2025-02-16 21:09:14 +04:00

4453 lines
403 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Импорт библиотек и загрузка данных"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2772\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import skfuzzy as fuzz\n",
"import matplotlib.pyplot as plt\n",
"from skfuzzy import control as ctrl\n",
"\n",
"df = pd.read_csv(\"../dataset.csv\")\n",
"print(df.shape[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Удаление выбросов и проверка на пустые значения(их нет)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"было 2772\n",
"age 39.10966810966811 14.081459420836477\n",
"bmi 30.70134920634921 6.1294486949652205\n",
"children 1.1026753434562546 1.2157555494600176\n",
"charges 13325.498588795157 12200.175109274192\n",
"стало 2710\n",
"age 0\n",
"sex 0\n",
"bmi 0\n",
"children 0\n",
"smoker 0\n",
"region 0\n",
"charges 0\n",
"dtype: int64\n"
]
}
],
"source": [
"print(\"было \", df.shape[0])\n",
"for column in df.select_dtypes(include=['int', 'float']).columns:\n",
" mean = df[column].mean()\n",
" std_dev = df[column].std()\n",
" print(column, mean, std_dev)\n",
" \n",
" lower_bound = mean - 3 * std_dev\n",
" upper_bound = mean + 3 * std_dev\n",
" \n",
" df = df[(df[column] <= upper_bound) & (df[column] >= lower_bound)]\n",
" \n",
"print(\"стало \", df.shape[0])\n",
"df = df.reset_index(drop=True)\n",
"\n",
"print(df.isnull().sum())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Выбор выходных и выходной переменной.\n",
"Мне кажется, что возраст и индекс массы тела будут наиболее сильно влиять на цену страховки"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"min age: 18 |min bmi: 15.96 |min charges: 1121.8739\n",
"max age: 64 |max bmi: 49.06 |max charges: 49577.6624\n"
]
}
],
"source": [
"print('min age: ', df['age'].min(), '|min bmi: ', df['bmi'].min(), '|min charges: ', df['charges'].min())\n",
"print('max age: ', df['age'].max(), '|max bmi: ', df['bmi'].max(), '|max charges: ', df['charges'].max())\n",
"\n",
"age = np.arange(df['age'].min(), df['age'].max() + 1e-9, 1)\n",
"bmi = np.arange(df['bmi'].min(), df['bmi'].max() + 1e-9, 0.001)\n",
"charges = np.arange(df['charges'].min(), df['charges'].max() + 1e-9, 0.01)\n",
"\n",
"age_ctrl = ctrl.Antecedent(age, 'age')\n",
"bmi_ctrl = ctrl.Antecedent(bmi, 'bmi')\n",
"charges_ctrl = ctrl.Consequent(charges, 'charges')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Настройка параметров лигвистических переменных"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11801.75692885742\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\ulstu\\3.1\\mii\\AIM-PIbd-31-Barsukov-P-O\\aimenv\\Lib\\site-packages\\skfuzzy\\control\\fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
" fig.show()\n",
"c:\\ulstu\\3.1\\mii\\AIM-PIbd-31-Barsukov-P-O\\aimenv\\Lib\\site-packages\\IPython\\core\\events.py:82: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n",
" func(*args, **kwargs)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy1UlEQVR4nO3deVzVVf7H8de97Mi+I4KIgLuIO2JpiUKTtkwz41hp2fbLaXealpnSmTZtpppqanIyy/Z1qsksl0woV3DBFFwAF3DhXkABAdnuvb8/blLkxnLvPXf5PB8PHjfv/d77fd8u4ofvOedzNCaTyYQQQgghhJPQqg4ghBBCCGFJUtwIIYQQwqlIcSOEEEIIpyLFjRBCCCGcihQ3QgghhHAqUtwIIYQQwqlIcSOEEEIIpyLFjRBCCCGcihQ3QgghhHAqLlfcmEwmamtrkcbMQgghhHNSWtx89913TJs2jZ49e6LRaPj8888v+Jzs7GyGDx+Ol5cXiYmJLF26tFPnPHnyJIGBgZw8ebJroYUQQghh15QWN/X19aSkpPDyyy936PgDBw5w+eWXc8kll5Cfn8+9997LLbfcwsqVK62cVAghhBCOQmMvG2dqNBo+++wzrrrqqnMe8+CDD7J8+XJ27drVdt/vf/97qqurWbFiRYfOU1tbS2BgIDU1NQQEBHQ3thBCCCHsjLvqAJ2xceNGMjIy2t2XmZnJvffee87nNDU10dTU1Pbn2tpaa8UTQq3GWnhtEjQcV51EdJRvCNy8GnyCVCcRwqk4VHFTXl5OZGRku/siIyOpra3l1KlT+Pj4nPGcBQsW8Le//c1WEYVQ51g+VO6DcXeDd6DqNOJCDC2QsxCKv4Ehv1GdRgin4lDFTVc8/PDDzJ07t+3PtbW1xMbGKkwkhJXoCsHNCybNBzen/6vtHPYsh6JVUtwIYWEOtRQ8KioKnU7X7j6dTkdAQMBZr9oAeHl5ERAQ0O5LCKekL4DwflLYOJLkTChaDUaD6iRC2L2tuq0dPtahipu0tDTWrFnT7r7Vq1eTlpbW6dfaVFJlqVhC2AddAUQOUp1CdEZyJpw6Doe3qE4ihF1bU7qG21bd1uHjlRY3dXV15Ofnk5+fD5iXeufn51NaWgqYh5RmzZrVdvztt9/O/v37eeCBB9izZw///ve/+eijj7jvvvs6fe47399G3kGZeCmchNEI+j0QMVB1EtEZMSPANxSKpJ2FEOfy8b6PmZs9lwmxEzr8HKXFzZYtW0hNTSU1NRWAuXPnkpqayrx58wA4duxYW6ED0KdPH5YvX87q1atJSUnh2Wef5bXXXiMzM7PT5x4aE8TsN/LYUVZtkfcihFLVB6GlHiKluHEoWjdInAz7pLgR4pdMJhOv7HiFxzY+xu+Sf8c/Lv5Hh59rN31ubOV0n5uj+iru/GQPxfo63r91LAN7ylwc4cB2fwkfXgd/3Av+UarTiM7Y9Sl8MhvuK4DAXqrTCGEXDEYDC3IX8OHeD7lz2J3cNvQ2NBpNh5/vUHNuLKmHlztvzB5FXIgv1y/ZTJFOtmMQDkxXAD4h4Bd54WOFfel7KWjc5OqNED9qMjTxp+/+xMf7PuavaX/l/1L+r1OFDbhwcQMQ4O3BWzeNJsLfi+te28zBynrVkYToGv2Pk4k7+QNA2AGfIIhLMy8JF8LFnWw+yZxv5vDd4e/458R/ck3yNV16HZcubgCCe3jyzi1j8Pd259rFmzh8okF1JCE6T1cok4kdWXIm7M+BllOqkwihTEVDBbNXzGbP8T38Z/J/uDTu0i6/lssXNwBhfl68e8tY3N20XLt4M+U1jaojCdFxLafgeIksA3dkyZnQegoOfK86iRBKHKo9xMyvZ3Ki8QRvZr3JiMgR3Xo9KW5+FBXozXu3jqHVYOS61zZRWdd04ScJYQ8q9oDJKMWNIwtLhuB4WRIuXFJBZQGzvp6Fh9aDt3/1NknBSd1+TSlufqZXsC/v3TqWk42tXP/aZqobmlVHEuLCdIXm2/D+anOIrtNoICnTPKnYtRawChdXdKKI2Stn08uvF29d9hY9/Xpa5HWluPmF+LAevHvLGPQnm5i5JJfaxhbVkYQ4P32h+bd+Lz/VSUR3JGdCTRnod6tOIoRNtBpbeWT9I/Ts0ZPFUxYT7B1ssdeW4uYskiL9efvm0RyqqufO97bjYq2AhKPR7YLIwapTiO6KHw8ePWDfCtVJhLCJpQVL2XN8D4+nP46vh69FX1uKm3MY1DOQf04fxnf7KlhdqLvwE4RQRVZKOQd3L0iYKEvChUsoqS7h3/n/5oZBNzAkfIjFX1+Km/O4tH8EE5LDeWL5bppaZddeYYfqK6FeL9suOIvkTCjbDA2y751wXq3GVh5d/yi9/Htxx7A7rHIOKW7OQ6PR8OjUARytPsXr6w6qjiPEmXQF5tsIWSnlFJKmmFe+Fa9RnUQIq3mr8C0Kqgp4PP1xvNy8rHIOKW4uIDHCn1lp8bz0bRH6Wul/I+yMrgDcvSEkQXUSYQkB0RCdIkvChdPaX7Ofl7e/zMwBM0kJT7HaeaS46YB7JiXh5eHG31fuVR1FiPb0BRDeD9zcVScRlpKUCUWrwdCqOokQFmUwGnh0/aP09OvJnal3WvVcUtx0QKCvB3MnJ/PJ1sPsKKtWHUeIn+gKZUjK2SRnQWM1HM5TnUQIi3pn9zvsrNjJY+mP4e3ubdVzSXHTQTNGx9E/yp+/LiuQpeHCPhgN5u7EMpnYufRMhR7hsiRcOJUDNQf41/Z/cf3A60mNSLX6+aS46SA3rYZ50wayvbSa/+UfVR1HCDhxEFoaZNsFZ6PVQuJkWRIunIbBaGDe+nlE+kZyV+pdNjmnFDedMK5vGJcNjmLh13toaJbxcKGYrJRyXsmZ5s7T1aWqkwjRbe/teY8dFTt4LP0xfNx9bHJOKW466c+/GsDxhmYWZZeojiJcnb4QfEPBL0J1EmFpfS8Brbt5rykhHNih2kO8uO1Frh1wbbd3+u4MKW46KTbEl9suSuA/3+2n7HiD6jjClekKzJ2JNRrVSYSleQdC73EyNCUcmtFkZN76eYT5hHF36t02PbcUN10wZ2Jfgnw9WPj1HtVRhCvTFcieUs4sKRMOfAfN8kuUcEzv73mfbfptPJb+mMX3jroQKW66oIeXOw9m9Wf5zmNs2l+lOo5wRc0NcHy/rJRyZslZ0NpoLnCEcDBltWU8v/V5ft/v94yKGmXz80tx00VXDYthWGwQf1tWiMEoS8OFjVXsAUwymdiZhSWaO0/LknDhYEwmE/M3zifUJ5T7RtynJIMUN12k1WqYP20gu4/V8mFemeo4wtXoCwENRPRXnURYU3KWed6N9NYSDmTjsY3klefx5zF/tvlw1GlS3HRDalwwvx4ewzOr9lJzqkV1HOFKdAUQ0gc8e6hOIqwpaQrUHvlp2b8QDmDJziUMDB3IRTEXKcsgxU03PZjVn8YWA/9aU6Q6inAlp1dKCefWOx08/WRoSjiMHRU7yC3P5ZYht6BRuJJTiptuigzw5o5LElm64SAlFXWq4whXoS+UzsSuwN3T3PNGloQLB/HazteID4hnUtwkpTmkuLGAm8f3ITLAW67eCNuo00N9hVy5cRVJmVCWC/WyMlPYt6ITRWSXZXPT4JvQatSWF1LcWIC3hxs3jOvNVzvLqaprUh1HOLvT8y+kx41rSJoCmKD4G9VJhDiv13e9TlSPKKYmTFUdRYobS/ntiFjQwEdbDquOIpydvhDcfcwTioXz84807xQu826EHTt88jBfH/iaGwfdiIebh+o4UtxYSnAPT6YOjea93EPS90ZYl64QwvuB1k11EmEryVlQsgYMsmGvsE9LC5YS4BnAr5N+rToKIMWNRc0c25uy46f4bl+F6ijCmel2yWRiV5M0BRproGyz6iRCnKHyVCWfFX3G9QOvt9mu3xcixY0FDYsNYnBMAO9sOqQ6inBWRoO5O7EUN64lehj4RcrQlLBLbxe+jYebB7/v/3vVUdpIcWNBGo2G68f05tu9etkxXFjH8QPm/YZkpZRr0WohabIsCRd2p7a5lg/3fsjv+v2OAM8A1XHaSHFjYVcM64mflzvv5ZaqjiKckf70Sim5cuNykjLNV+1OHFSdRIg2H+75kBZDC7MGzlIdpR0pbizM19Oda4b34qO8MppaDarjCGejKwDfMPCLUJ1E2FrfS0DrAfvk6o2wD6daT/F24dtcnXQ1YT5hquO0I8WNFVw/tjdV9c2s2FWuOopwNroCuWrjqrz8IT5d5t0Iu/Fp0afUNtdy46AbVUc5gxQ3VpAY4ce4vqEysVhYnmy74NqSs+Dg99AkW70ItVqMLbxZ8CZZfbLo5d9LdZwzSHFjJdeP7U3ewRPsPlarOopwFs315gnFMpnYdSVNAUMzHMhRnUS4uK/2f8Wx+mPcPPhm1VHOSoobK5k8MJIIfy+5eiMsR78HMEGkFDcuK7QvhCbCvpWqkwgXZjQZWbJrCRNjJ5IUnKQ6zllJcWMlHm5afj86js+3H+FkY4vqOMIZ6AsADYQPUJ1EqJScZV4SbpJO6EKNb0u/5UDNAW4ZcovqKOckxY0VzRgdS2Orkc+3H1EdRTgDXSGEJICnr+okQqWkKXDyGJT/oDqJcEEmk4nXdr7GqKhRpISnqI5zTlLcWFF0oA+TB0TyzqZSTPJblugufYEMSQmISwOvAFkSLpTYdGwTBVUF3DLYfq/agBQ3Vnf92N7s1Z0k7+AJ1VGEIzOZzMvAI2SllMtz9zT3vJEl4UKB13a+xsDQgaT1TFMd5bykuLGycX1DSQjrwdsysVh0R50eGqpkGbgwS8qEI1uhTjbpFbbzQ8UP5JbncsuQW9BoNKrjnJcUN1am1Wq4dkwcK3Ydo+Jkk+o4wlHJtgvi55Imm2+LV6vNIVzKG7veID4gnklxk1RHuSApbmzgtyNicdNq+GhLmeoowlHpCsHdB4LjVScR9sAvAmKGy5JwYTNVp6rILstmRv8ZaDX2XzrYf0InEOjrwRUpPXlvcykGo0wsFl2gK4CI/qB1U51E2IvkLCj5FgzSakJY34qDK0ADl/W5THWUDpHixkauH9ubI9WnWLtHrzqKcER62VNK/ELSFGiqhdKNqpMIF/BFyRdcHHMxwd7BqqN0iBQ3NjK0VxApvQJlYrHoPKMBKvbKSinRXnQK+EfL0JSwuuITxRRWFXJF4hWqo3SYFDc2dN3Y3nxXVMGhqnrVUYQjOb4fWhulx41oT6MxTyyW4kZY2Rf7vyDQK5CLYy5WHaXDpLixoWlDexLg7cF7m0tVRxGORLfLfCtXbsQvJWVCVRFUlahOIpyUwWhgeclyLou/DA83D9VxOkyKGxvy8XTjtyN68dGWMhpbDKrjCEehK4QeEeAXrjqJsDcJE8HN07zXlBBWsLl8M/pTeq7o6zhDUiDFjc1dN7Y3JxpaWFWoUx1FOAp9oQxJibPz8oP48TI0Jazmi5Iv6BPYh8Fhg1VH6RQpbmysT1gPhvYKZOWuctVRhKPQ7ZIhKXFuyVlwcB00nVSdRDiZ+pZ61hxawxV9r7D7jsS/JMWNApmDoli7Vy9DU+LCmurgxEG5ciPOLWkKGFtgf7bqJMLJrD60miZDE1MTpqqO0mlS3CiQNTiKhmYD3xdVqo4i7F3FHvOt9LgR5xLSB8L6yUaawuK+KPmC0dGjieoRpTpKp0lxo0DfcD+SIvxYIUNT4kJ0BaDRQnh/1UmEPUueAkWrwWhUnUQ4iaN1R8krz3O4icSnSXGjSNbgKL7ZraPFID+MxHnoCiAkATx8VCcR9iwpE+p0cCxfdRLhJL7c/yU+7j5kxGWojtIlUtwokjkoippTLWzaX6U6irBn+kKIkPk24gLixoJXoCwJFxZhMplYVrKMyb0n4+vhqzpOl0hxo8igngHEhvjI0JQ4N5PJfOUm0rGWYAoF3Dwg8VJZEi4s4ofKHzhYe5BpfaepjtJlUtwootFoyBoUxcoCnewULs6uTgenjstKKdExyVlwdBuclB5aonuWlSwj0jeSUZGjVEfpMiluFMoaHEVlXRPbS0+ojiLsUdu2C1LciA5IzAA0ULxadRLhwJoNzXx94GumJkzFTeumOk6XKS9uXn75ZeLj4/H29mbMmDHk5uae9/jnn3+efv364ePjQ2xsLPfddx+NjY02SmtZqbHBhPt7ydCUODtdIXj4QnAf1UmEI+gRBr1GyZJw0S05h3Ooba512FVSpyktbj788EPmzp3L/Pnz2bZtGykpKWRmZqLX6896/HvvvcdDDz3E/Pnz2b17N0uWLOHDDz/kz3/+s42TW4ZWqyFzUCQrCsoxmWRoSvyCvhAiBoBW+e8gwlEkT4GStdDarDqJcFBflHzB4NDBJAQlqI7SLUp/aj733HPceuutzJ49m4EDB7Jo0SJ8fX15/fXXz3r8hg0bSE9P59prryU+Pp4pU6YwY8aMC17tsWdZg6I5fOIUBUdrVUcR9kZXIENSonOSMqG5Dg6tV51EOKDjjcdZd3idQ08kPk1ZcdPc3MzWrVvJyPhpDb1WqyUjI4ONGzee9Tnjxo1j69atbcXM/v37+eqrr/jVr351zvM0NTVRW1vb7suejEkIIdDHQ4amRHuGVqjYK52JRedEDQH/nrJqSnTJ1we+Bg1c1ucy1VG6TVlxU1lZicFgIDIyst39kZGRlJef/R/6a6+9lscee4zx48fj4eFB3759mThx4nmHpRYsWEBgYGDbV2xsrEXfR3d5uGmZPNA8NCVEm+MlYGiS4kZ0jkbzY7diKW5E531R8gUXx1xMsHew6ijd5lCD+dnZ2Tz11FP8+9//Ztu2bXz66acsX76cxx9//JzPefjhh6mpqWn7Kisrs2HijskaFEWxvo5ivezqK36kKzDfym7gorOSs+D4fqgsVp1EOJDiE8UUVhU6/ETi09xVnTgsLAw3Nzd0uvY9GXQ6HVFRZ9+k69FHH2XmzJnccsstAAwZMoT6+npuu+02/vKXv6A9y8RLLy8vvLy8LP8GLGh8Uhi+nm6sLNCRGOGvOo6wB/pC8IuEHqGqkwhH0+dicPMyX70JS1SdRjiIZfuXEegVyMW9LlYdxSKUXbnx9PRkxIgRrFmzpu0+o9HImjVrSEtLO+tzGhoazihg3NzM6/AdebWRt4cbl/SPkHk34icymVh0lWcPc4EjS8JFBxmMBr7c/yWXxV+Gh5uH6jgWoXRYau7cuSxevJg333yT3bt3M2fOHOrr65k9ezYAs2bN4uGHH247ftq0abzyyit88MEHHDhwgNWrV/Poo48ybdq0tiLHUWUNimLnkRoOn2hQHUXYA12BzLcRXZecCYc2QKN9LaAQ9mlz+Wb0DXqnGZIChcNSANOnT6eiooJ58+ZRXl7OsGHDWLFiRdsk49LS0nZXah555BE0Gg2PPPIIR44cITw8nGnTpvHkk0+qegsWc0n/CDzdtazYVc4tFzl2fwHRTU0nofqQFDei65KmwFf3Q8m3MOgq1WmEnVtWsoz4gHgGhznPPnYakyOP53RBbW0tgYGB1NTUEBAQoDpOO7e8mUfNqRY+vn2c6ihCpbJcWDIZbsuBnsNUpxGO6uWxEDMcrvq36iTCjtW31HPJR5dw29DbuGXILarjWIxDrZZydpmDothy6AT6k465nYSwEF0BaLQQ3l91EuHIkqdA0SowGlUnEXbsm0Pf0NjayOV9LlcdxaKkuLEjGQMi0Wo0rC6UXX1dmr4QQhPBw1t1EuHIkrOgvgKObledRNixVYdWMTxyONF+0aqjWJQUN3YkuIcnYxNCZNWUq9MVykop0X29RoN3kDT0E+d0qvUUm49t5pLYS1RHsTgpbuxM1qAoNpZUUdPQojqKUMFkAt0umUwsus/NHRInyZJwcU6bjm6iydDEhF4TVEexOClu7MyUQVG0Gk2s2SNDUy7p5DForJbiRlhGchYc2wG1x1QnEXYo53AO8QHxxAfGq45icVLc2JnIAG+GxwXxtQxNuSZdoflWhqWEJSRmmCenF61SnUTYGaPJSM7hHKe8agNS3NilywZH892+CuqbWlVHEbamLwCPHhDUW3US4Qx8Q8xzb6S4Eb9QWFVI5alKJsZOVB3FKqS4sUOZg6JoajWSs69CdRRha7oCiBgAZ9knTYguSZ4CJWuhtUl1EmFHssuyCfAMYFjEMNVRrEJ+gtqhuFBfBkYHyKopV6QrlPk2wrKSs6ClHg6uU51E2JHssmwu6nUR7lqlGxVYjRQ3diprcBTf7tHT1GpQHUXYiqEFKvdKcSMsK2IgBPSSoSnR5ljdMfae2MvEXhNVR7EaKW7sVNbgKOqaWtlQXKU6irCVqhIwNMtkYmFZGo15aGrfCnOrAeHycg7n4K5xJz0mXXUUq5Hixk4lRfiRENZDhqZciW6X+Vau3AhLS86CEwehskh1EmEHsg9nMyJyBP6e/qqjWI0UN3ZKo9GQOTiKVYXltBpkbxiXoC8E/2jzChchLCn+InD3loZ+goaWBnKP5TIh1jmXgJ8mxY0dmzwwkhMNLew4XKM6irAF2XZBWIunL/SZIPNuBBuPbqTF2OLU821Aihu7NjQmEH8vdzYUV6qOImxBXwCRUtwIK0meAqUb4VS16iRCobVla0kITCA2IFZ1FKuS4saOubtpGZMQyvoSKW6cXmMtVJdC5GDVSYSzSsoEYyuUfKs6iVDEYDTw/ZHvnbZx389JcWPn0hND2XaomlPNsiTcqel3m29lWEpYS1AsRAySoSkXtrNyJ8cbj0txI9RLTwyj2WAk7+Bx1VGENekLQOMG4f1UJxHOLHmKubgxyi9LrijncA7BXsEMDRuqOorVSXFj55Ii/Aj395KhKWenK4SwJHD3Up1EOLPkLGiogiPbVCcRCpzuSuymdVMdxeqkuLFzGo2G9L6h0szP2ekKZEhKWF+vUeATLEvCXdCRuiMUVxc77S7gvyTFjQMYlxjGrqM1VDc0q44irMFkkpVSwja0bpA4GYpWqk4ibCy7LBt3rTvjeo5THcUmpLhxAOmJYZhMsGm/XL1xSrVHobHGPNlTCGtLzoTynebvO+EyssuyGRU5Cj9PP9VRbEKKGwcQE+RDfKgv66TfjXPSFZhvZdsFYQt9LzVPXt8nV29cRV1zHVt0W5y+K/HPSXHjINITw2TejbPSF4CnPwTFqU4iXIFvCMSOkSXhLmT90fW0GltdYgn4aVLcOIj0xDD2V9ZzrOaU6ijC0nSFEDHAvHuzELaQPAX2Z0NLo+okwgZyynJICk4ixi9GdRSbkeLGQaQlhKLRwHq5euN89IUymVjYVnIWtDTAwXWqkwgra+tK7OR7Sf2SFDcOIriHJwOjA2SfKWdjaIGKvbLtgrCt8P4QGCdLwl3AjoodVDdVu9R8G5DixqGkJ4axrrgSk8mkOoqwlMoiMLZIjxthWxqNedVU0UpzKwLhtLIPZxPiHcKQsCGqo9iUFDcOJD0xDP3JJkoq6lRHEZaiLzTfyrCUsLXkTPNmrRV7VScRVpRdls3FvS5Gq3Gtf+5d6906uFHxwXi4aWTejTPRFUBAjLlrrBC2FH8RePjK0JQTK60t5UDNAZebbwNS3DgUX093UuOCWS/zbpyHbLsgVPHwhj4TZEm4E8suy8ZD60FazzTVUWxOihsHk943jI37qzAYZZzcKchKKaFS8hQo3QSnTqhOIqwg53AOo6NH4+vhqzqKzUlx42DSE0M52djKziM1qqOI7mqsgZoy2XZBqJOUCSYDFK9RnURYWG1zLdt027ik1yWqoyghxY2DSYkNooenmwxNOQP9bvOtbLsgVAmMgcghMjTlhNYfWU+rqdXlloCfJsWNg/Fw0zImIZQNJVLcODzdLtC6Q1iy6iTClSVnQtFqMBpUJxEWtLZsLf1D+hPVI0p1FCWkuHFA4/qGknfwBI0t8sPIoekKITQJ3D1VJxGuLDkTTh2Hw1tUJxEW0mJsYd2RdUzo5ZpXbUCKG4eUnhhGc6uRrYdkEqBDk8nEwh7EjADfUFkS7kTy9fmcbD7pUhtl/pIUNw6oX6Q/oT08Zd6NIzOZzFduZL6NUE3rBomTZd6NE9l0bBNBXkEMDHXdX56kuHFAWq2GcYlhrC+RZn4Oq+YwNNXISilhH5KnmOeAVZepTiIsIPdYLqOiRrlcV+Kfc9137uDS+4ay83A1NadaVEcRXSHbLgh70ncSaNzk6o0TaGhpYFflLkZHjVYdRSkpbhxUemIYRhNs3i9XbxySrgC8AiAwVnUSIcAnCOLSpLhxAtv122k1tUpxozqA6JrYEF9iQ3xk3o2jOr3tgkajOokQZsmZsD8HWk6pTiK6Ibc8lzCfMPoE9lEdRSkpbhxYel+Zd+OwZKWUsDfJmdB6Cg58rzqJ6IbT8200Lv6LkxQ3Diw9MYxifR262kbVUURntDZD5T7ZMFPYl7BkCOotS8Id2MnmkxQeL3T5ISmQ4sahjesbCiDdih1NVREYWyFysOokQvxEo4HkLPO8G5NszOuItum2YTQZpbhBihuHFurnRf8of9YXy9CUQ9EVmG8jBqjNIcQvJU8xb+Z6ejWfcCibyzcT6RtJrL8sVJDixsGlJ4axvrgSk/ym5Th0BRDQy7xCRQh70ns8ePSAfStVJxFdkFeex5joMS4/3wakuHF46YmhHKtp5EBlveoooqNkMrGwVx7ekDBRloQ7oJqmGvYe38uoqFGqo9gFKW4c3Og+obhrNbJqypHItgvCniVnQtlmaDiuOonohC3lWzBhkvk2P5LixsH5ebkzLDaIDdLvxjGcOgG1h2XbBWG/kqaAyQjFa1QnEZ2wuXwzvfx60dOvp+oodkGKGycwLjGMDSVVGIwy78bu6Xebb2VYStirgGiIGipLwh1MXnkeo6Plqs1pUtw4gfS+odScaqHwaK3qKOJCdAWgdYfQJNVJhDi35Cwo/gYMraqTiA6oPFVJcXWxzLf5GSlunEBqXDA+Hm6sl3439k9fCGH9wN1TdRIhzi05Exqr4XCu6iSiA7aUbwGQ+TY/I8WNE/B01zK6T4jsM+UIdAUyJCXsX8/h4BsmS8IdRG55LvEB8UT4RqiOYjekuHESaX1D2XLwBK0Go+oo4lxMJvOcG9l2Qdg7rdY8sViWhDuEvPI8uWrzC1LcOInhccGcajGwp/yk6ijiXGrKoKlWloELx5A8xTyMWl2qOok4D129joO1BxkVLfNtfk6KGycxtFcg7loN28uqVUcR56L7saW9FDfCEfS91Dz5XYam7FpuuXle1KhIKW5+ToobJ+Ht4cbAngFsP3RCdRRxLrpd4BUIATGqkwhxYd6BEJcmxY2dyyvPIzEokVCfUNVR7IoUN05keFww20qluLFbp7ddkH1fhKNIzoKD30Nzg+ok4hxyy3Nlvs1ZSHHjRFLjgjhY1UBVXZPqKOJsdIUymVg4luRMaG2EA9+pTiLO4kjdEY7UHZHi5iykuHEiw+OCAdheWq02iDhTaxNUFcl8G+FYQhMhJEG6Fdup3GO5aNAwMmqk6ih2R4obJ9Ir2IcwPy8ZmrJHlfvA2CrFjXAsGg0kZZqXhJtkexd7k1eeR/+Q/gR6BaqOYneUFzcvv/wy8fHxeHt7M2bMGHJzz98Rs7q6mjvuuIPo6Gi8vLxITk7mq6++slFa+6bRaBgeFyTFjT06vVIqYoDaHEJ0VvIUqD1inhAv7IbJZCK3PFe2XDiHLhc3a9asYerUqfTt25e+ffsydepUvvnmm069xocffsjcuXOZP38+27ZtIyUlhczMTPR6/VmPb25uZvLkyRw8eJBPPvmEvXv3snjxYmJiZPXJacN7B/PD4Rpp5mdv9AUQGGtegSKEI+mdDp5+smrKzpSeLEXXoGNM9BjVUexSl4qbf//732RlZeHv788999zDPffcQ0BAAL/61a94+eWXO/w6zz33HLfeeiuzZ89m4MCBLFq0CF9fX15//fWzHv/6669z/PhxPv/8c9LT04mPj2fChAmkpKR05W04peFxwTQ0G9irk2Z+dkVXKENSwjG5e0HCRClu7ExueS5uGjeGRwxXHcUudam4eeqpp/jnP//J+++/z913383dd9/Ne++9xz//+U+eeuqpDr1Gc3MzW7duJSMj46cwWi0ZGRls3LjxrM/54osvSEtL44477iAyMpLBgwfz1FNPYTAYznmepqYmamtr2305s9PN/LbJpGL7oiuQlVLCcSVnweE8qK9SnUT8KO9YHgNDB+Ln6ac6il3qUnFTXV1NVlbWGfdPmTKFmpqaDr1GZWUlBoOByMjIdvdHRkZSXl5+1ufs37+fTz75BIPBwFdffcWjjz7Ks88+yxNPPHHO8yxYsIDAwMC2r9jY2A7lc1TSzM8OnToBJ4/KlRvhuJKmACYo7tzUA2EdMt/mwrpU3FxxxRV89tlnZ9z/v//9j6lTp3Y71LkYjUYiIiJ49dVXGTFiBNOnT+cvf/kLixYtOudzHn74YWpqatq+ysrKrJbPXkgzPzvTNplYrtwIB+UfCT1TZUm4ndhfs5+qxirGRMl8m3Nx78qTBg4cyJNPPkl2djZpaWkAbNq0ifXr1/PHP/6RF198se3Yu++++6yvERYWhpubGzqdrt39Op2OqKiosz4nOjoaDw8P3Nzc2u4bMGAA5eXlNDc34+npecZzvLy88PLy6vR7dGSpcUEs3XCQqromQv1c673bJX0haD0gLEl1EiG6LikTNr8ChhZw81CdxqXllufirnVnWMQw1VHsVpeKmyVLlhAcHExhYSGFhYVt9wcFBbFkyZK2P2s0mnMWN56enowYMYI1a9Zw1VVXAeYrM2vWrOHOO+8863PS09N57733MBqNaLXmi0779u0jOjr6rIWNq/p5M7+MgZEXOFpYnW4XhPeTfxCEY0ueAjkLoWwzxI9Xncal5ZXnMSRsCL4evqqj2K0uFTcHDhywyMnnzp3LDTfcwMiRIxk9ejTPP/889fX1zJ49G4BZs2YRExPDggULAJgzZw4vvfQS99xzD3fddRdFRUU89dRT5yygXNXPm/lJcWMHZNsF4QyiU6FHhHnVlBQ3yhhNRnLLc/l9v9+rjmLXulTcWMr06dOpqKhg3rx5lJeXM2zYMFasWNE2ybi0tLTtCg1AbGwsK1eu5L777mPo0KHExMRwzz338OCDD6p6C3bpdDM/2YbBDphMoN8N/X+lOokQ3aPVmicW71sJUx5XncZlFZ0ooqapRvaTuoAOFzdz587l8ccfp0ePHsydO/e8xz733HMdDnDnnXeecxgqOzv7jPvS0tLYtGlTh1/fVQ3vHcyLa4poNRhxd1PeiNp1VZdC80mIHKw6iRDdl5wJ+e/A8QMQ0kd1GpeUW56Lp9aTlAjp73Y+HS5utm/fTktLS9t/n4tGo+l+KtFtP2/mN6indMVVRldgvpVhKeEM+l5inhxftArG/J/qNC4ptzyXlIgUvNxkscj5dLi4Wbt27Vn/W9innzfzk+JGIX2BecuFgJ6qkwjRfV7+EJ9uHpqS4sbmDEYDW8u3MmvQLNVR7J6MVzgpaeZnJ3SFEDHIvLuyEM4gKRMOfg9NdaqTuJw9x/dwsuWkzLfpgC4VN/X19Tz66KOMGzeOxMREEhIS2n0J+yDN/OyAXvaUEk4mORMMzXAgR3USl5NbnouPuw9DwoaojmL3urRa6pZbbiEnJ4eZM2cSHR0t82zslDTzU6y1CSqL5PK9cC6hfSE00Tw01f9y1WlcSm55LqkRqXhIz6wL6lJx8/XXX7N8+XLS09MtnUdY0Olmfvll1UwaIP1ubK5iL5gM5mEpIZxJchbs+q+51YH8cmsTLcYWtuq2ctvQ21RHcQhdGpYKDg4mJCTE0lmEhf28mZ9QQH96T6kBanMIYWlJU+DkMSj/QXUSl7Gnag+nWk8xMnKk6igOoUvFzeOPP868efNoaGiwdB5hQaeb+W07VK06imvSFUBQHHgHqE4ihGXFpYGnv3loSthEfkU+nlpPBoXKleCO6PCwVGpqaru5NcXFxURGRhIfH4+HR/vxv23btlkuoegWaeankK5AhqSEc3L3hMRLzcXNhAdUp3EJ2/XbGRw2WObbdFCHi5vTm1sKxyLN/BTSF8Kwa1WnEMI6kjLhf3dAXQX4hatO49RMJhM79DuY2neq6igOo8PFzfz5862ZQ1iJNPNTpOG4eU6CdCYWzippsvm2eLUU8VZ2tP4o+lN6hoUPUx3FYXRpnKKsrIzDhw+3/Tk3N5d7772XV1991WLBhGVIMz9FTk8mlj2lhLPyi4CY4bBvheokTi9fnw/AsIhhSnM4ki4VN9dee23bFgzl5eVkZGSQm5vLX/7yFx577DGLBhTdlxobxPayatUxXIuuANw8zT1BhHBWyVlQshYMLaqTOLXt+u3EB8QT7B2sOorD6FJxs2vXLkaPNrd//uijjxgyZAgbNmzg3XffZenSpZbMJyxgeO9gDlTWc7y+WXUU16ErgLB+IJP/hDNLmgJNtVC6UXUSp7ajYodctemkLhU3LS0teHmZO95+8803XHHFFQD079+fY8eOWS6dsIjTzfy2S78b25FtF4QriE4B/2hZEm5F9S317DuxT+bbdFKXiptBgwaxaNEivv/+e1avXk1WVhYAR48eJTQ01KIBRfdJMz8bMxpBvxsiZTKxcHIajXlisRQ3VvNDxQ8YTUZSI1JVR3EoXSpunn76af7zn/8wceJEZsyYQUpKCgBffPFF23CVsB/SzM/Gqg9Bc530uBGuISkTqoqgqkR1EqeUr88nwDOA+MB41VEcSqf3ljKZTCQkJFBaWkprayvBwT9NcLrtttvw9fW1aEBhGdLMz4baVkrJlRvhAhImmifPF62C0Dmq0zid/Ip8hkUMQ6uRn9ud0en/WyaTicTERMrLy9sVNgDx8fFERERYLJywnJ838xNWpisEn2DzXAQhnJ2XH8SPlyXhVmAwGthRsUOGpLqg08WNVqslKSmJqqoqa+QRVjIk5qdmfsLK9D9uuyC7JQtXkZwFB9dDk/zyZEnF1cXUt9STEp6iOorD6dJ1roULF/KnP/2JXbt2WTqPsBIfTzcGRAfIiilb0BXIkJRwLUlTwNhi7nkjLCZfn4+7xp3BYdIMtLM6PecGYNasWTQ0NJCSkoKnpyc+Pj7tHj9+/LhFwgnLGh4XxHdFlapjOLeWRvPEyrF/UJ1ECNsJ6WPu61S0EgZeoTqN08ivyKd/SH983H0ufLBop0vFzfPPP2/hGMIWhvcO5s2Nhzhe30xID0/VcZxT5V4wGWTbBeF6kqfADx+ZWyFoZfKrJWzXb+eS2EtUx3BIXSpubrjhBkvnEDbw82Z+kwZEKk7jpHQ/rpSK6K82hxC2lpwFG/4Fx/LNe06JbqloqOBI3RHpTNxFXS6vS0pKeOSRR5gxYwZ6vR6Ar7/+moKCAouFE5YlzfxsQLcLgnqDl7/qJELYVuwY8Ao0LwkX3ZZfkQ8gK6W6qEvFTU5ODkOGDGHz5s18+umn1NXVAbBjxw7mz59v0YDCcqSZnw3ItgvCVbl5QOIkWRJuIfn6fHr26EmEr7RX6YouFTcPPfQQTzzxBKtXr8bT86e5G5deeimbNm2yWDhhecN7B7PjcDWtBqPqKM5JJ8WNcGHJmXB0O5zUqU7i8PL1+TIk1Q1dKm527tzJ1Vdffcb9ERERVFbKahx7lhobREOzgX26OtVRnE99FdSVQ4QsAxcuKjED0MjQVDc1tjZSeLxQiptu6FJxExQUdNbdv7dv305MTEy3QwnrGdor6MdmfjLvxuL0P843kys3wlX1CINeo8xLwkWXFVQV0Gpslfk23dCl4ub3v/89Dz74IOXl5Wg0GoxGI+vXr+f+++9n1qxZls4oLOh0Mz8pbqxAVwhuXhDSV3USIdRJnmJu5tfapDqJw9qu346vuy+JQYmqozisLhU3Tz31FP379yc2Npa6ujoGDhzIxRdfzLhx43jkkUcsnVFY2PC4ILbLNgyWpy+A8H7g1qUOC0I4h+QsaK6DQxtUJ3FYO/Q7GBo+FHet/Czpqi4VN56enixevJiSkhK+/PJL3nnnHfbs2cPbb7+Nm5ubpTMKCxveO5gDlfUcr29WHcW5yGRiIcwNLANiYJ8MTXWFyWQivyJfhqS6qVtlYVxcHLGxsYB5mbFwDNLMzwqMRtDvhoFXqk4ihFoajXmvqaKVcNlC1WkczsHag1Q3VTMsfJjqKA6ty038lixZwuDBg/H29sbb25vBgwfz2muvWTKbsBJp5mcF1QehpV42zBQCzEvCj++HymLVSRxOvj4fDRqGhg9VHcWhdenKzbx583juuee46667SEtLA2Djxo3cd999lJaW8thjj1k0pLCs0838ZN6NBZ3edkH2lBIC+lxsnly/bwWE3ak6jUPJr8gnKTgJP08/1VEcWpeKm1deeYXFixczY8aMtvuuuOIKhg4dyl133SXFjQNIjQvmpW+LMBhNuGllSLHb9IXgEwJ+MswnBJ49zAVO0UoYJ8VNZ2zXb2d01GjVMRxel4alWlpaGDly5Bn3jxgxgtbW1m6HEtY3PC6I+mYDe8tPqo7iHHS7zJOJZe6ZEGbJmeYVU401qpM4jOrGag7UHCAlPEV1FIfXpeJm5syZvPLKK2fc/+qrr3Ldddd1O5SwPmnmZ2G6QulMLMTPJU0BY6u5543okB0VOwDZLNMSOjwsNXfu3Lb/1mg0vPbaa6xatYqxY8cCsHnzZkpLS6WJn4P4eTO/68f2Vh3HsbWcguMlMO4u1UmEsB/BvSF8gHkrhkFXqU7jEPIr8gnzCSPGTzr9d1eHi5vt27e3+/OIESMAKCkpASAsLIywsDAKCgosGE9Y0/C4IL4rkr3Auq1iL5iM0uNGiF9KzoT8d82tErRdXpzrMrbrt5MakSqtVSygw8XN2rVyadHZDO8dzJsbD3G8vpmQHp4XfoI4O92PBX14f7U5hLA3yZmw/nnzTuG9RqhOY9dajC3sqtzFXalyBdgSpJR2Yaeb+eWXybybbtEXQnA8eMnSTSHa6TUavIPMS8LFee2p2kOToUnm21hIl5aCNzY28q9//Yu1a9ei1+sxGo3tHt+2bZtFwgnrMjfz82TboWou7S9LmLtMVyD9bYQ4Gzd3SMwwLwm/9C+q09i1/Ip8vNy8GBAyQHUUp9Cl4ubmm29m1apV/OY3v2H06NEyPuigNBoNqXHBsmKqu/SFMPwG1SmEsE/JmfDpJ1B7DAKiVaexW9v12xkUOggPNw/VUZxCl4qbL7/8kq+++or09HRL5xE2Nlya+XVPfSXU6WTbBSHOJTEDNFrzqqkR8kvA2ZhMJnbodzCt7zTVUZxGl+bcxMTE4O/vb+ksQgFp5tdNpycTR8hKKSHOyjfEPPemaJXqJHbraP1R9Kf0DIsYpjqK0+hScfPss8/y4IMPcujQIUvnETYmzfy6SV8I7t4QkqA6iRD2KznT3MyvtUl1EruUr88HkM7EFtSl4mbkyJE0NjaSkJCAv78/ISEh7b6E4zjdzE820ewiXQGE9zNPnBRCnF1yJrTUw8F1qpPYpe367cQHxBPsHaw6itPo0k/kGTNmcOTIEZ566ikiIyNlQrGDGx4XxPfSzK9rdAUyJCXEhUQMhIBesG8lJE5Sncbu7KjYIUvALaxLxc2GDRvYuHEjKSlyCc0ZpMaZm/mdqG8mWJr5dZzRCBV7YPCvVScRwr5pNOarN/tWwGVPywazP1PfUs++E/uY0X+G6ihOpUvDUv379+fUqVOWziIUOd3Mb7s08+ucEwegpUG2XRCiI5IzofoQVO5TncSu/FDxA0aTUSYTW1iXipuFCxfyxz/+kezsbKqqqqitrW33JRxLbMhPzfxEJ+gLzbcyLCXEhfW5GNx9zENTok2+Pp9Ar0DiA+JVR3EqXRqWysrKAmDSpPZjpyaTCY1Gg8Fg6H4yYTPSzK+LdAXgGwp+EaqTCGH/PHzMBU7RKki/W3Uau5Ffkc+w8GFoNbIbkiV1qbiRTTSdjzTz6wJdgXmipMwfEKJjkqfAVw/AqWrwCVKdRrlWYys7KnZwy5BbVEdxOl0qbiZMmGDpHEKx08389ulOMiA6QHUcx6AvhMTJqlMI4TiSMsH0Ryj5VibiAwVVBdS31DM6arTqKE6ny9fBvv/+e66//nrGjRvHkSNHAHj77bdZt076GDgiaebXSc0NcHy/bLsgRGcExZrnqMm8GwDyyvPo4dGDgaHyc8TSulTc/Pe//yUzMxMfHx+2bdtGU5O562RNTQ1PPfWURQMK2zjdzE8mFXdQxR4wGWUysRCdlZwJxavBKHMzc4/lMjxiOO5aaQJqaV0qbp544gkWLVrE4sWL8fD4aQfT9PR0tm3bZrFwwrZS44LYLlduOkZfCGggor/qJEI4luRMaKiCI1tVJ1GqxdDCdv12GZKyki4VN3v37uXiiy8+4/7AwECqq6u7m0koMjwumP2V9Zyob1Ydxf7pCiGkD3j2UJ1ECMfSaxT4BLv80NQPlT/QaGhkdLQUN9bQpeImKiqK4uLiM+5ft24dCQmygaCjkmZ+naDbZV4pJYToHK2beSJ+kWsXN7nlufh7+tMvuJ/qKE6pS8XNrbfeyj333MPmzZvRaDQcPXqUd999l/vvv585c+ZYOqOwEWnm1wn6QulMLERXJWdC+U6oOaI6iTJ55XmMjByJm9ZNdRSn1KVZTA899BBGo5FJkybR0NDAxRdfjJeXF/fffz933XWXpTMKGzndzE+u3FxAXQXUV8iVGyG6qu+loHEzN/QbOVt1GptrbG0kX5/P3BFzVUdxWl26cqPRaPjLX/7C8ePH2bVrF5s2baKiooLHH3/c0vmEjQ2PCya/tBqD0aQ6iv3SF5hvIwerzSGEo/INgdgxLjvvZkfFDlqMLTLfxoo6deXmpptu6tBxr7/+eqdCvPzyy/zjH/+gvLyclJQU/vWvfzF69IU/9A8++IAZM2Zw5ZVX8vnnn3fqnOLspJlfB+gKzHvkhPRRnUQIx5WcCTlPQ0sjeHirTmNTueW5BHsFkxiUqDqK0+rUlZulS5eydu1aqqurOXHixDm/OuPDDz9k7ty5zJ8/n23btpGSkkJmZiZ6vf68zzt48CD3338/F110UafOJ85vSK9A3KSZ3/npCiG8n3lipBCia5IzoaUBDrpe49e88jxGRo2U/aSsqFP/Z+fMmUNNTQ0HDhzgkksuYcmSJXz22WdnfHXGc889x6233srs2bMZOHAgixYtwtfX97xXfwwGA9dddx1/+9vfLrg6q6mpSXYt7wRfT3cGRPvLpOLz0RfIZGIhuiu8PwTFwb4VqpPYVENLAzsrdkp/GyvrVHHz8ssvc+zYMR544AGWLVtGbGwsv/vd71i5ciUmU+fnaDQ3N7N161YyMjJ+CqTVkpGRwcaNG8/5vMcee4yIiAhuvvnmC55jwYIFBAYGtn3FxsZ2OqerGR4XLM38zsVoAP0eKW6E6C6NxrzX1L6V0IV/PxzVdv12Wk2tMt/Gyjp9TczLy4sZM2awevVqCgsLGTRoEH/4wx+Ij4+nrq6uU69VWVmJwWAgMjKy3f2RkZGUl5ef9Tnr1q1jyZIlLF68uEPnePjhh6mpqWn7Kisr61RGVyTN/M7j+AFoPSUrpYSwhORMqCk1b2fiInLLcwnzCaNPgMzZs6ZuDfhptVo0Gg0mkwmDwfr7hJw8eZKZM2eyePFiwsLCOvQcLy8vAgIC2n2J8zvdzC+/rFptEHvUtlJKrtwI0W3xF4GHr0utmso9lsuoqFFoNBrVUZxap4ubpqYm3n//fSZPnkxycjI7d+7kpZdeorS0FD8/v069VlhYGG5ubuh0unb363Q6oqKizji+pKSEgwcPMm3aNNzd3XF3d+ett97iiy++wN3dnZKSks6+HXEWbc38ZGjqTLpC8A0DvwjVSYRwfB7e0GeCyxQ3J5tPUni8UObb2ECnips//OEPREdHs3DhQqZOnUpZWRkff/wxv/rVr9BqO38RyNPTkxEjRrBmzZq2+4xGI2vWrCEtLe2M4/v378/OnTvJz89v+7riiiu45JJLyM/Pl/k0FnK6mZ8UN2chk4mFsKzkTCjbDKec/+fNNt02jCYjY6LGqI7i9DrV52bRokXExcWRkJBATk4OOTk5Zz3u008/7fBrzp07lxtuuIGRI0cyevRonn/+eerr65k929y1ctasWcTExLBgwQK8vb0ZPLh947SgoCCAM+4X3ZMaF8TL3xZjMJpw08rl0za6AkjOUp1CCOeRNAVMBiheA0N+ozqNVeWW5xLVI4pe/r1UR3F6nSpuZs2aZfFxwunTp1NRUcG8efMoLy9n2LBhrFixom2ScWlpaZeuConuGR4XLM38fqm53jyhWCYTC2E5gTEQNcQ8NOUCxc3oqNEy38YGOlXcLF261Coh7rzzTu68886zPpadnX3e51ork6sb+rNmflLc/KhiD2CCSCluhLCopEzYssTcasFJm2PWNNWw9/herhtwneooLkEuiYizOt3Mb3tpteoo9kNXCGggfIDqJEI4l+RM85ybw3mqk1jNlvItmDDJZGIbkeJGnNNwmVTcnq4AQhLA01d1EiGcS8wI8A116lVTm8s308uvFz39eqqO4hKkuBHnNDwumP0V9VQ3SDM/4MeVUjIkJYTFad0gcbJTFzd55XnSldiGpLgR53S6mZ8MTf1IVwgRsgxcCKtIzjT/AlHtfF3kq05VUVxdzKioUaqjuAwpbsQ5xYb4EO7vRe7B46qjqFenh4ZK6XEjhLX0vRQ0blC0SnUSi8vTmecSyXwb25HiRpyTRqMhLSGUDcWVqqOop9tlvpXiRgjr8AmCuDSnHJrKPZZLfEA8Eb7S2dxWpLgR55WeGMrOIzXUnGpRHUUtXSG4+0BwvOokQjiv5Ew4kAPNDaqTWFReeZ5ctbExKW7EeaUnhmE0wab9VaqjqKUvhIj+TtuDQwi7kJwJrY1w8HvVSSxGV6/jYO1BRkXLfBtbkuJGnFevYF96h/rK0JRO9pQSwurCks1XR51oaCq3PBeAUZFS3NiSFDfigsb1DWOdKxc3RoO5O7GslBLCujQac7fiolVgMqlOYxF55XkkBiUS6hOqOopLkeJGXFB6YiglFfWU1zSqjqLG8f3mS+XS40YI60vOhJoy81CwEzi9n5SwLSluxAWlJZh/49hQ4qJXb3QF5lu5ciOE9cWPB48eTjE0daTuCEfqjkhxo4AUN+KCQv28GBgdwPpiF51UrC+EHhHgF646iRDOz90LEiY6RXGTeywXDRpGRo1UHcXlSHEjOiQ9MZT1xZWYnGQcvFN0su2CEDaVnAmHc6HBsRuI5pXn0T+kP4FegaqjuBwpbkSHjEsMo7y2kf2V9aqj2J6uQIakhLClpClgMkLxN6qTdJnJZCK3PFe2XFBEihvRIaPjQ3DXalxvSXhzPZw4KFduhLClgGiITnHooamyk2XoGnQy30YRKW5Eh/Twcic1Lsj15t3o9wAmiJDiRgibSso0X7kxtKpO0iWbyzfjpnFjROQI1VFckhQ3osPG9Q1j4/4qDEYXmnej2wUaLUQMUJ1ECNeSnAWN1ea5Nw4o71geA0MH4ufppzqKS5LiRnTY+KQwak61UHC0RnUU29EXQkgCePioTiKEa+mZCj3CHXJoSubbqCfFjeiwlF5B+Hq6udbQlGy7IIQaWi0kTnbI4mZ/zX6qGqtkvo1CUtyIDvN01zK6T4jrNPMzmWSllBAqJWdCxW44cUh1kk7JLc/FXeNOakSq6iguS4ob0SnpfcPIO3icxhaD6ijWV6eDU8dlpZQQqvS9BLTu5r2mHMjmY5sZEj4EXw9f1VFclhQ3olPGJYbS2GJkW+kJ1VGsr23bBSluhFDCOxB6j3OooalmQzMbj25kfMx41VFcmhQ3olMGRAUQ0sOTDa4w70ZfCB6+ENxHdRIhXFdSJhz4ztxzygHklefR0NrAxNiJqqO4NCluRKdotRrS+oay3hXm3egKzEvAtfLXRAhlkjPB0GQucBxAdlk2PXv0JCkoSXUUlyY/tUWnpfcN44fDNZxsbFEdxbp0BTIkJYRqoYnmdgwOMDRlMpnIPpzNhNgJaDQa1XFcmhQ3otPSE0MxGE1s3u/Ym9qdl6EVKvbKMnAhVNNozENTRavMKxjt2L4T+yivL2dir4mqo7g8KW5Ep8WF+BIT5MM6Z95n6vh+86VwKW6EUC85E2qPmDuG27Hssmx83X0ZGTVSdRSXJ8WN6DSNRsP4xDDn7ndz+oeo9LgRQr3e6eDpB/tWqE5yXjmHc0iPScfTzVN1FJcnxY3oknGJoezT1aE/2ag6inXoC8EvEnqEqk4ihHD3NPe82We//W4qT1Wys3InE3pNUB1FIMWN6KJxfcMA2FjipEvCdYUymVgIe5KUCYfzoN4+f+Z8d/g7tBotF/W6SHUUgRQ3oovC/b3oF+nPuiInHZrSy55SQtiVpCmACYpXq05yVmvL1pISnkKId4jqKAIpbkQ3jEsMZUNJFSY7X8HQaU0n4cRBKW6EsCf+keadwu1wSXhjayObjm6SISk7IsWN6LLxiWEcqT7FoaoG1VEsS7/HfCvDUkLYl6RMKF4DBvvqsZVbnkujoVG6EtsRKW5El43uE4KbVuN83Yr1BaDRQnh/1UmEED+XnAlNNVC2WXWSdrLLsunl14uEwATVUcSPpLgRXebv7UFKr0Dn22dKV2DuiurhrTqJEOLnoodBjwi7WhJuMpnIOZzDxNiJ0pXYjkhxI7ol/cd+N0ajE827kZVSQtgnrRaSp9jVkvDdx3ejb9DLkJSdkeJGdMu4vmGcaGih8Fit6iiWYTLJSikh7FlSJlTuheMHVCcBIKcsB38Pf4ZHDlcdRfyMFDeiW4b3DsLbQ+s83YpPlsOpE1LcCGGv+l4CWg/zXlN2YG3ZWtJj0vHQeqiOIn5GihvRLV7uboyKD2G9s8y70RWYb2VYSgj75OUP8el2sSRcV69j9/HdTIiVJeD2Roob0W3piWHkHjhOc6tRdZTu0xeARw8I6q06iRDiXJKz4OD30FSnNEbO4RzcNG5cFCNdie2NFDei29L7hnGqxcD20hOqo3SfrhAiBpgnLgoh7FPSFDA0w4EcpTFyDucwLGIYgV6BSnOIM8lPcNFtA3sGEOjjwXpn2GdKJhMLYf9C+5rbNShcEn6q9RSbj21mYq+JyjKIc5PiRnSbm1bDuL6hbCh28EnFhhao2CvFjRCOIDnLvCRc0fYvm45uosnQJEvA7ZQUN8IixiWGkV9WTV1Tq+ooXVdVYr7ULZOJhbB/SVOgrhyO7VBy+pzDOcQHxBMfGK/k/OL8pLgRFjE+MYxWo4n1jnz1Rv/jSim5ciOE/YtLA68AJUvCjSYj2WXZslGmHZPiRlhEn7AeJEX4sbKgXHWUrtMVgH80+IaoTiKEuBB3T3PPGwXzbgoqC6hqrJIl4HZMihthMZcNjuKbQh0tBgddEi7bLgjhWJKz4Mg2qNPb9LTZh7MJ8AwgNSLVpucVHSfFjbCYzMFR1Da2stFRV03pCyBSihshHEbiZPNt0WqbnjanLIfxMeNx17rb9Lyi46S4ERYzMDqA2BAfVjji0FRjLVSXQuRg1UmEEB3lFw4xI6DIdt2Kj9UdY++JvVwSe4nNzik6T4obYTEajYasQVGsKtBhcLRdwvW7zbcyLCWEY0nOhJK10Npsk9PlHM7BXeNOeky6Tc4nukaKG2FRWYOjqKxrYpujdSvWF4DGDcL7qU4ihOiM5ExoqoXSjTY5XfbhbEZEjsDf098m5xNdI8WNsKjU2GDC/b1YscvBhqZ0heaOp+5eqpMIITojaqh5laMNloTXt9STeyxXVkk5ACluhEVptRoyB0WyYlc5JkWdQ7tEXyj9bYRwRBoNJE22yZLwjUc30mJskS0XHIAUN8LiLhsczZHqUxQcrVUdpWNMJtDtkpVSQjiq5CyoKjZ3Gbei7LJsEgITiA2Itep5RPdJcSMsbnSfEIJ8PRxnaKr2KDTWQIRcuRHCIfWZAG6esM96q6YMRgPfH/lehqQchBQ3wuI83LRkDIh0nCXh+kLzrQxLCeGYvPwg/iKrLgnfWbmT443HZQm4g5DiRlhF1qAoivV1FOtPqo5yYboC8PSHoDjVSYQQXZWcCQfXQ5N1fuZ8c+gbgr2CGRo21CqvLyxLihthFeOTwvD1dHOMoSldAUQMME9MFEI4pqQpYGwx97yxsFZjK8sPLOeyPpfhpnWz+OsLy5PiRliFt4cbl/SPcIyhKX2hTCYWwtGF9IGwflYZmtp0bBOVpyq5IvEKi7+2sA4pboTVZA2KYteRWsqON6iOcm6GFqjYK9suCOEMkjNh3yowWnbz3i9KvqBvYF8GhsgvQY5CihthNZf0j8DTXctKe756U1lkvpQt2y4I4fiSM6FeD8fyLfaSJ5tP8m3pt0zrOw2NDF07DLsobl5++WXi4+Px9vZmzJgx5ObmnvPYxYsXc9FFFxEcHExwcDAZGRnnPV6o4+flzsVJYfZd3LStlJLiRgiHFzsGvAItuiR89aHVNBuauTzhcou9prA+5cXNhx9+yNy5c5k/fz7btm0jJSWFzMxM9Hr9WY/Pzs5mxowZrF27lo0bNxIbG8uUKVM4cuSIjZOLjsgcFMWWQyfQn2xUHeXsdAXg3xN8glUnEUJ0l5sHJE6y6LybL0q+YGz0WKJ6RFnsNYX1aUyKe+SPGTOGUaNG8dJLLwFgNBqJjY3lrrvu4qGHHrrg8w0GA8HBwbz00kvMmjXrgsfX1tYSGBhITU0NAQEB3c4vzu9EfTMjn/yGx64cxHVjequOc6b3poPRANd/ojpJt5hMJlpbW1XHEHbGzc0NrVb577C2teMD+Oz/4I97wb97Bcnhk4e57NPLeGr8U0zrO81CAYUtuKs8eXNzM1u3buXhhx9uu0+r1ZKRkcHGjR3b4bWhoYGWlhZCQkLO+nhTUxNNTU1tf66tdZAtAZxEcA9PxiaEsGJXuX0WN7oCGPxr1Sm6pbW1lYqKCsfay0vYjK+vL4GBga4zXyRxMqAxb6Q5/MK/8J7Psv3L8HX3ZVLcJMtkEzajtLiprKzEYDAQGRnZ7v7IyEj27NnTodd48MEH6dmzJxkZGWd9fMGCBfztb3/rdlbRdVmDovjbskJqGloI9PVQHecnjTVQU+bQ2y6YTCaqq6vRarUEBwe7zj9g4oJMJhPNzc1tv9AFBQWpDWQrPUKh1yjzvJtuFDcmk4llJcuY3Hsyvh6+FgwobEFpcdNdCxcu5IMPPiA7Oxtvb++zHvPwww8zd+7ctj/X1tYSGyubntnSlEFRPPq/Ar7ZreOaEb1Ux/mJfrf51oG3XTAajTQ3NxMcHIynp6fqOMLOnP6eqK2tJSAgwHWGqJIzYd0/obUJ3L269BI7KnZQdrKMv6b91bLZhE0o/U4PCwvDzc0NnU7X7n6dTkdU1PnHSp955hkWLlzIqlWrGDr03O2wvby8CAgIaPclbCsywJvhcUH219BPVwBadwhLVp2ky4w/9vNwc5OuqeLsThc4BoNBcRIbSs6E5jo4tKHLL/G/kv8R3SOakVEjLRhM2IrS4sbT05MRI0awZs2atvuMRiNr1qwhLS3tnM/7+9//zuOPP86KFSsYOVK+8RzBZYOj+W5fBfVNdjTpVVcAoUng7vhXPGQ4SpyLS35vRA6GgJguLwlvMjSx8sBKpiZMRatxkatdTkb5pzZ37lwWL17Mm2++ye7du5kzZw719fXMnj0bgFmzZrWbcPz000/z6KOP8vrrrxMfH095eTnl5eXU1dWpeguiAzIHRdHUaiRnX4XqKD+RbReEcE4ajXmvqX0roAsT7bPLsjnZclJWSDkw5cXN9OnTeeaZZ5g3bx7Dhg0jPz+fFStWtE0yLi0t5dixY23Hv/LKKzQ3N/Ob3/yG6Ojotq9nnnlG1VsQHRAX6svA6AD72UjTZAJdoUPPtxFCnEdyJpw4AFXFnX7qspJlDA0bSp/APlYIJmzBLiYU33nnndx5551nfSw7O7vdnw8ePGj9QMIqsgZH8ep3+2lqNeDlrniOSM1haKpx6JVSQojz6DMB3L3NQ1NhSR1+WuWpStYdWcfDox++8MHCbim/ciNcR9bgKOqaWtlQXKU6imy7IISz8/SF+Is63a346wNfo9FoyOqTZaVgwhakuBE2kxThR0JYD77edezCB1ubrgC8AiBQ2gKo8NZbbxEaGtquwSbAVVddxcyZMwHzEHTfvn3x9PSkX79+vP32223HHTx4EI1GQ35+ftt91dXVaDSatqu92dnZaDQa1qxZw8iRI/H19WXcuHHs3bu33TmfeOIJIiIi8Pf355ZbbuGhhx5i2LBhVnnfwsaSM80rphprOvyUZSXLmNhrIoFegVYMJqzNLoalhGvQaDRkDo7ig9xSWg1G3N0U1tb6QvNO4E64kuRUs4GSCttPsO8b7oePZ8eGG3/7299y991388UXX/Db3/4WAL1ez/Lly1m1ahWfffYZ99xzD88//zwZGRl8+eWXzJ49m169enHJJZd0Ktdf/vIXnn32WcLDw7n99tu56aabWL9+PQDvvvsuTz75JP/+979JT0/ngw8+4Nlnn6VPH5lr4RSSM+Gr+6FkLQy66oKH7zuxj93HdzMnZY71swmrkuJG2FTWoCheyS4h9+BxxvUNUxdEVwBxY9Wd34pKKuqY+q91Nj/vl3eNZ3BMx37b9fHx4dprr+WNN95oK27eeecd4uLimDhxIuPHj+fGG2/kD3/4A2BeVblp0yaeeeaZThc3Tz75JBMmTADgoYce4vLLL6exsRFvb2/+9a9/cfPNN7etzpw3bx6rVq2S1ZfOIigOwgeY5910oLhZVrKMYK9gxseMt342YVVS3AibGtorkJ6B3qzcVa6uuGlthsp9MPImNee3sr7hfnx5l+1/OPcN9+vU8bfeeiujRo3iyJEjxMTEsHTpUm688UY0Gg27d+/mtttua3d8eno6L7zwQqdz/bzJZ3R0NGC+ShQXF8fevXvbCqjTRo8ezbffftvp8wg7lZwJ298BoxHO06G51djKl/u/5LI+l+HhZkfbxIgukeJG2NTpoamvdh5j/rRBaLUKhoWqisDY6rTLwH083Tp8BUWl1NRUUlJSeOutt5gyZQoFBQUsX768Q889vY3AzzcLbWlpOeuxHh4//UN1uqHd6c7OwgUkZ8L65+HoNuh17qavm49tpvJUJVf0vcJ22YTVyIRiYXNXpPREV9tETpGihn66H1dKRchKKdVuueUWli5dyhtvvEFGRkbbvm8DBgxomxdz2vr16xk40PyZhYeHA7TrgfXzycUd1a9fP/Ly8trd98s/CwfXazR4B12wW/H/Sv5H38C+DAyVnwvOQIobYXPDYoMY1DOAdzYeUhNAtwsCeoFPkJrzizbXXnsthw8fZvHixdx000/DhH/6059YunQpr7zyCkVFRTz33HN8+umn3H///YB5zs7YsWNZuHAhu3fvJicnh0ceeaTT57/rrrtYsmQJb775JkVFRTzxxBP88MMPrrllgbNyc4fEjPMuCa9rruPb0m+Z1neafPZOQoobYXMajYaZY3vz7V49ZccbbB9Atl2wG4GBgVxzzTX4+flx1VVXtd1/1VVX8cILL/DMM88waNAg/vOf//DGG28wceLEtmNef/11WltbGTFiBPfeey9PPPFEp89/3XXX8fDDD3P//fczfPhwDhw4wI033oi3t7cF3p2wG8lZcGwH1J69DcXqQ6tpNjRzecLlNg4mrEVjMnVh4w0HVltbS2BgIDU1NbJDuEINza2MeWoNM8f25oGs/rY9+XODYMhvYPLfbHteK2hpaaGiooLw8PB2c0scyaRJkxg0aBAvvvii6igATJ48maioqHZ9dRyZM3yPdFvDcfhHX5j6PIy44YyHZ6+YjYfWg1envGr7bMIq5MqNUMLX051rhvfiw7wymloNtjvxqWqoPWzeNVgodeLECT777DOys7O54447lGRoaGjgueeeo6CggD179jB//ny++eYbbrjhzH8AhQPzDTHPvTnLvJvDJw+zRbdFNsl0MlLcCGWuHxtHVX2zbTfTlG0X7EZqaio33ngjTz/9NP369VOSQaPR8NVXX3HxxRczYsQIli1bxn//+18yMjKU5BFWlJwJ+7OhtX1X7C/3f4mvuy+T4iapySWsQpaCC2USI/xJSwjlnU2HuHJYjG1OqisArTuEdnwjPWEd9rAJro+PD998843qGMIWkjNhzd/g4DpINBcyJpOJZSXLmNx7Mr4evooDCkuSKzdCqZlpvck7eII95bW2OaG+EMKSwd3TNucTQtiHiIHmveR+NjS1VbeV0pOlMiTlhKS4EUpNHhhJhL8X72yy0bJwXaHTNu8TQpyHRgNJU2DfCvhxHc3ru14nMSiRUVGjFIcTlibFjVDKw03L70fH8dm2I9Q1tVr3ZCbTTxtmCiFcT3IWVB+Cyn3sOb6H7498z81DbkarkX8KnY18okK5GaNjaWw18tn2I9Y9UU0ZNNXKlRshXFWfi8DdB/atZMnOJcT4xZAVn6U6lbACKW6EctGBPmQMiOCdjYewatsl2XZBCNfm4QN9LqZ035esOrSKmwbfhLtW1tU4IyluhF2YOTaevbqTbDl0wnon0ReAVyAE9rLeOYQQ9i05k9friwnxCuLKxCtVpxFWIsWNsAvj+obSJ6wHb1tzvyldgbm/jewd43Cys7PRaDRUV1ef85ilS5cSFBR03tf561//yrBhw9r+fOONN7bb9sHRdOQ9i/Z0vYbzPz9fZoaOwMvNS3UcYSVS3Ai7oNVquG5MHF/vOkbFyaYLP6ErdDKZ2FGNGzeOY8eOERgYqDqKcHBvHf4GHzT8rqZGdRRhRVLcCLvxmxG90Go0fLSlzPIv3toMVUXSmdhBeXp6EhUVJTs2i26pbqzm430f8/uA/viVrAWjDbd+ETYlxY2wG0G+nlyR0pP3NpdiMFp4YnHlPjC2yp5SdmLixIncdddd3HvvvQQHBxMZGcnixYupr69n9uzZ+Pv7k5iYyNdffw2cfVhq6dKlxMXF4evry9VXX01VVdUZ51m4cCGRkZH4+/tz880309jYeN5cRqORBQsW0KdPH3x8fEhJSeGTTz4573OqqqqYMWMGMTEx+Pr6MmTIEN5///12x5w8eZLrrruOHj16EB0dzT//+U8mTpzIvffe23ZMU1MT999/PzExMfTo0YMxY8aQnZ3d7nU68p7Fub2/531MJhPXD/0/aKiCI1tVRxJWItPEhV2Zmdabj7ceJnuvnkkDIi33wroC823EAMu9pr1qbjAXc7YWlgyeHW9h/+abb/LAAw+Qm5vLhx9+yJw5c/jss8+4+uqr+fOf/8w///lPZs6cSWlp6RnP3bx5MzfffDMLFizgqquuYsWKFcyfP7/dMR999BF//etfefnllxk/fjxvv/02L774IgkJCefMtGDBAt555x0WLVpEUlIS3333Hddffz3h4eFMmDDhrM9pbGxkxIgRPPjggwQEBLB8+XJmzpxJ3759GT16NABz585l/fr1fPHFF0RGRjJv3jy2bdvWbv7PnXfeSWFhIR988AE9e/bks88+Iysri507d5KUlNSh9yzOraGlgXd2v8M1ydcQknAJ+ISYuxXHjlYdTViBxmTVtbf2p7a2lsDAQGpqaggICFAdR5zFFS+tI6SHJ0tnW/CHzup5sOtTuG+X5V7TDrS0tFBRUUF4eDgeHh7mO4/mw6tn/4fYqm7LgZ7DOnToxIkTMRgMfP/99wAYDAYCAwP59a9/zVtvvQVAeXk50dHRbNy4kcbGRi655BJOnDhBUFAQ1157LTU1NSxfvrztNX//+9+zYsWKtqs748aNIzU1lZdffrntmLFjx9LY2Eh+fj5gnlBcXV3N559/TlNTEyEhIXzzzTekpaW1PeeWW26hoaGB9957r8P/K6ZOnUr//v155plnOHnyJKGhobz33nv85je/AaCmpoaePXty66238vzzz1NaWkpCQgKlpaX07Nmz7XUyMjIYPXo0Tz31VIfe89mc9XvEBb1Z8CbPb32er379FdF+0fDfW6FiN9y+TnU0YQVy5UbYnevH9ubB//5AaVUDcaEW2szOlbZdCEs2FxoqztsJQ4cObftvNzc3QkNDGTJkSNt9kZHmK3d6vf6MX0R2797N1Vdf3e6+tLQ0VqxY0e6Y22+//Yxj1q5de9Y8xcXFNDQ0MHny5Hb3Nzc3k5qaCsCgQYM4dMi8ou+iiy7i66+/xmAw8NRTT/HRRx9x5MgRmpubaWpqwtfX/L27f/9+Wlpa2q7iAAQGBrbbCX3nzp0YDAaSk9v/P2xqaiI0NLTD71mcXbOhmbcK3uLyhMvNhQ2YN9Lc+RHUHIFAG23cK2xGihthd6YN7ckTXxbybu4hHr7MQsNI+kIYOt0yr2XvPH07fAVFpV9eRdBoNO3uOz152Gg02iRPXV0dAMuXLycmpv0/dl5e5iXDX331FS0tLYB5R3GAf/zjH7zwwgs8//zzDBkyhB49enDvvffS3NzcqXO7ubmxdetW3Nzc2j3m5+fX5fckzJaVLKPiVAU3DbnppzsTJ4HGDYpWwcjZ6sIJq5DiRtgdH083fjsylo/yyrgvIxlvD7cLP+l8Tp2A2iOuc+XGBQwYMIDNmze3u2/Tpk1nPWbWrFnnPObnBg4ciJeXF6WlpeecX9O7d+8z7lu/fj1XXnkl119/PWAuxvbt28fAgeaVeQkJCXh4eJCXl0dcXBxgHpbat28fF198MQCpqakYDAb0ej0XXXRRl9+zOJPBaOD1Xa+T0TuDhMCfzbfyCYa4seZ5N1LcOB0pboRdum5MHEvWHeDrXce4OrWbHYVl2wWnc/fdd5Oens4zzzzDlVdeycqVK88Ynrnnnnu48cYbGTlyJOnp6bz77rsUFBScc0Kxv78/999/P/fddx9Go5Hx48dTU1PD+vXrCQgI4IYbbjjr85KSkvjkk0/YsGEDwcHBPPfcc+h0urbixt/fnxtuuIE//elPhISEEBERwfz589FqtW1Xp5KTk7nuuuuYNWsWzz77LKmpqVRUVLBmzRqGDh3K5Zdf3qH3LM60+tBqSk+W8vcJfz/zwaQpkPM0tJwyb80gnIYsBRd2KSHcj/GJYZbpWKwvBK0HhCV1/7WEXRg7diyLFy/mhRdeICUlhVWrVvHII4+0O2b69Ok8+uijPPDAA4wYMYJDhw4xZ86c877u448/zqOPPsqCBQsYMGAAWVlZLF++nD59+pzzOY888gjDhw8nMzOTiRMnEhUVdUbX4+eee460tDSmTp1KRkYG6enpDBgwAG9v77Zj3njjDWbNmsUf//hH+vXrx1VXXdXuak9H3rNoz2Qy8drO10iLTmNQ6Fmu3CZnQksDHJRJxc5GVksJu7ViVzm3v7OV5XePZ1DPbnSmXXYvHM6DOestls1eyEoYx1RfX09MTAzPPvssN998s1XP5crfI98f/p4/rPkDS6YsYXT0WVZfmkzwwlBIyoTLn7F9QGE1cuVG2K2MARFEBXjzzqZuXr3RFciQlFBq+/btvP/++5SUlLBt2zauu+46AK68UjZutKbXdr7G0LChjIoadfYDNBpzYVO00lzoCKchxY2wW+5uWm4YF8/HWw5TUlHXtRcxmUC/W7ZdEMo988wzpKSkkJGRQX19Pd9//z1hYWGqYzmtbbptbNNv4+YhN59/247kLKguhYo9tgsnrE6KG2HXZqfHExXozZPLd3ftBapLofmkbLsglEpNTWXr1q3U1dVx/PhxVq9e3a6nj7C813a+RmJQIhNjJ57/wPjx4OFrXjUlnIYUN8KueXu48cjlA/h2j57svfrOv4BeVkoJ4Wr2Ht/L90e+56bBN6HVXOCfOQ9vSJgoxY2TkeJG2L3MQVGkJYTy+JeFtBg62dBNtwu8AyGg54WPFUI4hSU7lxDjF8NlfS7r2BOSpkDZZmg4bt1gwmakuBF2T6PRMG/aQA5U1nd+abiuECIGmScOCiGc3g8VP7Dy0EpmD5qNu7aDrdySpoDJACXfWjecsBkpboRDGBAdwIzRcfzzm31U1TV1/Il6F9pTSggX12Ro4tH1jzIwZCDXJF/T8ScGxkDUEBmaciJS3AiHMXdyMhrgudX7OvaE1iaoLJKVUkK4iFfyX6HsZBmPpz/e8as2pyVlQvFqMBqsE07YlBQ3wmGE+nlxb0Yy7+eWUni09sJPqNhrvtQcIVduhHB2uyp38UbBG8xJmUNicGLnXyA5y7wP3eE8y4cTNifFjXAoM9N60yesB499WcAFm2u3rZSy0M7iwmays7PRaDRUV1ef85ilS5cSFBRks0zCfjUbmnlk3SP0D+nP7MFd3AQzZjj4hsrQlJOQ4kY4FA83LfOmDWLT/uOs2FV+/oN1BRAUB96yzYYQzmzRjkUcOnmoa8NRp2ndzBOLpbhxClLcCIczITmcS/tH8ORXu2lsOc/4uL5QhqSEcHIFVQW8vut1/m/o/5EcnNy9F0uaAvoCqC6zTDihjBQ3wiE9cvkAymsaWbLuwLkP0hXIZGI71tTUxN13301ERATe3t6MHz+evLxzz3dYunQpcXFx+Pr6cvXVV1NVVWXDtMIetRhaeGTdIyQFJ3HzEAtsQNr3UtC4mfeaEg6ti9fvhFArIdyP2enxvLy2mGuG9yIq0Lv9AQ3H4eQxl+xMfKr1FAdqzlP0WUmfwD74uPt0+PgHHniA//73v7z55pv07t2bv//972RmZlJcXHzGsZs3b+bmm29mwYIFXHXVVaxYsYL58+dbMr5wQP/54T8crDnIB1M/wENrgR3PfYKg9zjYtwpG3dL91xPKSHEjHNZdk5L4dNsR/r5iD89NH9b+wdOTiV1wT6kDNQeY/uV0m5/3w6kfMjC0Y8VkfX09r7zyCkuXLuWyy8xdZBcvXszq1atZsmQJo0a138X5hRdeICsriwceeACA5ORkNmzYwIoVKyz7JoTD2F21myU7l3Db0NvoF9LPci+cNAXWPgnNDeDpa7nXFTYlxY1wWAHeHvwpsx8PfbqT69N6Mzwu+KcHdYXg5gmhfdUFVKRPYB8+nPqhkvN2VElJCS0tLaSnp7fd5+HhwejRo9m9e/cZxc3u3bu5+uqr292XlpYmxY2LajG08Oj6R0kISuCWIRa+wpKcBasfhYPfQ3KmZV9b2IwUN8Kh/XZkLG9tPMTflhXy2ZxxaLU/brOg2wVh/cDNApeqHYyPu0+Hr6AI4Yhe2/kaxdXFvH/5+3hY+u94WBIEx5tXTUlx47BkQrFwaG5aDfOnDWRHWTWf5x/56QF9oUwmtmN9+/bF09OT9evXt93X0tJCXl4eAwee+bkNGDCAzZs3t7tv06ZNVs8p7M/e43t59YdXuWXILQwItUIPK43GfPVm30q4UC8tYbekuBEOb0xCKJcPjWbh13uob2oFoxH0u2VPKTvWo0cP5syZw5/+9CdWrFhBYWEht956Kw0NDdx885mrXu6++25WrFjBM888Q1FRES+99JIMSbmgFqN5OCo+MJ7/G/p/1jtR0hSoPfzT3D3hcKS4EU7h4cv6U3OqhSeW78ZUfQia66THjZ1buHAh11xzDTNnzmT48OEUFxezcuVKgoODzzh27NixLF68mBdeeIGUlBRWrVrFI488oiC1UOn1na+z78Q+nkh/wvLDUT8XPx48esA+KaAdlcZ0wR72zqW2tpbAwEBqamoICJDOtc7kw7xSHvzvTp4ZcpjfFD0Ac3dDQE/VsayqpaWFiooKwsPD8fBwvflF4sKc5Xtk34l9TP9yOrMHzebu4Xdb/4QfXAf1lXCz9LxxRDKhWDiN6aPiaGg2cPCrz2j0CcDbP1p1JCGEBegb9DyQ8wC9/Xtze8rttjlp0hT48l5zzyzfENucU1iMDEsJpzI7vQ9X9awmvzmGRd/tVx1HCNFNB2oOMPOrmdS11PHcJc/h6eZpmxMnTQGTEYq/sc35hEVJcSOcTqKpFK+YISz8eg9L19u+U68QwjJ2Vuxk1tez8HH34Z1fvUNCYILtTh4QDdEpMu/GQUlxI5xLSyNUFTNsxDj+7+IE/rqskPdzS1WnEkJ00roj67h51c3EB8Tz5mVvEtUjyvYhkjLNV24MrbY/t+gWKW6Ec6ncCyYDmshBPHRZf2al9ebPn+3ks+2HVSezKhdbFyA6wRG/N5aVLOOuNXcxOmo0r055lUCvQDVBkrOgsQYO56o5v+gymVAsnIvux74UEQPQaDT8ddogmlqM/PGjHXi5u/GrIc41yVirNf9+YjAYFCcR9qq5uRkANzc3xUk65s2CN3lmyzNcnXg189Lm4a5V+M9Uz1ToEW4emuo9Tl0O0WlS3AjnotsFQb3Byx8ArVbDU78eQmOrgbvf346Xu5ZJAyIVh7QcrVaLp6cntbW1uLm5odFoVEcSdsJkMtHc3ExtbS2+vr5thbC9MpqM/HPrP1lasJRbh9zKXal3qf9+1mrNE4v3rYLJj6nNIjpFihvhXPSFZ3QmdtNqePa3KTS1GJnzzjaW3DiSi5LCFQW0LI1GQ1BQEBUVFVRWVqqOI+yQr68vgYGKhnU6qMXYwrz181i+fzkPjX6I6wZcpzrST5KmQP67cOIQBPdWnUZ0kBQ3wrnoCiH1+jPudnfT8uKMVP7v7S3c+tYW3pw9mjEJoQoCWp67uztRUVG0tsqkR9Gem5ub3V+xaWhpYG7OXDYf28zfL/47WX2yVEdqr++loHWHolUw+lbVaUQHSXEjnEd9FdSVn3NPKU93La9cP4Kb38zjpqV53HlpEtNSoukV7GvjoJan0WgcuvuscE36Bj33rr2XkuoS/j3p36T1TFMd6UzeAeb5NvtWSHHjQOyipH/55ZeJj4/H29ubMWPGkJt7/pnpH3/8Mf3798fb25shQ4bw1Vdf2SipsGv6AvPteTbM9PZwY/GskWQOiuL5b/Yx/um1XPPKBt7ccJCKk002CiqEazKZTBSdKOK1na9x/VfXk/FxBkfqjvBG1hv2WdiclpQJB76H5nrVSUQHKd9b6sMPP2TWrFksWrSIMWPG8Pzzz/Pxxx+zd+9eIiIizjh+w4YNXHzxxSxYsICpU6fy3nvv8fTTT7Nt2zYGDx58wfPJ3lJObNMiWD0P/nwU3C58UbKuqZVvCnV8seMo3+2rwGgyMa5vGFek9CRzUBSBvnIlRIjuajG0sEW3heyybHIO53Ck7gg+7j6k90xnQuwELom9RN1S746qLIaXRsDv34f+v1KdRnSA8uJmzJgxjBo1ipdeegkAo9FIbGwsd911Fw899NAZx0+fPp36+nq+/PLLtvvGjh3LsGHDWLRo0QXPJ8WNE/viLji6HW5f1+mnnqhvZkVBOV/kH2XTgSrctRomJEdwxbCeZAyIwNdTRnCF6Kjqxmq+P/I92WXZbDi6gbqWOqJ6RDGh1wQmxk5kVNQovNy8VMfsnBdToc/FMO0F1UlEBygtbpqbm/H19eWTTz7hqquuarv/hhtuoLq6mv/9739nPCcuLo65c+dy7733tt03f/58Pv/8c3bs2HHG8U1NTTQ1/TTcUFNTQ1xcHIOeTcLNxzH6PohO0GjNk/+6yWg0YTA5ZgM0IVTTaM19l4yNMRjr+2Gs74+pOQpw3FYFf9S+x/Vuq2k2yS86Knn++SD+/v4XbBOg9FOqrKzEYDAQGdm+70hkZCR79uw563PKy8vPenx5eflZj1+wYAF/+9vfzri/4I9FXUwthBCiY3YDzrHx5B0/fgnFnu7YyIvTl6APP/wwc+fObfuz0Wjk+PHjhIaGWrRBVG1tLbGxsZSVlclwlwOQz8txyGflWOTzciyO+Hn5+/tf8BilxU1YWBhubm7odLp29+t0OqKizr5JWlRUVKeO9/Lywsur/dhuUFBQ10NfQEBAgMN8gwj5vByJfFaORT4vx+Jsn5fSpeCenp6MGDGCNWvWtN1nNBpZs2YNaWlnXxaYlpbW7niA1atXn/N4IYQQQrgW5cNSc+fO5YYbbmDkyJGMHj2a559/nvr6embPng3ArFmziImJYcGCBQDcc889TJgwgWeffZbLL7+cDz74gC1btvDqq6+qfBtCCCGEsBPKi5vp06dTUVHBvHnzKC8vZ9iwYaxYsaJt0nBpaWm79uHjxo3jvffe45FHHuHPf/4zSUlJfP755x3qcWNNXl5ezJ8//4whMGGf5PNyHPJZORb5vByLs35eyvvcCCGEEEJYkl1svyCEEEIIYSlS3AghhBDCqUhxI4QQQginIsWNEEIIIZyKFDedsGDBAkaNGoW/vz8RERFcddVV7N27t90xjY2N3HHHHYSGhuLn58c111xzRtNBYRuvvPIKQ4cObWtOlZaWxtdff932uHxW9mvhwoVoNJp2e8jJ52Vf/vrXv6LRaNp99e/fv+1x+bzsy5EjR7j++usJDQ3Fx8eHIUOGsGXLlrbHTSYT8+bNIzo6Gh8fHzIyMigqctxtiqS46YScnBzuuOMONm3axOrVq2lpaWHKlCnU19e3HXPfffexbNkyPv74Y3Jycjh69Ci//vWvFaZ2Xb169WLhwoVs3bqVLVu2cOmll3LllVdSUFAAyGdlr/Ly8vjPf/7D0KFD290vn5f9GTRoEMeOHWv7WrduXdtj8nnZjxMnTpCeno6Hhwdff/01hYWFPPvsswQHB7cd8/e//50XX3yRRYsWsXnzZnr06EFmZiaNjY0Kk3eDSXSZXq83AaacnByTyWQyVVdXmzw8PEwff/xx2zG7d+82AaaNGzeqiil+Jjg42PTaa6/JZ2WnTp48aUpKSjKtXr3aNGHCBNM999xjMpnk75Y9mj9/viklJeWsj8nnZV8efPBB0/jx48/5uNFoNEVFRZn+8Y9/tN1XXV1t8vLyMr3//vu2iGhxcuWmG2pqagAICQkBYOvWrbS0tJCRkdF2TP/+/YmLi2Pjxo1KMgozg8HABx98QH19PWlpafJZ2ak77riDyy+/vN3nAvJ3y14VFRXRs2dPEhISuO666ygtLQXk87I3X3zxBSNHjuS3v/0tERERpKamsnjx4rbHDxw4QHl5ebvPKzAwkDFjxjjs5yXFTRcZjUbuvfde0tPT27ojl5eX4+npecbGnJGRkZSXlytIKXbu3Imfnx9eXl7cfvvtfPbZZwwcOFA+Kzv0wQcfsG3btratVn5OPi/7M2bMGJYuXcqKFSt45ZVXOHDgABdddBEnT56Uz8vO7N+/n1deeYWkpCRWrlzJnDlzuPvuu3nzzTcB2j6T0zsDnObIn5fy7Rcc1R133MGuXbvajTEL+9OvXz/y8/Opqanhk08+4YYbbiAnJ0d1LPELZWVl3HPPPaxevRpvb2/VcUQHXHbZZW3/PXToUMaMGUPv3r356KOP8PHxUZhM/JLRaGTkyJE89dRTAKSmprJr1y4WLVrEDTfcoDiddciVmy648847+fLLL1m7di29evVquz8qKorm5maqq6vbHa/T6YiKirJxSgHmnecTExMZMWIECxYsICUlhRdeeEE+KzuzdetW9Ho9w4cPx93dHXd3d3JycnjxxRdxd3cnMjJSPi87FxQURHJyMsXFxfL3y85ER0czcODAdvcNGDCgbRjx9Gfyy9Vsjvx5SXHTCSaTiTvvvJPPPvuMb7/9lj59+rR7fMSIEXh4eLBmzZq2+/bu3UtpaSlpaWm2jivOwmg00tTUJJ+VnZk0aRI7d+4kPz+/7WvkyJFcd911bf8tn5d9q6uro6SkhOjoaPn7ZWfS09PPaFuyb98+evfuDUCfPn2Iiopq93nV1tayefNmx/28VM9odiRz5swxBQYGmrKzs03Hjh1r+2poaGg75vbbbzfFxcWZvv32W9OWLVtMaWlpprS0NIWpXddDDz1kysnJMR04cMD0ww8/mB566CGTRqMxrVq1ymQyyWdl736+Wspkks/L3vzxj380ZWdnmw4cOGBav369KSMjwxQWFmbS6/Umk0k+L3uSm5trcnd3Nz355JOmoqIi07vvvmvy9fU1vfPOO23HLFy40BQUFGT63//+Z/rhhx9MV155palPnz6mU6dOKUzedVLcdAJw1q833nij7ZhTp06Z/vCHP5iCg4NNvr6+pquvvtp07NgxdaFd2E033WTq3bu3ydPT0xQeHm6aNGlSW2FjMslnZe9+WdzI52Vfpk+fboqOjjZ5enqaYmJiTNOnTzcVFxe3PS6fl31ZtmyZafDgwSYvLy9T//79Ta+++mq7x41Go+nRRx81RUZGmry8vEyTJk0y7d27V1Ha7tOYTCaTyitHQgghhBCWJHNuhBBCCOFUpLgRQgghhFOR4kYIIYQQTkWKGyGEEEI4FSluhBBCCOFUpLgRQgghhFOR4kYIIYQQTkWKGyGEEEI4FSluhBBCCOFUpLgRQgghhFOR4kYIIYQQTkWKGyGE3VuxYgXjx48nKCiI0NBQpk6dSklJSdvjGzZsYNiwYXh7ezNy5Eg+//xzNBoN+fn5bcfs2rWLyy67DD8/PyIjI5k5cyaVlZUK3o0QwtqkuBFC2L36+nrmzp3Lli1bWLNmDVqtlquvvhqj0UhtbS3Tpk1jyJAhbNu2jccff5wHH3yw3fOrq6u59NJLSU1NZcuWLaxYsQKdTsfvfvc7Re9ICGFNsiu4EMLhVFZWEh4ezs6dO1m3bh2PPPIIhw8fxtvbG4DXXnuNW2+9le3btzNs2DCeeOIJvv/+e1auXNn2GocPHyY2Npa9e/eSnJys6q0IIaxArtwIIexeUVERM2bMICEhgYCAAOLj4wEoLS1l7969DB06tK2wARg9enS75+/YsYO1a9fi5+fX9tW/f3+AdsNbQgjn4K46gBBCXMi0adPo3bs3ixcvpmfPnhiNRgYPHkxzc3OHnl9XV8e0adN4+umnz3gsOjra0nGFEIpJcSOEsGtVVVXs3buXxYsXc9FFFwGwbt26tsf79evHO++8Q1NTE15eXgDk5eW1e43hw4fz3//+l/j4eNzd5ceeEM5OhqWEEHYtODiY0NBQXn31VYqLi/n222+ZO3du2+PXXnstRqOR2267jd27d7Ny5UqeeeYZADQaDQB33HEHx48fZ8aMGeTl5VFSUsLKlSuZPXs2BoNByfsSQliPFDdCCLum1Wr54IMP2Lp1K4MHD+a+++7jH//4R9vjAQEBLFu2jPz8fIYNG8Zf/vIX5s2bB9A2D6dnz56sX78eg8HAlClTGDJkCPfeey9BQUFotfJjUAhnI6ulhBBO591332X27NnU1NTg4+OjOo4QwsZk8FkI4fDeeustEhISiImJYceOHTz44IP87ne/k8JGCBclxY0QwuGVl5czb948ysvLiY6O5re//S1PPvmk6lhCCEVkWEoIIYQQTkVm0gkhhBDCqUhxI4QQQginIsWNEEIIIZyKFDdCCCGEcCpS3AghhBDCqUhxI4QQQginIsWNEEIIIZyKFDdCCCGEcCr/D2Ihdj+Lky2BAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpJElEQVR4nO3dd3iTVcMG8DtpmqR70za17A2dIFBQ4BUUxYF+r4qggIgoCAhUZShDZfqqgAKyURwILhAFUUSKAmUIlE1lWqSLAk060zbJ90dopNBCmiY5GffvunrFphl3Y2jvnuc850gMBoMBRERERC5CKjoAERERkTWx3BAREZFLYbkhIiIil8JyQ0RERC6F5YaIiIhcCssNERERuRSWGyIiInIpLDdERETkUlhuiIiIyKW4XbkxGAzQaDTgwsxERESuSWi5+f333/Hwww9DpVJBIpFg/fr1t71PSkoKEhMToVAo0LRpU3zyySe1es6CggIEBASgoKDAstBERETk0ISWm6KiIsTFxWHhwoVm3f7cuXN48MEH8Z///AdpaWkYM2YMnn/+efz88882TkpERETOQuIoG2dKJBKsW7cOjz76aI23GT9+PDZu3IijR4+arnvqqaeQn5+PzZs3m/U8Go0GAQEBUKvV8Pf3r2tsIiIicjAy0QFqIzU1FT179qxyXa9evTBmzJga76PVaqHVak2fazQaW8WrmytngVV9gPLim78mkVRzh2quM/d2tnhMs29XbZjqrhSTUeoB3D8baPKf6jMREZHDc6pyk52djfDw8CrXhYeHQ6PRoKSkBF5eXjfdZ9asWXjrrbfsFdFyl9IBdQZw9yuAp/cNX6xmcK3a8bbqblfdDV34dnV9zKPfAsfXs9wQETkAvUGPvzV/40jeERy/fBwTOkww635OVW4sMXHiRCQnJ5s+12g0iI6OFpioBqXXRpS6jgM8lWKzuLOSfCDzoOgURERuqVxfjqN5R7E7czcO5h7E0ctHUVBmPAGogX8Dsx/HqcpNREQEcnJyqlyXk5MDf3//akdtAEChUEChUNgjXt2UqgEPOYuNaFEJwOE1QHkp/18QEdlBZmEmtl3YhtTMVOzL3ofiimL4yf2QWC8Rg1oPQkxYDNqGtoW/3Px5sk5VbpKSkrBp06Yq123ZsgVJSUmCEllRqRpQBohOQaoEQF8B5BwD7mgnOg0RkUs6m38WWzO24teMX3H88nF4Sj2RWC8RQ2OHolNkJ7QKbgUPqYfFjy+03BQWFuL06dOmz8+dO4e0tDQEBwejfv36mDhxIi5evIhPP/0UADBs2DAsWLAA48aNw3PPPYfffvsNX331FTZu3CjqW7Ce0nyWG0cQ3haQegKZB1huiIis6HLJZWw6twnfn/4e6VfT4SXzQtc7umJwm8G4K+ou+Mp9rfZcQsvNn3/+if/859+Jm5VzYwYNGoRPPvkEWVlZyMjIMH29UaNG2LhxI8aOHYsPPvgAd9xxB5YvX45evXrZPbvVceTGMcgUQHgbzrshIrICnV6H7f9sx7rT67Djnx2ABPhP9H/wUvxL6BLVBQoP20wbcZh1buzFYde5+WogoC0ABqwTnYR+HAv8nQqM2C06CRGRU1Jr1fju1HdYm74WFwsvonVIazza9FE80PABBCoDbf78TjXnxqWVqgE7/A8nM6gSgP2fANpCQGG9YVIiIld3Xn0eq46vwo9nfoTOoMMDjR7A+93fR5uQNnbNwXLjKErVQKD5p7mRDakSAIMeyD4MNOgsOg0RkcNLv5KO5UeW4+fzPyPUKxTPxzyPx5s/jhCvECF5WG4cBefcOI6wVoBMaZx3w3JDRFSjY3nHsPjwYqRcSEGUbxQmdZqEPk372GwujblYbhwFy43j8JABEbHAxQOikxAROaS/NX/jwwMf4pe/f0FD/4aY3mU6ejfuDU+pp+hoAFhuHIPBYFyhmOXGcUQlAqe2iE5BRORQ8krysPjQYnz717cI8QrBtC7T8HDjh+u0Jo0tsNw4gvISQF/OcuNIVAnAnsXG7Ri8AkWnISISqkxXhlXHVmHZkWXwlHpidOJoPNXyKShljrmSO8uNIyhVGy9ZbhyHKtF4mZUGNO4uMgkRkVB//PMHZu+djczCTDzd6mkMjR2KAIVj/75iuXEELDeOJ6QpIPczzrthuSEiN3Sh4AL+t+9/SLmQgo6RHTH/nvloHNhYdCyzsNw4ApYbxyOVAqp4rlRMRG5Hp9fhs+OfYUHaAgQqAvFet/dwX4P7IJFIREczG8uNI9BqjJcsN45FFQ8cWy86BRGR3Zy6egpTdk7BscvH8HSrpzEqYRS8Pb1Fx6o1lhtHUDlyo3Cg7SDIOO9m13yg8BLgGyY6DRGRzZTryrH8yHIsPbIU9f3q49MHPkV8vXjRsSzGcuMISvMBiQcg9xGdhK6nSjBeZh4Emt8nNgsRkY2czT+L8X+Mx+mrp/FczHN4MfZFyD3komPViVR0AMK/C/g50fFMtxDUEPAK4rwbInJJBoMBa0+uxZM/PgmtTosvHvwCoxJGOX2xAThy4xi4OrFjkkiMozeZXKmYiFzL5ZLLmLprKrb/sx19W/TFK+1fgZfMS3Qsq2G5cQRcndhxqRKBg58ZV5HmyBoRuYDUzFRM/GMiDDBgwT0L0C26m+hIVsfDUo6gVA0oOZnYIakSgMIcQJMpOgkRUZ3oDXosObQEL255Ec2DmuPbR751yWIDcOTGMfCwlOOKurZSceZBICBKbBYiIguptWpM/GMidlzcgWFxw/Bi7IsOtx+UNbHcOIJSNeAfKToFVccvEvANN867afWQ6DRERLV2LO8YklOSUVRRhEU9F6FLVBfRkWyOh6UcQakaUAaKTkHVkUiM8254xhQROaH1p9djwE8DEOIVgq8f+totig3AcuMYtJxQ7NBUCcZyYzCITkJEZBadXof3/3wfk3dOxiNNHsEn93+CSF/3OULAw1KOoFTN1YkdWVQiUHIVuHoeCG4kOg0R0S0VlhVi3O/jsDNzJyZ0mID+Lfs71b5Q1sByI1p5KVBRypEbR2ZaqfgAyw0RObQLmgsY9dso5Bbn4qMeH7nNYagb8bCUaNw00/H5hAIB9TnvhogcWlpuGvpv6o9yfTk+f/Bzty02AMuNeJWbZrLcODZVPHCR5YaIHNNvGb/h+V+eR+OAxlj94Go0DmgsOpJQLDeilXLkxilEJQJZaYBeLzoJEVEVX6V/hbEpY9H1jq5Yet9SBCj4+4RzbkQrzTdecoVix6ZKAMoKgcungLAWotMQEcFgMGD+wflYdmQZnm71NMbdOQ5SCccsAJYb8XhYyjlExhsvMw+y3BCRcBX6Cry56018f+Z7vNLuFQxqM8jtzoi6FVY80UrVACSA3E90EroVr0AguAknFRORcGW6Mry2/TVsPLsRs++ejWfbPsticwOO3Iim1RgPSUnZMx1eVCJw8YDoFETkxkoqSjB221jsy96Hef+Z57IbX9YVf6OKxk0znYcqAcg+DOgqRCchIjdUWFaI4b8Ox4HcA1jYcyGLzS2w3IhWqgY4s905qBKNCy5eOiE6CRG5GbVWjaG/DMVfV/7C0nuXolNkJ9GRHBrLjWgcuXEekbGARMp5N0RkV1dLr+K5n5/DP4X/YHmv5YivFy86ksNjuRGN5cZ5yH2AsJacd0NEdpNfmo/nf3keeSV5+LjXx2gd0lp0JKfAciNaKXcEdyqVO4QTEdmYWqvG0C1DkVeShxX3rUDToKaiIzkNlhvROHLjXFQJQM4xoEIrOgkRubDKOTY5RTlYdt8yFptaYrkRrVTN1YmdiSoR0JcDOUdFJyEiF6Up02DYlmHILMrEsvuWoXlQc9GRnA7LjWgcuXEuEW0BqSfn3RCRTRSVF2H4luHIKMjAsnuXoUUwV0S3BBfxE0lXDpQXsdw4E5kCCG8NZKaJTkJELkar02L0b6NxVn0Wy3stR6uQVqIjOS2WG5G0BcZLlhvnokoALuwVnYKIXEiFvgLjto9D2qU0LLl3CdqEtBEdyanxsJRIlTuCKzjnxqmoEoFLJ4GyItFJiMgF6A16vLnrTfz+z++Y030O2oW3Ex3J6bHciMQdwZ2TKgEw6IGsw6KTEJGTMxgMeO/P97DhzAbMuGsGut7RVXQkl8ByIxLLjXOq1wqQKbneDRHV2bIjy/DZ8c/wesfX0btxb9FxXAbLjUgsN87JwxOIiAEyecYUEVnum7++wfyD8zEyfiSeavmU6DguheVGpFKN8ZJzbpyPKpEjN0Rksd//+R3Td0/HUy2ewguxL4iO43JYbkQqVQNyX8CDJ605HVUCcPk0UJIvOgkROZljl4/h1e2vousdXTGhwwRIJBLRkVwOy41IXMDPeUUlGi+zDonNQURO5WLhRYzcOhJNA5vina7vwEPqITqSS2K5EYnlxnmFNDWOunHeDRGZSa1V46VfX4LSQ4n598yHl8xLdCSXxeMhIrHcOC+pBxAZz3k3RGSWMl0ZRm8bjSulV/DZA58hxCtEdCSXxpEbkbQalhtnpooHLrLcENGtGQwGTNk1BUcuHcH8e+ajYUBD0ZFcHsuNSKVqninlzKISAXUGUJQnOgkRObAVR1dg49mNmHHXDMTXixcdxy2w3IjEw1LOTZVgvOShKSKqwW8Zv+HDAx9iWNww3N/oftFx3AbLjUgsN84tqBGgDGS5IaJqpV9Jx4Q/JqBng54YHjdcdBy3wnIjEsuNc5NIjKM3F3nGFBFVdbnkMl7+7WU08G+A6V2mQyrhr1t74qstil4PaAtYbpxdFFcqJqKqynRlSE5JhlanxYf/+RDent6iI7kdlhtRtBoABkDJCcVOTZUAFGYDmkzRSYjIARgMBkzfPR1H8o5g3n/mIdI3UnQkt8RyIwo3zXQNqmsrFXP0hogAfJX+FdadXoepSVN5ZpRALDeisNy4Bn8V4FOP826ICGm5aZi9bzb6teyHPk37iI7j1lhuRDGVm0ChMaiOJBLOuyEi5JXk4ZWUV9A2pC1ea/+a6Dhuj+VGFK3GeMmRG+enSjDuMWUwiE5CRAJU6Cvw2vbXoIce73d/H54enqIjuT2WG1EqR264QrHzUyUCJVeB/L9FJyEiAebun4u03DS81+091POuJzoOgeVGnFI1IPMCZHLRSaiuKlcq5rwbIrez+dxmfHr8U7zS/hW0C28nOg5dw3IjChfwcx2+YUBANOfdELmZM/lnMGXXFPRu1BtPt3padBy6jvBys3DhQjRs2BBKpRIdO3bE3r17b3n7efPmoUWLFvDy8kJ0dDTGjh2L0tJSO6W1IpYb16KKZ7khciPF5cV4JeUVRPlGYWrSVEgkEtGR6DpCy83atWuRnJyMqVOn4sCBA4iLi0OvXr2Qm5tb7e1Xr16NCRMmYOrUqThx4gRWrFiBtWvX4vXXX7dzciso1bDcuBJVIpCZZlx5mohc3qy9s5BZlIn3u73PFYgdkNByM2fOHAwdOhSDBw9G69atsXjxYnh7e2PlypXV3n7Xrl3o0qUL+vfvj4YNG+K+++5Dv379bjva45BK87k6sStRJQBlBcCVM6KTEJGN/XDmB6w/vR5vdHwDjQMbi45D1RBWbsrKyrB//3707Nnz3zBSKXr27InU1NRq79O5c2fs37/fVGbOnj2LTZs2oXfv3jU+j1arhUajqfLhEHhYyrWo4o2XnFRM5NLOqs9i2u5peKTJI1yoz4EJKzd5eXnQ6XQIDw+vcn14eDiys7OrvU///v3x9ttv46677oKnpyeaNGmC7t273/Kw1KxZsxAQEGD6iI6Otur3YTGWG9fiFQQEN+a8GyIXVlpRile3v4oInwi80fEN0XHoFoRPKK6NlJQUzJw5Ex999BEOHDiA7777Dhs3bsS0adNqvM/EiROhVqtNHxcuXLBj4ltguXE9qkTjYn5E5JJm752NDE0G3uv2HufZODiZqCcODQ2Fh4cHcnJyqlyfk5ODiIiIau8zefJkDBgwAM8//zwAICYmBkVFRXjhhRfwxhtvQCq9uaspFAooFArrfwN1peWEYpejSgBObgR0FYCHsH9aRGQDm85uwrenvsWbSW+ieVBz0XHoNoSN3MjlcrRr1w5bt241XafX67F161YkJSVVe5/i4uKbCoyHhwcA4zbzTsNgMI7ccHVi1xKVCFSUAJdOik5CRFZ0oeAC3t79Nno36o3/a/Z/ouOQGYT+eZmcnIxBgwahffv26NChA+bNm4eioiIMHjwYADBw4EBERUVh1qxZAICHH34Yc+bMQUJCAjp27IjTp09j8uTJePjhh00lxymUFQIGPUduXE1ELCCRGufdRLQVnYaIrKBCX4GJf0xEoCIQkztN5no2TkJouenbty8uXbqEKVOmIDs7G/Hx8di8ebNpknFGRkaVkZpJkyZBIpFg0qRJuHjxIsLCwvDwww9jxowZor4Fy3BHcNek8AVCWxjn3SQOEJ2GiKxg2eFlOJJ3BKvuXwVfua/oOGQmicGpjufUnUajQUBAANRqNfz9BR0WyjkOLEoChvwKRN8pJgPZxrrhwKUTwAspopMQUR2l5aZh0OZBeDH2RbwU/5LoOFQLTnW2lMswjdzwsJTLiUoEso8CFVrRSYioDgrLCjHhjwloG9oWL8S+IDoO1RLLjQimcsMJxS5HlQDoy4GcY6KTEFEdzNo7C1dLr2L2XbMhk/LsR2fDciMCR25cV3hbQCrjejdETmzz+c3YcGYDJnaciGh/B1n4lWqF5UaEUjXgIQdkStFJyNo8lUC91lypmMhJZRdl4+3Ut3Ffg/vQpwm3V3BWLDciaK+tTsxTCl2TKgG4yHJD5Gz0Bj0m7ZwEL5kXpiRN4WnfTozlRgRuveDaohKNZ0yVFYtOQkS18FX6V9iTtQfTOk9DgII/o50Zy40IXJ3YtakSjIs0Zh8WnYSIzHRBcwFz9s/BE82fQOeozqLjUB2x3IjAkRvXVq814KHgvBsiJ1F5OCpYGYxX2r8iOg5ZAc9vE6FUzdWJXZmHJxARA1zkGVNEzuCLE1/gQO4BrOy1Ej6ePqLjkBVw5EaEUu4I7vKiEjlyQ+QEzqnP4YMDH+CZVs/gzgiuGO8qWG5E4GEp16dKAC6f+ndNIyJyODq9DpN2TkKETwReTnxZdByyIpYbEUrVXJ3Y1akSjZdZh8TmIKIafXLsExzNO4rpXabDS+YlOg5ZEcuNvRkMnHPjDkKbAZ4+nHdD5KBOXz2NhWkLMajNIMTXixcdh6yM5cbeykuMew/xsJRrk3oAqnjOuyFyQDq9DlN3TcUdfndgRPwI0XHIBni2lL1pNcZLlhvXp0oATmwQnYKIbvDlyS9xJO8IVj2wCgoPheg4ZAMcubE3bprpPlQJQH4GUHRZdBIiuuZi4UV8ePBD9G3RFwn1EkTHIRthubG3ynLDFYpdn+raD04emiJyCAaDAW+nvo0ARQDGtBsjOg7ZEMuNvXHkxn0ENzb+f2a5IXIIP5z9Absyd2Fyp8lcrM/FsdzYG8uN+5BIjKM3mTxjiki0yyWX8b99/0PvRr3R9Y6uouOQjbHc2FupGpB4AHL+1eAWVFypmMgRzN47GxJIML7DeNFRyA5YbuytcnViiUR0ErIHVQJQkAVoskQnIXJb2zK2YfP5zRjfYTyClcGi45AdsNzYG1cndi9R11Yq5ugNkRCFZYWYvmc67oq6Cw82elB0HLITlht7475S7sU/CvAJ47wbIkEWpC1AQVkBpnSaAglHzN0Gy429sdy4F4mE826IBDl++Ti+PPklXop7CZG+kaLjkB2x3NibVsNy425UCcY9pgwG0UmI3IZOr8O01GloEtgET7d+WnQcsjOWG3vjyI37iUoESq4YVysmIrv4+q+vcfTyUUzpNAWeUk/RccjOWG7srVQNKFhu3IpppWLOuyGyh7ySPHx44EP8t9l/ueO3m2K5sTeO3Lgf33qA/x2cd0NkJ+/uexcyqQxj240VHYUEcdtyU1ahF/PELDfuSRVvnHdDRDaVmpmKTec24ZX2ryCAo+Ruy23LTWFpuf2ftEILVJSy3LijqEQg6xCgF1SqidyAVqfFjD0z0D68PR5p8ojoOCSQ25YbjbbC/k9aqjFesty4H1WC8Uy5K2dFJyFyWSuPrsTFwouY3Gky17Rxc25bbgpKBIzcmDbN5ArFboeTiols6kLBBSw/vBzPtnkWjQMbi45DgrltudGUihi54Y7gbssrCAhqxEnFRDbyv33/Q7BXMF6IfUF0FHIAbltuCkTMuSnNN16y3LinqEROKiaygR0XdyDlQgpebf8qvGReouOQA3DbciNk5EbLOTduTZUAZB8GdALee0QuqlxXjnf2voMOER1wX4P7RMchB+G25UbMyI0agASQ+9n/uUk8VSJQXgzkpYtOQuQyPj/xOS4UXMCEDhM4iZhM3LfclAiac6PwB6Ru+7K7t8hYABLOuyGyktziXCw+tBhPtXwKzYKaiY5DDsRtf8sWaAWN3PCQlPtS+AFhLTjvhshK5u6fC6VMiZfiXxIdhRyM+5YbUSM3LDfuTZXAkRsiKziYexA/nv0RoxNHw1/O5TWoKrctNxohIzcalht3p0oAco4CFWWikxA5LZ1eh5l7ZqJNSBs82vRR0XHIAbltueHIDQmhSgR0ZUDuMdFJiJzWt6e+xckrJ/F6x9chlbjtrzG6Bbd9VxQI2X5BzdWJ3V1EW0Aq47wbIguptWp8ePBD9GnSB7FhsaLjkINy33IjavsFjty4N08voF4rzrshstDiQ4tRrivHmHZjREchB+a25UbMxpksNwROKiay0Hn1eaw5uQbPxzyPUK9Q0XHIgbltudGW66Gt0Nn5STmhmGCcd5N7AigrFp2EyKnM2T8HYd5hGNB6gOgo5ODcttwAgMaek4p1FUBZIcsNGUduDDog+4joJEROY2/WXmy7sA1jEsdAKVOKjkMOzr3LjT23YKjcV0rBCcVur15rwEPBQ1NEZtLpdXj3z3cRGxaLBxo9IDoOOQGZ6AAiaew5qZg7glMlmdx41lQmz5giMseGMxtw8spJfPbAZ9w/iszi5iM3djwsVcodwek6qkSO3BCZobi8GB8e/BAPNHwA8fXiRcchJ+He5cauIzdq4yXLDQHGeTd5p/4tvURUrZVHV0Kj1fDUb6oVty03Uomd59yw3ND1ohIBGICsQ6KTEDms7KJsrDq2CgPbDITKVyU6DjkRty03fkqZfc+Wqiw3nFBMABDaHPD04bwbolv44MAH8Pb0xpC2Q0RHISfjxuXG0/4jN3JfwMOt53BTJakHEBnHeTdENTh2+Rh+PPsjRiaMhK/cV3QccjJuXG5k9p1zwwX86EaqBO4xRVQNg8GAuX/ORZOAJnis6WOi45ATctty46/0tPPZUtx6gW4QlQjk/w0UXxGdhMih7MrchT3ZezCm3RjIpBztptpz23Jj95Eblhu6kSrBeMl5N0QmeoMec/fPRWK9RHS7o5voOOSk3Lbc+Cpk9p9zw8nEdL3gxoAigPNuiK6z8exGpF9Nx9h2Y7lgH1nMfcuN0hOFPCxFIkkkgCoeuMhyQwQAWp0W8w/OR4/6PbhgH9WJ+5YbhQyFWjuvUMxyQzeK4krFRJXWnFyD3OJcjE4cLToKOTk3LjceKODIDYmmSgAKMoGCbNFJiITSlGmw7Mgy/F+z/0OjgEai45CTc+NyYxy50esN9nlClhuqjirReMnRG3JzK4+sRJmuDMPjhouOQi7AfcuN0nh6YVGZHUZv9Ppr69xwQjHdIOAOwDuU692QW8suysbnJz7HgNYDEOYdJjoOuQDh5WbhwoVo2LAhlEolOnbsiL17997y9vn5+RgxYgQiIyOhUCjQvHlzbNq0qdbP66Mwlhu7HJrSagAYOHJDN5NIOO+G3N6iQ4vgLfPG4DaDRUchF2Fxudm6dSseeughNGnSBE2aNMFDDz2EX3/9tVaPsXbtWiQnJ2Pq1Kk4cOAA4uLi0KtXL+Tm5lZ7+7KyMtx77704f/48vvnmG6Snp2PZsmWIioqqdX7fa+XGLpOKtdd2fma5oeqoEoxr3RjsdIiUyIGcyT+D9afX48W4F7nNAlmNReXmo48+wv333w8/Pz+MHj0ao0ePhr+/P3r37o2FCxea/Thz5szB0KFDMXjwYLRu3RqLFy+Gt7c3Vq5cWe3tV65ciStXrmD9+vXo0qULGjZsiG7duiEuLq7W34Of0o4jN9wRnG5FlQgUXwbUF0QnIbK7BQcXINInEk82f1J0FHIhFpWbmTNnYu7cufjyyy/x8ssv4+WXX8bq1asxd+5czJw506zHKCsrw/79+9GzZ89/w0il6NmzJ1JTU6u9z4YNG5CUlIQRI0YgPDwcbdu2xcyZM6HT6Wp8Hq1WC41GU+UDAHzkleXGDgv5mcpNoO2fi5xP5UrFnHdDbubY5WP4NeNXDI8bDk8PT9FxyIVYVG7y8/Nx//3333T9fffdB7VabdZj5OXlQafTITw8vMr14eHhyM6u/rTYs2fP4ptvvoFOp8OmTZswefJkvP/++5g+fXqNzzNr1iwEBASYPqKjowH8O6HYLoelKssNVyim6viFA/5RnHdDbmf+wfloFNAIDzV+SHQUcjEWlZtHHnkE69atu+n677//Hg89ZLs3qV6vR7169bB06VK0a9cOffv2xRtvvIHFixfXeJ+JEydCrVabPi5cMA79V47c2GWVYtPIDcsN1UCVwHJDbuVAzgHsvLgTI+JHwEPqIToOuRiLtltt3bo1ZsyYgZSUFCQlJQEAdu/ejZ07d+KVV17Bhx9+aLrtyy+/XO1jhIaGwsPDAzk5OVWuz8nJQURERLX3iYyMhKenJzw8/v2H0KpVK2RnZ6OsrAxyufym+ygUCigUipuul0ol8FXI7DTnRgPIvADZzTmIABjLzc4PjcsGSIWfxEhkUwaDAR8e/BAtg1vi3gb3io5DLsiicrNixQoEBQXh+PHjOH78uOn6wMBArFixwvS5RCKpsdzI5XK0a9cOW7duxaOPPgrAODKzdetWjBw5str7dOnSBatXr4Zer4f02i+Av/76C5GRkdUWm9vxU8pQYK/DUpxMTLeiSgC0auDqOSCkieg0RDaVmpmK/Tn7sbDHQkglLPNkfRaVm3PnzlnlyZOTkzFo0CC0b98eHTp0wLx581BUVITBg41rHQwcOBBRUVGYNWsWAGD48OFYsGABRo8ejVGjRuHUqVOYOXNmjQXqdnwVMvsdlmK5oVu5flIxyw25sMpRm7iwONwddbfoOOSiLCo31tK3b19cunQJU6ZMQXZ2NuLj47F582bTJOOMjAzTCA0AREdH4+eff8bYsWMRGxuLqKgojB49GuPHj7fo+X2VMvudLcX5NnQr3sFAUEPjvJvYJ0SnIbKZ3y78hmOXj2HFfSsgkUhExyEXJTEYzFs5LDk5GdOmTYOPjw+Sk5Nveds5c+ZYJZwtaDQaBAQEQK1WY+Q3J+Ej98CiZ9rZ9knXPA1UlALPfGvb5yHn9vVgoCALeG6z6CRENqHT6/D4D48jxCsEy+9bLjoOuTCzR24OHjyI8vJy03/XxJmauJ9CBo09Rm60GsCH+6XQbagSgJTNgF4H8OwRckGbz2/G6fzTeKvzW6KjkIszu9xs27at2v92Zr4KGf7JL7H9E5WqgZCmtn8ecm5RiUB5MXApHQhvLToNkVWV68vxUdpH6H5Hd8SGxYqOQy7Oraep+yllKLTbnBtOKKbbiIgFIOF6N+SSNpzegIyCDIxMqP5sWCJrsmhCcVFREWbPno2tW7ciNzcXer2+ytfPnj1rlXC25quU2W+FYq5OTLej9AdCmxk30Ux4WnQaIqsp15Vj6eGl6NWwF1oEtxAdh9yAReXm+eefx/bt2zFgwABERkY61Tyb69llET+DwbiIH0duyByqRI7ckMv5/sz3yCrKwsIe5m+sTFQXFpWbn376CRs3bkSXLl2snceu/JWeKC7TQac3wENqo4JWVgQYdCw3ZB5VAnDsO6CiDJDVfmFKIkdTrivHssPL0KthLzQN4txDsg+L5twEBQUhODjY2lnszi6bZ3JHcKqNqERAVwbkHr/9bYmcQOWozYuxL4qOQm7EonIzbdo0TJkyBcXFxdbOY1e+CmO5selCfqZyw5EbMkN4W0DiYZx3Q+TkKkdt7mt4H0dtyK7MPiyVkJBQZW7N6dOnER4ejoYNG8LT07PKbQ8ccI4fzH52HbnhhGIyg9wbqNea827IJWw4swFZRVlY0GOB6CjkZswuN5WbW7oSU7mx5aRijtxQbanigYssN+TcynXlWHbEOGrTLKiZ6DjkZswuN1OnTrVlDiF8FcYRJ5ueMaXVGC9ZbshcUYlA2mqgvATw9BKdhsgiG85sQGZhJubfM190FHJDFs25uXDhAv755x/T53v37sWYMWOwdOlSqwWzh8qRmwJbH5bykAMype2eg1yLKsF4hl32EdFJiCzCURsSzaJy079/f9MWDNnZ2ejZsyf27t2LN954A2+//bZVA9qSt9wDEomtD0vlG0dtnHQtIBKgXhtjIea8G3JSlaM2PEOKRLGo3Bw9ehQdOnQAAHz11VeIiYnBrl278MUXX+CTTz6xZj6bkkgk1xbys/HZUlydmGpDJjeeNXXROSbmE12vXG8ctbm3wb0ctSFhLCo35eXlUCgUAIBff/0VjzzyCACgZcuWyMrKsl46O/BXetr+bCnOt6HaiuJKxeScfjjzAy4WXsSwuGGio5Abs6jctGnTBosXL8Yff/yBLVu24P777wcAZGZmIiQkxKoBbc3mWzBw6wWyhCoByPsL0BaITkJktnK9cQ+p+xpwrg2JZVG5eeedd7BkyRJ0794d/fr1Q1xcHABgw4YNpsNVzsJXaetyw5EbsoAqEYAByDokOgmR2Tad3YSLhRfxYhzn2pBYtd5bymAwoHHjxsjIyEBFRQWCgoJMX3vhhRfg7e1t1YC25qe0w5ybwPq2e3xyTaHNAU9v47ybhneJTkN0Wzq9DsuPLEf36O5oHtRcdBxyc7UeuTEYDGjatCmys7OrFBsAaNiwIerVq2e1cPbgq5ChqMzWIzecUEy15CEDIuM474acxq8Zv+K85jxeiHlBdBSi2pcbqVSKZs2a4fLly7bIY3d+SpltTwXXcs4NWUiVwD2myCkYDAYsO7wMnSI7ISYsRnQcIsvm3MyePRuvvfYajh49au08duerkNluET+D4drITaBtHp9cmyoRuHoeKL4iOgnRLf1x8Q+kX03HC7EctSHHUOs5NwAwcOBAFBcXIy4uDnK5HF5eVZeIv3LFeX4Y+yo8bTdyU1EK6Mo4ckOWUSUYLzMPAk17iM1CVAODwYClh5ciPiwe7cPbi45DBMDCcjNv3jwrxxDHVymz3To3lZtmchE/skRwY0ARwHJDDm1f9j4cunQIC3sshIQrsZODsKjcDBo0yNo5hPFTyFBcpoNOb4CH1Mr/MLkjONWFVAqoOKmYHNvSI0vRKrgV7o66W3QUIhOL5twAwJkzZzBp0iT069cPubm5AICffvoJx44ds1o4e/C9tnmmTUZvSrkjONWRiisVk+M6fOkw9mTtwfMxz3PUhhyKReVm+/btiImJwZ49e/Ddd9+hsLAQAHDo0CFMnTrVqgFtzVdhy3LDkRuqI1UCoLkIFOSITkJ0k2WHl6FRQCP0bNBTdBSiKiwqNxMmTMD06dOxZcsWyOVy0/X33HMPdu/ebbVw9mAaubHFpOLSfOMlyw1ZKirReMnRG3Iw6VfSkfJPCp6PeR5SicUHAYhswqJ35JEjR/DYY4/ddH29evWQl5dX51D25GcaubHBKsWlakDiAch9rP/Y5B4CogHvEK53Qw5n+ZHliPKNwgONHhAdhegmFpWbwMDAanf/PnjwIKKiouocyp4qR25ssr9U5erEPBZNlpJIOO+GHM559Xn8fP5nPNf2OXhKPUXHIbqJReXmqaeewvjx45GdnQ2JRAK9Xo+dO3fi1VdfxcCBA62d0aZsOueGqxOTNagSjHtMGQyikxABAFYcXYFQr1D0adpHdBSiallUbmbOnImWLVsiOjoahYWFaN26Nbp27YrOnTtj0qRJ1s5oUz5yW8654Y7gZAVRiUBxHqD+R3QSImQWZuLHMz9iUJtBUHgoRMchqpZF69zI5XIsW7YMkydPxtGjR1FYWIiEhAQ0a9bM2vlsTiqVwFdho4X8WG7IGq5fqTgwWmwWcnufHPsEPnIfPNH8CdFRiGpkUbmpVL9+fURHG3/YOvMaB74Kme3m3HB1YqorvwjAT2WcVNz6EdFpyI3lleThu1Pf4fmY5+Ht6S06DlGNLD5/b8WKFWjbti2USiWUSiXatm2L5cuXWzOb3dhsCwZumknWokrgpGIS7tPjn0ImlaFfy36ioxDdkkUjN1OmTMGcOXMwatQoJCUlAQBSU1MxduxYZGRk4O2337ZqSFvzVchsNOeGE4rJSqISgF3zjZOKnXiUlJyXWqvG2pNr0a9lPwQo+HONHJtF5WbRokVYtmwZ+vX7t70/8sgjiI2NxahRo5yu3PjZdOSGPwTIClQJxvfTlbNASBPRacgNrT6xGjqDDgNaDxAdhei2LDosVV5ejvbtb97avl27dqiosNEO2zbkq5ChgOWGHJmKKxWTOEXlRfj8xOf4b7P/IsQrRHQcotuyqNwMGDAAixYtuun6pUuX4umnn65zKHszHpay8grFFVqgosS4iB9RXXkHA4ENWG5IiK/Tv0ZxRTEGtx0sOgqRWcw+LJWcnGz6b4lEguXLl+OXX35Bp06dAAB79uxBRkaG0y3iB9hoQjF3BCdri0o0LuZHZEdanRarjq/CI00eQYRPhOg4RGYxu9wcPFj1L8Z27doBAM6cOQMACA0NRWhoKI4dO2bFePbhZ4sJxVqWG7IyVQKQ8g6g1wFSD9FpyE2sO7UOV0qvYEjbIaKjEJnN7HKzbds2W+YQyldpgzk33BGcrE2VAJQXAXl/AfVaiU5DbqBcX46Pj36MXg17ob5/fdFxiMzGfeoB+Co8UaitgMGae/eUqo2XLDdkLZHxxkvOuyE72XR2EzKLMvF8zPOioxDVikWngpeWlmL+/PnYtm0bcnNzodfrq3z9wAHnmhfgq5TBYACKy3TwUdRp0eZ/VZYbrlBM1qL0B0KaGefdxPcXnYZcnE6vw/Ijy9E9ujuaBzUXHYeoViz6TT5kyBD88ssvePzxx9GhQwen3noBMM65AYw7g1u33EhYbsi6ohI5ckN28fP5n3Fecx6z7p4lOgpRrVn0m/zHH3/Epk2b0KVLF2vnEcJXaXwZCkorEG6tLlKqMRYbKY/8kRWpEoBj64GKMkAmF52GXJROr8OSw0twd9TdaBvaVnQcolqz6DdvVFQU/Pz8rJ1FGN/rRm6shgv4kS2oEgGdFrh0QnQScmG//P0LzqrPYnjccNFRiCxiUbl5//33MX78ePz999/WziOEqdxY83RwlhuyhYgYQOLB9W7IZnR6HRYfWoy7ou5CTFiM6DhEFrHosFT79u1RWlqKxo0bw9vbG56enlW+fuXKFauEsxc/ZeXIjRVXKS5Vc3Visj65t/E08MyDALhaLFnflr+34Kz6LKZ1mSY6CpHFLCo3/fr1w8WLFzFz5kyEh4c7/YTiyknEBRy5IWegigcyOXJD1qc36LH40GJ0ieqC2LBY0XGILGZRudm1axdSU1MRFxdn7TxCeHpIofSUWnfOjVYDBDW03uMRVVIlAofWAOUlgKeX6DTkQn75+xecUZ/BW13eEh2FqE4smnPTsmVLlJSUWDuLUL4KT865IeegSgD0FUD2UdFJyIXoDXosObQEXVRdEBfmGn+4kvuyqNzMnj0br7zyClJSUnD58mVoNJoqH87Iz9qbZ7LckK2EtwE85Fzvhqxqy99bcDr/NIbFDRMdhajOLDosdf/99wMAevToUeV6g8EAiUQCnU5X92R25quw8v5SpWou4Ee2IVMYCw7n3ZCVVM616azqjPh68aLjENWZReXGFTfR9LXmzuC6CqCskCM3ZDuqRODvnaJTkIv49e9fcTr/NKYmTRUdhcgqLCo33bp1s3YO4XyteVhKe+3QHMsN2YoqAfhzJaAtABSus6Am2Z/eoMeiQ4uQFJnEURtyGRbvDfDHH3/gmWeeQefOnXHx4kUAwGeffYYdO3ZYLZw9+Vlz5IY7gpOtRSUCMABZh0UnISdXOddmeDxXIybXYVG5+fbbb9GrVy94eXnhwIED0Gq1AAC1Wo2ZM2daNaC9+Cpl0JRaaRE/lhuytdAWgMyL826oTnR6HRamLUSXqC5IqJcgOg6R1VhUbqZPn47Fixdj2bJlVVYn7tKlCw4ccM4ftr4KKx6WMpUbTigmG/GQAZFxPGOK6mTjuY04pz6HUfGjREchsiqLyk16ejq6du160/UBAQHIz8+vayYhrDrnxlRuAq3zeETVUSVwjymyWLmuHB+lfYQe9XugTWgb0XGIrMqichMREYHTp0/fdP2OHTvQuHHjOocSoXLOjcFgqPuDVU4o5qngZEtRicDVc0DJVdFJyAmtO70OmYWZGBE/QnQUIquzqNwMHToUo0ePxp49eyCRSJCZmYkvvvgCr776KoYPd85Jab5KGSr0Bmgr9HV/sFI1IPc1HjogshXVtTkSPDRFtVRaUYolh5bggUYPoFlQM9FxiKzOot++EyZMgF6vR48ePVBcXIyuXbtCoVDg1VdfxahRznns1ldhnDtUUFoBpadH3R6MqxOTPQQ3MY4OZh4EmtwjOg05ka/Sv8Ll0st4Kf4l0VGIbMKiciORSPDGG2/gtddew+nTp1FYWIjWrVvD19fX2vnsxvfazuCF2gqE+Snq9mBcnZjsQSo1TirmvBuqheLyYqw4ugJ9mvZBA/8GouMQ2UStys1zzz1n1u1WrlxZqxALFy7Eu+++i+zsbMTFxWH+/Pno0KHDbe+3Zs0a9OvXD3369MH69etr9Zw38lNeKzfWWOuGIzdkL1GJwJFvRacgJ/L5ic9RUFaAYbHcQ4pcV63m3HzyySfYtm0b8vPzcfXq1Ro/amPt2rVITk7G1KlTceDAAcTFxaFXr17Izc295f3Onz+PV199FXfffXetnq8mleWmQGuFtW5KNSw3ZB+qBEDzD1B4638vRACg1qrxydFP8ETzJxDpGyk6DpHN1GrkZvjw4fjyyy9x7tw5DB48GM888wyCg4PrFGDOnDkYOnQoBg8eDABYvHgxNm7ciJUrV2LChAnV3ken0+Hpp5/GW2+9hT/++OOWp59rtVrTIoMAaty13HRYylojN/6quj8O0e2oEo2XmQeB5r3EZiGHt+rYKpTryzE0dqjoKEQ2VauRm4ULFyIrKwvjxo3DDz/8gOjoaDz55JP4+eefLTqFuqysDPv370fPnj3/DSSVomfPnkhNTa3xfm+//Tbq1auHIUOG3PY5Zs2ahYCAANNHdHR0tbfzVf4756bOeFiK7CWwPuAVzHk3dFuXSy7j8xOfo1+rfgj1ChUdh8iman0quEKhQL9+/bBlyxYcP34cbdq0wUsvvYSGDRuisLCwVo+Vl5cHnU6H8PDwKteHh4cjOzu72vvs2LEDK1aswLJly8x6jokTJ0KtVps+Lly4UP33JfOA3ENqxXLDCcVkBxKJcd4NTwen21h+ZDmkEimea2Pe3EkiZ1anhVikUikkEgkMBgN0Op21MtWooKAAAwYMwLJlyxAaat5fHgqFAgqFeWc/+SplKLDGYSktR27IjlQJwP5VgMFgLDtEN/in4B+sSV+DYbHDEMiV08kN1HrkRqvV4ssvv8S9996L5s2b48iRI1iwYAEyMjJqfSp4aGgoPDw8kJOTU+X6nJwcRERE3HT7M2fO4Pz583j44Ychk8kgk8nw6aefYsOGDZDJZDhz5kxtv50qrLK/lF7PCcVkX6pEoCgX0FwUnYQc1MK0hQiQB2BA6wGioxDZRa1Gbl566SWsWbMG0dHReO655/Dll1+aPYJSHblcjnbt2mHr1q149NFHAQB6vR5bt27FyJEjb7p9y5YtceTIkSrXTZo0CQUFBfjggw9qnE9jLt9rWzDUSVkBAAPLDdnP9SsVB9whNgs5nJNXTmLj2Y2Y1GkSvD29RcchsotalZvFixejfv36aNy4MbZv347t27dXe7vvvvvO7MdMTk7GoEGD0L59e3To0AHz5s1DUVGR6eypgQMHIioqCrNmzYJSqUTbtm2r3D8wMBAAbrreElbZPNO0aSbLDdmJfyTgF2mcVNzqYdFpyMHMOzAP9f3r47Fmj4mOQmQ3tSo3AwcOhMTKx/T79u2LS5cuYcqUKcjOzkZ8fDw2b95smmSckZEBqdSiLbBqzU9hhTk3leVGwXJDdqRK4KRiusmerD3YeXEn3u/2PjylnqLjENmNxGCVbbCdh0ajQUBAANRqNfz9q57RNHrNQeRoSrHmhSTLn+D8TuCT3sDI/UBo0zqmJTLT9neB1AXA+POcVEwAAIPBgH4b+0EqkeKL3l9Y/Q9TIkdmnyERJ2GVCcU8LEUiqBKA0nzg6jnRSchB/PL3Lzh2+RjGthvLYkNuh+XmOr5KK0woNpUbrnNDdlQ5qZiL+RGAcn05PjzwIe6Ouht3RtwpOg6R3bHcXMfPWiM3Mi9AVsedxYlqwyfEuFox590QgO/++g4XCi5gdOJo0VGIhGC5uY6vtSYUc9SGRFBxpWICisuLsejQIjzc5GG0CG4hOg6RECw31/FVekJboUdZhd7yB9FyAT8SRJUAZB0C9LZfLZwc16rjq6Ap02BE/AjRUYiEYbm5TuXO4EV1OTRVms9yQ2KoEoCyQiDvlOgkJMil4kv4+OjH6N+yP1S+KtFxiIRhubmOnzV2BueO4CSKKt54yUNTbmtB2gIoPBR4Ie4F0VGIhGK5uU5luVGXlFv+ICw3JIoyAAhpCmTyjCl3lH4lHetOrcNL8S/BX855f+TeWG6u4680ruCpKa1juVHwBwsJwknFbslgMODdfe+iYUBDPN78cdFxiIRjubmOv9e1clNSl8NSnFBMAqkSgOwjgK4OBZ2czu///I492XvwSrtXuM0CEVhuqvC/dliqziM3LDckSlQiUFEK5J4QnYTspFxfjvf+fA8dIzui6x1dRcchcggsN9eReUjhI/eAxtI5NwYDyw