1864 lines
303 KiB
Plaintext
1864 lines
303 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Тестим Pandas"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Считываем csv:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas\n",
|
||
"\n",
|
||
"# Считаем csv\n",
|
||
"data_frame = pandas.read_csv(\"data/kc_house_data.csv\", index_col=\"id\")\n",
|
||
"# Сохраняем data_frame в новый csv\n",
|
||
"data_frame.to_csv(\"data/new_kc_house_data.csv\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Получение сведений о data_frame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 31,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Общая информация о data_frame:\n",
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"Index: 21613 entries, 7129300520 to 1523300157\n",
|
||
"Data columns (total 20 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 date 21613 non-null object \n",
|
||
" 1 price 21613 non-null float64\n",
|
||
" 2 bedrooms 21613 non-null int64 \n",
|
||
" 3 bathrooms 21613 non-null float64\n",
|
||
" 4 sqft_living 21613 non-null int64 \n",
|
||
" 5 sqft_lot 21613 non-null int64 \n",
|
||
" 6 floors 21613 non-null float64\n",
|
||
" 7 waterfront 21613 non-null int64 \n",
|
||
" 8 view 21613 non-null int64 \n",
|
||
" 9 condition 21613 non-null int64 \n",
|
||
" 10 grade 21613 non-null int64 \n",
|
||
" 11 sqft_above 21613 non-null int64 \n",
|
||
" 12 sqft_basement 21613 non-null int64 \n",
|
||
" 13 yr_built 21613 non-null int64 \n",
|
||
" 14 yr_renovated 21613 non-null int64 \n",
|
||
" 15 zipcode 21613 non-null int64 \n",
|
||
" 16 lat 21613 non-null float64\n",
|
||
" 17 long 21613 non-null float64\n",
|
||
" 18 sqft_living15 21613 non-null int64 \n",
|
||
" 19 sqft_lot15 21613 non-null int64 \n",
|
||
"dtypes: float64(5), int64(14), object(1)\n",
|
||
"memory usage: 3.5+ MB\n",
|
||
"None \n",
|
||
"\n",
|
||
"Первые строки data_frame:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"7129300520 5650 1.0 0 0 3 7 1180 \n",
|
||
"6414100192 7242 2.0 0 0 3 7 2170 \n",
|
||
"5631500400 10000 1.0 0 0 3 6 770 \n",
|
||
"2487200875 5000 1.0 0 0 5 7 1050 \n",
|
||
"1954400510 8080 1.0 0 0 3 8 1680 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"7129300520 0 1955 0 98178 47.5112 -122.257 \n",
|
||
"6414100192 400 1951 1991 98125 47.7210 -122.319 \n",
|
||
"5631500400 0 1933 0 98028 47.7379 -122.233 \n",
|
||
"2487200875 910 1965 0 98136 47.5208 -122.393 \n",
|
||
"1954400510 0 1987 0 98074 47.6168 -122.045 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"7129300520 1340 5650 \n",
|
||
"6414100192 1690 7639 \n",
|
||
"5631500400 2720 8062 \n",
|
||
"2487200875 1360 5000 \n",
|
||
"1954400510 1800 7503 \n",
|
||
"\n",
|
||
"Описание данных data_frame:\n",
|
||
" price bedrooms bathrooms sqft_living sqft_lot \\\n",
|
||
"count 2.161300e+04 21613.000000 21613.000000 21613.000000 2.161300e+04 \n",
|
||
"mean 5.400881e+05 3.370842 2.114757 2079.899736 1.510697e+04 \n",
|
||
"std 3.671272e+05 0.930062 0.770163 918.440897 4.142051e+04 \n",
|
||
"min 7.500000e+04 0.000000 0.000000 290.000000 5.200000e+02 \n",
|
||
"25% 3.219500e+05 3.000000 1.750000 1427.000000 5.040000e+03 \n",
|
||
"50% 4.500000e+05 3.000000 2.250000 1910.000000 7.618000e+03 \n",
|
||
"75% 6.450000e+05 4.000000 2.500000 2550.000000 1.068800e+04 \n",
|
||
"max 7.700000e+06 33.000000 8.000000 13540.000000 1.651359e+06 \n",
|
||
"\n",
|
||
" floors waterfront view condition grade \\\n",
|
||
"count 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 \n",
|
||
"mean 1.494309 0.007542 0.234303 3.409430 7.656873 \n",
|
||
"std 0.539989 0.086517 0.766318 0.650743 1.175459 \n",
|
||
"min 1.000000 0.000000 0.000000 1.000000 1.000000 \n",
|
||
"25% 1.000000 0.000000 0.000000 3.000000 7.000000 \n",
|
||
"50% 1.500000 0.000000 0.000000 3.000000 7.000000 \n",
|
||
"75% 2.000000 0.000000 0.000000 4.000000 8.000000 \n",
|
||
"max 3.500000 1.000000 4.000000 5.000000 13.000000 \n",
|
||
"\n",
|
||
" sqft_above sqft_basement yr_built yr_renovated zipcode \\\n",
|
||
"count 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 \n",
|
||
"mean 1788.390691 291.509045 1971.005136 84.402258 98077.939805 \n",
|
||
"std 828.090978 442.575043 29.373411 401.679240 53.505026 \n",
|
||
"min 290.000000 0.000000 1900.000000 0.000000 98001.000000 \n",
|
||
"25% 1190.000000 0.000000 1951.000000 0.000000 98033.000000 \n",
|
||
"50% 1560.000000 0.000000 1975.000000 0.000000 98065.000000 \n",
|
||
"75% 2210.000000 560.000000 1997.000000 0.000000 98118.000000 \n",
|
||
"max 9410.000000 4820.000000 2015.000000 2015.000000 98199.000000 \n",
|
||
"\n",
|
||
" lat long sqft_living15 sqft_lot15 \n",
|
||
"count 21613.000000 21613.000000 21613.000000 21613.000000 \n",
|
||
"mean 47.560053 -122.213896 1986.552492 12768.455652 \n",
|
||
"std 0.138564 0.140828 685.391304 27304.179631 \n",
|
||
"min 47.155900 -122.519000 399.000000 651.000000 \n",
|
||
"25% 47.471000 -122.328000 1490.000000 5100.000000 \n",
|
||
"50% 47.571800 -122.230000 1840.000000 7620.000000 \n",
|
||
"75% 47.678000 -122.125000 2360.000000 10083.000000 \n",
|
||
"max 47.777600 -121.315000 6210.000000 871200.000000 \n",
|
||
"\n",
|
||
"Количество строк и столбцов data_frame: (21613, 20)\n",
|
||
"\n",
|
||
"Названия столбцов: Index(['date', 'price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',\n",
|
||
" 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above',\n",
|
||
" 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',\n",
|
||
" 'sqft_living15', 'sqft_lot15'],\n",
|
||
" dtype='object')\n",
|
||
"\n",
|
||
"Типы данных каждого столбца:\n",
|
||
"date object\n",
|
||
"price float64\n",
|
||
"bedrooms int64\n",
|
||
"bathrooms float64\n",
|
||
"sqft_living int64\n",
|
||
"sqft_lot int64\n",
|
||
"floors float64\n",
|
||
"waterfront int64\n",
|
||
"view int64\n",
|
||
"condition int64\n",
|
||
"grade int64\n",
|
||
"sqft_above int64\n",
|
||
"sqft_basement int64\n",
|
||
"yr_built int64\n",
|
||
"yr_renovated int64\n",
|
||
"zipcode int64\n",
|
||
"lat float64\n",
|
||
"long float64\n",
|
||
"sqft_living15 int64\n",
|
||
"sqft_lot15 int64\n",
|
||
"dtype: object \n",
|
||
"\n",
|
||
"Количество пропущенных значений в каждом столбце:\n",
|
||
"date 0\n",
|
||
"price 0\n",
|
||
"bedrooms 0\n",
|
||
"bathrooms 0\n",
|
||
"sqft_living 0\n",
|
||
"sqft_lot 0\n",
|
||
"floors 0\n",
|
||
"waterfront 0\n",
|
||
"view 0\n",
|
||
"condition 0\n",
|
||
"grade 0\n",
|
||
"sqft_above 0\n",
|
||
"sqft_basement 0\n",
|
||
"yr_built 0\n",
|
||
"yr_renovated 0\n",
|
||
"zipcode 0\n",
|
||
"lat 0\n",
|
||
"long 0\n",
|
||
"sqft_living15 0\n",
|
||
"sqft_lot15 0\n",
|
||
"dtype: int64 \n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Общая информация о data_frame\n",
|
||
"print(\"Общая информация о data_frame:\")\n",
|
||
"print(data_frame.info(), \"\\n\")\n",
|
||
"\n",
|
||
"# Первые строки\n",
|
||
"print(\"Первые строки data_frame:\")\n",
|
||
"print(data_frame.head(), \"\\n\")\n",
|
||
"\n",
|
||
"# Описание данных\n",
|
||
"print(\"Описание данных data_frame:\")\n",
|
||
"print(data_frame.describe(), \"\\n\")\n",
|
||
"\n",
|
||
"# Количество строк и столбцов \n",
|
||
"print(f\"Количество строк и столбцов data_frame: {data_frame.shape}\\n\")\n",
|
||
"\n",
|
||
"# Названия столбцов\n",
|
||
"print(f\"Названия столбцов: {data_frame.columns}\\n\")\n",
|
||
"\n",
|
||
"# Типы данных каждого столбца\n",
|
||
"print(\"Типы данных каждого столбца:\")\n",
|
||
"print(data_frame.dtypes, \"\\n\")\n",
|
||
"\n",
|
||
"# Количество пропущенных значений\n",
|
||
"print(\"Количество пропущенных значений в каждом столбце:\")\n",
|
||
"print(data_frame.isnull().sum(), \"\\n\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Получение сведений о колонках"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Список всех столбцов: Index(['date', 'price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',\n",
|
||
" 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above',\n",
|
||
" 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',\n",
|
||
" 'sqft_living15', 'sqft_lot15'],\n",
|
||
" dtype='object')\n",
|
||
"\n",
|
||
"Типы данных каждого столбца:\n",
|
||
"date object\n",
|
||
"price float64\n",
|
||
"bedrooms int64\n",
|
||
"bathrooms float64\n",
|
||
"sqft_living int64\n",
|
||
"sqft_lot int64\n",
|
||
"floors float64\n",
|
||
"waterfront int64\n",
|
||
"view int64\n",
|
||
"condition int64\n",
|
||
"grade int64\n",
|
||
"sqft_above int64\n",
|
||
"sqft_basement int64\n",
|
||
"yr_built int64\n",
|
||
"yr_renovated int64\n",
|
||
