81,10.56,18.50
0.03306,0.00,5.190,0,0.5150,6.0590,37.30,4.8122,5,224.0,20.20,396.14,8.51,20.60
0.05497,0.00,5.190,0,0.5150,5.9850,45.40,4.8122,5,224.0,20.20,396.90,9.74,19.00
0.06151,0.00,5.190,0,0.5150,5.9680,58.50,4.8122,5,224.0,20.20,396.90,9.29,18.70
0.01301,35.00,1.520,0,0.4420,7.2410,49.30,7.0379,1,284.0,15.50,394.74,5.49,32.70
0.02498,0.00,1.890,0,0.5180,6.5400,59.70,6.2669,1,422.0,15.90,389.96,8.65,16.50
0.02543,55.00,3.780,0,0.4840,6.6960,56.40,5.7321,5,370.0,17.60,396.90,7.18,23.90
0.03049,55.00,3.780,0,0.4840,6.8740,28.10,6.4654,5,370.0,17.60,387.97,4.61,31.20
0.03113,0.00,4.390,0,0.4420,6.0140,48.50,8.0136,3,352.0,18.80,385.64,10.53,17.50
0.06162,0.00,4.390,0,0.4420,5.8980,52.30,8.0136,3,352.0,18.80,364.61,12.67,17.20
0.01870,85.00,4.150,0,0.4290,6.5160,27.70,8.5353,4,351.0,17.90,392.43,6.36,23.10
0.01501,80.00,2.010,0,0.4350,6.6350,29.70,8.3440,4,280.0,17.00,390.94,5.99,24.50
0.02899,40.00,1.250,0,0.4290,6.9390,34.50,8.7921,1,335.0,19.70,389.85,5.89,26.60
0.06211,40.00,1.250,0,0.4290,6.4900,44.40,8.7921,1,335.0,19.70,396.90,5.98,22.90
0.07950,60.00,1.690,0,0.4110,6.5790,35.90,10.7103,4,411.0,18.30,370.78,5.49,24.10
0.07244,60.00,1.690,0,0.4110,5.8840,18.50,10.7103,4,411.0,18.30,392.33,7.79,18.60
0.01709,90.00,2.020,0,0.4100,6.7280,36.10,12.1265,5,187.0,17.00,384.46,4.50,30.10
0.04301,80.00,1.910,0,0.4130,5.6630,21.90,10.5857,4,334.0,22.00,382.80,8.05,18.20
0.10659,80.00,1.910,0,0.4130,5.9360,19.50,10.5857,4,334.0,22.00,376.04,5.57,20.60
8.98296,0.00,18.100,1,0.7700,6.2120,97.40,2.1222,24,666.0,20.20,377.73,17.60,17.80
3.84970,0.00,18.100,1,0.7700,6.3950,91.00,2.5052,24,666.0,20.20,391.34,13.27,21.70
5.20177,0.00,18.100,1,0.7700,6.1270,83.40,2.7227,24,666.0,20.20,395.43,11.48,22.70
4.26131,0.00,18.100,0,0.7700,6.1120,81.30,2.5091,24,666.0,20.20,390.74,12.67,22.60
4.54192,0.00,18.100,0,0.7700,6.3980,88.00,2.5182,24,666.0,20.20,374.56,7.79,25.00
3.83684,0.00,18.100,0,0.7700,6.2510,91.10,2.2955,24,666.0,20.20,350.65,14.19,19.90
3.67822,0.00,18.100,0,0.7700,5.3620,96.20,2.1036,24,666.0,20.20,380.79,10.19,20.80
4.22239,0.00,18.100,1,0.7700,5.8030,89.00,1.9047,24,666.0,20.20,353.04,14.64,16.80
3.47428,0.00,18.100,1,0.7180,8.7800,82.90,1.9047,24,666.0,20.20,354.55,5.29,21.90
4.55587,0.00,18.100,0,0.7180,3.5610,87.90,1.6132,24,666.0,20.20,354.70,7.12,27.50
3.69695,0.00,18.100,0,0.7180,4.9630,91.40,1.7523,24,666.0,20.20,316.03,14.00,21.90
13.52220,0.00,18.100,0,0.6310,3.8630,100.00,1.5106,24,666.0,20.20,131.42,13.33,23.10
4.89822,0.00,18.100,0,0.6310,4.9700,100.00,1.3325,24,666.0,20.20,375.52,3.26,50.00
5.66998,0.00,18.100,1,0.6310,6.6830,96.80,1.3567,24,666.0,20.20,375.33,3.73,50.00
6.53876,0.00,18.100,1,0.6310,7.0160,97.50,1.2024,24,666.0,20.20,392.05,2.96,50.00
9.23230,0.00,18.100,0,0.6310,6.2160,100.00,1.1691,24,666.0,20.20,366.15,9.53,50.00
8.26725,0.00,18.100,1,0.6680,5.8750,89.60,1.1296,24,666.0,20.20,347.88,8.88,50.00
11.10810,0.00,18.100,0,0.6680,4.9060,100.00,1.1742,24,666.0,20.20,396.90,34.77,13.80
18.49820,0.00,18.100,0,0.6680,4.1380,100.00,1.1370,24,666.0,20.20,396.90,37.97,13.80
19.60910,0.00,18.100,0,0.6710,7.3130,97.90,1.3163,24,666.0,20.20,396.90,13.44,15.00
15.28800,0.00,18.100,0,0.6710,6.6490,93.30,1.3449,24,666.0,20.20,363.02,23.24,13.90
9.82349,0.00,18.100,0,0.6710,6.7940,98.80,1.3580,24,666.0,20.20,396.90,21.24,13.30
23.64820,0.00,18.100,0,0.6710,6.3800,96.20,1.3861,24,666.0,20.20,396.90,23.69,13.10
17.86670,0.00,18.100,0,0.6710,6.2230,100.00,1.3861,24,666.0,20.20,393.74,21.78,10.20
88.97620,0.00,18.100,0,0.6710,6.9680,91.90,1.4165,24,666.0,20.20,396.90,17.21,10.40
15.87440,0.00,18.100,0,0.6710,6.5450,99.10,1.5192,24,666.0,20.20,396.90,21.08,10.90
9.18702,0.00,18.100,0,0.7000,5.5360,100.00,1.5804,24,666.0,20.20,396.90,23.60,11.30
7.99248,0.00,18.100,0,0.7000,5.5200,100.00,1.5331,24,666.0,20.20,396.90,24.56,12.30
20.08490,0.00,18.100,0,0.7000,4.3680,91.20,1.4395,24,666.0,20.20,285.83,30.63,8.80
16.81180,0.00,18.100,0,0.7000,5.2770,98.10,1.4261,24,666.0,20.20,396.90,30.81,7.20
24.39380,0.00,18.100,0,0.7000,4.6520,100.00,1.4672,24,666.0,20.20,396.90,28.28,10.50
22.59710,0.00,18.100,0,0.7000,5.0000,89.50,1.5184,24,666.0,20.20,396.90,31.99,7.40
14.33370,0.00,18.100,0,0.7000,4.8800,100.00,1.5895,24,666.0,20.20,372.92,30.62,10.20
8.15174,0.00,18.100,0,0.7000,5.3900,98.90,1.7281,24,666.0,20.20,396.90,20.85,11.50
6.96215,0.00,18.100,0,0.7000,5.7130,97.00,1.9265,24,666.0,20.20,394.43,17.11,15.10
5.29305,0.00,18.100,0,0.7000,6.0510,82.50,2.1678,24,666.0,20.20,378.38,18.76,23.20
11.57790,0.00,18.100,0,0.7000,5.0360,97.00,1.7700,24,666.0,20.20,396.90,25.68,9.70
8.64476,0.00,18.100,0,0.6930,6.1930,92.60,1.7912,24,666.0,20.20,396.90,15.17,13.80
13.35980,0.00,18.100,0,0.6930,5.8870,94.70,1.7821,24,666.0,20.20,396.90,16.35,12.70
8.71675,0.00,18.100,0,0.6930,6.4710,98.80,1.7257,24,666.0,20.20,391.98,17.12,13.10
5.87205,0.00,18.100,0,0.6930,6.4050,96.00,1.6768,24,666.0,20.20,396.90,19.37,12.50
7.67202,0.00,18.100,0,0.6930,5.7470,98.90,1.6334,24,666.0,20.20,393.10,19.92,8.50
38.35180,0.00,18.100,0,0.6930,5.4530,100.00,1.4896,24,666.0,20.20,396.90,30.59,5.00
9.91655,0.00,18.100,0,0.6930,5.8520,77.80,1.5004,24,666.0,20.20,338.16,29.97,6.30
25.04610,0.00,18.100,0,0.6930,5.9870,100.00,1.5888,24,666.0,20.20,396.90,26.77,5.60
14.23620,0.00,18.100,0,0.6930,6.3430,100.00,1.5741,24,666.0,20.20,396.90,20.32,7.20
9.59571,0.00,18.100,0,0.6930,6.4040,100.00,1.6390,24,666.0,20.20,376.11,20.31,12.10
24.80170,0.00,18.100,0,0.6930,5.3490,96.00,1.7028,24,666.0,20.20,396.90,19.77,8.30
41.52920,0.00,18.100,0,0.6930,5.5310,85.40,1.6074,24,666.0,20.20,329.46,27.38,8.50
67.92080,0.00,18.100,0,0.6930,5.6830,100.00,1.4254,24,666.0,20.20,384.97,22.98,5.00
20.71620,0.00,18.100,0,0.6590,4.1380,100.00,1.1781,24,666.0,20.20,370.22,23.34,11.90
11.95110,0.00,18.100,0,0.6590,5.6080,100.00,1.2852,24,666.0,20.20,332.09,12.13,27.90
7.40389,0.00,18.100,0,0.5970,5.6170,97.90,1.4547,24,666.0,20.20,314.64,26.40,17.20
14.43830,0.00,18.100,0,0.5970,6.8520,100.00,1.4655,24,666.0,20.20,179.36,19.78,27.50
51.13580,0.00,18.100,0,0.5970,5.7570,100.00,1.4130,24,666.0,20.20,2.60,10.11,15.00
14.05070,0.00,18.100,0,0.5970,6.6570,100.00,1.5275,24,666.0,20.20,35.05,21.22,17.20
18.81100,0.00,18.100,0,0.5970,4.6280,100.00,1.5539,24,666.0,20.20,28.79,34.37,17.90
28.65580,0.00,18.100,0,0.5970,5.1550,100.00,1.5894,24,666.0,20.20,210.97,20.08,16.30
45.74610,0.00,18.100,0,0.6930,4.5190,100.00,1.6582,24,666.0,20.20,88.27,36.98,7.00
18.08460,0.00,18.100,0,0.6790,6.4340,100.00,1.8347,24,666.0,20.20,27.25,29.05,7.20
10.83420,0.00,18.100,0,0.6790,6.7820,90.80,1.8195,24,666.0,20.20,21.57,25.79,7.50
25.94060,0.00,18.100,0,0.6790,5.3040,89.10,1.6475,24,666.0,20.20,127.36,26.64,10.40
73.53410,0.00,18.100,0,0.6790,5.9570,100.00,1.8026,24,666.0,20.20,16.45,20.62,8.80
11.81230,0.00,18.100,0,0.7180,6.8240,76.50,1.7940,24,666.0,20.20,48.45,22.74,8.40
11.08740,0.00,18.100,0,0.7180,6.4110,100.00,1.8589,24,666.0,20.20,318.75,15.02,16.70
7.02259,0.00,18.100,0,0.7180,6.0060,95.30,1.8746,24,666.0,20.20,319.98,15.70,14.20
12.04820,0.00,18.100,0,0.6140,5.6480,87.60,1.9512,24,666.0,20.20,291.55,14.10,20.80
7.05042,0.00,18.100,0,0.6140,6.1030,85.10,2.0218,24,666.0,20.20,2.52,23.29,13.40
8.79212,0.00,18.100,0,0.5840,5.5650,70.60,2.0635,24,666.0,20.20,3.65,17.16,11.70
15.86030,0.00,18.100,0,0.6790,5.8960,95.40,1.9096,24,666.0,20.20,7.68,24.39,8.30
12.24720,0.00,18.100,0,0.5840,5.8370,59.70,1.9976,24,666.0,20.20,24.65,15.69,10.20
37.66190,0.00,18.100,0,0.6790,6.2020,78.70,1.8629,24,666.0,20.20,18.82,14.52,10.90
7.36711,0.00,18.100,0,0.6790,6.1930,78.10,1.9356,24,666.0,20.20,96.73,21.52,11.00
9.33889,0.00,18.100,0,0.6790,6.3800,95.60,1.9682,24,666.0,20.20,60.72,24.08,9.50
8.49213,0.00,18.100,0,0.5840,6.3480,86.10,2.0527,24,666.0,20.20,83.45,17.64,14.50
10.06230,0.00,18.100,0,0.5840,6.8330,94.30,2.0882,24,666.0,20.20,81.33,19.69,14.10
6.44405,0.00,18.100,0,0.5840,6.4250,74.80,2.2004,24,666.0,20.20,97.95,12.03,16.10
5.58107,0.00,18.100,0,0.7130,6.4360,87.90,2.3158,24,666.0,20.20,100.19,16.22,14.30
13.91340,0.00,18.100,0,0.7130,6.2080,95.00,2.2222,24,666.0,20.20,100.63,15.17,11.70
11.16040,0.00,18.100,0,0.7400,6.6290,94.60,2.1247,24,666.0,20.20,109.85,23.27,13.40