2JFREDSKScd+NGvk7/Gn9r/sZr7V/jNgtE17Dc3CDAy9PyclNWBBh0LDckjtwHCGvFeTduQq1VY9GhRXis2WNcsI/oOiw3N/D38rT8bClumkmOQJXAPabcxLLDy6DVaTEyfqToKEQOheXmBv5KT2gs3YJBqzFestyQSFEJQO5xoLxUdBKyoQuaC/ji5BcY0nYIwrzDRMchcigsNzfwr8thKY7ckCNQJQD6CiDnqOgkZEPv738fIcoQDGwzUHQUIofDcnMDfy8ZD0uRcwtvC0g9Oe/GhaVmpmJrxlYkt0uGl8xLdBwih8Nyc4MAL0/LTwVnuSFHIFMA4W0478ZFlevLMXvvbCTWS8QDjR4QHYfIIclEB3A0/so6TiiWegIypXVDEdVWVCLwd6roFGQDa06uwXnNeax9aC1P/SaqAUdubmA8FdzCCcWVa9zwBw6JpkoA8tIBbaHoJGRFl0su46O0j/BE8yfQMril6DhEDovl5gb+Xp4oKdehrEJf+ztzAT9yFKpEwKAHsg+LTkJW9OHBDyGVSHnqN9FtsNzcoE5bMLDckKMIawnIvDjvxoUczTuKdafWYVTCKAQqA0XHIXJoLDc3CDBtnslyQ07MQwZExvKMKRehN+gxa+8sNAtqxl2/iczAcnODyp3BLZpUXKoGlP5WTkRkIVUC95hyET+c+QGHLx3GhA4TIJPyPBCi22G5uYFp5MaSVYq1Go7ckONQJQJXzgIlV0UnoTooLCvE3P1zcX/D+3FnxJ2i4xA5BZabG/jzsBS5ClWC8TIzTWgMqpvFhxajuKIYr7R/RXQUIqfBcnMDH7kHPKSSOhyWYrkhBxHSFJD7cd6NE0u/ko7PT3yOF2JfQIRPhOg4RE6D5eYGEokE/kpZ7c+WMhiulZtAm+QiqjWpFFDFc96Nk9Ib9Ji+ezoa+DfAoNaDRMchciosN9Xw97JgleKKUkBXBig4oZgciCqBh6Wc1Penv0fapTRM6jQJnh6eouMQORWWm2pYtEpxqcZ4ycNS5EhUCYD6AlB4SXQSqoX80nzM2T8HDzV+iJOIiSzAclMNf6Vn7ScUc9NMckRRicZLzrtxKnMPzIXOoOMkYiILsdxUw6KdwVluyBEFNgC8gllunEhabhq+O/UdRieMRqhXqOg4RE6J5aYa/l4yjtyQa5BIuJifE6nQV2Da7mloG9KWKxET1QHLTTUsmlBcmm+85ArF5GhUCcaRG4NBdBK6jS9OfIHT+acxKWkSPKQeouMQOS2Wm2r4Kz1rv0KxVgNIpIDc1zahiCwVlQgU5gCaTNFJ6Bayi7LxUdpH6NuiL9qEtBEdh8ipsdxUI+DayI2hNn/pVi7gJ5HYLhiRJUwrFXPejaMyGAyYuWcmvD29MSphlOg4RE6P5aYa/l6e0OkNKCrTmX8nrk5MjspfBfhGcN6NA/s141dsu7ANr3d8HX5yP9FxiJwey001gryNC2blF5eZfyeWG3JklfNuyOGotWrM3DMT90Tfg571e4qOQ+QSWG6qEeglBwDkF9diUnGphqsTk+OKSuSkYgc1d/9clFaU4vWOr0PCw9pEVsFyU43AayM3VzlyQ65ClQCUXAWunhedhK6zN2svvj31Lca2G4twn3DRcYhcBstNNYJ8LBm54aaZ5MBMk4o578ZRlFaU4q3Ut5BYL5Fr2hBZGctNNXzkHpBJJZxzQ67DJxQIqM95Nw5k8aHFyCrKwpud34RUwh/FRNbEf1HVkEgkCPSW42qtR25YbsiBqeKBiyw3juDklZP45NgnGBY3DI0CGomOQ+RyWG5qEOTtWbs5N1oNVycmxxaVCGSlAXq96CRurUJfgam7pqJxYGMMbjNYdBwil8RyU4NAb0+ozR25qSgDyos5ckOOTZUAlBUCl0+JTuLWPjn2CU5eOYm3kt6Cp4en6DhELonlpgbGw1JmjtxoNcZLlhtyZJHxxkvOuxHm1NVT+CjtIzzb5lnEhMWIjkPkslhuamA8LGXmyA13BCdn4BUIBDcBLvKMKRHK9eWYtHMS6vvVx0vxL4mOQ+TSZKIDOKpAb7n5O4ObdgRnuSEHV7mYH9ndx0c/RvqVdHze+3MoPBSi4xC5NI7c1CCwNhOKS68dluIKxeToVAlA9mFAV4szAanO0q+kY9GhRRjcdjDahrYVHYfI5bHc1CDo2siNTm/GcvU8LEXOQpUIVJQCl06KTuI2yvXlmLxzMhr6N8TwuOGi4xC5BZabGgR6ecJgADTmHJoqVQOQcOSGHF9kLCCRct6NHS0/shx/Xf0L0++aDrmHXHQcIrfAclODQO9rWzCYW24U/oCULyc5OLkPENaS827s5OSVk1h6aCmGxAxBm5A2ouMQuQ3+Nq5BkE8tNs/k6sTkTFQJ3GPKDsp0ZXhjxxtoFNgIw2KHiY5D5FZYbmoQ6FW5eaYZ5YarE5MzUSUAOceB8lLRSVza/IPzcU59DrPumsXF+ojsjOWmBoHexh9GZu0MzpEbciaqREBfDuQcE53EZe3J2oNVx1bh5YSX0SK4heg4RG6H5aYGSk8PeHl6mLeQH8sNOZOItoDUk4embEStVeONHW/gzog7MbDNQNFxiNwSy80tBHp7mndYiuWGnIlMAYS35qRiGzAYDJi+ezqKK4ox464ZkEr4I5ZIBK5QfAtm7y/FckPORpUIXNgjOoXL2XhuIzaf34x3u76LCJ8I0XGI3Bb/rLiFIG9PM+fcaLjGDTkXVYJxIb+yItFJXEZmYSZm7J6Bhxo/hPsb3S86DpFbY7m5hUCzyw1HbsjJRCUCBj2QdVh0Epeg0+vw+o7X4Sf3w+sdXxcdh8jtsdzcglmHpXQVQFkByw05l7CWgEzJScVWsuLoChzIOYCZd82En9xPdBwit8dycwshPnJcKbpNudFe2zST5YaciYcnEBHLScVWcCDnABamLcQLsS+gfUR70XGICA5SbhYuXIiGDRtCqVSiY8eO2Lt3b423XbZsGe6++24EBQUhKCgIPXv2vOXt6yLER47LhWUwGG6xeSY3zSRnpUrgHlN1lF+aj3G/j0N8WDyGxXEVYiJHIbzcrF27FsnJyZg6dSoOHDiAuLg49OrVC7m5udXePiUlBf369cO2bduQmpqK6Oho3Hfffbh48aLVswX7KlCm06NQW1HzjUwjN5xQTE4mKhG4cgYoyRedxCkZDAZM3jUZpbpSvNP1HcikPPmUyFEI/9c4Z84cDB06FIMHDwYALF68GBs3bsTKlSsxYcKEm27/xRdfVPl8+fLl+Pbbb7F161YMHGjdBbNCfYxbMFwuLIOfsobl0zlyQ85KlWC8zEoDGncXmcQpfXHiC6RcSMH8e+bztG8b0Ov10Ol0omOQnclkMkgkkro/jhWyWKysrAz79+/HxIkTTddJpVL07NkTqampZj1GcXExysvLERwcXO3XtVottFqt6XONRmN2vhBfBQDgclEZGob6VH8jU7kJNPtxiRxCSDNA7mucd8NyUyvHLh/D+/vfxzOtnkH36O6i47gUg8EAtVqN4uJi0VFIAIlEgrCwMMhkdasnQstNXl4edDodwsPDq1wfHh6OkydPmvUY48ePh0qlQs+ePav9+qxZs/DWW29ZlC/YNHKjrflGleWG69yQs5FKgch4zruppcKyQry2/TU0D2qOse3Gio7jciqLjb+/P+RyuVX+iifnYDAYcPXqVeTn5yMkJKRO/++FH5aqi9mzZ2PNmjVISUmBUqms9jYTJ05EcnKy6XONRoPo6GizHj/I2xMSCW59xlSp2vjXr4dTv5TkrqISgGPfi07hNAwGA95OfRtXSq9gSc8lkHvIRUdyKXq93lRsfH19RcchAfz9/XH16lXo9Xp4eHhY/DhCfyOHhobCw8MDOTk5Va7PyclBRMStj2G/9957mD17Nn799VfExsbWeDuFQgGFQmFRPpmHFIFenrh8y3LD1YnJiakSgF3zgaI8wCdUdBqH9+XJL/HT+Z/wbtd3Ee1v3h9JZL7KOTZyOUuju6osNHUtN0LPlpLL5WjXrh22bt1quk6v12Pr1q1ISkqq8X7/+9//MG3aNGzevBnt29t2XYkQXwUuF95m5IaTiclZqRKNl1zv5rbSctPw7p/v4plWz3B7BRvjoSj3Za3/98JPBU9OTsayZcuwatUqnDhxAsOHD0dRUZHp7KmBAwdWmXD8zjvvYPLkyVi5ciUaNmyI7OxsZGdno7Cw0Cb5gn3kuFx0mzk3LDfkrIIaAl5BLDe3cbnkMl7Z/gpiQmOQ3D759ncgIqGEl5u+ffvivffew5QpUxAfH4+0tDRs3rzZNMk4IyMDWVlZptsvWrQIZWVlePzxxxEZGWn6eO+992ySL9T3NqsUs9yQM5NIuJjfbVToKzDu93HQ6XV4r9t78JTWsCwEua3u3btjzJgxdnu+Z599Fo8++qjVHzclJQUSiQT5+flWf2x7c4hZsCNHjsTIkSOr/VpKSkqVz8+fP2/7QNcJ9pHjXN4tTkksVQP+KvsFIrI2VQJw8Ivb385NLTi4APtz9mPZfctQz7ue6DhENtO5c2dkZWUhIMD5/2AXPnLj6EJ8FLhyq8NSWjVXJybnpkoECrMBTaboJA7nt4zfsOLoCoxJHIM7I+4UHYfIpuRyOSIiIlxizhPLzW2EXDssVeP+UjwsRc6ucqVizrup4rz6PN7Y8QZ61u+JQW0GiY5DTuTq1asYOHAggoKC4O3tjQceeACnTp0CYFxOICwsDN98843p9vHx8YiMjDR9vmPHDigUitsuZPjWW28hLCwM/v7+GDZsGMrK/p1C0b17d4waNQpjxoxBUFAQwsPDsWzZMtOcVj8/PzRt2hQ//fST6T48LOVGQnwUKNcZoCmtQIBXNcfaWW7I2fmrAN9w47yblg+KTuMQNGUajPptFOp518O0LtNc4i9ZZ1ZSpsOZS7Y5aaQmTcJ84SW37FTkZ599FqdOncKGDRvg7++P8ePHo3fv3jh+/Dg8PT3RtWtXpKSk4PHHH8fVq1dx4sQJeHl54eTJk2jZsiW2b9+OO++8E97e3jU+x9atW6FUKpGSkoLz589j8ODBCAkJwYwZM0y3WbVqFcaNG4e9e/di7dq1GD58ONatW4fHHnsMr7/+OubOnYsBAwYgIyPjls/ljFhubuP6VYpvKjd6vXGdG5YbcmaVk4o5cgMA0Ol1GPf7OFwuvYwvH/wSvnIuJifamUuFeGj+Drs+54+j7kLbqNr/bK8sNTt37kTnzp0BGPdEjI6Oxvr16/HEE0+ge/fuWLJkCQDg999/R0JCAiIiIpCSkoKWLVsiJSUF3bp1u+XzyOVyrFy5Et7e3mjTpg3efvttvPbaa5g2bRqkUuNBmbi4OEyaNAmAcUHb2bNnIzQ0FEOHDgUATJkyBYsWLcLhw4fRqVOnWn+vjozl5jZCfY3l5kpRGRqH3fDFsgIABi7iR85PlQjsWQQYDMay48Y+OPABUjNTsajHIjTwbyA6DsE4ivLjqLvs/pyWOHHiBGQyGTp27Gi6LiQkBC1atMCJEycAAN26dcPo0aNx6dIlbN++Hd27dzeVmyFDhmDXrl0YN27cLZ8nLi6uymhLUlISCgsLceHCBTRoYHzfXr/ArYeHB0JCQhATE2O6rvKs5NzcXIu+V0fGcnMblSM3edUt5Fd6bRNOjtyQs1MlACVXgfy/jWvfuKkfzvyAj499jHF3jkPnqM6i49A1XnIPi0ZRHFVMTAyCg4Oxfft2bN++HTNmzEBERATeeecd7Nu3D+Xl5aZRn7rw9Kx6tEEikVS5rvJwq16vr/NzORpOKL6NQG85pDXtL8UdwclVVE4qduP1bo5cOoI3d72JPk364JlWz4iOQ06qVatWqKiowJ49e0zXXb58Genp6WjdujUAY6m4++678f333+PYsWO46667EBsbC61WiyVLlqB9+/bw8fG55fMcOnQIJSUlps93794NX19fs/dOdHUsN7fhIZUg2EeOvOp2BjeVG9f5i4LclG8YEBDttvNucotzMXrbaLQKaYUpSVM4gZgs1qxZM/Tp0wdDhw7Fjh07cOjQITzzzDOIiopCnz59TLfr3r07vvzyS8THx8PX1xdSqRRdu3bFF198cdv5NgBQVlaGIUOG4Pjx49i0aROmTp2KkSNHmubbuDu+CmYI81Mit6D05i+w3JArUcW7ZbkpLi/GyK0jIZFIMO8/87jTN9XZxx9/jHbt2uGhhx5CUlISDAYDNm3aVOWQULdu3aDT6dC9e3fTdd27d7/pupr06NEDzZo1Q9euXdG3b1888sgjePPNN63/zTgpiaHGBVxck0ajQUBAANRqNfz9zZsIPGjlXihkUiwdeMMmnWlfAuuHAZNyAZllO48TOYw/5hg/JmQAbvLXn06vw+hto7Evex8+feBTtAhuITqSWysvL8elS5cQFhZ203wRcg/Weg+4x0+wOqrnp0BuQTWHpbQaQKZksSHXoEowngF4+bToJHZhMBjwzr53sOPiDrzX7T0WGyIXwnJjhnr+ClyqrtxwAT9yJap446WbHJr6/MTn+PLkl3i94+u4+467RcchIitiuTFDPT8lLhVob96CgeWGXIlXEBDcGMh0/TOmtmZsxbv73sXgNoPxZIsnRcchIitjuTFDPT8FynR65BeXV/1CaT7LDbkWVaLLj9wczTuKCb9PQM8GPTGm3RjRcYjIBlhuzFDP3zin5qZ5N6Uark5MrkWVAGQdBnQVopPYxN+avzFi6wi0CG6BmXfNhFTCH4FEroj/ss1Qz08JADefDs7DUuRqohKBihLg0knRSawutzgXL255EYGKQCy4ZwGUMqXoSERkIyw3ZgjzuzZyo7lx5IblhlxMRCwgkbrcvBu1Vo0Xt7yICn0Flty7BIFcVZzIpbHcmEHp6QF/payaw1IsN+RiFL5AaAuXmndTUlGCUb+NwqWSS1h671JE+ESIjkRENsaNM81Uz7+aVYpZbsgVqRJcZo+pcn05Xt3+Kk5eOYnl9y1H48DGoiMRkR1w5MZMNy3kZzAYF/FTckIxuZioRCDnGFBRzdpOTkRv0GPqzqnYdXEX5nafi9iwWNGRiBxGw4YNMW/evBq//uyzz+LRRx+1+vOmpKRAIpEgPz/f6o99PZYbM9XzU+DS9XNuyosBfQV3BCfXo0oA9OVAzlHRSSxmMBjwdurb+PHsj5h590x0ieoiOhIRAejcuTOysrIQEGDbox4sN2a66bAUN80kVxXeFpDKnHbejcFgwOy9s/HtqW/xdpe38UCjB0RHIqq1srIy0RFsQi6XIyIiAhKJxKbPw3JjpsrDUqZVilluyFV5KoF6rYGLzlduDAYD5uyfg9UnV2NK0hQ82vRR0ZHIDXTv3h0vv/wyxo0bh+DgYERERNy0Q3dGRgb69OkDX19f+Pv748knn0ROTo7p62+++Sbi4+OxfPlyNGrUCEqlcakCiUSCJUuW4KGHHoK3tzdatWqF1NRUnD59Gt27d4ePjw86d+6MM2fOmB7rzJkz6NOnD8LDw+Hr64s777wTv/76q0Xf21tvvYWwsDD4+/tj2LBhVUpX9+7dMWrUKIwZMwZBQUEIDw/HsmXLUFRUhMGDB8PPzw9NmzbFTz/9ZLqPvQ5LcUKxmcL9lSgu00FTWoEAL0+WG3JtUYnAhX2iU9TagrQF+OTYJ5jQYQKeaP6E6DhkLWXFQN5f9n3O0OaA3Nvsm69atQrJycnYs2cPUlNT8eyzz6JLly649957odfrTcVm+/btqKiowIgRI9C3b1+kpKSYHuP06dP49ttv8d1338HDw8N0/bRp0zBnzhzMmTMH48ePR//+/dG4cWNMnDgR9evXx3PPPYeRI0eaSkRhYSF69+6NGTNmQKFQ4NNPP8XDDz+M9PR01K9f3+zvaevWrVAqlUhJScH58+cxePBghISEYMaMGVW+73HjxmHv3r1Yu3Ythg8fjnXr1uGxxx7D66+/jrlz52LAgAHIyMiAt7f5r2ddsdyYSRVobNFZ6pJr5UZj/AJXKCZXpEoADnwKlBUBch/Racyy5NASLD28FMntkvF0q6dFxyFryvsLWNrNvs/5wvZ/N5M1Q2xsLKZOnQoAaNasGRYsWICtW7fi3nvvxdatW3HkyBGcO3cO0dHRAIBPP/0Ubdq0wb59+3DnnXcCMB6K+vTTTxEWFlblsQcPHownnzTugTZ+/HgkJSVh8uTJ6NWrFwBg9OjRGDx4sOn2cXFxiIuLM30+bdo0rFu3Dhs2bMDIkSPN/p7kcjlWrlwJb29vtGnTBm+//TZee+01TJs2DVKp1PRckyZNAgBMnDgRs2fPRmhoKIYOHQoAmDJlChYtWoTDhw+jU6dOZj93XbHcmEkV6AUAyMovRcsIf47ckGtTJQIGPZB9BKhvvx9IljAYDPjo0EdYfGgxRsaPxOC2g29/J3Iuoc2NZcPez1kLsbFVz8aLjIxEbm4uAODEiROIjo42FRsAaN26NQIDA3HixAlTuWnQoMFNxebGxw4PDwcAxMTEVLmutLQUGo0G/v7+KCwsxJtvvomNGzciKysLFRUVKCkpQUZGRq2+p7i4uCqjLUlJSSgsLMSFCxfQoEGDm7J5eHggJCTkpmwATK+FvbDcmKmenxIeUgku5pcYryjNB6SegKeX0FxENlGvFSBTGte7ceByYzAYMO/APKw8uhJjEsdgSMwQ0ZHIFuTetRpFEcHT07PK5xKJBHq9vlaP4eNT/Sjp9Y9dORG3uusqn+/VV1/Fli1b8N5776Fp06bw8vLC448/bpNJytV937fKZi8sN2bykEoQ4a9Elrqy3FxbwM/GM76JhPDwBCJiHPqMKYPBgP/t+x8+P/E5xt85Hs+0fkZ0JKJqtWrVChcuXMCFCxdMozfHjx9Hfn4+WrdubfXn27lzJ5599lk89thjAIxzcM6fP1/rxzl06BBKSkrg5WX8I3737t3w9fWtMgLlqHi2VC1EBiiRmX/tdHCuTkyuTpXgsHtM6Q16TNs9DZ+f+ByTO01msSGH1rNnT8TExODpp5/GgQMHsHfvXgwcOBDdunVD+/btrf58zZo1w3fffYe0tDQcOnQI/fv3t2jkpKysDEOGDMHx48exadMmTJ06FSNHjjTNt3Fkjp/QgUQGeiGz8rAUVycmV6dKBC6f/nd+mYOo0Fdg8s7J+Oavb/B257fxZIsnRUciuiWJRILvv/8eQUFB6Nq1K3r27InGjRtj7dq1Nnm+OXPmICgoCJ07d8bDDz+MXr16ITExsdaP06NHDzRr1gxdu3ZF37598cgjj9x0irujkhhMC7e4B41Gg4CAAKjVavj7166czPrpBDYdycIf4+4Bvn4WKLkKDPzeNkGJRMs9CXzUERi4AWhs5zNValBSUYLXtr+GnRd3YsZdM9C7cW/RkciKysvLcenSJYSFhd00l4Pcg7XeAxy5qQVVgBey1aXQ6w08LEWuL7QZIPd1mHk3aq0aL255EXuz92JBjwUsNkRUI04orgVVoBfKdQbkFWlRr1QNBNwhOhKR7Ug9gMg4hyg32UXZGP7rcOSV5GHFfSsQExZz+zsRkdviyE0tRAYYF/LLzC/lyA25BweYVHxWfRYDfhqAovIifPrApyw2RHRbLDe1EGVayK/EuEKxguWGXJwqAcjPAIouC3n6vVl7MWDTAPh6+uKzBz5Do4BGQnIQkXNhuamFQG9PeHl64J+rJRy5IfcQde0MCwGHptadWocXt7yINiFtsOqBVQj3Cbd7BiJyTiw3tSCRSFA/2BuZeVcBnZblhlxfUCNAGWjXcqM36DFn/xxM2TUF/9fs/7Cw50L4y7nsAhGZjxOKa6l+iDfyLl8yfsJyQ65OIrHrvJvi8mK8vuN1/JbxG8bdOQ7PtHrGtHw7EZG5WG5qqWGIN04eZbkhN6JKAA59afOnuVBwAWO3jUVGQQY+vOdDdI/ubvPnJCLXxMNStVQ/xAfFmqvGT7hCMbmDqESgIAvQZNnsKXZc3IGnfnwKxRXF+Lz35yw2RFQnLDe11CDYGz6GQuMnHLkhd6BKMF7aYN6N3qDHkkNL8NKvLyG+XjzWPLQGzYOaW/15iGype/fuGDNmzC1vI5FIsH79erMfMyUlBRKJBPn5+Wbf5/z585BIJEhLSzP7PuYy53t0JDwsVUsNQrzhj2LjJyw35A78owCfesZ5Ny2ttyqwpkyDSTsmYduFbXgp7iW8GPcipBL+vUWuKSsrC0FBQaJjWOy7775zqi0xWG5qSRXohUBpMfSQQir3FR2HyPZMk4qtN3Jz6NIhjP99PDRaDRbcswDdoh1j7yoiW4mIiBAdoU6Cg4NFR6gV/plUS54eUtzhVY5SD1/jD30id6BKAC4eAOq4z67eoMfyI8sx6KdBCPUKxdePfM1iQy5Br9dj3LhxCA4ORkRExE27Z994WGrXrl2Ij4+HUqlE+/btsX79+moPKe3fvx/t27eHt7c3OnfujPT09NtmOXnyJDp37gylUom2bdti+/btpq9VHu76+eefkZCQAC8vL9xzzz3Izc3FTz/9hFatWsHf3x/9+/dHcXGx6X48LOUGVMoyFJX4wFt0ECJ7iUoESq4YVysOamDRQ+SV5GHiHxOxJ2sPhsQMwUvxL8FT6jzD3CROSUUJzqnP2fU5GwU0gpfMy+zbr1q1CsnJydizZw9SU1Px7LPPokuXLrj33ntvuq1Go8HDDz+M3r17Y/Xq1fj7779rLA5vvPEG3n//fYSFhWHYsGF47rnnsHPnzltmee211zBv3jy0bt0ac+bMwcMPP4xz584hJCTEdJs333wTCxYsgLe3N5588kk8+eSTUCgUWL16NQoLC/HYY49h/vz5GD9+vNmvgSNhubFApEKL/CIvhIkOQmQvpknFBywqN7/+/Sum7Z4GqUSKpfctRafITlYOSK7snPoc+v7Y167PufahtWgd0trs28fGxmLq1KkAgGbNmmHBggXYunVrteVm9erVkEgkWLZsGZRKJVq3bo2LFy9i6NChN912xowZ6NbNOLo5YcIEPPjggygtLYVSqawxy8iRI/Hf//4XALBo0SJs3rwZK1aswLhx40y3mT59Orp06QIAGDJkCCZOnIgzZ86gcePGAIDHH38c27ZtY7lxJ2GepciqUKJ+hQ4KmYfoOES251sP8L/DOO+mzWNm3y2/NB8z987ET+d+wn+i/4OpSVMR4hVy+zsSXadRQCOsfWit3Z+zNmJjY6t8HhkZidzc3Gpvm56ejtjY2CoFpUOHDrd93MjISABAbm4u6tevX2OWpKQk03/LZDK0b98eJ06cqPFxw8PD4e3tbSo2ldft3bu3xudwdCw3FgiUluCkwQfn8orQMoJr3ZCbUMUb592YKeVCCt5KfQtanRaz7p6FBxs9yNWGySJeMq9ajaKIcOOZRBKJBHq93qqPW/nvxxaPa6v8onBCsQV8DUXQGLzxV06h6ChE9hOVCGQdAm7zAy+vJA8T/piAUb+NQuuQ1ljfZz0eavwQiw3RNS1atMCRI0eg1WpN1+3bt89qj797927Tf1dUVGD//v1o1aqV1R7fGbDcWEBWXoAKuR9O5RSIjkJkP6oEQKsBrpyp9st6gx5fpX+FR9Y/gp0Xd2Jal2lYcM8C1POuZ+egRI6tf//+0Ov1eOGFF3DixAn8/PPPeO+99wDAKn8ELFy4EOvWrcPJkycxYsQIXL16Fc8991ydH9eZ8LCUJUrVUPgG4S+WG3In169UHNqsypdOXjmJaanTcDjvMB5r+hjGthuLIKXzLlhGZEv+/v744YcfMHz4cMTHxyMmJgZTpkxB//79bzlR2FyzZ8/G7NmzkZaWhqZNm2LDhg0IDQ21QnLnITEY6rhwhZPRaDQICAiAWq2Gv7+F82VmROKn8KF4N/8e/PZqd6vmI3JoH8QDze8HHpgNALhcchmLDi3CN399g0YBjTCp0yS0C28nNiM5rfLycly6dAlhYWFOtRquNXzxxRcYPHgw1Go1vLzMPwXd1VjrPcCRm9qqKAPKixEcUg/nzhShUFsBXwVfRnITUYlA5kFodVp8dvwzLD+yHFKJFGPbjUX/lv3h6eFev5CILPXpp5+icePGiIqKwqFDhzB+/Hg8+eSTbl1srIm/lWtLqwEAREWEw2AAjl5Uo1NjntpK7kEXGYefMrZi/rqHkVt8CX1b9sWw2GEIVAaKjkbkVLKzszFlyhRkZ2cjMjISTzzxBGbMmCE6lstguamtUjUAIDI8HN7yYhy6kM9yQy5Pb9Dj5/M/Y3Hmjzgb4o/uPiosvndJrdcCISKjcePGVVlUj6yL5aa2rpUbD69AtFV54vA/asGBiGxHp9fh14xfsfjQYpzOP427IpMw/dQhxMT0AFhsiMhBsdzU1rVyA2UA4qJl2HQkW2weIhsoqSjB96e/x2fHP0NGQQY6qzpjatJUxNeLB04dMp4xlThAdExyUW52ngtdx1r/71luauu6cpNYX45lf5zDxfwSRAVyEhg5v0vFl7AmfQ2+Sv8KmjINetbviVl3z0Js2HVLy6sSjHtMEVmZh4dxO5uysjLI5XLBaUgEnU4HAJBK67YMH8tNbWk1ACSAwh+dGntDIgF2ns7Dk+2jRScjsohOr8OuzF349tS32H5hOzw9PPHfZv/F062exh1+d9x8B1UicOQboEILyBT2D0wuSyqVwtvbGxqN8cQNuVzOla3diMFggEajgVwuZ7mxu1I1oPADpFIE+cgRExWAHadYbsj5nFefx0/nfsK60+uQVZSF5kHNMa7DODzY+EH4y2+xBpQqAdCXAznHjKeGE1lRQEAAAJgKDrkXiUSCkJCQOpdalpvaKlUDygDTp3c1DcWafReg0xvgIeVfGOTYMgsz8fP5n/HTuZ9w4soJeMu8cX+j+/F4s8fRNrSteT9QItoCUplx3g3LDVmZRCJBYGAg/P39TYcoyH3IZDKrjNax3NTWDeXm/rYR+CjlDHaezkPX5mECgxHdTKfX4UjeEfz+z+/YcXEHTlw5AYWHAl3v6IqhsUNxd9TdUMpqudy7pxdQr9W1eTdDbJKbSCqV1vnQBLkvh3jnLFy4EA0bNoRSqUTHjh2xd+/eW97+66+/RsuWLaFUKhETE4NNmzbZKSluKjcxUQFoHOaDdQcv2i8DUQ0q9BU4fvk4Pj/+OZJTktHtq24Y8NMAfP3X12gc2Bjv3P0Otvfdjjnd5+DeBvfWvthUUiUCmWlWzU5EZC3CR27Wrl2L5ORkLF68GB07dsS8efPQq1cvpKeno169m3cT3rVrF/r164dZs2bhoYcewurVq/Hoo4/iwIEDaNu2re0Dl2qqlBuJRIK+7aPx3i/peOW+5rgjyNv2GYgAlOvLcTb/LP66+hfSr6Tj5NWTOHLpCIoriuEp9URMaAyeavEU7r7jbrQNaQsPqYf1nlyVABz8HCgrBuR8zxORYxG+cWbHjh1x5513YsGCBQAAvV6P6OhojBo1ChMmTLjp9n379kVRURF+/PFH03WdOnVCfHw8Fi9efNvnq/PGmSsfAALrA/+3xHRVkbYC3d7dhpioACwe0A4KmXV+idT0v8aAGq6v7e1ruL7mq2v5OJZkquXb0davRa3zWPF5SypKkK/Nx5XSK8jX5uNS8SVcLLyIfwr+wcXCi8gsykSFvgIAEOUbheZBzREbFot24e3QOqQ1FB42PJMp6xCwpCvw3C9A/Y62ex4iIgsIHbkpKyvD/v37MXHiRNN1UqkUPXv2RGpqarX3SU1NRXJycpXrevXqhfXr11d7e61WC61Wa/pcrTauU5O0vD08vMwrITf9+snNAJbEVPnFZAgFdpcaEL+s5seRSLgwFVnOoFPCUB5k/KhQwVDeFgZtPRjKw3FK74VTADYCAM5e+7AdGSrwh8wDso96Qe8YR7eJyA3IXz8PPz+/2046Flpu8vLyoNPpEB4eXuX68PBwnDx5str7ZGdnV3v77OzqVwqeNWsW3nrrrZuuP/7KKQtTExEAhN/+JkRE1vWOeUdehM+5sbWJEydWGenR6/W4cuWKVc6jdxYajQbR0dG4cOGCZYfi3AhfK/PxtTIfXyvz8bUyjzu/Tn5+fre9jdByExoaCg8PD+Tk5FS5PicnBxEREdXeJyIiola3VygUUCiqzj0IDAy0PLQT8/f3d7t/BJbia2U+vlbm42tlPr5W5uHrVD2hB8vlcjnatWuHrVu3mq7T6/XYunUrkpKSqr1PUlJSldsDwJYtW2q8PREREbkX4YelkpOTMWjQILRv3x4dOnTAvHnzUFRUhMGDBwMABg4ciKioKMyaNQsAMHr0aHTr1g3vv/8+HnzwQaxZswZ//vknli5dKvLbICIiIgchvNz07dsXly5dwpQpU5CdnY34+Hhs3rzZNGk4IyOjyiqVnTt3xurVqzFp0iS8/vrraNasGdavX2+fNW6clEKhwNSpU286PEc342tlPr5W5uNrZT6+Vubh63Rrwte5ISIiIrImLlBBRERELoXlhoiIiFwKyw0RERG5FJYbIiIiciksNy5i1qxZuPPOO+Hn54d69erh0UcfRXp6epXblJaWYsSIEQgJCYGvry/++9//3rQgojsw57Xq3r07JBJJlY9hw4YJSizOokWLEBsba1ooLCkpCT/99JPp63xP/et2rxXfU9WbPXs2JBIJxowZY7qO76vqVfda8X1VPZYbF7F9+3aMGDECu3fvxpYtW1BeXo777rsPRUVFptuMHTsWP/zwA77++mts374dmZmZ+L//+z+BqcUw57UCgKFDhyIrK8v08b///U9QYnHuuOMOzJ49G/v378eff/6Je+65B3369MGxY8cA8D11vdu9VgDfUzfat28flixZgtjY2CrX8311s5peK4Dvq2oZyCXl5uYaABi2b99uMBgMhvz8fIOnp6fh66+/Nt3mxIkTBgCG1NRUUTEdwo2vlcFgMHTr1s0wevRocaEcWFBQkGH58uV8T5mh8rUyGPieulFBQYGhWbNmhi1btlR5bfi+ullNr5XBwPdVTThy46LUajUAIDg4GACwf/9+lJeXo2fPnqbbtGzZEvXr10dqaqqQjI7ixteq0hdffIHQ0FC0bdsWEydORHFxsYh4DkOn02HNmjUoKipCUlIS31O3cONrVYnvqX+NGDECDz74YJX3D8CfVdWp6bWqxPfVzYSvUEzWp9frMWbMGHTp0sW0cnN2djbkcvlNm4aGh4cjOztbQErHUN1rBQD9+/dHgwYNoFKpcPjwYYwfPx7p6en47rvvBKYV48iRI0hKSkJpaSl8fX2xbt06tG7dGmlpaXxP3aCm1wrge+p6a9aswYEDB7Bv376bvsafVVXd6rUC+L6qCcuNCxoxYgSOHj2KHTt2iI7i8Gp6rV544QXTf8fExCAyMhI9evTAmTNn0KRJE3vHFKpFixZIS0uDWq3GN998g0GDBmH79u2iYzmkml6r1q1b8z11zYULFzB69Ghs2bIFSqVSdByHZs5rxfdV9XhYysWMHDkSP/74I7Zt24Y77rjDdH1ERATKysqQn59f5fY5OTmIiIiwc0rHUNNrVZ2OHTsCAE6fPm2PaA5FLpejadOmaNeuHWbNmoW4uDh88MEHfE9Vo6bXqjru+p7av38/cnNzkZiYCJlMBplMhu3bt+PDDz+ETCZDeHg431fX3O610ul0N93HXd9XN2K5cREGgwEjR47EunXr8Ntvv6FRo0ZVvt6uXTt4enpi69atpuvS09ORkZFRZU6AO7jda1WdtLQ0AEBkZKSN0zk+vV4PrVbL95QZKl+r6rjre6pHjx44cuQI0tLSTB/t27fH008/bfpvvq+MbvdaeXh43HQfd31f3YiHpVzEiBEjsHr1anz//ffw8/MzHZsOCAiAl5cXAgICMGTIECQnJyM4OBj+/v4YNWoUkpKS0KlTJ8Hp7et2r9WZM2ewevVq9O7dGyEhITh8+DDGjh2Lrl27VnsapiubOHEiHnjgAdSvXx8FBQVYvXo1UlJS8PPPP/M9dYNbvVZ8T/3Lz8+vyvw2APDx8UFISIjper6vjG73WvF9dQuiT9ci6wBQ7cfHH39suk1JSYnhpZdeMgQFBRm8vb0Njz32mCErK0tcaEFu91plZGQYunbtaggODjYoFApD06ZNDa+99ppBrVaLDS7Ac889Z2jQoIFBLpcbwsLCDD169DD88ssvpq/zPfWvW71WfE/d2o2nM/N9VbPrXyu+r2omMRgMBjG1ioiIiMj6OOeGiIiIXArLDREREbkUlhsiIiJyKSw3RERE5FJYboiIiMilsNwQERGRS2G5ISIiIpfCckNEREQuheWGiBxa9+7dMWbMGKs+5ieffILAwECrPiYROQ6WGyJyO3379sVff/0lOgYR2Qg3ziQit+Pl5QUvLy/RMYjIRjhyQ0QOr6KiAiNHjkRAQABCQ0MxefJkVG6L17BhQ0yfPh0DBw6Er68vGjRogA0bNuDSpUvo06cPfH19ERsbiz///NP0eDwsReTaWG6IyOGtWrUKMpkMe/fuxQcffIA5c+Zg+fLlpq/PnTsXXbp0wcGDB/Hggw9iwIABGDhwIJ555hkcOHAATZo0wcCBA8F9goncA8sNETm86OhozJ07Fy1atMDTTz+NUaNGYe7cuaav9+7dGy+++CKaNWuGKVOmQKPR4M4778QTTzyB5s2bY/z48Thx4gRycnIEfhdEZC8sN0Tk8Dp16gSJRGL6PCkpCadOnYJOpwMAxMbGmr4WHh4OAIiJibnputzcXHvEJSLBWG6IyOl5enqa/ruyBFV3nV6vt28wIhKC5YaIHN6ePXuqfL579240a9YMHh4eghIRkSNjuSEih5eRkYHk5GSkp6fjyy+/xPz58zF69GjRsYjIQXGdGyJyeAMHDkRJSQk6dOgADw8PjB49Gi+88ILoWETkoCQGnhtJRERELoSHpYiIiMilsNwQERGRS2G5ISIiIpfCckNEREQuheWGiIiIXArLDREREbkUlhsiIiJyKSw3RERE5FJYboiIiMilsNwQERGRS2G5ISIiIpfy/3KbaQX9/at9AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\ulstu\\3.1\\mii\\AIM-PIbd-31-Barsukov-P-O\\aimenv\\Lib\\site-packages\\IPython\\core\\pylabtools.py:170: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n",
" fig.canvas.print_figure(bytes_io, **kw)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFy0lEQVR4nO3dd1xV9R/H8ddlg+whKII4cAtuxb1KSy0bP80sy7KyNC211CxtORqWDdMyTS1XmmalWabixL1lqIjiQi4iIHvc8/vjJomiDC+cOz7Px4MHcu4Z73svwofv+Q6NoigKQgghhBBmwkrtAEIIIYQQhiTFjRBCCCHMihQ3QgghhDArUtwIIYQQwqxIcSOEEEIIsyLFjRBCCCHMihQ3QgghhDArUtwIIYQQwqxIcSOEEEIIs2JxxY2iKKSlpSETMwshhBDmSdXiZtu2bfTr14/q1auj0Wj49ddfSzwmPDycFi1aYG9vT926dVm4cGGZrnn9+nXc3Ny4fv16+UILIYQQwqipWtxkZGQQGhrK7NmzS7V/XFwcffr0oVu3bhw+fJjXXnuNYcOG8ddff1VwUiGEEEKYCo2xLJyp0WhYs2YN/fv3v+M+48ePZ926dRw/frxw2xNPPEFKSgobNmwo1XXS0tJwc3MjNTUVV1fXe40thBBCCCNjo3aAsoiIiKBnz55FtvXq1YvXXnvtjsfk5OSQk5NT+HVaWhoAD36xDQ93dwI9najlXYWQGm60qeWJu5NdhWQXKlj9Evg1hfYj1U4ihBDiDvIK8ohLi+Pi9YtczrhMQkYCCRkJpOWmcT3vOum56WTkZVCgFLBlwJZSndOkipuEhAR8fX2LbPP19SUtLY2srCwcHR1vO2b69Om89957t23v0dCXHI098cmZ7NufzNdbTqPRQEgNdx4KrU6/kGpUdXWosOciKpiuAI4u1380fwoc3dVOJIQQFi+vII/I5EgOXTlEZHIkp66d4mzqWfKVfABsrWzxq+KHXxU/3Ozc8HHywcXOBScbJ2ysSl+ymFRxUx4TJ05kzJgxhV+npaUREBDA2PvrF7ktdT45k91nrvJ35BU++jOaaeuj6BtSjRc61aaJv5sa0cW9uHb2v3/v/ga6vaVaFCGEsFSKohBzLYat57eyJ2EPx7THyC7IxtHGkQaeDWjp25In6j9BsEcwga6BeDp4YqW59+7AJlXc+Pn5ceXKlSLbrly5gqura7GtNgD29vbY29uXeO4ATycCPJ34X6sAUjPzWH3oAvN3xLH28A7ua+TLhAcaUMfH2SDPQ1SCxCj956YDIOIbaDscnDzVzSSEEBYgX5fP3st72Ri/kW0XtpGYmUgV2yq08WvDyOYjaVG1BQ28GmBrZVthGUyquAkLC2P9+vVFtm3cuJGwsDCDXsfNyZahHWrxdLua/HH0Mp/8FcP9n2/jmbAgxvWqh5OdSb1slkkbBQ7u0Hs6RK+DXV9BzylqpxJCCLOkKAqRyZH8EfsHG85uICkriQCXAHoF9aJzjc60rNoSW+uKK2Zupepv6fT0dE6fPl34dVxcHIcPH8bT05PAwEAmTpzIxYsXWbx4MQDDhw/n66+/5s033+S5555j8+bN/Pzzz6xbt65C8tlYW9G/uT+9m/jxw86zfLHpJBujEvjosRDa1/GukGsKA0mMhqoNoYo3tH0J9nwLYSP0XwshhDCIzLxM1setZ3n0cmKuxeDl4MUDtR6gb+2+NPJqhEajUSWXqkPBw8PD6dat223bn3nmGRYuXMizzz7L2bNnCQ8PL3LM66+/TmRkJDVq1OCdd97h2WefLfU172Uo+NmkDN5cdZS9Z5MZ2a0ur99XD2srdd44UYI5HaBGK+j3BWQmwxeh0GII9JqqdjIhhDB5F9Mv8lPkT6w9vZaM/Aw61+jMgHoDCKseVqaOvxXFaOa5qSz3Os+NTqcwZ2ssM/+OoV1tL74c1Bxv55L79IhKVJAP06rBfR9Au+H6bVumw85ZMPoIuPipGk8IIUzVmdQzzD82n3Vn1uFi58KjwY8yoP4A/J391Y5WhBQ35bQrNolRyw5hb2PNoudaU7eqiwFTinuSdAq+bgVD1kLtrvptWSnwRQiEDoIHPlIznRBCmJxT104x58gc/jn3Dz5OPgxtPJTH6j2Go03xg3nUZnELZxpK+zrerB3ZkSr21jw2J4J9Z5PVjiRuuDFSyqfhf9sc3aH9q7B/AaReVCWWEEKYmoSMBN7Z+Q6P//44UVejmBI2hT8f/ZOnGj1ltIUNSHFzT/zdHVk5vD0Nq7kw+Ps9bIlOVDuSANDGgKMHOFctur3tcLBzhu2fqpNLCCFMRFpuGp8d+Iy+a/qy7cI2JrSZwG/9f+Oxeo9hZ238M/lLcXOP3BxtWfRcG7rW8+GlHw+wOfpKyQeJiqWN0rfa3NpL394FOoyGgz/CtXPqZBNCCCOmKAq/xf5GvzX9WB69nKFNhrL+0fUMajCoUody3yspbgzA3saar59sQbcG+gJnU5QUOKpKjIaqDYp/rM0L+ltU2z6p1EhCCGHsTl07xbMbnmXSjkm08WvD7/1/Z0SzEVSxraJ2tDKT4sZA7Gys+PrJFvRo4MvLSw6yN0764KiiIB+unira3+ZmdlWg4xg4vBSuxlZuNiGEMEI5BTl8fuBz/vf7/0jOTua7+77jky6f4FvFt+SDjZQUNwZka23FF4Oa0TLQg2GL9hGTcF3tSJYn+QwU5IJP/Tvv02qovj+OtN4IISzcMe0xBvw+gB8jf+SVZq/wy0O/EFbdsLP+q0GKGwOzt7Hm2yEt8fdw4pkFe7mYkqV2JMui/XekVNU7tNwA2DpCp7FwdAVoT1ZOLiGEMCK5BbnMOjCLp/58CgcbB37u+zMvhrxoEp2FS0OKmwrg6mDLoqGtsbbS8MKi/WTm5qsdyXIkRoOjJ1Txuft+LYaAS3XYOqNycgkhhJGITYnliXVPsChyESObjWTJg0uo61FX7VgGJcVNBanq6sD3z7Qi7t8lGyxsrkT1aKP0rTYlrWdiYw9d3oDjq+FKZOVkE0IIFSmKwppTa3jijyco0BWwvM9yXgh5wSiWSzA0KW4qUMNqrnw2IJQ/jl5mzlbpvFoptDHgc4eRUrdqNhjcAyF8esVmEkIIlaXnpjNh+wQm75pMn9p9WNZnGfU979I30cRJcVPBHmhajVHd6/LJXzFsPalVO455K8jTL71wt/42N7O2hS7jIeo3uHy0YrMJIYRKTl47ycA/BrL1wlY+7vwx77Z/FydbJ7VjVSgpbirBaz3r0TnYhzErDpOYlq12HPOVfAZ0eaVvuQEIGQiedWDLtIrLJYQQKvnr7F88tV6/VMLKvit5oNYDakeqFFLcVAIrKw0zB4RibaXhtRWHKdBJ/5sKkViKkVK3sraBrhPg5J9w8UDF5BJCiEpWoCtg1oFZjNs6jq41uvLjgz8S4BqgdqxKI8VNJfF2tmfWwGZEnLnKnPDTascxT9pocPKCKt5lO67JY/rWHmm9EUKYgbTcNEZsHsEPJ35gbMuxfNT5I6Ne5LIiSHFTidrX9WZkt7p8tvEkB+OvqR3H/CRG3Xlm4ruxsta33pz+B+L3GD6XEEJUkovpF3l6/dMc0x5jTs85PNvkWTQljR41Q1LcVLLRPYJp6u/GuJVHyM4rUDuOedHeZU2pkjR8GHybwJaphs0khBCV5ETSCQavG0xuQS4/PfgT7au3VzuSaqS4qWQ21lZ8+r9QLlzLYubfMWrHMR/5uXD1dNk6E9/Mygq6ToS4rXB2h2GzCSFEBQs/H87Qv4bi7+zPTw/+RC23WmpHUpUUNyoI9nVh7H31+H5HHPvPygKbBpF8BnT5ZetMfKsGfaBaM9g8FWTSRSGEiVgevZzRW0bToXoH5veaj5ejl9qRVCfFjUqGdapNswB3xq08Qlau3J66ZzfWlCpPn5sbNBroNgnid8GZLYbJJYQQFURRFL498i1T90zlyQZP8mmXT3GwcVA7llGQ4kYl1lYaPv1fKJdSs/l6yym145i+xGj9elJV7vEvluD7wL+VfuSUtN4IIYyUoijM3D+Trw9/zavNX+XN1m9ibWWtdiyjIcWNiur4OPNK1zp8t+0Mp65cVzuOadNGlb+/zc00Gug+CS7sg1Mb7/18QghhYAW6At6NeJdFkYuY2GYiL4a8aJEjou5GihuVDe9ShxoeTkz69bgsrnkvEqMNU9wA1O4Gge31I6fkPRFCGJG8gjze3PYma0+vZWrHqTzZ8Em1IxklKW5U5mBrzQcPN2FvXDK/HLyodhzTlJ8LybHlHwZ+K40Gur0Flw9DzHrDnFMIIe5Rni6PcVvHseX8FmZ2mclDdR5SO5LRkuLGCHQM9ubhZtWZtj6KlMxcteOYnqun9SOl7qUz8a1qdYJanfV9b3Q6w51XCCHKIU+Xx5tb32TbxW3M6jaLHjV7qB3JqElxYyQm9WlIbr6OWf9I5+Iy05ZjTanS6PY2XDkOUWsNe14hhCiDPF0e47eNJ/xCOJ93/ZzONTqrHcnoSXFjJKq6ODCiW11+2n2O04npascxLdoYqFIVnDwNe97AtlC3J2yZDjoZri+EqHz5unwmbJvAlvNb+KzLZ3QN6Kp2JJMgxY0RGdohiGruDkxbH6V2FNOSGGW4/ja36voWJMXA8dUVc34hhLiDAl0Bb+14i83xm/m0y6d0C+ymdiSTIcWNEXGwteatBxqyOTqRbSe1ascxHdpow/a3uVmNllDvAQifDgX5FXMNIYS4haIoTNszjb/O/sVHnT+iR6D0sSkLKW6MTO8mfrSp5cmH6yLJL5COrCXKz4GrBhwpVZxuE/WjsY6uqLhrCCHETb469BU/n/yZd8Pe5f6g+9WOY3KkuDEyGo2GyX0bcSoxnZ/3X1A7jvG7ehqUAsPNcVOcaqHQsB9s/QgK8iruOkIIASw6sYh5x+YxtuVYHgl+RO04JkmKGyPUxN+NfiHV+WLTSbLzpCPrXSXeWFOqAosb0Pe9SYmHw0sq9jpCCIu25tQaPt3/Kc83eZ5nmzyrdhyTJcWNkRpzXz2upueyOOKs2lGMmzYanH0NP1LqVr6NoMmjsPUT/a0wIYQwsC3xW3g34l0er/c4o1uMVjuOSZPixkgFeVdhQOsAvgmPJS1bboXcUaKB1pQqjS4T4PolOLi4cq4nhLAYx5OO8+a2N+kR2IO3274ta0XdIylujNio7sFk5Rbw/bYzakcxXtoYw0/edyc+9aDpANg+E/KyKueaQgizd+H6BUZsGkE9z3pM6zhNVvc2AClujJifmwPPtg/i+x1xJKXLrZDb5OdA8pnKa7kB6PImpCfC/h8q75pCCLOVmpPKiE0jcLJx4qvuX+Fg46B2JLMgxY2RG96lDtYaDXPCY9WOYnySTulHSlVWyw2AVx1o9iTs+AxyMyrvukIIs5NbkMvr4a9zNfsqc3rOwdOhgvsOWhApboycRxU7hnasxZI956T15lbaaP1nn/qVe93Ob0BWCuz7vnKvK4QwG4qiMGXXFA4nHubLbl8S5BakdiSzIsWNCXiuQxDWGg3ztkvfmyISo8DZDxw9Kve6HjWhxdOwYxbkXK/cawshzML3x77njzN/MLXjVFr4tlA7jtmR4sYEuDvZ8Uz7IH6MOEdyRq7acYyHNrpiZya+m07jIDcd9sxV5/pCCJMVfj6crw59xfDQ4TxQ6wG145glKW5MxPMda6EosGBHnNpRjEdiVMWtKVUSN39oORR2fQXZqepkEEKYnNiUWCZsn0D3wO68HPqy2nHMlhQ3JsLL2Z6nw2qyaNdZUjNl3hvysuFanHotNwCdxuhHbEV8o14GIYTJSM1J5dXNr1KtSjWmdZyGlUZ+BVcUeWVNyLBOtcgt0PHDLmm94eopUHTqtdwAuPhB62Gw+xvITFYvhxDC6OXr8hm3dRxpuWl82f1LnGyd1I5k1qS4MSFVXRx4sm0gP+w8S0ZOvtpx1JWo0kipW3V8HXQF+ttTQghxBzP3z2Rfwj4+6/IZAS4Bascxe1LcmJhhnWqTnpPPz/vPqx1FXdoocKkOju7q5qjiDW1fhD3fQkaSulmEEEbpz7g/+SnqJ95s/SZtqrVRO45FkOLGxPi7O9IvpBrzd8SRX6BTO456ElUcKXWr9qNAYwU7Z6mdRAhhZGJTYpmyawp9avdhUINBasexGFLcmKAXOtfmwrUs1h9PUDuKerSVuGBmSZw8IewV2Ps9XL+idhohhJHIzMtkTPgY/J39mdxusiyGWYmkuDFBjau70bGuN99ti0VRFLXjVL68LEiOM57iBqDdK2BjBzs+VzuJEMIIKIrCuxHvkpCRwMyuM6UDcSWT4sZEvdi5NscvphERe1XtKJUv6SSgVO6aUiVxdIewV2H/Aki9qHYaIYTKlscs58+4P3mvw3vUdqutdhyLI8WNieoU7E0DPxe+3WaBSzIYy0ipW7UbDnZVYPtMtZMIIVR0VHuUj/d9zOCGg+kd1FvtOBZJihsTpdFoeLFzbbae1BKdkKZ2nMqljQZXf3BwUztJUfYu0GE0HFwMKfFqpxFCqCA1J5VxW8fR2KsxY1uOVTuOxZLixoT1C62Or6s9C3eeVTtK5dJGG1d/m5u1eUF/i2rbJ2onEUJUMkVReC/iPdLz0vmk8yfYWtuqHcliSXFjwmytrXiqbU1+PXyRlEwLWlAzMcq4+tvczK6KfmK/Q0sg2QJvGQphwX459Qsbz23kvfbvUc25mtpxLJoUNyZuUNtAdDpYsc9CJvXLzYRrZ4235Qag1XNQxQe2fqx2EiFEJYlNieWjvR/xv3r/476a96kdx+JJcWPivJ3t6RtSjR93n6NAZwHDwm+MlDLm4sbWETqNhaMrIOmU2mmEEBUspyCHN7a9gb+zP2+0fkPtOAIpbszCM+2DuHAti01RFjCBnNZIR0rdquUz+uUhwmeonUQIUcFm7p/JudRzfNzlYxxtHNWOI5DixiyEBrjTPNCdRRFn1Y5S8RKjwLUGOLiqneTubOyh8zg4/gtciVQ7jRCigmyO38yy6GW80foN6nnUUzuO+JcUN2bi2fZB7Dx9lVNXrqsdpWJpjWhNqZI0GwzuARA+Xe0kQogKkJSVxJRdU+gW0I2B9QeqHUfcRIobM/FAk2r4uNibf+uNMQ8Dv5WNHXQZD1G/weWjaqcRQhiQoii8u+tdrDXWvNv+XVk3yshIcWMm7GyseLJNIGsOXiQ9J1/tOBUjNxOunTPeYeDFCXkCPOtI640QZmbN6TVsvbCVd9u/i6eDp9pxxC2kuDEjA1sHkJVXwG+HL6kdpWIkxaAfKWVCxY21DXSdADHr4eIBtdMIIQzgwvULfLT3Ix4NfpSuAV3VjiOKIcWNGanu7ki3+lVZttdMp/4vXFPKxDrtNXkMvOvDFmm9EcLUFegKmLRjEh4OHrzRSoZ9GyvVi5vZs2cTFBSEg4MDbdu2Ze/evXfdf9asWdSvXx9HR0cCAgJ4/fXXyc7OrqS0xu/JtoEcu5jKsQupakcxPG0UuAXo13AyJVbW+tab0xvh/N2/v4UQxu2nqJ84lHiIDzp8gLOds9pxxB2oWtysWLGCMWPGMGXKFA4ePEhoaCi9evUiMTGx2P2XLl3KhAkTmDJlClFRUcyfP58VK1bw1ltvVXJy49Wlng/V3BxYao6tN4km1Jn4Vo36Q9XGsPlDtZMIIcrp1LVTfHHwC4Y0GkJrv9ZqxxF3oWpx89lnn/HCCy8wdOhQGjVqxNy5c3FycmLBggXF7r9r1y46dOjAk08+SVBQEPfffz+DBg0qsbXHkthYWzGgVQC/HTbDjsXaKNMZBn4rKyvoNhHitsLZHWqnEUKUUZ4uj0k7JhHoEsirLV5VO44ogWrFTW5uLgcOHKBnz57/hbGyomfPnkRERBR7TPv27Tlw4EBhMXPmzBnWr1/Pgw8+eMfr5OTkkJaWVuTD3N3oWPz7ETPqWJyTDinxptWZ+FYN+kK1UNgyDRQLWCpDCDOy8PhCTl47ydROU7G3tlc7jiiBasVNUlISBQUF+Pr6Ftnu6+tLQkJCscc8+eSTvP/++3Ts2BFbW1vq1KlD165d73pbavr06bi5uRV+BAQEGPR5GKMbHYuX7jGjW1NJJ/WfTbXlBkCjgW6T4NxOOBOudhohRCmdSTnDnCNzeKbxMzT2aqx2HFEKqncoLovw8HCmTZvGN998w8GDB1m9ejXr1q3jgw8+uOMxEydOJDU1tfDj/HnLWD17UBsz61h8Y00pbyNfU6okwfeDfyvYMlVab4QwAQW6Aibvmoy/sz8vh76sdhxRSjZqXdjb2xtra2uuXCm62OOVK1fw8/Mr9ph33nmHp59+mmHDhgHQtGlTMjIyePHFF5k0aRJWVrfXavb29tjbW14TYtf6Pvi5OrB8XzxNazRVO869S4wC90CwN/HRCRoNdHsLfnoUTv8DwfepnUgIcRfLopdxVHuUhb0X4mDjoHYcUUqqtdzY2dnRsmVLNm3aVLhNp9OxadMmwsLCij0mMzPztgLG2toa0E+FLf5jY23Foy38+f3IJbLzCtSOc++00abd3+ZmdbpDYJi03ghh5C5cv8CXh77kiQZP0MK3hdpxRBmoeltqzJgxzJs3j0WLFhEVFcXLL79MRkYGQ4cOBWDIkCFMnDixcP9+/foxZ84cli9fTlxcHBs3buSdd96hX79+hUWO+M9jLWuQlp3PP1FXSt7Z2CVGg4+J35K64Ubfm0uH9DMXCyGMjqIovBfxHu727rzW4jW144gyUu22FMDAgQPRarVMnjyZhIQEmjVrxoYNGwo7GcfHxxdpqXn77bfRaDS8/fbbXLx4ER8fH/r168fUqVPVegpGrY6PMy0C3Vl14AJ9Q6qrHaf8ctIhNd601pQqSa1OENRJP2txvQf0Q8WFEEZjzek17L68m297fouTrZPacUQZaRQLu5+TlpaGm5sbqampuLq6qh2nwi3dE8/bvx4jYmIPfF1N9H7xhQPwfXd4YQv4m1HTcPxuWNAL/rcIGvdXO40Q4l/aTC0P//ow3QO782FHmXjTFMmfi2auT0g1bK2tWHPootpRyk8bpf9sLrelbghsB3V66FcM15lBvyghzMTH+z7G1tqWN1rL2lGmSoobM+fmaEuvxn6sOnDBdDtda6PBvSbYVVE7ieF1m6R/fsdXq51ECAHsvLiTDWc3MK7VONzs3dSOI8pJihsL8HjLGpxOTOeIqc55kxhtXv1tblajJdTrDVtnQIGZLZchhInJzs/mw90f0tavLX1r91U7jrgHUtxYgA51vfFzdWDVAROdwFBrwgtmlka3t+DqaTj2s9pJhLBo3x39jiuZV5jUbhIajUbtOOIeSHFjAaytNDzawp/fDpvgnDc51yH1vPm23IB+vamG/WDrR1CQp3YaISzSmZQz/HDiB4Y1HUYtt1pqxxH3SIobC3FjzpvN0YlqRykbbYz+s7l1Jr5V14lw7RwcXqp2EiEsjqIofLD7A/yd/Xm+6fNqxxEGIMWNhajj40xIDTfWHjaxUVOJUYDG9NeUKolvY2j8CGz7BPJz1E4jhEX5LfY39l/Zz6S2k2TFbzMhxY0FeSi0OluitaRmmdCtD200eNQEOwuYRKvrREi7CAcXq51ECIuRkp3CzP0z6VO7D2HVi1/6R5geKW4sSL/Q6uTpdGw4flntKKWXGGU+a0qVxKceNP0fbJ8JeVlqpxHCInxx6AvydfmMazVO7SjCgKS4sSC+rg60r+PF2sOX1I5SetoYqGrGI6Vu1WU8pCfCgYVqJxHC7J24eoJfTv7CiOYj8Hb0VjuOMCApbizMw6H+RJy5ypW0bLWjlCw7DdIuWE7LDYBXHWg2CLZ/BrmZaqcRwmwpisL0PdOp416HgfUHqh1HGJgUNxamd1M/bK2t+P2ICbTe3BgpZUktNwCd34CsZNg3T+0kQpitP878wRHtEd5q+xY2VqquIS0qgBQ3FsbVwZbu9auaxq0p7Y2RUvXUTlK5PIKg+dOwY5Z+nh8hhEGl56bz2YHP6BXUi9Z+rdWOIyqAFDcW6OFm1Tl2MZVYbbraUe4uMVr/i97WUe0kla/zOMhNhz3fqp1ECLPz7dFvycjLkE7EZkyKGwvUrUFVXOxtjL/1Rhtl3jMT341bDWg5FHZ9BdkmuiaYEEboTOoZfor8iWFNh+FXxU/tOKKCSHFjgRxsrendxI/fDl807pXCE818TamSdBoD+dmwe47aSYQwC4qi8NHej/Cr4sczjZ9RO46oQFLcWKiHmlXn7NVMjl9MUztK8bJS4Poly225AXDxg9bDIGI2ZCarnUYIk7f5/GZ2XdrFm63flJmIzZwUNxYqrLYXnlXsWHfMSCf0Szqp/2zJLTcAHV4DXT5EfK12EiFMWm5BLp/u+5QO/h3oGtBV7TiigklxY6FsrK3o1diX9ccuG+etqcQo0FhZ3kipWzn7QJsXYfdcyEhSO40QJmtZ9DIuZ1zmzVZvotFo1I4jKpgUNxbswabViE820ltT2mjwqAW2DmonUV+H0fpCb+cXaicRwiRdy77Gt0e+5fF6j1PbvbbacUQlkOLGgoXV9sLDydY4b00lWvBIqVs5eUK7l2HvPLh+Re00QpicOUfmoKDwSrNX1I4iKokUNxbMxtqK3k38jPPWlDYafOqrncJ4hI0AazvY8bnaSYQwKWdSz/BzzM+8EPICng6eascRlUSKGwt349bUiUtGdGsqKwWuX7asNaVK4ugO7UfC/gWQZuTzEwlhRD7f/zl+VfwY3HCw2lFEJZLixsLduDX1x1EjujWljdZ/trQ1pUrSdjjYOcH2mWonEcIk7L68m/AL4bzW8jUZ+m1hpLixcEZ5a+rGSCmvYLWTGBcHV33n4gOLICVe7TRCGLUCXQGf7vuUUJ9QetXspXYcUcmkuBHGd2tKGwOetWWkVHFavwAObrDtE7WTCGHUfov9jZhrMbzR+g0Z+m2BpLgRxjdqShslk/fdib0zdHwdDi2B5DNqpxHCKGXmZfLVoa94IOgBQn1C1Y4jVCDFjfh3Qj8/1h01kltTidEyDPxuWj8PVbxhq7TeCFGcxZGLSclJYXTL0WpHESqR4kYA8MC/t6aiE66rGyTrGqQnSMvN3dg6QqexcHQ5JJ1SO40QRiU5O5mFJxbyRIMn8Hf2VzuOUIkUNwLQ35pysbfhrxMJ6gZJ/HeklBQ3d9fiGXCpBls/UjuJEEZl3tF5aNDwQtMX1I4iVCTFjQDAzsaKbg2q8vcJlWfA1UaBxhq8ZaTUXdk6QOdxcGyVfnSZEIJL6ZdYEbOCZxs/i4eDh9pxhIqkuBGFejX2I/JyGueTM9ULkRitHyllI3NSlKjZU+AeAOHT1U4ihFGYfXg2rnauPN3oabWjCJVJcSMKdanvg52NFX9Hqth6o42SyftKy8YOOr8JkWvh8lG10wihqpjkGH6P/Z3hocNxsnVSO45QmRQ3opCzvQ0d63qr2+9GGyPLLpRF6CB9S1f4DLWTCKGqLw99SQ2XGjxW7zG1owgjIMWNKOL+Rr7sP5vM1fScyr94ZjKkX5GWm7KwtoEuEyBmHVw8qHYaIVRx4MoBtl3YxqvNX8XWylbtOMIISHEjiujZyBcF2BSVWPkXv7GmlLTclE3Tx8G7HmyZpnYSISqdoih8fuBzGno2pFeQLLMg9KS4EUV4O9vTqqYHf0eqcGsq8d+RUl51K//apszKGrpOgNMb4fxetdMIUam2nN/CEe0RXmv5GlYa+ZUm9OQ7QdymV2M/tp1KIiMnv3IvrI0Grzr6jrKibBo9AlUbw5apaicRotIU6Ar46tBXtK3WlvbV26sdRxgRKW7Ebe5r5Etuvo5tJ7WVe+FEWVOq3KysoNtEOBMOZ3eqnUaISvHX2b84nXKaUc1HqR1FGBkpbsRtanpVoYGfS+WPmtLKmlL3pEFf8AvRt94YwxphQlSgfF0+c47MoXONzoT4hKgdRxgZKW5Ese5v7Mem6ETyCnSVc8GMq5ChlZabe6HRQLdJcG4nxG1VO40QFeqPM39wNu0sI5qNUDuKMEJS3Ihi3d/Il+vZ+ew7m1w5F7wxUkpabu5NvV7g3xI2S+uNMF95ujzmHplLj8AeNPJqpHYcYYSkuBHFalzdFV9XezZX1pBwbRRY2YBnncq5nrnSaKDbW3BhL5z+R+00QlSIX0//yqX0S7zS7BW1owgjJcWNKJZGo6F7g6psjq6k4iYxWj8EXEZK3bs6PSCgnfS9EWYptyCX745+R6+gXtTzqKd2HGGkpLgRd9S9gS9nkjI4o02v+Itpo6W/jaFoNNB9Elw6BDF/qp1GCINadXIViZmJvNzsZbWjCCMmxY24o451vbG3saqc1hsZBm5YtTpDUCf9rMW6SuoULkQFy87P5vtj39OnVh9qu9VWO44wYlLciDtytLOmfR2vil+KISMJMpNkTSlD6zYJrhyD6N/VTiKEQayIWUFydjLDQ4erHUUYOSluxF11b+jLvrPJpGblVdxFEqP0n2VNKcOqGQZ1usOW6aArUDuNEPckMy+TBccX8HDdhwl0DVQ7jjByUtyIu+reoCr5OoXtpypwtmJtNFjZ6pdeEIbVbZJ+JNqJNWonEeKeLI9ZTlpuGi+FvKR2FGECpLgRd+Xv7kgDP5eKHRKu/XeklLVtxV3DUtVoBcG9IHw6FFTyWmFCGEhmXiaLTiyif93+VHeurnYcYQKkuBEl6tnQly0xiRToKmhYcWK09LepSN3egqun4dhKtZMIUS4rT64kLSeNYU2HqR1FmAgpbkSJujesyrXMPA6fv1YxF9BGSX+bilS9mX7dqa0zoKAC+04JUQGy87NZeGIhfev0xd/ZX+04wkRIcSNKFFrDHa8qdhUzaipdC5lXpeWmonWdCNfOwuGlaicRokxWn1pNcnYyLzR9Qe0owoRIcSNKZG2loWv9qhVT3GhvjJSS4qZC+TWBxo/Atk8gP1ftNEKUSm5BLvOPz+fBWg/KCClRJlLciFLp0bAqMVeucz4507AnTvx3pJSnTMhV4bpOhLSLcGix2kmEKJVfT/+KNlPLCyHSaiPKRoobUSqdgr2xsdKw9aSBh4Rro8A7WEZKVQaf+tD0f7BtJuRlq51GiLvK0+Ux/9h8egX1ktmIRZlJcSNKxcXBlhY1PQxf3CTKmlKVqst4SL8CBxaqnUSIu/oj9g8uZVySVhtRLlLciFLrUs+HXaeTyM030FpFiqJvuakqI6UqjVcdCB0E22dCroFvMQphIPm6fOYdm0ePwB6y8rcoFyluRKl1qedDRm4BB84ZaEh4hhayrknLTWXr8gZkJcO+79VOIkSx/oz7k/PXz8tsxKLcpLgRpdaomivezvaGuzV1Y00pabmpXB5B0Pwp2DkLcq6rnUaIIgp0BXx39Du61OhCQy/52SDKR4obUWpWVho61/M2XHGjjQZrO/CoZZjzidLr/Ia+sNn7ndpJhCjin/h/OJt2VlptxD2R4kaUSdf6VYm6nMaVNAOMtkmMAq9gsLa593OJsnGrAS2fhZ1fQnaq2mmEAEBRFOYfm0/bam1p6tNU7TjChKle3MyePZugoCAcHBxo27Yte/fuvev+KSkpjBgxgmrVqmFvb0+9evVYv359JaUVnep6o9FgmNYbrawppaqOYyA/G3bPUTuJEABEXI4gKjmK55s8r3YUYeLKXdxs2rSJvn37UqdOHerUqUPfvn35559/ynSOFStWMGbMGKZMmcLBgwcJDQ2lV69eJCYWPxNubm4u9913H2fPnmXVqlXExMQwb948/P1lvZHK4lHFjtAa7vde3CiKvuVG1pRSj2s1aPU8RMzWd+wWQmXzj82nkVcj2lVrp3YUYeLKVdx888039O7dGxcXF0aPHs3o0aNxdXXlwQcfZPbs2aU+z2effcYLL7zA0KFDadSoEXPnzsXJyYkFCxYUu/+CBQtITk7m119/pUOHDgQFBdGlSxdCQ0PL8zREOXWp58OOU0nkF9zDkPD0K5CdIi03auv4OujyYdfXaicRFu6o9ih7E/YyrOkwNBqN2nGEiStXcTNt2jQ+//xzli1bxqhRoxg1ahRLly7l888/Z9q0aaU6R25uLgcOHKBnz57/hbGyomfPnkRERBR7zG+//UZYWBgjRozA19eXJk2aMG3aNAoKCu54nZycHNLS0op8iHvTpb4PqVl5HLlwD301tNH6z9Jyoy5nH2jzIuyZCxlX1U4jLNiC4wsIcg2ie0B3taMIM1Cu4iYlJYXevXvftv3+++8nNbV0v/CSkpIoKCjA19e3yHZfX18SEhKKPebMmTOsWrWKgoIC1q9fzzvvvMPMmTP58MMP73id6dOn4+bmVvgREBBQqnzizkJruOPmaMvWmHtYSDMxGqztwVNGSqmu/Sj9552zVI0hLNeZlDNsit/E0CZDsbayVjuOMAPlKm4eeugh1qxZc9v2tWvX0rdv33sOdSc6nY6qVavy3Xff0bJlSwYOHMikSZOYO3fuHY+ZOHEiqamphR/nz5+vsHyWwtpKQ6fgexwSro0C73ogP8jUV8UL2r0Me+dBegWs/C5ECX448QNVHavSt3bF/f4QlqVcY3AbNWrE1KlTCQ8PJywsDIDdu3ezc+dOxo4dy5dfflm476hRo4o9h7e3N9bW1ly5cqXI9itXruDn51fsMdWqVcPW1hZr6/9+ITZs2JCEhARyc3Oxs7O77Rh7e3vs7e3L/BzF3XWp58ObvxzlanoOXs7leH0TZaSUUQkbAXu+gx2fQ+/paqcRFiQhI4E/zvzBay1ew8769p/hQpRHuYqb+fPn4+HhQWRkJJGRkYXb3d3dmT9/fuHXGo3mjsWNnZ0dLVu2ZNOmTfTv3x/Qt8xs2rSJkSNHFntMhw4dWLp0KTqdDisrfaPTyZMnqVatWrGFjag4Xer5oCiw/VQS/ZuXcbTajTWlgnuWvK+oHI4e+gJn+0xo/yq4Vlc7kbAQiyMX42TjxOP1Hlc7ijAj5Spu4uLiDHLxMWPG8Mwzz9CqVSvatGnDrFmzyMjIYOjQoQAMGTIEf39/pk/X/yX58ssv8/XXXzN69GheffVVTp06xbRp0+5YQImKU9XVgQZ+LuUrbq4n6CeOk87ExqXdy7BnDmz/DPp8qnYaYQFSslNYdXIVQxoNoYptFbXjCDOi6tSwAwcORKvVMnnyZBISEmjWrBkbNmwo7GQcHx9f2EIDEBAQwF9//cXrr79OSEgI/v7+jB49mvHjx6v1FCxap2Bvfj9yGUVRyjZ0UytrShklB1d95+Lw6dBhNLhL53tRsZZFL0NRFJ5s+KTaUYSZ0SiKopRmxzFjxvDBBx9QpUoVxowZc9d9P/vsM4OEqwhpaWm4ubmRmpqKq6ur2nFMWnhMIs/+sI9/xnSmblWX0h8Y8Q1seg/euiQdio1NTjp8EQoN+sBDX5a8vxDllJmXSa9fevFgrQeZ2Hai2nGEmSl1y82hQ4fIy8sr/PedyORLlqNNLU/srK3YcSqpbMWNNhq8g6WwMUb2ztDxNfjnXf0EfzJUX1SQtbFrSctNY0jjIWpHEWao1MXNli1biv23sFxOdja0qOnOjtNJPNuhDL8EtdHS38aYtXoedn0F2z6B/t+onUaYoQJdAT9G/sh9Ne/D31mWzxGGp/rCmcK0dQr2YfeZZPJKuxSDosgwcGNn5wSdxsKRZZB0Wu00wgyFnw/n/PXzPNPoGbWjCDNVruImIyODd955h/bt21O3bl1q165d5ENYjg51vUnPyefI+ZTSHXD9MuTISCmj1+IZcKkGW2eonUSYoUWRi2hRtQVNfZqqHUWYqXKNlho2bBhbt27l6aefplq1atLPxoI19XfD1cGG7aeSaBXkWfIBif+OlPKpX7HBxL2xddC33qwbC53GSUubMJij2qMcSjzEF92+UDuKMGPlKm7+/PNP1q1bR4cOHQydR5gYaysN7et4s/N0Eq/fV6/kA7TRYOMAHkEVnk3co+ZPw45Z+qHhAxapnUaYiUUnFlHTtSZdA7qqHUWYsXLdlvLw8MDTsxR/pQuL0DHYm0PnU7ienVfyzomyppTJsLGDLm9A5K+QcEztNMIMXLh+gX/i/+Hphk9jpZEun6LilOu764MPPmDy5MlkZmYaOo8wQR3relOgU9hzJrnknbXRMnmfKQkdBB61IFz63oh7tyRqCa52rjxU9yG1owgzV+rbUs2bNy/St+b06dP4+voSFBSEra1tkX0PHjxouITC6NX0cqKGhyM7TifRs5HvnXdUFNDGQP0HKy+cuDfWttB1Aqx5CS4dgurN1U4kTFRabhqrT63mqUZP4WjjqHYcYeZKXdzcWNxSiFtpNBo6BXuz43TS3XdMuwQ5adJyY2qa/g+2fQpbpsHglWqnESZq1clV5OnyGNRgkNpRhAUodXEzZcqUiswhTFyHut4s23uey6lZVHO7w19lN9aU8pGRNybFylrfevPL83B+LwS0UTuRMDF5BXksiVpC39p98Xb0VjuOsADl6nNz/vx5Lly4UPj13r17ee211/juu+8MFkyYlvZ1vNFoYOfpq3feKTEabBzBvWblBROG0fhRqNpI33ojRBltOLuBxMxEhjSSpRZE5ShXcfPkk08WLsGQkJBAz5492bt3L5MmTeL99983aEBhGjyr2NG4uis7TmnvvJM2CnzqgZWMkjA5VlbQdSKc2QLndqmdRpgQRVFYHLmYDv4dqOtRV+04wkKU67fM8ePHadNG3zT9888/07RpU3bt2sWSJUtYuHChIfMJE9Khrjc7Y69yx4XmE2VNKZPWoC/4NYXNU/Wdw4Uohf1X9hOdHC2tNqJSlau4ycvLw97eHoB//vmHhx7SD+tr0KABly9fNlw6YVLCanuhvZ5DrDbj9gdvjJSSmW5Nl5UVdJsE53ZA3Da10wgTsTRqKbXdahNWLUztKMKClKu4ady4MXPnzmX79u1s3LiR3r17A3Dp0iW8vLwMGlCYjtZBnthYaYg4U0y/m9QLkHtdWm5MXb3e4N8StkjrjSjZpfRLbD6/mcENB8syPaJSlau4+eijj/j222/p2rUrgwYNIjQ0FIDffvut8HaVsDxV7G0IqeHG7thiihttjP6ztNyYNo0Gur0F5/fA6U1qpxFGbnnMcqrYVKFv7b5qRxEWpsxrSymKQu3atYmPjyc/Px8PD4/Cx1588UWcnJwMGlCYlvZ1vFm2Nx5FUYr+paaNAlsncAtUL5wwjDo9IKAtbPkQ6vbQFzxC3CIrP4vVp1bzaPCjONnK7wVRucrccqMoCnXr1iUhIaFIYQMQFBRE1apVDRZOmJ6wOl5czcjl5JX0og8kRutXApeRUqZPo9H3vbl0CE5uUDuNMFLrz6wnLSeNJxo8oXYUYYHK/JvGysqK4OBgrl69y3wmwmK1rOmBnbUVEbG3zFasjZLJ+8xJ7S4Q1Enf90anUzuNMDKKorAkegldA7pSw6WG2nGEBSrXn9EzZszgjTfe4Pjx44bOI0ycg601zQLdi3YqvjFSSoob89LtLf1q4dG/q51EGJn9V/Zz6topnmz4pNpRhIUqc58bgCFDhpCZmUloaCh2dnY4Ohadbj85uRSrQwuzFVbbi4W7zqLTKVhZaSD1POSmy5pS5qZme6jdDbZMhwb95JajKLQkagl13OrQ1q+t2lGEhSpXcTNr1iwDxxDmJKyOF19sOkXk5TSa+Lvp+9uAtNyYo26TYH5POLEamj6udhphBC6mX2TL+S1MajtJhn8L1ZSruHnmmWcMnUOYkeaB7tjbWLH7zFV9caONAtsq4BagdjRhaAGtIfh+CJ8BjfqDdbl+pAgzsiJ6BVVsZfi3UFe525FjY2N5++23GTRoEImJiQD8+eefnDhxwmDhhGmyt7GmZU0PIm7Md6ONkZFS5qzbW3D1FBxbqXYSobKs/Cx+OfULjwU/JsO/harK9dtm69atNG3alD179rB69WrS0/XDfo8cOcKUKVMMGlCYprDaXuyNSya/QAeJUdLfxpxVb65fd2rrR1CQp3YaoaJ1Z9aRnpcuw7+F6spV3EyYMIEPP/yQjRs3YmdnV7i9e/fu7N6922DhhOkKq+PF9Zx8TlxMkZFSlqDrRLgWB0eWqZ1EqERRFJZELaFrja74O/urHUdYuHIVN8eOHeORRx65bXvVqlVJSkoq5ghhaUJquONoa83xyBOQlyHFjbnza6Lvc7P1E8jPVTuNUMG+hH2cTjktw7+FUShXcePu7l7s6t+HDh3C318qdgF2Nla0ruXJldjD+g2yppT56zpRP+z/0I9qJxEqWBK1hLrudWnjJ+sLCvWVq7h54oknGD9+PAkJCWg0GnQ6HTt37mTcuHEMGTLE0BmFiQqr7YXuSiSKnbOMlLIEVRtA0//Btk8hL1vtNKISXbh+gfAL4TzZ8EkZ/i2MQrmKm2nTptGgQQMCAgJIT0+nUaNGdO7cmfbt2/P2228bOqMwUWF1vKilnCfTtY4srmgpuoyH9AQ4sFDtJKISrYhZgbOtM31q9VE7ihBAOee5sbOzY968ebzzzjscP36c9PR0mjdvTnBwsKHzCRPWpLortlYXibdpgoyVshDedSF0EOz4DFoMATsZDmzuMvMy+eXULzwe/LgM/xZG455m3AoMDCQgQH+7QZoixa1sNFDX6hKrsnpIcWNJurwJR1fA/vnQ/lW104gK9seZP8jIy2Bgg4FqRxGiULlnVZs/fz5NmjTBwcEBBwcHmjRpwvfff2/IbMLUpcZjr2SzJdmLnPwCtdOIyuIRBM2fgh2fQ0662mlEBVIUhaVRS+kW0E2GfwujUq7iZvLkyYwePZp+/fqxcuVKVq5cSb9+/Xj99deZPHmyoTMKU/XvmlIn8vw5FJ+ibhZRuTqNg5zrsPdbtZOICrT78m5iU2MZ3HCw2lGEKKJct6XmzJnDvHnzGDRoUOG2hx56iJCQEF599VXef/99gwUUJkwbhWLnQpbGl4jYq7Sr7aV2IlFZ3AOgxTOw80to/QI4uKqdSFSApVFLqedRj1a+rdSOIkQR5Wq5ycvLo1Wr27+ZW7ZsSX5+/j2HEmYiMRqNT33a1fb+b50pYTk6jYW8LNg9R+0kogKcTzvP1gtbGdxwsPS5FEanXMXN008/zZw5t//A+u677xg8WJonxb+0UVC1AWF1vDh0/hpZudLvxqK4VoPWz0PEbMi6pnYaYWBLo5fiZu/Gg7UeVDuKELcp9W2pMWPGFP5bo9Hw/fff8/fff9OuXTsA9uzZQ3x8vEziJ/R0OtCehKYDaF/Hi7wChf3nkukU7KN2MlGZOr6un/MmYjZ0lzmwzEVGXga/nv6VJxo8gYONg9pxhLhNqYubQ4cOFfm6ZcuWAMTGxgLg7e2Nt7c3J06cMGA8YbJSzkJ+FlRtQN2qzng72xMRe1WKG0vjXBXavKC/NdX2Zagi/a7MwdrTa8nKz2JgfRn+LYxTqYubLVu2VGQOYW60MfrPPg3RaDSE1fFil/S7sUztR8O++bDrC7hPBhuYOp2iY1n0MnrW7IlfFT+14whRrHLPcyPEXSVGgb0ruFYH9OtMHbuYyvXsPJWDiUpXxQvaDoe98yA9Ue004h7turSLs2lnZfi3MGrlGgqenZ3NV199xZYtW0hMTESn0xV5/ODBgwYJJ0yYNhp8GhSuKdW+jhcFOoV9Z5Pp3sBX5XCi0rUfqS9udsyC3tPUTiPuwU9RP9HIqxHNfJqpHUWIOypXcfP888/z999/8/jjj9OmTRsZBihulxgF1UILv6zp5UQ1Nwd2nb4qxY0lcvSAsBH6Nafav6ofSSVMTlxqHDsv7mRqx6nyc18YtXIVN3/88Qfr16+nQ4cOhs4jzIGuAJJOQugThZtu9LuJOCP9bixWu+Gw+xvYPhP6fKp2GlEOy6KX4engSe+g3mpHEeKuytXnxt/fHxcXF0NnEebi2lnIz9bflrpJWG0vIi+nkZKZq04uoS4HN+gwCg4ugpTzaqcRZXQ99zprT69lQP0B2FnbqR1HiLsqV3Ezc+ZMxo8fz7lz5wydR5gDrX5NKaoWXQs8rI4XigK7zySrEEoYhTYvgb0LbJeWG1Oz6uQq8nR5DKg3QO0oQpSoXMVNq1atyM7Opnbt2ri4uODp6VnkQ1i4xCiwdwOXov0qang4EejpRERskkrBhOrsnaHDa3DoJ0iOUzuNKKU8XR5LopbQp3YffJxkriph/MrV52bQoEFcvHiRadOm4evrKx3LRFHaGKj630ipm7WX+W5E62EQ8TVs+wT6f6N2GlEKf539iyuZVxjSSGagF6ahXMXNrl27iIiIIDQ0tOSdheXRRkH1FsU+1L6uN8v3nSchNRs/N5m23SLZOUHHMfDXRP3iml511E4k7kJRFBafWEz76u0J9ghWO44QpVKu21INGjQgKyvL0FmEOdAVQNKp2/rb3NChjn76/R2n5daURWv5LDj7QfgMtZOIEuxL2EdUchTPNHpG7ShClFq5ipsZM2YwduxYwsPDuXr1KmlpaUU+hAUrHClVv9iHvZztaVzdlR2ntJWbSxgXWwfoPBaOrYTEaLXTiLtYFLmIYI9gwqqHqR1FiFIrV3HTu3dvIiIi6NGjB1WrVsXDwwMPDw/c3d3x8PAwdEZhShKj9J99im+5AegY7M2O01dRFKWSQgmj1HwIuAXAVmm9MVZnUs6w7cI2hjQaIn0rhUkpV58bWURT3JE2Sj+ficudF9TrVNeHb7eeITrhOg2ruVZiOGFUbOygyxvw26vQaRz4NVE7kbjF4sjFeDt682CtB9WOIkSZlKu46dKli6FzCHORGK1vtbnLX3mtgjywt7Fix6kkKW4sXegg/YzF4dPhiSVqpxE3Sc5O5vfY3xkeOlwm7RMmp9yrgm/fvp2nnnqK9u3bc/HiRQB+/PFHduzYYbBwwgRpo/XDwO/CwdaaNrU82S6dioW1LXSZANF/wKVDaqcRN1kRvQJrK2sG1JdJ+4TpKVdx88svv9CrVy8cHR05ePAgOTk5AKSmpjJtmqz4a7EK8vUjpe7S3+aGTsHe7I27SnZeQSUEE0at6f/AKxi2TFc7ifhXdn42y2OW83Cdh3Gzd1M7jhBlVq7i5sMPP2Tu3LnMmzcPW1vbwu0dOnTg4MGDBgsnTMy1s1CQU2LLDUDHuj5k5+k4eO5axecSxs3aBrpOgFN/wfl9aqcRwB9n/uBa9jWebvS02lGEKJdyFTcxMTF07tz5tu1ubm6kpKTcayZhqrQlj5S6oYGfC97OdnJrSug1flT/fbNlqtpJLJ5O0bE4cjHdA7sT6BqodhwhyqVcxY2fnx+nT5++bfuOHTuoXbv2PYcSJioxGhzcwblqibtaWWnoUNebHaekuBGAlRV0mwhntsC5XWqnsWjh58OJS43j2cbPqh1FiHIrV3HzwgsvMHr0aPbs2YNGo+HSpUssWbKEcePG8fLLLxs6ozAV2ij9zMSlnA+jY11vjl9K5VpGbgUHEyahQT/wawpbpN+eWhRFYf6x+bSo2oJmVZupHUeIcivXUPAJEyag0+no0aMHmZmZdO7cGXt7e8aNG8err75q6IzCVCRGQ0CbUu/eKdgHRYGdsUn0DalegcGESbCygq5vwfJBcGYr1JYpJyrb/iv7OZp0lNk9ZqsdRYh7Uq6WG41Gw6RJk0hOTub48ePs3r0brVbLBx98YOh8wlQU5MPVO68pVRw/NwfqVnWWW1PiP/Uf0C+6umUayAzWlW7B8QUEewTTyb+T2lGEuCdlarl57rnnSrXfggULyhRi9uzZfPLJJyQkJBAaGspXX31FmzYltwAsX76cQYMG8fDDD/Prr7+W6ZrCwJLPQEEu+JQ8UupmHet6szHyCoqiyPTuQn9Ls9skWPIYxG6Cuj3VTmQxYpJj2HFxBzM6zZD/i8LklanlZuHChWzZsoWUlBSuXbt2x4+yWLFiBWPGjGHKlCkcPHiQ0NBQevXqRWJi4l2PO3v2LOPGjaNTJ/kLwyho/138sAwtN6Cf7+ZiShZxSRkVEEqYpLo9oEYb2DxVWm8q0fzj8/F39qdXUC+1owhxz8rUcvPyyy+zbNky4uLiGDp0KE899RSenp73FOCzzz7jhRdeYOjQoQDMnTuXdevWsWDBAiZMmFDsMQUFBQwePJj33nuP7du333X4eU5OTuEkg4CsWl5RtNHg6AlVfMp0WLvaXthaa9h2UkttH+cKCidMikYD3SfB4ofh5Ab9rSpRoc5fP89fZ/9iQpsJ2FiVqyumEEalTC03s2fP5vLly7z55pv8/vvvBAQEMGDAAP76669yrfCcm5vLgQMH6Nnzv6ZnKysrevbsSURExB2Pe//996latSrPP/98ideYPn06bm5uhR8BAQFlzilKIbFsI6VuqGJvQ6uanmw9qa2gYMIk1eoCNTvq572R1psKt+jEItzt3elft7/aUYQwiDJ3KLa3t2fQoEFs3LiRyMhIGjduzCuvvEJQUBDp6ellOldSUhIFBQX4+voW2e7r60tCQkKxx+zYsYP58+czb968Ul1j4sSJpKamFn6cP3++TBlFKWmjwad+uQ7tWt+HiDOyFIO4iUYD3d6ChGMQ9bvaacxaUlYSv57+lcENB+No46h2HCEMotwLZ4K+lUWj0aAoCgUFFf+L6fr16zz99NPMmzcPb2/vUh1jb2+Pq6trkQ9hYAV5pV5Tqjhd61clO0/HnrhkAwcTJi2oA9Tuql8xXKdTO43ZWhq1FGuNNQPrD1Q7ihAGU+biJicnh2XLlnHfffdRr149jh07xtdff018fDzOzmXrM+Ht7Y21tTVXrlwpsv3KlSv4+fndtn9sbCxnz56lX79+2NjYYGNjw+LFi/ntt9+wsbEhNja2rE9HGELyGdDllWpNqeLU83WmmpsD4TF370QuLFC3tyExEiLXqJ3ELKXnprM8Zjn/q/c/WSBTmJUyFTevvPIK1apVY8aMGfTt25fz58+zcuVKHnzwQaysyt4IZGdnR8uWLdm0aVPhNp1Ox6ZNmwgLC7tt/wYNGnDs2DEOHz5c+PHQQw/RrVs3Dh8+LP1p1JJY+jWliqPRaOha34etMdLvRtwioDUE3w/hM0Anty0NbdXJVWTlZ8kCmcLslKlb/Ny5cwkMDKR27dps3bqVrVu3Frvf6tWrS33OMWPG8Mwzz9CqVSvatGnDrFmzyMjIKBw9NWTIEPz9/Zk+fToODg40adKkyPHu7u4At20XlUgbDU5e4Fy2kVI361KvKsv2nif+aiaBXk4GDCdMXteJMK8bHFsJoU+oncZsZOdnsyhyEQ/VeQjfKr4lHyCECSlTcTNkyBCDT+40cOBAtFotkydPJiEhgWbNmrFhw4bCTsbx8fHlahUSlUgbXe5Wmxs61PXCxkpD+MlEhoQFGSaXMA/+LaB+H33rTZPHwNpW7URmYfWp1SRnJzOsyTC1owhhcBqlPGO4TVhaWhpubm6kpqZK52JDmd1O3/mzz8x7Os0T30VQxc6G+c+2NlAwYTYSjsHcjvDQ19BCbqHcq9yCXB5c/SCt/VozvdN0teMIYXDSJCLuTUEeXD1d5mUXitO1flV2xcqQcFEMv6bQ6GHY+jHkyyry92pt7FoSMxN5IeQFtaMIUSGkuBH35mqsfqSUQYobH7LyCth3VoaEi2J0nQip5+HQj2onMWl5ujzmH5vP/UH3U9utttpxhKgQUtyIe6P9d6RUGdeUKk59Xxf8XB0Il1FTojhVG0LTx2H7TMjLVjuNyVp3Zh0X0y/yYsiLakcRosJIcSPuTWI0OHlDldJNqng3Go2GLvV8ZL4bcWddJsD1y3BwkdpJTFKBroDvj31P94Du1POop3YcISqMFDfi3mijDNJqc0PX+j7EajM4n5xpsHMKM+JdF0Ke0Lfe5Mr3SFltOLuBc2nneDFUWm2EeZPiRtybxGiD9Le5oUOw979DwuXWlLiDLm9C5lXYv0DtJCZFp+iYd3Qenfw70dirsdpxhKhQUtyI8svPheTYci+7UBxXB1ta1vQgPFpuTYk78KwFzQbDjs8hp2yL9Vqyf879Q2xqLC+FvqR2FCEqnBQ3ovySY0GXf88T+N2qR8Oq7DidRFauDAkXd9B5HGSnwt7v1E5iEhRF4buj39GuWjtCfULVjiNEhZPiRpRfouFGSt2sR0NfcvJ17DydZNDzCjPiHggtn4FdX0J2mtppjF74+XBirsXwUoi02gjLIMWNKD9tNFTxASdPg562jo8ztbyrsCn6Ssk7C8vVaay+U/GeuWonMWo6Rcfsw7Np5duKVn6t1I4jRKWQ4kaUX2KUQTsT36xHg6psikpEp7Oo1UFEWbhWh1bPwa6vIeua2mmM1ub4zcRci2Fk85FqRxGi0khxI8pPG23wW1I3dG9YlcTrORy/lFoh5xdmouPrUJALEbPVTmKUbrTahFULo6VvS7XjCFFppLgR5ZOfo196oYJabloHeeLiYMM/UTJqStyFiy+0eQF2z4FMWbbjVn+f/ZvTKad5pdkrakcRolJJcSPK5+ppUAoqrOXG1tqKrvWrsilK+t2IEnR4Tf955xeqxjA2BboCvjnyDR39O9KsajO14whRqaS4EeWjjdZ/rqCWG4CeDaty4lIal1OzKuwawgxU8YK2L+mHhadLS98N6+PWE5cax8hm0tdGWB4pbkT5JEaDs6/BR0rdrGu9qlhbadgkt6ZEScJGgpUN7JildhKjkK/LZ+6RuXQN6Epjb5mNWFgeKW5E+WgrbqTUDW5OtrSq6SG3pkTJnDwhbATsnw9pl9VOo7rfY38n/no8I5qNUDuKEKqQ4kaUj4HXlLqTng192Rl7lczc/Aq/ljBx7V4GGwfY8ZnaSVSVp8vj26Pfcl/N+2jgWfH/R4UwRlLciLLLz4HkMwZdU+pOejSsSm6+jh2nZLZiUQIHN2j/KhxYCCnn1U6jml9P/8ql9Eu8HPqy2lGEUI0UN6Lskk7pR0oZeE2p4tT2caa2dxXpdyNKp+1wsHeB7TPVTqKKnIIcvjv6Hb2DehPsEax2HCFUI8WNKLsbI6UqoeUG9K03m6ITKZDZikVJ7J31Q8MP/QjXzqqdptKtiF6BNlMr89oIiyfFjSi7xChw9gNHj0q5XK/GfiSl53AoXqbYF6XQehg4esLWT9ROUqmu515n3rF5PBL8CEFuQWrHEUJVUtyIstNGV1qrDUCLQA+8ne3ZcDyh0q4pTJidE3QaA0eW6WfRthCLTiwiKz+L4SHD1Y4ihOqkuBFlp42ulP42N1hZabi/sS9/RSagKHJrSpRCy6HgXBW2fqR2kkqRlJXE4sjFPNnwSXyr+KodRwjVSXEjyiYvu9JGSt2sV2M/zidnEXk5rVKvK0yUrQN0GgtHfwZtjNppKtx3R7/DxsqG55s8r3YUIYyCFDeibK6eAkVXKXPc3CysthcuDjb8dUIm9BOl1GIIuNWA8OlqJ6lQ56+fZ+XJlTzX5Dnc7N3UjiOEUZDiRpRNYsWvKVUcOxsrejb05S/pdyNKy8YeOr8BJ9bAlRNqp6kwsw/PxsPeg8ENB6sdRQijIcWNKBttFLhUA0f3Sr90r8a+xFy5TlxSRqVfW5ioZk+CRxBsmaZ2kgoRkxzD+jPrGR46HEcbR7XjCGE0pLgRZVNJyy4Up3M9HxxsrfjrhLTeiFKytoUu4yH6D7h0WO00BvfFwS8IdA3kkeBH1I4ihFGR4kaUjTYKqlbeSKmbOdnZ0DnYR4obUTZNB4BXXbPre7M/YT/bL25nZPOR2FrZqh1HCKMixY0ovbws/ayvKrXcAPRu4seh+BQSUrNVyyBMjLUNdJ0IJzfAhf1qpzEInaJj5v6ZNPJqxP0171c7jhBGR4obUXpJ/46UUqnlBqBHA19srDRsjJTWG1EGjR/RF+VbpqqdxCD+jPuT41eP80arN7DSyI9xIW4l/ytE6d1YU8qnvmoR3JxsCavjxQa5NSXKwspa33oTuxnORaid5p5k52fzxcEv6B7QnVZ+rdSOI4RRkuJGlF5iFLhUBwd159Lo1diP3WeSSc7IVTWHMDENHwLfpibferMkagnaTC2vt3xd7ShCGC0pbkTpVfKaUnfSq7EfiqJIx2JRNlZW0G0inN0OcdvUTlMuydnJfH/sewbUHyCLYwpxF1LciNJLjKrUNaXuxMfFnna1vVh39LLaUYSpqf8gVG8Om6eCCa5T9s3hb9CgYXioLI4pxN1IcSNKJzdTP1LKCFpuAPqGVGdXbBJJ6TlqRxGmRKOBbpPg/G59/xsTciblDKtOruLFkBfxcPBQO44QRk2KG1E6SScBxShabkA/JFyj0bBBlmMQZVW3J9Roo+97Y0KtN58f+By/Kn482fBJtaMIYfSkuBGlc2NlZRVHSt3Ms4od7et48cfRS2pHEaZGo4Fub8HFA3DyL7XTlMrey3sJvxDOay1fw87aTu04Qhg9KW5E6WijwLUGOLiqnaRQ35Bq7IlLJvG6TOgnyqh2V6jZwSRabwp0BXyy/xNCfELoVbOX2nGEMAlS3IjSSTSOkVI369XYD2uNhj+Pya0pUUY3Wm8SjurXnTJiq0+vJjo5mvGtx6PRaNSOI4RJkOJGlI42StVlF4rj7mRHx2BvGTUlyieoI9Tqol8xXKdTO02xUnNS+fLglzxU5yFCfELUjiOEyZDiRpQsNxOunTO64gb0o6b2nUuWtaZE+XR/GxIjIXKN2kmK9c3hb8jT5fFai9fUjiKESZHiRpQsKQZQVF1T6k7ua+SLrZUV645J640oh4A2UPc+CJ8BugK10xRx8tpJVsSsYHjIcHycfNSOI4RJkeJGlCxR/TWl7sTN0ZbO9bxZJ6OmRHl1m6if6uDYKrWTFFIUhY/2fkSASwCDGw5WO44QJkeKG1EybRS4BYC9i9pJitU3pDoH41M4n5ypdhRhivxb6mcu3joDCvLVTgPAxnMb2Zuwl/FtxmNrbat2HCFMjhQ3omTaGKPsb3PDfY18cbS15rcj0nojyqnbW5B8Bo4uVzsJWflZfLr/U7rU6EJH/45qxxHCJElxI0qWGGV0w8BvVsXehl6NfVl98AKKkc9ZIoyUX1No9DBs/Qjy1V1tfuHxhSRlJfFm6zdVzSGEKZPiRtxdbgaknDOaZRfupH9zf2K1GZy4lKZ2FGGquk6ElPNw+CfVIlxMv8j84/MZ0mgIga6BquUQwtRJcSPurnDZBeNtuQHoWNcbb2c71hy6qHYUYaqqNoQmj8G2TyGv8qcWUBSF6Xum427vzoshL1b69YUwJ1LciLvTGu9IqZvZWFvRL7Q6vx25RH6BcU7IJkxA1wlw/TIcXFzpl958fjNbL2xlQpsJONk6Vfr1hTAnUtyIu0uMArdAsHdWO0mJHmnuj/Z6Drtir6odRZgq72AIGQjbZ0JeVqVdNjMvkxl7Z9C5Rmd6BPaotOsKYa6kuBF3pzW+NaXupKm/G7V9qvCr3JoS96LLm5ChhX3zK+2Sc4/MJSU7hYltJsr6UUIYgBQ34u4So42+v80NGo2GR5r589eJBDJzjWO+EmGCPGtD88Gw43N9h/oKduraKX6M/JEXQ16khkuNCr+eEJZAihtxZznpkBpvlMsu3MnDzfzJyC1gY+QVtaMIU9b5DchOhb3fVehldIqOD3d/SIBrAM82frZCryWEJZHiRtxZkmmMlLpZoJcTrWp6yK0pcW/cA6HFENj5BWRX3PQCa0+v5WDiQd5u+7bMRCyEAUlxI+7MiNeUupv+zf3ZdiqJxDRZKVzcg87jIDcT9sytkNOnZKfw2YHP6Fu7L22qtamQawhhqaS4EXemjdL/BWtXRe0kZdIvtDo2VhpWS+uNuBeu1aHVc7Dra8hKMfjpP9n/CQVKAWNbjTX4uYWwdFLciDtLjDb6mYmL4+ZoywNN/Ph5/3lZjkHcm46vQ0EuRMw26Gl3XtzJb7G/8UarN/B29DbouYUQUtyIuzGhYeC3+l+rAM5oMzgYf03tKMKUufhCm2Gwew5kJhvklJl5mbwX8R7tqrWjf93+BjmnEKIoKW5E8XKuQ+p5k2y5AQir7YW/uyM/77ugdhRh6jq8BooOdn1pkNN9eehLUnJSmBw2Wea0EaKCSHEjindjTSkTbbmxstLwv1Y1+OPoJTJyZM4bcQ+qeEPbl2DPt5CuvadTHU48zNKopYxsNpIAlwADBRRC3MooipvZs2cTFBSEg4MDbdu2Ze/evXfcd968eXTq1AkPDw88PDzo2bPnXfcX5aSNBjTgbVojpW72eMsaZOYVsP7YZbWjCFPX/lWwsoGds8p9ityCXKbsmkIT7yYMbjjYcNmEELdRvbhZsWIFY8aMYcqUKRw8eJDQ0FB69epFYmJisfuHh4czaNAgtmzZQkREBAEBAdx///1cvCgjYwwqMQo8aoKd6S7gV8PDiQ51vFm5X25NiXvk5AntXoF930Na+YrlecfmEZ8Wz7vt38XaytrAAYUQN9MoKg8nadu2La1bt+brr78GQKfTERAQwKuvvsqECRNKPL6goAAPDw++/vprhgwZUuL+aWlpuLm5kZqaiqur6z3nN1s/PQZWtvDkcrWT3JO1hy8yevlhtozrSi1v0xrSLoxMdirMagohT8CDH5fp0JPXTjLw94E83/R5RjYfWUEBLY9Op6OgoEDtGMKAbGxsDNIXzcYAWcotNzeXAwcOMHHixMJtVlZW9OzZk4iIiFKdIzMzk7y8PDw9PYt9PCcnh5ycnMKv09IqbrZRs5IYDU0fVzvFPevV2A9XBxtW7j/Pm71Ns/+QMBIObvrbU1s/hg6jwK1060DlFeTx9o63qelakxdDXqzgkJZBURRSU1PJzMxUO4owMI1Gg4+PDzY291aeqFrcJCUlUVBQgK+vb5Htvr6+REdHl+oc48ePp3r16vTs2bPYx6dPn8577713z1ktSnYapF0wqTWl7sTB1pr+zf1ZeeACr99XD1tr1e/EClPWdjhEfAPbPoV+s0p1yHfHvuPktZMs6bMEO2u7is1nIW4UNq6urtjZ2cmoMzOhKArXrl0jJSUFLy+ve3pfVS1u7tWMGTNYvnw54eHhODg4FLvPxIkTGTNmTOHXaWlpBATIKIW70premlJ382TbQBZHnGNj5BUebFpN7TjClNm7QMfXYNP7+gn+PGredfcTSSeYd3QeL4a8SGOvxpWT0czpdLrCwsbZ2VntOMLAXF1duXbtGjqdDmvr8vdNU/XPWG9vb6ytrblypegKzleuXMHPz++ux3766afMmDGDv//+m5CQkDvuZ29vj6ura5EPUQJtFPqRUvXUTmIQDfxcaVXTgyV7zqkdRZiD1sPA0QO23b3fTU5BDpN2TKKeRz1eCHmhksKZvxt9bOzspBXMHN0oaHQ63T2dR9Xixs7OjpYtW7Jp06bCbTqdjk2bNhEWFnbH4z7++GM++OADNmzYQKtWrSojqmVJjAaPIJMeKXWrp9rVZOfpq5zRpqsdRZg6uyrQcQwcXgZXY++42+xDs4m/Hs/UjlOxtZIVvw1NbkWZJ0O9r6p3QBgzZgzz5s1j0aJFREVF8fLLL5ORkcHQoUMBGDJkSJEOxx999BHvvPMOCxYsICgoiISEBBISEkhPl19aBqONNov+Njfr3cQPDydblu6JVzuKMAetngPnqvrOxcU4lHiIhScW8mrzVwn2CK7kcEII1YubgQMH8umnnzJ58mSaNWvG4cOH2bBhQ2En4/j4eC5f/m9eiTlz5pCbm8vjjz9OtWrVCj8+/fRTtZ6C+dFGm01/mxscbK0Z0CqAlQcukJ0nQ0fFPbJ1gE5j4djPoD1Z5KHMvEwm7ZhEqE8oQxqVPD2FEGfPnkWj0XD48GG1o5gNo+hQPHLkSEaOLH7uh/Dw8CJfnz17tuIDWbLsVEi7aHYtNwCD2gTy7bYz/HH0Mo+3LN0wXiHuqMUQ2DELwqfD/34o3Pzp/k9JykpiTs85MlmfECpRveVGGJnCkVKmu+zCnQR5V6FTsLd0LBaGYWMPXd6AE6vhygkANp3bxMqTK3mz9ZvUdL37SCohRMWR4kYUlRgFGiuzGSl1q8Fta3IoPoUTl1LVjiLMQbPB4F4TwqeTkJHAlIgp9AjswWPBj6mdTBghnU7Hxx9/TN26dbG3tycwMJCpU6cWPn7mzBm6deuGk5MToaGht01mu2PHDjp16oSjoyMBAQGMGjWKjIyMwsd//PFHWrVqhYuLC35+fjz55JNFljIKDw9Ho9Gwbt06QkJCcHBwoF27dhw/frzin3wlM4rbUsKIaP8dKWXrqHaSCtGzYVWquTmweNc5Pnr8zlMICFEq1rbQZTwFa19hkmMe9tb2vBv2rozkUUFWbgGxlTwaso6PM452pb/1OHHiRObNm8fnn39Ox44duXz5cpEJaydNmsSnn35KcHAwkyZNYtCgQZw+fRobGxtiY2Pp3bs3H374IQsWLECr1RZ26fjhB/1t0by8PD744APq169PYmIiY8aM4dlnn2X9+vVFcrzxxht88cUX+Pn58dZbb9GvXz9OnjyJra35jOpTfW2pyiZrS5VgcX+wdYJBS9VOUmG+CT/NrH9OETGhO17O9mrHEaauIJ/537fiC4cCvr9/Pm2qtVE7kVnLy8tDq9Xi4+NT5Jfx8Yup9P1qR6Vm+ePVjjTxdyvVvtevX8fHx4evv/6aYcOGFXns7Nmz1KpVi++//57nn38egMjISBo3bkxUVBQNGjRg2LBhWFtb8+233xYet2PHDrp06UJGRkaxE9nu37+f1q1bc/36dZydnQkPD6dbt24sX76cgQMHApCcnEyNGjVYuHAhAwYMKO9LYTB3en/LSlpuRFHaaGj2pNopKtSg1oF8uekUS/fE82oPGaYr7s3xa9F87aDwXEoqbQqkA7Fa6vg488erHSv9mqUVFRVFTk4OPXr0uOM+N09IW62afjb1xMREGjRowJEjRzh69ChLliwp3EdRFHQ6HXFxcTRs2JADBw7w7rvvcuTIkcJZfkE/6rhRo0aFx908j5ynpyf169cnKiqq1M/FFEhxI/6TlQLXL4OP+Y2UuplHFTsebVGDxbvP8VKXOtjZSNczUT4ZeRmM3zae+l4NGJEeB1umwtOr1Y5lkRztrEvdiqIGR8eSb/Xf3FJx49bmjQIlPT2dl156iVGjRt12XGBgIBkZGfTq1YtevXqxZMkSfHx8iI+Pp1evXuTm5hroWZgO+aku/nNjpFRV85rjpjhD2wehvZ7DumOX1I4iTJSiKLwf8T7aLC0fdf4Y264TIXYTxO9WO5owQsHBwTg6OhaZkb8sWrRoQWRkJHXr1r3tw87OjujoaK5evcqMGTPo1KkTDRo0KNKZ+Ga7d//3PXrt2jVOnjxJw4bm9UetFDfiP9p/R0p5mf+tmmBfFzoFe/PDzrNYWLczYSArT65kfdx63g17Vz/su+HD4NsENn+odjRhhBwcHBg/fjxvvvkmixcvJjY2lt27dzN//vxSHT9+/Hh27drFyJEjOXz4MKdOnWLt2rWFc8QFBgZiZ2fHV199xZkzZ/jtt9/44IMPij3X+++/z6ZNmzh+/DjPPvss3t7e9O/f31BP1ShIcSP+kxgNHrX0s69agOc61uLohVQOnLumdhRhYiKvRjJj7wwG1h/Ig7Uf1G+0soJub8HZ7RC3Td2Awii98847jB07lsmTJ9OwYUMGDhx4x9aVW4WEhLB161ZOnjxJp06daN68OZMnT6Z69eoA+Pj4sHDhQlauXEmjRo2YMWPGHWfunzFjBqNHj6Zly5YkJCTw+++/m91CpDJaSvxn8cNg5wxPLCl5XzOg0yn0/HwrDfxc+GZwS7XjCBNxPfc6A34fgIudCz8++CP21jeNuFMU+K6rfiqFoX+CDAk3OEONprFEN0ZLXbt2DXd3d7XjFMtQ76+03Ij/JJrfmlJ3Y2WlYWiHWmw4nkD81Uy14wgToCgKk3dOJjUnlZldZxYtbEBfzHSbBPERELtZnZBCCCluxL+yrkF6glmuKXU3j7eogYeTHd9tj1U7ijABS6KW8E/8P3zQ4QMCXAKK3yn4PqjRGrZM07fkCCEqnRQ3Qi/x31kyLajlBvTDR4d2COLn/RfQXs9RO44wYocTDzPzwEyGNBpCj5p3nqtE33rzFlzcD6f+rryAQpSga9euKIpitLekDEmKG6GnjQaNNXib/0ipWz3dLghbKw0/7IxTO4owUlcyrvB6+OuEeIfwWovXSj6gdjcIbK+f90Zab4SodFLcCD1tNHjW1q90bGHcnGwZ3K4mP0acIy07T+04wsjkFOTwevjrWGusmdl1JrbWpejkqNFA90lw+QhE/1HxIYUQRUhxI/QSoyxi8r47eb5jLXLydSzdE692FGFEFEVh6u6pxCTH8EW3L/B29C79wUEdoVYX2DId/p1lVghROaS4EXpayxopdStfVwcea+nP/B1xZOcVqB1HGInlMctZc3oNU9pPobF347KfoNskSDwBkb8aPJsQ4s6kuBGQmQzpVyy6uAF4sXMdktJzWHXggtpRhBHYn7Cfj/d+zFMNn+KhOg+V7ySBbaFuTwifATopmoWoLFLcCH2rDVjcMPBb1fKuQp+m1ZgTHktuvtxGsGQXrl9g7NaxNPdtzphWY+7tZN3egqQYOP6LYcIJIUokxY3Q97fRWINXXbWTqG50j2AupWbx8/7zakcRKknLTWPEphFUsa3CzC4zsbW6x1lw/VtCvQf0rTcF+YYJKUQlCAoKYtasWWrHKBcpboS+5carjkWOlLpVsK8L/UKqM3vLaXLy5TaCpcnT5TE2fCxJWUnM7jEbDwcPw5y421uQHAtHlxvmfEKIu5LiRlh8Z+JbjeoRzJW0bFbsk9YbS3JjZNT+K/uZ1W0WtdxqGe7k1UKg4UOw9SMokOkGhGHk5uaqHcFoSXEj9LMTW3h/m5vVrerMw838mb3ltIycsiCLTizil1O/MCVsCq39Whv+Al0nQsp5OPST4c8tTELXrl0ZNWoUb775Jp6envj5+fHuu+8WPh4fH8/DDz+Ms7Mzrq6uDBgwgCtXrhQ+/u6779KsWTO+//57atWqhYODAwAajYZvv/2Wvn374uTkRMOGDYmIiOD06dN07dqVKlWq0L59e2Jj/1tmJjY2locffhhfX1+cnZ1p3bo1//zzT6W9FhXNRu0AQmWZyZCRKC03t3i1e13WHr7Isr3xDO1gwL/ghVH659w/fHbgM15o+gL96/avmIv4NoImj8K2T6HZk3Ib2NByMyHpZOVe07se2DmV6ZBFixYxZswY9uzZQ0REBM8++ywdOnSgR48ehYXN1q1byc/PZ8SIEQwcOJDw8PDC40+fPs0vv/zC6tWrsba2Ltz+wQcf8Nlnn/HZZ58xfvx4nnzySWrXrs3EiRMJDAzkueeeY+TIkfz5558ApKen8+CDDzJ16lTs7e1ZvHgx/fr1IyYmhsDAQIO8PGqS4sbSJUbpP0txU0RtH2ceaV6Db8JjGdg6ACc7+a9irvYl7GP8tvH0CurFyOYjK/ZiXSfC7DZwYBG0fbFir2Vpkk7Cd10q95ovboXqzcp0SEhICFOmTAEgODiYr7/+mk2bNgFw7Ngx4uLiCAjQL8q6ePFiGjduzL59+2jdWt+amJuby+LFi/Hx8Sly3qFDhzJgwAAAxo8fT1hYGO+88w69evUCYPTo0QwdOrRw/9DQUEJDQwu//uCDD1izZg2//fYbI0dW8P+DSiA/sS2dNgqsbGSkVDFe6xnM70cu8f32OEb1sLw1tyxBTHIMozaPorlvc6Z2nIqVpoLv1HsHQ8hA2D4TWjwNto4Vez1L4l1PX2xU9jXLKCQkpMjX1apVIzExkaioKAICAgoLG4BGjRrh7u5OVFRUYXFTs2bN2wqbW8/r6+sLQNOmTYtsy87OJi0tDVdXV9LT03n33XdZt24dly9fJj8/n6ysLOLjzWOWdiluLF1iNHjWARs7tZMYnQBPJ4aE1eTbrbE82TYQb2e5jWBOLly/wPB/hhPoGsgX3b7AzrqS/g90fgOO/gz7F0DYiMq5piWwcypzK4oabG2LTi2g0WjQlWF5jipVqpR4Xo1Gc8dtN641btw4Nm7cyKeffkrdunVxdHTk8ccfN5tOytKh2NJpoy16TamSjOxeF2srDV9uOqV2FGFAV7Ou8tLGl3CyceKbHt9Qxbb4XxgVwquOvs/Njs8hN6PyriuMWsOGDTl//jznz/83SjMyMpKUlBQaNWpk8Ovt3LmTZ599lkceeYSmTZvi5+fH2bNnDX4dtUhxY+kSo8BHRkrdibuTHSO61WXpnnjOaNPVjiMMID03nVc2vUJmfibf3vctXo5elR+i8xuQlQJ751X+tYVR6tmzJ02bNmXw4MEcPHiQvXv3MmTIELp06UKrVq0Mfr3g4GBWr17N4cOHOXLkCE8++WSZWpCMnRQ3liwjCTKTpOWmBM+0D6Kqiz2f/BWjdhRxjzLzMnll0yucv36euT3nUsOlhjpBPGrq+9zs/AJyrquTQRgVjUbD2rVr8fDwoHPnzvTs2ZPatWuzYsWKCrneZ599hoeHB+3bt6dfv3706tWLFi1aVMi11KBRFEVRO0RlSktLw83NjdTUVFxdXdWOo66zO2BhH3hljxQ4JfjlwAXGrjzCyuFhtA7yVDuOKIes/CxGbBpB5NVI5t03j6Y+TUs+qCKlXoQvm+tbcbq8oW4WE5KXl4dWq8XHx+e2/ivC9Bnq/ZWWG0uWeGOkVB21kxi9R5r7E1rDjSlrT1Cgs6i/B8xCTkEOozeP5njSceb0nKN+YQPg5g+thkLEV/pbVEIIg5HixpJpo/VDwK3lr5+SWFlpePehxkReTmPpXvMYKmkp8gryGBM+hoOJB/m6+9c0r9pc7Uj/6TgG8nNh9zdqJxHCrEhxY8kSZU2psmge6MGAVjWY+XcM1zLMY7ikucstyGXs1rFEXIrgy25f0qZaG7UjFeXiC62fh4hv9LOFCyEMQoobS6aNkjWlyujN3g0o0Cl88rd0LjZ2WflZjNo8il2XdvFFty9o799e7UjF6/g6KDrY9aXaSYQwG1LcWKp0LWRelZabMvJ2tmfMffVYtjeeYxdS1Y4j7iAjL4MRm0ZwMPEgs3vMplONTmpHurMq3tD2Jdjznf7/pRDinklxY6m0/64pJS03ZfZ0u5rU93Vhwuqj5BeYz7wQ5iItN40XN75I5NVIvr3vW9pWa6t2pJK1fxU0VrBzltpJhDALUtxYKm0MWNmCZ221k5gcG2srPn48hKjLaczbHqd2HHGTq1lXGfbXMM6mnuX7+783rs7Dd+PkCWGvwL7v4XqC2mmEMHlS3FiqxCj9In4yUqpcQmq4M6xTbWb9c1JmLjYS8WnxPP3n02iztCzotYAm3k3UjlQ27V4BG3vY/pnaSYQweVLcWCqtjJS6V6/3rIefmwMTVh9DJ3PfqOp40nGe/vNprDXW/PjAj9T3rK92pLJzdIewV+HAD/oJ/oQQ5SbFjSVSlH/XlJLi5l442lkz/ZGm7I1LZonMfaOa7Re289xfz1HDpQaLH1is3pIKhtBuONg5w/ZP1U4iRLE0Gg2//vqr2jFKJMWNJcrQQlayLLlgAO3rejO4bSBT10USK7enKt2qk6t4dfOrtPVry/f3f4+Hg4fake6NvQt0GA0Hf4Rr59ROI8RtLl++zAMPPKB2jBJJcWOJEv8dKSWrgRvEpD4Nqe7myGvLD5ObL6OnKkO+Lp/pe6bzXsR7PF7vcT7v9jmONo5qxzKMNi/ob1Ft+0TtJELcxs/PD3t7e7VjlEiKG0ukjQZrOxkpZSBOdjbMeqIZUZfTmPXPSbXjmL3UnFRe/udlVsSs4O22b/N2u7exsbJRO5bh2FXRT+x3eClcjVU7jTAgnU7H9OnTqVWrFo6OjoSGhrJq1SoURaFnz5706tWLG2tZJycnU6NGDSZPngxAeHg4Go2GdevWERISgoODA+3ateP48eNFrrFjxw46deqEo6MjAQEBjBo1ioyMjMLHg4KCmDZtGs899xwuLi4EBgby3XffFT6em5vLyJEjqVatGg4ODtSsWZPp06cXPn7zban27dszfvz4ItfXarXY2tqybds2AHJychg3bhz+/v5UqVKFtm3bEh4ebrDX9E7M6CeCKLXEKPAKBmt5+w0lpIY7r99Xj0//jqFzPR/a1fZSO5JZikuN49XNr3It+5rpzGFTHq2eg11fwdaP4dFv1U5jErLys4hLrdypGWq51SpTi+H06dP56aefmDt3LsHBwWzbto2nnnoKHx8fFi1aRNOmTfnyyy8ZPXo0w4cPx9/fv7C4ueGNN97giy++wM/Pj7feeot+/fpx8uRJbG1tiY2NpXfv3nz44YcsWLAArVbLyJEjGTlyJD/88EPhOWbOnMkHH3zAW2+9xapVq3j55Zfp0qUL9evX58svv+S3337j559/JjAwkPPnz3P+/Plin8/gwYP5+OOPmTFjBhqNBoAVK1ZQvXp1OnXST5w5cuRIIiMjWb58OdWrV2fNmjX07t2bY8eOERwcXNaXvNQ0yo0y0UKkpaXh5uZGamoqrq6uasdRx4IHwLUaPL5A7SRmpUCn8OS83cQlZfDHqI5UdXFQO5JZ2XB2A1N2TsGvih9fdf+KQNdAtSNVrL3z4M834ZU94FNP7TRGIy8vD61Wi4+PD7a2/01lEXk1koF/DKzULCv6rqCRV6NS7ZuTk4Onpyf//PMPYWFhhduHDRtGZmYmS5cuZeXKlQwZMoTXXnuNr776ikOHDhUWAOHh4XTr1o3ly5czcKD+ed5o3Vm4cCEDBgxg2LBhWFtb8+23/xXEO3bsoEuXLmRkZODg4EBQUBCdOnXixx9/BEBRFPz8/HjvvfcYPnw4o0aN4sSJE/zzzz+FBcvNNBoNa9asoX///mi1WqpXr87mzZsLi5n27dvTuXNnZsyYQXx8PLVr1yY+Pp7q1asXnqNnz560adOGadOm3Xb+O72/ZSV/ulsaRdHPTlynu9pJzI61lYavnmxO3y93MHLpIZYMa4uttdz5vVe5Bbl8uv9TlkUvo3dQb95t/y5VbKuoHavitRgCO2bB1hnyh0gp1HKrxYq+Kyr9mqV1+vRpMjMzue+++4psz83NpXlz/WST//vf/1izZg0zZsxgzpw5xbZs3FwYeXp6Ur9+faKi9P0ojxw5wtGjR1myZEnhPoqioNPpiIuLo2FDfT/LkJCQwsc1Gg1+fn4kJiYC8Oyzz3LfffdRv359evfuTd++fbn//vuLfU4+Pj7cf//9LFmyhE6dOhEXF0dERERhcXXs2DEKCgqoV69ocZ6Tk4OXV8W2bktxY2nSEyHrmoyUqiBVXRyYPbgFg77bzUd/RvN239L9VSeKdzH9IuPCxxFzLYZJbScxsP7AYv+aNEs29tB5HPzxOnQaB77yvXQ3jjaOpW5FUUN6un405bp16/D39y/y2I0OupmZmRw4cABra2tOnTpVrmu89NJLjBo16rbHAgP/a+m8tUVEo9Gg0+kHQ7Ro0YK4uDj+/PNP/vnnHwYMGEDPnj1ZtWpVsdccPHgwo0aN4quvvmLp0qU0bdqUpk2bFuaxtrYufE43c3Z2LvPzKwspbizNjTWlZI6bCtM6yJOJDzbkgz8iaVrDjYeb+Zd8kLjN+jPr+XDPh7jaufLjAz/S2Lux2pEqX/OnYMfnED4NBv6kdhpxDxo1aoS9vT3x8fF06dKl2H3Gjh2LlZUVf/75Jw8++CB9+vShe/eirey7d+8uLFSuXbvGyZMnC1tkWrRoQWRkJHXr1r2nrK6urgwcOJCBAwfy+OOP07t3b5KTk/H09Lxt34cffpgXX3yRDRs2sHTpUoYMGVL4WPPmzSkoKCAxMbHwtlVlkeLG0iT+O1LKo/TNqaLsnusQxImLqbyx6ij+7o60Crr9h4IoXmpOKlN3T+XPs3/yQK0HmNR2Em72bmrHUoe1LXQZD2tfgctHoFqo2olEObm4uDBu3Dhef/11dDodHTt2JDU1lZ07d+Lq6oq3tzcLFiwgIiKCFi1a8MYbb/DMM89w9OhRPDz+m7/p/fffx8vLC19fXyZNmoS3tzf9+/cHYPz48bRr146RI0cybNgwqlSpQmRkJBs3buTrr78uVc7PPvuMatWq0bx5c6ysrFi5ciV+fn64u7sXu3+VKlXo378/77zzDlFRUQwaNKjwsXr16jF48GCGDBnCzJkzad68OVqtlk2bNhESEkKfPn3K/XqWRDoEWBptFHjXk5FSFUyj0TD9saY0C3DnhcX7OZuUUfJBgohLETz626PsuLSDjzp9xMedP7bcwuaGkIHgWQe2TC95X2HUPvjgA9555x2mT59Ow4YN6d27N+vWrSMoKIjnn3+ed999lxYtWgDw3nvv4evry/Dhw4ucY8aMGYwePZqWLVuSkJDA77//jp2dHaDvS7N161ZOnjxJp06daN68OZMnTy7SmbckLi4ufPzxx7Rq1YrWrVtz9uxZ1q9fj5XVncuFwYMHc+TIETp16lTk9hfADz/8wJAhQxg7diz169enf//+7Nu377b9DE1GS1ma+b3ArQY8Pl/tJBYhJTOXR+fsQlFg1fAwvJyNf/IrNaTmpDJz/0zWnF5D22pt+bDDh/hV8VM7lvE4+jOsfgGGbYYaLdVOoypDjaYxNTdGS127du2OrSjmwFDvr7TcWJIbI6WkM3GlcXeyY+Gzbbienc/T8/eSmpmndiSjoigK68+s56FfH+Kfc/8wOWwy3933nRQ2t2ryGHjX1/e9EUKUSIobS5J+BbJTZdmFShbo5cSSYW25nJrFkB/2cj1bChyAs6lneXnTy4zfPp5Wvq1Y238t/6v3P6w08mPpNlbW0HUCnP4H4veonUYIoyc/RSzJjTWlqkpxU9nq+7nw4/NtOaNN59kf9pFmwQVOak4qH+/7mEfWPkJcShxfdf+KmV1n4uPko3Y049aoP/g2gS0fqp1EqKBr164oimLWt6QMSYobS6KNBmt78AhSO4lFauLvxo/Pt+V0YjoDv91N4vVstSNVqryCPJZFL6Pvmr78cvIXRjQfwW+P/EbXgK5qRzMNVlbQdSLEbYO47WqnEcKoSXFjSRL/HSllZV3yvqJCNAtwZ+XwMJIzcnh8TgTnrpr/KKo8XR6rT62m36/9mL5nOt0Du7Pu0XUMazoMe2vpYF0mDfroh4NvmabvQ2fBLGwsjMUw1PsqxY0l0UZLZ2IjUM/XhV9ebo+NlYaHZ+9kx6kktSNViDxdHr+e/pWH1jzElF1TaOzVmNUPrea99u/h7eitdjzTpNFAt0kQvwvObFE7jSpuzHSbm5urchJREQoKCgDuOvS8NGSyE0uhKPoJ/IKLXyNEVK4aHk6sfqU9ry47xJAFe5j4QEOGdaplFksLpOaksurkKpZGLyUxM5GegT2Z1W0W9T3rqx3NPATfD/6tYPNUqN1NX/BYECsrK5ycnEhLSwPAzs7OLP7fCH2rTVpaGnZ2dlLciFK6fhlyUqUzsRFxd7Jj4dA2fPJXDFPXR7EzNomPHwuhqqtpriYekxzDqpOrWBu7lnxdPn1r9+XpRk8T7HH74n/iHmg00H0S/PgInNoI9SzvDxY3N/3EjjcKHGE+NBoNXl5e91ywyiR+luL0JvjpUXj1IHjVUTuNuMWW6ETe/OUoeQU6pvRrRP9m/ibx12habhp/nvmTNafXcOLqCTwdPBlQfwAD6w+UW08VSVHghwcgLwteDLe41psbdDpd4W0MYR5sbGwM8rNPihtLEfENbHoP3rokHYqN1LWMXN5Ze5w/jl6mVU0PpvRrTNMaxrf0QGpOKuHnw/nn3D/surSLfCWfTv6deKTuI3QO6IytleXMGququO2wqC8MXAIN+6qdRgijYhQdimfPnk1QUBAODg60bduWvXv33nX/lStX0qBBAxwcHGjatCnr16+vpKQmTCsjpYydRxU7vn6yBUuGteV6dj79vt7BC4v3cyj+mqq5dIqOyKuRLDi+gBf+foGuK7ry9s63SclJYVSLUWx8fCNf9/iaHjV7SGFTmWp1glqd9SOndDq10whhVFRvuVmxYgVDhgxh7ty5tG3bllmzZrFy5UpiYmKoWrXqbfvv2rWLzp07M336dPr27cvSpUv56KOPOHjwIE2aNCnxehbbcvP9feBZCx79Tu0kohTyC3SsPnSRuVtjOaPNIDTAncdb+NM3pDoeVewq9NqpOamcSDrBiasnOJ50nIOJB0nJScHRxpEWvi3oUqMLPQJ7UNXp9v+fopLF74YFveB/C6HxI2qnEcJoqF7ctG3bltatWxcux67T6QgICODVV19lwoQJt+0/cOBAMjIy+OOPPwq3tWvXjmbNmjF37twSr3fPxc2Nl6vwZbvD16XZp8hLX8rzKspN8wDcfh4Fpfhjvm4NHV6FjmNuf0rc+Vvgbo/d/aHynfNu3453Oq6838KGznEv57yTfJ2O8Bgtaw9fZOfpJBRFoVF1N9rU8iTY15k6PlXwdrbHxd4GG+v/GmLvlkOn6LiWfY2r2Ve5mnUVbaaWc9fPcS5N/5GYmQiAi60Ljbwb0cynGe2qtSPUJxRba2mZMTo/PgqpF+CVCGmZFeJfqhY3ubm5ODk5sWrVKvr371+4/ZlnniElJYW1a9fedkxgYCBjxozhtddeK9w2ZcoUfv31V44cOXLb/jk5OeTk5BR+nZqaSmBgII1mBmPtWPofBHd7kcr9mIV2AhTGRdHZoeR6oeT9+5Hrg5Ljj5LniZHcuRZ30UQTy482H5KrWAPyM0WYN7u3zuLi4lJip2NVh4InJSVRUFCAr69vke2+vr5ER0cXe0xCQkKx+yckJBS7//Tp03nvvfdu2x459lQ5UwshhPE4Axhft3MhKshHpbvzYvbz3EycOJExY/67FaPT6UhOTjbIOHpxd2lpaQQEBHD+/HnL6t9kAuS9MU7yvhgneV+Mi4uLS4n7qFrceHt7Y21tzZUrV4psv3LlCn5+fsUe4+fnV6b97e3tsbcvun6NrKpauVxdXeUHgpGS98Y4yftinOR9MR2q3lC3s7OjZcuWbNq0qXCbTqdj06ZNhIWFFXtMWFhYkf0BNm7ceMf9hRBCCGFZVL8tNWbMGJ555hlatWpFmzZtmDVrFhkZGQwdOhSAIUOG4O/vz/Tp0wEYPXo0Xbp0YebMmfTp04fly5ezf/9+vvtOhjgLIYQQwgiKm4EDB6LVapk8eTIJCQk0a9aMDRs2FHYajo+PL7KAVvv27Vm6dClvv/02b731FsHBwfz666+lmuNGVC57e3umTJly221BoT55b4yTvC/GSd4X06P6PDdCCCGEEIYkk1gIIYQQwqxIcSOEEEIIsyLFjRBCCCHMihQ3QgghhDArUtyIIrZt20a/fv2oXr06Go2GX3/9tcjjiqIwefJkqlWrhqOjIz179uTUqaJLWSQnJzN48GBcXV1xd3fn+eefJz09vcg+R48epVOnTjg4OBAQEMDHH398W5aVK1fSoEEDHBwcaNq0KevXrzf48zUV06dPp3Xr1ri4uFC1alX69+9PTExMkX2ys7MZMWIEXl5eODs789hjj9024WV8fDx9+vTBycmJqlWr8sYbb5Cfn19kn/DwcFq0aIG9vT1169Zl4cKFt+WZPXs2QUFBODg40LZtW/bu3Wvw52wK5syZQ0hISOHkbmFhYfz555+Fj8t7YhxmzJiBRqMpsiahvDdmThHiJuvXr1cmTZqkrF69WgGUNWvWFHl8xowZipubm/Lrr78qR44cUR566CGlVq1aSlZWVuE+vXv3VkJDQ5Xdu3cr27dvV+rWrasMGjSo8PHU1FTF19dXGTx4sHL8+HFl2bJliqOjo/Ltt98W7rNz507F2tpa+fjjj5XIyEjl7bffVmxtbZVjx45V+GtgjHr16qX88MMPyvHjx5XDhw8rDz74oBIYGKikp6cX7jN8+HAlICBA2bRpk7J//36lXbt2Svv27Qsfz8/PV5o0aaL07NlTOXTokLJ+/XrF29tbmThxYuE+Z86cUZycnJQxY8YokZGRyldffaVYW1srGzZsKNxn+fLlip2dnbJgwQLlxIkTygsvvKC4u7srV65cqZwXw4j89ttvyrp165STJ08qMTExyltvvaXY2toqx48fVxRF3hNjsHfvXiUoKEgJCQlRRo8eXbhd3hvzJsWNuKNbixudTqf4+fkpn3zySeG2lJQUxd7eXlm2bJmiKIoSGRmpAMq+ffsK9/nzzz8VjUajXLx4UVEURfnmm28UDw8PJScnp3Cf8ePHK/Xr1y/8esCAAUqfPn2K5Gnbtq3y0ksvGfQ5mqrExEQFULZu3aooiv59sLW1VVauXFm4T1RUlAIoERERiqLoC1crKyslISGhcJ85c+Yorq6uhe/Fm2++qTRu3LjItQYOHKj06tWr8Os2bdooI0aMKPy6oKBAqV69ujJ9+nTDP1ET5OHhoXz//ffynhiB69evK8HBwcrGjRuVLl26FBY38t6YP7ktJUotLi6OhIQEevbsWbjNzc2Ntm3bEhERAUBERATu7u60atWqcJ+ePXtiZWXFnj17Cvfp3LkzdnZ2hfv06tWLmJgYrl27VrjPzde5sc+N61i61NRUADw9PQE4cOAAeXl5RV6zBg0aEBgYWOS9adq0aeEEmaB/TdPS0jhx4kThPnd73XNzczlw4ECRfaysrOjZs6fFvzcFBQUsX76cjIwMwsLC5D0xAiNGjKBPnz63vX7y3pg/1WcoFqYjISEBoMh/9htf33gsISGBqlWrFnncxsYGT0/PIvvUqlXrtnPceMzDw4OEhIS7XseS6XQ6XnvtNTp06FA4M3dCQgJ2dna3LQp763tT3Gt647G77ZOWlkZWVhbXrl2joKCg2H2io6MN9hxNybFjxwgLCyM7OxtnZ2fWrFlDo0aNOHz4sLwnKlq+fDkHDx5k3759tz0m/1/MnxQ3QpiYESNGcPz4cXbs2KF2FAHUr1+fw4cPk5qayqpVq3jmmWfYunWr2rEs2vnz5xk9ejQbN27EwcFB7ThCBXJbSpSan58fwG0jCq5cuVL4mJ+fH4mJiUUez8/PJzk5ucg+xZ3j5mvcaZ8bj1uqkSNH8scff7BlyxZq1KhRuN3Pz4/c3FxSUlKK7H/re1Pe193V1RVHR0e8vb2xtraW9+YmdnZ21K1bl5YtWzJ9+nRCQ0P54osv5D1R0YEDB0hMTKRFixbY2NhgY2PD1q1b+fLLL7GxscHX11feGzMnxY0otVq1auHn58emTZsKt6WlpbFnzx7CwsIACAsLIyUlhQMHDhTus3nzZnQ6HW3bti3cZ9u2beTl5RXus3HjRurXr4+Hh0fhPjdf58Y+N65jaRRFYeTIkaxZs4bNmzffdluvZcuW2NraFnnNYmJiiI+PL/LeHDt2rEjxuXHjRlxdXWnUqFHhPnd73e3s7GjZsmWRfXQ6HZs2bbLY9+ZWOp2OnJwceU9U1KNHD44dO8bhw4cLP1q1asXgwYML/y3vjZlTu0ezMC7Xr19XDh06pBw6dEgBlM8++0w5dOiQcu7cOUVR9EPB3d3dlbVr1ypHjx5VHn744WKHgjdv3lzZs2ePsmPHDiU4OLjIUPCUlBTF19dXefrpp5Xjx48ry5cvV5ycnG4bCm5jY6N8+umnSlRUlDJlyhSLHgr+8ssvK25ubkp4eLhy+fLlwo/MzMzCfYYPH64EBgYqmzdvVvbv36+EhYUpYWFhhY/fGNp6//33K4cPH1Y2bNig+Pj4FDu09Y033lCioqKU2bNnFzu01d7eXlm4cKESGRmpvPjii4q7u3uRUSWWYsKECcrWrVuVuLg45ejRo8qECRMUjUaj/P3334qiyHtiTG4eLaUo8t6YOyluRBFbtmxRgNs+nnnmGUVR9MPB33nnHcXX11ext7dXevToocTExBQ5x9WrV5VBgwYpzs7OiqurqzJ06FDl+vXrRfY5cuSI0rFjR8Xe3l7x9/dXZsyYcVuWn3/+WalXr55iZ2enNG7cWFm3bl2FPW9jV9x7Aig//PBD4T5ZWVnKK6+8onh4eChOTk7KI488oly+fLnIec6ePas88MADiqOjo+Lt7a2MHTtWycvLK7LPli1blGbNmil2dnZK7dq1i1zjhq+++koJDAxU7OzslDZt2ii7d++uiKdt9J577jmlZs2aip2dneLj46P06NGjsLBRFHlPjMmtxY28N+ZNoyiKok6bkRBCCCGE4UmfGyGEEEKYFSluhBBCCGFWpLgRQgghhFmR4kYIIYQQZkWKGyGEEEKYFSluhBBCCGFWpLgRQgghhFmR4kYIIYQQZkWKGyGE6s6ePYtGo+Hw4cNqRxFCmAEpboQQQghhVqS4EUKYrdzcXLUjCCFUIMWNEKLS6HQ6Pv74Y+rWrYu9vT2BgYFMnTq18PEzZ87QrVs3nJycCA0NJSIiovCxq1evMmjQIPz9/XFycqJp06YsW7asyPm7du3KyJEjee211/D29qZXr14A/PbbbwQHB+Pg4EC3bt1YtGgRGo2GlJSUwmN37NhBp06dcHR0JCAggFGjRpGRkVH4+DfffFN4Dl9fXx5//PEKepWEEPdKihshRKWZOHEiM2bM4J133iEyMpKlS5fi6+tb+PikSZMYN24chw8fpl69egwaNIj8/HwAsrOzadmyJevWreP48eO8+OKLPP300+zdu7fINRYtWoSdnR07d+5k7ty5xMXF8fjjj9O/f3+OHDnCSy+9xKRJk4ocExsbS+/evXnsscc4evQoK1asYMeOHYwcORKA/fv3M2rUKN5//31iYmLYsGEDnTt3ruBXSwhRbmovSy6EsAxpaWmKvb29Mm/evNsei4uLUwDl+++/L9x24sQJBVCioqLueM4+ffooY8eOLfy6S5cuSvPmzYvsM378eKVJkyZFtk2aNEkBlGvXrimKoijPP/+88uKLLxbZZ/v27YqVlZWSlZWl/PLLL4qrq6uSlpZW6ucrhFCPjcq1lRDCQkRFRZGTk0OPHj3uuE9ISEjhv6tVqwZAYmIiDRo0oKCggGnTpvHzzz9z8eJFcnNzycnJwcnJqcg5WrZsWeTrmJgYWrduXWRbmzZtinx95MgRjh49ypIlSwq3KYqCTqcjLi6O++67j5o1a1K7dm169+5N7969eeSRR267thDCOMhtKSFEpXB0dCxxH1tb28J/azQaQN9PB+CTTz7hiy++YPz48WzZsoXDhw/Tq1ev2zoNV6lSpczZ0tPTeemllzh8+HDhx5EjRzh16hR16tTBxcWFgwcPsmzZMqpVq8bkyZMJDQ0t0mdHCGE8pLgRQlSK4OBgHB0d2bRpU7mO37lzJw8//DBPPfUUoaGh1K5dm5MnT5Z4XP369dm/f3+Rbfv27SvydYsWLYiMjKRu3bq3fdjZ2QFgY2NDz549+fjjjzl69Chnz55l8+bN5XouQoiKJcWNEKJSODg4MH78eN58800WL15MbGwsu3fvZv78+aU6Pjg4mI0bN7Jr1y6ioqJ46aWXuHLlSonHvfTSS0RHRzN+/HhOnjzJzz//zMKFC4H/WofGjx/Prl27GDlyJIcPH+bUqVOsXbu2sEPxH3/8wZdffsnhw4c5d+4cixcvRqfTUb9+/fK9GEKICiXFjRCi0rzzzjuMHTuWyZMn07BhQwYOHEhiYmKpjn377bdp0aIFvXr1omvXrvj5+dG/f/8Sj6tVqxarVq1i9erVhISEMGfOnMLRUvb29oC+r8/WrVs5efIknTp1onnz5kyePJnq1asD4O7uzurVq+nevTsNGzZk7ty5LFu2jMaNG5fvhRBCVCiNoiiK2iGEEKIyTZ06lblz53L+/Hm1owghKoCMlhJCmL1vvvmG1q1b4+Xlxc6dO/nkk08KbzkJIcyPFDdCCLN36tQpPvzwQ5KTkwkMDGTs2LFMnDhR7VhCiAoit6WEEEIIYVakQ7EQQgghzIoUN0IIIYQwK1LcCCGEEMKsSHEjhBBCCLMixY0QQgghzIoUN0IIIYQwK1LcCCGEEMKsSHEjhBBCCLPyf1168Zd0SPlfAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"age_ctrl[\"young\"] = fuzz.zmf(age_ctrl.universe, 17, 31)\n",