"zipcode int64\n",
|
||
"lat float64\n",
|
||
"long float64\n",
|
||
"sqft_living15 int64\n",
|
||
"sqft_lot15 int64\n",
|
||
"dtype: object \n",
|
||
"\n",
|
||
"Описание всех столбцов DataFrame:\n",
|
||
" date price bedrooms bathrooms \\\n",
|
||
"count 21613 2.161300e+04 21613.000000 21613.000000 \n",
|
||
"unique 372 NaN NaN NaN \n",
|
||
"top 20140623T000000 NaN NaN NaN \n",
|
||
"freq 142 NaN NaN NaN \n",
|
||
"mean NaN 5.400881e+05 3.370842 2.114757 \n",
|
||
"std NaN 3.671272e+05 0.930062 0.770163 \n",
|
||
"min NaN 7.500000e+04 0.000000 0.000000 \n",
|
||
"25% NaN 3.219500e+05 3.000000 1.750000 \n",
|
||
"50% NaN 4.500000e+05 3.000000 2.250000 \n",
|
||
"75% NaN 6.450000e+05 4.000000 2.500000 \n",
|
||
"max NaN 7.700000e+06 33.000000 8.000000 \n",
|
||
"\n",
|
||
" sqft_living sqft_lot floors waterfront view \\\n",
|
||
"count 21613.000000 2.161300e+04 21613.000000 21613.000000 21613.000000 \n",
|
||
"unique NaN NaN NaN NaN NaN \n",
|
||
"top NaN NaN NaN NaN NaN \n",
|
||
"freq NaN NaN NaN NaN NaN \n",
|
||
"mean 2079.899736 1.510697e+04 1.494309 0.007542 0.234303 \n",
|
||
"std 918.440897 4.142051e+04 0.539989 0.086517 0.766318 \n",
|
||
"min 290.000000 5.200000e+02 1.000000 0.000000 0.000000 \n",
|
||
"25% 1427.000000 5.040000e+03 1.000000 0.000000 0.000000 \n",
|
||
"50% 1910.000000 7.618000e+03 1.500000 0.000000 0.000000 \n",
|
||
"75% 2550.000000 1.068800e+04 2.000000 0.000000 0.000000 \n",
|
||
"max 13540.000000 1.651359e+06 3.500000 1.000000 4.000000 \n",
|
||
"\n",
|
||
" condition grade sqft_above sqft_basement yr_built \\\n",
|
||
"count 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 \n",
|
||
"unique NaN NaN NaN NaN NaN \n",
|
||
"top NaN NaN NaN NaN NaN \n",
|
||
"freq NaN NaN NaN NaN NaN \n",
|
||
"mean 3.409430 7.656873 1788.390691 291.509045 1971.005136 \n",
|
||
"std 0.650743 1.175459 828.090978 442.575043 29.373411 \n",
|
||
"min 1.000000 1.000000 290.000000 0.000000 1900.000000 \n",
|
||
"25% 3.000000 7.000000 1190.000000 0.000000 1951.000000 \n",
|
||
"50% 3.000000 7.000000 1560.000000 0.000000 1975.000000 \n",
|
||
"75% 4.000000 8.000000 2210.000000 560.000000 1997.000000 \n",
|
||
"max 5.000000 13.000000 9410.000000 4820.000000 2015.000000 \n",
|
||
"\n",
|
||
" yr_renovated zipcode lat long sqft_living15 \\\n",
|
||
"count 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 \n",
|
||
"unique NaN NaN NaN NaN NaN \n",
|
||
"top NaN NaN NaN NaN NaN \n",
|
||
"freq NaN NaN NaN NaN NaN \n",
|
||
"mean 84.402258 98077.939805 47.560053 -122.213896 1986.552492 \n",
|
||
"std 401.679240 53.505026 0.138564 0.140828 685.391304 \n",
|
||
"min 0.000000 98001.000000 47.155900 -122.519000 399.000000 \n",
|
||
"25% 0.000000 98033.000000 47.471000 -122.328000 1490.000000 \n",
|
||
"50% 0.000000 98065.000000 47.571800 -122.230000 1840.000000 \n",
|
||
"75% 0.000000 98118.000000 47.678000 -122.125000 2360.000000 \n",
|
||
"max 2015.000000 98199.000000 47.777600 -121.315000 6210.000000 \n",
|
||
"\n",
|
||
" sqft_lot15 \n",
|
||
"count 21613.000000 \n",
|
||
"unique NaN \n",
|
||
"top NaN \n",
|
||
"freq NaN \n",
|
||
"mean 12768.455652 \n",
|
||
"std 27304.179631 \n",
|
||
"min 651.000000 \n",
|
||
"25% 5100.000000 \n",
|
||
"50% 7620.000000 \n",
|
||
"75% 10083.000000 \n",
|
||
"max 871200.000000 \n",
|
||
"\n",
|
||
"Количество пропущенных значений в каждом столбце:\n",
|
||
"date 0\n",
|
||
"price 0\n",
|
||
"bedrooms 0\n",
|
||
"bathrooms 0\n",
|
||
"sqft_living 0\n",
|
||
"sqft_lot 0\n",
|
||
"floors 0\n",
|
||
"waterfront 0\n",
|
||
"view 0\n",
|
||
"condition 0\n",
|
||
"grade 0\n",
|
||
"sqft_above 0\n",
|
||
"sqft_basement 0\n",
|
||
"yr_built 0\n",
|
||
"yr_renovated 0\n",
|
||
"zipcode 0\n",
|
||
"lat 0\n",
|
||
"long 0\n",
|
||
"sqft_living15 0\n",
|
||
"sqft_lot15 0\n",
|
||
"dtype: int64 \n",
|
||
"\n",
|
||
"Количество уникальных значений в столбце 'date':\n",
|
||
"date\n",
|
||
"20140623T000000 142\n",
|
||
"20140626T000000 131\n",
|
||
"20140625T000000 131\n",
|
||
"20140708T000000 127\n",
|
||
"20150427T000000 126\n",
|
||
" ... \n",
|
||
"20150131T000000 1\n",
|
||
"20150117T000000 1\n",
|
||
"20150308T000000 1\n",
|
||
"20150515T000000 1\n",
|
||
"20140803T000000 1\n",
|
||
"Name: count, Length: 372, dtype: int64 \n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Список всех столбцов\n",
|
||
"print(f\"Список всех столбцов: {data_frame.columns}\\n\")\n",
|
||
"\n",
|
||
"# Типы данных каждого столбца\n",
|
||
"print(\"Типы данных каждого столбца:\")\n",
|
||
"print(data_frame.dtypes, \"\\n\")\n",
|
||
"\n",
|
||
"# Описание всех столбцов\n",
|
||
"print(\"Описание всех столбцов DataFrame:\")\n",
|
||
"print(data_frame.describe(include=\"all\"), \"\\n\")\n",
|
||
"\n",
|
||
"# Количество пропущенных значений в каждом столбце\n",
|
||
"print(\"Количество пропущенных значений в каждом столбце:\")\n",
|
||
"print(data_frame.isnull().sum(), \"\\n\")\n",
|
||
"\n",
|
||
"# Количество уникальных значений в столбце 'date'\n",
|
||
"print(\"Количество уникальных значений в столбце 'date':\")\n",
|
||
"print(data_frame[\"date\"].value_counts(), \"\\n\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Вывод строки и стобца"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Столбец 'date':\n",
|
||
"id\n",
|
||
"7129300520 20141013T000000\n",
|
||
"6414100192 20141209T000000\n",
|
||
"5631500400 20150225T000000\n",
|
||
"2487200875 20141209T000000\n",
|
||
"1954400510 20150218T000000\n",
|
||
" ... \n",
|
||
"263000018 20140521T000000\n",
|
||
"6600060120 20150223T000000\n",
|
||
"1523300141 20140623T000000\n",
|
||
"291310100 20150116T000000\n",
|
||
"1523300157 20141015T000000\n",
|
||
"Name: date, Length: 21613, dtype: object \n",
|
||
"\n",
|
||
"Строка с индексом 2:\n",
|
||
"date 20150225T000000\n",
|
||
"price 180000.0\n",
|
||
"bedrooms 2\n",
|
||
"bathrooms 1.0\n",
|
||
"sqft_living 770\n",
|
||
"sqft_lot 10000\n",
|
||
"floors 1.0\n",
|
||
"waterfront 0\n",
|
||
"view 0\n",
|
||
"condition 3\n",
|
||
"grade 6\n",
|
||
"sqft_above 770\n",
|
||
"sqft_basement 0\n",
|
||
"yr_built 1933\n",
|
||
"yr_renovated 0\n",
|
||
"zipcode 98028\n",
|
||
"lat 47.7379\n",
|
||
"long -122.233\n",
|
||
"sqft_living15 2720\n",
|
||
"sqft_lot15 8062\n",
|
||
"Name: 5631500400, dtype: object \n",
|
||
"\n",
|
||
"Значение в первой строке и столбце 'date':\n",
|
||
"3 \n",
|
||
"\n",
|
||
"Значение в строке с индексом 1 и столбце 'date':\n",
|
||
"20141013T000000 \n",
|
||
"\n",
|
||
"Столбцы 'date' и 'price':\n",
|
||
" date price\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0\n",
|
||
"6414100192 20141209T000000 538000.0\n",
|
||
"5631500400 20150225T000000 180000.0\n",
|
||
"2487200875 20141209T000000 604000.0\n",
|
||
"1954400510 20150218T000000 510000.0\n",
|
||
"... ... ...\n",
|
||
"263000018 20140521T000000 360000.0\n",
|
||
"6600060120 20150223T000000 400000.0\n",
|
||
"1523300141 20140623T000000 402101.0\n",
|
||
"291310100 20150116T000000 400000.0\n",
|
||
"1523300157 20141015T000000 325000.0\n",
|
||
"\n",
|
||
"[21613 rows x 2 columns] \n",
|
||
"\n",
|
||
"Первые две строки DataFrame:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"7129300520 5650 1.0 0 0 3 7 1180 \n",
|
||
"6414100192 7242 2.0 0 0 3 7 2170 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"7129300520 0 1955 0 98178 47.5112 -122.257 \n",
|
||
"6414100192 400 1951 1991 98125 47.7210 -122.319 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"7129300520 1340 5650 \n",
|
||
"6414100192 1690 7639 \n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Вывод столбца 'date'\n",
|
||
"print(\"Столбец 'date':\")\n",
|
||
"print(data_frame[\"date\"], \"\\n\")\n",
|
||
"\n",
|
||
"# Вывод строки с индексом 2\n",
|
||
"print(\"Строка с индексом 2:\")\n",
|
||
"print(data_frame.iloc[2], \"\\n\")\n",
|
||
"\n",
|
||
"# Вывод значения в первой строке и столбце 'date'\n",
|
||
"print(\"Значение в первой строке и столбце 'date':\")\n",
|
||
"print(data_frame.iloc[0, 2], \"\\n\")\n",
|
||
"\n",
|
||
"# Вывод конкретного значения по метке строки и имени столбца\n",
|
||
"print(\"Значение в строке с индексом 1 и столбце 'date':\")\n",
|
||
"print(data_frame.loc[7129300520, \"date\"], \"\\n\")\n",
|
||
"\n",
|
||
"# Вывод нескольких столбцов 'date' и 'price'\n",
|
||
"print(\"Столбцы 'date' и 'price':\")\n",
|
||
"print(data_frame[[\"date\", \"price\"]], \"\\n\")\n",
|
||
"\n",
|
||
"# Вывод первых двух строк\n",
|
||
"print(\"Первые две строки DataFrame:\")\n",
|
||