14.42080,0.00,18.100,0,0.7400,6.4610,93.30,2.0026,24,666.0,20.20,27.49,18.05,9.60
15.17720,0.00,18.100,0,0.7400,6.1520,100.00,1.9142,24,666.0,20.20,9.32,26.45,8.70
13.67810,0.00,18.100,0,0.7400,5.9350,87.90,1.8206,24,666.0,20.20,68.95,34.02,8.40
9.39063,0.00,18.100,0,0.7400,5.6270,93.90,1.8172,24,666.0,20.20,396.90,22.88,12.80
22.05110,0.00,18.100,0,0.7400,5.8180,92.40,1.8662,24,666.0,20.20,391.45,22.11,10.50
9.72418,0.00,18.100,0,0.7400,6.4060,97.20,2.0651,24,666.0,20.20,385.96,19.52,17.10
5.66637,0.00,18.100,0,0.7400,6.2190,100.00,2.0048,24,666.0,20.20,395.69,16.59,18.40
9.96654,0.00,18.100,0,0.7400,6.4850,100.00,1.9784,24,666.0,20.20,386.73,18.85,15.40
12.80230,0.00,18.100,0,0.7400,5.8540,96.60,1.8956,24,666.0,20.20,240.52,23.79,10.80
10.67180,0.00,18.100,0,0.7400,6.4590,94.80,1.9879,24,666.0,20.20,43.06,23.98,11.80
6.28807,0.00,18.100,0,0.7400,6.3410,96.40,2.0720,24,666.0,20.20,318.01,17.79,14.90
9.92485,0.00,18.100,0,0.7400,6.2510,96.60,2.1980,24,666.0,20.20,388.52,16.44,12.60
9.32909,0.00,18.100,0,0.7130,6.1850,98.70,2.2616,24,666.0,20.20,396.90,18.13,14.10
7.52601,0.00,18.100,0,0.7130,6.4170,98.30,2.1850,24,666.0,20.20,304.21,19.31,13.00
6.71772,0.00,18.100,0,0.7130,6.7490,92.60,2.3236,24,666.0,20.20,0.32,17.44,13.40
5.44114,0.00,18.100,0,0.7130,6.6550,98.20,2.3552,24,666.0,20.20,355.29,17.73,15.20
5.09017,0.00,18.100,0,0.7130,6.2970,91.80,2.3682,24,666.0,20.20,385.09,17.27,16.10
8.24809,0.00,18.100,0,0.7130,7.3930,99.30,2.4527,24,666.0,20.20,375.87,16.74,17.80
9.51363,0.00,18.100,0,0.7130,6.7280,94.10,2.4961,24,666.0,20.20,6.68,18.71,14.90
4.75237,0.00,18.100,0,0.7130,6.5250,86.50,2.4358,24,666.0,20.20,50.92,18.13,14.10
4.66883,0.00,18.100,0,0.7130,5.9760,87.90,2.5806,24,666.0,20.20,10.48,19.01,12.70
8.20058,0.00,18.100,0,0.7130,5.9360,80.30,2.7792,24,666.0,20.20,3.50,16.94,13.50
7.75223,0.00,18.100,0,0.7130,6.3010,83.70,2.7831,24,666.0,20.20,272.21,16.23,14.90
6.80117,0.00,18.100,0,0.7130,6.0810,84.40,2.7175,24,666.0,20.20,396.90,14.70,20.00
4.81213,0.00,18.100,0,0.7130,6.7010,90.00,2.5975,24,666.0,20.20,255.23,16.42,16.40
3.69311,0.00,18.100,0,0.7130,6.3760,88.40,2.5671,24,666.0,20.20,391.43,14.65,17.70
6.65492,0.00,18.100,0,0.7130,6.3170,83.00,2.7344,24,666.0,20.20,396.90,13.99,19.50
5.82115,0.00,18.100,0,0.7130,6.5130,89.90,2.8016,24,666.0,20.20,393.82,10.29,20.20
7.83932,0.00,18.100,0,0.6550,6.2090,65.40,2.9634,24,666.0,20.20,396.90,13.22,21.40
3.16360,0.00,18.100,0,0.6550,5.7590,48.20,3.0665,24,666.0,20.20,334.40,14.13,19.90
3.77498,0.00,18.100,0,0.6550,5.9520,84.70,2.8715,24,666.0,20.20,22.01,17.15,19.00
4.42228,0.00,18.100,0,0.5840,6.0030,94.50,2.5403,24,666.0,20.20,331.29,21.32,19.10
15.57570,0.00,18.100,0,0.5800,5.9260,71.00,2.9084,24,666.0,20.20,368.74,18.13,19.10
13.07510,0.00,18.100,0,0.5800,5.7130,56.70,2.8237,24,666.0,20.20,396.90,14.76,20.10
4.34879,0.00,18.100,0,0.5800,6.1670,84.00,3.0334,24,666.0,20.20,396.90,16.29,19.90
4.03841,0.00,18.100,0,0.5320,6.2290,90.70,3.0993,24,666.0,20.20,395.33,12.87,19.60
3.56868,0.00,18.100,0,0.5800,6.4370,75.00,2.8965,24,666.0,20.20,393.37,14.36,23.20
4.64689,0.00,18.100,0,0.6140,6.9800,67.60,2.5329,24,666.0,20.20,374.68,11.66,29.80
8.05579,0.00,18.100,0,0.5840,5.4270,95.40,2.4298,24,666.0,20.20,352.58,18.14,13.80
6.39312,0.00,18.100,0,0.5840,6.1620,97.40,2.2060,24,666.0,20.20,302.76,24.10,13.30
4.87141,0.00,18.100,0,0.6140,6.4840,93.60,2.3053,24,666.0,20.20,396.21,18.68,16.70
15.02340,0.00,18.100,0,0.6140,5.3040,97.30,2.1007,24,666.0,20.20,349.48,24.91,12.00
10.23300,0.00,18.100,0,0.6140,6.1850,96.70,2.1705,24,666.0,20.20,379.70,18.03,14.60
14.33370,0.00,18.100,0,0.6140,6.2290,88.00,1.9512,24,666.0,20.20,383.32,13.11,21.40
5.82401,0.00,18.100,0,0.5320,6.2420,64.70,3.4242,24,666.0,20.20,396.90,10.74,23.00
5.70818,0.00,18.100,0,0.5320,6.7500,74.90,3.3317,24,666.0,20.20,393.07,7.74,23.70
5.73116,0.00,18.100,0,0.5320,7.0610,77.00,3.4106,24,666.0,20.20,395.28,7.01,25.00
2.81838,0.00,18.100,0,0.5320,5.7620,40.30,4.0983,24,666.0,20.20,392.92,10.42,21.80
2.37857,0.00,18.100,0,0.5830,5.8710,41.90,3.7240,24,666.0,20.20,370.73,13.34,20.60
3.67367,0.00,18.100,0,0.5830,6.3120,51.90,3.9917,24,666.0,20.20,388.62,10.58,21.20
5.69175,0.00,18.100,0,0.5830,6.1140,79.80,3.5459,24,666.0,20.20,392.68,14.98,19.10
4.83567,0.00,18.100,0,0.5830,5.9050,53.20,3.1523,24,666.0,20.20,388.22,11.45,20.60
0.15086,0.00,27.740,0,0.6090,5.4540,92.70,1.8209,4,711.0,20.10,395.09,18.06,15.20
0.18337,0.00,27.740,0,0.6090,5.4140,98.30,1.7554,4,711.0,20.10,344.05,23.97,7.00
0.20746,0.00,27.740,0,0.6090,5.0930,98.00,1.8226,4,711.0,20.10,318.43,29.68,8.10
0.10574,0.00,27.740,0,0.6090,5.9830,98.80,1.8681,4,711.0,20.10,390.11,18.07,13.60
0.11132,0.00,27.740,0,0.6090,5.9830,83.50,2.1099,4,711.0,20.10,396.90,13.35,20.10
0.17331,0.00,9.690,0,0.5850,5.7070,54.00,2.3817,6,391.0,19.20,396.90,12.01,21.80
0.27957,0.00,9.690,0,0.5850,5.9260,42.60,2.3817,6,391.0,19.20,396.90,13.59,24.50
0.17899,0.00,9.690,0,0.5850,5.6700,28.80,2.7986,6,391.0,19.20,393.29,17.60,23.10
0.28960,0.00,9.690,0,0.5850,5.3900,72.90,2.7986,6,391.0,19.20,396.90,21.14,19.70
0.26838,0.00,9.690,0,0.5850,5.7940,70.60,2.8927,6,391.0,19.20,396.90,14.10,18.30
0.23912,0.00,9.690,0,0.5850,6.0190,65.30,2.4091,6,391.0,19.20,396.90,12.92,21.20
0.17783,0.00,9.690,0,0.5850,5.5690,73.50,2.3999,6,391.0,19.20,395.77,15.10,17.50
0.22438,0.00,9.690,0,0.5850,6.0270,79.70,2.4982,6,391.0,19.20,396.90,14.33,16.80
0.06263,0.00,11.930,0,0.5730,6.5930,69.10,2.4786,1,273.0,21.00,391.99,9.67,22.40
0.04527,0.00,11.930,0,0.5730,6.1200,76.70,2.2875,1,273.0,21.00,396.90,9.08,20.60
0.06076,0.00,11.930,0,0.5730,6.9760,91.00,2.1675,1,273.0,21.00,396.90,5.64,23.90
0.10959,0.00,11.930,0,0.5730,6.7940,89.30,2.3889,1,273.0,21.00,393.45,6.48,22.00
0.04741,0.00,11.930,0,0.5730,6.0300,80.80,2.5050,1,273.0,21.00,396.90,7.88,11.90
1 CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
2 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00
3 0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60
4 0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70
5 0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94 33.40
6 0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622 3 222.0 18.70 396.90 5.33 36.20
7 0.02985 0.00 2.180 0 0.4580 6.4300 58.70 6.0622 3 222.0 18.70 394.12 5.21 28.70
8 0.08829 12.50 7.870 0 0.5240 6.0120 66.60 5.5605 5 311.0 15.20 395.60 12.43 22.90
9 0.14455 12.50 7.870 0 0.5240 6.1720 96.10 5.9505 5 311.0 15.20 396.90 19.15 27.10
10 0.21124 12.50 7.870 0 0.5240 5.6310 100.00 6.0821 5 311.0 15.20 386.63 29.93 16.50
11 0.17004 12.50 7.870 0 0.5240 6.0040 85.90 6.5921 5 311.0 15.20 386.71 17.10 18.90
12 0.22489 12.50 7.870 0 0.5240 6.3770 94.30 6.3467 5 311.0 15.20 392.52 20.45 15.00
13 0.11747 12.50 7.870 0 0.5240 6.0090 82.90 6.2267 5 311.0 15.20 396.90 13.27 18.90
14 0.09378 12.50 7.870 0 0.5240 5.8890 39.00 5.4509 5 311.0 15.20 390.50 15.71 21.70
15 0.62976 0.00 8.140 0 0.5380 5.9490 61.80 4.7075 4 307.0 21.00 396.90 8.26 20.40
16 0.63796 0.00 8.140 0 0.5380 6.0960 84.50 4.4619 4 307.0 21.00 380.02 10.26 18.20
17 0.62739 0.00 8.140 0 0.5380 5.8340 56.50 4.4986 4 307.0 21.00 395.62 8.47 19.90
18 1.05393 0.00 8.140 0 0.5380 5.9350 29.30 4.4986 4 307.0 21.00 386.85 6.58 23.10
19 0.78420 0.00 8.140 0 0.5380 5.9900 81.70 4.2579 4 307.0 21.00 386.75 14.67 17.50
20 0.80271 0.00 8.140 0 0.5380 5.4560 36.60 3.7965 4 307.0 21.00 288.99 11.69 20.20
21 0.72580 0.00 8.140 0 0.5380 5.7270 69.50 3.7965 4 307.0 21.00 390.95 11.28 18.20
22 1.25179 0.00 8.140 0 0.5380 5.5700 98.10 3.7979 4 307.0 21.00 376.57 21.02 13.60
23 0.85204 0.00 8.140 0 0.5380 5.9650 89.20 4.0123 4 307.0 21.00 392.53 13.83 19.60
24 1.23247 0.00 8.140 0 0.5380 6.1420 91.70 3.9769 4 307.0 21.00 396.90 18.72 15.20
25 0.98843 0.00 8.140 0 0.5380 5.8130 100.00 4.0952 4 307.0 21.00 394.54 19.88 14.50
26 0.75026 0.00 8.140 0 0.5380 5.9240 94.10 4.3996 4 307.0 21.00 394.33 16.30 15.60
27 0.84054 0.00 8.140 0 0.5380 5.5990 85.70 4.4546 4 307.0 21.00 303.42 16.51 13.90
28 0.67191 0.00 8.140 0 0.5380 5.8130 90.30 4.6820 4 307.0 21.00 376.88 14.81 16.60
29 0.95577 0.00 8.140 0 0.5380 6.0470 88.80 4.4534 4 307.0 21.00 306.38 17.28 14.80
30 0.77299 0.00 8.140 0 0.5380 6.4950 94.40 4.4547 4 307.0 21.00 387.94 12.80 18.40