"age_ctrl[\"middle-aged\"] = fuzz.trapmf(age_ctrl.universe, [29, 35, 45, 55])\n",
"age_ctrl[\"old\"] = fuzz.smf(age_ctrl.universe, 50, 65)\n",
"age_ctrl.view()\n",
"\n",
"bmi_ctrl[\"low bmi\"] = fuzz.zmf(bmi_ctrl.universe, 15, 17.5)\n",
"bmi_ctrl[\"normal bmi\"] = fuzz.trapmf(bmi_ctrl.universe, [17, 18.5, 25, 30])\n",
"bmi_ctrl[\"high bmi\"] = fuzz.smf(bmi_ctrl.universe, 27, 50)\n",
"bmi_ctrl.view()\n",
"\n",
"charge_min = df['charges'].min()\n",
"charge_max = df['charges'].max()\n",
"charge_mean = df['charges'].mean()\n",
"cheap_end = charge_min + (charge_mean - charge_min) * 0.5\n",
"expensive_start = charge_mean + (charge_max - charge_mean) * 0.5\n",
"\n",
"std = df['charges'].std()\n",
"print(std)\n",
"\n",
"charges_ctrl[\"cheap\"] = fuzz.zmf(charges_ctrl.universe, charge_min, cheap_end + std)\n",
"charges_ctrl[\"normal\"] = fuzz.trimf(charges_ctrl.universe, [cheap_end, charge_mean, expensive_start])\n",
"charges_ctrl[\"expensive\"] = fuzz.smf(charges_ctrl.universe, expensive_start - std, charge_max)\n",
"charges_ctrl.view()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Формировка базы нечетких правил"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<Figure size 640x480 with 1 Axes>, <Axes: >)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKgklEQVR4nO3deVhUZf8G8HtmEBQ0TRCXdFQEqZDSzA0lIpdcUWyRXFJMzZRKzS3cconUTM1dM5cUxT1RxlQUFVEBM5WoBEIYfi4QYL4ssszM+f1hmObGcg5nlvtzXe/19jLwPN/Ty3LPOc/zfRSCIAggIiIii6WUuwAiIiKSF8MAERGRhWMYICIisnAMA0RERBaOYYCIiMjCMQwQERFZOIYBIiIiC8cwQEREZOEYBoiIiCwcwwAREZGFYxggIiKycAwDREREFo5hgIiIyMIxDBAREVk4hgEiIiILxzBARERk4RgGiIiILBzDABERkYVjGCAiIrJwDANEREQWjmGAiIjIwjEMEBERWTiGASIiIgvHMEBERGThGAaIiIgsHMMAERGRhWMYICIisnBWchdARERkKvIKdUjJykORzgBrKyWa2NvBzsb0/5Sa/hUQERFJKDE9B8HRWkRcyYA2Ox/Cfa8pAKhr28Lb1RGD2qnhUreGXGVWiEIQBOHpn0ZERGRZ0rLzEbgvDpFJmVApFdAbHv/nsuR1T2cHBPm6o1Ft20qstOIYBoiIiP4jJFaLWaHx0BmEJ4aA/1IpFbBSKjDbxw1+bdQSViguhgEiIqL7rIhIxKIjCRUeZ2K35gjwdhGhIulxNwEREdE/QmK1ogQBAFh0JAE7YrWijCU1hgEiIiLcXSMwKzRe1DFnhsYjLTtf1DGlwDBAREQEIHBfHHRlWB9QGjqDgMB9caKOKQWGASIisniJ6TmITMos02LB0tAbBEQmZSIpI0fUccXGMEBERBYvOFoLlVIhydgqpQJbzxn32gGGASIisngRVzJEvytQQm8QEJGQIcnYYmEYICIii5ZbqINW4kV+2qx85BXqJJ2jIhgGiIjIoqVm5UHqhjsCgJSsPIlnKT+GASIismhFOoNZzVMeDANERGTRrK0q509hZc1THsZbGRERUSVoYm8HafYR/EvxzzzGimGAiIgsmp2NFdQSnzKotreFnY2VpHNUBMMAERFZPG9XR0n7DHg3d5RkbLEwDBARkcUb1E4taZ+Bwe2N+zhjhgEiIrJ4LnVrwNPZQfS7AyqlAp7ODnB2rCHquGJjGCAiIgIQ5OsOK5HDgJVSgSBfd1HHlALDABERWTSdTodz587hmzmB+LxbM1HHnuPjhkYSL04Ug0IQBKkbLxERERmNoqIixMbG4tSpUzhx4gQiIyNx584dAMChQ4eQZNMMi44kVHieSd1cMdbbucLjVAaGASIishgFBQVo1KgRMjMzoVKpYDAYUPJnsHHjxrh69SoUCgVCYrWYFRoPnUEo08JClVIBK6UCc3zcMKCNcS8avB8fExARkcWwsbFBx44doVAooNfrcf/74RkzZkChuLtmwK+NGuHjveDhZA8AT11YWPK6h5M9wsd7mVQQAHhngIiILExeXh5eeOEFpKWl3ftYzZo1cePGDVSrVu2hz09Mz0FwtBYRCRnQZuU/cKiRAncbCnk3d8Tg9mqj3zXwOMbbDomIiEhkgiBgwYIFSEtLQ9WqVVFcXAwAGD169CODAHB32+EXPm74Am7IK9QhJSsPRToDrK2UaGJvZ9SdBUuLdwaIiMgi3LlzB/7+/tixYwe++uordO3aFZ06dUJhYSFSUlKgVpvWrX0xmX6cISIieor09HT069cPly5dwu7du/HWW28BADQaDRITEy06CAC8M0BERGYuLi4OvXv3RlFREQ4cOIBXX31V7pKMDncTEBGR2Tp06BA6duyIZ599FjExMQwCj8EwQEREZmn58uXo3bs3vLy8cPr0aTRq1EjukowWwwAREZkVnU6HgIAAfPLJJxg3bhx+/PFHVK9eXe6yjBoXEBIRkdm4ffs2/Pz8cPToUaxduxajRo2SuySTwDBARERm4erVq+jTpw/+7//+Dz/99BO6dOkid0kmg48JiIjI5J09exbt2rXDnTt3cO7cOQaBMmIYICIik7Z9+3Z4e3vD1dUV0dHReP755+UuyeQwDBARkUkSBAGzZ8/GwIED8e677yI8PBwODg5yl2WSuGaAiIhMTkFBAYYPH47t27dj3rx5CAwMvHfiIJUdwwAREZmUjIwM9OvXD7/88gt27tyJd955R+6STB7DABERmYz4+Hj07t0bd+7cwcmTJ9G2bVu5SzILXDNAREQm4fDhw/Dw8ECNGjUQExPDICAihgEiIjJ6K1euRM+ePeHp6YmoqCiLP2VQbAwDRERktHQ6HT755JN77YX379+PGjVqyF2W2eGaASIiMkr/+9//4OfnhyNHjmD16tUYPXq03CWZLYYBIiIyOqmpqejduze0Wi00Gg26desmd0lmjWGAiIiMyrlz59C3b1/Y2dnh7NmzePHFF+UuyexxzQARERmNHTt24PXXX4eLiwuio6MZBCoJwwAREclOEATMmTMHfn5+ePvttxEeHo46derIXZbF4GMCIiKSVUFBAUaMGIHg4GDMmTMH06dPZ2vhSsYwQEREsvnrr7/g6+uL8+fPIyQkBAMGDJC7JIvEMEBERLL47bff0Lt3b+Tl5eHEiRNo37693CVZLK4ZICKiSnf06FF06NABdnZ2iImJYRCQGcMAERFVqtWrV6NHjx7o2LEjoqKi0LhxY7lLsngMA0REVCn0ej3GjRuHMWPGYMyYMQgNDcUzzzwjd1kErhkgIqJKkJOTg/feew+HDh3CihUrMHbsWLlLovswDBARkaS0Wi369OmDlJQUhIWFoXv37nKXRP/BMEBERJKJiYmBj48PqlWrhjNnzsDNzU3ukugRuGaAiIgksWvXLnh5ecHJyQnR0dEMAkaMYYCIiEQlCAK+/PJLvPvuu/D19cXx48fh6Ogod1n0BAwDREQkmsLCQgwdOhTTp0/HF198geDgYFStWlXusugpuGaATEJeoQ4pWXko0hlgbaVEE3s72Nnw25fImGRmZsLX1xexsbHYtm0b3nvvPblLolLib1MyWonpOQiO1iLiSga02fkQ7ntNAUBd2xbero4Y1E4Nl7o15CqTiAD88ccf6NWrF3JycnD8+HF4eHjIXRKVgUIQBOHpn0ZUedKy8xG4Lw6RSZlQKRXQGx7/LVryuqezA4J83dGotm0lVkpEABAeHo63334bzz33HA4ePIimTZvKXRKVEcMAGZWQWC1mhcZDZxCeGAL+S6VUwEqpwGwfN/i1UUtYIRHdb+3atRg7diy6dOmCHTt2oGbNmnKXROXABYRkNFZEJGLq3jgU6gxlCgIAoDcIKNQZMHVvHFZEJEpUIRGV0Ov1mDBhAkaPHo3Ro0fj4MGDDAImjGsGyCiExGqx6EiCKGMtOpKAOtVtMIB3CIgkkZubi4EDByIsLAzLli3Dxx9/LHdJVEF8TECyS8vOR5clJ1GoM4g2po2VEuHjvbiGgEhkaWlp6NOnD5KTkxESEoKePXvKXRKJgI8JSHaB++KgK+NjgafRGQQE7osTdUwiSxcbG4u2bdvi1q1biIqKYhAwIwwDJKvE9BxEJmWWeY3A0+gNAiKTMpGUkSPquESWavfu3fDy8kLjxo0RExMDd3d3uUsiETEMkKyCo7VQKRWSjK1SKrD1nFaSsYkshSAI+Oqrr/DOO+/Ax8cHERERqFu3rtxlkcgYBkhWEVcyRL8rUEJvEBCRkCHJ2ESWoKioCP7+/ggMDMSMGTOwbds2VKtWTe6ySALcTUCyyS3UQZudL+kc2qx85BXq2LqYqIyysrLQv39/nDt3Dlu2bMHgwYPlLokkxN+QJJvUrDxIvZVFAJCSlQe3BuLsf+YZCWQJrly5gl69euH27ds4fvw4OnbsKHdJJDH+FiPZFIm4lVDKeXhGAlmS48eP46233kL9+vURHR0NJycnuUuiSsAwQLKxtqqcJSvlnac0ZyQIAFKz87ElOhWbzqbwjAQyaevXr8dHH30Eb29v7Ny5E7Vq1ZK7JKokXEBIsmlibwdp9hH8S/HPPGUVEqtFlyUncSY5CwCeusix5PUzyVnosuQkQmK5i4FMh16vx6RJkzBy5EiMGDECYWFhDAIWhncGSDZ2NlZQ17ZFqoSLCNX2tmV+pr8iIrHcrZH1/xywNHVvHDJzCxHg7VKucYgqS25uLgYPHowDBw5g6dKl+OSTT6BQSB3TydjwzgDJytvVUdI+A97NHcv0NWKfkbCDdwjIiP3f//0fPD09cezYMezfvx+ffvopg4CF4tkEJKvE9Bx0XXpKsvEbXPwez9evBQAwGAzQ6/UwGAzo2rUrhg0b9sDn8owEsiQ///wzfHx8oFKpcPDgQbz00ktyl0Qy4mMCkpVL3RrwdHbAmeQsUZsPqZQKqDKTcPanfTgLQKlU3nvHo9frodfrHwoDUp6RsOWDdqKOS1QRe/fuxeDBg9GiRQvs378f9evXl7skkhkfE5DsgnzdYSXyowIrpQL7p/uhUaNGUCgU9+4K6PV6AMDkyZMf+HyekUCWQBAELFiwAG+99RZ69+6NkydPMggQAIYBMgKNattito+bqGPO8XHDC40ccejQIdjY2DzwmrW1NY4dO4bc3Nx7H+MZCWTuioqKMGLECEydOhXTpk1DSEgIWwvTPQwDZBT82qgxsVtzUcaa1M0VA9qoAQBubm5Yt27dA693794dgYGBaNKkCb788kvcvn2bZySQWcvOzsabb76JLVu2YPPmzZg3bx6USv76p3/xu4GMRoC3C+b3d4eNlbLM79JVSgVsrJRY0N8dY72dH3htyJAhGDlyJADgjTfewP79+/Hnn39iwIABmDNnDho7uyI1O0+063iUkjMSiCpbQkIC2rdvj7i4OBw7dgzvv/++3CWREeJuAjIamZmZyM/Ph6K6A4Ys0yClsNpjO/+VKHn9aZ3/CgoK8Nlnn+Gjjz5CixYt7n38+vXrmLZoNSJs2ot+Pf8V9nEn0c5IICqNEydOoH///qhbty4OHjyIZs2ayV0SGSmGATIaQ4YMwdatW+Hp6YnU1FS4tvWCx5ApiEjIgDbrEWcC2NvCu7kjBrdXw9mx/GcC/KK9Bd/VZypc/9Ps+8gDrdTPSj4PEQBs2LABH374Iby8vLBr1y48+yy/9+jxuLWQjEbVqlWhVCoRFRUFg8GAv/7aDec61bHu00/RsEkzyU4LNPYzEojKwmAw4PPPP8fChQsxatQorFixAlWqVJG7LDJyDANkNOrVqweVSoXi4mIAwJ07d7B69WpcuXIFx44dk+wWe8kZCVLeIivvGQlEZZGXl4chQ4bgxx9/xDfffIPx48ezoyCVCsMAGY369etDp/t3kZ2VlRXq1q2L1atXSzqvnY0VGtW2hdbIzkggKovr16+jT58+uHLlCvbv348+ffrIXRKZEP52IqNRr149lCxhUalUcHFxQXh4OBo0aCDZnJcvX8bKlStxJa0K7F7uDoME5yiW54wEorK4cOECfHx8oFAocPr0abRs2VLuksjE8CEmGY169erd++d27drhzJkzkgSBoqIibN++HZ06dcLLL7+MgwcPYmBbtSRBALjbZ2Bwe7UkYxPt378fnp6eqF+/PmJiYhgEqFwYBkgWeYU6xF+/jV+0txB//TbyCnX3wkCrVq0QHh4u+nnq//d//4cZM2ZArVZj4MCBsLa2xu7du5GSkoIlX0yGp7OD6F0IVUoFPJ0dKrTbgehRBEHAokWL4Ovrix49erC1MFUItxZSpUlMz0FwtBYRVzKgzX7EVsHatmhaNR+T+3vgxefE2QYlCAKOHz+OVatWYf/+/bC1tcX777+PMWPG4MUXX3zgc3lqIZmKoqIijB07FuvXr8fnn3/OjoJUYQwDJLm07HwE7otDZFKmaE2EACAnJwfJycl4+eWXH3rt9u3b+OGHH7Bq1Sr88ccfcHNzw9ixYzF48GDUqPH4d+khsVpM3RtXtgt8gvn93eHXho8ISDy3bt3CW2+9hdOnT2PdunUPnb5JVB4MAySpkFgtZoXGQ2cQytT7X6VUwEqpwGwft0f+MS0oKIC3tzdiY2ORkpKChg0bAgDi4uKwcuVKbN26FYWFhfD19cXYsWPx2muvlXqL1YqIRCw6klDqWh8mAFDg1snNeEl1AzNmzEDXrl25xYsqLCkpCb169UJmZib27duH1157Te6SyEzwvhJJZkVEIqbujUOhzlDmQ4D0BgGFOgOm7o3DiojEB14zGAwYOnQoYmJiIAgC1qxZg5CQELz22mt46aWXEBoaikmTJiE1NRU7d+6El5dXmf4QV/SMBKVBj841buKHKYNQUFCAN998Ex06dMDBgwfB7E3ldfLkSbRr1w4AEB0dzSBAouKdAZKE2LfbF/R3v3cSYWBgIL766qt7rykUCgiCAC8vL4wdOxb9+vUTpeNaeR9v7Jn6Nu5k/h9efvllfPPNNyguLsbcuXNx5swZtGrVCtOnT0e/fv34jJdKbdOmTRg1ahQ8PT2xe/duthYm0TEMkOikXIh3ZN92jBgx4qHXv/76a0ycOFG0+e53b+FjKc9I6NChA86dO3cvpHTu3BkLFizA//73P8yZMwcnTpxAixYtMH36dLz99ttQqVSS1E2mz2AwYNq0aZg/fz5GjBiBVatWsbUwSYJhgEQ35PtonEnOKvOjgSdRKRVoaluMY9P7PfSaQqFAhw4dEBUVJdp8j5NXqHvqGQkBAQFYs2YN9Hr93dpVKuj1enz66adYunQpTp8+jblz5+LIkSNwdXVFYGAgBg4cCCsr9gCjf+Xn5+P999/H3r178fXXX2PChAlcd0KS4X1KElVieg4ikzJFDQLA3TUESblWqNe8JRo1aoQ6derAxsYGwN3tg7GxsQ+0MpaKnY0V3BrURCv1s3BrUPORLYZdXV1hMPx7V6QkFJTU16lTJxw+fBjR0dFwcXHB0KFD4erqivXr16OoqEjyayDjd+PGDXh5eeHQoUPYt28fPvvsMwYBkhTDAIkqOForeuOeEiqlAh9+vRVarRYZGRkoKCjAnTt3cP36dVy/ft1o3lk///zzDywUVCqV2Lx5M5YvX/7A57Vt2xYHDhzAhQsX0LJlS4wcORIuLi5YtWoVCgoKKrtsMhIXL15E27ZtcePGDZw+fRp9+/aVuySyAAwDJKqIKxmi3xUooTcIiEjIeOBjVatWRf369eHg4CDJnOXh6up6759feOEFGAwGZGRkPPadXatWrbBnzx7ExcXBw8MDAQEBaNasGb799lvk50t3eBIZnwMHDqBTp06oW7cuYmJi0KpVK7lLIgvBMECiyS3USXryHwBos/KRVyj944CKaNiwIbp164a5c+fi8uXLmDhxIgIDA3Hx4sUnfl2LFi2wfft2/P777+jSpQs+++wzNG3aFF9//TVyc3Mrp3iShSAIWLx4Mfr27Ytu3brh5MmTkh7QRfRfXEBIoom/fhu9lp+WfJ6wjzvBrUFNyecRS2FhIdq3b4/CwkKcP38etrala02cnJyMr776Cps3b8YzzzyD8ePHIyAgADVrms6109MVFxcjICAA69atw5QpUxAUFMRtp1Tp+B1HoikScSuhMcwjFhsbG2zbtg1Xr17F5MmTS/11Tk5O+O6775CUlIQBAwZgzpw5aNy4MWbNmoXs7GwJK6bKcuvWLfTo0QMbNmzAhg0bMH/+fAYBkgW/60g01laV8+1UWfOI6YUXXsA333yDlStXIiwsrExfq1arsXLlSly9ehX+/v74+uuv0bhxY3z++ef466+/JKqYpPbnn3/Cw8MDFy5cwNGjR+Hv7y93SWTBTO+3KhmtJvZ2kHrzk+KfeUzRRx99hF69emH48OHIyMh4+hf8R4MGDbBkyRKkpKRgzJgxWL58OZo0aYLPPvsMN27ckKBikkpkZCTatWsHvV6P6OhovP7663KXRBaOYYBEY2djBbXER/Wq7W0fubffFCgUCnz//fcAgOHDh5f7nAJHR0csWLAAqampmDBhAtavX4+mTZvi448/RlpampglkwR++OEHdO7cGe7u7jh37hxcXFzkLomIYYDEo9Pp0My2ECqJbg+olAp4N3eUZvBKUrduXWzcuBFhYWFYvXp1hcayt7fH3LlzkZqaimnTpiE4OBjNmjXDhx9+iKtXr4pUMYnFYDBg+vTpGDp0KIYMGYLDhw+jdu3acpdFBIC7CUgEeXl52LhxI7755htcy9GjwciK/ZF7kvDxr8HZsYZk41eWgIAAfP/997hw4QJeeOEFUcbMycnBqlWr8M033yA7OxtDhgxBYGAg33kagfz8fAwbNgy7d+/GggULMHHiRHYUJKPCMEDllpmZiRUrVmDFihW4desWBgwYgEmTJmHxhSJJzibwcLLHlg/aiTamnO7cuYPWrVvDxsYG586du9daWQx5eXlYt24dvv76a6Snp8PPzw/Tpk3Diy++KNocVHo3b96Ej48P4uPjERwcjH79+sldEtFD+JiAyiw5ORkBAQFQq9VYuHAhBg4ciKSkJGzbtg2tWrVCkK87rERuSWylVCDI113UMeVUrVo1bNu2DfHx8ZgxY4aoY9vZ2WH8+PFITk7GsmXLEBkZiRYtWuCdd97BpUuXRJ2Lnuzy5cto27Ytrl27hsjISAYBMloMA1RqFy5cgJ+fH1xcXLBjxw5MnToVWq0Wy5YtQ9OmTe99XqPatpjt4ybq3HN83NBI4sWJla1ly5YICgrCokWLcPz4cdHHr1q1KsaOHYukpCSsXbsWP//8M1q2bIm+ffvi/Pnzos9HDwoLC0PHjh3h4OCAmJgYvPLKK3KXRPRYfExATyQIAsLDw7Fw4UKEh4ejadOmmDhxIoYNG/bUTnorIhKx6EhChWuY1M0VY72dKzyOMTIYDOjatSuuXLmCy5cvS7qgrLi4GNu2bUNQUBASEhLQvXt3zJgxAx4eHpLNaYkEQcCyZcswYcIE+Pj4YOvWrbCzM83tsGQ5eGeAHkmn02H79u145ZVX0K1bN2RnZ2PHjh1ISEjAmDFjStVSN8DbBfP7u8PGSlnmkwxVSgVsrJRY0N/dbIMA8O+Jhvn5+fjwww/Lvd2wNKpUqYKhQ4fit99+w7Zt26DVatGxY0d07twZJ06ckHRuS1FcXIwxY8Zg3Lhx+Oyzz7Bnzx4GATIJDAP0gLy8PCxfvhwuLi4YOHAgHB0dcezYMZw/fx7vvvtumY8J9mujRvh4L3g42QPAU0NByeseTvYIH++FAW3U5bsQE9KwYUOsW7cOu3fvxubNmyWfT6VS4b333kNcXBx2796NrKwseHt747XXXsORI0cYCsrp77//Rq9evbB+/XqsX78eCxcuZGthMhl8TEAAgL/++uvezoDbt2/f2xnQsmVL0eZITM9BcLQWEQkZ0Gbl4/5vPAXuNhTybu6Iwe3VZrF9sKyGDx+OXbt24eLFi2jWrFmlzSsIAg4ePIi5c+ciNjYW7dq1w/Tp09GrVy9ufyul5ORk9O7dGzdv3sSePXvg7e0td0lEZcIwYOGSk5PxzTffYMOGDVAqlRgxYgTGjx+PJk2aSDpvXqEOKVl5KNIZYG2lRBN7O5PtLCiWnJwctGrVCnXq1EFkZGSZ78JUlCAIOHLkCObOnYuoqCi0atUK06dPR79+/fgO9wmioqLQr18/1KpVC2FhYWjevLncJRGVnWBGcguKhV+v/S1cSM0Wfr32t5BbUCx3SWVWWddw/vx5YcCAAYJSqRQcHByEOXPmCJmZmZLMRaV39uxZQaVSCbNmzZKtBoPBIBw/flzw9vYWAAgtWrQQtm/fLuh0OtlqMlZbt24VrK2tBS8vL/78kEkz+TsD9249X8mANvsRt55r28Lb1RGD2qnhUtc4bz2LfQ23b9+GtbU1qlWr9sDHBUHA0aNHsXDhQhw7dgxOTk6YOHEihg4dWqoFgVQ55syZg9mzZyMyMlL2lf5RUVGYO3cuDh8+DFdXVwQGBmLgwIGVftfC2AiCgFmzZmHu3LkYNmwY1q5dC2tra7nLIio3kw0Dadn5CNwXh8ikTKiUiid2uyt53dPZAUG+7kazX12Ka7hx4wZatmyJtm3b4sCBAwDu7gzYuXMnFi5ciEuXLqF169aYMmUK+vfvD5VKJcm1UfnpdDp4eXnhxo0buHjxIp555hm5S0JMTAzmzZuHAwcOwMnJCZ9//jnef/99i/wDeOfOHfj7+2PHjh346quvMGXKFK6tIJNnkmEgJFaLWaHx0BmEMrW8VSkVsFIqMNvHDX4yr1KX4hqKiorw2muvISYmBoIgICYmBmfPnsXixYuRmpqKN998E5MnT4a3tzd/eRm5q1ev4uWXX4avr2+l7DAorYsXL2LevHnYs2cP1Go1pkyZguHDh6Nq1apyl1Yp0tPT0bdvX1y+fBlbt25F//795S6JSBQmFwbEamQzsVtzBHjLc4CLVNfw4YcfYv369TAYDFAqlbCysoJer4efnx8mTZqEl19+ucJzUuX54YcfMHToUISEhGDAgAFyl/OA+Ph4fPnll9ixYwfq1auHSZMmYdSoUWb9uCkuLg69e/dGcXExQkND8eqrr8pdEpFoTCoMhMRqMXVvnGjjLejvXun72KW6hu+++w6jRo164DWFQoEzZ86gffv2os1HlUcQBLz33ns4fPgwLl++jEaNGsld0kMSEhIQFBSErVu3wt7eHp999hnGjBmD6tWry12aqDQaDfz8/NCsWTMcOHAADRs2lLskIlGZzH6htOx8zAqNF3XMmaHxSMvOF3XMJ5HqGr7bvhcffvjhI1/fvXu3qPNR5VEoFFi9ejVq1KiBIUOGQK/Xy13SQ5o3b45NmzYhISEBffv2xfTp09G4cWPMmzcPt2/flrs8USxfvhx9+vSBt7c3IiMjGQTILJlMGAjcFwediEfiAoDOICBwn3jv0p9GqmtYejr9kV3jBEG4t4iQTNOzzz6LH374AadOncKiRYvkLuexnJycsG7dOiQlJeG9997DvHnz0LhxY8yaNQvZ2dlyl1cuOp0OAQEB+OSTTzB+/Hjs3bvX7O54EJUwiccEiek56Lr0lGTjh49/TfKOd1Jfg2ZsBzR8xgp37txBQUHBvf/Uq1cPdevWlWxeqhxTp07F4sWLcfbsWbRu3Vrucp7q+vXrWLRoEdasWQOVSoWAgACMHz8ejo6OcpdWKrdv34afnx/Cw8OxatUqjBw5Uu6SiCRlEmHgi9B4bIlOLdOq+9JSKRUY0q4xvhD5yN3/ModrIPkUFRWhQ4cOyMvLw4ULF0xmoV5GRgYWL16MlStXQq/XY/To0Zg0aRLq168vd2mPdfXqVfTp0wfXrl3D7t270blzZ7lLIpKcSTwmiLiSIckfUQDQGwREJGRIMvb9zOEaSD7W1tYIDg6GVqvFZ599Jnc5pebo6Ij58+cjJSUFEydOxIYNG9C0aVMEBAQgLS1NkjnzCnWIv34bv2hvIf76beQV6kr9tWfPnkW7du1QUFCAs2fPMgiQxTD6OwO5hTq4f3EYUhapAPDrF29K1hvfHK6BjMPatWsxevRohIaGok+fPnKXU2Z///03VqxYgSVLliAnJwf+/v6YOnUqmjZtWqFxxejiuX37dvj7+6Nt27bYu3cvHBwcKlQTkSkx+jsDqVl5kv4RBQABQEpWnmTjm8M1kHEYNWoUfHx8MHz4cNy8eVPucsqsVq1amD59OlJSUjBv3jz8+OOPcHFxgb+/PxITE8s8Xlp2PoZ8H42uS09hS3QqUv8TBIC7Pxup2fnYEp2KrktPYcj30Q/sIhIEAbNnz8bAgQMxYMAAHD16lEGALI7Rh4EincHk5zGHayDjoFAosH79eqhUKvj7+z9yF4kpqFGjBiZPnoyrV69i0aJFOHz4MJ5//nkMGjQIv/32W6nGCInVosuSkziTnAUAT30MV/L6meQsdFlyEiGxWhQUFGDQoEH44osvEBQUhE2bNsHGxqZiF0dkgow+DFhbVU6JUs5jDtdAxqNOnTrYtGkTfvrpJ6xYsULucirE1tYW48aNQ3JyMpYvX47IyEi0aNEC77zzDi5duvTYr1sRkYipe+NQqDOUeS2O3iCgUGfA1L1xaDNsBvbt24ddu3bh888/Z5tuslhG/9ejib0dpP7xVPwzj1TM4RrIuHTv3h0ff/wxJk2ahPh4cRtZyaFq1aoYM2YMkpKSsG7dOly4cAEtW7ZE3759cf78+Qc+NyRWK0o7bwDIafo6Zv1wGG+//bYo4xGZKqMPA3Y2VlBLfMqg2t5W0oV35nANZHwWLFgAZ2dnDBw4EIWFhXKXIwpra2uMGDECV65cwebNm/HHH3+gTZs26NGjB86cOSNJF8+Nl/MqtRMpkTEy+jAAAN6ujlAppXlvrVIq4N1c+kYo5nANZFyqVauGbdu24Y8//kBgYKDc5YjKysoK77//Pn777Tds374daWlp6NixI/oF7TD5TqRExsgkwsCgdmpJ9+gPbi/9YUXmcA1kfF566SXMnz8fixcvxtGjR+UuR3QqlQp+fn64fPkyVgXvRVYVR9F/jvQGAZFJmUjKyBF1XCJTYhJhwKVuDXg6O4j+zlqlAOoK2ahaJN2BKiWHy0h2DUoFPJ0dJG+nTMbr008/RZcuXTB06FBkZWXJXY4klEol0qs3l/Tu2tZzWknGJjIFJhEGACDI1x1WIv8i0OuKcWHNJHz77beijltCEAR4eXnBx8cHOp0Ok70bQdCXvhtaaVgpFQjydRd1TDItSqUSmzdvRmFhIUaOHGmy2w2fhl08iaRjMmGgUW1bzBa59372kTXQ3U7H1q1bYTCIv0f//PnziIqKwoEDBzBo0CC826sz8k9tEnWOOT5uaCTx4kQyfg0aNMD69euxb98+bNiwQe5yRJdbqINW4kV+2qz8MrUuJjInJhMGAMCvjRoTuzUXZaxbJzcj59JhAMDNmzcRFRX1xM8vT7/zNWvWwMrq7gr/nTt34ubNmzi58SvRrmFSN1cMaMO1AnSXr68vRowYgU8//bRc3fyMGbt4EknL5PaiBXi7wKG6DWaFxkNnEMp021ClVEDQFeOvn1Yi9/K/i61UKhW2bdsGT0/PBz6/Iv3Ob9++jW3btkGn+zc0/P333zhz5gwC/P0rdA1WSgXm+LgxCNBDlixZghMnTmDQoEGIiopClSpV5C5JFOziSSQtk7ozUMKvjRrh473g4WQPAE9dVFTyuoeTPXorL0L48wwA3HvXrtfrsWXLFhQXFwMQp995cHAwCgoKHqpl5MiRuHr1aoWuIXy8F4MAPVL16tURHByMCxcuYM6cOXKXIxp28SSSltGfWvg09969J2RAm/WId+/2tvBu7ojB7dX3VtwXFRXh+PHj2LNnD/bs2YNbt24BADZs2IBqLTpX6B37bB83DHi1EerVq4eMjAwoFAoIggCFQoFWrVqhd+/eCAwMfKD/eXmugehJvvzyS8ycORMnT55Ep06d5C6nwvIKdWjBkz+JJGPyYeB+eYU6pGTloUhngLWVEk3s7Z76g63X63HixAksWrQIrw6dji2X/q5wHZ+83hQTe7RAzZo14efnh65du8Lb2xvPPvusJNdA9F96vR6vv/460tLScOnSJdSsWVPukirM6+sIpEq4iLCxvS1OTvSWbHwiY2ZWYaAiQmK1mLpXvC5kQX1fxMD2FTujnagiUlJS8PLLL6NPnz7YunWr3OVU2Beh8dgSnSrJ9kKVUoEh7RrjC5F3LBGZCj4gAyTpdz477A/2OydZNWnSBKtWrUJwcDC2bdsmdzkVxi6eRNJhGAAQuC+O/c7JLA0aNAgDBw7ERx99hNTUVLnLqRB28SSSjsWHgcT0HEQmZbLfOZmtlStXolatWhgyZMi99timSopOpOziScQwgOBoLfudk1mrVasWtm7diqioKCxcuFDucipEik6k7OJJxDDAfudkETw9PTF16lTMnDkT58+fl7ucChGzEym7eBLdZdG7CXILdXDn3mWyEMXFxfDw8MDt27fxyy+/wM7OTu6SKiQkVssunkQiseg7A+x3TpakSpUqCA4OxrVr1zB+/Hi5y6mw/3bxhOHJ6yHYxZPo8Sw6DLDfOVma5s2bY+nSpfjuu+/w448/yl1OhTWqbYstH7TD5BZF+N+FMDz3jDX+uwJIgbsNhYa0a4zw8a9hywftuEaA6D8s+t41+52TJRoxYgQ0Gg1GjBiBtm3bokGDBnKXVGE/Hz+I+tfPIerzteziSVQOFv1Xqom93UPvIsSm+GceImOhUCjw3XffwdraGv7+/jAYTPvOlSAI0Gg06NmzJwDAzsYKbg1qopX6Wbg1qMkgQFQKFh0G7GysoJb4dqHa3pa/jMjoODg4YNOmTThy5AiWL18udzkV8ssvv+DmzZv3wgARlZ1FhwEA8HZ1lLTPgHdzR0nGJqqobt26Ydy4cZgyZQri4ky3W6ZGo0GNGjXM4nRGIrlY9NZC4G4Hwq5LT0k2fvj419jmlIxWQUEB2rZtC0EQEBsbi6pVq8pdUpl16NABzz33HHbv3i13KUQmy+LvDLDfOVmyqlWrIjg4GImJiZg6darc5ZRZZmYmoqOj0atXL7lLITJpFh8GAPY7J8vm7u6OBQsW4Ntvv8Xhw4flLqdMDh8+DEEQ0KNHD7lLITJpFveY4HHbjkJitZi6V7znpgv6u7OpCZkMg8GAnj174tKlS7h8+TLq1Kkjd0mlMnDgQCQkJJh8i2UiuVlEGEhMz0FwtBYRVzKgzc5/oOugAoC6ti28XR0BBbDpTEqF55vUzRVjvZ0rPA5RZbpx4wZeeukldOzYEfv27YNCIfXG24rR6/WoU6cOAgICMGfOHLnLITJpZh0G0rLzEbgvDpFJmVApFU/sX17yetFfqahapxEUShX7nZPF2b9/P/r164d169Zh5MiRcpfzRFFRUejUqRPOnTuHdu3ayV0OkUkz2zUDIbFadFlyEmeSswDgqX/YS16vUvs5CIKApg53GwU9bWEh+52TOenbty9GjRqFcePGISEhQe5ynkij0cDBwQGvvvqq3KUQmTyzvDOwIiIRi45U/BfZMI/GgKBAREIGtFmPeLxgbwvv5o4Y3F7NXQNkNvLy8vDKK6+gRo0aOHPmDKytreUu6ZFatmwJd3d3bNmyRe5SiEye2YUBqRYCst85WZLz58+jQ4cOmDRpEoKCguQu5yHXrl1Dw4YNsX37dvj5+cldDpHJM6vHBGnZ+ZgVGi/qmDND45GWnc9+52RRXn31VcyZMwfz58/HqVPSNeUqL41GA6VSiW7dusldCpFZMKs7A0O+j8aZ5KwyLfx7GpVSAQ8ne2z5gAuUyLLo9Xq88cYbuHr1Ki5fvoxatWrJXdI9vr6+yMzMRGRkpNylEJkFs7kzkJieg8ikTFGDAHB3YWFkUiaSMnJEHZfI2KlUKmzZsgX/+9//8NFHH8FY3jcUFhbi6NGjPJiISERmEwaCo7WSHji09ZxWkrGJjJlarcaaNWsQEhKC4OBgucsBAERGRiIvL48tiIlEZDZhIOJKhuh3BUroDQIiEjIkGZvI2Pn5+WHw4MEYO3YsUlJS5C4HGo0GDRs2hLs7230TicUswkBuoQ7a7HxJ59Bm5SOvUCfpHETGasWKFahduzYGDx4MnU7en4OwsDD07NnT6DskEpkSswgDqVl5kPpppgAgJStP4lmIjFPNmjWxdetWnD17FvPnz5etjqSkJCQkJHC9AJHIzCIMFOkMZjUPkTHq2LEjAgMD8cUXXyAmJkaWGjQaDaytrdG5c2dZ5icyV2YRBqytKucyKmseImM1c+ZMtG7dGoMGDUJubm6lz6/RaODl5YXq1atX+txE5sws/ro1sbeD1E8PFf/MQ2TJqlSpguDgYNy4cQPjxo2r1Lnz8vJw4sQJPiIgkoBZhAE7Gyuoa9tKOofa3pZdB4kAODs7Y9myZfj++++xd+/eSpv3+PHjKCws5JZCIgmYRRgAAG9XR0n7DHg3d5RkbCJT5O/vj/79+2PkyJG4du1apcwZFhYGZ2dnuLi4VMp8RJbEbMLAoHZqSfsMDG7Po4mJSigUCqxbtw5Vq1bFsGHDYDBIu7hWEARoNBreFSCSiNmEAZe6NeDp7CD63QGVUgFPZwceUUz0H/b29ti8eTPCw8OxdOlSSef69ddfkZaWxvUCRBIxmzAAAEG+7rASOQxYKRUI8mWnM6JH6dKlCyZMmIDPP/8cly5dkmwejUYDW1tbeHl5STYHkSUzq1MLASAkVoupe+NEG29Bf3cMaMNHBESPU1hYiLZt20Kn0+H8+fOoVq3aQ5+TV6hDSlYeinQGWFsp0cTerkwLcr28vFCrVi3s379fzNKJ6B9mtzzer40ambmFWHQkocJjTermyiBA9BQ2NjbYtm0bXn31VUyZMgXLli0DcPck0eBoLSKuZECbnf9Al1AFAHVtW3i7OmJQOzVc6j7+MdytW7cQFRWFVatWSXshRBbM7O4MlAiJ1WJWaDx0BqFMCwtVSgWslArM8XFjECAqgxUrVuDjjz9G5C+/Ye3P/0NkUiZUSsUTf/5KXvd0dkCQrzsaPWKL8M6dOzFgwABotVo0atRIyksgslhmGwYAIC07H4H74kT7pUREjycIAuYEh2PbFV25Q/hsHzf4/SeEDx06FBcvXpR0TQKRpTPrMFDi3u3KhAxosx5xu9LeFt7NHTG4vZq7BojKaUVEoiiP5yZ2a44A77u9BAwGA+rVq4cPPvgAX331VYXHJqJHs4gwcL+KLmQioodJtXA3JiYG7dq1w6lTp+Dp6Sna+ET0IIv7K2hnYwW3BjXlLoPIbKRl52NWaLyoY84MjYdHMwdoNBrUqlULHTp0EHV8InqQxYUBIhJX4L446ETu/qkzCAjcF4c/wsLw5ptvwsqKv6qIpGRWTYeIqHIlpucgMilT9FbgeoOAyKRMXLx6ky2IiSoBwwARlVtwtFayA8KUEPBMq17o3r27JOMT0b8YBoio3CKuZEh2QJgBCtR6sSPq1KkjyfhE9C+GASIql9xCHbTZ+ZLOobd9FnmFOknnICKGASIqp9SsPEi/L1mBlKw8yWchsnQMA0RULkU6g1nNQ2TJGAaIqFysrSrn10dlzUNkyfhTRkTl0sTeDtLsI/iX4p95iEhaDANEVC52NlZQS3ygl9relu3CiSoBwwARlZu3q6NkfQYgGOBagzsJiCoDwwARldugdmrJ+gxAocTGacPRsWNHhIaGwmDgQkIiqTAMEFG5udStAU9nB6hEvjmgVACdnO2xb9NqKJVK9O3bF+7u7ti0aROKiorEnYyIGAaIqPwEQYD91aMoLioUc1BUUSnxle9L6N27NyIjIxEVFQVnZ2f4+/ujWbNmWLx4MXJycsSbk8jCMQwQUbkUFxdj+PDh+PbLGXijZqZ4AysUmOPjhkb3LU708PDA/v37ER8fjy5dumDq1KlQq9WYNm0a0tPTxZubyEIxDBBRmeXm5qJPnz4IDg5GcHAwNs0YhYndmosydp/GwIA26ke+9uKLL2Ljxo1ITk7G8OHDsWzZMjRu3BgfffQR/vzzT1HmJ7JECkEQpO8oSkRm4+bNu8cKJyYmYt++fejcufO910JitZgVGg+dQSjTwkKVUgEY9Mg+ugbXTu2CrW3ptizeunULq1atwrfffousrCy8/fbbmDx5Mlq3bl3m6yKyZLwzQESllpCQAA8PD9y4cQORkZEPBAEA8GujRvh4L3g42QPAU7cdlrzu4WSPhpc2ooOjUOogAADPPvsspk2bhtTUVKxcuRI///wzXn31VXTp0gVHjx4F3+sQlQ7vDBBRqZw7dw69e/eGo6MjDh06hMaNGz/x8xPTcxAcrUVEQga0WfkPHGqkwN2GQt7NHTG4vRp1qwH29vZYvHgxAgICyl2jXq/Hnj17sGDBAly4cAGvvPIKJk+ejLfeegtWVmxeRPQ4DANE9FShoaHw8/ND69atsX//ftSuXbtMX59XqENKVh6KdAZYWynRxN7ugc6C+/btQ//+/fHnn3/CycmpwvUKgoBjx45hwYIFCA8Ph5OTEyZOnIhhw4ahWrVqFR6fyNwwDBDRE61duxZjxoyBr68vtm7diqpVq4o+x4gRIxAVFYXff/9d9LF//vlnLFy4ELt374aDgwM++eQTjBkzBs8++6zocxGZKq4ZIKJHEgQBM2bMwOjRozF27Fjs2LFDkiAgCAI0Gg169eol+tgA0Lp1a+zYsQMJCQno378/5s6di0aNGmHChAlIS0uTZE4iU8MwQEQPKS4uxgcffIB58+Zh4cKF+Pbbb6FSqSSZ6+LFi7hx4wZ69uwpyfglmjVrhtWrVyM1NRXjxo3Dxo0b4eTkhGHDhuG3336TdG4iY8cwQEQPyM3NhY+PD7Zu3Yrg4GBMmjQJCoV0hxVrNBrUqFEDnTp1kmyO+9WtWxfz5s2DVqu9t6bAzc0NPj4+iIqKqpQaiIwNwwAR3ZOeno7XX38dUVFROHToEAYOHCj5nBqNBl27doW1tbXkc92vRo0amDBhApKTk7Fx40YkJSWhU6dO6NSpEw4cOMCDkciiMAwQEYC7PQQ6dOiA69evP7KHgBSysrJw7tw5ydYLlIa1tTWGDRuGX3/9Ffv374cgCPDx8eHBSGRRGAaICOfOnYOHhweqVq2Ks2fP4uWXX66UeQ8fPgyDwYAePXpUynxPolQq7z0qOH36NJo1a8aDkchiMAwQWbgDBw7gjTfewPPPP4/Tp08/tZmQmMLCwvDKK6+gfv36lTZnaXTs2BGhoaH49ddf0blzZ0yZMgVqtRrTp09HRkaG3OURiY5hgMiCrV27Fv369UOPHj1w9OjRMjcTqgi9Xo+ffvpJ8l0EFeHm5oZNmzYhOTkZ/v7+WLp0KQ9GIrPEMEBkgQRBwMyZMzF69GiMGTMGO3furPTOfNHR0cjOzjbqMFCiUaNGWLx4MbRaLaZNm4Y9e/agefPmGDBgAC5cuCB3eUQVxjBAZGFKegjMnTsXCxYswLJlyyTrIfAkGo0G9vb2aNu2baXPXV61a9fG9OnTkZqaiuXLlyM2NhatW7dG165dER4ezoORyGQxDBBZkPt7CGzduhWTJ0+WtIfAk4SFhaF79+6yBJGKqlatGsaMGYOEhASEhIQgKysLXbt2RZs2bbBz507o9Xq5SyQqE4YBIgtxfw8BjUaDQYMGyVbLtWvXcPHiRVm3FIrBysoKAwYMwM8//4wjR46gVq1aGDBgAJo3b47Vq1fjzp07cpdIVCoMA0QW4P4eAqdOnUKXLl1krefQoUNQKpV48803Za1DLAqF4t6jgpJHBwEBAWjSpAm+/PJL3Lp1S+4SiZ6IpxYSmbno6Gj07t0bDg4O+Omnnyp16+Dj9O/fHxkZGTh9+rTcpUgmKSkJixYtwqZNm1ClShWMGjUK48ePR8OGDeUujeghvDNAZMYOHjwIb29vuLq6IioqyiiCQFFREY4ePWoSuwgqwtnZGWvWrEFKSgo+/vhjfP/993BycoK/vz8PRiKjwzBAZKbWrVuHvn37ytJD4EkiIyORm5tr8usFSqtevXoICgqCVqtFUFAQjhw5woORyOgwDBCZmZIeAh9++KFsPQSeRKPR4LnnnsNLL70kdymV6plnnsHEiRORnJyMDRs2IDExkQcjkdFgGCAyI8XFxRgxYoTsPQSeJCwsDD179pRtS6PcbGxs4O/vj/j4ePz4448wGAzw8fHBSy+9hM2bN/NgJJIFwwCRmcjNzUXfvn2xZcsWbNmyRdYeAo+TnJyMK1eumP16gdJQKpXo27cvoqKicOrUKTRp0gTDhg1Ds2bNsGTJEuTm5spdIlkQhgEiM1DSQ+D06dPQaDQYPHiw3CU9UlhYGKpUqVIpxyObCoVCAU9PTxw8eBBxcXF44403MHnyZB6MRJWKWwuJTFxiYiK6d++OO3fuQKPRoGXLlnKX9Fg9evSATqfD0aNH5S7FqGm1WixZsgTfffcd9Ho9/P39MXHiRDg5OcldGpkp3hkgMmHR0dHw8PCAtbU1zp49a9RBIC8vDxEREXxEUApqtRpLliyBVqtFYGAgdu3aBRcXF/j5+eGXX36RuzwyQwwDRCbKGHsIPElERAQKCwstZkuhGGrXro0ZM2YgNTUVy5YtQ0xMDF555RV069YNx44d48FIJBqGASITZKw9BJ5Eo9GgWbNmcHFxkbsUk2Nra4uxY8ciISEB27dvx19//YUuXbqgTZs22LVrFw9GogpjGCAyIff3EPjoo4+MrofA4wiCgLCwMPTq1cvodjiYEisrK/j5+eHChQs4fPgwatasiXfffReurq5Ys2YNCgoK5C6RTBTDAJGJKC4uxgcffIC5c+di/vz5WL58udH1EHic3377DVqtlusFRKJQKO49KoiJiUGrVq0wZswYNG7cGEFBQfj777/lLpFMDMMAkQn4bw+BKVOmmNQ77LCwMNja2sLLy0vuUsxOyaOChIQE+Pr6Ys6cOWjUqBEmTpyIa9euyV0emQhuLSQycunp6ejVqxcSEhKwZ88edO3aVe6Syuz111/HM888g9DQULlLMXs3b97EsmXLsGrVKuTn52Pw4MGYNGkSXnjhBblLIyPGOwNERiwxMREeHh64du0aTp06ZZJB4O+//8bp06f5iKCS/PdgpMOHD+PFF19E3759cebMGbnLIyPFMEBkpEyph8CTHD16FHq9nmGgkt1/MNL333+PhIQEdOzY8V63Qx6MRPdjGCAyQv/tIdCkSRO5Syq3sLAwtGjRAmq1Wu5SLJKNjQ2GDx9+72AkvV6PPn364KWXXsIPP/yA4uJiuUskI8AwQGRkSnoIdO/e3WR6CDyOwWDAoUOH2GjICDzqYKShQ4eiWbNmWLp0KQ9GsnAMA0RG4r89BHbt2mUSPQSe5Oeff0ZGRgYfERiR+w9Gunz5Ml5//XVMmjQJarUaM2fOxF9//SV3iSQDhgEiI2DKPQSeRKPRoGbNmvDw8JC7FHoEd3d3/PDDD/jzzz/x/vvv45tvvoFarcbYsWORnJws2bx5hTrEX7+NX7S3EH/9NvIKdZLNRaXDrYVEMsvNzcW7776Lo0ePYuPGjUZ7/HB5tGvXDk2aNMGOHTvkLoVKISsrC6tWrcKyZcuQnZ2Nd999F1OmTHlo8WpRURGOHDmCnj17Qqks3XvKxPQcBEdrEXElA9rsfNz/h0cBQF3bFt6ujhjUTg2XujVEuyYqHYYBokpUVFQEa2vre/+7pIfAlStXsHfvXpPcOvg4GRkZqFevHjZt2oT3339f7nKoDPLz87Fx40YsWrQIKSkp6NatG6ZMmQJvb28oFAosWLAAU6dOxezZszFz5swnjpWWnY/AfXGITMqESqmA3vD4Pzklr3s6OyDI1x2NatuKfWn0GAwDRJWksLAQzZo1Q5cuXbBx40YkJSWhe/fuyM/Ph0ajQatWreQuUVQ//PADhg4divT0dDg6OspdDpWDTqfDrl27sGDBAly6dAmvvvoqJkyYgE8++QSZmZlQKBQIDQ1F7969H/n1IbFazAqNh84gPDEE/JdKqYCVUoHZPm7wa8NdKJWBYYCokmzfvh0DBw4EAAwdOhRhYWGwt7fHTz/9ZNJbBx9nwIABuHr1KmJiYuQuhSpIEAQcOXIECxYsQERExL2PKxQK2Nra4sKFC2jevPkDX7MiIhGLjiRUeO6J3ZojwJsnXUqNYYCoHPIKdUjJykORzgBrKyWa2NvBzsbqiV/z2muvISoq6l6zl6ZNmyI2Nhb29vaVUXKl0ul0cHBwwPjx4zFr1iy5yyGR6PV6NG7c+IEzD5RKJZo2bYpffvkFNWrcfdYfEqvF1L1xos27oL87BvAOgaSe/NuLiO6pyAKohIQEREZGPvCxlJQUREZGol+/fpLXXtnOnDmD27dvc0uhmdm/f/9Dhx8ZDAb8+eef8PT0xMWLF5GWnY9ZofGizjszNB4ezRy4hkBCDANET1GaBVACgNTsfGyJTsWmsykPLYBau3YtFAoF7r8RJwgC/Pz8kJmZierVq1fW5VQKjUYDR0dHtG7dWu5SSERpaWlQKpWwtrZGlSpV7v33nTt3kJeXBwAI3BcHXRnWB5SGziAgcF8ctnzQTtRx6V98TED0BGIsgOrbog5q1aqFoqIiKJVKGAwGVK1aFV5eXujfvz9GjhxpUscRl4a7uztat26NTZs2yV0KVaLE9Bx0XXpKsvHDx78GZ0duO5QC7wwQPUZFFkDp/wkPU/fGIS7xGRQXF6Nx48YYNGgQunbtig4dOsDGxkbkio2DVqvFr7/++tQtZ2R+gqO1T90+WF4qpQJbz2nxhY+b6GMTwwDRI4XEakVZCQ0AwXH/Q/C5q3ivbWNRxjN2Go0GKpXKrHomUOlEXMmQJAgAdwN2REIGvgDDgBTYjpjoP6RYAPXFgd+Qlp0v6pjGSqPRoFOnTqhVq5bcpVAlyi3UQSvx97g2K5+tiyXCMED0H1IugDJ3BQUFOHbsGHcRWKDUrDxIvQBNAJCSlSfxLJaJYYDoPonpOYhMyhT9VqfeICAyKRNJGTmijmtsTp48ifz8fB5ZbIGKdAazmsfSMAwQ3adkAZQUShZAmTONRgO1Wo0XX3xR7lKokllbVc6fk8qax9Lw3yrRfSpjAZS5EgQBYWFh6Nmzp9ltlaSna2JvB6n/X1f8Mw+Jj2GA6B9cAFUxiYmJ+PPPP/mIwELZ2VhBLXGHQLW97VPbflP5MAwQ/YMLoComLCwMNjY28Pb2lrsUkom3q6Okj9m8m/P0S6kwDBD9gwugKkaj0cDb2xt2dryNa6kGtVNL+phtcHseViQVhgGif3ABVPnl5OTg5MmT3FJo4Vzq1oCns4PodwdUSgU8nR3YilhC5vdbiaicuACq/I4dO4bi4mKuFyAE+brDSuQwYKVUIMjXXdQx6UEMA0T/4AKo8tNoNHB1dYWTk5PcpZDMGtW2xWyRzw+Y4+PG44slxjBAdB8ugCo7QRCg0Wh4V4Du8WujxsRuzUUZa1I3Vwxow7UCUmMYILoPF0CV3eXLl3Ht2jWuF6AHBHi7YH5/d9hYKcscsFVKBWyslFjQ3x1jvZ0lqpDuxzBAdB8ugCq7sLAwVK9eHZ6ennKXQkbGr40a4eO94OFkDwBP/bkqed3DyR7h4714R6ASKQRBkHprNZFJScvOR5clJ1Eo4hZAGyslwsd7meVzz06dOsHR0RF79+6VuxQyYonpOQiO1iIiIQParPwHenoocHc9jXdzRwxurzbL0GzsGAaIHiEkVoupe8U7ZXBBf3ezfJeTlZUFR0dHrF27FiNGjJC7HDIReYU6pGTloUhngLWVEk3s7cxyYa0p4b99okfwa6NGZm4hFh1JqPBY5rwA6siRIzAYDFwvQGViZ2MFtwY15S6D7sMwQPQYAd4ucKhug1mh8dAZhDItLFQpFbBSKjDHx81sgwBwd71Ay5Yt0aBBA7lLIaIK4AJCoifgAqjH0+v1+Omnn7ilkMgMcM0AUSlxAdSDzp49Cw8PD0RFRcHDw0PucoioAhgGiMqBC6CAGTNmYNWqVcjIyIBKpZK7HCKqAIYBIiqX1q1b4/nnn0dwcLDcpRBRBXHNABGV2Y0bN3DhwgXuIiAyEwwDRFRmhw4dgkKhQPfu3eUuhYhEwDBARGUWFhaG9u3bw97eXu5SiEgEDANEVCZFRUU4evQotxQSmRGGASIqk9OnTyMnJ4frBYjMCMMAEZWJRqNB/fr10bJlS7lLISKRMAwQUZmEhYWhZ8+eUCjEPeaZiOTDMEBEpZacnIw//viD6wWIzAzDABGV2qFDh1ClShV07txZ7lKISETsQEhEpdazZ08UFhbi2LFjcpdCRCLinQEiKpX8/HxERETwEQGRGWIYIKJSiYiIQEFBAbcUEpkhhgEiKhWNRgMnJye4urrKXQoRiYxhgIieShAEbikkMmMMA0T0VL///jtSU1O5XoDITDEMENFThYWFoVq1avDy8pK7FCKSAMMAET2VRqNB586dUa1aNblLISIJMAwQ0RPdvn0bp0+f5i4CIjPGMEBET3T06FHodDqGASIzxjBARE+k0Wjg5uaGxo0by10KEUmEYYCIHstgMECj0fCuAJGZYxggosf65ZdfkJ6ezi2FRGbOSu4CiMi4nDx5EqNHj4aXlxdycnLwzDPPwMPDQ+6yiEhCDANE9IDs7Gz88ccfSExMhF6vh0KhQK9eveDr64sPP/wQSiVvKBKZGx5hTEQPSE5ORrNmzR752u+//47nn3++kisiIqkx4hPRA5o0aQJbW9uHPr5w4UIGASIzxTBARA9QKpVwd3d/4GOTJ0/GpEmTZKqIiKTGMEBED2nZsuW9f/7ggw8wf/58+YohIskxDBDRQ2rVqgUAeP3117F27VoeW0xk5riAkIiQV6hDSlYeinQGWFspoczPwrTJExEcHMzDiYgsAMMAkYVKTM9BcLQWEVcyoM3Ox/2/CBQA1LVt4e3qiEHt1HCpW0OuMomoEjAMEFmYtOx8BO6LQ2RSJlRKBfSGx/8KKHnd09kBQb7uaFT74V0GRGT6GAaILEhIrBazQuOhMwhPDAH/pVIqYKVUYLaPG/zaqCWskIjkwDBAZCFWRCRi0ZGECo8zsVtzBHi7iFARERkL7iYgsgAhsVpRggAALDqSgB2xWlHGIiLjwDBAZObSsvMxKzRe1DFnhsYjLTtf1DGJSD4MA0RmLnBfHHRlWB9QGjqDgMB9caKOSUTyYRggMmOJ6TmITMos02LB0tAbBEQmZSIpI0fUcYlIHgwDRGYsOFoLlVKa7oEqpQJbz3HtAJE5YBggMmMRVzJEvytQQm8QEJGQIcnYRFS5GAaIzFRuoQ5aiRf5abPykVeok3QOIpIewwCRmUrNyoPUTUQEAClZeRLPQkRSYxggMlNFOoNZzUNE0mEYIDJT1laV8+NdWfMQkXT4U0xkpprY20GafQT/UvwzDxGZNoYBIjNlZ2MFtcSnDKrtbWFnYyXpHEQkPYYBIjPm7eooaZ8B7+aOkoxNRJWLYYDIjA1qp5a0z8Dg9jzOmMgcMAwQmTGXujXg6ewg+t0BlVIBT2cHODvWEHVcIpIHwwCRmQvydYeVyGHASqlAkK+7qGMSkXwYBojMXKPatpjt4ybqmHN83NBI4sWJRFR5GAaILIBfGzUmdmsuyliTurliQBuuFSAyJwpBEKTuWEpERiIkVotZofHQGYQyLSxUKRWwUiowx8eNQYDIDDEMEFmYtOx8BO6LQ2RSJlRKxRNDQcnrns4OCPJ156MBIjPFMEBkoRLTcxAcrUVEQga0WfkPHGqkwN2GQt7NHTG4vZq7BojMHMMAESGvUIeUrDwU6QywtlKiib0dOwsSWRCGASIiIgvH3QREREQWjmGAiIjIwjEMEBERWTiGASIiIgvHMEBERGThGAaIiIgsHMMAERGRhWMYICIisnAMA0RERBaOYYCIiMjCMQwQERFZOIYBIiIiC8cwQEREZOEYBoiIiCwcwwAREZGFYxggIiKycAwDREREFo5hgIiIyMIxDBAREVk4hgEiIiILxzBARERk4RgGiIiILBzDABERkYVjGCAiIrJwDANEREQWjmGAiIjIwjEMEBERWbj/B7/Iak73wE4SAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rule1 = ctrl.Rule(age_ctrl[\"young\"] & bmi_ctrl[\"low bmi\"], charges_ctrl[\"normal\"])\n",
"rule2 = ctrl.Rule(age_ctrl[\"young\"] & bmi_ctrl[\"normal bmi\"], charges_ctrl[\"cheap\"])\n",
"rule3 = ctrl.Rule(age_ctrl[\"young\"] & bmi_ctrl[\"high bmi\"], charges_ctrl[\"expensive\"])\n",
"rule4 = ctrl.Rule(age_ctrl[\"middle-aged\"] & bmi_ctrl[\"low bmi\"], charges_ctrl[\"normal\"])\n",
"rule5 = ctrl.Rule(age_ctrl[\"middle-aged\"] & bmi_ctrl[\"normal bmi\"], charges_ctrl[\"cheap\"])\n",
"rule6 = ctrl.Rule(age_ctrl[\"middle-aged\"] & bmi_ctrl[\"high bmi\"], charges_ctrl[\"expensive\"])\n",
"rule7 = ctrl.Rule(age_ctrl[\"old\"] & bmi_ctrl[\"low bmi\"], charges_ctrl[\"expensive\"])\n",
"rule8 = ctrl.Rule(age_ctrl[\"old\"] & bmi_ctrl[\"normal bmi\"], charges_ctrl[\"normal\"])\n",
"rule9 = ctrl.Rule(age_ctrl[\"old\"] & bmi_ctrl[\"high bmi\"], charges_ctrl[\"expensive\"])\n",
"\n",
"rule1.view()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"charges_ctrl = ctrl.ControlSystem(\n",
" [\n",
" rule1,\n",
" rule2,\n",
" rule3,\n",
" rule4,\n",
" rule5,\n",
" rule6,\n",
" rule7,\n",
" rule8,\n",
" rule9,\n",
" ]\n",
")\n",
"\n",
"charges = ctrl.ControlSystemSimulation(charges_ctrl)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Оценка качества"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 18\n",
" - young : 0.9897959183673469\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 34.1\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.1905860113421551\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[high bmi] : 0.1905860113421551\n",
" age[young] AND bmi[high bmi] = 0.1905860113421551\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.1905860113421551\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.1905860113421551\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.1905860113421551\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 37547.62782934363\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.1905860113421551\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 30\n",