"print(data_frame.iloc[:2], \"\\n\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Группировка и агрегация данных"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Средняя цена по количеству спален:\n",
|
||
"bedrooms\n",
|
||
"0 4.095038e+05\n",
|
||
"1 3.176429e+05\n",
|
||
"2 4.013727e+05\n",
|
||
"3 4.662321e+05\n",
|
||
"4 6.354195e+05\n",
|
||
"5 7.865998e+05\n",
|
||
"6 8.255206e+05\n",
|
||
"7 9.511847e+05\n",
|
||
"8 1.105077e+06\n",
|
||
"9 8.939998e+05\n",
|
||
"10 8.193333e+05\n",
|
||
"11 5.200000e+05\n",
|
||
"33 6.400000e+05\n",
|
||
"Name: price, dtype: float64\n",
|
||
"\n",
|
||
"Количество продаж по почтовому индексу:\n",
|
||
"zipcode\n",
|
||
"98001 362\n",
|
||
"98002 199\n",
|
||
"98003 280\n",
|
||
"98004 317\n",
|
||
"98005 168\n",
|
||
" ... \n",
|
||
"98177 255\n",
|
||
"98178 262\n",
|
||
"98188 136\n",
|
||
"98198 280\n",
|
||
"98199 317\n",
|
||
"Name: price, Length: 70, dtype: int64\n",
|
||
"\n",
|
||
"Максимальная цена по количеству ванных комнат:\n",
|
||
"bathrooms\n",
|
||
"0.00 1295650.0\n",
|
||
"0.50 312500.0\n",
|
||
"0.75 785000.0\n",
|
||
"1.00 1300000.0\n",
|
||
"1.25 1388000.0\n",
|
||
"1.50 1500000.0\n",
|
||
"1.75 3278000.0\n",
|
||
"2.00 2200000.0\n",
|
||
"2.25 2400000.0\n",
|
||
"2.50 3070000.0\n",
|
||
"2.75 2700000.0\n",
|
||
"3.00 4489000.0\n",
|
||
"3.25 3640900.0\n",
|
||
"3.50 3710000.0\n",
|
||
"3.75 3650000.0\n",
|
||
"4.00 3400000.0\n",
|
||
"4.25 3850000.0\n",
|
||
"4.50 7062500.0\n",
|
||
"4.75 3650000.0\n",
|
||
"5.00 5350000.0\n",
|
||
"5.25 5110800.0\n",
|
||
"5.50 4500000.0\n",
|
||
"5.75 5570000.0\n",
|
||
"6.00 5300000.0\n",
|
||
"6.25 3300000.0\n",
|
||
"6.50 2238890.0\n",
|
||
"6.75 4668000.0\n",
|
||
"7.50 450000.0\n",
|
||
"7.75 6885000.0\n",
|
||
"8.00 7700000.0\n",
|
||
"Name: price, dtype: float64\n",
|
||
"\n",
|
||
"Общая цена по количеству этажей:\n",
|
||
"floors\n",
|
||
"1.0 4.722489e+09\n",
|
||
"1.5 1.067653e+09\n",
|
||
"2.0 5.347512e+09\n",
|
||
"2.5 1.707158e+08\n",
|
||
"3.0 3.570885e+08\n",
|
||
"3.5 7.466500e+06\n",
|
||
"Name: price, dtype: float64\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# 1. Средняя цена по количеству спален\n",
|
||
"print(\"Средняя цена по количеству спален:\")\n",
|
||
"print(data_frame.groupby(\"bedrooms\")[\"price\"].mean())\n",
|
||
"\n",
|
||
"# 2. Количество продаж по почтовому индексу\n",
|
||
"print(\"\\nКоличество продаж по почтовому индексу:\")\n",
|
||
"print(data_frame.groupby(\"zipcode\")[\"price\"].count())\n",
|
||
"\n",
|
||
"# 3. Максимальная цена по количеству ванных комнат\n",
|
||
"print(\"\\nМаксимальная цена по количеству ванных комнат:\")\n",
|
||
"print(data_frame.groupby(\"bathrooms\")[\"price\"].max())\n",
|
||
"\n",
|
||
"# 4. Общая цена по количеству этажей\n",
|
||
"print(\"\\nОбщая цена по количеству этажей:\")\n",
|
||
"print(data_frame.groupby(\"floors\")[\"price\"].sum())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Сортировка данных"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Сортировка по цене (возрастание):\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"3421079032 20150217T000000 75000.0 1 0.00 670 \n",
|
||
"40000362 20140506T000000 78000.0 2 1.00 780 \n",
|
||
"8658300340 20140523T000000 80000.0 1 0.75 430 \n",
|
||
"3028200080 20150324T000000 81000.0 2 1.00 730 \n",
|
||
"3883800011 20141105T000000 82000.0 3 1.00 860 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"8907500070 20150413T000000 5350000.0 5 5.00 8000 \n",
|
||
"2470100110 20140804T000000 5570000.0 5 5.75 9200 \n",
|
||
"9208900037 20140919T000000 6885000.0 6 7.75 9890 \n",
|
||
"9808700762 20140611T000000 7062500.0 5 4.50 10040 \n",
|
||
"6762700020 20141013T000000 7700000.0 6 8.00 12050 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"3421079032 43377 1.0 0 0 3 3 670 \n",
|
||
"40000362 16344 1.0 0 0 1 5 780 \n",
|
||
"8658300340 5050 1.0 0 0 2 4 430 \n",
|
||
"3028200080 9975 1.0 0 0 1 5 730 \n",
|
||
"3883800011 10426 1.0 0 0 3 6 860 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"8907500070 23985 2.0 0 4 3 12 6720 \n",
|
||
"2470100110 35069 2.0 0 0 3 13 6200 \n",
|
||
"9208900037 31374 2.0 0 4 3 13 8860 \n",
|
||
"9808700762 37325 2.0 1 2 3 11 7680 \n",
|
||
"6762700020 27600 2.5 0 3 4 13 8570 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"3421079032 0 1966 0 98022 47.2638 -121.906 \n",
|
||
"40000362 0 1942 0 98168 47.4739 -122.280 \n",
|
||
"8658300340 0 1912 0 98014 47.6499 -121.909 \n",
|
||
"3028200080 0 1943 0 98168 47.4808 -122.315 \n",
|
||
"3883800011 0 1954 0 98146 47.4987 -122.341 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"8907500070 1280 2009 0 98004 47.6232 -122.220 \n",
|
||
"2470100110 3000 2001 0 98039 47.6289 -122.233 \n",
|
||
"9208900037 1030 2001 0 98039 47.6305 -122.240 \n",
|
||
"9808700762 2360 1940 2001 98004 47.6500 -122.214 \n",
|
||
"6762700020 3480 1910 1987 98102 47.6298 -122.323 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"3421079032 1160 42882 \n",
|
||
"40000362 1700 10387 \n",
|
||
"8658300340 1200 7500 \n",
|
||
"3028200080 860 9000 \n",
|
||
"3883800011 1140 11250 \n",
|
||
"... ... ... \n",
|
||
"8907500070 4600 21750 \n",
|
||
"2470100110 3560 24345 \n",
|
||
"9208900037 4540 42730 \n",
|
||
"9808700762 3930 25449 \n",
|
||
"6762700020 3940 8800 \n",
|
||
"\n",
|
||
"[21613 rows x 20 columns]\n",
|
||
"\n",
|
||
"Сортировка по цене (убывание):\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"6762700020 20141013T000000 7700000.0 6 8.00 12050 \n",
|
||
"9808700762 20140611T000000 7062500.0 5 4.50 10040 \n",
|
||
"9208900037 20140919T000000 6885000.0 6 7.75 9890 \n",
|
||
"2470100110 20140804T000000 5570000.0 5 5.75 9200 \n",
|
||
"8907500070 20150413T000000 5350000.0 5 5.00 8000 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"3883800011 20141105T000000 82000.0 3 1.00 860 \n",
|
||
"3028200080 20150324T000000 81000.0 2 1.00 730 \n",
|
||
"8658300340 20140523T000000 80000.0 1 0.75 430 \n",
|
||
"40000362 20140506T000000 78000.0 2 1.00 780 \n",
|
||
"3421079032 20150217T000000 75000.0 1 0.00 670 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"6762700020 27600 2.5 0 3 4 13 8570 \n",
|
||
"9808700762 37325 2.0 1 2 3 11 7680 \n",
|
||
"9208900037 31374 2.0 0 4 3 13 8860 \n",
|
||
"2470100110 35069 2.0 0 0 3 13 6200 \n",
|
||
"8907500070 23985 2.0 0 4 3 12 6720 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"3883800011 10426 1.0 0 0 3 6 860 \n",
|
||
"3028200080 9975 1.0 0 0 1 5 730 \n",
|
||
"8658300340 5050 1.0 0 0 2 4 430 \n",
|
||
"40000362 16344 1.0 0 0 1 5 780 \n",
|
||
"3421079032 43377 1.0 0 0 3 3 670 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"6762700020 3480 1910 1987 98102 47.6298 -122.323 \n",
|
||
"9808700762 2360 1940 2001 98004 47.6500 -122.214 \n",
|
||
"9208900037 1030 2001 0 98039 47.6305 -122.240 \n",
|
||
"2470100110 3000 2001 0 98039 47.6289 -122.233 \n",
|
||
"8907500070 1280 2009 0 98004 47.6232 -122.220 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"3883800011 0 1954 0 98146 47.4987 -122.341 \n",
|
||
"3028200080 0 1943 0 98168 47.4808 -122.315 \n",
|
||
"8658300340 0 1912 0 98014 47.6499 -121.909 \n",
|
||
"40000362 0 1942 0 98168 47.4739 -122.280 \n",
|
||
"3421079032 0 1966 0 98022 47.2638 -121.906 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"6762700020 3940 8800 \n",
|
||
"9808700762 3930 25449 \n",
|
||
"9208900037 4540 42730 \n",
|
||
"2470100110 3560 24345 \n",
|
||
"8907500070 4600 21750 \n",
|
||
"... ... ... \n",
|
||
"3883800011 1140 11250 \n",
|
||
"3028200080 860 9000 \n",
|
||
"8658300340 1200 7500 \n",
|
||
"40000362 1700 10387 \n",
|
||
"3421079032 1160 42882 \n",
|
||
"\n",
|
||
"[21613 rows x 20 columns]\n",
|
||
"\n",
|
||
"Сортировка по количеству спален и затем по цене (возрастание):\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"9543000205 20150413T000000 139950.0 0 0.00 844 \n",
|
||
"3980300371 20140926T000000 142000.0 0 0.00 290 \n",
|
||
"6896300380 20141002T000000 228000.0 0 1.00 390 \n",
|
||
"7849202190 20141223T000000 235000.0 0 0.00 1470 \n",
|
||
"2310060040 20140925T000000 240000.0 0 2.50 1810 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"5566100170 20141029T000000 650000.0 10 2.00 3610 \n",
|
||
"8812401450 20141229T000000 660000.0 10 3.00 2920 \n",
|
||
"627300145 20140814T000000 1148000.0 10 5.25 4590 \n",
|
||
"1773100755 20140821T000000 520000.0 11 3.00 3000 \n",
|
||
"2402100895 20140625T000000 640000.0 33 1.75 1620 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"9543000205 4269 1.0 0 0 4 7 844 \n",
|
||
"3980300371 20875 1.0 0 0 1 1 290 \n",
|
||
"6896300380 5900 1.0 0 0 2 4 390 \n",
|
||