31 1.00245 0.00 8.140 0 0.5380 6.6740 87.30 4.2390 4 307.0 21.00 380.23 11.98 21.00
32 1.13081 0.00 8.140 0 0.5380 5.7130 94.10 4.2330 4 307.0 21.00 360.17 22.60 12.70
33 1.35472 0.00 8.140 0 0.5380 6.0720 100.00 4.1750 4 307.0 21.00 376.73 13.04 14.50
34 1.38799 0.00 8.140 0 0.5380 5.9500 82.00 3.9900 4 307.0 21.00 232.60 27.71 13.20
35 1.15172 0.00 8.140 0 0.5380 5.7010 95.00 3.7872 4 307.0 21.00 358.77 18.35 13.10
36 1.61282 0.00 8.140 0 0.5380 6.0960 96.90 3.7598 4 307.0 21.00 248.31 20.34 13.50
37 0.06417 0.00 5.960 0 0.4990 5.9330 68.20 3.3603 5 279.0 19.20 396.90 9.68 18.90
38 0.09744 0.00 5.960 0 0.4990 5.8410 61.40 3.3779 5 279.0 19.20 377.56 11.41 20.00
39 0.08014 0.00 5.960 0 0.4990 5.8500 41.50 3.9342 5 279.0 19.20 396.90 8.77 21.00
40 0.17505 0.00 5.960 0 0.4990 5.9660 30.20 3.8473 5 279.0 19.20 393.43 10.13 24.70
41 0.02763 75.00 2.950 0 0.4280 6.5950 21.80 5.4011 3 252.0 18.30 395.63 4.32 30.80
42 0.03359 75.00 2.950 0 0.4280 7.0240 15.80 5.4011 3 252.0 18.30 395.62 1.98 34.90
43 0.12744 0.00 6.910 0 0.4480 6.7700 2.90 5.7209 3 233.0 17.90 385.41 4.84 26.60
44 0.14150 0.00 6.910 0 0.4480 6.1690 6.60 5.7209 3 233.0 17.90 383.37 5.81 25.30
45 0.15936 0.00 6.910 0 0.4480 6.2110 6.50 5.7209 3 233.0 17.90 394.46 7.44 24.70
46 0.12269 0.00 6.910 0 0.4480 6.0690 40.00 5.7209 3 233.0 17.90 389.39 9.55 21.20
47 0.17142 0.00 6.910 0 0.4480 5.6820 33.80 5.1004 3 233.0 17.90 396.90 10.21 19.30
48 0.18836 0.00 6.910 0 0.4480 5.7860 33.30 5.1004 3 233.0 17.90 396.90 14.15 20.00
49 0.22927 0.00 6.910 0 0.4480 6.0300 85.50 5.6894 3 233.0 17.90 392.74 18.80 16.60
50 0.25387 0.00 6.910 0 0.4480 5.3990 95.30 5.8700 3 233.0 17.90 396.90 30.81 14.40
51 0.21977 0.00 6.910 0 0.4480 5.6020 62.00 6.0877 3 233.0 17.90 396.90 16.20 19.40
52 0.08873 21.00 5.640 0 0.4390 5.9630 45.70 6.8147 4 243.0 16.80 395.56 13.45 19.70
53 0.04337 21.00 5.640 0 0.4390 6.1150 63.00 6.8147 4 243.0 16.80 393.97 9.43 20.50
54 0.05360 21.00 5.640 0 0.4390 6.5110 21.10 6.8147 4 243.0 16.80 396.90 5.28 25.00
55 0.04981 21.00 5.640 0 0.4390 5.9980 21.40 6.8147 4 243.0 16.80 396.90 8.43 23.40
56 0.01360 75.00 4.000 0 0.4100 5.8880 47.60 7.3197 3 469.0 21.10 396.90 14.80 18.90
57 0.01311 90.00 1.220 0 0.4030 7.2490 21.90 8.6966 5 226.0 17.90 395.93 4.81 35.40
58 0.02055 85.00 0.740 0 0.4100 6.3830 35.70 9.1876 2 313.0 17.30 396.90 5.77 24.70
59 0.01432 100.00 1.320 0 0.4110 6.8160 40.50 8.3248 5 256.0 15.10 392.90 3.95 31.60
60 0.15445 25.00 5.130 0 0.4530 6.1450 29.20 7.8148 8 284.0 19.70 390.68 6.86 23.30
61 0.10328 25.00 5.130 0 0.4530 5.9270 47.20 6.9320 8 284.0 19.70 396.90 9.22 19.60
62 0.14932 25.00 5.130 0 0.4530 5.7410 66.20 7.2254 8 284.0 19.70 395.11 13.15 18.70
63 0.17171 25.00 5.130 0 0.4530 5.9660 93.40 6.8185 8 284.0 19.70 378.08 14.44 16.00
64 0.11027 25.00 5.130 0 0.4530 6.4560 67.80 7.2255 8 284.0 19.70 396.90 6.73 22.20
65 0.12650 25.00 5.130 0 0.4530 6.7620 43.40 7.9809 8 284.0 19.70 395.58 9.50 25.00
66 0.01951 17.50 1.380 0 0.4161 7.1040 59.50 9.2229 3 216.0 18.60 393.24 8.05 33.00
67 0.03584 80.00 3.370 0 0.3980 6.2900 17.80 6.6115 4 337.0 16.10 396.90 4.67 23.50
68 0.04379 80.00 3.370 0 0.3980 5.7870 31.10 6.6115 4 337.0 16.10 396.90 10.24 19.40
69 0.05789 12.50 6.070 0 0.4090 5.8780 21.40 6.4980 4 345.0 18.90 396.21 8.10 22.00
70 0.13554 12.50 6.070 0 0.4090 5.5940 36.80 6.4980 4 345.0 18.90 396.90 13.09 17.40
71 0.12816 12.50 6.070 0 0.4090 5.8850 33.00 6.4980 4 345.0 18.90 396.90 8.79 20.90
72 0.08826 0.00 10.810 0 0.4130 6.4170 6.60 5.2873 4 305.0 19.20 383.73 6.72 24.20
73 0.15876 0.00 10.810 0 0.4130 5.9610 17.50 5.2873 4 305.0 19.20 376.94 9.88 21.70
74 0.09164 0.00 10.810 0 0.4130 6.0650 7.80 5.2873 4 305.0 19.20 390.91 5.52 22.80
75 0.19539 0.00 10.810 0 0.4130 6.2450 6.20 5.2873 4 305.0 19.20 377.17 7.54 23.40
76 0.07896 0.00 12.830 0 0.4370 6.2730 6.00 4.2515 5 398.0 18.70 394.92 6.78 24.10
77 0.09512 0.00 12.830 0 0.4370 6.2860 45.00 4.5026 5 398.0 18.70 383.23 8.94 21.40
78 0.10153 0.00 12.830 0 0.4370 6.2790 74.50 4.0522 5 398.0 18.70 373.66 11.97 20.00
79 0.08707 0.00 12.830 0 0.4370 6.1400 45.80 4.0905 5 398.0 18.70 386.96 10.27 20.80
80 0.05646 0.00 12.830 0 0.4370 6.2320 53.70 5.0141 5 398.0 18.70 386.40 12.34 21.20
81 0.08387 0.00 12.830 0 0.4370 5.8740 36.60 4.5026 5 398.0 18.70 396.06 9.10 20.30
82 0.04113 25.00 4.860 0 0.4260 6.7270 33.50 5.4007 4 281.0 19.00 396.90 5.29 28.00
83 0.04462 25.00 4.860 0 0.4260 6.6190 70.40 5.4007 4 281.0 19.00 395.63 7.22 23.90
84 0.03659 25.00 4.860 0 0.4260 6.3020 32.20 5.4007 4 281.0 19.00 396.90 6.72 24.80
85 0.03551 25.00 4.860 0 0.4260 6.1670 46.70 5.4007 4 281.0 19.00 390.64 7.51 22.90
86 0.05059 0.00 4.490 0 0.4490 6.3890 48.00 4.7794 3 247.0 18.50 396.90 9.62 23.90
87 0.05735 0.00 4.490 0 0.4490 6.6300 56.10 4.4377 3 247.0 18.50 392.30 6.53 26.60
88 0.05188 0.00 4.490 0 0.4490 6.0150 45.10 4.4272 3 247.0 18.50 395.99 12.86 22.50
89 0.07151 0.00 4.490 0 0.4490 6.1210 56.80 3.7476 3 247.0 18.50 395.15 8.44 22.20
90 0.05660 0.00 3.410 0 0.4890 7.0070 86.30 3.4217 2 270.0 17.80 396.90 5.50 23.60
91 0.05302 0.00 3.410 0 0.4890 7.0790 63.10 3.4145 2 270.0 17.80 396.06 5.70 28.70
92 0.04684 0.00 3.410 0 0.4890 6.4170 66.10 3.0923 2 270.0 17.80 392.18 8.81 22.60
93 0.03932 0.00 3.410 0 0.4890 6.4050 73.90 3.0921 2 270.0 17.80 393.55 8.20 22.00
94 0.04203 28.00 15.040 0 0.4640 6.4420 53.60 3.6659 4 270.0 18.20 395.01 8.16 22.90
95 0.02875 28.00 15.040 0 0.4640 6.2110 28.90 3.6659 4 270.0 18.20 396.33 6.21 25.00
96 0.04294 28.00 15.040 0 0.4640 6.2490 77.30 3.6150 4 270.0 18.20 396.90 10.59 20.60
97 0.12204 0.00 2.890 0 0.4450 6.6250 57.80 3.4952 2 276.0 18.00 357.98 6.65 28.40
98 0.11504 0.00 2.890 0 0.4450 6.1630 69.60 3.4952 2 276.0 18.00 391.83 11.34 21.40
99 0.12083 0.00 2.890 0 0.4450 8.0690 76.00 3.4952 2 276.0 18.00 396.90 4.21 38.70
100 0.08187 0.00 2.890 0 0.4450 7.8200 36.90 3.4952 2 276.0 18.00 393.53 3.57 43.80
101 0.06860 0.00 2.890 0 0.4450 7.4160 62.50 3.4952 2 276.0 18.00 396.90 6.19 33.20
102 0.14866 0.00 8.560 0 0.5200 6.7270 79.90 2.7778 5 384.0 20.90 394.76 9.42 27.50
103 0.11432 0.00 8.560 0 0.5200 6.7810 71.30 2.8561 5 384.0 20.90 395.58 7.67 26.50
104 0.22876 0.00 8.560 0 0.5200 6.4050 85.40 2.7147 5 384.0 20.90 70.80 10.63 18.60
105 0.21161 0.00 8.560 0 0.5200 6.1370 87.40 2.7147 5 384.0 20.90 394.47 13.44 19.30
106 0.13960 0.00 8.560 0 0.5200 6.1670 90.00 2.4210 5 384.0 20.90 392.69 12.33 20.10
107 0.13262 0.00 8.560 0 0.5200 5.8510 96.70 2.1069 5 384.0 20.90 394.05 16.47 19.50
108 0.17120 0.00 8.560 0 0.5200 5.8360 91.90 2.2110 5 384.0 20.90 395.67 18.66 19.50
109 0.13117 0.00 8.560 0 0.5200 6.1270 85.20 2.1224 5 384.0 20.90 387.69 14.09 20.40
110 0.12802 0.00 8.560 0 0.5200 6.4740 97.10 2.4329 5 384.0 20.90 395.24 12.27 19.80
111 0.26363 0.00 8.560 0 0.5200 6.2290 91.20 2.5451 5 384.0 20.90 391.23 15.55 19.40
112 0.10793 0.00 8.560 0 0.5200 6.1950 54.40 2.7778 5 384.0 20.90 393.49 13.00 21.70
113 0.10084 0.00 10.010 0 0.5470 6.7150 81.60 2.6775 6 432.0 17.80 395.59 10.16 22.80
114 0.12329 0.00 10.010 0 0.5470 5.9130 92.90 2.3534 6 432.0 17.80 394.95 16.21 18.80
115 0.22212 0.00 10.010 0 0.5470 6.0920 95.40 2.5480 6 432.0 17.80 396.90 17.09 18.70
116 0.14231 0.00 10.010 0 0.5470 6.2540 84.20 2.2565 6 432.0 17.80 388.74 10.45 18.50
117 0.17134 0.00 10.010 0 0.5470 5.9280 88.20 2.4631 6 432.0 17.80 344.91 15.76 18.30
118 0.13158 0.00 10.010 0 0.5470 6.1760 72.50 2.7301 6 432.0 17.80 393.30 12.04 21.20
119 0.15098 0.00 10.010 0 0.5470 6.0210 82.60 2.7474 6 432.0 17.80 394.51 10.30 19.20
120 0.13058 0.00 10.010 0 0.5470 5.8720 73.10 2.4775 6 432.0 17.80 338.63 15.37 20.40
121 0.14476 0.00 10.010 0 0.5470 5.7310 65.20 2.7592 6 432.0 17.80 391.50 13.61 19.30
122 0.06899 0.00 25.650 0 0.5810 5.8700 69.70 2.2577 2 188.0 19.10 389.15 14.37 22.00
123 0.07165 0.00 25.650 0 0.5810 6.0040 84.10 2.1974 2 188.0 19.10 377.67 14.27 20.30
124 0.09299 0.00 25.650 0 0.5810 5.9610 92.90 2.0869 2 188.0 19.10 378.09 17.93 20.50
125 0.15038 0.00 25.650 0 0.5810 5.8560 97.00 1.9444 2 188.0 19.10 370.31 25.41 17.30
126 0.09849 0.00 25.650 0 0.5810 5.8790 95.80 2.0063 2 188.0 19.10 379.38 17.58 18.80
127 0.16902 0.00 25.650 0 0.5810 5.9860 88.40 1.9929 2 188.0 19.10 385.02 14.81 21.40