" - young : 0.01020408163265306\n",
" - middle-aged : 0.16666666666666666\n",
" - old : 0.0\n",
"Antecedent: bmi = 35.3\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.26045368620037795\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.01020408163265306\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.01020408163265306\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.01020408163265306\n",
" - bmi[high bmi] : 0.26045368620037795\n",
" age[young] AND bmi[high bmi] = 0.01020408163265306\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.01020408163265306\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.16666666666666666\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.16666666666666666\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.16666666666666666\n",
" - bmi[high bmi] : 0.26045368620037795\n",
" age[middle-aged] AND bmi[high bmi] = 0.16666666666666666\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.16666666666666666\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.26045368620037795\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 37361.15326835597\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.16666666666666666\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 57\n",
" - young : 0.0\n",
" - middle-aged : 0.0\n",
" - old : 0.4355555555555556\n",
"Antecedent: bmi = 43.7\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.8499432892249529\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.8499432892249529\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.8499432892249529\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.4355555555555556\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.4355555555555556\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.4355555555555556\n",
" - bmi[high bmi] : 0.8499432892249529\n",
" age[old] AND bmi[high bmi] = 0.4355555555555556\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.4355555555555556\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 38965.88917573576\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.4355555555555556\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 48\n",
" - young : 0.0\n",
" - middle-aged : 0.7\n",
" - old : 0.0\n",
"Antecedent: bmi = 30.78\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.054020415879017084\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.054020415879017084\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.7\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.7\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.7\n",
" - bmi[high bmi] : 0.054020415879017084\n",
" age[middle-aged] AND bmi[high bmi] = 0.054020415879017084\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.054020415879017084\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.054020415879017084\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36176.92274912711\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.054020415879017084\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 44\n",
" - young : 0.0\n",
" - middle-aged : 1.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 39.52\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.5847621928166352\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.5847621928166352\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[high bmi] : 0.5847621928166352\n",
" age[middle-aged] AND bmi[high bmi] = 0.5847621928166352\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.5847621928166352\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.5847621928166352\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 39590.8934937229\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.5847621928166352\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 25\n",
" - young : 0.36734693877551017\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 24.985\n",
" - low bmi : 0.0\n",
" - normal bmi : 1.0\n",
" - high bmi : 0.0\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.36734693877551017\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.36734693877551017\n",
" - bmi[normal bmi] : 1.0\n",
" age[young] AND bmi[normal bmi] = 0.36734693877551017\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.36734693877551017\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.36734693877551017\n",
" - bmi[high bmi] : 0.0\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 1.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 1.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 7602.136966603081\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.36734693877551017\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 18\n",
" - young : 0.9897959183673469\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 38.665\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.5142448960302455\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[high bmi] : 0.5142448960302455\n",
" age[young] AND bmi[high bmi] = 0.5142448960302455\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.5142448960302455\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.5142448960302455\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.5142448960302455\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 39310.188271770734\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.5142448960302455\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 57\n",
" - young : 0.0\n",
" - middle-aged : 0.0\n",
" - old : 0.4355555555555556\n",
"Antecedent: bmi = 31.16\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.06542759924385637\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.06542759924385637\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.06542759924385637\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.4355555555555556\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.4355555555555556\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.4355555555555556\n",
" - bmi[high bmi] : 0.06542759924385637\n",
" age[old] AND bmi[high bmi] = 0.06542759924385637\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.06542759924385637\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36336.644540380206\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.06542759924385637\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 40\n",
" - young : 0.0\n",
" - middle-aged : 1.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 41.23\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.7092139886578448\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.7092139886578448\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[high bmi] : 0.7092139886578448\n",
" age[middle-aged] AND bmi[high bmi] = 0.7092139886578448\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.7092139886578448\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.7092139886578448\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 40040.382651007356\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.7092139886578448\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 26\n",
" - young : 0.25510204081632654\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 23.7\n",
" - low bmi : 0.0\n",
" - normal bmi : 1.0\n",
" - high bmi : 0.0\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.25510204081632654\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.25510204081632654\n",
" - bmi[normal bmi] : 1.0\n",
" age[young] AND bmi[normal bmi] = 0.25510204081632654\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.25510204081632654\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.25510204081632654\n",
" - bmi[high bmi] : 0.0\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 1.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 1.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 7981.3435369366025\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.25510204081632654\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 31\n",
" - young : 0.0\n",
" - middle-aged : 0.3333333333333333\n",
" - old : 0.0\n",
"Antecedent: bmi = 26.62\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.6759999999999998\n",
" - high bmi : 0.0\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.6759999999999998\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.3333333333333333\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.3333333333333333\n",
" - bmi[normal bmi] : 0.6759999999999998\n",
" age[middle-aged] AND bmi[normal bmi] = 0.3333333333333333\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.3333333333333333\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.3333333333333333\n",
" - bmi[high bmi] : 0.0\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.6759999999999998\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 7708.734623071976\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.3333333333333333\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 37\n",
" - young : 0.0\n",
" - middle-aged : 1.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 29.83\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.03400000000000034\n",
" - high bmi : 0.030279395085066156\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.03400000000000034\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.030279395085066156\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[normal bmi] : 0.03400000000000034\n",
" age[middle-aged] AND bmi[normal bmi] = 0.03400000000000034\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.03400000000000034\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[high bmi] : 0.030279395085066156\n",
" age[middle-aged] AND bmi[high bmi] = 0.030279395085066156\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.030279395085066156\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.03400000000000034\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.030279395085066156\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 25216.886501150875\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.03400000000000034\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.030279395085066156\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 18\n",
" - young : 0.9897959183673469\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 31.35\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.07154064272211727\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9897959183673469\n",
" - bmi[high bmi] : 0.07154064272211727\n",
" age[young] AND bmi[high bmi] = 0.07154064272211727\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.07154064272211727\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.07154064272211727\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.07154064272211727\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36416.255778197825\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.07154064272211727\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 33\n",
" - young : 0.0\n",
" - middle-aged : 0.6666666666666666\n",
" - old : 0.0\n",
"Antecedent: bmi = 36.29\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.3262914933837429\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.3262914933837429\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.6666666666666666\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.6666666666666666\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.6666666666666666\n",
" - bmi[high bmi] : 0.3262914933837429\n",
" age[middle-aged] AND bmi[high bmi] = 0.3262914933837429\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.3262914933837429\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.3262914933837429\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 38414.960616727825\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.3262914933837429\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 48\n",
" - young : 0.0\n",
" - middle-aged : 0.7\n",
" - old : 0.0\n",
"Antecedent: bmi = 28.88\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.2240000000000002\n",
" - high bmi : 0.01336257088846882\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.2240000000000002\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.01336257088846882\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.7\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.7\n",
" - bmi[normal bmi] : 0.2240000000000002\n",
" age[middle-aged] AND bmi[normal bmi] = 0.2240000000000002\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.2240000000000002\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.7\n",
" - bmi[high bmi] : 0.01336257088846882\n",
" age[middle-aged] AND bmi[high bmi] = 0.01336257088846882\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.01336257088846882\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.2240000000000002\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.01336257088846882\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 11081.13376945518\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.2240000000000002\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.01336257088846882\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 19\n",
" - young : 0.9591836734693877\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 30.495\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.0461815689981097\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9591836734693877\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9591836734693877\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9591836734693877\n",
" - bmi[high bmi] : 0.0461815689981097\n",
" age[young] AND bmi[high bmi] = 0.0461815689981097\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0461815689981097\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.0461815689981097\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0461815689981097\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36056.70655871274\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0461815689981097\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 23\n",
" - young : 0.6326530612244898\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 28.49\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.3020000000000003\n",
" - high bmi : 0.008393572778827987\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.6326530612244898\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.6326530612244898\n",
" - bmi[normal bmi] : 0.3020000000000003\n",
" age[young] AND bmi[normal bmi] = 0.3020000000000003\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.3020000000000003\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.6326530612244898\n",
" - bmi[high bmi] : 0.008393572778827987\n",
" age[young] AND bmi[high bmi] = 0.008393572778827987\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.008393572778827987\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.3020000000000003\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.008393572778827987\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.3020000000000003\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.008393572778827987\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 9378.106717931281\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.3020000000000003\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.008393572778827987\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 56\n",
" - young : 0.0\n",
" - middle-aged : 0.0\n",
" - old : 0.32000000000000006\n",
"Antecedent: bmi = 31.79\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.08674517958412098\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.08674517958412098\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.08674517958412098\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.32000000000000006\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.32000000000000006\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.32000000000000006\n",
" - bmi[high bmi] : 0.08674517958412098\n",
" age[old] AND bmi[high bmi] = 0.08674517958412098\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.08674517958412098\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36599.95792495265\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.08674517958412098\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 41\n",
" - young : 0.0\n",
" - middle-aged : 1.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 32.2\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.10223062381852566\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.10223062381852566\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[high bmi] : 0.10223062381852566\n",
" age[middle-aged] AND bmi[high bmi] = 0.10223062381852566\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.10223062381852566\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.10223062381852566\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36770.27476173566\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.10223062381852566\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 27\n",
" - young : 0.16326530612244897\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 20.045\n",
" - low bmi : 0.0\n",
" - normal bmi : 1.0\n",
" - high bmi : 0.0\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.16326530612244897\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.16326530612244897\n",
" - bmi[normal bmi] : 1.0\n",
" age[young] AND bmi[normal bmi] = 0.16326530612244897\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.16326530612244897\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.16326530612244897\n",
" - bmi[high bmi] : 0.0\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 1.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 1.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 8371.995208460137\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.16326530612244897\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 29\n",
" - young : 0.04081632653061224\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 26.03\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.7939999999999998\n",
" - high bmi : 0.0\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.04081632653061224\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.04081632653061224\n",
" - bmi[normal bmi] : 0.7939999999999998\n",
" age[young] AND bmi[normal bmi] = 0.04081632653061224\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.04081632653061224\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.04081632653061224\n",
" - bmi[high bmi] : 0.0\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.7939999999999998\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.7939999999999998\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 9180.405370648012\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.04081632653061224\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 61\n",
" - young : 0.0\n",
" - middle-aged : 0.0\n",
" - old : 0.8577777777777778\n",
"Antecedent: bmi = 44.0\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.8638941398865785\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.8638941398865785\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.8638941398865785\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.8577777777777778\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.8577777777777778\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.8577777777777778\n",
" - bmi[high bmi] : 0.8638941398865785\n",
" age[old] AND bmi[high bmi] = 0.8577777777777778\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.8577777777777778\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 40508.591013083904\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.8577777777777778\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 41\n",
" - young : 0.0\n",
" - middle-aged : 1.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 28.8\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.23999999999999985\n",
" - high bmi : 0.012249527410207978\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.23999999999999985\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.012249527410207978\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[normal bmi] : 0.23999999999999985\n",
" age[middle-aged] AND bmi[normal bmi] = 0.23999999999999985\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.23999999999999985\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 1.0\n",
" - bmi[high bmi] : 0.012249527410207978\n",
" age[middle-aged] AND bmi[high bmi] = 0.012249527410207978\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.012249527410207978\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.23999999999999985\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.012249527410207978\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 10660.585814446153\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.23999999999999985\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.012249527410207978\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 30\n",
" - young : 0.01020408163265306\n",
" - middle-aged : 0.16666666666666666\n",
" - old : 0.0\n",
"Antecedent: bmi = 31.57\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.07895992438563332\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.01020408163265306\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.01020408163265306\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.01020408163265306\n",
" - bmi[high bmi] : 0.07895992438563332\n",
" age[young] AND bmi[high bmi] = 0.01020408163265306\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.01020408163265306\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.16666666666666666\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.16666666666666666\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.16666666666666666\n",
" - bmi[high bmi] : 0.07895992438563332\n",
" age[middle-aged] AND bmi[high bmi] = 0.07895992438563332\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.07895992438563332\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.07895992438563332\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36508.22379837373\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.07895992438563332\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 47\n",
" - young : 0.0\n",
" - middle-aged : 0.8\n",
" - old : 0.0\n",
"Antecedent: bmi = 36.08\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.3117066162570888\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.3117066162570888\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.8\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.8\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.8\n",
" - bmi[high bmi] : 0.3117066162570888\n",
" age[middle-aged] AND bmi[high bmi] = 0.3117066162570888\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.3117066162570888\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.3117066162570888\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 38333.32570189906\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.3117066162570888\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 50\n",
" - young : 0.0\n",
" - middle-aged : 0.5\n",
" - old : 0.0\n",
"Antecedent: bmi = 32.205\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.10242731568998108\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.10242731568998108\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.5\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.5\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.5\n",
" - bmi[high bmi] : 0.10242731568998108\n",
" age[middle-aged] AND bmi[high bmi] = 0.10242731568998108\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.10242731568998108\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.10242731568998108\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36772.34652531745\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.10242731568998108\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 56\n",
" - young : 0.0\n",
" - middle-aged : 0.0\n",
" - old : 0.32000000000000006\n",
"Antecedent: bmi = 31.79\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.08674517958412098\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.0\n",
" - bmi[high bmi] : 0.08674517958412098\n",
" age[young] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.08674517958412098\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.32000000000000006\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.32000000000000006\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.32000000000000006\n",
" - bmi[high bmi] : 0.08674517958412098\n",
" age[old] AND bmi[high bmi] = 0.08674517958412098\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.08674517958412098\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36599.95792495265\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.08674517958412098\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 20\n",
" - young : 0.9081632653061225\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 27.3\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.5399999999999998\n",
" - high bmi : 0.0003402646502835792\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9081632653061225\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9081632653061225\n",
" - bmi[normal bmi] : 0.5399999999999998\n",
" age[young] AND bmi[normal bmi] = 0.5399999999999998\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.5399999999999998\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9081632653061225\n",
" - bmi[high bmi] : 0.0003402646502835792\n",
" age[young] AND bmi[high bmi] = 0.0003402646502835792\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0003402646502835792\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.5399999999999998\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.0003402646502835792\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.5399999999999998\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.0003402646502835792\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 7183.657863624606\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.5399999999999998\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.0003402646502835792\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 23\n",
" - young : 0.6326530612244898\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 35.2\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.2542155009451798\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.6326530612244898\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.6326530612244898\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.6326530612244898\n",
" - bmi[high bmi] : 0.2542155009451798\n",
" age[young] AND bmi[high bmi] = 0.2542155009451798\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.2542155009451798\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.2542155009451798\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.2542155009451798\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 37987.54981555619\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.2542155009451798\n",
"\n",
"=============\n",
" Antecedents \n",
"=============\n",
"Antecedent: age = 19\n",
" - young : 0.9591836734693877\n",
" - middle-aged : 0.0\n",
" - old : 0.0\n",
"Antecedent: bmi = 30.59\n",
" - low bmi : 0.0\n",
" - normal bmi : 0.0\n",
" - high bmi : 0.04872627599243859\n",
"\n",
"=======\n",
" Rules \n",
"=======\n",
"RULE #0:\n",
" IF age[young] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9591836734693877\n",
" - bmi[low bmi] : 0.0\n",
" age[young] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #1:\n",
" IF age[young] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9591836734693877\n",
" - bmi[normal bmi] : 0.0\n",
" age[young] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #2:\n",
" IF age[young] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[young] : 0.9591836734693877\n",
" - bmi[high bmi] : 0.04872627599243859\n",
" age[young] AND bmi[high bmi] = 0.04872627599243859\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.04872627599243859\n",
"\n",
"RULE #3:\n",
" IF age[middle-aged] AND bmi[low bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[middle-aged] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #4:\n",
" IF age[middle-aged] AND bmi[normal bmi] THEN charges[cheap]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[middle-aged] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[cheap] : 0.0\n",
"\n",
"RULE #5:\n",
" IF age[middle-aged] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[middle-aged] : 0.0\n",
" - bmi[high bmi] : 0.04872627599243859\n",
" age[middle-aged] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #6:\n",
" IF age[old] AND bmi[low bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[low bmi] : 0.0\n",
" age[old] AND bmi[low bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"RULE #7:\n",
" IF age[old] AND bmi[normal bmi] THEN charges[normal]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[normal bmi] : 0.0\n",
" age[old] AND bmi[normal bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[normal] : 0.0\n",
"\n",
"RULE #8:\n",
" IF age[old] AND bmi[high bmi] THEN charges[expensive]\n",
"\tAND aggregation function : fmin\n",
"\tOR aggregation function : fmax\n",
"\n",
" Aggregation (IF-clause):\n",
" - age[old] : 0.0\n",
" - bmi[high bmi] : 0.04872627599243859\n",
" age[old] AND bmi[high bmi] = 0.0\n",
" Activation (THEN-clause):\n",
" charges[expensive] : 0.0\n",
"\n",
"\n",
"==============================\n",
" Intermediaries and Conquests \n",
"==============================\n",
"Consequent: charges = 36096.81833877887\n",
" cheap:\n",
" Accumulate using accumulation_max : 0.0\n",
" normal:\n",
" Accumulate using accumulation_max : 0.0\n",
" expensive:\n",
" Accumulate using accumulation_max : 0.04872627599243859\n",
"\n",
" age bmi charges Predicted\n",
"0 18 34.100 1137.01100 37547.627829\n",
"12 18 31.350 1622.18850 36416.255778\n",
"15 19 30.495 2128.43105 36056.706559\n",
"28 23 35.200 2416.95500 37987.549816\n",
"6 18 38.665 3393.35635 39310.188272\n",
"9 26 23.700 3484.33100 7981.343537\n",
"20 29 26.030 3736.46470 9180.405371\n",
"10 31 26.620 3757.84480 7708.734623\n",
"23 30 31.570 4837.58230 36508.223798\n",
"22 41 28.800 6282.23500 10660.585814\n",
"11 37 29.830 6406.41070 25216.886501\n",
"13 33 36.290 6551.75010 38414.960617\n",
"8 40 41.230 6610.10970 40040.382651\n",
"18 41 32.200 6875.96100 36770.274762\n",
"4 44 39.520 6948.70080 39590.893494\n",
"25 50 32.205 8835.26495 36772.346525\n",
"14 48 28.880 9249.49520 11081.133769\n",