"7849202190 4800 2.0 0 0 3 7 1470 \n",
|
||
"2310060040 5669 2.0 0 0 3 7 1810 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"5566100170 11914 2.0 0 0 4 7 3010 \n",
|
||
"8812401450 3745 2.0 0 0 4 7 1860 \n",
|
||
"627300145 10920 1.0 0 2 3 9 2500 \n",
|
||
"1773100755 4960 2.0 0 0 3 7 2400 \n",
|
||
"2402100895 6000 1.0 0 0 5 7 1040 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"9543000205 0 1913 0 98001 47.2781 -122.250 \n",
|
||
"3980300371 0 1963 0 98024 47.5308 -121.888 \n",
|
||
"6896300380 0 1953 0 98118 47.5260 -122.261 \n",
|
||
"7849202190 0 1996 0 98065 47.5265 -121.828 \n",
|
||
"2310060040 0 2003 0 98038 47.3493 -122.053 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"5566100170 600 1958 0 98006 47.5705 -122.175 \n",
|
||
"8812401450 1060 1913 0 98105 47.6635 -122.320 \n",
|
||
"627300145 2090 2008 0 98004 47.5861 -122.113 \n",
|
||
"1773100755 600 1918 1999 98106 47.5560 -122.363 \n",
|
||
"2402100895 580 1947 0 98103 47.6878 -122.331 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"9543000205 1380 9600 \n",
|
||
"3980300371 1620 22850 \n",
|
||
"6896300380 2170 6000 \n",
|
||
"7849202190 1060 7200 \n",
|
||
"2310060040 1810 5685 \n",
|
||
"... ... ... \n",
|
||
"5566100170 2040 11914 \n",
|
||
"8812401450 1810 3745 \n",
|
||
"627300145 2730 10400 \n",
|
||
"1773100755 1420 4960 \n",
|
||
"2402100895 1330 4700 \n",
|
||
"\n",
|
||
"[21613 rows x 20 columns]\n",
|
||
"\n",
|
||
"Сортировка по почтовому индексу и количеству ванных комнат (убывание):\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"1068000375 20140923T000000 3200000.0 6 5.00 7100 \n",
|
||
"3271800295 20150203T000000 1569500.0 5 4.50 5620 \n",
|
||
"1370802115 20141205T000000 1925000.0 3 4.50 3950 \n",
|
||
"1370802455 20140813T000000 1050000.0 4 4.50 3180 \n",
|
||
"2771604190 20140617T000000 824000.0 7 4.25 3670 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"1312900180 20150325T000000 225000.0 3 1.00 1250 \n",
|
||
"3356403400 20140724T000000 159000.0 3 1.00 1360 \n",
|
||
"1278000210 20150311T000000 110000.0 2 1.00 828 \n",
|
||
"4045700455 20150316T000000 363000.0 3 0.75 2510 \n",
|
||
"9543000205 20150413T000000 139950.0 0 0.00 844 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"1068000375 18200 2.5 0 0 3 13 5240 \n",
|
||
"3271800295 5800 3.0 0 3 3 11 4700 \n",
|
||
"1370802115 6134 2.0 0 3 3 11 2880 \n",
|
||
"1370802455 4606 2.0 0 3 4 9 1990 \n",
|
||
"2771604190 4000 2.0 0 1 3 8 2800 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"1312900180 7820 1.0 0 0 3 7 1250 \n",
|
||
"3356403400 20000 1.0 0 0 4 7 1360 \n",
|
||
"1278000210 4524 1.0 0 0 3 6 828 \n",
|
||
"4045700455 20000 2.0 0 0 4 7 2510 \n",
|
||
"9543000205 4269 1.0 0 0 4 7 844 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"1068000375 1860 1933 2002 98199 47.6427 -122.408 \n",
|
||
"3271800295 920 1999 0 98199 47.6482 -122.412 \n",
|
||
"1370802115 1070 1998 0 98199 47.6413 -122.405 \n",
|
||
"1370802455 1190 1929 0 98199 47.6402 -122.405 \n",
|
||
"2771604190 870 1964 0 98199 47.6375 -122.388 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"1312900180 0 1967 0 98001 47.3397 -122.291 \n",
|
||
"3356403400 0 1953 0 98001 47.2861 -122.253 \n",
|
||
"1278000210 0 1968 2007 98001 47.2655 -122.244 \n",
|
||
"4045700455 0 1961 0 98001 47.2871 -122.287 \n",
|
||
"9543000205 0 1913 0 98001 47.2781 -122.250 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"1068000375 3130 6477 \n",
|
||
"3271800295 2360 5800 \n",
|
||
"1370802115 3050 5281 \n",
|
||
"1370802455 2110 5323 \n",
|
||
"2771604190 2010 4000 \n",
|
||
"... ... ... \n",
|
||
"1312900180 1300 7920 \n",
|
||
"3356403400 1530 9997 \n",
|
||
"1278000210 828 5402 \n",
|
||
"4045700455 2130 20000 \n",
|
||
"9543000205 1380 9600 \n",
|
||
"\n",
|
||
"[21613 rows x 20 columns]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Сортировка по цене (возрастание):\")\n",
|
||
"print(data_frame.sort_values(by=\"price\"))\n",
|
||
"\n",
|
||
"# 2. Сортировка по цене (убывание)\n",
|
||
"print(\"\\nСортировка по цене (убывание):\")\n",
|
||
"print(data_frame.sort_values(by=\"price\", ascending=False))\n",
|
||
"\n",
|
||
"# 3. Сортировка по количеству спален и затем по цене (возрастание)\n",
|
||
"print(\"\\nСортировка по количеству спален и затем по цене (возрастание):\")\n",
|
||
"print(data_frame.sort_values(by=[\"bedrooms\", \"price\"]))\n",
|
||
"\n",
|
||
"# 4. Сортировка по почтовому индексу и количеству ванных комнат (убывание)\n",
|
||
"print(\"\\nСортировка по почтовому индексу и количеству ванных комнат (убывание):\")\n",
|
||
"print(data_frame.sort_values(by=[\"zipcode\", \"bathrooms\"], ascending=[False, False]))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Удаление строк и столбцов"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 36,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Удаление строки с индексом 1736800520:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"7129300520 5650 1.0 0 0 3 7 1180 \n",
|
||
"6414100192 7242 2.0 0 0 3 7 2170 \n",
|
||
"5631500400 10000 1.0 0 0 3 6 770 \n",
|
||
"2487200875 5000 1.0 0 0 5 7 1050 \n",
|
||
"1954400510 8080 1.0 0 0 3 8 1680 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 8 1530 \n",
|
||
"6600060120 5813 2.0 0 0 3 8 2310 \n",
|
||
"1523300141 1350 2.0 0 0 3 7 1020 \n",
|
||
"291310100 2388 2.0 0 0 3 8 1600 \n",
|
||
"1523300157 1076 2.0 0 0 3 7 1020 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"7129300520 0 1955 0 98178 47.5112 -122.257 \n",
|
||
"6414100192 400 1951 1991 98125 47.7210 -122.319 \n",
|
||
"5631500400 0 1933 0 98028 47.7379 -122.233 \n",
|
||
"2487200875 910 1965 0 98136 47.5208 -122.393 \n",
|
||
"1954400510 0 1987 0 98074 47.6168 -122.045 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"263000018 0 2009 0 98103 47.6993 -122.346 \n",
|
||
"6600060120 0 2014 0 98146 47.5107 -122.362 \n",
|
||
"1523300141 0 2009 0 98144 47.5944 -122.299 \n",
|
||
"291310100 0 2004 0 98027 47.5345 -122.069 \n",
|
||
"1523300157 0 2008 0 98144 47.5941 -122.299 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"7129300520 1340 5650 \n",
|
||
"6414100192 1690 7639 \n",
|
||
"5631500400 2720 8062 \n",
|
||
"2487200875 1360 5000 \n",
|
||
"1954400510 1800 7503 \n",
|
||
"... ... ... \n",
|
||
"263000018 1530 1509 \n",
|
||
"6600060120 1830 7200 \n",
|
||
"1523300141 1020 2007 \n",
|
||
"291310100 1410 1287 \n",
|
||
"1523300157 1020 1357 \n",
|
||
"\n",
|
||
"[21612 rows x 20 columns]\n",
|
||
"\n",
|
||
"Удаление строк с индексами 1736800520 и 6300500875:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"7129300520 5650 1.0 0 0 3 7 1180 \n",
|
||
"6414100192 7242 2.0 0 0 3 7 2170 \n",
|
||
"5631500400 10000 1.0 0 0 3 6 770 \n",
|
||
"2487200875 5000 1.0 0 0 5 7 1050 \n",
|
||
"1954400510 8080 1.0 0 0 3 8 1680 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 8 1530 \n",
|
||
"6600060120 5813 2.0 0 0 3 8 2310 \n",
|
||
"1523300141 1350 2.0 0 0 3 7 1020 \n",
|
||
"291310100 2388 2.0 0 0 3 8 1600 \n",
|
||
"1523300157 1076 2.0 0 0 3 7 1020 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"7129300520 0 1955 0 98178 47.5112 -122.257 \n",
|
||
"6414100192 400 1951 1991 98125 47.7210 -122.319 \n",
|
||
"5631500400 0 1933 0 98028 47.7379 -122.233 \n",
|
||
"2487200875 910 1965 0 98136 47.5208 -122.393 \n",
|
||
"1954400510 0 1987 0 98074 47.6168 -122.045 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"263000018 0 2009 0 98103 47.6993 -122.346 \n",
|
||
"6600060120 0 2014 0 98146 47.5107 -122.362 \n",
|
||
"1523300141 0 2009 0 98144 47.5944 -122.299 \n",
|
||
"291310100 0 2004 0 98027 47.5345 -122.069 \n",
|
||
"1523300157 0 2008 0 98144 47.5941 -122.299 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"7129300520 1340 5650 \n",
|
||
"6414100192 1690 7639 \n",
|
||
"5631500400 2720 8062 \n",
|
||
"2487200875 1360 5000 \n",
|
||
"1954400510 1800 7503 \n",
|
||
"... ... ... \n",
|
||
"263000018 1530 1509 \n",
|
||
"6600060120 1830 7200 \n",
|
||
"1523300141 1020 2007 \n",
|
||
"291310100 1410 1287 \n",
|
||
"1523300157 1020 1357 \n",
|
||
"\n",
|
||
"[21611 rows x 20 columns]\n",
|
||
"\n",
|
||
"Удаление столбца 'zipcode':\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition grade sqft_above \\\n",
|
||
"id \n",
|
||
"7129300520 5650 1.0 0 0 3 7 1180 \n",
|
||
"6414100192 7242 2.0 0 0 3 7 2170 \n",
|
||
"5631500400 10000 1.0 0 0 3 6 770 \n",
|
||
"2487200875 5000 1.0 0 0 5 7 1050 \n",
|
||
"1954400510 8080 1.0 0 0 3 8 1680 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 8 1530 \n",
|
||
"6600060120 5813 2.0 0 0 3 8 2310 \n",