128 0.38735 0.00 25.650 0 0.5810 5.6130 95.60 1.7572 2 188.0 19.10 359.29 27.26 15.70
129 0.25915 0.00 21.890 0 0.6240 5.6930 96.00 1.7883 4 437.0 21.20 392.11 17.19 16.20
130 0.32543 0.00 21.890 0 0.6240 6.4310 98.80 1.8125 4 437.0 21.20 396.90 15.39 18.00
131 0.88125 0.00 21.890 0 0.6240 5.6370 94.70 1.9799 4 437.0 21.20 396.90 18.34 14.30
132 0.34006 0.00 21.890 0 0.6240 6.4580 98.90 2.1185 4 437.0 21.20 395.04 12.60 19.20
133 1.19294 0.00 21.890 0 0.6240 6.3260 97.70 2.2710 4 437.0 21.20 396.90 12.26 19.60
134 0.59005 0.00 21.890 0 0.6240 6.3720 97.90 2.3274 4 437.0 21.20 385.76 11.12 23.00
135 0.32982 0.00 21.890 0 0.6240 5.8220 95.40 2.4699 4 437.0 21.20 388.69 15.03 18.40
136 0.97617 0.00 21.890 0 0.6240 5.7570 98.40 2.3460 4 437.0 21.20 262.76 17.31 15.60
137 0.55778 0.00 21.890 0 0.6240 6.3350 98.20 2.1107 4 437.0 21.20 394.67 16.96 18.10
138 0.32264 0.00 21.890 0 0.6240 5.9420 93.50 1.9669 4 437.0 21.20 378.25 16.90 17.40
139 0.35233 0.00 21.890 0 0.6240 6.4540 98.40 1.8498 4 437.0 21.20 394.08 14.59 17.10
140 0.24980 0.00 21.890 0 0.6240 5.8570 98.20 1.6686 4 437.0 21.20 392.04 21.32 13.30
141 0.54452 0.00 21.890 0 0.6240 6.1510 97.90 1.6687 4 437.0 21.20 396.90 18.46 17.80
142 0.29090 0.00 21.890 0 0.6240 6.1740 93.60 1.6119 4 437.0 21.20 388.08 24.16 14.00
143 1.62864 0.00 21.890 0 0.6240 5.0190 100.00 1.4394 4 437.0 21.20 396.90 34.41 14.40
144 3.32105 0.00 19.580 1 0.8710 5.4030 100.00 1.3216 5 403.0 14.70 396.90 26.82 13.40
145 4.09740 0.00 19.580 0 0.8710 5.4680 100.00 1.4118 5 403.0 14.70 396.90 26.42 15.60
146 2.77974 0.00 19.580 0 0.8710 4.9030 97.80 1.3459 5 403.0 14.70 396.90 29.29 11.80
147 2.37934 0.00 19.580 0 0.8710 6.1300 100.00 1.4191 5 403.0 14.70 172.91 27.80 13.80
148 2.15505 0.00 19.580 0 0.8710 5.6280 100.00 1.5166 5 403.0 14.70 169.27 16.65 15.60
149 2.36862 0.00 19.580 0 0.8710 4.9260 95.70 1.4608 5 403.0 14.70 391.71 29.53 14.60
150 2.33099 0.00 19.580 0 0.8710 5.1860 93.80 1.5296 5 403.0 14.70 356.99 28.32 17.80
151 2.73397 0.00 19.580 0 0.8710 5.5970 94.90 1.5257 5 403.0 14.70 351.85 21.45 15.40
152 1.65660 0.00 19.580 0 0.8710 6.1220 97.30 1.6180 5 403.0 14.70 372.80 14.10 21.50
153 1.49632 0.00 19.580 0 0.8710 5.4040 100.00 1.5916 5 403.0 14.70 341.60 13.28 19.60
154 1.12658 0.00 19.580 1 0.8710 5.0120 88.00 1.6102 5 403.0 14.70 343.28 12.12 15.30
155 2.14918 0.00 19.580 0 0.8710 5.7090 98.50 1.6232 5 403.0 14.70 261.95 15.79 19.40
156 1.41385 0.00 19.580 1 0.8710 6.1290 96.00 1.7494 5 403.0 14.70 321.02 15.12 17.00
157 3.53501 0.00 19.580 1 0.8710 6.1520 82.60 1.7455 5 403.0 14.70 88.01 15.02 15.60
158 2.44668 0.00 19.580 0 0.8710 5.2720 94.00 1.7364 5 403.0 14.70 88.63 16.14 13.10
159 1.22358 0.00 19.580 0 0.6050 6.9430 97.40 1.8773 5 403.0 14.70 363.43 4.59 41.30
160 1.34284 0.00 19.580 0 0.6050 6.0660 100.00 1.7573 5 403.0 14.70 353.89 6.43 24.30
161 1.42502 0.00 19.580 0 0.8710 6.5100 100.00 1.7659 5 403.0 14.70 364.31 7.39 23.30
162 1.27346 0.00 19.580 1 0.6050 6.2500 92.60 1.7984 5 403.0 14.70 338.92 5.50 27.00
163 1.46336 0.00 19.580 0 0.6050 7.4890 90.80 1.9709 5 403.0 14.70 374.43 1.73 50.00
164 1.83377 0.00 19.580 1 0.6050 7.8020 98.20 2.0407 5 403.0 14.70 389.61 1.92 50.00
165 1.51902 0.00 19.580 1 0.6050 8.3750 93.90 2.1620 5 403.0 14.70 388.45 3.32 50.00
166 2.24236 0.00 19.580 0 0.6050 5.8540 91.80 2.4220 5 403.0 14.70 395.11 11.64 22.70
167 2.92400 0.00 19.580 0 0.6050 6.1010 93.00 2.2834 5 403.0 14.70 240.16 9.81 25.00
168 2.01019 0.00 19.580 0 0.6050 7.9290 96.20 2.0459 5 403.0 14.70 369.30 3.70 50.00
169 1.80028 0.00 19.580 0 0.6050 5.8770 79.20 2.4259 5 403.0 14.70 227.61 12.14 23.80
170 2.30040 0.00 19.580 0 0.6050 6.3190 96.10 2.1000 5 403.0 14.70 297.09 11.10 23.80
171 2.44953 0.00 19.580 0 0.6050 6.4020 95.20 2.2625 5 403.0 14.70 330.04 11.32 22.30
172 1.20742 0.00 19.580 0 0.6050 5.8750 94.60 2.4259 5 403.0 14.70 292.29 14.43 17.40
173 2.31390 0.00 19.580 0 0.6050 5.8800 97.30 2.3887 5 403.0 14.70 348.13 12.03 19.10
174 0.13914 0.00 4.050 0 0.5100 5.5720 88.50 2.5961 5 296.0 16.60 396.90 14.69 23.10
175 0.09178 0.00 4.050 0 0.5100 6.4160 84.10 2.6463 5 296.0 16.60 395.50 9.04 23.60
176 0.08447 0.00 4.050 0 0.5100 5.8590 68.70 2.7019 5 296.0 16.60 393.23 9.64 22.60
177 0.06664 0.00 4.050 0 0.5100 6.5460 33.10 3.1323 5 296.0 16.60 390.96 5.33 29.40
178 0.07022 0.00 4.050 0 0.5100 6.0200 47.20 3.5549 5 296.0 16.60 393.23 10.11 23.20
179 0.05425 0.00 4.050 0 0.5100 6.3150 73.40 3.3175 5 296.0 16.60 395.60 6.29 24.60
180 0.06642 0.00 4.050 0 0.5100 6.8600 74.40 2.9153 5 296.0 16.60 391.27 6.92 29.90
181 0.05780 0.00 2.460 0 0.4880 6.9800 58.40 2.8290 3 193.0 17.80 396.90 5.04 37.20
182 0.06588 0.00 2.460 0 0.4880 7.7650 83.30 2.7410 3 193.0 17.80 395.56 7.56 39.80
183 0.06888 0.00 2.460 0 0.4880 6.1440 62.20 2.5979 3 193.0 17.80 396.90 9.45 36.20
184 0.09103 0.00 2.460 0 0.4880 7.1550 92.20 2.7006 3 193.0 17.80 394.12 4.82 37.90
185 0.10008 0.00 2.460 0 0.4880 6.5630 95.60 2.8470 3 193.0 17.80 396.90 5.68 32.50
186 0.08308 0.00 2.460 0 0.4880 5.6040 89.80 2.9879 3 193.0 17.80 391.00 13.98 26.40
187 0.06047 0.00 2.460 0 0.4880 6.1530 68.80 3.2797 3 193.0 17.80 387.11 13.15 29.60
188 0.05602 0.00 2.460 0 0.4880 7.8310 53.60 3.1992 3 193.0 17.80 392.63 4.45 50.00
189 0.07875 45.00 3.440 0 0.4370 6.7820 41.10 3.7886 5 398.0 15.20 393.87 6.68 32.00
190 0.12579 45.00 3.440 0 0.4370 6.5560 29.10 4.5667 5 398.0 15.20 382.84 4.56 29.80
191 0.08370 45.00 3.440 0 0.4370 7.1850 38.90 4.5667 5 398.0 15.20 396.90 5.39 34.90
192 0.09068 45.00 3.440 0 0.4370 6.9510 21.50 6.4798 5 398.0 15.20 377.68 5.10 37.00
193 0.06911 45.00 3.440 0 0.4370 6.7390 30.80 6.4798 5 398.0 15.20 389.71 4.69 30.50
194 0.08664 45.00 3.440 0 0.4370 7.1780 26.30 6.4798 5 398.0 15.20 390.49 2.87 36.40
195 0.02187 60.00 2.930 0 0.4010 6.8000 9.90 6.2196 1 265.0 15.60 393.37 5.03 31.10
196 0.01439 60.00 2.930 0 0.4010 6.6040 18.80 6.2196 1 265.0 15.60 376.70 4.38 29.10
197 0.01381 80.00 0.460 0 0.4220 7.8750 32.00 5.6484 4 255.0 14.40 394.23 2.97 50.00
198 0.04011 80.00 1.520 0 0.4040 7.2870 34.10 7.3090 2 329.0 12.60 396.90 4.08 33.30
199 0.04666 80.00 1.520 0 0.4040 7.1070 36.60 7.3090 2 329.0 12.60 354.31 8.61 30.30
200 0.03768 80.00 1.520 0 0.4040 7.2740 38.30 7.3090 2 329.0 12.60 392.20 6.62 34.60
201 0.03150 95.00 1.470 0 0.4030 6.9750 15.30 7.6534 3 402.0 17.00 396.90 4.56 34.90
202 0.01778 95.00 1.470 0 0.4030 7.1350 13.90 7.6534 3 402.0 17.00 384.30 4.45 32.90
203 0.03445 82.50 2.030 0 0.4150 6.1620 38.40 6.2700 2 348.0 14.70 393.77 7.43 24.10
204 0.02177 82.50 2.030 0 0.4150 7.6100 15.70 6.2700 2 348.0 14.70 395.38 3.11 42.30
205 0.03510 95.00 2.680 0 0.4161 7.8530 33.20 5.1180 4 224.0 14.70 392.78 3.81 48.50
206 0.02009 95.00 2.680 0 0.4161 8.0340 31.90 5.1180 4 224.0 14.70 390.55 2.88 50.00
207 0.13642 0.00 10.590 0 0.4890 5.8910 22.30 3.9454 4 277.0 18.60 396.90 10.87 22.60
208 0.22969 0.00 10.590 0 0.4890 6.3260 52.50 4.3549 4 277.0 18.60 394.87 10.97 24.40
209 0.25199 0.00 10.590 0 0.4890 5.7830 72.70 4.3549 4 277.0 18.60 389.43 18.06 22.50
210 0.13587 0.00 10.590 1 0.4890 6.0640 59.10 4.2392 4 277.0 18.60 381.32 14.66 24.40
211 0.43571 0.00 10.590 1 0.4890 5.3440 100.00 3.8750 4 277.0 18.60 396.90 23.09 20.00
212 0.17446 0.00 10.590 1 0.4890 5.9600 92.10 3.8771 4 277.0 18.60 393.25 17.27 21.70
213 0.37578 0.00 10.590 1 0.4890 5.4040 88.60 3.6650 4 277.0 18.60 395.24 23.98 19.30
214 0.21719 0.00 10.590 1 0.4890 5.8070 53.80 3.6526 4 277.0 18.60 390.94 16.03 22.40
215 0.14052 0.00 10.590 0 0.4890 6.3750 32.30 3.9454 4 277.0 18.60 385.81 9.38 28.10
216 0.28955 0.00 10.590 0 0.4890 5.4120 9.80 3.5875 4 277.0 18.60 348.93 29.55 23.70
217 0.19802 0.00 10.590 0 0.4890 6.1820 42.40 3.9454 4 277.0 18.60 393.63 9.47 25.00
218 0.04560 0.00 13.890 1 0.5500 5.8880 56.00 3.1121 5 276.0 16.40 392.80 13.51 23.30
219 0.07013 0.00 13.890 0 0.5500 6.6420 85.10 3.4211 5 276.0 16.40 392.78 9.69 28.70
220 0.11069 0.00 13.890 1 0.5500 5.9510 93.80 2.8893 5 276.0 16.40 396.90 17.92 21.50
221 0.11425 0.00 13.890 1 0.5500 6.3730 92.40 3.3633 5 276.0 16.40 393.74 10.50 23.00
222 0.35809 0.00 6.200 1 0.5070 6.9510 88.50 2.8617 8 307.0 17.40 391.70 9.71 26.70