"3 48 30.780 10141.13620 36176.922749\n",
"2 57 43.700 11576.13000 38965.889176\n",
"21 61 44.000 13063.88300 40508.591013\n",
"27 20 27.300 16232.84700 7183.657864\n",
"19 27 20.045 16420.49455 8371.995208\n",
"16 23 28.490 18328.23810 9378.106718\n",
"5 25 24.985 23241.47453 7602.136967\n",
"29 19 30.590 24059.68019 36096.818339\n",
"1 30 35.300 36837.46700 37361.153268\n",
"24 47 36.080 42211.13820 38333.325702\n",
"7 57 31.160 43578.93940 36336.644540\n",
"17 56 31.790 43813.86610 36599.957925\n",
"26 56 31.790 43813.86610 36599.957925\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHWCAYAAAAYdUqfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsmUlEQVR4nOzdeXgTZdcG8Dvd9xYolELLvu+yWgFZRAqiL1hQFF8FFFAsyqKA+CmLCyiIgIr4KioqoggiiqKAyKYgYBFk3wTL0kILtIXSNZnvj8dJmjZts0wyk+T+XVeupsl05mmbNnPmnOc8OkmSJBAREREREZHL+ag9ACIiIiIiIm/FgIyIiIiIiEglDMiIiIiIiIhUwoCMiIiIiIhIJQzIiIiIiIiIVMKAjIiIiIiISCUMyIiIiIiIiFTCgIyIiIiIiEglDMiIiIiIiIhUwoCMiIiIiIhIJQzIiMglTp8+jccffxwNGjRAUFAQIiIi0LVrVyxatAh5eXlqD4+IiIhIFX5qD4CIPN8PP/yA++67D4GBgXjkkUfQqlUrFBYW4tdff8XkyZNx+PBhvP/++2oPk4iIiMjldJIkSWoPgog815kzZ9CmTRvExcXhl19+QWxsrNnzp06dwg8//IDx48erNEIiIiIi9bBkkYicau7cubhx4wY+/PDDMsEYADRq1MgsGNPpdBg3bhw+//xzNG3aFEFBQejQoQO2b99u9nX//PMPnnzySTRt2hTBwcGoVq0a7rvvPpw9e9Zsu2XLlkGn0xlvISEhaN26NZYuXWq23YgRIxAWFlZmfKtXr4ZOp8PWrVvNHt+9ezf69euHyMhIhISEoEePHvjtt9/Mtpk5cyZ0Oh0yMzPNHv/jjz+g0+mwbNkys+PXq1fPbLtz584hODgYOp2uzPf1448/onv37ggNDUV4eDgGDBiAw4cPlxl/afLPY/v27Xj88cdRrVo1RERE4JFHHsG1a9fKbG/Ncf766y+MGDHCWI5as2ZNPProo7hy5YrFMdSrV8/sdyLfSv6M69Wrh7vvvrvC7+Xs2bPQ6XR44403yjzXqlUr9OzZ0/j51q1bodPpsHr16nL3V/p3MGPGDPj4+GDz5s1m240ZMwYBAQE4cOBAhePT6XSYOXOm2WPz5s2DTqczG1tFX1/ereQ4S/4cFixYgLp16yI4OBg9evTAoUOHyuz32LFjGDJkCKpWrYqgoCB07NgR3333ncUxjBgxwuLxR4wYUWbbH3/8ET169EB4eDgiIiLQqVMnrFixwvh8z549y3zfr776Knx8fMy227FjB+677z7UqVMHgYGBiI+Px8SJE8uUNs+cORMtWrRAWFgYIiIicOutt2Lt2rVm21i7L1v+/nv27IlWrVqV2faNN94o87da2etYfl3K+z969CiCg4PxyCOPmG3366+/wtfXF1OnTi13X7Z+HwBQUFCAGTNmoFGjRsafz5QpU1BQUGC2nfx/ubS77767zP8tIrIdSxaJyKnWrVuHBg0a4LbbbrP6a7Zt24aVK1fi6aefRmBgIN59913069cPe/bsMZ4I7d27Fzt37sQDDzyAuLg4nD17FkuWLEHPnj1x5MgRhISEmO1zwYIFiI6ORk5ODj766COMHj0a9erVQ58+fWz+nn755Rf0798fHTp0MJ60f/zxx+jduzd27NiBzp0727xPS6ZPn478/Pwyj3/22WcYPnw4EhMT8frrr+PmzZtYsmQJunXrhj///NOqE6Rx48YhKioKM2fOxPHjx7FkyRL8888/xhNEW46zadMm/P333xg5ciRq1qxpLEE9fPgwfv/9d+P+SurevTvGjBkDQJyEzp492/4flJO88MILWLduHR577DEcPHgQ4eHh2LBhAz744AO8/PLLaNu2rU37y8rKwpw5c2z6mjvvvLPMyfn8+fMtBs+ffvoprl+/juTkZOTn52PRokXo3bs3Dh48iJiYGADA4cOH0bVrV9SuXRvPPfccQkND8dVXX2HQoEH4+uuvce+995bZb2BgoNkFjFGjRpXZZtmyZXj00UfRsmVLTJs2DVFRUfjzzz/x008/YdiwYRa/t48//hgvvPAC5s+fb7bNqlWrcPPmTYwdOxbVqlXDnj178Pbbb+P8+fNYtWqVcbvc3Fzce++9qFevHvLy8rBs2TIMHjwYu3btMv4NWrsvrWjevDlefvllTJ48GUOGDMF//vMf5ObmYsSIEWjWrBleeuklxY5lMBjwn//8B7/++ivGjBmD5s2b4+DBg1iwYAFOnDhRJrglIieSiIicJDs7WwIgDRw40OqvASABkP744w/jY//8848UFBQk3XvvvcbHbt68WeZrd+3aJQGQPv30U+NjH3/8sQRAOnPmjPGxEydOSACkuXPnGh8bPny4FBoaWmafq1atkgBIW7ZskSRJkgwGg9S4cWMpMTFRMhgMZuOpX7++dOeddxofmzFjhgRAysjIMNvn3r17JQDSxx9/bHb8unXrGj8/dOiQ5OPjI/Xv399s/NevX5eioqKk0aNHm+0zPT1dioyMLPN4afLPo0OHDlJhYaHx8blz50oApG+//dbm41j6XXzxxRcSAGn79u1lnqtdu7Y0cuRI4+dbtmwx+xlLkiTVrVtXGjBgQIXfy5kzZyQA0rx588o817JlS6lHjx5ljrFq1apy91f6dyBJknTw4EEpICBAGjVqlHTt2jWpdu3aUseOHaWioqIKxyZJ4rU8Y8YM4+dTpkyRatSoIXXo0MFsbBV9fXJycpnHBwwYYDZO+ecQHBwsnT9/3vj47t27JQDSxIkTjY/dcccdUuvWraX8/HzjYwaDQbrtttukxo0blznWsGHDpLCwMLPHQkNDpeHDhxs/z8rKksLDw6UuXbpIeXl5ZtuW/Bvp0aOH8fv+4YcfJD8/P+mZZ54pc0xLr6c5c+ZIOp1O+ueff8o8J7t8+bIEQHrjjTds3pe1f//y99GyZcsy286bN6/M/5rKXseWXvt6vV7q1q2bFBMTI2VmZkrJycmSn5+ftHfv3nL3Y8/38dlnn0k+Pj7Sjh07zLZ97733JADSb7/9ZnzM2tciEdmHJYtE5DQ5OTkAgPDwcJu+LiEhAR06dDB+XqdOHQwcOBAbNmyAXq8HAAQHBxufLyoqwpUrV9CoUSNERUVh3759ZfZ57do1ZGZm4u+//8aCBQvg6+uLHj16lNkuMzPT7Hb9+nWz5/fv34+TJ09i2LBhuHLlinG73Nxc3HHHHdi+fTsMBoPZ11y9etVsn9nZ2ZX+DKZNm4b27dvjvvvuM3t806ZNyMrKwoMPPmi2T19fX3Tp0gVbtmypdN+AKLvz9/c3fj527Fj4+flh/fr1Nh+n5O8iPz8fmZmZuPXWWwHA4u+isLAQgYGBlY6xqKgImZmZuHLlCoqLi8vd7ubNm2V+b/LrpLTr168jMzMTWVlZlR4fEKWPs2bNwtKlS5GYmIjMzEx88skn8POzrcDkwoULePvtt/Hiiy9aLClTwqBBg1C7dm3j5507d0aXLl2Mv9OrV6/il19+wf3332/8Ocg/38TERJw8eRIXLlww22d+fj6CgoIqPO6mTZtw/fp1PPfcc2W2tZQd3bNnD+6//34MHjwY8+bNK/N8yddTbm4uMjMzcdttt0GSJPz5559m28qvkdOnT+O1116Dj48Punbtate+gMr//mV6vb7Mtjdv3rS4rbWvY5mPjw+WLVuGGzduoH///nj33Xcxbdo0dOzYsdKvtcWqVavQvHlzNGvWzOz76N27NwCU+V8i/22XvBUVFSk6JiJvxZJFInKaiIgIACj3pKY8jRs3LvNYkyZNcPPmTWRkZKBmzZrIy8vDnDlz8PHHH+PChQuQSvQnshTwtG/f3ng/MDAQ77zzTpnSwtzcXFSvXr3CsZ08eRIAMHz48HK3yc7ORpUqVYyfN23atMJ9lvbrr79i3bp12Lx5M1JTUy0eXz5pKk3+mVem9M84LCwMsbGxxvkvthzn6tWrmDVrFr788ktcvnzZbDtLv4vs7GyrgpKNGzcafx++vr5o06YNXnvtNfTt29dsuxkzZmDGjBllvl4u0yvp0UcfNd4PCwvDPffcgwULFljcVjZ58mR8+eWX2LNnD2bPno0WLVpUOvbSZsyYgVq1auHxxx+vcB6bI8r7u/nqq68AiAY6kiThxRdfxIsvvmhxH5cvXzYL6jIzMxEZGVnhcU+fPg0AFudVlXbhwgUMGDAAubm5uHLlisWALTU1FdOnT8d3331XpjSz9Otp8+bN6N+/PwDxmly9erXxYoCt+7Lm71927Ngxq7e19nVcUsOGDTFz5kxMnjwZrVq1Kvf35YiTJ0/i6NGj5X4fpf+WP/zwQ3z44Ydltqtbt67iYyPyNgzIiMhpIiIiUKtWLYuNBRz11FNP4eOPP8aECROQkJCAyMhI6HQ6PPDAA2UyVACwfPlyxMTEID8/H7/88guSk5MRFBRk1pwgKCgI69atM/u6HTt2mM3bkPc9b948tGvXzuLYSgcbX3/9tVkAc+LECSQnJ5f7vU2dOhWJiYno3bu3WeOPksf/7LPPULNmzTJfa2vmpjy2HOf+++/Hzp07MXnyZLRr1w5hYWEwGAzo16+fxWxhYWGhxX2W1qVLF7zyyisAgIsXL+L111/Hvffei8OHD5vNkxszZkyZTOLo0aMt7nP69Ono3r07ioqKkJKSgpdeeglZWVnGLJIlf//9tzFAPXjwYKXjLu3o0aNYtmwZli9fbpaVdDX5d/Hss88iMTHR4jaNGjUy+/zs2bMWAz17nTp1Cu3bt8eCBQvw8MMP45NPPjG7uKHX63HnnXfi6tWrmDp1Kpo1a4bQ0FBcuHABI0aMKPN66tSpEzZt2oRr165h+fLlePTRRxEfH4+OHTvavC9r/v5l9erVwwcffGD22KpVqywu31HR67giGzduNH7NlStXrPqbsYXBYEDr1q3x5ptvWnw+Pj7e7POBAweWaezxwgsvID09XdFxEXkjBmRE5FR333033n//fezatQsJCQlWfY188lvSiRMnEBISYryau3r1agwfPhzz5883bpOfn19uKVrXrl2NJ/F33303Dh8+jDlz5pgFZL6+vmWafJTeX8OGDQGIYNPahiC33347oqOjjZ9HRUWVu+3atWuxa9cui6V+JY9fo0YNuxqSyE6ePIlevXoZP79x4wbS0tJw11132XSca9euYfPmzZg1axamT59utn9Ljhw5AkA0L6hMdHS02bEbNWqErl27Yvv27WYBWePGjcuMMTQ01OI+W7dubdy2f//+SE1NxSeffFJuKZnBYMCIESMQERGBCRMmYPbs2RgyZAiSkpIqHb9s2rRpaNeuHYYOHWr119ijvL8b+WfVoEEDAIC/v79Vr52MjAykpqbiwQcfrHA7+bVy6NChMgFdabGxsVi/fj1iYmLw7bff4plnnsFdd91l/Ls+ePAgTpw4gU8++cSsmcmmTZss7q9atWrG72Xw4MFo2rQp5s2bh5UrV9q8L2v+/mWhoaFltt2/f7/FbSt6HdepU8fi17z33nvYtGkTXn31VcyZMwePP/44vv32W4vb2qthw4Y4cOAA7rjjDouZytLi4uLKfM8LFy5kQEakAM4hIyKnmjJlCkJDQzFq1ChcunSpzPOnT5/GokWLzB4rHZCcO3cO3377Lfr27QtfX18A4uRJKrWM4ttvv13u3KHS8vLyyrR2tkaHDh3QsGFDvPHGG7hx40aZ5zMyMmzep0yv1+P555/HsGHDys2+JSYmIiIiArNnz7Y4f8Pa47///vtmX79kyRIUFxcby7+sPY78+yj9u1i4cKHF43755ZcICAhAt27drBpnSXJGQz6mEgwGA3x8fMo9IX3zzTexc+dOvP/++3j55Zdx2223YezYsWWWMijPrl278O233+K1116z6qTXEWvXrjWbA7Znzx7s3r3b+DutUaMGevbsif/9739IS0sr8/WlXztyF8KBAwdWeNy+ffsiPDwcc+bMKdMVtPTrokmTJsby0LfffhsGg8Fs2QtLrydJksr8j7AkPz8fubm5xr9rR/blTJW9js+cOYPJkydj8ODBeP755/HGG2/gu+++w6effqroOO6//35cuHChTKYPEP8fc3NzFT0eEZWPGTIicqqGDRtixYoVGDp0KJo3b45HHnkErVq1QmFhIXbu3IlVq1aVWdOoVatWSExMNGt7DwCzZs0ybnP33Xfjs88+Q2RkJFq0aIFdu3bh559/RrVq1SyOY+3atYiOjjaWLO7YsQMTJkyw+fvx8fHB0qVL0b9/f7Rs2RIjR45E7dq1ceHCBWzZsgURERFlyp6sdf78eQQEBFRYPhcREYElS5bg4YcfRvv27fHAAw+gevXqSE1NxQ8//ICuXbvinXfeqfRYhYWFuOOOO3D//ffj+PHjePfdd9GtWzf85z//sek4ERERuP322zF37lwUFRWhdu3a2LhxI86cOWN2vJMnT2LGjBn44osv8Nxzz1k11y0jIwM//fQTACAtLQ2vv/46IiMjzTJ7ttq/fz/CwsJQXFyMlJQUfPrppxg4cKDFk+OjR4/ixRdfxIgRI3DPPfcAEO3d27VrhyeffNI4N6siGzduxJ133ulQNtNajRo1Qrdu3TB27FgUFBRg4cKFqFatGqZMmWLcZvHixejWrRtat26N0aNHo0GDBrh06RJ27dqF8+fPG9dWW7x4MV544QVUr14dp0+fNs4TA4Di4mL8/fff2LRpE+68805ERERgwYIFGDVqFDp16oRhw4ahSpUqOHDgAG7evIlPPvnE4nhr1qyJefPmYdSoUfjvf/+Lu+66C82aNUPDhg3x7LPP4sKFC4iIiMDXX39tcf5X//790b9/f9SqVQtXr17FZ599hrS0NPz3v/8FAKv35WwVvY5PnDhhtq0kSXj00UcRHByMJUuWAAAef/xxfP311xg/fjz69OmDWrVqVXg8vV5vPJ5Mzt7t2bMHcXFxaNSoER5++GF89dVXeOKJJ7BlyxZ07doVer0ex44dw1dffYUNGzYo3kiEiMqhTnNHIvI2J06ckEaPHi3Vq1dPCggIkMLDw6WuXbtKb7/9tlkLbvzbXnn58uVS48aNpcDAQOmWW24xa9csSZJ07do1aeTIkVJ0dLQUFhYmJSYmSseOHZPq1q1r1pJbbvMu3wICAqRGjRpJ06dPNzuuLe2iJUmS/vzzTykpKUmqVq2aFBgYKNWtW1e6//77pc2bNxu3sbXtPQBp/PjxZttaatsvSaJddmJiohQZGSkFBQVJDRs2lEaMGGG2XIAl8v62bdsmjRkzRqpSpYoUFhYmPfTQQ9KVK1fKbG/Ncc6fPy/de++9UlRUlBQZGSndd9990sWLF83avn/xxRdSq1atpEWLFpm1QpePUfpnXLduXbPfW3R0tNS3b1/p999/N25jT9t7+ebn5yfVrVtXevrpp6Vr165JkmTe9r64uFjq1KmTFBcXJ2VlZZnte9GiRRIAaeXKlRX+rAFIOp1OSklJMXu8ZPv3yr7elrb38+bNk+bPny/Fx8dLgYGBUvfu3aUDBw6U+frTp09LjzzyiFSzZk3J399fql27tnT33XdLq1evNjt2ZbfS38N3330n3XbbbVJwcLAUEREhde7cWfriiy8q/b579+4t1alTR7p+/bokSZJ05MgRqU+fPlJYWJgUHR0tjR49Wjpw4IDZ30xeXp40dOhQKS4uTgoICJBq1Kgh9erVS1q3bp3Zvq3ZlyQ5t+19Ra/j0q99+bX19ddfm+07NTVVioiIkO66664yxy1J/j9S0a3kUgyFhYXS66+/LrVs2VIKDAyUqlSpInXo0EGaNWuWlJ2dbdzO2tciEdlHJ0ml6gmIiFSk0+mQnJxsVZaHbLds2TKMHDkSe/fu5dVvD3H27FnUr18f8+bNw7PPPqvIPnU6HbZs2YKePXtafH7ZsmVYtmwZtm7dqsjxyDV69uyJnj17YubMmWoPhYhK4BwyIiIiIiIilTAgIyIiIjMPPfRQhWuzNWzYEHfeeacLR0RK6Ny5c6WdMInI9djUg4iIiMwsX768wue7d++O7t27u2g0pJS5c+eqPQQisoBzyIiIiIiIiFTCkkUiIiIiIiKVMCAjIiIiIiJSCeeQKcRgMODixYsIDw+HTqdTezhERERERKQSSZJw/fp11KpVCz4+FefAGJAp5OLFi4iPj1d7GEREREREpBHnzp1DXFxchdswIFNIeHg4APFDj4iIUHk0RERERESklpycHMTHxxtjhIowIFOIXKYYERHBgIyIiIiIiKyaysSmHkRERERERCphQEZERERERKQSBmREREREREQq4RwyF5IkCcXFxdDr9WoPhezk7+8PX19ftYdBRERERB6CAZmLFBYWIi0tDTdv3lR7KOQAnU6HuLg4hIWFqT0UIiIiIvIADMhcwGAw4MyZM/D19UWtWrUQEBDAxaPdkCRJyMjIwPnz59G4cWNmyoiIiIjIYQzIXKCwsBAGgwHx8fEICQlRezjkgOrVq+Ps2bMoKipiQEZEREREDmNTDxfy8eGP290xs0lERERESmKEQEREREREpBKWLBIRERERkVPp9cCOHUBaGhAbC3TvDig5+8PZ+3cmZsjcjF4PbN0KfPGF+KiFDvo6nQ5r165VexhEREREpEFr1gD16gG9egHDhomP9eqJx91h/87GgMyNqPViS09Px1NPPYUGDRogMDAQ8fHxuOeee7B582bnHpiIiIiInM6ZF/zXrAGGDAHOnzd//MIF8bij57HO3r8rMCBzE2q92M6ePYsOHTrgl19+wbx583Dw4EH89NNP6NWrF5KTk51zUIjOlERERETkXM684K/XA+PHA5JU9jn5sQkT7A8Anb1/V2FAphJJAnJzrbvl5ABPP13xi238eLFdZfuytI+KPPnkk9DpdNizZw8GDx6MJk2aoGXLlpg0aRJ+//1343aZmZm49957ERISgsaNG+O7774zPqfX6/HYY4+hfv36CA4ORtOmTbFo0SKz44wYMQKDBg3Cq6++ilq1aqFp06YAgJ07d6Jdu3YICgpCx44dsXbtWuh0Ouzfv9/4tYcOHUL//v0RFhaGmJgYPPzww8jMzDQ+v3r1arRu3RrBwcGoVq0a+vTpg9zcXNt+EEREREQeRqkL/gUFwMWLwF9/AZs3AytXAosXA489VnbfJUkScO4c0Lgx0KaN7bfGja3b/44d1n0famFTD5XcvAmEhSmzL0kSL8bIyMq3vXEDCA21br9Xr17FTz/9hFdffRWhFr4oKirKeH/WrFmYO3cu5s2bh7fffhsPPfQQ/vnnH1StWhUGgwFxcXFYtWoVqlWrhp07d2LMmDGIjY3F/fffb9zH5s2bERERgU2bNgEAcnJycM899+Cuu+7CihUr8M8//2DChAlmY8jKykLv3r0xatQoLFiwAHl5eZg6dSruv/9+/PLLL0hLS8ODDz6IuXPn4t5778X169exY8cOSLZGpkREREQepLLskk4HjB0rPr92DcjIADIzxa30/evXHRvLmTOOfX1l0tKcu39HMSCjcp06dQqSJKFZs2aVbjtixAg8+OCDAIDZs2fjrbfewp49e9CvXz/4+/tj1qxZxm3r16+PXbt24auvvjILyEJDQ7F06VIEBAQAAN577z3odDp88MEHCAoKQosWLXDhwgWMHj3a+DXvvPMObrnlFsyePdv42EcffYT4+HicOHECN27cQHFxMZKSklC3bl0AQOvWrR37wRARERG5uR07Ks8uXb4MDB5s3f58fIDoaNOtenWgsBBYt67yr33jDaBtW+uOU9KBA8Czz1a+XWys7ft2JQZkKgkJEdkqa2zfDtx1V+XbrV8P3H575ce1li1ZpDZt2hjvh4aGIiIiApcvXzY+tnjxYnz00UdITU1FXl4eCgsL0a5dO7N9tG7d2hiMAcDx48fRpk0bBAUFGR/r3Lmz2dccOHAAW7ZsQZiFdOPp06fRt29f3HHHHWjdujUSExPRt29fDBkyBFWqVLH6eyMiIiLyNNZmjRo2BJo1Mw+0LN2PihJBWUl6vZiPduGC5UycTgfExYl5Xva0qO/VC1i4sPL9d+9u+75diQGZSnQ660sH+/YVL6bKXmx9+yq73kLjxo2h0+lw7NixSrf19/cvNSYdDAYDAODLL7/Es88+i/nz5yMhIQHh4eGYN28edu/ebfY1lsoiK3Pjxg3cc889eP3118s8FxsbC19fX2zatAk7d+7Exo0b8fbbb+P//u//sHv3btSvX9/m4xERERG5M4NBZK1efdW67ZcuBXr2tO9Yvr7AokViPppOZ34eq9OJjwsX2n/+6uz9uwqbergB+cUGmF5cMme+2KpWrYrExEQsXrzYYhOMrKwsq/bz22+/4bbbbsOTTz6JW265BY0aNcLp06cr/bqmTZvi4MGDKCgoMD62d+9es23at2+Pw4cPo169emjUqJHZTQ7wdDodunbtilmzZuHPP/9EQEAAvvnmG6vGTkREROQJCgqAjz4CWrYEBg0CDh+ueHudDoiPdzy7lJQErF4N1K5t/nhcnHg8KUnb+3cFBmRuQq0X2+LFi6HX69G5c2d8/fXXOHnyJI4ePYq33noLCQkJVu2jcePG+OOPP7BhwwacOHECL774YpnAypJhw4bBYDBgzJgxOHr0KDZs2IA33ngDgAiyACA5ORlXr17Fgw8+iL179+L06dPYsGEDRo4cCb1ej927d2P27Nn4448/kJqaijVr1iAjIwPNmze3/4dCRERE5Cays4G5c4H69UXXw2PHRCO4554T2S+dzvkX/JOSgLNngS1bgBUrxMczZ5Q7f3X2/p2NJYtuJCkJGDhQTMJMSxMTFLt3d24atkGDBti3bx9effVVPPPMM0hLS0P16tXRoUMHLFmyxKp9PP744/jzzz8xdOhQ6HQ6PPjgg3jyySfx448/Vvh1ERERWLduHcaOHYt27dqhdevWmD59OoYNG2acV1arVi389ttvmDp1Kvr27YuCggLUrVsX/fr1g4+PDyIiIrB9+3YsXLgQOTk5qFu3LubPn4/+/fs7/LMhIiIi0qqLF0WF1XvviaWRAHFhf+JEYPRoICJCPFaliui2WLLBR1ycCMaUDGh8fe0vfdTC/p1JJ7H/tyJycnIQGRmJ7OxsRMiv8H/l5+fjzJkzqF+/vlmDCrLd559/jpEjRyI7OxvBwcEuPz5/l0RERKRlR4+KroWffQYUFYnHWrQApkwBHnwQKNE/zUivd+0Ff29QUWxQGjNkpGmffvopGjRogNq1a+PAgQPGNcbUCMaIiIiI1GBNwLRzpyhN/PZb02Pdu4tA7K67ynZALMmds0uegAEZaVp6ejqmT5+O9PR0xMbG4r777sOr1rYFIiIiInJza9ZYLilctEg05/j+exGI/fabeE6nE1NcpkwBrJzuTypjyaJCWLLoHfi7JCIiIldZs0a0dC99ti63eK9dWyyLBIhSxEceAZ55RqwbRupiySIRERERkRvT60VmzFLqRH7swgUgPBx48kmxbWysa8dIymBARkRERESkMTt2mJcplueLL4ABA5w/HnIerkNGRERERKQxaWnWbSe3tCf3xYCMiIiIiEhjrC0/ZJmi+2NARkRERESkMd27i26K5dHpgPh4sR25NwZkREREREQa4+sLzJ9v+TmdTnxcuJALOHsCNvVwF6mpQGZm+c9HRwN16rhuPAobMWIEsrKysHbtWgBAz5490a5dOyxcuNCl49i6dSt69eqFa9euISoqyqXHJiIiIiopPV189PEBDAbT43FxIhhLSlJlWKQwBmTuIDUVaNoUyM8vf5ugIOD4ccWDshEjRuCTTz4BAPj7+6NOnTp45JFH8Pzzz8PPz3kvnzVr1sDf39+qbRlEERERkafJygJeekncf+cdoHlz0egjNlaUKTIz5jkYkLmDzMyKgzFAPJ+Z6ZQsWb9+/fDxxx+joKAA69evR3JyMvz9/TFt2jSz7QoLCxEQEKDIMatWrarIfoiIiIjc0WuvAVeuiEBs9GjAidfBSWWcQ6YWSQJyc6275eVZt8+8vMr3ZWl1wUoEBgaiZs2aqFu3LsaOHYs+ffrgu+++w4gRIzBo0CC8+uqrqFWrFpo2bQoAOHfuHO6//35ERUWhatWqGDhwIM6ePWvcn16vx6RJkxAVFYVq1aphypQpkEqNq2fPnpgwYYLx84KCAkydOhXx8fEIDAxEo0aN8OGHH+Ls2bPo1asXAKBKlSrQ6XQYMWIEAMBgMGDOnDmoX78+goOD0bZtW6xevdrsOOvXr0eTJk0QHByMXr16mY2TiIiISA3//CNKEgFg7lwGY56Ov1613LwJhIUpu89u3Srf5sYNIDTUocMEBwfjypUrAIDNmzcjIiICmzZtAgAUFRUhMTERCQkJ2LFjB/z8/PDKK6+gX79++OuvvxAQEID58+dj2bJl+Oijj9C8eXPMnz8f33zzDXr37l3uMR955BHs2rULb731Ftq2bYszZ84gMzMT8fHx+PrrrzF48GAcP34cERERCA4OBgDMmTMHy5cvx3vvvYfGjRtj+/bt+O9//4vq1aujR48eOHfuHJKSkpCcnIwxY8bgjz/+wDPPPOPQz4aIiIjIUS+8ABQUAD17ctFnb8CAjKwmSRI2b96MDRs24KmnnkJGRgZCQ0OxdOlSY6ni8uXLYTAYsHTpUuj+bQH08ccfIyoqClu3bkXfvn2xcOFCTJs2DUn/zkR97733sGHDhnKPe+LECXz11VfYtGkT+vTpAwBo0KCB8Xm5vLFGjRrGOWQFBQWYPXs2fv75ZyQkJBi/5tdff8X//vc/9OjRA0uWLEHDhg0x/98WRk2bNsXBgwfx+uuvK/hTIyIiTfLwZlnkvvbtA5YvF/ffeMPUUZE8FwMytYSEiGyVNfbvty779euvQLt2lR/XRt9//z3CwsJQVFQEg8GAYcOGYebMmUhOTkbr1q3N5o0dOHAAp06dQnh4uNk+8vPzcfr0aWRnZyMtLQ1dunQxPufn54eOHTuWKVuU7d+/H76+vujRo4fVYz516hRu3ryJO++80+zxwsJC3HLLLQCAo0ePmo0DgDF4IyIiD6ZisyyiikgSMHmyuD9sGNChg7rjIddgQKYWnc760sF/S/Cs2s7BckRLevXqhSVLliAgIAC1atUy664YWup4N27cQIcOHfD555+X2U/16tXtOn6wtd9/qXEAwA8//IDatWubPRcYGGjXOIiIyEOo3CyLqDw//gj88gsQEAC8+qraoyFXYUBGlQoNDUWjRo2s2rZ9+/ZYuXIlatSogYiICIvbxMbGYvfu3bj99tsBAMXFxUhJSUH79u0tbt+6dWsYDAZs27bNWLJYkpyh0+v1xsdatGiBwMBApKamlptZa968Ob777juzx37//ffKv0kiIiIihRUXA1OmiPtPPw3Uq6fqcMiF2GXRHURHi9KJigQFie1U9tBDDyE6OhoDBw7Ejh07cObMGWzduhVPP/00zp8/DwAYP348XnvtNaxduxbHjh3Dk08+iaysrHL3Wa9ePQwfPhyPPvoo1q5da9znV199BQCoW7cudDodvv/+e2RkZODGjRsIDw/Hs88+i4kTJ+KTTz7B6dOnsW/fPrz99tvGddWeeOIJnDx5EpMnT8bx48exYsUKLFu2zNk/IiLPl5oqJkGUd0tNVXuERESas2wZcPgwUKUK8Pzzao+GXIkZMndQp46oY3eDycchISHYvn07pk6diqSkJFy/fh21a9fGHXfcYcyYPfPMM0hLS8Pw4cPh4+ODRx99FPfeey+ys7PL3e+SJUvw/PPP48knn8SVK1dQp04dPP/vf6vatWtj1qxZeO655zBy5Eg88sgjWLZsGV5++WVUr14dc+bMwd9//42oqCi0b9/e+HV16tTB119/jYkTJ+Ltt99G586dMXv2bDz66KPO/0EReSrOzSEistmNG8D06eL+iy+KoIy8iKQRc+bMkQBI48ePNz6Wl5cnPfnkk1LVqlWl0NBQKSkpSUpPTzf7un/++Ue66667pODgYKl69erSs88+KxUVFZlts2XLFumWW26RAgICpIYNG0off/xxmeO/8847Ut26daXAwECpc+fO0u7du20af3Z2tgRAys7OLvNcXl6edOTIESkvL8+mfZL28HdJVImUFEkS89IrvqWkqD1S8lbXrknSo4/ydUqaMnOmeMk1aCBJ+flqj4aUUFFsUJomShb37t2L//3vf2jTpo3Z4xMnTsS6deuwatUqbNu2DRcvXjS2SgfEnKEBAwagsLAQO3fuxCeffIJly5ZhunyJAcCZM2cwYMAA9OrVC/v378eECRMwatQoszbrK1euxKRJkzBjxgzs27cPbdu2RWJiIi5fvuz8b56IiIic78YNYPZsoH594KOP1B4NkVF6OjBvnrg/Zw7A3mPeRydJ5fQad5EbN26gffv2ePfdd/HKK6+gXbt2WLhwIbKzs1G9enWsWLECQ4YMAQAcO3YMzZs3x65du3Drrbfixx9/xN13342LFy8iJiYGgFjTaurUqcjIyEBAQACmTp2KH374AYcOHTIe84EHHkBWVhZ++uknAECXLl3QqVMnvPPOOwAAg8GA+Ph4PPXUU3juuees+j5ycnIQGRmJ7OzsMs0s8vPzcebMGdSvXx9Blc0FI03j75KoEvv2WdenOSUFKKeRjyZwjSrPkZ8P/O9/IhiTL7Q2aAD8/XflX6v11yl5hMcfB95/H+jSBdi1i+uOeYqKYoPSVM+QJScnY8CAAWW656WkpKCoqMjs8WbNmqFOnTrYtWsXAGDXrl1o3bq1MRgDgMTEROTk5ODw4cPGbUrvOzEx0biPwsJCpKSkmG3j4+ODPn36GLexpKCgADk5OWY3IiLyAPI8uA4dyr81bcrmJFpXVAQsXQo0aQJMmCCCsYYNxYq7P//sNs2yyLMdOSJepgAXgfZmqjb1+PLLL7Fv3z7s3bu3zHPp6ekICAhAVFSU2eMxMTFIT083blMyGJOfl5+raJucnBzk5eXh2rVr0Ov1Frc5duxYuWOfM2cOZs2aZd03St6DV9XJm6WlecbCOVyjyr0ZDMCXXwIzZgCnTonHatcWn48YAfj7i8dKNsuaNQv47jtg7Fhg1CjxGP9fkwtMnSpesoMGAd26qT0aUotqAdm5c+cwfvx4bNq0yS1Lv6ZNm4ZJkyYZP8/JyUF8fHyFX6NydSgpoMLfIbvLkbe6cUNc2n3jDSA3V+3RkLeSJBFUvfgicPCgeKx6ddE//IknymbE6tQx/S9u2VJ8rZ8fSxTJZbZuBb7/HvD1BV57Te3RkJpUK1lMSUnB5cuX0b59e/j5+cHPzw/btm3DW2+9BT8/P8TExKCwsLDM+lSXLl1CzZo1AQA1a9bEpUuXyjwvP1fRNhEREQgODkZ0dDR8fX0tbiPvw5LAwEBERESY3crj/+/VuJs3b1bwEyF3UFhYCADw9fUt+6QtV9WJPEFxMfDee0CjRiLDkJsLtG6t9qjI20gSsGkTcOutIs1w8CAQGQm88oqYJzZhQuXliXKVTKlzASJnMRiAZ58V9x9/XFzPJe+lWobsjjvuwEH5Cta/Ro4ciWbNmmHq1KmIj4+Hv78/Nm/ejMGDBwMAjh8/jtTUVCQkJAAAEhIS8Oqrr+Ly5cuoUaMGAGDTpk2IiIhAixYtjNusX7/e7DibNm0y7iMgIAAdOnTA5s2bMWjQIACiqcfmzZsxbtw4Rb5XX19fREVFGbs2hoSEQMciYbdjMBiQkZGBkJAQ+PlxCT/yYnIm4rnnALm0u1EjcYm3Y0egWbPKL04cPcpMBFXMmhLw8+eB//s/kWoAgJAQYPx4YPJk2xZyYkBGLvbll6JnTHi4qKYl76baWWV4eDhatWpl9lhoaCiqVatmfPyxxx7DpEmTULVqVUREROCpp55CQkICbr31VgBA37590aJFCzz88MOYO3cu0tPT8cILLyA5ORmB//YMfeKJJ/DOO+9gypQpePTRR/HLL7/gq6++wg8//GA87qRJkzB8+HB07NgRnTt3xsKFC5Gbm4uRI0cq9v3K2Ta20ndvPj4+qFOnDgNq8l67d4uT3R07xOfR0WI108cfBwICxGPlLWRvMIjysU2bRAlZ06YigNOayoJJcj5rSsB9fMRrChCvvbFjgWnTTMGVLf69qMuAjFwhP1/8KwTEHDL55UfeS9OX+RcsWAAfHx8MHjwYBQUFSExMxLvvvmt83tfXF99//z3Gjh2LhIQEhIaGYvjw4XjppZeM29SvXx8//PADJk6ciEWLFiEuLg5Lly5FYmKicZuhQ4ciIyMD06dPR3p6Otq1a4effvqpTKMPR+h0OsTGxqJGjRooKipSbL/kWgEBAfDxKafS9+RJ1w6GyJVOnxZnEF99JT4PCgImTQKmTBHlYSWVnJtT2rp1wIABwObNwF13Ab/9BjRu7Nyx2+LGDZFhIXVZUwJuMIig7NFHxbwxR+bmyu/3vGhKLvD228A//4heMxMnqj0a0gLV1yHzFLasNUAeRJKADRuAN98UV/2twXVtyJ1kZoq5OO++K9qI63TA8OHAyy8DcXH27TMnB+jVS6xZVr++CMpiY5Udtz2yskSQWMGSJ2a2bAF69nTmiLyXtevZffONmDfmqMxM0QAEAAoLTZ0YiRR25YpYfSE7G/j4Y9H4kzyTLbGBpjNkRJqVnw98/rkIxI4cEY/pdCJAI9I6a+bmVK8OvPWWWExXXmexXz/g9deBNm0cO35EBLB+PdC1q8i89e8PbNtWNtPmShkZQN++wP79Yhx5eeLEvCJPPinmLrHeSD1KdaytWlW0utPrRZasdm1l9ktUyiuviGCsTRvg4YfVHg1pBQMyIltkZIhMweLF4j4gZuSOGgX07g3cc4+64yOqjDVzc/z9RVCWliY+b9cOmDcP6NNHuXHExIjscteuwIEDIsvx44+Vd8NzhgsXgDvvFI1GatQQ2e6oqPKD1lOngORksf3tt4tFhu3NFpI2+PiIixDp6WIeGQMycoLTp8XpAyD+pVpq2FwG1zf1CgzIiKxx9CiwYAHw6adAQYF4LD5ezDUZNUpcUU9NFSeTla1DFh3tmjETWWLN3JyiIhGMxceLhZ4fekicsCqtYUMRhPXoITJN//0vsHKllWcpCjl7FrjjDtEePS5OzG1r0kQ8V95JTvv2wC23iK87fhzo3l18XYMGLhs2OUFMjAjIOI+MnOT558W/1759xa1SXN/Ua6i2DhmR5kmSqfFAixbABx+IYKxTJ9Gv9u+/gWeeMZVZ1akj/immpAB795pOKtevF4+lpPCfJrmPp58GTpwQNTXOCMZkt9wCrF0ruuR9/TUwbpzrSn/lYOrvv0VwuGOHKRirTOPGYvtGjURQ1727uHBDjpMkUxrBldj6npxo927RE0mnE9kxq3B9U6/BDBl5D2vT/oWFwBdfiPlhf/0lntPpREnVpEmixKq8tvclu8vFxoo1cqKj2cSD3M/w4a4rH+zdG1i+HBg6VCw0HRsrWuk7019/iTLFy5eB5s1F2WGtWrbto25dYPt2sZ/Dh0X54qZNosST7GMwiMqDjz5y/bEZkJGTSJJpEejhwx2fhkuehwEZeQdr0v6BgSIrsHy5ae5MSIhoqTxhgriCbouaNUVAlp5u97CJvMZ994l5mcnJYpXUmBixtpkz7NkjGpRcuyYydBs2mDrs2So2VpRbJiaKzoC9eokyzH/XyyQbFBcDjz0mSsMBwM9PPFYepUvAuRYZOcm33wK//goEB4sGtUSlMSAj72BN2r+gwFRHUKuWCM7GjAGqVLHvmP8uBs6AjMhKTz4pLoa88oq4X6MGcO+9yh5j+3axDtqNG0BCgigpjopybJ/R0cAvv4j9/vabaH6ybp0Izsg6BQXAsGHAmjWi3HvZMpFxdGUzA65FRk5QVCQWfwZEkY3V/X9SU0U3Z/IKDMiISmrSRCwwev/9Yk6LIxiQEdnupZfE38zSpcCDDwIbN4oTcyVs2CACvLw8USb57bdAWJgy+46MFPsfNEiUP951F7B6tQjSqGK5uUBSkvhdBwSIiTYDB4rnXDnnliWL5ATvvy+m41avDkyZUsnGZ86IubSrV4tJZ+Q1GJB5CrZFVcaKFdYtRmoNBmREttPpgCVLRPnit98C//mPyGo5Ounim2/EHLWiIhEkrV6t/By50FCRGRs6FPjuOxGcrVghyjHJsqws4O67RWYxNFT8zu+4Q52xMCAjheXkALNmifszZ4olGMs4edIUhKWkmB7X6URJ9b59lR9o1Soxd9WZDZjIqRiQeQK2RVVOec067BEbKz7K89GItCA6WvvLM/j5icY6ffuKiRf9+gE7dwL16tm3v+XLgREjxKK/990nPnc0A16eoCBxYjV8uPgeHnhAZIBGjHDO8dzZ5cti7t3+/aJsdP16UUaqFs4hI3tUcEH8s8VAUEY0mjSpg9GjSzxx7Jj4P7F6tViHUebjA/TsCQwZIrL5Fy9ad5H4tddEd+cPPxTNhsjtMCDzBLa0RfXWgOzvv11/TGbISIvk5RmmTBFrfj3wADB5svk2WsioBweLLNPttwOHDokT919/tb35xvvvA088IdqcjRghSiGdvc6Zvz/w2Wci47N0KTBypAjKkpOde1x3cv68mGt3/LgIhDZuBNq2VXdMcoYsI0ME765cD4/cUyUXxJMBPIogbH/mGPyPXzcFYYcPmzby9RVZ4SFDRFa95P+4wsLKL6D5+Yl9bN4MtG4tOkQ/9piyF5jJ6RiQkWcrKgJef91UM+BKDMhIq+rUAU6dEvcHDdLusgxVqgA//QTcdpuYhDFggGieYe28rzffFGsFAiIYeust15X0+PqKYDA0FFi0SKyvduOGaXa/Nzt1SgRj//wjFh//+Wfr139zJvlE2GAArl61v/MmeQ8rLogHIx99Z/cQr3eZv79YLmPIEFGWXa2a5S+WL6BVNiWloEBccNq5Exg9WpRAfvCBDR1ESG0MyMhz7dsnWtaXLAdwpZIBmSTxahVpR26uKBMD1C0Rs0bt2qJZRrduoiRn8GAxT6uikkNJEr2lZ8wQn0+dCsyZ4/q/QZ0OWLAACA8XnSOfe04EZS+95L3/Dw4eFKWo6elice2ff1Y/Gyvz9xcnxleuiLJFBmSkEN0//4ildRITRRB2zz3Wd3ctub5pRbZvF/9vXnhBXMhq1UpchHr4Ye/9f+NGOPvPmyxYYJ4m91R5eeLEp3NnEYxVqyauUFc2gV/peTNyQJaXB1y/rtx+iRz1xx+iJKtWLZGh0LpmzYAffhDrAm7cKC60GAyWt5UkEYDJwdgrr6gTjMl0OhEcvvaaaTyTJolxeps9e4AePUQw1qYNsGOHdoIxGRt7kDO8+qqYM/nttyJAcnSpDUt8fcXq03/+CXTqBGRni7msgwaxUscNMEPmTZYvF7fOncUJzQMPiFbNnuTXX0Xt9IkT4vOhQ8UVoho1xD8lV3aiDAkRLZVyckRjD4vtlYhUsGuX+Hjbbe5z5bRLF1GGc889Ym0eSRKBTcnxGwyiRHn1avH5ggViUXctmDpVlFqOGwcsXChOkCZNKn+ekhbm8SlpyxZRmnXjhlg0e/16+9d4dKYaNYAjRxiQkXXkc43K9OvnunOA5s1F6eK8eeLC1HffiXOjxYvFOZG7/M/3MgzIvEnPnuKPcs8ecZswQaTOR44Uz7lzu9QbN4Bp08Q/HEkSHQ6XLDGtZQNYn/ZXUs2aIiBLTxcTf4m0YOdO8VHr5Yql9esHzJ0rApkVK8StPHPmaCcYkyUnizlljz4KfPmluJXHkzrjrlsnulsWFCi//pvSuDg0Vaa4GFi7Fnj7bVEmqEV+fuKc6O67RZbszz/Fuo6rV4tzI1eX4zp7aSYPWPqJAZk3mT9fTPBcvly0Rj1yxJQ1q1dPBGbDh7tfy9SNG4ExY0wTZh97DHjjDeeUBNiqZk1xBY3lAq7jAf+YnUqSzDNk7qZHD+u269vXueOw14gRIvvy3HMVb+cpnXG/+AJ45BFxEvuf/4jOnkqv/6YklixSeTIzRaOMJUuAc+cAAJKPD3TllU+XoNcDqvTsbN1aLDA9e7Yol/76axFELlki5uO6grOXZvKQpZ/cOCVCRvK6QhWR50fVqCGuLh86JP5IH39cpNHPnhWp7fr1ReefL74Qc59KSk0VjTLKu6WmOu1btOjaNRFEJiaKYKxePWDTJtFmWgvBGMBOi64m/2Pu0KH8W9Omrn+tasmpU+LEIiBALDpKrnfnnWqPwDXefx946CERjD30kHMW41YaAzIqbd8+ca4RFwc8/7wIxqpXB154AX/N/sGqXfz5p5PHWBF/f3F+t3u3CNAyMkR11LBhooGNs9myNJMW9+8izJB5Amvbopa8MqDTiblknTuL1tDffAN89JFoKf3zz+IWFSX+YEeOFP98mjXTzhWIb74BnnxSBDo6HfDUU2LSrNbKYBiQuRbX5KucnB3r2FF0/SJyhjfeMK1v98QTopzcHcriuTg0AWLJnDVrRFnib7+ZHu/YEXj6aeD++4HAQJx9OxVNEIRglP++k4cgXCiIRkcXDLtC7duLTrVyk6EvvhBzO199FWjXrvyv8/aqEhdhQOYpHJkfFRIirl4+9BBw5gzwySfAxx+LLMK774pbo0baONG9dEkEX6tWic+bNhXll127Ou+YjoiNFR/T0tQdB5FMDsjcbf4YaUt5pcGSJMqhPvxQfK7WkgP24hwy73b5ssjsLlkCXLwoHvPzEwHYU0+J5kIlXsuRreugKY4jGuVfEM9END5trZGAJjBQlC4OHCimqBw9KqZ5VMSei+35+eJ87fJl84C2Is89B1Stav0xZFev2v41GsSAjMzVrw/MnAlMny6yZR9/LGqO5UVknamiuT+SJFokv/yy+OPz9RVv9C++qO0SGGbISGvkhh7uOH+MtMGaORuA+B8tt/t3FyxZ9CzWzineu1dkw1auBAoLxXMxMSK7+/jjpourpXTvDkhxdbD/Qh2LK1nodKLSsXt3Bb4XJXXqJEoxH38c+PTTirfNzxdljlFRIsC6dMl0K+/znBzbx7Rpk13fiqdgQEaW+fgAffqI2zvviM5m1ryxfvopcPq0aAxSt64o/7Dmyqi1b/CASK1/9JF7zH9hQEZakpMj5o8CzJCR/awpDQZEVsHdlAzIJMl9MntUljXnFf7+YgHlkpO8unQRZYlDhlS8AD3EteFFi8SmpckvnYULy1/dQlVBQcD48ZUHZIC4gCcHqtYKCBDngOHhIhNXmcmT7VsX89w50eLfzTEgo8pVqSJaFlsTkC1aJG6yoCBx9UkO0ORbvXriY61aohzA2jf4J58U/938/e39blyLARlpyZ49Yq2uevXKveJL5NXkOWSFhWJhXa00iCLbWXNeUVQkgrGAALFG11NPieyRDZKSRLHOSy+ZPx4XJ05XkpJsG7YmycFYaKi4aBETI/5W5PuWPo+MFFHpvn2ioVZlHnhAzHOz1b59DMiIykhMBK5fF10PL14U/wxPnCh/8URfX/Ffy9q64ccec59gDDAFZBkZ//a91eJlMvIanjB/TO4qW1mDoeho143JVp7wPXiq4GBxRf/6dVF+xYDM840dK7oQytlRO8jZsDvuEKcpsbGiTNFj3vK/+06sIRgaqvZIPBYDMlLW7NmmKxyFhcD58yI4k29nz5runzsnrk7Jn3ui6tVF+afBIN7cmZUgNXnC/DF7uspqTenvYdYsccIzdiwwapR4TOvfgyeLiREB2aVLQJMmao+GnG3UKIeCMQD49VfxcfBgsf6yx6ld2/5gzNkXoDzkAhcDMnKegACgQQNxs0SvF6V8//wDbN0K/N//uXR4LuHrK9L46enixoDMuTzkH7NTGAzA77+L++6cIQMc6yqrFSW/h1tuEQFZcbF9JTukrJgY0ciKjT3ICsXFpn+tWm34rCpnX0TzhIt0YEBG1nLGia6vr7jqUru2+FpPDMgAUbYoB2TkXCX/Mf/nP8CFC+Lx558Xly4Bt/jH7BTHjgFZWaIkq00btUdDJcmvx3Pn1B0HCVyLjGzw119Abi4QEQG0bKn2aDTK2RfRPOAiHQMyso6HXIFQBRt7uFadOqJT05Urpsd0OmYe5PljnTu71zxMbyB3FktNVXccJHAtMrKBXK54221uOGeMVSWawYCMrOcBVyBUIZcpMiBznaws8zcYZh5M88fcvVzRE8n/V1NT3aPVuqefxHEtMrKBvO6xW5Yr8mK7ZjAgI23w5Dd4OUOWlqbuOLyJXKooY+bBlCFz54YenkrOkN244R6t1kuexP38s1gAuk0b4OOPTdu480kcAzLP4ILzCkkyZcjcMiADeLFdIxiQkTZ48lUaliy63sWL5p97e4bs6lXTwpy33qruWKiskBCgWjVRZpuaqv2ADDCdxG3dKj5v0cJzyoI5h8wzlDyvOHgQGDFCvB//8INpGwfPK+QVfvz8RDU4kb0YkJF2eOpVGgZkricHZE2bijfk8+dFl0EfH3XHpZbdu8XHxo3FUgykPfK8x3Pn3Kvpipx99qT/3ZxD5jnk84ozZ8Tn9esreuFALle85RYu0UWO8dKzEyIXYkDmenLJYqdOYj5OQYFYnNtbecKC0J6u5DwydyKvIVm3rrrjUBJLFj2PfJGudm1FdysHZN26Kbpb8kIMyIicjU09XE9+861XzxQQe3PZoicsCO3p3LX1vSdnyG7cAG7eVHcspAz5Il2tWoru1u3nj5FmMCAjcjY5ILh+XSxWQs4nB2S1arnvia5S9HpTySIzZNrlrq3vPTEgCw8HAgPFfWbJPIMckCmYIcvKAg4dEvcZkJGjGJAROVtYmJi0DzBL5iol33zd9URXKYcOiSv94eFctVTL3PHCwc2bpkZMnhSQ6XScR+ZpnFCy+Pvvostiw4am665E9mJARuRsOh3nkblayQyZHJC504mukuT5Y126uOGqpV7EHS8cyGMNDwciI9Udi9I4j8yzOKFkkeWKpCQGZESuwIDMdfR608+ZJYucP+Yu5NfphQviNewO5ICsbl3tL2ZtKwZknsUJGTK3XhCaNIcBGZErsLGH61y+LE5ofXzESZU7Zh6UxA6L7iE2Vrxmi4rcJwjwxPljMq5F5jmuXxc3QLEMWVGRaWouOyySEhiQEbmCnCFLS1N3HN5AvhJas6Yo0fPmksXLl4FTp8R9LgitbX5+pqv37vJa9eSAjHPIPIdcrhgRIeZ0K+DPP4G8PKBKFaBZM0V2SV6OARmRK7Bk0XVKzh8DTCeLaWnisqY3+f138bFFCyAqStWhkBXcLZvrDQEZM2Tuz4nlirfdJhLbRI7iy4jIFRiQuU7p9sY1agD+/oDBYHpj9hby/DGWK7oHd5vv6ImLQssYkHkOJzT04ILQpDQGZESuwIDMdUpnyHx8gLg4cd9dTnSVIs8fY0MP98AMmXZwDpnnUHgNMklih0VSHgMyIldgUw/XKR2QAe6XeVBCURGwd6+4zwyZe3Cn16nBYBqnJwZkzJB5DoVLFv/+W7ws/P2Bjh0V2SURAzIil5AzZJcuiRMZch5LV0PdLfOghAMHTLPOmzZVezRkDXd6nV66JIJ+Hx9FS8E0Qw7Irl0DCgvVHQs5RuGSRblcsWNHIDhYkV0SMSAjcgm5/KW4GLhyRd2xeDpLGTJv7LQolyveeitnnbsLd8qQyfPHatcWHSI9TdWqpoXUMzLUHQs5RuEMGcsVyRn4Lk3kCv7+QHS0uM+yRediyaLABaHdj3zh4NIloKBA3bFUpuSi0J7IxweoXl3cZ9mie3NShowBGSmJARmRq7Cxh/MVFACZmeK+t5csckFo91OtmqkG6vx5dcdSGU9u6CHjPDL3ZzCY1v9UIEN29Spw5Ii4z4CMlMSAjMhV2NjD+eQ33sBAMXdK5m0lixcvipIyHx+gc2e1R0PW0unc5+KBNwVkXBzafWVkiKkCOp3poqgD5MKDJk1MCVQiJTAgI3IV+c1ADhpIeSXLFXU60+PySeOVK8DNm64fl6vJ2bHWrYHwcHXHQrZxl/JabwrImCFzX3K5YkyMInMdWa5IzsKAjMhVWLLofOWtNxMZCYSFiftaP9FVAuePuS93yZB58qLQMq5F5v4UbujBBaHJWRiQEbkKAzLns9TQAzAvBfOGgIzzx9wXM2TawQyZ+1OwoUdBAbBnj7jPDBkpjQEZkaswIHO+8gIywH1OdB1VUACkpIj7zJC5H3fIkN24IbobAN4RkHEOmfsqr2rCDvv2iX+v0dFiDhmRkhiQEbkKm3o4X0Vvvu5woquEffvEQrbVqwMNGqg9GrKVO1w4kMcWGQlERKg7Fmdihsz9KViyWHL9sZJTlImUwICMyFXY1MP5KsqQeUvJYsn5YzxrcD/ucOHAG8oVAc4h8wQKliyyoQc5EwMyIleRA7KsLCA/X9WheCyWLHL+mLuTA7Lr14HsbHXHUh5vaOgBmDJkGRmAXq/uWMg+CpUsShIbepBzMSAjcpWoKCAgQNznFVfn8PaSRUliQObuQkOBqlXFfa2+Vr0lQyYvNGUwmObMkXup6CKdDU6cADIzxRKX7dsrMC6iUhiQEblKyYUpOY9Medevi2YDgGm+XkklSxYlyXXjcqXUVHEC4ucHdOyo9mjIXlrP5npLQObvD1SrJu7zIpr7yc8Xa08CDmfI5OxYp04iKCNSGgMyIldiYw/nka+ERkSY1hwrSQ7IcnNF2agnkrNj7doBISGqDoUcoPVsrrcEZAAbe7gzeb52UBBQpYpDu2K5IjkbAzIiV2JjD+epbK5AcLDoVwxo90TXUVwQ2jNoPUPmLXPIADb2cGclG3o42OCoZIdFImdgQEbkSixZdB5r5gp4eqdFzh/zDFrOkOn1wPnz4r43Zci4Fpn7UaihR0aGmEMG8FoXOQ8DMiJXYkDmPNYEZFrPPDji5k1g/35xn2cN7k1+nWoxIEtPB4qLAV9fy3M1PQ1LFt2XQmuQyYUHLVqY+u0QKY0BGZErMSBzHmuuhmo58+CoP/4QJ8q1apm+T3JPWs7kyn87cXEiKPN0DMjcl0JrkLFckVyBARmRK8lXlDmHTHneXrLIBaE9h5whO39etFzXEm9q6AFwDpk7U6hkkQtCkyswICNyJWbInMeWkkVPzJBx/pjnqFUL8PEBioq0Fwh4U0MPgHPI3JkCa5Dl5YniA4AdFsm5GJARuVLJgMxT18JSiy0li56WIZMkdlj0JH5+ppNIrV088LYMGUsW3ZcCGbI//hDXRWJigAYNFBoXkQUMyIhcSX5zLyz03LWw1CBJtpUsXrggusV5itOngcxMICAAuOUWtUdDStBqAxpvDsh4Ec19lHxPcCAgK1muyEpwciYGZESuFBQEREWJ+yxbVM6VK+IyJmDKQlqi5VIwR8jZsY4dgcBAdcdCytBqAxpvC8jkOWSFhUB2trpjIetlZYl6Q8ChbqBcEJpchQEZkauxsYfy5NKUGjVElqg8JUvBtJZ5cATnj3kerWbI5Dlk3hKQBQcD4eHiPueRuQ/5PaFqVfE7tIPBwIYe5DoMyIhcjY09lGfL5G1PnEfGgMzzaDFDlpNjKrX2loAM4Dwyd6RAQ49jx4Br10Q8x0pwcjYGZESuxoBMeba8+Xpap8Xr14GDB8V9BmSeQ4sZMnksVaqYskbegAGZ+1GgoYecHevSBfD3V2BMRBVQNSBbsmQJ2rRpg4iICERERCAhIQE//vij8fn8/HwkJyejWrVqCAsLw+DBg3Gp1D/E1NRUDBgwACEhIahRowYmT56M4uJis222bt2K9u3bIzAwEI0aNcKyZcvKjGXx4sWoV68egoKC0KVLF+zZs8cp3zMRAzInsOXN19MyZHv2iNqaunUdXgCVNESLGTJvmz8m41pk7keBhh5cEJpcSdWALC4uDq+99hpSUlLwxx9/oHfv3hg4cCAOHz4MAJg4cSLWrVuHVatWYdu2bbh48SKSkpKMX6/X6zFgwAAUFhZi586d+OSTT7Bs2TJMnz7duM2ZM2cwYMAA9OrVC/v378eECRMwatQobNiwwbjNypUrMWnSJMyYMQP79u1D27ZtkZiYiMusFydnkOeQMSBTjjeXLLLdvWeSg55Ll4CCAnXHIvPWgIxrkbkf+SKdAxepOH+MXEnVgOyee+7BXXfdhcaNG6NJkyZ49dVXERYWht9//x3Z2dn48MMP8eabb6J3797o0KEDPv74Y+zcuRO///47AGDjxo04cuQIli9fjnbt2qF///54+eWXsXjxYhQWFgIA3nvvPdSvXx/z589H8+bNMW7cOAwZMgQLFiwwjuPNN9/E6NGjMXLkSLRo0QLvvfceQkJC8NFHH6nycyEPJ2fI2NRDOd5cssj5Y56pWjXRlRUAzp9Xdywyb1sUWsaSRffjYMlierpYTUSn479Wcg3NzCHT6/X48ssvkZubi4SEBKSkpKCoqAh9+vQxbtOsWTPUqVMHu/49Adm1axdat26NGPmfJYDExETk5OQYs2y7du0y24e8jbyPwsJCpKSkmG3j4+ODPn36GLexpKCgADk5OWY3IquwZFF53lqyaDCYAjJmyDyLTqe9eWTeniFjQOY+HCxZlLNjrVqZVqohcibVA7KDBw8iLCwMgYGBeOKJJ/DNN9+gRYsWSE9PR0BAAKJK/SXExMQg/d8T2fT0dLNgTH5efq6ibXJycpCXl4fMzEzo9XqL26RXcMI8Z84cREZGGm/x8kkeUWUYkCnPnpLF9HTtlILZ6/hx0fUuOBho00bt0ZDStDaPzFsDMs4hcz8Olixy/TFyNdUDsqZNm2L//v3YvXs3xo4di+HDh+PIkSNqD6tS06ZNQ3Z2tvF2TitXMEn75IAsM9O0mDHZr+Qiz9a8+Vavblo8WX7Tdlfy/LHOndkGzBMxQ6YNzJC5l+Ji0+/KwQwZ54+Rq/ipPYCAgAA0atQIANChQwfs3bsXixYtwtChQ1FYWIisrCyzLNmlS5dQ898T2po1a5bphih3YSy5TenOjJcuXUJERASCg4Ph6+sLX19fi9vI+7AkMDAQgfJJHZEtqlUTCxQXF4tJ4g50gSKIN15JEj/T6tUr316nE5mHU6fEiW6DBs4fo7Nw/phn01KGrLjYNJfNWwMyNvVwD5cuiXJuX1/r3hNKuXkT2LdP3GdARq6ieoasNIPBgIKCAnTo0AH+/v7YvHmz8bnjx48jNTUVCf+efCQkJODgwYNm3RA3bdqEiIgItGjRwrhNyX3I28j7CAgIQIcOHcy2MRgM2Lx5s3EbIkX5+Jje4NnYw3FyuWJsrPjZWsNT5pGxw6Jn01KGLC0N0OtFJlbuFOst5P/XN26Is3XSNrnyITZWBGU22rNHXH+oXdv7+teQelTNkE2bNg39+/dHnTp1cP36daxYsQJbt27Fhg0bEBkZicceewyTJk1C1apVERERgaeeegoJCQm49dZbAQB9+/ZFixYt8PDDD2Pu3LlIT0/HCy+8gOTkZGP26oknnsA777yDKVOm4NFHH8Uvv/yCr776Cj/88INxHJMmTcLw4cPRsWNHdO7cGQsXLkRubi5Gjhypys+FvEDNmuJNg/PIHGfPXAFP6LR47Rpw9Ki4/+//RPIwWsqQyWOIi7P+woenCA8XZc4FBSL7Ur++2iOiiijU0KNrV1FQQeQKqgZkly9fxiOPPIK0tDRERkaiTZs22LBhA+68804AwIIFC+Dj44PBgwejoKAAiYmJePfdd41f7+vri++//x5jx45FQkICQkNDMXz4cLz00kvGberXr48ffvgBEydOxKJFixAXF4elS5ciMTHRuM3QoUORkZGB6dOnIz09He3atcNPP/1UptEHkWLY2EM59rz5ekKGbPdu8bFxY7vKcsgNaClD5q3zxwBxVh4TI34GDMi0z8GGHlwQmtSgakD24YcfVvh8UFAQFi9ejMWLF5e7Td26dbF+/foK99OzZ0/8+eefFW4zbtw4jBs3rsJtiBTDgEw5tnRYlHlCQCaXK7K02nPJr9OcHCA7G4iMVG8s3hyQAaaAjPPItM+BNcj0etPUXHZYJFfysroDIo2Q52AwIHOct5Yscv0xzxcaClStKu6rffHAWxeFlrHTovuw5yLdvw4fFtc+QkO5kgi5FgMyIjXIGTI29XCcN5Ys6vXA77+L+8yQeTatzCPz9gwZ1yJzHw5kyOT5Y7feKhr3ErkKAzIiNbBkUTmOlCxmZQHXrys+JKc7fFh0fAsPB1q2VHs05ExamUfm7QEZM2Tuw4GmHlwQmtTCgIxIDQzIlGNPyWJEhGk+jtonuvaQ54916WJXW2dyI8yQaQPXInMfDjT1YEMPUgsDMiI1lAzIJEndsbizmzdFlguw/WqoO5ctckFo76GFDFl2triVHI+3YYbMPeTmml6rNr4nXLggpkr6+HAlEXI9BmREapADsps3RekZ2UeegxcSIrJetnDngIwLQnsPLWTI5GNXqya6HXgjziFzD3K5YmioKOm2gVyu2LatzV9K5DAGZERqKPlmwcYe9itZmmLrCp7u2mkxIwM4dUrc79JF3bGQ82khQ+bt5YoAM2TuomRDDxvfE1iuSGpiQEakFs4jc5wDk7fdNkMmlyu2aAFUqaLuWMj5Sr5ODQZ1xsCAzBSQXbsGFBaqOxYqnwIdFhmQkRoYkBGphQGZ4xxYb8btAzLOH/MOtWqJSS1FReo1lGBAJtaDkxvoZGSoOxYqn53vCdevA/v3i/vssEhqYEBGpBYGZI5zoJuW25Yscv6Yd/H3Ny0kr9Zr1dsXhQZEUFy9urjPskXtsjNDtnu3SEDXqQPExTlhXESVYEBGpBb5JIsBmf2UKll0l06XRUXA3r3iPjNk3kPteWTMkAmcR6Z9dr4nsFyR1MaAjEgtcoaMTT3s50jJonwZND8fuHJFuTE5019/AXl5Yu5Y06Zqj4ZcRe1sLgMygWuRaZ+dVRNcEJrUxoCMSC0sWXScIyWLgYGmEyx3KVuUyxVvvVWUUJF3ULP1fXGx6e+MAZn4yAyZdtlRslhcbJqaywwZqYXv6ERqYUDmGElyrGQRcL/GHvJZA+ePeRc1SxYvXBCTawICTAGJt+JaZNpW8j3Bhot0Bw+K5UAjIoBWrZw0NqJKMCAjUgsDMsdkZ4vyPcA0H89W7haQyRkyzh/zLmpmyORjxsczK8sMmbZlZop5toBN7wlyuWJCgqmRJpGrefl/VyIVyW8Yly8Der26Y3FHcmlKlSpAcLB9+1B7bo4tLl4U3e58fIDOndUeDbmSmhkyzh8z4RwybZPfE2rUEBldK3FBaNICBmREaqleXZxcGwxc18YejpYrAu6VIZPLFVu3BsLD1R0LuZb8Ok1PBwoKXHtsBmQmzJBpm51NntjQg7SAARmRWnx9TevasGzRdo50WJS5Y0DGckXvEx0NBAWJ+3IWwFUYkJkwINM2Oxp6pKYC58+Lt2MWHpCaGJARqYnzyOznSIdFmTuVLHJBaO+l06k3j0xeFJoBmampR0YGy8y1yI6LdHK54i23AKGhThgTkZUYkBGpiQGZ/ZQsWbx4UdsnWAUFQEqKuM8MmXdSax6ZHADWreva42qRXNFgMABXr6o7FirLjgwZyxVJKxiQEalJbuzBgMx2SpQs1qwJ+PmJYEzLC3Tv2wcUFooTwoYN1R4NqUGNDJkkMUNWkr8/UK2auM+yRe1xICBjQw9SGwMyIjXJGTItBwNapUTJoq+v6c1by2WLJeeP6XTqjoXUoUaGLDtbLNAEmAJCb8d5ZNpl40W67Gzgr7/EfQZkpDYGZERqYsmi/ZQoWQTco7EH54+RGhkyOTsWHQ2EhLjuuFrGxaG1y8YM2e+/iyRwgwb2L2VJpBQGZERqYkBmH4PBlFV0JEMGqLvGkzUkiR0WSZ3XKeePlcUMmTYVFpqWj7EyIGO5ImkJAzIiNTEgs4+8mLaPj+kEyV5qda+z1rlzIhvo5wd07Kj2aEgtarxO2fK+LC4OrU3yBbqAANM8v0pwQWjSEgZkRGpiUw/7yOWKMTEiUHGE1ksW5XLFdu1YNubN5NdpTo6Y/OIKDMjKYoZMm0rOKbZinm1REbB7t7jPDoukBQzIiNQkZ8hycoCbN9UdiztRosOiTOsli3K5IuePebewMKBKFXHfVa9VBmRlcQ6ZNtn4nnDggHjLjYoCmjd33rCIrOXgpWUickh4OBAcDOTliSxZgwZqj8g9KNFhUaa1ksXUVCAz0/T5pk3iY82aov19dDRPkL1VnTrAtWsiIGvVyvnHY8v7spgh0yYbG3rI5Yq33SYq34nUxpchkZp0Os4js4dSHRYBU0CWkQHk5zu+P0ekpgJNmwIdOphuR4+K555/XnzetKl2gkdyLVdfPGBTj7I4h0ybbAzIuCA0aQ0DMiK1MSCznZIli1WrmuZmnT/v+P4ckZlZeVCYn2+eQSPv4cry2qIi098ZM2QmJTNkkqTuWMjEhvcESWJDD9IeBmREamNjD9spWbKo02mvbJHIEle+Ti9cEGeugYFA9erOP567kOeQFRa6rrkKVc6GDNmZM+Lt1t8f6NTJyeMishIDMiK1yRkyuW0vVU7JkkVA+50WiQDXZsjk+WPx8ZxkU1JwsJj7C3AemZbYkCGTyxU7dBC/TiIt4H9ZIrWxZNF2SpYsAtrvtEgEuDZDxvlj5eM8Mm2RJJsyZCxXJC1iQEakNgZktikoEA04AOUCMpYskjuQLxycPw8YDM49Flvel4+dFrUlJwfIzRX3bciQMSAjLWFARqQ2ziGzjfxzCggAqlVTZp8sWSR3IC96W1jo/OwMA7LycS0ybZErJiIjgdDQCje9dg04fFjcZ0BGWsKAjEhtzJDZpmS5ok6nzD5ZskjuwN/flAFw9muVAVn5mCHTFhvKFXfuFB8bNzbF1URawICMSG0lAzJnlyF5AiU7LMq0UrIYHQ0EBVW8TVCQ2I68k6teq1wUunycQ6YtVswp1uuBrVuB998Xn992m/OHRWQLBmREapMv0xUXA1evqjsWd6B0h0XAdJJ7/bq6razr1AGOHwf++AOoUkU8tmwZkJJiuh0/zpNkb+aKbK4ksalHRZgh05ZKMmRr1gD16gG9egHffSce++478TiRVvipPQAiryfPhbpyRWTJmP2omNIdFgEx76BqVREQnzsn5iKopU4dUYp57Rrg5wfcfz97M5OJKzJk166ZmiTExTnvOO6Kc8i0pYKAbM0aYMiQsmt4Z2WJx1evBpKSnD9EosowQ0akBWzsYT1nlCwC2ilbBESGDABatWIwRuZckSGT/wZq1ODrzxJmyLSlnIt0ej0wfnzZYAwwPTZhgtiOSG0MyIi0gItDW88ZJYuAtjotygFZx47qjoO0xxUXDjh/rGKcQ6Yt5WTIduwQK0SUR5LEv/sdO5w4NiIrORSQFRYW4vjx4yguLlZqPETeiZ0WreeMkkVAW50W9+4VHzt1UnccpD2uzJBx/phlckB24wZw86a6Y6EyAZleD+zZAyxebN2X8zooaYFdAdnNmzfx2GOPISQkBC1btkTqv/+8n3rqKbz22muKDpDIKzAgs56nlyxKEjNkVD45IEtPF+uROQNb3lcsPBwIDBT3WbaoLr3e+L755fZaeOABUWnbpYuYH2YNecYAkZrsCsimTZuGAwcOYOvWrQgq0aK5T58+WLlypWKDI/IaDMisc/26uAHOC8jUzpCdOSOaKgQEiDlkRCXJSyNIkunihNIYkFVMp+M8MoXJbem/+EJ8rGxeV14esGEDMGPsZUCvhx4++O+zMVi5UvRmiogABg0CoqLKX65SpxP/9rt3V/Z7IbKHXV0W165di5UrV+LWW2+FrsQrvWXLljh9+rRigyPyGmzqYR25tiQ8XNyUJJ98qp0hk7NjbduKoIyoJPks8uRJ8VqtX1/5YzAgq1xMjPg5cR6Zw9asEc03Ss73iosDFi0ydUCUJODwYRGEbdwIbN8O5OcD7XERswBcQgw6dvFDYiLQt6/IkPn5mbos6nTmzT3kU9eFCwFfX1d9p0Tlsysgy8jIQA0LS5zn5uaaBWhEZCU29bCOs8oVAVOG7Px5sUC3j0o9j1iuSJUpGZA5A5t6VI4ZMkWU15b+wgXx+IQJomBg40bT9GFZXBwwotkF4GegRrva+P33svtPShKli5YCvoUL2fKetMOugKxjx4744Ycf8NRTTwGAMQhbunQpEhISlBsdkbdgyaJ1nNXQAxATwnU6MS8nI8N0wuVqDMioMs5s7FFQYLowxKYe5eNaZA6zpi39ggWmx4KDgR49YMyCNW8O6N4TAZlf3fK77iYlAQMHim6KaWmiIKV7d2bGSFvsCshmz56N/v3748iRIyguLsaiRYtw5MgR7Ny5E9u2bVN6jESeTw7Irl0TJ0TyhHEy56yW9wDg7y/eqS9eFJkHNQIygwFISRH3GZBReZzZgEbOQgcFcZH6ijBD5rDK2tLL7r8fGD0a6NZNvCzNWHmRztcX6NnTrmESuYRdNTndunXD/v37UVxcjNatW2Pjxo2oUaMGdu3ahQ4dOig9RiLPV6WKab4Q3+DL58ySRUD9xh6nTgE5OeKso0ULdcZA2ufMDFnJ+WOcglA+rkXmMGsr9AcNAvr0sRCMAeWuQUbkbuzKkAFAw4YN8cEHHyg5FiLvpdOJLFlqqihb5NwNy5xZsgiIgGz3bvUCMrlc8ZZbxIx0IkucmSHj/DHrMEPmMGvbzVe4nbMv0hG5iF0ZsvXr12PDhg1lHt+wYQN+/PFHhwdF5JXY2KNyzixZBNTvtMj5Y2QNV2XIqHycQ+aw7t1Fc43yWNWW3tnvCUQuYldA9txzz0FvYZEISZLw3HPPOTwoIq/Exh6V8/SSRQZkZA35dZqdLUpclSQHZGzoUTFmyBzm6wskJ1t+zuq29CxZJA9hV0B28uRJtLAwv6FZs2Y4deqUw4Mi8koMyComSa4pWQTUCcj0emDfPnG/UyfXH5/cR1iYmHcKKP9aZYbMOnJAdu2a6MxKNtPrgVWrxP2QEPPn4uJEu/oK29Ln5YmfP8CSRXJ7dk1SiIyMxN9//4169eqZPX7q1CmEhoYqMS4i78OArGJXr5pOfKydfGArNUsWjx0DcnPFyXaTJq4/PrmX+HhxMpqaCrRsqdx+GZBZp2pVkbrR68UyGczQ2Ox//xPXoCIjgaNHgePHbWxLL1+gCw4GoqKcPVwip7IrQzZw4EBMmDABp0+fNj526tQpPPPMM/jPf/6j2OCIvIocZDAgs0wuTYmOdt6yAHKGLC0NKCpyzjHKI5crtm/PBXKocs6YRyZJbOphLR8foHp1cZ9liza7fBn4v/8T9199Vbz99ewJPPig+GjVv8CS5YrsCEpuzq6AbO7cuQgNDUWzZs1Qv3591K9fH82bN0e1atXwxhtvKD1GIu/Aph4Vc3a5IiAm6vv7m5dHugrnj5EtnNFp8coVUQZWcv9UPs4js9vUqUBWlmgo+8QTdu7EFe8JRC5id8nizp07sWnTJhw4cADBwcFo06YNbr/9dqXHR+Q9WLJYMVd00/LxESeif/8tTnRd2diAARnZwhkZMjm4q1mTi9NbgwGZXX77DVi2TNx/910HCgLY0IM8iN0L3eh0OvTt2xd9+/ZVcjxE3qtkQCZJLMEozVXrzcgBmSsbexQVAfv3i/sMyMgazsiQcf6Ybbg4tM2Ki02dFR97DLj1Vgd2xgwZeRCrA7K33noLY8aMQVBQEN56660Kt3366acdHhiR15EDsoIC0c6ak5TNuerNV41Oi0eOAPn5YnZ7w4auOy65L2dkyDh/zDbMkNns3XeBAwdEk9DXXnNwZ8yQkQexOiBbsGABHnroIQQFBWHBggXlbqfT6RiQEdkjKEgEYVlZIkvGgMycqxYAVaPTolyu2KGDKJskqkzJCwcGgzKvG2bIbMPFoW2Sng68+KK4P2eO6M/kEAZk5EGsDsjOnDlj8T4RKahmTRGQpaUBzZqpPRptcWXJIuDaDBnnj5Gt5M5yhYWi7bqcrXEEF4W2DTNkNpk8Waxj3rEjMGqUAjtkySJ5EJsvqRUVFaFhw4Y4evSoM8ZD5N3Y2KN8nlyyyICMbOXvb1oqQ6lsLjNktuEcMqtt3w4sXy6uITjUyEMmScyQkUexOSDz9/dHfn6+M8ZCRAzILCsuNl2F9rSSxYICMakCYEBGtlF6HhkDMtswQ2aVoiJTI48xY4BOnRTY6dWr4n8nYLowQeTG7Co6T05Oxuuvv47i4mKlx0Pk3RiQWXbpkpgn4+trWozVWeQM2dWrwM2bzj0WABw8KM5YqlUD6tVz/vHIcyjZaTE/3/R/hwGZdeQ5ZBkZgF6v7lg07O23gUOHxL+4V19VaKdyxUS1amL+NZGbs6vt/d69e7F582Zs3LgRrVu3RmhoqNnza9asUWRwRF5HvtLHgMyc/OZbs6YCtS6ViIwEwsKAGzdE5qFpU+cer2S5Ipc6IFsomSE7f158DAkRJ7lUOfnikMEgFtWWAzQyungRmDFD3H/9dQVfWixXJA9jV0AWFRWFwYMHKz0WIpIzZGlp6o5Da1zVYREQQVGdOqIVfWqqawMyIlsomSErWa7ICwPW8fcXEcaVK2IeGQOyMp59Vlzb6tIFGDlSwR2zoQd5GJsCMoPBgHnz5uHEiRMoLCxE7969MXPmTAQHBztrfETehSWLlrmqw6IsPl4EZK5o7MGAjOylZIaM88fsExMjArJLl4BWrdQejab88gvwxRdiRYZ331V4RQ9myMjD2PTn8eqrr+L5559HWFgYateujbfeegvJ8kxNInIcAzLLXH011FWdFvPyxOQKgAEZ2c5ZGTKyHtcis6iwEBg3TtwfOxZo317hA7j6Ih2Rk9kUkH366ad49913sWHDBqxduxbr1q3D559/DoPB4KzxEXkXOSDLzBSNHkhwZcki4LpOiwcOiGYAMTG80ku2k1+n6eniDNgR//xjvk+yDjstWrRoEXD0qJhm9/LLTjiAq98TiJzMpoAsNTUVd911l/HzPn36QKfT4aL8h0FEjomOFk0rJEl07iJBjZJFwPkZMjb0IEdUrw4EBpqvyWQvLgptH65FVsb588CsWeL+3LlAlSpOOAhLFsnD2BSQFRcXI6hUe1F/f38U8Uo+kTJ8fExv8GzsYeKpJYucP0aO0OmUe62yZNE+zJCVMWkSkJsLdO0KPPKIkw7Cph7kYWwKyCRJwogRI5CUlGS85efn44knnjB7zFpz5sxBp06dEB4ejho1amDQoEE4fvy42Tb5+flITk5GtWrVEBYWhsGDB+NSqX98qampGDBgAEJCQlCjRg1Mnjy5zBppW7duRfv27REYGIhGjRph2bJlZcazePFi1KtXD0FBQejSpQv27Nlj/Q+HSCmcR1aWmiWLkuS84zAgI0cpMY9MkhiQ2YtzyMxs3AisWiWuLS5erHAjD1lRkennzQwZeQib/lSGDx+OGjVqIDIy0nj773//i1q1apk9Zq1t27YhOTkZv//+OzZt2oSioiL07dsXubm5xm0mTpyIdevWYdWqVdi2bRsuXrxoFvTp9XoMGDAAhYWF2LlzJz755BMsW7YM06dPN25z5swZDBgwAL169cL+/fsxYcIEjBo1Chs2bDBus3LlSkyaNAkzZszAvn370LZtWyQmJuIyyxDI1RiQmcvLE4s0A667GhoXJz7evAlcu+acY9y4ISZZAECHDs45Bnk+JTotZmSIhaF1Op7g2ooZMqOCAuCpp8T9p54C2rZ10oHS08VFBD8/01pwRO5O0pDLly9LAKRt27ZJkiRJWVlZkr+/v7Rq1SrjNkePHpUASLt27ZIkSZLWr18v+fj4SOnp6cZtlixZIkVEREgFBQWSJEnSlClTpJYtW5oda+jQoVJiYqLx886dO0vJycnGz/V6vVSrVi1pzpw5Vo09OztbAiBlZ2fb+F0TlfLoo5IESNIrr6g9Em04fVr8PIKCJMlgcN1xo6PFcffvd87+t28X+69d2zn7J+/w4ovidfTEE/bvY+9esY/YWOXG5S127xY/u/h4tUeiutmzxY8iJkaSsrKceKDff+fPnNyCLbGBM5LJdsvOzgYAVK1aFQCQkpKCoqIi9OnTx7hNs2bNUKdOHezatQsAsGvXLrRu3Rox8lUqAImJicjJycHhw4eN25Tch7yNvI/CwkKkpKSYbePj44M+ffoYtymtoKAAOTk5ZjciRcTGio/MkAklyxVd2fjC2Z0W5XLFTp2cs3/yDkrMIWNDD/uVzJA5s7xZ4/75x9RN8Y03ABuKpWzHhh7kgTQTkBkMBkyYMAFdu3ZFq38XV0xPT0dAQACioqLMto2JiUH6vyer6enpZsGY/Lz8XEXb5OTkIC8vD5mZmdDr9Ra3SS/npHjOnDlmZZrx8psikaPkkkU29RDUWm/G2Y09OH+MlKDEhQPOH7OfPIessBD496KyN5o4UVSX33478NBDTj4Y1yAjD6SZgCw5ORmHDh3Cl19+qfZQrDJt2jRkZ2cbb+ec3Y2NvAfnkJlTq5sWAzJyB0pmyBiQ2S44GAgPF/e9dB7Zjz8C33wjVmxZvNgFhQxcg4w8kCYCsnHjxuH777/Hli1bECdPpgdQs2ZNFBYWIisry2z7S5cuoea/J601a9Ys03VR/ryybSIiIhAcHIzo6Gj4+vpa3EbeR2mBgYGIiIgwuxEpggGZObXefJ1ZspidDZw4Ie6zoQc5Qg7IsrIAe0vnuSi0Y7x4LbL8fFMjj/HjgX8LnJyLJYvkgVQNyCRJwrhx4/DNN9/gl19+Qf369c2e79ChA/z9/bF582bjY8ePH0dqaioSEhIAAAkJCTh48KBZN8RNmzYhIiICLVq0MG5Tch/yNvI+AgIC0KFDB7NtDAYDNm/ebNyGyGU4h8ycJ5Ys7tsnPtarJxYDJ7JXeDggl/Xb+1rlHDLHeHGnxXnzgNOnxb/nmTNddFCuQUYeSNWALDk5GcuXL8eKFSsQHh6O9PR0pKenIy8vDwAQGRmJxx57DJMmTcKWLVuQkpKCkSNHIiEhAbfeeisAoG/fvmjRogUefvhhHDhwABs2bMALL7yA5ORkBAYGAgCeeOIJ/P3335gyZQqOHTuGd999F1999RUmTpxoHMukSZPwwQcf4JNPPsHRo0cxduxY5ObmYuTIka7/wZB3k9/cc3NFa3Rv54kliyxXJCU52vqeJYuO8dK1yM6cAWbPFvfnzzdVbjodM2TkgfzUPPiSJUsAAD179jR7/OOPP8aIESMAAAsWLICPjw8GDx6MgoICJCYm4t133zVu6+vri++//x5jx45FQkICQkNDMXz4cLz00kvGberXr48ffvgBEydOxKJFixAXF4elS5ciMTHRuM3QoUORkZGB6dOnIz09He3atcNPP/1UptEHkdOFhYnbjRuisUfjxmqPSF1qlyyePw/o9WKChFIYkJGS4uOBv/6yr7w2L89UaseAzD5emiEbP16ULPbqBQwd6sIDs6kHeSBVAzLJihaxQUFBWLx4MRYvXlzuNnXr1sX69esr3E/Pnj3x559/VrjNuHHjMG7cuErHROR0NWsCp06JskVvDsgkSb0339hYwMcHKC4WJ1pKHp8BGSnJkQyZ/DWhoUCVKsqNyZt44RyydevEzc/PRY08ZNevixvADBl5FE009SCiUtjYQ8jJAW7eFPddHZD5+ZmOqWTZ4pUrwN9/i/vt2yu3X/JecnmtPRmykuWKrlznz5N4WYYsL09kxwBg0iSgeXMXHlyumAgPd2GNJJHzqZohI6JysLGHIL/5RkUBISGuP36dOqJkMTUV6NJFmX2mpIiPjRoxI0HKcCRDxoYejvOCOWR6PbBjh6ii/+knMX8sLg548UUXD4TliuShGJARaREzZILab77OaOzBckVSmlIZMrKPh2fI1qwRGbHz580ff+ABMd3ZpbgGGXkoliwSaZEckKWlqTsOtand3tjR7nWWyAFZp07K7ZO8W8kGNAaDbV/LgMxxHjyHbM0aYMiQssEYIDorrlnj4gGxwyJ5KAZkRFrEDJmg9tVQRzIP5WGGjJRWu7aY/1VQAGRk2Pa1XBTacXJAduOGac6rB9DrRWasov5rEyaI7VxG7Yt0RE7CgIxIixiQCZ5WsnjpktiXTgfccosy+yTy9zfNO7X1tco5ZI4LDwf+XffUk8oWd+ywnBmTSZJ4ue3Y4boxMUNGnooBGZEWsamHoPbVUKVLFuWGHs2asUMYKcuebK7BYHptM0NmP53OI+eRWVsx79LKerUv0hE5CQMyIi2SM2SXL7u4HkRjtFKymJ4uysEcxXJFchZ7Lh5kZIjXtU7HjIOjPDAgu3bNuu3k64cuofZ7ApGTMCAj0qLq1cVJkl4PZGaqPRr1qH01NDoaCAoyH4sjGJCRs9iTIZPnj9WqJcoeyX4e1NgjNxeYOBFITq54O51OvOy6d3fNuGAwMCAjj8WAjEiL/PxEUAZ4b9miwWCqhVErIJPPOABlyhYZkJGz2JMhY4dF5XjIWmQbNwKtWgELF4rPb79d/BssvWa4/PnChYCvr4sGl5kJFBeLg8tVJEQeggEZkVZ5e2MPrbz5KtVp8eJFEWD6+ADt2jk8LCIz9rxO2dBDOW5esnjlCjBiBJCYCJw9K2L0H38Etm0DVq8um5CKixOPJyW5cJBylUKNGszoksfhwtBEWhUbC/z1l/cGZFp581UqQ7Z3r/jYsiUQEuLYvohKY4ZMXW4akEkS8NVXwNNPi2pLnQ546inglVdMfYeSkoCBA0U3xbQ08dbUvbsLM2MytUvYiZyIARmRVnl7hkztDosypTotslyRnEm+cJCWBhQWAgEBlX8NAzLluOEcsvPngSefBNatE5+3aAEsXQokJJTd1tcX6NnTpcMri/PHyIOxZJFIq+SAzKU9hTVEK2++SpUsMiAjZ6peXayFJUmmv53KcFFo5bjRHDKDAXjvPRGArVsnChBmzAD27bMcjGkG1yAjD8aAjEirvD1DppXyFCVKFiXJFJB16uT4mIhK8/ERE3sA6y8ecA6ZctykZPH4caBXL2DsWOD6daBLF+DPP4GZM01rW2uWVt4TiJyAARmRVnl7QOZJJYupqaJJib8/0KaNMuMiKs2W1+rNm6YlNZghc5wckF27JkpGNaaoCJg9G2jbFti+HQgNBRYtAn77TUxrdQtaqZogcgLOISPSKnm1TW8PyNR+85UzZFlZ4pKyPNPdFnJ2rHVrN7gMTW7LlvJaOWgLDwciI503Jm9RtaqYaKXXiwW31f6/VcIffwCjRgEHDojPExNFyWK9eqoOy3bMkJEHY4aMSKu8fQ6ZVt58S56w2psl4/wxcgVbMmQl54+VXmSKbOfjY1o7UoWyRb0e2LoV+OIL8VGvF0nQyZNFWeKBAyJm/PRT0c7e7YIxQDsX6YicgBkyIq2SA7KcHPHO6m2t0rVSsgiIk9aDB8WJbosWtn89AzJyBVsyZOywqLyYGFHRUCog0+ud2zJ+zRpg/HjRNVFWvbqIEeWhPPCAKFGUe4+4nYICU4ktAzLyQMyQEWlVRAQQFCTua3yiuOKKikzto7Xw5utIp8WSDT0YkJEz2ZIhY0MP5Vlo7LFmjchG9eoFDBsmPtarJx5Xwpo1wJAh5sEYIKomL10CqlUTnRS/+MKNgzHAdIEuMFCk+og8DAMyIq3S6by3sYdcpunvL84o1OZIp8W//xbzzwID3Wj2PLklZsjUVWotsvKCpQsXxOOOBmV6vciMSVL52wQFAf37O3YcTShZMcESW/JALFkk0rLYWODsWe8LyOQ339hYUXejNvmk1Z4M2d694mPbttYt1ktkL1sa0DAgU16JDFlFwZIkiZhiwgRg4EARWGVlidu1a6b75T0mf375svhYkQsXRLmk6os6O4prkJGHY0BGpGXe2thDa5O3HcmQsVyRXCUiAoiKEmfplc135KLQyiuxOPSOHWUzYyVJkvgVhYQ4v0u+R7x9aGlOMZETMCAj0jJvLVnUSodFGQMychfx8ZUHZAaD6bXMgEw5JTJk1gZBJYOxiAigShURU8u3ij4/eVK0s6+MvIKKW2OGjDwcAzIiLfPWgExrV0NLNkuQ642sYTAAKSniPgMycgW5I2hF5bWXLonGOT4+PMFVUok5ZNYGQStWAP36iWDM1s6LXbsCM2eKWMVSaaROB8TFia6Obk9rF+mIFKaByRlEVC5vDci0djVUHkd+vqn1sjVOnABu3BB1Sc2bO2dsRCVZk82Vg7XatQE/XpdVTIkMWffupk8t0enEr+r++0XWy542+L6+opW9vL/S+weAhQuVbbGvGq2VsRMpjAEZkZbJl1m9LSDTWoYsMNB0dmVL2aJcrnjLLTzxJdewpgEN5485hzyHLCMDZ0/rUVBgeTMlg6WkJGD16rJxSlyceDwpybH9a4bWLtIRKYwBGZGWeXtTD60EZIB9nRY5f4xczZYMGQMyZVWvLj4aDBja5wqyssSPuPS/MaWDpaQk0Yx3yxZRArllC3DmjAcFY5LEkkXyeLxkS6RlckB26ZKYj6SFFvCuoMWrofHxooW9PRkyBmTkKtZcOOCi0M7h7w9D1WrwuXoF+ecuo2HDGvj1VxGn7dghrqvFxoo5XUqXEfr6ekBr+/JkZwN5eeI+AzLyUAzIiLRMLoEpKhKLz2hhkWRnu3EDyMkR97X05mtrp8XiYuDPP8V9BmTkKiVfp+U1oGGGzClycoDMmzFogCtoWe0SXv+5lfGamscGS64gX6CLihLzcYk8kJdcbidyU4GBQNWq4r63zCOTyzNDQyte2NbVbC1ZPHYMuHkTCAsDmjRx3riISqpdWwRhBQVARoblbRiQKS4vTyzy/E++uIj25tRLqFdP3TF5DDb0IC/AgIxI67ytsUfJckVr28u7gq0Zsr17xccOHbyn1JTUFxBgKnUu7+IBm3ooqqgIGDoU2LoVuOonmv/U9ruk7qA8iRZL2IkUxrMEIq3ztsYeWmzoAdgekHH+GKml5Lp5pd24AVy9ar4d2c1gAEaOBNatA4KCgC4DTWuRkULY0IO8AAMyIq3ztrXItBqQySevFy6I+WGVYUBGapEvHljKkMlBWmSkuJHdJAl46ing88/FqharVgFx7U1rkZFCWLJIXoABGZHWeVtAptXylJgYcdZlMFSerSwsBA4cEPcZkJGrVZQh4/wxxbz4IvDuu6Ky+pNPgLvvhqkREwMy5Wj1PYFIQQzIiLTO2+aQaTVD5utrOiGorGzx8GHRVCEqCmjY0OlDIzJTUYaM88cUMX8+8Oqr4v7ixcCwYf8+EcMMmeJYskhegAEZkdZ5W4ZMqwEZYH2nxZLlilpqTELegRkyp1q6FHj2WXF/9mxg7NgST8ZwDpniWLJIXoABGZHWeVtTDy2Xp1jb2IPzx0hNFWXIuCi0Q1atAsaMEfcnTwaee67UBiUzZJLk0rF5pOJi08VILV6kI1IIAzIirfOmDJkkaTtDxoCM3IGc/UpLEz3ZS2KGzG4//QQ89JD4NzV6NPD66xYS4PIcssJCIDvb5WP0OJcvi3m7vr6mYJfIAzEgI9I6OSC7elXMS/Jk166Zvkd57pyWWFOymJ8PHDwo7jMgIzVUry7WI5MkU8ZZxoDMLr/+CiQlmdYcW7KknGrk4GDTgvacR+Y4+fVbs6YIyog8FAMyIq2rWhXw9xf3PX1egvzmW62aWNRHa6zJkB08KM7aoqN50kvq8PGx/FrV602f87Vptf37RQfFvDygf3/g008riQ3Y2EM5bOhBXoIBGZHW6XTeU7ao5XJFwLqAbO9e8ZENPUhNluaRpaeLOTm+vtrMQGvQiRNA376i+rBbN2D1apF8rBAbeyiHDT3ISzAgI3IH3tLYQ+sBmZxVyMgQl8st4fwx0gJLnRbl4CwuTqypRxU6dw7o00f8ud9yC/D990BIiBVfyLXIlMMMGXkJBmRE7sBbMmRa7rAIAFWqmM7Izp+3vA0DMtICSxkyzh+z2uXLwJ13iqCsSRPR0CMy0sovZsmicpghIy/BS2RE7sBbAjKtZ8h0OnGie/y4OFNr3Nj8+Zs3xaLQAAMyUpelDBkXhbZIrwd27BAFCLGxQJs2QL9+4s+8Th3g559NSS+rMCBTjtYv0hEphAEZkTuQ53swIFNfnTriTM1Sp8X9+0WL5po1tf09kOdjhswqa9YA48ebJ7wDAkTX+ho1gE2bTD9Kq3EOmXJYskheggEZkTvwlgyZO1wNraixh1yu2KkTG3qQuiqaQ8ZFoQGIYGzIkLLrNxcWio9TpohyRZtxDplyWLJIXoJzyIjcAZt6aIc1ARnLFUlt8uv02jXgxg1xnxkyI71eZMZKB2MlLVoktrMZSxaVcfMmkJUl7mv5PYFIAQzIiNyBN2TI9HrT96flN9+KFodmQEZaERFh6kIhXzxgQGa0Y0f5fXlk586J7WzGgEwZcsVESIgNHVWI3BMDMiJ3UDIgq+iSrju7dEnMv/LxMZ3QaFF5GbLr14Fjx8T9Dh1cOyYiS0rOI7t+XWTLSj7uxawtNrCrKEH+/5WbK25kn5LliiwBJw/HgIzIHcgBWX4+kJOj7licRX7zrVlTLFyrVSVPcksGx3/+KT6Pj9d2QEneo+Q8Mjk7FhUlsmde7No1YP1667a1a/3s8HAgMFDcZ2MP+7GhB3kRBmRE7iA42FSy4alli+4wfwwwBWQ3bgDZ2abHWa5IWlPy4gEbeuDaNWD6dKBePWD58oq3lVe46N7djgPpdCxbVAIbepAXYUBG5C48vbGHO3RYBIDQUKBqVXG/ZNni3r3iIwMy0gpLGTIvnD+WlQXMmCECsZdfFkUGbdoAkyeL2Kl0NZz8+cKFDiTrGZA5zl3eE4gUwICMyF14emMPd8mQAZbnkTFDRlpTsgGNFy4KnZUFzJwpArGXXhKBWKtWwOrVosJ47lxxv/T5flyceDwpyYGDcy0yx7FkkbwI1yEjchcMyLSjTh3gwAFT1uHaNeDUKXGfDT1IK0peOJAnQ3lBQJadLVrWL1hg6preqpXIkiUlib5BsqQkYOBA0U0xLU38mLp3V2AaK9cicxxLFsmLMCAjchfyCZWnBmTuVJ5SOkO2b5/4WL8+UK2aOmMiKq1kyaKcsfHggCw7G3jrLeDNN02BWMuWIhAbPNg8ECvJ1xfo2VPhwbBk0XHMkJEXYUBG5C6YIdOO0gEZyxVJi+R24fn5wP794jEPbOqRk2MKxOTO/i1aiEBsyJDyAzGnYkDmGElihoy8CgMyInfh6U093CkgK704tByQdeqkzniILAkIEP830tJEV1DALTNker3lksKcHODtt4H5802BWPPmpkBM1dUzOIfMMVeuAIWF4r5daw8QuRcGZETuwpMzZPn54g0YcI+rocyQkbuIjzddxPHzM/0fcRNr1gDjxwPnz5seq1VLlBj+9BNw9ap4rFkzEYjdd59GljHkHDLHyOWK0dGmNd2IPBgDMiJ34ckBmXzCGBgIVKmi7lisIQdk588DGRnA2bPi8/btVRsSkUV16gB79oj7cXEaiVass2aNyHSVXH8dEMn0FSvE/aZNxdpiQ4dq7FtjyaJjWK5IXoYBGZG7kMs2MjKA4mJxtdtTlCxXLL0okBbJc3MKC4H168VjTZqYFu8m0gr54gHgVvPH9HqRGSsdjJVUtSrw11+iMlNz5IDs2jXxf0KTg9QwNvQgL8N1yIjcRbVq4hKwJImgzJO4U4dFAPD3NwXI33wjPrJckbQkNVV0/yx5gSM0VDy2b59p/qNG7dhhXqZoydWrwM6drhmPzapWNaXsPO3/tSu423sCkYM86BI7kYfz9RXzEtLSTLPbPYU7NfSQxceLcW/YID5nQEZakZoqavny880fX7/elNENCgKOH9dkk4+MDLGGmDU02+PIx8f0//rSJQYWtmLJInkZZsiI3ImnziNzx4BMPpGVT3oZkJFWZGaWDcZKy88X22nIxYvApEmisvK776z7Gk1fl2JjD/uxZJG8DDNkRO7EUwMydypPSU0VJ7Kl54TodKIULDpak1kHIq365x/g9deBDz80dTrv0EH0yrl61fI8Mp1O9Cjp3t2lQ7UNG3vYjxky8jIMyIjciXw52NMCMnfJkJVXCgaYzgw1XApGpCUnTwJz5gCffSb6FAFAt27Aiy8Cd94ppmcOGSKCr5JBmTwtbuFCjXVWLI1rkdnPnS7SESmAJYtE7sRTM2TuEpC5aSkYkZYcOgQMGybWDvv4YxGM3XknsG2baObRt68IupKSgNWry56Tx8WJx5OS1Bm/1Zghs09hoSmI1fp7ApFCmCEjcidyQKbZmex2kCTOFyDyAikpwKuvmhqTAsA99wD/939Aly6WvyYpCRg4UARqci+j7t01nhmTcQ6ZfeQLjv7+ogScyAswICNyJ56YIbt+HcjNFfcZkBG5Fb2+8mBp507glVeAH38Un+t0wODBIhBr167yY/j6Aj17Kj1yF2CGzD7yBbrYWNGtksgLMCAjcieeGJDJ5YoREUBYmLpjISKrrVkjFm8uuV5YXBywaBFw773Ali0iENuyRTzn4yNKFadNA1q0UGfMLsWAzD6cP0ZeiAEZkTvxxKYeLFckUlZ0tGguU9F8x6Agh8rB1qwRDTdKd0C8cEFkv5o2Fb1tAFF5Nnw48NxzQMOGdh/S/bCph33YYZG8kKq54O3bt+Oee+5BrVq1oNPpsHbtWrPnJUnC9OnTERsbi+DgYPTp0wcnT5402+bq1at46KGHEBERgaioKDz22GO4ceOG2TZ//fUXunfvjqCgIMTHx2Pu3LllxrJq1So0a9YMQUFBaN26NdbLi2cSaYmcIbtxQ9w8Ad98iZRVp46IhlJSyr850AlUrxeZMUvt6OXHjh8XK0OMGwecOgV88IGXBWOAaQ5ZRob4oZF1eJGOvJCqAVlubi7atm2LxYsXW3x+7ty5eOutt/Dee+9h9+7dCA0NRWJiIvJLXPV76KGHcPjwYWzatAnff/89tm/fjjFjxhifz8nJQd++fVG3bl2kpKRg3rx5mDlzJt5//33jNjt37sSDDz6Ixx57DH/++ScGDRqEQYMG4dChQ8775onsERYGhIaK+56SJXOXDotE7qROHaB9+/JvDizLsGOHeZlieb74Anj7bS9eAaJ6dfHRYACuXFF3LO6EF+nIC6kakPXv3x+vvPIK7r333jLPSZKEhQsX4oUXXsDAgQPRpk0bfPrpp7h48aIxk3b06FH89NNPWLp0Kbp06YJu3brh7bffxpdffomL//5Bf/755ygsLMRHH32Eli1b4oEHHsDTTz+NN99803isRYsWoV+/fpg8eTKaN2+Ol19+Ge3bt8c777zjkp8DkU08bR6ZO10NlUvBKuJgKRiRlhUXA7/8Yt22BQXOHYvm+fsD1aqJ+5xHZj13ek8gUohm29ecOXMG6enp6NOnj/GxyMhIdOnSBbt27QIA7Nq1C1FRUejYsaNxmz59+sDHxwe7d+82bnP77bcjICDAuE1iYiKOHz+Oa9euGbcpeRx5G/k4lhQUFCAnJ8fsRuQSnhaQudPVUCeXghFpUXY2sHIl8N//imlRL79s3dfJU169GueR2Y5NPcgLabapR/q/J5sx8j+zf8XExBifS09PRw25Rvtffn5+qFq1qtk29evXL7MP+bkqVaogPT29wuNYMmfOHMyaNcuO74zIQZ7W2MPdShbr1GHARR7v9Glg3Tpx275dZMZkVaqI7NfNm5a/VqcT3Ra7d3fNWDWtRg3gyBH3zZClpla80H10tPL/D93pIh2RQjQbkGndtGnTMGnSJOPnOTk5iI+PV3FE5DWcmSFT482X5SlETmPNOmHydrt2mYKwo0fNn2/WTCzifM89QEIC8N13ossiYN7cQ6cTHxcudJPFm53NnVvfp6aKdpmVdetUsiogJ8fUsIrvCeRFNBuQ1fz3pPPSpUuILVH3cOnSJbT7dyXJmjVr4nKpMoDi4mJcvXrV+PU1a9bEpVL/COXPK9tGft6SwMBABAYG2vGdETlIfl2mpSm7XzXefA0G0/fBq6FEiqponbCkJHHuu2GDCMDWrzfvO+HrC9x+uykIa9TIfN9JScDq1Zb3v3CheJ7g3gFZZmbF7weAeD4zU7n3BK5LSV5Ks3PI6tevj5o1a2Lz5s3Gx3JycrB7924kJCQAABISEpCVlYWUlBTjNr/88gsMBgO6dOli3Gb79u0oKioybrNp0yY0bdoUVapUMW5T8jjyNvJxiDTFWRkyW958lXLlCiD/bVZwAYSIbCOvE1a6G6K8TljbtiLhff/9wGefiT/FKlXEws1ffCH+zH/5BZg4sWwwJktKAs6eFQs/r1ghPp45w2DMDOeQ2YYVE+SlVM2Q3bhxA6dOnTJ+fubMGezfvx9Vq1ZFnTp1MGHCBLzyyito3Lgx6tevjxdffBG1atXCoEGDAADNmzdHv379MHr0aLz33nsoKirCuHHj8MADD6DWv3/Mw4YNw6xZs/DYY49h6tSpOHToEBYtWoQFCxYYjzt+/Hj06NED8+fPx4ABA/Dll1/ijz/+MGuNT6QZnjSHTH7zrV5dLFpE5GWsLSm0dZ+VrRP211/iY5MmpixY166An41nBb6+QM+eDg3Xs8nz3N0xQ5aX5/pjsqEHeSlVA7I//vgDvXr1Mn4uz8kaPnw4li1bhilTpiA3NxdjxoxBVlYWunXrhp9++glBJdpOf/755xg3bhzuuOMO+Pj4YPDgwXjrrbeMz0dGRmLjxo1ITk5Ghw4dEB0djenTp5utVXbbbbdhxYoVeOGFF/D888+jcePGWLt2LVq1auWCnwKRjTypyyInb5MXq6yk0Br5+cDff4vFl0+dEs049uyxbp2wTz4BHnnEvrGTldytZLGgAPjpJ9FW85tvXH98vieQl1I1IOvZsyckS5fw/qXT6fDSSy/hpZdeKnebqlWrYsWKFRUep02bNtixY0eF29x333247777Kh4wkRbIAdmlS+JSuFIz58trmeZM7tZhkUghcklh6bfACxfE46tXm4KyGzdEoCUHXSWDr/PnLWfCrOHv79j3QFZwh4CssBD4+WcRhK1dKyYX2uLQIbHYuBJYskheSrNNPYioHNWri1Zmer2Y+FFq6Qeb/fUX8L//AcuWWbf9H3/wzZfIAdaUFD78MDB/vgi6KjuXDw8HGjcGGjYU872Ki4F58yofB9cJc4GSc8gkydSGUm3FxWLS38qV4urAv+uyAhDZqfvuA9q1A0aMqHxfw4cDv/4KzJ4tJiY6giWL5KUYkBG5G39/8aaXkSHKFu0JyPLygFWrgPfeE72ubfH448DnnwMzZ4rJI46cYLA8hbzQjh2VlxTevAns3Gn6PDraFHDJN/nz6GjzP0O9XjTmuHDBctDHdcJcSP7/XFgoVtiOilJ2/7YsVSJPWFy5Evj6a/EeIouJEUHY0KHAbbcBPj7Avn3Wj+ODD8Q+Z88GRo2yv3KD7wnkpRiQEbmj2FhTQNamjfVfd+yYyIZ98onpiqifH3DvvUDv3sDYsZXvw89PrBTbu7c4o5sxQ9y3JzBjySJ5IWtXrHjqKZF8aNjQtvN4X18xD23IEPFnyXXCVBQcLFKY16+LVKeSAZm1S5UsXw5s2yYuwpWcexwdLVpuDh0q1jgo/YKIjhZfb83+X3pJVFs88YQIzt59F+jc2fbviVUT5KUYkBG5o5o1xZufNY09CgrE5Oz33hNvyrJ69YAxY4CRI8X+UlOte/PdulW8AX/wgbja2qePaM82cyZwxx22BWZ88yUvYzAAu3dbt21SEtChg33H4TphGhITYwrImjZVbr/WLlUir+ANiIAwKUkEYb17V9xWs04dse6kNRm4gQOBJUuAF14AUlKAW28FHnsMmDPH+jJGrktJXowBGZE7kctT5Nn4f/wBlOwGWrI85fRp4P33gY8+Mr2h+viI/taPPw707Wt+RdSWN98uXYDnngNef10c47ffgDvvFKUuM2aI+9YEZixPIS9y5AgwerR5KaIlSpUUJiWJ82Sl2+qTjWJiRBcWtdYiCwkxZcLuvNO2JUbq1LFu0Wc/P5HSvf9+YOpUUYWxdKmpjHH06MpfeJcvi7JKnc40947IS+ikitocktVycnIQGRmJ7OxsREREqD0c8kTWlqcsXCjeBDdtMj1eu7ao6x81SpzpKeniRWDuXFEKKY/t1ltFYJaYWH5gVlQEBAaKeqr0dL4Bk8cqKBDnpHPmiJd9WJg4N/7oI/G8pZLCkl0Wyc0lJYkqhXfeAZKTldvvvn3WpVB37gQSEpQ7rjV++018rwcOiM87dAAWLxYX88qTkgJ07CgqNqyt6yXSMFtiAx8XjYmIHGVtecoTT4hgTKcD+vcXbYzPnhUlhUoHY4AoN1y4UCyGNHGimDPx++/i2AkJwI8/ms44U1PFScS+fWKMkiSump47Jx5LTVV+fEQq+vVX0azupZdEMHbPPSJTtnSpCLpKJ4fj4hiMeRylW99LErB3L/Dyy9ZtHxiozHFt0bWrqOB46y0gMtJUxjh6dPlVGKyYIC/GgIzI01StCkybJkoW168XNUsVzRNQSmws8OabIjCbNEkEZrt3A3fdJa6KfvyxyPB16CBuAwaIr9PrgU6dxGNNmzIoI4+QnS2ujXTvLnrpxMQAX30FfPstEB8vtklKEtdKtmwBVqwQH8+cYTDmcZQKyK5fF5UIHTqIhhlr1zo8NKeSyxiPHxfdaQBxJaJJEzGnWa83v0gnd/wNCTE9xvcD8hIsWVQISxbJ6awtT/n994rLQlzl0iXgjTdEty1bFp1OSVFunTMiFaxZA4wbZ6q6GjVKVPVWqaLuuEglS5YATz4JDBokShdtlZIiArEVK4DcXPFYYKBoyvHjj9Z9vRb+p5YuY2zVCjhxQiwJUJ6gIBHQWTOPjUhjWLJI5M3khh9qi4kRq9OeOQNMmSLeWIk82IULYgWJwYNFMNa4sch6ffABgzGvJq9FZkuG7Pp10TCpY0dx++ADEYw1ayYqES5cAF55xTnjdZbSZYyHDlUcjAGiDL+iRlNEHoIBGRE5V40aohvj99+rPRIipzAYRBKkRQtRRebnB/zf/4mVKXr2VHt0pDpbShb37RNdcGvVEh9TUkRXxGHDxLIlR46IubrVqpnWCatIUJD1beddoWQZ4913qz0aIs1g23sicg2mCMgDHTkilvP77TfxeZcuIpnRurW64yINkJcpkTM8Fy+KgEsmLyNy4wbw5ZeiLPGPP0zPN2kigrJHHrEcVNmyVInWxMQAs2bxQh3RvxiQERER2aigQLSxnz1bdE8MDRX3k5O5zhfB8jIl+fnm84ADAoD77gO++06UKMqPDR4sovwePSpfz9HadcKISNMYkBG5C7k8pbJ1yLRUnkLkRHq98xc9tnSM338X3buPHhXbDBggetfwvJiMrFmmpLAQ+Pxzcb9xYxGEDR8OVK/u/PERkaYwICNyF+5cnkKksDVrgPHjgfPnTY/FxQGLFinXNt7SMUJDTY3uatQQ/Qnuv7/yRAaRRXfeKZYp6dmTLyIiL8aAjMiduHN5CjN8XsdZGaw1a4AhQ0zrjcsuXBCPK7GwcnnHkIOx3r2BVavEsn9EdnvtNW20pCciVTEgIyLXYIZPc5xZ8uesDJZeL/ZraQVNSRJJhgkTRBlhcbGoCissFHO+rL2fny9Waqholc6TJ0XnbiKyEy/SERkxICMi13HnDJ+LOXt+lDNL/pTKYBUWApcvi27h8m3XLvMxlyZJwLlzzl/27tw58fthW3siO/EiHZERAzIiIju4Y3ap5P6dVfJnTQZr3DigZk1xHlY64Cp5u3bNvjFYEhgoGtjJH0vfL/l5Rgbw55+V7zMtTbnxEXklXqQjAsCAjIjIZu6QXbJEkoCbN8W6rOUFTIBo9paXJ4KroiLbbqmplWew0tKArl2tG7Ofn2ieERMjbpIEbNhQ+dd9952Y5xUYKAJlW/olbN0K9OpV+Xaxsdbvk4iIqDw6SaqoSp6slZOTg8jISGRnZyMiIkLt4RCRk5QXMMkn/I5ml+rVqzigqVFDLDx886ZYT/b6ddPHkvfL+1hcbN/YlFa1KtCggSnQKu9WpQrg42P6OvlndOGC5aBSpxPB8Zkz9mcsXXEM8nCW1iErLShIlOwxQ0TkkWyJDRiQKYQBGZHnqyxg0ulEwPT55+I8LDdXBE65uaZbRZ9fvizmJmlBixYi6PD3r/wWEGC6n5oqAsbKbNli//wrOSgGzAMmJYJiVx6DPFxqKudHEXkxBmQqYEBG5PmsLWVztvr1gbp1gfBwICzM/KOlx0p+3L8fuOeeyo9hb8DkquySpbLR+Hhg4ULnrkOm9DGIiMgzMSBTAQMyIs/3ySfAiBGVb1erlphfFBoKhISIj/Ktos9PngQmTqx8/45kl1wRMLkqu+TsTpSuOgYREXkeBmQqYEBG5Llu3gT+9z/glVeAq1cr394dskuuKPljdomIiLyVLbGBT4XPEhF5sevXgddfF0HSpEkiGKsoENLpRNDRvbt9x/P1FZ0a5X2V3jcgAhpHMzRJSSLoql3b/PG4OOWyV0lJwNmzIjhdsUJ8PHOGwRgREVFpzJAphBkyIs+RlQW8/bYIfuSMWP36wLRpQGQk8MAD4jF3zy6xHI+IiMg5bIkNuA4ZEdG/rlwBFiwQwVhOjnisSRPg+eeBYcNEF0FArI1laR0ypQKmpCRg4EDnB0u+vvbPRSMiIiJlMEOmEGbIiNzXpUvA/PnAu++K9vMA0LIl8MILwH33WQ6EmF0iIiKi8jBDRkRkhQsXgHnzgPffB/LyxGO33CICsUGDzBckLo3ZJSIiIlICAzIi8kgVZbD++Qd47TXgo4+AwkLxWJcuwIsvAnfdVbahBhEREZGzMCAjIo9jqSlGXBzw3HPAvn3Ap58CxcXi8e7dRSDWpw8DMSIiInI9BmRE5FHkNbZKz449fx4YN870+R13iECsRw/Xjo+IiIioJAZkROQx9HqRGauoVVFQELBpE9Ctm+vGRURERFQeLgxNRB5jxw7zMkVL8vNN5YpEREREamOGjIjcXn4+sG6daNRhjbQ0546HiIiIyFoMyIjILUkS8OuvwGefAV99BWRnW/+1sbHOGxcRERGRLRiQEZFbOXlSBGHLlwNnzpgej48Hhg0Dli0DLl+2PI9MpxPdFrt3d9lwiYiIiCrEgIyINO/KFWDlStGufvdu0+NhYcB99wEPPyy6Jfr4AJ07iy6LOp15UCa3tF+40LQeGREREZHaGJARURkVLarsqv0XFAA//CCCsPXrgaIi8biPD5CYKIKwgQOBkBDzr0tKAlavtrwO2cKF4nkiIiIirWBARkRmyltUedEiZYKZivZ/773Arl0iCPvqK+DaNdM2t9wigrAHHwRq1qz4GElJIlhzZlBJREREpASdJFW0Yg9ZKycnB5GRkcjOzkZERITawyEP56wMVnmLKsvlfqtXOxaUVbR/SQJiYoBLl0yP164NPPSQCMRatbL/uERERESuZEtswAwZkRM4s+TPWRmsihZVliQRNCUnA/Xri7JBg6H8mySVfayoCHj88fL3D4hgLCREBG0PPwz06sWsFhEREXk2ZsgUwgwZyZxZ8mdvBkuSgKws0X1QvmVkmH9+4gRw4IBj41PC+vVA//5qj4KIiIjIfsyQEamkvIDpwgXxuCMlf5VlsADg0UeBbduAzEzzgCsjAygutu+4pUVEAKGhIktW8qbTlX2s5HNZWcA//1S+/6wsZcZJRERE5A4YkBEpxNqAKSVFlO/l55d/Kygo+9iNG8DNmxWPITsbeOut8p+PjASqVwdq1DC/Va8ugriXX678+/z2W6Bnz8q3K23rVlGCWBku2kxERETehCWLCmHJIn33nejsp7a77xYBkxxolQy6AgPL/zq9HqhXT2TzKlpU+cwZ++Z1OXv/RERERFrBkkUiF7lyBVi7VpQibtxo3df07Qu0aSOCo6AgyzdLzx04IBpdVOaZZ+zLYPn6inluzlpU2dn7JyIiInJHzJAphBky75GRAXzzjQjCfvlFZH5ssWWLfQGTqzJMlpqSxMcrt6iys/dPREREpDZbYgMGZAphQObZLl0SgcTq1WIulMFgeq5dO5H1ufdeIDHRuQGT3DQEsJxhcnSdMJkz2/a7Yv9EREREamJApgIGZO7D2mAgLU0EQKtWAdu3mwdAHTqIwGjwYKBxY9PjrgiYmGEiIiIi0jYGZCpgQOYeKlsj7Px5UxD222/mQVWnTsB994kgrEED246hdMDEDBMRERGRdjEgUwEDMuU4K9ioaFFlSQKaNBGLI5d0662mIKxuXfW/ByIiIiLSPnZZJLdVWQbLXtasESYHY127iiAsKUlktuzh62tf4w4iIiIi8i4MyEgzystgXbggHi9v/pXBINrPp6WVf/v7b/GxMl99JYIxIiIiIiJXYEBGmmBNBmvUKLEW16VL5sFWejpQXKzMOJTaDxERERGRNRiQkc2Unh+VmwssX25epmjJtWvASy+V/3x0tBiPpVt6OvD005WPJTbWtrETERERETmCARnZxJE5XgUFwPHjwKFDwOHD4uOhQ2JdLmtby/TuDXTrVjbgiokBAgLK/zq9Hpg7t/I1wrp3t24cRERERERKYEBGVrN2jldxMXD6tCngkgOwEydEYGRJVBSQlVX5GF580b5mGb6+ImgcMsTUVVEmrxG2cCE7IRIRERGRa7HtvUI8ve29Xg/Uq1dxWWFICNCoEXDsGFBYaHmbyEigVSvTrWVLcatWTey/sgzWmTOOBU1cVJmIiIiInI1t772YM9a/MhiAlSsrn+N18ybw11/ifkiICLTkoEsOwGrVMmWkSnNFBispCRg4kGuEEREREZE2MCDzII6u4VVcLNrDHzlifjt2DMjLs24MzzwDPPmkyHb5+Ng2/qQkUfZo6XtQMoPFNcKIiIiISCtYsqgQtUsWy5vfJWeXSq7hVVgInDpVNvA6frz8UkM/P+tawm/Z4niw44wsHxERERGRq9gSGzAgU4iaAZk187siIoA77hDZrpMnyw+uQkKA5s3FrUUL061OHTE/zNlzvIiIiIiI3B3nkHmZHTsqn9+VkwN8843p8/Bw84CrZOBVXqkhuxQSERERESmLAZkHSEuzbruHHwb++18ReNWuXX5zjfK4ao4XEREREZG3YEDmAWJjrdvu0Ucdn9/FLoVERERERMphQOYBuncXWarK5nd1767M8dilkIiIiIhIGTY2Jict8vUV87uAsmWInN9FRERERKRdDMg8hDy/q3Zt88fj4sxb3hMRERERkXawZNGDcH4XEREREZF7YYaslMWLF6NevXoICgpCly5dsGfPHrWHZBN5fteDD4qPDMaIiIiIiLSLAVkJK1euxKRJkzBjxgzs27cPbdu2RWJiIi5fvqz20IiIiIiIyAMxICvhzTffxOjRozFy5Ei0aNEC7733HkJCQvDRRx+pPTQiIiIiIvJADMj+VVhYiJSUFPTp08f4mI+PD/r06YNdu3aV2b6goAA5OTlmNyIiIiIiIlswIPtXZmYm9Ho9YmJizB6PiYlBenp6me3nzJmDyMhI4y0+Pt5VQyUiIiIiIg/BgMxO06ZNQ3Z2tvF27tw5tYdERERERERuhm3v/xUdHQ1fX19cunTJ7PFLly6hZs2aZbYPDAxEYGCgq4ZHREREREQeiBmyfwUEBKBDhw7YvHmz8TGDwYDNmzcjISFBxZEREREREZGnYoashEmTJmH48OHo2LEjOnfujIULFyI3NxcjR45Ue2hEREREROSBGJCVMHToUGRkZGD69OlIT09Hu3bt8NNPP5Vp9EFERERERKQEnSRJktqD8AQ5OTmIjIxEdnY2IiIi1B4OERERERGpxJbYgBkyhchxLdcjIyIiIiLybnJMYE3uiwGZQq5fvw4AXI+MiIiIiIgAiBghMjKywm1YsqgQg8GAixcvIjw8HDqdTtWx5OTkID4+HufOnWP5pAfj79nz8XfsHfh79nz8HXsH/p49ny2/Y0mScP36ddSqVQs+PhU3tmeGTCE+Pj6Ii4tTexhmIiIi+A/BC/D37Pn4O/YO/D17Pv6OvQN/z57P2t9xZZkxGdchIyIiIiIiUgkDMiIiIiIiIpUwIPNAgYGBmDFjBgIDA9UeCjkRf8+ej79j78Dfs+fj79g78Pfs+Zz1O2ZTDyIiIiIiIpUwQ0ZERERERKQSBmREREREREQqYUBGRERERESkEgZkREREREREKmFA5oEWL16MevXqISgoCF26dMGePXvUHhIpaObMmdDpdGa3Zs2aqT0scsD27dtxzz33oFatWtDpdFi7dq3Z85IkYfr06YiNjUVwcDD69OmDkydPqjNYsltlv+cRI0aU+dvu16+fOoMlu8yZMwedOnVCeHg4atSogUGDBuH48eNm2+Tn5yM5ORnVqlVDWFgYBg8ejEuXLqk0YrKVNb/jnj17lvlbfuKJJ1QaMdljyZIlaNOmjXEB6ISEBPz444/G55X+O2ZA5mFWrlyJSZMmYcaMGdi3bx/atm2LxMREXL58We2hkYJatmyJtLQ04+3XX39Ve0jkgNzcXLRt2xaLFy+2+PzcuXPx1ltv4b333sPu3bsRGhqKxMRE5Ofnu3ik5IjKfs8A0K9fP7O/7S+++MKFIyRHbdu2DcnJyfj999+xadMmFBUVoW/fvsjNzTVuM3HiRKxbtw6rVq3Ctm3bcPHiRSQlJak4arKFNb9jABg9erTZ3/LcuXNVGjHZIy4uDq+99hpSUlLwxx9/oHfv3hg4cCAOHz4MwAl/xxJ5lM6dO0vJycnGz/V6vVSrVi1pzpw5Ko6KlDRjxgypbdu2ag+DnASA9M033xg/NxgMUs2aNaV58+YZH8vKypICAwOlL774QoURkhJK/54lSZKGDx8uDRw4UJXxkHNcvnxZAiBt27ZNkiTxt+vv7y+tWrXKuM3Ro0clANKuXbvUGiY5oPTvWJIkqUePHtL48ePVGxQ5RZUqVaSlS5c65e+YGTIPUlhYiJSUFPTp08f4mI+PD/r06YNdu3apODJS2smTJ1GrVi00aNAADz30EFJTU9UeEjnJmTNnkJ6ebvZ3HRkZiS5duvDv2gNt3boVNWrUQNOmTTF27FhcuXJF7SGRA7KzswEAVatWBQCkpKSgqKjI7O+5WbNmqFOnDv+e3VTp37Hs888/R3R0NFq1aoVp06bh5s2bagyPFKDX6/Hll18iNzcXCQkJTvk79lNqsKS+zMxM6PV6xMTEmD0eExODY8eOqTQqUlqXLl2wbNkyNG3aFGlpaZg1axa6d++OQ4cOITw8XO3hkcLS09MBwOLftfwceYZ+/fohKSkJ9evXx+nTp/H888+jf//+2LVrF3x9fdUeHtnIYDBgwoQJ6Nq1K1q1agVA/D0HBAQgKirKbFv+PbsnS79jABg2bBjq1q2LWrVq4a+//sLUqVNx/PhxrFmzRsXRkq0OHjyIhIQE5OfnIywsDN988w1atGiB/fv3K/53zICMyM3079/feL9Nmzbo0qUL6tati6+++gqPPfaYiiMjIkc88MADxvutW7dGmzZt0LBhQ2zduhV33HGHiiMjeyQnJ+PQoUOc4+vByvsdjxkzxni/devWiI2NxR133IHTp0+jYcOGrh4m2alp06bYv38/srOzsfr/27njmCjrPw7g7ws48LwTOCEOqTtOL42mkJ4DzxrNmB22jIwWc2UYaA4yITUmayc6UFLnVZhNF+tgBGvBpjVzWiJnRNONBtocQXdA5ihrbJSAcK77/v74rWe/G5d5/o7fA/7er+02vs/zued53559/vjw3D1NTcjNzcW5c+cm5Vz8yuJdJCYmBiEhIROe8nLt2jXodDqZUtFki4qKwvz58+FyueSOQpPgr95lX///mTt3LmJiYtjb09DmzZtx4sQJtLS04L777pO263Q6eDweDA0N+dSzn6efv7vG/qSlpQEAe3maUSqVMJlMMJvNqKysREpKCt59991J6WMOZHcRpVIJs9mM5uZmaZvX60VzczMsFouMyWgyDQ8Pw+12Iz4+Xu4oNAmMRiN0Op1PX//xxx+4cOEC+/oud/XqVQwODrK3pxEhBDZv3oxjx47h7NmzMBqNPvvNZjPCwsJ8+rm7uxtXrlxhP08T/3SN/ens7AQA9vI05/V6MT4+Pil9zK8s3mW2bt2K3NxcLF26FKmpqXjnnXcwMjKCl19+We5oFCTbt2/H6tWrYTAYMDAwgLKyMoSEhGDt2rVyR6M7NDw87POf076+PnR2dkKr1UKv16O4uBgVFRV44IEHYDQaYbPZMGfOHDzzzDPyhaaA3eo6a7Va7N69G9nZ2dDpdHC73SgpKYHJZILVapUxNQXi1VdfRUNDAz799FNoNBrp9ySRkZGYMWMGIiMjkZ+fj61bt0Kr1WLWrFl47bXXYLFYsGzZMpnT0+34p2vsdrvR0NCAJ598ErNnz8alS5fw+uuvIz09HcnJyTKnp9tVWlqKVatWQa/X4/r162hoaIDT6cTp06cnp4+D8yBImkoOHTok9Hq9UCqVIjU1VZw/f17uSBREOTk5Ij4+XiiVSpGQkCBycnKEy+WSOxb9F1paWgSACa/c3FwhxL8ffW+z2URcXJwIDw8XGRkZoru7W97QFLBbXefR0VHxxBNPiNjYWBEWFiYMBoPYuHGj+OWXX+SOTQHwd30BCIfDIdXcuHFDFBYWiujoaKFSqcSaNWvEzz//LF9oCsg/XeMrV66I9PR0odVqRXh4uDCZTOKNN94Qv//+u7zBKSB5eXnCYDAIpVIpYmNjRUZGhvjiiy+k/cHuY4UQQtzp9EhERERERER3jr8hIyIiIiIikgkHMiIiIiIiIplwICMiIiIiIpIJBzIiIiIiIiKZcCAjIiIiIiKSCQcyIiIiIiIimXAgIyIiIiIikgkHMiIiIiIiIplwICMiIroDCoUCx48flzsGdu3ahYcffljuGEREdIc4kBER0ZT022+/oaCgAHq9HuHh4dDpdLBarWhra5M7WlD09/dDoVCgs7NT7ihERCSjULkDEBER+ZOdnQ2Px4Pa2lrMnTsX165dQ3NzMwYHB+WORkREFDS8Q0ZERFPO0NAQWltbsW/fPqxYsQIGgwGpqakoLS3F008/LdXZ7XYsWrQIM2fOxP3334/CwkIMDw9L+2tqahAVFYUTJ05gwYIFUKlUeO655zA6Oora2lokJiYiOjoaW7ZswZ9//im9LzExEeXl5Vi7di1mzpyJhIQEHD58+JaZf/rpJzz//POIioqCVqtFVlYW+vv7b/szO51OKBQKNDc3Y+nSpVCpVFi+fDm6u7t96t566y3ExcVBo9EgPz8fY2NjE45VXV2NpKQkRERE4MEHH8T7778v7cvLy0NycjLGx8cBAB6PB4sXL8ZLL71021mJiCh4OJAREdGUo1aroVarcfz4cWlw8Oeee+5BVVUVLl++jNraWpw9exYlJSU+NaOjo6iqqsLHH3+MU6dOwel0Ys2aNTh58iROnjyJuro6HD16FE1NTT7vO3DgAFJSUtDR0YEdO3agqKgIX375pd8cN2/ehNVqhUajQWtrK9ra2qBWq5GZmQmPxxPQZ3/zzTdx8OBBtLe3IzQ0FHl5edK+Tz75BLt27cLevXvR3t6O+Ph4n2ELAOrr67Fz507s2bMHXV1d2Lt3L2w2G2prawEAVVVVGBkZwY4dO6TzDQ0N4b333gsoJxERBYkgIiKagpqamkR0dLSIiIgQy5cvF6WlpeLixYu3fE9jY6OYPXu2tHY4HAKAcLlc0rZNmzYJlUolrl+/Lm2zWq1i06ZN0tpgMIjMzEyfY+fk5IhVq1ZJawDi2LFjQggh6urqxIIFC4TX65X2j4+PixkzZojTp0/7zdrX1ycAiI6ODiGEEC0tLQKAOHPmjFTz+eefCwDixo0bQgghLBaLKCws9DlOWlqaSElJkdbz5s0TDQ0NPjXl5eXCYrFI62+++UaEhYUJm80mQkNDRWtrq9+MREQ0+XiHjIiIpqTs7GwMDAzgs88+Q2ZmJpxOJ5YsWYKamhqp5syZM8jIyEBCQgI0Gg3WrVuHwcFBjI6OSjUqlQrz5s2T1nFxcUhMTIRarfbZ9uuvv/qc32KxTFh3dXX5zXrx4kW4XC5oNBrp7p5Wq8XY2BjcbndAnzs5OVn6Oz4+HgCkbF1dXUhLS/vbnCMjI3C73cjPz5dyqNVqVFRU+OSwWCzYvn07ysvLsW3bNjz66KMBZSQiouDhQz2IiGjKioiIwMqVK7Fy5UrYbDZs2LABZWVlWL9+Pfr7+/HUU0+hoKAAe/bsgVarxddff438/Hx4PB6oVCoAQFhYmM8xFQqF321er/eOcw4PD8NsNqO+vn7CvtjY2ICO9Z/ZFAoFANx2tr9+P/fBBx9MGNxCQkKkv71eL9ra2hASEgKXyxVQPiIiCi7eISMiomnjoYcewsjICADg22+/hdfrxcGDB7Fs2TLMnz8fAwMDQTvX+fPnJ6yTkpL81i5ZsgQ//PAD7r33XphMJp9XZGRk0DIlJSXhwoULf5szLi4Oc+bMQW9v74QcRqNRqjtw4AC+//57nDt3DqdOnYLD4QhaRiIiCgwHMiIimnIGBwfx+OOP46OPPsKlS5fQ19eHxsZG7N+/H1lZWQAAk8mEmzdv4tChQ+jt7UVdXR2OHDkStAxtbW3Yv38/enp6cPjwYTQ2NqKoqMhv7QsvvICYmBhkZWWhtbUVfX19cDqd2LJlC65evRq0TEVFRfjwww/hcDjQ09ODsrIyXL582adm9+7dqKysRFVVFXp6evDdd9/B4XDAbrcDADo6OrBz505UV1fjkUcegd1uR1FREXp7e4OWk4iIbh8HMiIimnLUajXS0tLw9ttvIz09HQsXLoTNZsPGjRulpwGmpKTAbrdj3759WLhwIerr61FZWRm0DNu2bUN7ezsWL16MiooK2O12WK1Wv7UqlQpfffUV9Ho9nn32WSQlJUmPpJ81a1bQMuXk5MBms6GkpARmsxk//vgjCgoKfGo2bNiA6upqOBwOLFq0CI899hhqampgNBoxNjaGF198EevXr8fq1asBAK+88gpWrFiBdevW+Tz6n4iI/jcUQgghdwgiIqKpJDExEcXFxSguLpY7ChER3eV4h4yIiIiIiEgmHMiIiIiIiIhkwq8sEhERERERyYR3yIiIiIiIiGTCgYyIiIiIiEgmHMiIiIiIiIhkwoGMiIiIiIhIJhzIiIiIiIiIZMKBjIiIiIiISCYcyIiIiIiIiGTCgYyIiIiIiEgm/wIN3rNuBuTC3gAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"test_df = df[['age', 'bmi', 'charges']].sample(30, random_state=13)\n",
"test_df = test_df.reset_index(drop=True)\n",
"\n",
"predicted = []\n",
"\n",
"for i in range(len(test_df)):\n",
" charges.input['age'] = test_df.loc[i, 'age']\n",
" charges.input['bmi'] = test_df.loc[i, 'bmi']\n",
" charges.compute()\n",
" a = charges.print_state()\n",
" predicted.append(charges.output['charges'])\n",
"\n",
"test_df['Predicted'] = predicted\n",
"test_df_sorted = test_df.sort_values(by='charges')\n",
"\n",
"print(test_df_sorted[['age', 'bmi', 'charges', 'Predicted']])\n",
"\n",
"# Визуализация\n",
"plt.figure(figsize=(10, 5))\n",
"plt.plot(test_df.index, test_df_sorted['charges'], marker='o', label='Charges', color='blue')\n",
"plt.plot(test_df.index, test_df_sorted['Predicted'], marker='s', label='Predicted', color='red')\n",
"plt.xlabel(\"Sample Index\")\n",
"plt.ylabel(\"Price\")\n",
"plt.legend()\n",
"plt.title(\"Сравнение реальных и предсказанных цен\")\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Как и ожидалось, модель ничего нормально не предсказала. Вероятно это из-за выбора неправильных параметров или недостаточноего числа параметров. Также вероятно база заданных правил неточная, потому что лингвистическая переменная возраста формировалась исключистельно субъективно, а переменная стоимости страхования на основе минимума, максимума, среднего и среднеквадратичного отклонения."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "aimenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}