|
||
"1523300141 1350 2.0 0 0 3 7 1020 \n",
|
||
"291310100 2388 2.0 0 0 3 8 1600 \n",
|
||
"1523300157 1076 2.0 0 0 3 7 1020 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated lat long \\\n",
|
||
"id \n",
|
||
"7129300520 0 1955 0 47.5112 -122.257 \n",
|
||
"6414100192 400 1951 1991 47.7210 -122.319 \n",
|
||
"5631500400 0 1933 0 47.7379 -122.233 \n",
|
||
"2487200875 910 1965 0 47.5208 -122.393 \n",
|
||
"1954400510 0 1987 0 47.6168 -122.045 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 0 2009 0 47.6993 -122.346 \n",
|
||
"6600060120 0 2014 0 47.5107 -122.362 \n",
|
||
"1523300141 0 2009 0 47.5944 -122.299 \n",
|
||
"291310100 0 2004 0 47.5345 -122.069 \n",
|
||
"1523300157 0 2008 0 47.5941 -122.299 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 \n",
|
||
"id \n",
|
||
"7129300520 1340 5650 \n",
|
||
"6414100192 1690 7639 \n",
|
||
"5631500400 2720 8062 \n",
|
||
"2487200875 1360 5000 \n",
|
||
"1954400510 1800 7503 \n",
|
||
"... ... ... \n",
|
||
"263000018 1530 1509 \n",
|
||
"6600060120 1830 7200 \n",
|
||
"1523300141 1020 2007 \n",
|
||
"291310100 1410 1287 \n",
|
||
"1523300157 1020 1357 \n",
|
||
"\n",
|
||
"[21613 rows x 19 columns]\n",
|
||
"\n",
|
||
"Удаление столбцов 'bathrooms' и 'floors':\n",
|
||
" date price bedrooms sqft_living sqft_lot \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1180 5650 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2570 7242 \n",
|
||
"5631500400 20150225T000000 180000.0 2 770 10000 \n",
|
||
"2487200875 20141209T000000 604000.0 4 1960 5000 \n",
|
||
"1954400510 20150218T000000 510000.0 3 1680 8080 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 1530 1131 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2310 5813 \n",
|
||
"1523300141 20140623T000000 402101.0 2 1020 1350 \n",
|
||
"291310100 20150116T000000 400000.0 3 1600 2388 \n",
|
||
"1523300157 20141015T000000 325000.0 2 1020 1076 \n",
|
||
"\n",
|
||
" waterfront view condition grade sqft_above sqft_basement \\\n",
|
||
"id \n",
|
||
"7129300520 0 0 3 7 1180 0 \n",
|
||
"6414100192 0 0 3 7 2170 400 \n",
|
||
"5631500400 0 0 3 6 770 0 \n",
|
||
"2487200875 0 0 5 7 1050 910 \n",
|
||
"1954400510 0 0 3 8 1680 0 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"263000018 0 0 3 8 1530 0 \n",
|
||
"6600060120 0 0 3 8 2310 0 \n",
|
||
"1523300141 0 0 3 7 1020 0 \n",
|
||
"291310100 0 0 3 8 1600 0 \n",
|
||
"1523300157 0 0 3 7 1020 0 \n",
|
||
"\n",
|
||
" yr_built yr_renovated zipcode lat long sqft_living15 \\\n",
|
||
"id \n",
|
||
"7129300520 1955 0 98178 47.5112 -122.257 1340 \n",
|
||
"6414100192 1951 1991 98125 47.7210 -122.319 1690 \n",
|
||
"5631500400 1933 0 98028 47.7379 -122.233 2720 \n",
|
||
"2487200875 1965 0 98136 47.5208 -122.393 1360 \n",
|
||
"1954400510 1987 0 98074 47.6168 -122.045 1800 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"263000018 2009 0 98103 47.6993 -122.346 1530 \n",
|
||
"6600060120 2014 0 98146 47.5107 -122.362 1830 \n",
|
||
"1523300141 2009 0 98144 47.5944 -122.299 1020 \n",
|
||
"291310100 2004 0 98027 47.5345 -122.069 1410 \n",
|
||
"1523300157 2008 0 98144 47.5941 -122.299 1020 \n",
|
||
"\n",
|
||
" sqft_lot15 \n",
|
||
"id \n",
|
||
"7129300520 5650 \n",
|
||
"6414100192 7639 \n",
|
||
"5631500400 8062 \n",
|
||
"2487200875 5000 \n",
|
||
"1954400510 7503 \n",
|
||
"... ... \n",
|
||
"263000018 1509 \n",
|
||
"6600060120 7200 \n",
|
||
"1523300141 2007 \n",
|
||
"291310100 1287 \n",
|
||
"1523300157 1357 \n",
|
||
"\n",
|
||
"[21613 rows x 18 columns]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Удаление строки с индексом 1736800520:\")\n",
|
||
"print(data_frame.drop(index=1736800520))\n",
|
||
"\n",
|
||
"# 2. Удаление нескольких строк по индексам (например, удаляем строки с индексами 0 и 2)\n",
|
||
"print(\"\\nУдаление строк с индексами 1736800520 и 6300500875:\")\n",
|
||
"print(data_frame.drop(index=[1736800520, 6300500875]))\n",
|
||
"\n",
|
||
"# 3. Удаление столбца по имени (например, удаляем столбец 'zipcode')\n",
|
||
"print(\"\\nУдаление столбца 'zipcode':\")\n",
|
||
"print(data_frame.drop(columns=\"zipcode\"))\n",
|
||
"\n",
|
||
"# 4. Удаление нескольких столбцов (например, 'bathrooms' и 'floors')\n",
|
||
"print(\"\\nУдаление столбцов 'bathrooms' и 'floors':\")\n",
|
||
"print(data_frame.drop(columns=[\"bathrooms\", \"floors\"]))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Создание новых столбцов на основе данных из существующих столбцов"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 37,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Создание нового столбца 'price_per_bedroom':\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... sqft_above \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 1180 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 2170 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 770 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 1050 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 1680 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 1530 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 2310 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 1020 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 1600 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 1020 \n",
|
||
"\n",
|
||
" sqft_basement yr_built yr_renovated zipcode lat long \\\n",
|
||
"id \n",
|
||
"7129300520 0 1955 0 98178 47.5112 -122.257 \n",
|
||
"6414100192 400 1951 1991 98125 47.7210 -122.319 \n",
|
||
"5631500400 0 1933 0 98028 47.7379 -122.233 \n",
|
||
"2487200875 910 1965 0 98136 47.5208 -122.393 \n",
|
||
"1954400510 0 1987 0 98074 47.6168 -122.045 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"263000018 0 2009 0 98103 47.6993 -122.346 \n",
|
||
"6600060120 0 2014 0 98146 47.5107 -122.362 \n",
|
||
"1523300141 0 2009 0 98144 47.5944 -122.299 \n",
|
||
"291310100 0 2004 0 98027 47.5345 -122.069 \n",
|
||
"1523300157 0 2008 0 98144 47.5941 -122.299 \n",
|
||
"\n",
|
||
" sqft_living15 sqft_lot15 price_per_bedroom \n",
|
||
"id \n",
|
||
"7129300520 1340 5650 73966.666667 \n",
|
||
"6414100192 1690 7639 179333.333333 \n",
|
||
"5631500400 2720 8062 90000.000000 \n",
|
||
"2487200875 1360 5000 151000.000000 \n",
|
||
"1954400510 1800 7503 170000.000000 \n",
|
||
"... ... ... ... \n",
|
||
"263000018 1530 1509 120000.000000 \n",
|
||
"6600060120 1830 7200 100000.000000 \n",
|
||
"1523300141 1020 2007 201050.500000 \n",
|
||
"291310100 1410 1287 133333.333333 \n",
|
||
"1523300157 1020 1357 162500.000000 \n",
|
||
"\n",
|
||
"[21613 rows x 21 columns]\n",
|
||
"\n",
|
||
"Создание нового столбца 'total_rooms':\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... sqft_basement \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 0 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 400 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 0 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 910 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 0 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 0 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 0 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 0 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 0 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 0 \n",
|
||
"\n",
|
||
" yr_built yr_renovated zipcode lat long sqft_living15 \\\n",
|
||
"id \n",
|
||
"7129300520 1955 0 98178 47.5112 -122.257 1340 \n",
|
||
"6414100192 1951 1991 98125 47.7210 -122.319 1690 \n",
|
||
"5631500400 1933 0 98028 47.7379 -122.233 2720 \n",
|
||
"2487200875 1965 0 98136 47.5208 -122.393 1360 \n",
|
||
"1954400510 1987 0 98074 47.6168 -122.045 1800 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"263000018 2009 0 98103 47.6993 -122.346 1530 \n",
|
||
"6600060120 2014 0 98146 47.5107 -122.362 1830 \n",
|
||
"1523300141 2009 0 98144 47.5944 -122.299 1020 \n",
|
||
"291310100 2004 0 98027 47.5345 -122.069 1410 \n",
|
||
"1523300157 2008 0 98144 47.5941 -122.299 1020 \n",
|
||
"\n",
|
||
" sqft_lot15 price_per_bedroom total_rooms \n",
|
||
"id \n",
|
||
"7129300520 5650 73966.666667 4.00 \n",
|
||
"6414100192 7639 179333.333333 5.25 \n",
|
||
"5631500400 8062 90000.000000 3.00 \n",
|
||
"2487200875 5000 151000.000000 7.00 \n",
|
||
"1954400510 7503 170000.000000 5.00 \n",
|
||
"... ... ... ... \n",
|
||
"263000018 1509 120000.000000 5.50 \n",
|
||
"6600060120 7200 100000.000000 6.50 \n",
|
||
"1523300141 2007 201050.500000 2.75 \n",
|
||
"291310100 1287 133333.333333 5.50 \n",
|
||
"1523300157 1357 162500.000000 2.75 \n",