223 0.40771 0.00 6.200 1 0.5070 6.1640 91.30 3.0480 8 307.0 17.40 395.24 21.46 21.70
224 0.62356 0.00 6.200 1 0.5070 6.8790 77.70 3.2721 8 307.0 17.40 390.39 9.93 27.50
225 0.61470 0.00 6.200 0 0.5070 6.6180 80.80 3.2721 8 307.0 17.40 396.90 7.60 30.10
226 0.31533 0.00 6.200 0 0.5040 8.2660 78.30 2.8944 8 307.0 17.40 385.05 4.14 44.80
227 0.52693 0.00 6.200 0 0.5040 8.7250 83.00 2.8944 8 307.0 17.40 382.00 4.63 50.00
228 0.38214 0.00 6.200 0 0.5040 8.0400 86.50 3.2157 8 307.0 17.40 387.38 3.13 37.60
229 0.41238 0.00 6.200 0 0.5040 7.1630 79.90 3.2157 8 307.0 17.40 372.08 6.36 31.60
230 0.29819 0.00 6.200 0 0.5040 7.6860 17.00 3.3751 8 307.0 17.40 377.51 3.92 46.70
231 0.44178 0.00 6.200 0 0.5040 6.5520 21.40 3.3751 8 307.0 17.40 380.34 3.76 31.50
232 0.53700 0.00 6.200 0 0.5040 5.9810 68.10 3.6715 8 307.0 17.40 378.35 11.65 24.30
233 0.46296 0.00 6.200 0 0.5040 7.4120 76.90 3.6715 8 307.0 17.40 376.14 5.25 31.70
234 0.57529 0.00 6.200 0 0.5070 8.3370 73.30 3.8384 8 307.0 17.40 385.91 2.47 41.70
235 0.33147 0.00 6.200 0 0.5070 8.2470 70.40 3.6519 8 307.0 17.40 378.95 3.95 48.30
236 0.44791 0.00 6.200 1 0.5070 6.7260 66.50 3.6519 8 307.0 17.40 360.20 8.05 29.00
237 0.33045 0.00 6.200 0 0.5070 6.0860 61.50 3.6519 8 307.0 17.40 376.75 10.88 24.00
238 0.52058 0.00 6.200 1 0.5070 6.6310 76.50 4.1480 8 307.0 17.40 388.45 9.54 25.10
239 0.51183 0.00 6.200 0 0.5070 7.3580 71.60 4.1480 8 307.0 17.40 390.07 4.73 31.50
240 0.08244 30.00 4.930 0 0.4280 6.4810 18.50 6.1899 6 300.0 16.60 379.41 6.36 23.70
241 0.09252 30.00 4.930 0 0.4280 6.6060 42.20 6.1899 6 300.0 16.60 383.78 7.37 23.30
242 0.11329 30.00 4.930 0 0.4280 6.8970 54.30 6.3361 6 300.0 16.60 391.25 11.38 22.00
243 0.10612 30.00 4.930 0 0.4280 6.0950 65.10 6.3361 6 300.0 16.60 394.62 12.40 20.10
244 0.10290 30.00 4.930 0 0.4280 6.3580 52.90 7.0355 6 300.0 16.60 372.75 11.22 22.20
245 0.12757 30.00 4.930 0 0.4280 6.3930 7.80 7.0355 6 300.0 16.60 374.71 5.19 23.70
246 0.20608 22.00 5.860 0 0.4310 5.5930 76.50 7.9549 7 330.0 19.10 372.49 12.50 17.60
247 0.19133 22.00 5.860 0 0.4310 5.6050 70.20 7.9549 7 330.0 19.10 389.13 18.46 18.50
248 0.33983 22.00 5.860 0 0.4310 6.1080 34.90 8.0555 7 330.0 19.10 390.18 9.16 24.30
249 0.19657 22.00 5.860 0 0.4310 6.2260 79.20 8.0555 7 330.0 19.10 376.14 10.15 20.50
250 0.16439 22.00 5.860 0 0.4310 6.4330 49.10 7.8265 7 330.0 19.10 374.71 9.52 24.50
251 0.19073 22.00 5.860 0 0.4310 6.7180 17.50 7.8265 7 330.0 19.10 393.74 6.56 26.20
252 0.14030 22.00 5.860 0 0.4310 6.4870 13.00 7.3967 7 330.0 19.10 396.28 5.90 24.40
253 0.21409 22.00 5.860 0 0.4310 6.4380 8.90 7.3967 7 330.0 19.10 377.07 3.59 24.80
254 0.08221 22.00 5.860 0 0.4310 6.9570 6.80 8.9067 7 330.0 19.10 386.09 3.53 29.60
255 0.36894 22.00 5.860 0 0.4310 8.2590 8.40 8.9067 7 330.0 19.10 396.90 3.54 42.80
256 0.04819 80.00 3.640 0 0.3920 6.1080 32.00 9.2203 1 315.0 16.40 392.89 6.57 21.90
257 0.03548 80.00 3.640 0 0.3920 5.8760 19.10 9.2203 1 315.0 16.40 395.18 9.25 20.90
258 0.01538 90.00 3.750 0 0.3940 7.4540 34.20 6.3361 3 244.0 15.90 386.34 3.11 44.00
259 0.61154 20.00 3.970 0 0.6470 8.7040 86.90 1.8010 5 264.0 13.00 389.70 5.12 50.00
260 0.66351 20.00 3.970 0 0.6470 7.3330 100.00 1.8946 5 264.0 13.00 383.29 7.79 36.00
261 0.65665 20.00 3.970 0 0.6470 6.8420 100.00 2.0107 5 264.0 13.00 391.93 6.90 30.10
262 0.54011 20.00 3.970 0 0.6470 7.2030 81.80 2.1121 5 264.0 13.00 392.80 9.59 33.80
263 0.53412 20.00 3.970 0 0.6470 7.5200 89.40 2.1398 5 264.0 13.00 388.37 7.26 43.10
264 0.52014 20.00 3.970 0 0.6470 8.3980 91.50 2.2885 5 264.0 13.00 386.86 5.91 48.80
265 0.82526 20.00 3.970 0 0.6470 7.3270 94.50 2.0788 5 264.0 13.00 393.42 11.25 31.00
266 0.55007 20.00 3.970 0 0.6470 7.2060 91.60 1.9301 5 264.0 13.00 387.89 8.10 36.50
267 0.76162 20.00 3.970 0 0.6470 5.5600 62.80 1.9865 5 264.0 13.00 392.40 10.45 22.80
268 0.78570 20.00 3.970 0 0.6470 7.0140 84.60 2.1329 5 264.0 13.00 384.07 14.79 30.70
269 0.57834 20.00 3.970 0 0.5750 8.2970 67.00 2.4216 5 264.0 13.00 384.54 7.44 50.00
270 0.54050 20.00 3.970 0 0.5750 7.4700 52.60 2.8720 5 264.0 13.00 390.30 3.16 43.50
271 0.09065 20.00 6.960 1 0.4640 5.9200 61.50 3.9175 3 223.0 18.60 391.34 13.65 20.70
272 0.29916 20.00 6.960 0 0.4640 5.8560 42.10 4.4290 3 223.0 18.60 388.65 13.00 21.10
273 0.16211 20.00 6.960 0 0.4640 6.2400 16.30 4.4290 3 223.0 18.60 396.90 6.59 25.20
274 0.11460 20.00 6.960 0 0.4640 6.5380 58.70 3.9175 3 223.0 18.60 394.96 7.73 24.40
275 0.22188 20.00 6.960 1 0.4640 7.6910 51.80 4.3665 3 223.0 18.60 390.77 6.58 35.20
276 0.05644 40.00 6.410 1 0.4470 6.7580 32.90 4.0776 4 254.0 17.60 396.90 3.53 32.40
277 0.09604 40.00 6.410 0 0.4470 6.8540 42.80 4.2673 4 254.0 17.60 396.90 2.98 32.00
278 0.10469 40.00 6.410 1 0.4470 7.2670 49.00 4.7872 4 254.0 17.60 389.25 6.05 33.20
279 0.06127 40.00 6.410 1 0.4470 6.8260 27.60 4.8628 4 254.0 17.60 393.45 4.16 33.10
280 0.07978 40.00 6.410 0 0.4470 6.4820 32.10 4.1403 4 254.0 17.60 396.90 7.19 29.10
281 0.21038 20.00 3.330 0 0.4429 6.8120 32.20 4.1007 5 216.0 14.90 396.90 4.85 35.10
282 0.03578 20.00 3.330 0 0.4429 7.8200 64.50 4.6947 5 216.0 14.90 387.31 3.76 45.40
283 0.03705 20.00 3.330 0 0.4429 6.9680 37.20 5.2447 5 216.0 14.90 392.23 4.59 35.40
284 0.06129 20.00 3.330 1 0.4429 7.6450 49.70 5.2119 5 216.0 14.90 377.07 3.01 46.00
285 0.01501 90.00 1.210 1 0.4010 7.9230 24.80 5.8850 1 198.0 13.60 395.52 3.16 50.00
286 0.00906 90.00 2.970 0 0.4000 7.0880 20.80 7.3073 1 285.0 15.30 394.72 7.85 32.20
287 0.01096 55.00 2.250 0 0.3890 6.4530 31.90 7.3073 1 300.0 15.30 394.72 8.23 22.00
288 0.01965 80.00 1.760 0 0.3850 6.2300 31.50 9.0892 1 241.0 18.20 341.60 12.93 20.10
289 0.03871 52.50 5.320 0 0.4050 6.2090 31.30 7.3172 6 293.0 16.60 396.90 7.14 23.20
290 0.04590 52.50 5.320 0 0.4050 6.3150 45.60 7.3172 6 293.0 16.60 396.90 7.60 22.30
291 0.04297 52.50 5.320 0 0.4050 6.5650 22.90 7.3172 6 293.0 16.60 371.72 9.51 24.80
292 0.03502 80.00 4.950 0 0.4110 6.8610 27.90 5.1167 4 245.0 19.20 396.90 3.33 28.50
293 0.07886 80.00 4.950 0 0.4110 7.1480 27.70 5.1167 4 245.0 19.20 396.90 3.56 37.30
294 0.03615 80.00 4.950 0 0.4110 6.6300 23.40 5.1167 4 245.0 19.20 396.90 4.70 27.90
295 0.08265 0.00 13.920 0 0.4370 6.1270 18.40 5.5027 4 289.0 16.00 396.90 8.58 23.90
296 0.08199 0.00 13.920 0 0.4370 6.0090 42.30 5.5027 4 289.0 16.00 396.90 10.40 21.70
297 0.12932 0.00 13.920 0 0.4370 6.6780 31.10 5.9604 4 289.0 16.00 396.90 6.27 28.60
298 0.05372 0.00 13.920 0 0.4370 6.5490 51.00 5.9604 4 289.0 16.00 392.85 7.39 27.10
299 0.14103 0.00 13.920 0 0.4370 5.7900 58.00 6.3200 4 289.0 16.00 396.90 15.84 20.30
300 0.06466 70.00 2.240 0 0.4000 6.3450 20.10 7.8278 5 358.0 14.80 368.24 4.97 22.50
301 0.05561 70.00 2.240 0 0.4000 7.0410 10.00 7.8278 5 358.0 14.80 371.58 4.74 29.00
302 0.04417 70.00 2.240 0 0.4000 6.8710 47.40 7.8278 5 358.0 14.80 390.86 6.07 24.80
303 0.03537 34.00 6.090 0 0.4330 6.5900 40.40 5.4917 7 329.0 16.10 395.75 9.50 22.00
304 0.09266 34.00 6.090 0 0.4330 6.4950 18.40 5.4917 7 329.0 16.10 383.61 8.67 26.40
305 0.10000 34.00 6.090 0 0.4330 6.9820 17.70 5.4917 7 329.0 16.10 390.43 4.86 33.10
306 0.05515 33.00 2.180 0 0.4720 7.2360 41.10 4.0220 7 222.0 18.40 393.68 6.93 36.10
307 0.05479 33.00 2.180 0 0.4720 6.6160 58.10 3.3700 7 222.0 18.40 393.36 8.93 28.40
308 0.07503 33.00 2.180 0 0.4720 7.4200 71.90 3.0992 7 222.0 18.40 396.90 6.47 33.40
309 0.04932 33.00 2.180 0 0.4720 6.8490 70.30 3.1827 7 222.0 18.40 396.90 7.53 28.20
310 0.49298 0.00 9.900 0 0.5440 6.6350 82.50 3.3175 4 304.0 18.40 396.90 4.54 22.80
311 0.34940 0.00 9.900 0 0.5440 5.9720 76.70 3.1025 4 304.0 18.40 396.24 9.97 20.30
312 2.63548 0.00 9.900 0 0.5440 4.9730 37.80 2.5194 4 304.0 18.40 350.45 12.64 16.10
313 0.79041 0.00 9.900 0 0.5440 6.1220 52.80 2.6403 4 304.0 18.40 396.90 5.98 22.10
314 0.26169 0.00 9.900 0 0.5440 6.0230 90.40 2.8340 4 304.0 18.40 396.30 11.72 19.40
315 0.26938 0.00 9.900 0 0.5440 6.2660 82.80 3.2628 4 304.0 18.40 393.39 7.90 21.60
316 0.36920 0.00 9.900 0 0.5440 6.5670 87.30 3.6023 4 304.0 18.40 395.69 9.28 23.80
317 0.25356 0.00 9.900 0 0.5440 5.7050 77.70 3.9450 4 304.0 18.40 396.42 11.50 16.20
318 0.31827 0.00 9.900 0 0.5440 5.9140 83.20 3.9986 4 304.0 18.40 390.70 18.33 17.80