|
||
"\n",
|
||
"[21613 rows x 22 columns]\n",
|
||
"\n",
|
||
"Создание нового столбца 'is_expensive':\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... yr_built \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 1955 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 1951 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 1933 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 1965 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 1987 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 2009 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 2014 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 2009 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 2004 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 2008 \n",
|
||
"\n",
|
||
" yr_renovated zipcode lat long sqft_living15 \\\n",
|
||
"id \n",
|
||
"7129300520 0 98178 47.5112 -122.257 1340 \n",
|
||
"6414100192 1991 98125 47.7210 -122.319 1690 \n",
|
||
"5631500400 0 98028 47.7379 -122.233 2720 \n",
|
||
"2487200875 0 98136 47.5208 -122.393 1360 \n",
|
||
"1954400510 0 98074 47.6168 -122.045 1800 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 0 98103 47.6993 -122.346 1530 \n",
|
||
"6600060120 0 98146 47.5107 -122.362 1830 \n",
|
||
"1523300141 0 98144 47.5944 -122.299 1020 \n",
|
||
"291310100 0 98027 47.5345 -122.069 1410 \n",
|
||
"1523300157 0 98144 47.5941 -122.299 1020 \n",
|
||
"\n",
|
||
" sqft_lot15 price_per_bedroom total_rooms is_expensive \n",
|
||
"id \n",
|
||
"7129300520 5650 73966.666667 4.00 False \n",
|
||
"6414100192 7639 179333.333333 5.25 True \n",
|
||
"5631500400 8062 90000.000000 3.00 False \n",
|
||
"2487200875 5000 151000.000000 7.00 True \n",
|
||
"1954400510 7503 170000.000000 5.00 True \n",
|
||
"... ... ... ... ... \n",
|
||
"263000018 1509 120000.000000 5.50 True \n",
|
||
"6600060120 7200 100000.000000 6.50 True \n",
|
||
"1523300141 2007 201050.500000 2.75 True \n",
|
||
"291310100 1287 133333.333333 5.50 True \n",
|
||
"1523300157 1357 162500.000000 2.75 True \n",
|
||
"\n",
|
||
"[21613 rows x 23 columns]\n",
|
||
"\n",
|
||
"Создание нового столбца 'floor_area_ratio':\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... yr_renovated \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 0 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 1991 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 0 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 0 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 0 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 0 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 0 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 0 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 0 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 0 \n",
|
||
"\n",
|
||
" zipcode lat long sqft_living15 sqft_lot15 \\\n",
|
||
"id \n",
|
||
"7129300520 98178 47.5112 -122.257 1340 5650 \n",
|
||
"6414100192 98125 47.7210 -122.319 1690 7639 \n",
|
||
"5631500400 98028 47.7379 -122.233 2720 8062 \n",
|
||
"2487200875 98136 47.5208 -122.393 1360 5000 \n",
|
||
"1954400510 98074 47.6168 -122.045 1800 7503 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 98103 47.6993 -122.346 1530 1509 \n",
|
||
"6600060120 98146 47.5107 -122.362 1830 7200 \n",
|
||
"1523300141 98144 47.5944 -122.299 1020 2007 \n",
|
||
"291310100 98027 47.5345 -122.069 1410 1287 \n",
|
||
"1523300157 98144 47.5941 -122.299 1020 1357 \n",
|
||
"\n",
|
||
" price_per_bedroom total_rooms is_expensive floor_area_ratio \n",
|
||
"id \n",
|
||
"7129300520 73966.666667 4.00 False 0.333333 \n",
|
||
"6414100192 179333.333333 5.25 True 0.666667 \n",
|
||
"5631500400 90000.000000 3.00 False 0.500000 \n",
|
||
"2487200875 151000.000000 7.00 True 0.250000 \n",
|
||
"1954400510 170000.000000 5.00 True 0.333333 \n",
|
||
"... ... ... ... ... \n",
|
||
"263000018 120000.000000 5.50 True 1.000000 \n",
|
||
"6600060120 100000.000000 6.50 True 0.500000 \n",
|
||
"1523300141 201050.500000 2.75 True 1.000000 \n",
|
||
"291310100 133333.333333 5.50 True 0.666667 \n",
|
||
"1523300157 162500.000000 2.75 True 1.000000 \n",
|
||
"\n",
|
||
"[21613 rows x 24 columns]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# 1. Создание нового столбца 'price_per_bedroom'\n",
|
||
"print(\"Создание нового столбца 'price_per_bedroom':\")\n",
|
||
"data_frame[\"price_per_bedroom\"] = data_frame[\"price\"] / data_frame[\"bedrooms\"]\n",
|
||
"print(data_frame)\n",
|
||
"\n",
|
||
"# 2. Создание нового столбца 'total_rooms' (сумма спален и ванных комнат)\n",
|
||
"print(\"\\nСоздание нового столбца 'total_rooms':\")\n",
|
||
"data_frame[\"total_rooms\"] = data_frame[\"bedrooms\"] + data_frame[\"bathrooms\"]\n",
|
||
"print(data_frame)\n",
|
||
"\n",
|
||
"# 3. Создание нового столбца 'is_expensive' (определяем, дорогой ли дом)\n",
|
||
"print(\"\\nСоздание нового столбца 'is_expensive':\")\n",
|
||
"data_frame[\"is_expensive\"] = data_frame[\"price\"] > 300000\n",
|
||
"print(data_frame)\n",
|
||
"\n",
|
||
"# 4. Создание нового столбца 'floor_area_ratio' (соотношение этажей к количеству спален)\n",
|
||
"print(\"\\nСоздание нового столбца 'floor_area_ratio':\")\n",
|
||
"data_frame[\"floor_area_ratio\"] = data_frame[\"floors\"] / data_frame[\"bedrooms\"]\n",
|
||
"print(data_frame)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Удаление строк с пустыми значениями\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 38,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Исходный DataFrame с пустыми значениями:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... yr_renovated \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 0 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 1991 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 0 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 0 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 0 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 0 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 0 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 0 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 0 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 0 \n",
|
||
"\n",
|
||
" zipcode lat long sqft_living15 sqft_lot15 \\\n",
|
||
"id \n",
|
||
"7129300520 98178 47.5112 -122.257 1340 5650 \n",
|
||
"6414100192 98125 47.7210 -122.319 1690 7639 \n",
|
||
"5631500400 98028 47.7379 -122.233 2720 8062 \n",
|
||
"2487200875 98136 47.5208 -122.393 1360 5000 \n",
|
||
"1954400510 98074 47.6168 -122.045 1800 7503 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 98103 47.6993 -122.346 1530 1509 \n",
|
||
"6600060120 98146 47.5107 -122.362 1830 7200 \n",
|
||
"1523300141 98144 47.5944 -122.299 1020 2007 \n",
|
||
"291310100 98027 47.5345 -122.069 1410 1287 \n",
|
||
"1523300157 98144 47.5941 -122.299 1020 1357 \n",
|
||
"\n",
|
||
" price_per_bedroom total_rooms is_expensive floor_area_ratio \n",
|
||
"id \n",
|
||
"7129300520 73966.666667 4.00 False 0.333333 \n",
|
||
"6414100192 179333.333333 5.25 True 0.666667 \n",
|
||
"5631500400 90000.000000 3.00 False 0.500000 \n",
|
||
"2487200875 151000.000000 7.00 True 0.250000 \n",
|
||
"1954400510 170000.000000 5.00 True 0.333333 \n",
|
||
"... ... ... ... ... \n",
|
||
"263000018 120000.000000 5.50 True 1.000000 \n",
|
||
"6600060120 100000.000000 6.50 True 0.500000 \n",
|
||
"1523300141 201050.500000 2.75 True 1.000000 \n",
|
||
"291310100 133333.333333 5.50 True 0.666667 \n",
|
||
"1523300157 162500.000000 2.75 True 1.000000 \n",
|
||
"\n",
|
||
"[21613 rows x 24 columns]\n",
|
||
"\n",
|
||
"Удаление строк с любыми пустыми значениями:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... yr_renovated \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 0 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 1991 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 0 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 0 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 0 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 0 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 0 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 0 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 0 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 0 \n",
|
||
"\n",
|
||
" zipcode lat long sqft_living15 sqft_lot15 \\\n",
|
||
"id \n",
|
||
"7129300520 98178 47.5112 -122.257 1340 5650 \n",
|
||
"6414100192 98125 47.7210 -122.319 1690 7639 \n",
|
||
"5631500400 98028 47.7379 -122.233 2720 8062 \n",
|
||