319 0.24522 0.00 9.900 0 0.5440 5.7820 71.70 4.0317 4 304.0 18.40 396.90 15.94 19.80
320 0.40202 0.00 9.900 0 0.5440 6.3820 67.20 3.5325 4 304.0 18.40 395.21 10.36 23.10
321 0.47547 0.00 9.900 0 0.5440 6.1130 58.80 4.0019 4 304.0 18.40 396.23 12.73 21.00
322 0.16760 0.00 7.380 0 0.4930 6.4260 52.30 4.5404 5 287.0 19.60 396.90 7.20 23.80
323 0.18159 0.00 7.380 0 0.4930 6.3760 54.30 4.5404 5 287.0 19.60 396.90 6.87 23.10
324 0.35114 0.00 7.380 0 0.4930 6.0410 49.90 4.7211 5 287.0 19.60 396.90 7.70 20.40
325 0.28392 0.00 7.380 0 0.4930 5.7080 74.30 4.7211 5 287.0 19.60 391.13 11.74 18.50
326 0.34109 0.00 7.380 0 0.4930 6.4150 40.10 4.7211 5 287.0 19.60 396.90 6.12 25.00
327 0.19186 0.00 7.380 0 0.4930 6.4310 14.70 5.4159 5 287.0 19.60 393.68 5.08 24.60
328 0.30347 0.00 7.380 0 0.4930 6.3120 28.90 5.4159 5 287.0 19.60 396.90 6.15 23.00
329 0.24103 0.00 7.380 0 0.4930 6.0830 43.70 5.4159 5 287.0 19.60 396.90 12.79 22.20
330 0.06617 0.00 3.240 0 0.4600 5.8680 25.80 5.2146 4 430.0 16.90 382.44 9.97 19.30
331 0.06724 0.00 3.240 0 0.4600 6.3330 17.20 5.2146 4 430.0 16.90 375.21 7.34 22.60
332 0.04544 0.00 3.240 0 0.4600 6.1440 32.20 5.8736 4 430.0 16.90 368.57 9.09 19.80
333 0.05023 35.00 6.060 0 0.4379 5.7060 28.40 6.6407 1 304.0 16.90 394.02 12.43 17.10
334 0.03466 35.00 6.060 0 0.4379 6.0310 23.30 6.6407 1 304.0 16.90 362.25 7.83 19.40
335 0.05083 0.00 5.190 0 0.5150 6.3160 38.10 6.4584 5 224.0 20.20 389.71 5.68 22.20
336 0.03738 0.00 5.190 0 0.5150 6.3100 38.50 6.4584 5 224.0 20.20 389.40 6.75 20.70
337 0.03961 0.00 5.190 0 0.5150 6.0370 34.50 5.9853 5 224.0 20.20 396.90 8.01 21.10
338 0.03427 0.00 5.190 0 0.5150 5.8690 46.30 5.2311 5 224.0 20.20 396.90 9.80 19.50
339 0.03041 0.00 5.190 0 0.5150 5.8950 59.60 5.6150 5 224.0 20.20 394.81 10.56 18.50
340 0.03306 0.00 5.190 0 0.5150 6.0590 37.30 4.8122 5 224.0 20.20 396.14 8.51 20.60
341 0.05497 0.00 5.190 0 0.5150 5.9850 45.40 4.8122 5 224.0 20.20 396.90 9.74 19.00
342 0.06151 0.00 5.190 0 0.5150 5.9680 58.50 4.8122 5 224.0 20.20 396.90 9.29 18.70
343 0.01301 35.00 1.520 0 0.4420 7.2410 49.30 7.0379 1 284.0 15.50 394.74 5.49 32.70
344 0.02498 0.00 1.890 0 0.5180 6.5400 59.70 6.2669 1 422.0 15.90 389.96 8.65 16.50
345 0.02543 55.00 3.780 0 0.4840 6.6960 56.40 5.7321 5 370.0 17.60 396.90 7.18 23.90
346 0.03049 55.00 3.780 0 0.4840 6.8740 28.10 6.4654 5 370.0 17.60 387.97 4.61 31.20
347 0.03113 0.00 4.390 0 0.4420 6.0140 48.50 8.0136 3 352.0 18.80 385.64 10.53 17.50
348 0.06162 0.00 4.390 0 0.4420 5.8980 52.30 8.0136 3 352.0 18.80 364.61 12.67 17.20
349 0.01870 85.00 4.150 0 0.4290 6.5160 27.70 8.5353 4 351.0 17.90 392.43 6.36 23.10
350 0.01501 80.00 2.010 0 0.4350 6.6350 29.70 8.3440 4 280.0 17.00 390.94 5.99 24.50
351 0.02899 40.00 1.250 0 0.4290 6.9390 34.50 8.7921 1 335.0 19.70 389.85 5.89 26.60
352 0.06211 40.00 1.250 0 0.4290 6.4900 44.40 8.7921 1 335.0 19.70 396.90 5.98 22.90
353 0.07950 60.00 1.690 0 0.4110 6.5790 35.90 10.7103 4 411.0 18.30 370.78 5.49 24.10
354 0.07244 60.00 1.690 0 0.4110 5.8840 18.50 10.7103 4 411.0 18.30 392.33 7.79 18.60
355 0.01709 90.00 2.020 0 0.4100 6.7280 36.10 12.1265 5 187.0 17.00 384.46 4.50 30.10
356 0.04301 80.00 1.910 0 0.4130 5.6630 21.90 10.5857 4 334.0 22.00 382.80 8.05 18.20
357 0.10659 80.00 1.910 0 0.4130 5.9360 19.50 10.5857 4 334.0 22.00 376.04 5.57 20.60
358 8.98296 0.00 18.100 1 0.7700 6.2120 97.40 2.1222 24 666.0 20.20 377.73 17.60 17.80
359 3.84970 0.00 18.100 1 0.7700 6.3950 91.00 2.5052 24 666.0 20.20 391.34 13.27 21.70
360 5.20177 0.00 18.100 1 0.7700 6.1270 83.40 2.7227 24 666.0 20.20 395.43 11.48 22.70
361 4.26131 0.00 18.100 0 0.7700 6.1120 81.30 2.5091 24 666.0 20.20 390.74 12.67 22.60
362 4.54192 0.00 18.100 0 0.7700 6.3980 88.00 2.5182 24 666.0 20.20 374.56 7.79 25.00
363 3.83684 0.00 18.100 0 0.7700 6.2510 91.10 2.2955 24 666.0 20.20 350.65 14.19 19.90
364 3.67822 0.00 18.100 0 0.7700 5.3620 96.20 2.1036 24 666.0 20.20 380.79 10.19 20.80
365 4.22239 0.00 18.100 1 0.7700 5.8030 89.00 1.9047 24 666.0 20.20 353.04 14.64 16.80
366 3.47428 0.00 18.100 1 0.7180 8.7800 82.90 1.9047 24 666.0 20.20 354.55 5.29 21.90
367 4.55587 0.00 18.100 0 0.7180 3.5610 87.90 1.6132 24 666.0 20.20 354.70 7.12 27.50
368 3.69695 0.00 18.100 0 0.7180 4.9630 91.40 1.7523 24 666.0 20.20 316.03 14.00 21.90
369 13.52220 0.00 18.100 0 0.6310 3.8630 100.00 1.5106 24 666.0 20.20 131.42 13.33 23.10
370 4.89822 0.00 18.100 0 0.6310 4.9700 100.00 1.3325 24 666.0 20.20 375.52 3.26 50.00
371 5.66998 0.00 18.100 1 0.6310 6.6830 96.80 1.3567 24 666.0 20.20 375.33 3.73 50.00
372 6.53876 0.00 18.100 1 0.6310 7.0160 97.50 1.2024 24 666.0 20.20 392.05 2.96 50.00
373 9.23230 0.00 18.100 0 0.6310 6.2160 100.00 1.1691 24 666.0 20.20 366.15 9.53 50.00
374 8.26725 0.00 18.100 1 0.6680 5.8750 89.60 1.1296 24 666.0 20.20 347.88 8.88 50.00
375 11.10810 0.00 18.100 0 0.6680 4.9060 100.00 1.1742 24 666.0 20.20 396.90 34.77 13.80
376 18.49820 0.00 18.100 0 0.6680 4.1380 100.00 1.1370 24 666.0 20.20 396.90 37.97 13.80
377 19.60910 0.00 18.100 0 0.6710 7.3130 97.90 1.3163 24 666.0 20.20 396.90 13.44 15.00
378 15.28800 0.00 18.100 0 0.6710 6.6490 93.30 1.3449 24 666.0 20.20 363.02 23.24 13.90
379 9.82349 0.00 18.100 0 0.6710 6.7940 98.80 1.3580 24 666.0 20.20 396.90 21.24 13.30
380 23.64820 0.00 18.100 0 0.6710 6.3800 96.20 1.3861 24 666.0 20.20 396.90 23.69 13.10
381 17.86670 0.00 18.100 0 0.6710 6.2230 100.00 1.3861 24 666.0 20.20 393.74 21.78 10.20
382 88.97620 0.00 18.100 0 0.6710 6.9680 91.90 1.4165 24 666.0 20.20 396.90 17.21 10.40
383 15.87440 0.00 18.100 0 0.6710 6.5450 99.10 1.5192 24 666.0 20.20 396.90 21.08 10.90
384 9.18702 0.00 18.100 0 0.7000 5.5360 100.00 1.5804 24 666.0 20.20 396.90 23.60 11.30
385 7.99248 0.00 18.100 0 0.7000 5.5200 100.00 1.5331 24 666.0 20.20 396.90 24.56 12.30
386 20.08490 0.00 18.100 0 0.7000 4.3680 91.20 1.4395 24 666.0 20.20 285.83 30.63 8.80
387 16.81180 0.00 18.100 0 0.7000 5.2770 98.10 1.4261 24 666.0 20.20 396.90 30.81 7.20
388 24.39380 0.00 18.100 0 0.7000 4.6520 100.00 1.4672 24 666.0 20.20 396.90 28.28 10.50
389 22.59710 0.00 18.100 0 0.7000 5.0000 89.50 1.5184 24 666.0 20.20 396.90 31.99 7.40
390 14.33370 0.00 18.100 0 0.7000 4.8800 100.00 1.5895 24 666.0 20.20 372.92 30.62 10.20
391 8.15174 0.00 18.100 0 0.7000 5.3900 98.90 1.7281 24 666.0 20.20 396.90 20.85 11.50
392 6.96215 0.00 18.100 0 0.7000 5.7130 97.00 1.9265 24 666.0 20.20 394.43 17.11 15.10
393 5.29305 0.00 18.100 0 0.7000 6.0510 82.50 2.1678 24 666.0 20.20 378.38 18.76 23.20
394 11.57790 0.00 18.100 0 0.7000 5.0360 97.00 1.7700 24 666.0 20.20 396.90 25.68 9.70
395 8.64476 0.00 18.100 0 0.6930 6.1930 92.60 1.7912 24 666.0 20.20 396.90 15.17 13.80
396 13.35980 0.00 18.100 0 0.6930 5.8870 94.70 1.7821 24 666.0 20.20 396.90 16.35 12.70
397 8.71675 0.00 18.100 0 0.6930 6.4710 98.80 1.7257 24 666.0 20.20 391.98 17.12 13.10
398 5.87205 0.00 18.100 0 0.6930 6.4050 96.00 1.6768 24 666.0 20.20 396.90 19.37 12.50
399 7.67202 0.00 18.100 0 0.6930 5.7470 98.90 1.6334 24 666.0 20.20 393.10 19.92 8.50
400 38.35180 0.00 18.100 0 0.6930 5.4530 100.00 1.4896 24 666.0 20.20 396.90 30.59 5.00
401 9.91655 0.00 18.100 0 0.6930 5.8520 77.80 1.5004 24 666.0 20.20 338.16 29.97 6.30
402 25.04610 0.00 18.100 0 0.6930 5.9870 100.00 1.5888 24 666.0 20.20 396.90 26.77 5.60
403 14.23620 0.00 18.100 0 0.6930 6.3430 100.00 1.5741 24 666.0 20.20 396.90 20.32 7.20
404 9.59571 0.00 18.100 0 0.6930 6.4040 100.00 1.6390 24 666.0 20.20 376.11 20.31 12.10
405 24.80170 0.00 18.100 0 0.6930 5.3490 96.00 1.7028 24 666.0 20.20 396.90 19.77 8.30
406 41.52920 0.00 18.100 0 0.6930 5.5310 85.40 1.6074 24 666.0 20.20 329.46 27.38 8.50
407 67.92080 0.00 18.100 0 0.6930 5.6830 100.00 1.4254 24 666.0 20.20 384.97 22.98 5.00
408 20.71620 0.00 18.100 0 0.6590 4.1380 100.00 1.1781 24 666.0 20.20 370.22 23.34 11.90
409 11.95110 0.00 18.100 0 0.6590 5.6080 100.00 1.2852 24 666.0 20.20 332.09 12.13 27.90
410 7.40389 0.00 18.100 0 0.5970 5.6170 97.90 1.4547 24 666.0 20.20 314.64 26.40 17.20
411 14.43830 0.00 18.100 0 0.5970 6.8520 100.00 1.4655 24 666.0 20.20 179.36 19.78 27.50
412 51.13580 0.00 18.100 0 0.5970 5.7570 100.00 1.4130 24 666.0 20.20 2.60 10.11 15.00
413 14.05070 0.00 18.100 0 0.5970 6.6570 100.00 1.5275 24 666.0 20.20 35.05 21.22 17.20
414 18.81100 0.00 18.100 0 0.5970 4.6280 100.00 1.5539 24 666.0 20.20 28.79 34.37 17.90
415 28.65580 0.00 18.100 0 0.5970 5.1550 100.00 1.5894 24 666.0 20.20 210.97 20.08 16.30
416 45.74610 0.00 18.100 0 0.6930 4.5190 100.00 1.6582 24 666.0 20.20 88.27 36.98 7.00
417 18.08460 0.00 18.100 0 0.6790 6.4340 100.00 1.8347 24 666.0 20.20 27.25 29.05 7.20
418 10.83420 0.00 18.100 0 0.6790 6.7820 90.80 1.8195 24 666.0 20.20 21.57 25.79 7.50
419 25.94060 0.00 18.100 0 0.6790 5.3040 89.10 1.6475 24 666.0 20.20 127.36 26.64 10.40
420 73.53410 0.00 18.100 0 0.6790 5.9570 100.00 1.8026 24 666.0 20.20 16.45 20.62 8.80
421 11.81230 0.00 18.100 0 0.7180 6.8240 76.50 1.7940 24 666.0 20.20 48.45 22.74 8.40
422 11.08740 0.00 18.100 0 0.7180 6.4110 100.00 1.8589 24 666.0 20.20 318.75 15.02 16.70
423 7.02259 0.00 18.100 0 0.7180 6.0060 95.30 1.8746 24 666.0 20.20 319.98 15.70 14.20
424 12.04820 0.00 18.100 0 0.6140 5.6480 87.60 1.9512 24 666.0 20.20 291.55 14.10 20.80
425 7.05042 0.00 18.100 0 0.6140 6.1030 85.10 2.0218 24 666.0 20.20 2.52 23.29 13.40
426 8.79212 0.00 18.100 0 0.5840 5.5650 70.60 2.0635 24 666.0 20.20 3.65 17.16 11.70
427 15.86030 0.00 18.100 0 0.6790 5.8960 95.40 1.9096 24 666.0 20.20 7.68 24.39 8.30
428 12.24720 0.00 18.100 0 0.5840 5.8370 59.70 1.9976 24 666.0 20.20 24.65 15.69 10.20
429 37.66190 0.00 18.100 0 0.6790 6.2020 78.70 1.8629 24 666.0 20.20 18.82 14.52 10.90
430 7.36711 0.00 18.100 0 0.6790 6.1930 78.10 1.9356 24 666.0 20.20 96.73 21.52 11.00
431 9.33889 0.00 18.100 0 0.6790 6.3800 95.60 1.9682 24 666.0 20.20 60.72 24.08 9.50
432 8.49213 0.00 18.100 0 0.5840 6.3480 86.10 2.0527 24 666.0 20.20 83.45 17.64 14.50
433 10.06230 0.00 18.100 0 0.5840 6.8330 94.30 2.0882 24 666.0 20.20 81.33 19.69 14.10
434 6.44405 0.00 18.100 0 0.5840 6.4250 74.80 2.2004 24 666.0 20.20 97.95 12.03 16.10
435 5.58107 0.00 18.100 0 0.7130 6.4360 87.90 2.3158 24 666.0 20.20 100.19 16.22 14.30
436 13.91340 0.00 18.100 0 0.7130 6.2080 95.00 2.2222 24 666.0 20.20 100.63 15.17 11.70
437 11.16040 0.00 18.100 0 0.7400 6.6290 94.60 2.1247 24 666.0 20.20 109.85 23.27 13.40
438 14.42080 0.00 18.100 0 0.7400 6.4610 93.30 2.0026 24 666.0 20.20 27.49 18.05 9.60
439 15.17720 0.00 18.100 0 0.7400 6.1520 100.00 1.9142 24 666.0 20.20 9.32 26.45 8.70
440 13.67810 0.00 18.100 0 0.7400 5.9350 87.90 1.8206 24 666.0 20.20 68.95 34.02 8.40
441 9.39063 0.00 18.100 0 0.7400 5.6270 93.90 1.8172 24 666.0 20.20 396.90 22.88 12.80
442 22.05110 0.00 18.100 0 0.7400 5.8180 92.40 1.8662 24 666.0 20.20 391.45 22.11 10.50
443 9.72418 0.00 18.100 0 0.7400 6.4060 97.20 2.0651 24 666.0 20.20 385.96 19.52 17.10
444 5.66637 0.00 18.100 0 0.7400 6.2190 100.00 2.0048 24 666.0 20.20 395.69 16.59 18.40
445 9.96654 0.00 18.100 0 0.7400 6.4850 100.00 1.9784 24 666.0 20.20 386.73 18.85 15.40
446 12.80230 0.00 18.100 0 0.7400 5.8540 96.60 1.8956 24 666.0 20.20 240.52 23.79 10.80
447 10.67180 0.00 18.100 0 0.7400 6.4590 94.80 1.9879 24 666.0 20.20 43.06 23.98 11.80
448 6.28807 0.00 18.100 0 0.7400 6.3410 96.40 2.0720 24 666.0 20.20 318.01 17.79 14.90
449 9.92485 0.00 18.100 0 0.7400 6.2510 96.60 2.1980 24 666.0 20.20 388.52 16.44 12.60
450 9.32909 0.00 18.100 0 0.7130 6.1850 98.70 2.2616 24 666.0 20.20 396.90 18.13 14.10
451 7.52601 0.00 18.100 0 0.7130 6.4170 98.30 2.1850 24 666.0 20.20 304.21 19.31 13.00
452 6.71772 0.00 18.100 0 0.7130 6.7490 92.60 2.3236 24 666.0 20.20 0.32 17.44 13.40
453 5.44114 0.00 18.100 0 0.7130 6.6550 98.20 2.3552 24 666.0 20.20 355.29 17.73 15.20
454 5.09017 0.00 18.100 0 0.7130 6.2970 91.80 2.3682 24 666.0 20.20 385.09 17.27 16.10
455 8.24809 0.00 18.100 0 0.7130 7.3930 99.30 2.4527 24 666.0 20.20 375.87 16.74 17.80
456 9.51363 0.00 18.100 0 0.7130 6.7280 94.10 2.4961 24 666.0 20.20 6.68 18.71 14.90
457 4.75237 0.00 18.100 0 0.7130 6.5250 86.50 2.4358 24 666.0 20.20 50.92 18.13 14.10
458 4.66883 0.00 18.100 0 0.7130 5.9760 87.90 2.5806 24 666.0 20.20 10.48 19.01 12.70
459 8.20058 0.00 18.100 0 0.7130 5.9360 80.30 2.7792 24 666.0 20.20 3.50 16.94 13.50
460 7.75223 0.00 18.100 0 0.7130 6.3010 83.70 2.7831 24 666.0 20.20 272.21 16.23 14.90
461 6.80117 0.00 18.100 0 0.7130 6.0810 84.40 2.7175 24 666.0 20.20 396.90 14.70 20.00
462 4.81213 0.00 18.100 0 0.7130 6.7010 90.00 2.5975 24 666.0 20.20 255.23 16.42 16.40
463 3.69311 0.00 18.100 0 0.7130 6.3760 88.40 2.5671 24 666.0 20.20 391.43 14.65 17.70
464 6.65492 0.00 18.100 0 0.7130 6.3170 83.00 2.7344 24 666.0 20.20 396.90 13.99 19.50
465 5.82115 0.00 18.100 0 0.7130 6.5130 89.90 2.8016 24 666.0 20.20 393.82 10.29 20.20
466 7.83932 0.00 18.100 0 0.6550 6.2090 65.40 2.9634 24 666.0 20.20 396.90 13.22 21.40
467 3.16360 0.00 18.100 0 0.6550 5.7590 48.20 3.0665 24 666.0 20.20 334.40 14.13 19.90
468 3.77498 0.00 18.100 0 0.6550 5.9520 84.70 2.8715 24 666.0 20.20 22.01 17.15 19.00
469 4.42228 0.00 18.100 0 0.5840 6.0030 94.50 2.5403 24 666.0 20.20 331.29 21.32 19.10
470 15.57570 0.00 18.100 0 0.5800 5.9260 71.00 2.9084 24 666.0 20.20 368.74 18.13 19.10
471 13.07510 0.00 18.100 0 0.5800 5.7130 56.70 2.8237 24 666.0 20.20 396.90 14.76 20.10
472 4.34879 0.00 18.100 0 0.5800 6.1670 84.00 3.0334 24 666.0 20.20 396.90 16.29 19.90
473 4.03841 0.00 18.100 0 0.5320 6.2290 90.70 3.0993 24 666.0 20.20 395.33 12.87 19.60
474 3.56868 0.00 18.100 0 0.5800 6.4370 75.00 2.8965 24 666.0 20.20 393.37 14.36 23.20
475 4.64689 0.00 18.100 0 0.6140 6.9800 67.60 2.5329 24 666.0 20.20 374.68 11.66 29.80
476 8.05579 0.00 18.100 0 0.5840 5.4270 95.40 2.4298 24 666.0 20.20 352.58 18.14 13.80
477 6.39312 0.00 18.100 0 0.5840 6.1620 97.40 2.2060 24 666.0 20.20 302.76 24.10 13.30
478 4.87141 0.00 18.100 0 0.6140 6.4840 93.60 2.3053 24 666.0 20.20 396.21 18.68 16.70
479 15.02340 0.00 18.100 0 0.6140 5.3040 97.30 2.1007 24 666.0 20.20 349.48 24.91 12.00
480 10.23300 0.00 18.100 0 0.6140 6.1850 96.70 2.1705 24 666.0 20.20 379.70 18.03 14.60
481 14.33370 0.00 18.100 0 0.6140 6.2290 88.00 1.9512 24 666.0 20.20 383.32 13.11 21.40
482 5.82401 0.00 18.100 0 0.5320 6.2420 64.70 3.4242 24 666.0 20.20 396.90 10.74 23.00
483 5.70818 0.00 18.100 0 0.5320 6.7500 74.90 3.3317 24 666.0 20.20 393.07 7.74 23.70
484 5.73116 0.00 18.100 0 0.5320 7.0610 77.00 3.4106 24 666.0 20.20 395.28 7.01 25.00
485 2.81838 0.00 18.100 0 0.5320 5.7620 40.30 4.0983 24 666.0 20.20 392.92 10.42 21.80
486 2.37857 0.00 18.100 0 0.5830 5.8710 41.90 3.7240 24 666.0 20.20 370.73 13.34 20.60
487 3.67367 0.00 18.100 0 0.5830 6.3120 51.90 3.9917 24 666.0 20.20 388.62 10.58 21.20
488 5.69175 0.00 18.100 0 0.5830 6.1140 79.80 3.5459 24 666.0 20.20 392.68 14.98 19.10
489 4.83567 0.00 18.100 0 0.5830 5.9050 53.20 3.1523 24 666.0 20.20 388.22 11.45 20.60
490 0.15086 0.00 27.740 0 0.6090 5.4540 92.70 1.8209 4 711.0 20.10 395.09 18.06 15.20
491 0.18337 0.00 27.740 0 0.6090 5.4140 98.30 1.7554 4 711.0 20.10 344.05 23.97 7.00
492 0.20746 0.00 27.740 0 0.6090 5.0930 98.00 1.8226 4 711.0 20.10 318.43 29.68 8.10
493 0.10574 0.00 27.740 0 0.6090 5.9830 98.80 1.8681 4 711.0 20.10 390.11 18.07 13.60
494 0.11132 0.00 27.740 0 0.6090 5.9830 83.50 2.1099 4 711.0 20.10 396.90 13.35 20.10
495 0.17331 0.00 9.690 0 0.5850 5.7070 54.00 2.3817 6 391.0 19.20 396.90 12.01 21.80
496 0.27957 0.00 9.690 0 0.5850 5.9260 42.60 2.3817 6 391.0 19.20 396.90 13.59 24.50
497 0.17899 0.00 9.690 0 0.5850 5.6700 28.80 2.7986 6 391.0 19.20 393.29 17.60 23.10
498 0.28960 0.00 9.690 0 0.5850 5.3900 72.90 2.7986 6 391.0 19.20 396.90 21.14 19.70
499 0.26838 0.00 9.690 0 0.5850 5.7940 70.60 2.8927 6 391.0 19.20 396.90 14.10 18.30
500 0.23912 0.00 9.690 0 0.5850 6.0190 65.30 2.4091 6 391.0 19.20 396.90 12.92 21.20
501 0.17783 0.00 9.690 0 0.5850 5.5690 73.50 2.3999 6 391.0 19.20 395.77 15.10 17.50
502 0.22438 0.00 9.690 0 0.5850 6.0270 79.70 2.4982 6 391.0 19.20 396.90 14.33 16.80
503 0.06263 0.00 11.930 0 0.5730 6.5930 69.10 2.4786 1 273.0 21.00 391.99 9.67 22.40
504 0.04527 0.00 11.930 0 0.5730 6.1200 76.70 2.2875 1 273.0 21.00 396.90 9.08 20.60
505 0.06076 0.00 11.930 0 0.5730 6.9760 91.00 2.1675 1 273.0 21.00 396.90 5.64 23.90
506 0.10959 0.00 11.930 0 0.5730 6.7940 89.30 2.3889 1 273.0 21.00 393.45 6.48 22.00
507 0.04741 0.00 11.930 0 0.5730 6.0300 80.80 2.5050 1 273.0 21.00 396.90 7.88 11.90

View File

@@ -0,0 +1,20 @@
from sklearn.metrics import mean_absolute_percentage_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
import pandas as pd
data = pd.read_csv('boston.csv')
X = (data[['CRIM', 'RM', 'RAD']])
y = data['MEDV']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
lin = LinearRegression()
polynomial_features = PolynomialFeatures(degree=1)
pipeline = Pipeline([("Linear", polynomial_features), ("linear_regression", lin)])
pipeline.fit(X_train, y_train)
y_predict = lin.predict(polynomial_features.fit_transform(X_test))
print('Предсказание: ', y_predict)
print('Оценка качества:', pipeline.score(X_test, y_test))
print('Ошибка:', mean_absolute_percentage_error(y_test, y_predict))

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,57 @@
import numpy as np
import pandas as pb
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Perceptron, LogisticRegression, Lasso, Ridge
from sklearn.neural_network import MLPClassifier, MLPRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.preprocessing import PolynomialFeatures
df = pb.read_csv("StudentsPerformance.csv", sep=",", encoding="windows-1251")
df1 = df
print("Данные без подготовки:")
with pb.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000):
print(df[:5])
def prepareStringData(columnName):
uniq = df[columnName].unique()
mp = {}
for i in uniq:
mp[i] = len(mp)
df[columnName] = df[columnName].map(mp)
print()
print("Данные после подготовки:")
prepareStringData("gender")
prepareStringData("race/ethnicity")
prepareStringData("parental level of education")
prepareStringData("lunch")
prepareStringData("test preparation course")
with pb.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000):
print(df[:5])
X = df[["gender", "race/ethnicity", "lunch", "test preparation course", "parental level of education", "reading score", "writing score"]]
y = df["math score"]
X_train, X_Test, y_train, y_test = train_test_split(X, y, test_size=0.26, random_state=42)
lnr = LinearRegression()
lnr = lnr.fit(X_train,y_train)
poly_regression = make_pipeline(PolynomialFeatures(degree=4), LinearRegression())
poly_regression.fit(X_train, y_train)
lasso = Lasso()
lasso.fit(X_train, y_train)
ridge = Ridge()
ridge.fit(X_train, y_train)
print("Линейная регрессия: ", lnr.score(X_Test,y_test))
print("Полиномиальная регрессия: ", poly_regression.score(X_Test,y_test))
print("Лассо-регрессия: ", lasso.score(X_Test,y_test))
print("Гребневая регрессия: ", ridge.score(X_Test,y_test))

View File

@@ -0,0 +1,41 @@
# Задание
Использовать регрессию по варианту для данных из таблицы 1 по варианту (таблица 10), самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит для решения сформулированной вами задачи.
## Задание по варианту
Полиномиальная регрессия
## Решение
### Запуск программы
Для запуска программы необходимо запустить файл main.py, содержащий код программы
### Используемые технологии
Программа использует следующие библиотеки:
- numpy - библиотека для работы с массивами и матрицами.
- matplotlib - библиотека для создания графиков и визуализации данных.
- sklearn - библиотека для машинного обучения и анализа данных.
### Что делает программа
Программа читает данные из csv файла. Подготавливает их для работы модели, приводя текстовые параметры к числам. И пытается научиться предсказывать оценку по математике на основании остальных данных с помощью различных моделей.
### Тесты
Данные без подготовки:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
0 female group B bachelor's degree standard none 72 72 74
1 female group C some college standard completed 69 90 88
2 female group B master's degree standard none 90 95 93
3 male group A associate's degree free/reduced none 47 57 44
4 male group C some college standard none 76 78 75
Данные после подготовки:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
0 0 0 0 0 0 72 72 74
1 0 1 1 0 1 69 90 88
2 0 0 2 0 0 90 95 93
3 1 2 3 1 0 47 57 44
4 1 1 1 0 0 76 78 75
Линейная регрессия: 0.8769480272687482
Полиномиальная регрессия: 0.736490555768213
Лассо-регрессия: 0.8299946331354273
Гребневая регрессия: 0.8768384994076267
Логическая регрессия не подошла так как требует чтобы переменная ответа была двоичной.
Из результатов четырех моделей видно, что для решения задачи предсказания оценки по математике неплохо подходит модель Линейной регрессии.
Модель гребневой регрессии имеет схожие результаты. Далее идет лассо, и хуже всех полиномиальная регрессия.
Вывод: Для решения задачи предсказания результатов экзамена по математике неплохо подходят линейные модели, а именно линейная регрессия и гребневая регрессия

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,49 @@
import numpy as np
import pandas as pb
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Perceptron, LogisticRegression, Lasso, Ridge
from sklearn.neural_network import MLPClassifier, MLPRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.preprocessing import PolynomialFeatures
df = pb.read_csv("StudentsPerformance.csv", sep=",", encoding="windows-1251")
df1 = df
print("Данные без подготовки:")
with pb.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000):
print(df[:5])
def prepareStringData(columnName):
uniq = df[columnName].unique()
mp = {}
for i in uniq:
mp[i] = len(mp)
df[columnName] = df[columnName].map(mp)
print()
print("Данные после подготовки:")
prepareStringData("gender")
prepareStringData("race/ethnicity")
prepareStringData("parental level of education")
prepareStringData("lunch")
prepareStringData("test preparation course")
with pb.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000):
print(df[:5])
X = df[["gender", "race/ethnicity", "lunch", "parental level of education", "reading score", "writing score", "math score"]]
y = df["test preparation course"]
X_train, X_Test, y_train, y_test = train_test_split(X, y, test_size=0.26, random_state=42)
mlpr = MLPRegressor()
mlpc = MLPClassifier()
mlpr.fit(X_train, y_train)
mlpc.fit(X_train, y_train)
print("MLPRegressor:", mlpr.score(X_Test, y_test))
print("MLPClassifier:", mlpc.score(X_Test, y_test))

View File

@@ -0,0 +1,38 @@
# Задание
Использовать нейронную сеть (четные варианты MLPRegressor, нечетные MLPClassifier) для данных из таблицы 1 по варианту, самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо она подходит для решения сформулированной вами задачи.
## Задание по варианту
MLPRegressor
## Решение
### Запуск программы
Для запуска программы необходимо запустить файл main.py, содержащий код программы
### Используемые технологии
Программа использует следующие библиотеки:
- numpy - библиотека для работы с массивами и матрицами.
- matplotlib - библиотека для создания графиков и визуализации данных.
- sklearn - библиотека для машинного обучения и анализа данных.
### Что делает программа
Программа читает данные из csv файла. Подготавливает их для работы модели, приводя текстовые параметры к числам. И пытается научиться предсказывать прохождение подготовительных курсов с помощью моделей нейронных сетей.
### Тесты
Данные без подготовки:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
0 female group B bachelor's degree standard none 72 72 74
1 female group C some college standard completed 69 90 88
2 female group B master's degree standard none 90 95 93
3 male group A associate's degree free/reduced none 47 57 44
4 male group C some college standard none 76 78 75
Данные после подготовки:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
0 0 0 0 0 0 72 72 74
1 0 1 1 0 1 69 90 88
2 0 0 2 0 0 90 95 93
3 1 2 3 1 0 47 57 44
4 1 1 1 0 0 76 78 75
MLPRegressor: 0.1347847602324338
MLPClassifier: 0.65
Модель регрессии показала себя хуже чем модель классификации. Хотя модель классификации показала себя чуть лучше, результаты её работы всё равно не очень высоки.
Итоговый результат лежит в границах между 0 и 1, и в тестовых результатах является целым. Это значит, что угадывая произвольно модель в любом случае может достигнуть точности близкой к 0.5
Вывод: Модели нейронных сетей MLPRegressor и MLPClassifier не подходят для решения поставленной задачи, предсказания прохождения курсов по остальным данным. Или на практике не существует соответствующей зависимости в данных.

View File

@@ -0,0 +1,44 @@
# Лабораторная работа №1
> Работа с типовыми наборами данных и различными моделями
# Задание
Сгенерировать определённый тип данных, сравнить на нём разные модели и отобразить качество на графиках.
Данные: make_classification (n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
Модели:
* Линейную регрессию
* Персептрон
* Гребневую полиномиальную регрессию (со степенью 3, alpha= 1.0)
### Как запустить лабораторную работу
1. Установить python, numpy, sklearn, matplotlib
2. Запустить команду `python main.py` в корне проекта
### Использованные технологии
* Язык программирования `python`
* Библиотеки `numpy, sklearn, matplotlib`
* Среда разработки `PyCharm`
### Что делает программа?
Генерирует набор данных для классификации с помощью make_classification.
Обучает на них 3 модели:
- Линейную регрессию
- Персептрон
- Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
Собирает итоговые оценки моделей:
- Линейная регрессия - коэффициент детерминации R2
- Персептрон - средняя точность по заданным тестовым данным
- Гребневая полиномиальная регрессия - Перекрёстная проверка
![plots screen](plots.jpg)
Лучший результат показала модель персептрона

View File

@@ -0,0 +1,16 @@
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
def generate_dataset():
x, y = make_classification(n_samples=500, n_features=2, n_redundant=0,
n_informative=2, random_state=0, n_clusters_per_class=1)
random = np.random.RandomState(2)
x += 2.5 * random.uniform(size=x.shape)
return x, y
def split_dataset(x, y):
return train_test_split(
x, y, test_size=.05, random_state=42)

View File

@@ -0,0 +1,19 @@
from dataset import generate_dataset, split_dataset
from models import launch_linear_regression, launch_perceptron, launch_ridge_poly_regression
from plots import show_plot
x, y = generate_dataset()
x_train, x_test, y_train, y_test = split_dataset(x, y)
my_linear_model, linear_model_score = launch_linear_regression(
x_train, x_test, y_train, y_test)
my_perceptron_model, perceptron_model_score = launch_perceptron(
x_train, x_test, y_train, y_test)
my_polynomial_model, polynomial_model_score = launch_ridge_poly_regression(
x_train, x_test, y_train, y_test)
show_plot(x, x_train, x_test, y_train, y_test,
my_linear_model, linear_model_score,
my_perceptron_model, perceptron_model_score,
my_polynomial_model, polynomial_model_score)

View File

@@ -0,0 +1,37 @@
from sklearn.linear_model import LinearRegression, Perceptron, Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline
def launch_linear_regression(x_train, x_test, y_train, y_test):
my_linear_model = LinearRegression()
my_linear_model.fit(x_train, y_train)
linear_model_score = my_linear_model.score(
x_test, y_test)
print('linear_model_score: ', linear_model_score)
return my_linear_model, linear_model_score
# Perceptron
def launch_perceptron(x_train, x_test, y_train, y_test):
my_perceptron_model = Perceptron()
my_perceptron_model.fit(x_train, y_train)
perceptron_model_score = my_perceptron_model.score(
x_test, y_test)
print('perceptron_model_score: ', perceptron_model_score)
return my_perceptron_model, perceptron_model_score
# RidgePolyRegression
def launch_ridge_poly_regression(x_train, x_test, y_train, y_test):
my_polynomial_model = PolynomialFeatures(degree=3, include_bias=False)
ridge = Ridge(alpha=1)
pipeline = Pipeline(
[("polynomial_features", my_polynomial_model), ("ridge_regression", ridge)])
pipeline.fit(x_train, y_train)
scores = cross_val_score(pipeline, x_test, y_test,
scoring="neg_mean_squared_error", cv=5)
polynomial_model_score = -scores.mean()
print('mean polynomial_model_score: ', polynomial_model_score)
return my_polynomial_model, polynomial_model_score

Binary file not shown.

After

Width:  |  Height:  |  Size: 194 KiB

View File

@@ -0,0 +1,71 @@
import numpy as np
from matplotlib.colors import ListedColormap
from matplotlib.axes import Axes
from matplotlib import pyplot as plt
TRAIN_DATA_ROW_LENGTH = 3
TEST_DATA_ROW_LENGTH = 6
LINEAR_REGRESSION_PLOT_INDEX = 6
PERCEPTRON_REGRESSION_PLOT_INDEX = 7
RIDGE_POLY_REGRESSION_REGRESSION_PLOT_INDEX = 8
def show_plot(x, x_train, x_test, y_train, y_test, my_linear_model, linear_model_score, my_perceptron_model, perceptron_model_score, pipeline, polynomial_model_score):
h = .02 # шаг регулярной сетки
x0_min, x0_max = x[:, 0].min() - .5, x[:, 0].max() + .5
x1_min, x1_max = x[:, 1].min() - .5, x[:, 1].max() + .5
xx0, xx1 = np.meshgrid(np.arange(x0_min, x0_max, h),
np.arange(x1_min, x1_max, h))
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
for i in range(9):
current_subplot = plt.subplot(3, 3, i+1)
if i < TRAIN_DATA_ROW_LENGTH:
current_subplot.scatter(
x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
elif i < TEST_DATA_ROW_LENGTH:
current_subplot.scatter(
x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
else:
if i == LINEAR_REGRESSION_PLOT_INDEX:
show_gradient(my_linear_model, current_subplot=current_subplot,
title='LinearRegression', score=linear_model_score, xx0=xx0, xx1=xx1, cm=cm)
elif i == PERCEPTRON_REGRESSION_PLOT_INDEX:
show_gradient(my_perceptron_model, current_subplot=current_subplot,
title='Perceptron', score=perceptron_model_score, xx0=xx0, xx1=xx1, cm=cm)
elif i == RIDGE_POLY_REGRESSION_REGRESSION_PLOT_INDEX:
current_subplot.set_title('RidgePolyRegression')
show_gradient(pipeline, current_subplot=current_subplot,
title='RidgePolyRegression', score=polynomial_model_score, xx0=xx0, xx1=xx1, cm=cm)
current_subplot.scatter(
x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
current_subplot.scatter(
x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
plt.show()
def show_gradient(model, current_subplot: Axes, title: str, score: float, xx0, xx1, cm):
current_subplot.set_title(title)
if hasattr(model, "decision_function"):
Z = model.decision_function(np.c_[xx0.ravel(), xx1.ravel()])
elif hasattr(model, "predict_proba"):
Z = model.predict_proba(np.c_[xx0.ravel(), xx1.ravel()])[:, 1]
elif hasattr(model, "predict"):
Z = model.predict(np.c_[xx0.ravel(), xx1.ravel()])
else:
return
Z = Z.reshape(xx0.shape)
current_subplot.contourf(xx0, xx1, Z, cmap=cm, alpha=.8)
current_subplot.set_xlim(xx0.min(), xx0.max())
current_subplot.set_ylim(xx0.min(), xx1.max())
current_subplot.set_xticks(())
current_subplot.set_yticks(())
current_subplot.text(xx0.max() - .3, xx1.min() + .3, ('%.2f' % score),
size=15, horizontalalignment='left')

Some files were not shown because too many files have changed in this diff Show More