"2487200875 98136 47.5208 -122.393 1360 5000 \n",
|
||
"1954400510 98074 47.6168 -122.045 1800 7503 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 98103 47.6993 -122.346 1530 1509 \n",
|
||
"6600060120 98146 47.5107 -122.362 1830 7200 \n",
|
||
"1523300141 98144 47.5944 -122.299 1020 2007 \n",
|
||
"291310100 98027 47.5345 -122.069 1410 1287 \n",
|
||
"1523300157 98144 47.5941 -122.299 1020 1357 \n",
|
||
"\n",
|
||
" price_per_bedroom total_rooms is_expensive floor_area_ratio \n",
|
||
"id \n",
|
||
"7129300520 73966.666667 4.00 False 0.333333 \n",
|
||
"6414100192 179333.333333 5.25 True 0.666667 \n",
|
||
"5631500400 90000.000000 3.00 False 0.500000 \n",
|
||
"2487200875 151000.000000 7.00 True 0.250000 \n",
|
||
"1954400510 170000.000000 5.00 True 0.333333 \n",
|
||
"... ... ... ... ... \n",
|
||
"263000018 120000.000000 5.50 True 1.000000 \n",
|
||
"6600060120 100000.000000 6.50 True 0.500000 \n",
|
||
"1523300141 201050.500000 2.75 True 1.000000 \n",
|
||
"291310100 133333.333333 5.50 True 0.666667 \n",
|
||
"1523300157 162500.000000 2.75 True 1.000000 \n",
|
||
"\n",
|
||
"[21613 rows x 24 columns]\n",
|
||
"\n",
|
||
"Удаление строк с пустыми значениями в столбце 'price':\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... yr_renovated \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 0 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 1991 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 0 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 0 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 0 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 0 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 0 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 0 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 0 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 0 \n",
|
||
"\n",
|
||
" zipcode lat long sqft_living15 sqft_lot15 \\\n",
|
||
"id \n",
|
||
"7129300520 98178 47.5112 -122.257 1340 5650 \n",
|
||
"6414100192 98125 47.7210 -122.319 1690 7639 \n",
|
||
"5631500400 98028 47.7379 -122.233 2720 8062 \n",
|
||
"2487200875 98136 47.5208 -122.393 1360 5000 \n",
|
||
"1954400510 98074 47.6168 -122.045 1800 7503 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 98103 47.6993 -122.346 1530 1509 \n",
|
||
"6600060120 98146 47.5107 -122.362 1830 7200 \n",
|
||
"1523300141 98144 47.5944 -122.299 1020 2007 \n",
|
||
"291310100 98027 47.5345 -122.069 1410 1287 \n",
|
||
"1523300157 98144 47.5941 -122.299 1020 1357 \n",
|
||
"\n",
|
||
" price_per_bedroom total_rooms is_expensive floor_area_ratio \n",
|
||
"id \n",
|
||
"7129300520 73966.666667 4.00 False 0.333333 \n",
|
||
"6414100192 179333.333333 5.25 True 0.666667 \n",
|
||
"5631500400 90000.000000 3.00 False 0.500000 \n",
|
||
"2487200875 151000.000000 7.00 True 0.250000 \n",
|
||
"1954400510 170000.000000 5.00 True 0.333333 \n",
|
||
"... ... ... ... ... \n",
|
||
"263000018 120000.000000 5.50 True 1.000000 \n",
|
||
"6600060120 100000.000000 6.50 True 0.500000 \n",
|
||
"1523300141 201050.500000 2.75 True 1.000000 \n",
|
||
"291310100 133333.333333 5.50 True 0.666667 \n",
|
||
"1523300157 162500.000000 2.75 True 1.000000 \n",
|
||
"\n",
|
||
"[21613 rows x 24 columns]\n",
|
||
"\n",
|
||
"Удаление строк, где все значения пустые:\n",
|
||
" date price bedrooms bathrooms sqft_living \\\n",
|
||
"id \n",
|
||
"7129300520 20141013T000000 221900.0 3 1.00 1180 \n",
|
||
"6414100192 20141209T000000 538000.0 3 2.25 2570 \n",
|
||
"5631500400 20150225T000000 180000.0 2 1.00 770 \n",
|
||
"2487200875 20141209T000000 604000.0 4 3.00 1960 \n",
|
||
"1954400510 20150218T000000 510000.0 3 2.00 1680 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 20140521T000000 360000.0 3 2.50 1530 \n",
|
||
"6600060120 20150223T000000 400000.0 4 2.50 2310 \n",
|
||
"1523300141 20140623T000000 402101.0 2 0.75 1020 \n",
|
||
"291310100 20150116T000000 400000.0 3 2.50 1600 \n",
|
||
"1523300157 20141015T000000 325000.0 2 0.75 1020 \n",
|
||
"\n",
|
||
" sqft_lot floors waterfront view condition ... yr_renovated \\\n",
|
||
"id ... \n",
|
||
"7129300520 5650 1.0 0 0 3 ... 0 \n",
|
||
"6414100192 7242 2.0 0 0 3 ... 1991 \n",
|
||
"5631500400 10000 1.0 0 0 3 ... 0 \n",
|
||
"2487200875 5000 1.0 0 0 5 ... 0 \n",
|
||
"1954400510 8080 1.0 0 0 3 ... 0 \n",
|
||
"... ... ... ... ... ... ... ... \n",
|
||
"263000018 1131 3.0 0 0 3 ... 0 \n",
|
||
"6600060120 5813 2.0 0 0 3 ... 0 \n",
|
||
"1523300141 1350 2.0 0 0 3 ... 0 \n",
|
||
"291310100 2388 2.0 0 0 3 ... 0 \n",
|
||
"1523300157 1076 2.0 0 0 3 ... 0 \n",
|
||
"\n",
|
||
" zipcode lat long sqft_living15 sqft_lot15 \\\n",
|
||
"id \n",
|
||
"7129300520 98178 47.5112 -122.257 1340 5650 \n",
|
||
"6414100192 98125 47.7210 -122.319 1690 7639 \n",
|
||
"5631500400 98028 47.7379 -122.233 2720 8062 \n",
|
||
"2487200875 98136 47.5208 -122.393 1360 5000 \n",
|
||
"1954400510 98074 47.6168 -122.045 1800 7503 \n",
|
||
"... ... ... ... ... ... \n",
|
||
"263000018 98103 47.6993 -122.346 1530 1509 \n",
|
||
"6600060120 98146 47.5107 -122.362 1830 7200 \n",
|
||
"1523300141 98144 47.5944 -122.299 1020 2007 \n",
|
||
"291310100 98027 47.5345 -122.069 1410 1287 \n",
|
||
"1523300157 98144 47.5941 -122.299 1020 1357 \n",
|
||
"\n",
|
||
" price_per_bedroom total_rooms is_expensive floor_area_ratio \n",
|
||
"id \n",
|
||
"7129300520 73966.666667 4.00 False 0.333333 \n",
|
||
"6414100192 179333.333333 5.25 True 0.666667 \n",
|
||
"5631500400 90000.000000 3.00 False 0.500000 \n",
|
||
"2487200875 151000.000000 7.00 True 0.250000 \n",
|
||
"1954400510 170000.000000 5.00 True 0.333333 \n",
|
||
"... ... ... ... ... \n",
|
||
"263000018 120000.000000 5.50 True 1.000000 \n",
|
||
"6600060120 100000.000000 6.50 True 0.500000 \n",
|
||
"1523300141 201050.500000 2.75 True 1.000000 \n",
|
||
"291310100 133333.333333 5.50 True 0.666667 \n",
|
||
"1523300157 162500.000000 2.75 True 1.000000 \n",
|
||
"\n",
|
||
"[21613 rows x 24 columns]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# 1. Исходный DataFrame с пустыми значениями\n",
|
||
"print(\"Исходный DataFrame с пустыми значениями:\")\n",
|
||
"print(data_frame)\n",
|
||
"\n",
|
||
"# 2. Удаление строк с любыми пустыми значениями\n",
|
||
"print(\"\\nУдаление строк с любыми пустыми значениями:\")\n",
|
||
"print(data_frame.dropna())\n",
|
||
"\n",
|
||
"# 3. Удаление строк только с пустыми значениями в определенном столбце (например, 'price')\n",
|
||
"print(\"\\nУдаление строк с пустыми значениями в столбце 'price':\")\n",
|
||
"print(data_frame.dropna(subset=[\"price\"]))\n",
|
||
"\n",
|
||
"# 4. Удаление строк, где все значения пустые\n",
|
||
"print(\"\\nУдаление строк, где все значения пустые:\")\n",
|
||
"print(data_frame.dropna(how=\"all\"))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Matplotlib\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 39,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHKCAYAAAD/zGr0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJaUlEQVR4nO3dd1yV9f//8ecBWcpwoOAg0ajEbViGIxsoWuZoaKmhpmalWfkti0rRsrChYeVITe1Tmqvlp+EiyYW5R7kVRyq4t0LC+/eHP8/HI4gcRQ5ePu6323W7eb2v9/W+Xmd4zpNrHZsxxggAAMAi3FxdAAAAQH4i3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3OC62rZtm3r06KHKlSvL29tb/v7+atCggYYNG6YzZ864ujwAgAUVcXUBsK5ffvlFTzzxhLy8vBQTE6Pq1asrIyNDCxcu1Guvvaa///5bo0ePdnWZAACLsfHDmbgeUlJSVLNmTVWoUEG///67ypYt67B869at+uWXX/TSSy+5qEIAgFVxWArXxYcffqiTJ0/qyy+/zBZsJCksLMwh2NhsNvXq1UsTJ07UHXfcIW9vb0VERGj+/PnZ1t2zZ4+eeeYZBQUFycvLS9WqVdO4ceNyrGPAgAGy2WzZpvvuu8+h33333afq1atnW//jjz+WzWbTjh077G3nzp3ToEGDdPvtt8vLy8th3OXLlzvdLyedO3eWr69vtvbp06fLZrMpKSnJoT09PV1xcXEKCwuTl5eXQkJC1LdvX6Wnpzv0u/A8X6pFixYKDQ3N9tjr16+vUqVKycfHRxEREZo+fXqudV9w33335fi8X5gufj4lacSIEapWrZq8vLxUrlw59ezZU0ePHr3idi68vhebN2+evLy89Nxzzzm0r1q1Ss2bN5e/v798fX314IMPasmSJU7VP2HCBIc+l76Pli1bZu97QVJSUo6vWefOnbM951lZWUpISFC1atXk7e2toKAg9ejRQ0eOHMlW42+//abGjRvLz89P/v7+uuuuuzRp0qRc6794uuDiNnd3d5UvX17PPvus/fk/efKkihUrluMfIv/884/c3d0VHx+f4/N48eMaNmyYatSoIW9vb5UuXVrNmjVz+H+QW63X8t6cMGFCnj4Djh49qpdfflkhISHy8vJSWFiYPvjgA2VlZdn77NixQzabTR9//HG27VSvXj3bmHAdDkvhuvjvf/+rypUrq379+nle548//tCUKVPUu3dveXl5acSIEWrWrJmWLl1qDx5paWm655577F/SpUuX1m+//aauXbvq+PHjevnll3Mce+TIkfawEBsbe02PbciQIerXr5/atGmj119/XV5eXlqwYEG2Q2x57XetsrKy1LJlSy1cuFDPPvuswsPDtW7dOn3yySfavHmzfvzxx6sad9iwYWrZsqU6dOigjIwMTZ48WU888YR+/vlnPfzww1dcv0KFCtm+9H799Vd9++23Dm0DBgzQwIEDFRUVpeeff16bNm3SyJEjtWzZMi1atEgeHh55rnnNmjVq3bq1HnroIQ0fPtze/vfff6tRo0by9/dX37595eHhoS+++EL33Xef/vjjD9WrVy/bWFWqVNFbb70lSTp48KBeeeWVK27/9ddfz3OtOenRo4cmTJigLl26qHfv3kpJSdHnn3+uVatWOTwXEyZM0DPPPKNq1aopNjZWxYsX16pVqzRz5ky1b99eb731lrp16+ZQ+7PPPqtGjRrluN02bdro0Ucf1blz55ScnKzRo0frzJkz+vrrr+Xr66s2bdpoypQpGjp0qNzd3e3rffvttzLGqEOHDrk+rq5du2rChAlq3ry5unXrpnPnzmnBggVasmSJ6tata+/XpEkTxcTEOKw7ZMiQbOHuat6bn3zyiQIDAyVJ7733nsOy06dPq3HjxtqzZ4969OihW265RYsXL1ZsbKz27dunhISEXB8fCiED5LNjx44ZSaZVq1Z5XkeSkWSWL19ub9u5c6fx9vY2bdq0sbd17drVlC1b1hw8eNBh/SeffNIEBASY06dPO7S/+eabRpJD/2rVqpnGjRs79GvcuLGpVq1atro++ugjI8mkpKTY2yIjI014eLjJysqyt40fP95IMsuWLXO6X046depkihUrlq192rRpRpKZN2+eve3rr782bm5uZsGCBQ59R40aZSSZRYsW2dskmZ49e2Yb9+GHHzYVK1Z0aLv0uczIyDDVq1c3DzzwQK61G5P353P//v3G09PTNG3a1GRmZtr7ff7550aSGTduXK7biYuLMxc+xnbs2GHKli1rGjZsaM6cOePQr3Xr1sbT09Ns27bN3rZ3717j5+dn7r333mzjNmjQwNx///32+ZSUFCPJjB8/3uExXvw++vXXX40k06xZM3PxR+sff/xhJJnff//dYRudOnVyeM4XLFhgJJmJEyc69Js5c6ZD+9GjR42fn5+pV69etsd58Xstt9ovJsnExcU5tNWvX99UrVrVPj9r1iwjyfz2228O/WrWrJnt/9Klfv/9dyPJ9O7dO9uyi+u9Xu/NMWPGGElm586d9rZLX7t3333XFCtWzGzevNlh3TfeeMO4u7ubXbt2GWP+91x+9NFH2baT0+cKXIfDUsh3x48flyT5+fk5tV5kZKQiIiLs87fccotatWqlWbNmKTMzU8YYfffdd3rkkUdkjNHBgwftU3R0tI4dO6aVK1c6jHn27FlJkre39xW3n5mZ6TDmwYMHdfr06Wz9Tpw4oRIlSmQ7HHK1/a7VtGnTFB4eripVqjjU/sADD0g6f5jmYmfPns32OP/9999s4/r4+Nj/feTIER07dkyNGjXK9hxfi7lz5yojI0Mvv/yy3Nz+93HUvXt3+fv765dffsnTOIcOHVJ0dLT8/Pw0Y8YMh9c7MzNTs2fPVuvWrVW5cmV7e9myZdW+fXstXLjQ/p69ICMjQ15eXnl+HMYYxcbG6rHHHsu2F6hMmTKSzh/Cyc20adMUEBCgJk2aOLw2ERER8vX1tb+Oc+bM0YkTJ/TGG29ke19f7Xvt9OnTOnjwoFJTU/Xdd99pzZo1evDBB+3Lo6KiVK5cOU2cONHe9tdff2nt2rXq2LFjrmN/9913stlsiouLy7bsaut15r2ZkZEhSbm+ntOmTVOjRo1UokQJh+c+KipKmZmZ2Q6PX3i+Lp4yMzOv6rHg+ripD0vNnz9fH330kVasWKF9+/bphx9+UOvWrZ0awxijIUOGaPTo0dq5c6cCAwP1wgsv2Hdn34z8/f0lnf9yd8Ztt92Wre3222/X6dOndeDAAbm5ueno0aMaPXr0ZQ/t7N+/32H+4MGD8vDwUNGiRa+4/Y0bN6p06dJX7BcZGamxY8fqiy++UIsWLeTl5aWTJ09edb9rtWXLFm3YsOGytV/6nHz55Zf68ssvs/WrWLGiw/zPP/+sQYMGafXq1Q7n7uRnWNu5c6ck6Y477nBo9/T0VOXKle3Lr6RFixbatGmTypQpI3PJNRIHDhzQ6dOns21DksLDw5WVlaXdu3erWrVq9vajR49mez5yM3HiRP3999+aOnWq/byXCypXrqzg4GB9/PHHqlWrlsqVKydJ2c6H2rJli44dO2YPQ5e68Dpu27ZNknI8R+xqffTRR/roo4/s882aNdMHH3xgn3dzc1OHDh00cuRInT59WkWLFtXEiRPl7e2tJ554Itext23bpnLlyqlkyZL5Vq8z780L5w7ldA7bBVu2bNHatWvz/H8oLi4ux7AWFBSUl/JRAG7qcHPq1CnVqlVLzzzzjB599NGrGuOll17S7Nmz9fHHH6tGjRo6fPiwDh8+nM+V3lj8/f1Vrlw5/fXXX/k67oUT+zp27KhOnTrl2KdmzZoO8zt27NAtt9ySpy/k0NBQjRkzxqFt2rRp2YJUfHy89uzZk+2E1Uvltd+1ysrKUo0aNTR06NAcl4eEhDjMt2rVKttJxW+//bZSU1Pt8wsWLFDLli117733asSIESpbtqw8PDw0fvz4bF/ehcHGjRv122+/qW3btvq///s/jR8//prGS01NVXR0dJ76ZmRkqF+/furatatuv/32bMs9PT01ZswYtW/fXrVq1XJYdnGAysrKUpkyZRz2jlwsL8H7aj399NOKiYlRVlaWtm/frnfffVctWrTQ3Llz7f93YmJi9NFHH+nHH3/UU089pUmTJqlFixYKCAi4bnXlxNn3Zmpqqnx9fVWsWLHLjpmVlaUmTZqob9++OS6/9HV99tlns4W67t27X8WjwfVyU4eb5s2bq3nz5pddnp6errfeekvffvutjh49qurVq+uDDz6wnxG/YcMGjRw5Un/99Zf9r8JKlSoVROmFXosWLTR69GglJycrMjIyT+ts2bIlW9vmzZtVtGhR+we7n5+fMjMzFRUVdcXxzp07pzVr1qhZs2Z52n6xYsWyjbt69eps/UqVKqWvv/5a1apVU8OGDdWjRw/Nnj3b4S9fZ/pdq1tvvdV+GCEvIa5ChQrZHmdCQoJDuPnuu+/k7e2tWbNmOezOv9bQcKkLX+6bNm1yOGSUkZGhlJSUPL3OkjRjxgw1atRI8fHx6tWrlzp27Gg/rFK6dGkVLVpUmzZtyrbexo0b5ebm5hAA//nnH504cULh4eF52vaIESO0f/9+DRgw4LJ9WrRooT179mjt2rX2m1d+9NFHDjXdeuutmjt3rho0aOBw2OVSt956q6Tzh4XCwsLyVOOVVK5c2eG5DggIUPv27bVkyRL7/9/q1aurTp06mjhxoipUqKBdu3bps88+u+LYt956q2bNmqXDhw/ny94bZ9+b69evv+Jreeutt+rkyZN5fr/ddttt2frmFp5Q8DjnJhe9evVScnKyJk+erLVr1+qJJ55Qs2bN7F/CF64I+vnnn1WpUiWFhoaqW7duN/2eG0nq27evihUrpm7duiktLS3b8m3btmnYsGEObcnJyQ7HzHfv3q2ffvpJTZs2lbu7u9zd3fXYY4/pu+++y3Gv0IEDBxzmZ8+erWPHjqlVq1b59Kj+59lnn5Wnp6fGjh2rqKgoVa1a9Zr6XYu2bdtqz5492fY6SdKZM2d06tQpp8d0d3eXzWZzOI9gx44dV33l1eVERUXJ09NTn376qcPhpC+//FLHjh3L01VZkuxXAb3wwguqX7++evToYQ8R7u7uatq0qX766SeHS9DT0tI0adIkNWzY0H4oVZImT54sSfZzlnJz4sQJvffee3rllVcUHByca18/Pz81aNBAUVFRioqKynaLhLZt2yozM1PvvvtutnXPnTtnP7zStGlT+fn5KT4+3n5O2QWXHpK7Wheeu0sPnT399NOaPXu2EhISVKpUqVz/OLzgsccekzFGAwcOzLbsaup15r25e/duLVq06IqvZdu2bZWcnKxZs2ZlW3b06FGdO3fO6TrhWjf1npvc7Nq1S+PHj9euXbvsx8hfffVVzZw5U+PHj9f777+v7du3a+fOnZo2bZr+85//KDMzU6+88ooef/xx/f777y5+BK516623atKkSWrXrp3Cw8Md7lC8ePFiTZs2TZ07d3ZYp3r16oqOjna4FFySw4fi4MGDNW/ePNWrV0/du3dX1apVdfjwYa1cuVJz5861B8spU6bo1VdflZeXl86cOaNvvvnGPsaxY8eUmZmpH3/80elzrKTzX7w//PCD5s2bl+su+bz2u5zMzEzNnDnToe3CnqSlS5eqQoUKCgsL09NPP62pU6fqueee07x589SgQQNlZmZq48aNmjp1qmbNmuVwuW1ePPzwwxo6dKiaNWum9u3ba//+/Ro+fLjCwsK0du1apx/L5ZQuXVqxsbEaOHCgmjVrppYtW2rTpk0aMWKE7rrrriuerHopm82msWPHqnbt2oqLi9OHH34oSRo0aJDmzJmjhg0b6oUXXlCRIkX0xRdfKD093d4nLS1NcXFxGjt2rJ588klVqVLlittbuXKlAgMDL3s4wxmNGzdWjx49FB8fr9WrV6tp06by8PDQli1bNG3aNA0bNkyPP/64/P399cknn6hbt26666671L59e5UoUUJr1qzR6dOn9dVXXzm97bVr1+qbb76RMUbbtm3Tp59+qgoVKmR737Rv3159+/bVDz/8oOeffz5Pl+nff//9evrpp/Xpp59qy5YtatasmbKysrRgwQLdf//9Od53KTd5fW+OHDlS8fHxKlq0qHr37p3rmK+99ppmzJihFi1aqHPnzoqIiNCpU6e0bt06TZ8+XTt27LBfRo4bhKsu0ypsJJkffvjBPv/zzz8bSaZYsWIOU5EiRUzbtm2NMcZ0797dSDKbNm2yr7dixQojyWzcuLGgH0KhtHnzZtO9e3cTGhpqPD09jZ+fn2nQoIH57LPPzNmzZ+399P8vA/3mm2/MbbfdZry8vEydOnUcLnm+IC0tzfTs2dOEhIQYDw8PExwcbB588EEzevRoe5+KFSvaLy+/3HTx5aV5vXR5y5YtplixYiY2Ntah36WXeOe13+V06tTpivVffPluRkaG+eCDD0y1atWMl5eXKVGihImIiDADBw40x44dy/Y8Xyqny22//PJL+2tRpUoVM378eIdLr3PjzKX1xpy/9LtKlSrGw8PDBAUFmeeff94cOXLkitu5XD0DBw40RYoUMStXrrS3rVy50kRHRxtfX19TtGhRc//995vFixfbly9atMiEhYWZAQMGmPT0dIfxLncpuCTzySef5KmmS116KfgFo0ePNhEREcbHx8f4+fmZGjVqmL59+5q9e/c69JsxY4apX7++8fHxMf7+/ubuu+823377bbbx8nIp+IXJZrOZ4OBg8+ijj5oNGzbk2P+hhx4ykhyeuys5d+6c+eijj0yVKlWMp6enKV26tGnevLlZsWKFQx35+d68++67zRNPPJHjZ/Gll4IbY8yJEydMbGysCQsLM56eniYwMNDUr1/ffPzxxyYjI8MYw6XgNxJ+fuH/s9lsDldLTZkyRR06dNDff//tcNMq6fxZ98HBwYqLi9P777/vcBntmTNnVLRoUc2ePVtNmjQpyIdwQ7PZbOrZs6c+//zzfBkvNDRUAwYMyLZ36IKkpCR17tw5251ybxQX7o6b23kewPXQpk0brVu3Tlu3bnV1KcBlcVjqMurUqaPMzEzt37//snf1bNCggc6dO6dt27bZT/LbvHmzpOyX1QLAjW7fvn365ZdfbupbXeDGcFOHm5MnTzr89ZGSkqLVq1erZMmSuv3229WhQwfFxMRoyJAhqlOnjg4cOKDExETVrFlTDz/8sKKionTnnXfqmWeeUUJCgrKystSzZ081adIkx0tCUXDatGljD5w5CQoKUps2bQqwovx1991359uVMsCVpKSkaNGiRRo7dqw8PDzUo0cPV5cE5M7Vx8Vcad68eTmey9CpUydjzPnzGPr3729CQ0ONh4eHKVu2rGnTpo1Zu3atfYw9e/aYRx991Pj6+pqgoCDTuXNnc+jQIRc9ohuXLnO8HYDrXThX7JZbbjHTpk1zdTnAFXHODQAAsBTucwMAACzlpjvnJisrS3v37pWfn991/0FDAACQP4wxOnHihMqVK+fwQ7s5uenCzd69e7P91g4AALgx7N69WxUqVMi1z00Xbvz8/CSdf3IuvuU6AAAovI4fP66QkBD793hubrpwc+FQlL+/P+EGAIAbTF5OKeGEYgAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYClFXF0AAOD6GLzqYL6N9UadwHwbC7je2HMDAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAsxaXhZv78+XrkkUdUrlw52Ww2/fjjj1dcJykpSXfeeae8vLwUFhamCRMmXPc6AQDAjcOl4ebUqVOqVauWhg8fnqf+KSkpevjhh3X//fdr9erVevnll9WtWzfNmjXrOlcKAABuFEVcufHmzZurefPmee4/atQoVapUSUOGDJEkhYeHa+HChfrkk08UHR2d4zrp6elKT0+3zx8/fvzaigYAAIXaDXXOTXJysqKiohzaoqOjlZycfNl14uPjFRAQYJ9CQkKud5kAAMCFbqhwk5qaqqCgIIe2oKAgHT9+XGfOnMlxndjYWB07dsw+7d69uyBKBQAALuLSw1IFwcvLS15eXq4uAwAAFJAbas9NcHCw0tLSHNrS0tLk7+8vHx8fF1UFAAAKkxsq3ERGRioxMdGhbc6cOYqMjHRRRQAAoLBxabg5efKkVq9erdWrV0s6f6n36tWrtWvXLknnz5eJiYmx93/uuee0fft29e3bVxs3btSIESM0depUvfLKK64oHwAAFEIuDTfLly9XnTp1VKdOHUlSnz59VKdOHfXv31+StG/fPnvQkaRKlSrpl19+0Zw5c1SrVi0NGTJEY8eOvexl4AAA4OZjM8YYVxdRkI4fP66AgAAdO3ZM/v7+ri4HAK6bwasO5ttYb9QJzLexgKvhzPf3DXXODQAAwJUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKVY/lfBAeB642Z5QOHCnhsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGApRVxdAADg5jJ41cF8G+uNOoH5Nhasgz03AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUoq4ugAAyKvBqw7m21hv1AnMt7EAFC7suQEAAJbCnhsAAMSeQSthzw0AALAUwg0AALAUl4eb4cOHKzQ0VN7e3qpXr56WLl2aa/+EhATdcccd8vHxUUhIiF555RWdPXu2gKoFAACFnUvDzZQpU9SnTx/FxcVp5cqVqlWrlqKjo7V///4c+0+aNElvvPGG4uLitGHDBn355ZeaMmWK3nzzzQKuHAAAFFYuDTdDhw5V9+7d1aVLF1WtWlWjRo1S0aJFNW7cuBz7L168WA0aNFD79u0VGhqqpk2b6qmnnsp1b096erqOHz/uMAEAAOtyWbjJyMjQihUrFBUV9b9i3NwUFRWl5OTkHNepX7++VqxYYQ8z27dv16+//qqHHnrostuJj49XQECAfQoJCcnfBwIAAAoVl10KfvDgQWVmZiooKMihPSgoSBs3bsxxnfbt2+vgwYNq2LChjDE6d+6cnnvuuVwPS8XGxqpPnz72+ePHjxNwAACwMJefUOyMpKQkvf/++xoxYoRWrlyp77//Xr/88ovefffdy67j5eUlf39/hwkAAFiXy/bcBAYGyt3dXWlpaQ7taWlpCg4OznGdfv366emnn1a3bt0kSTVq1NCpU6f07LPP6q233pKb2w2V1QAAwHXgsnDj6empiIgIJSYmqnXr1pKkrKwsJSYmqlevXjmuc/r06WwBxt3dXZJkjLmu9QI3E+7UCuBG5tKfX+jTp486deqkunXr6u6771ZCQoJOnTqlLl26SJJiYmJUvnx5xcfHS5IeeeQRDR06VHXq1FG9evW0detW9evXT4888og95AAAgJubS8NNu3btdODAAfXv31+pqamqXbu2Zs6caT/JeNeuXQ57at5++23ZbDa9/fbb2rNnj0qXLq1HHnlE7733nqseAgAAKGRc/sOZvXr1uuxhqKSkJIf5IkWKKC4uTnFxcQVQGQAAuBFxBi4AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCUq/5V8PXr12vXrl3KyMhwaG/ZsuU1FwUAAHC1nA4327dvV5s2bbRu3TrZbDYZYyRJNptNkpSZmZm/FQIAADjB6cNSL730kipVqqT9+/eraNGi+vvvvzV//nzVrVtXSUlJ16FEAACAvHN6z01ycrJ+//13BQYGys3NTW5ubmrYsKHi4+PVu3dvrVq16nrUCQAAkCdO77nJzMyUn5+fJCkwMFB79+6VJFWsWFGbNm3K3+oAAACc5PSem+rVq2vNmjWqVKmS6tWrpw8//FCenp4aPXq0KleufD1qBAAAyDOnw83bb7+tU6dOSZLeeecdtWjRQo0aNVKpUqU0ZcqUfC8QAADAGU6Hm+joaPu/w8LCtHHjRh0+fFglSpSwXzEFAADgKld9n5uLlSxZMj+GAQAAuGZOh5tHH3001+Xff//9VRcDAABwrZy+WiogIMA+/fLLL3Jzc3NoAwAAcCWn99yMHz/e/u/p06frww8/5CopAABQaPDDmQAAwFIINwAAwFKcPiz16aef2v997tw5TZgwQYGBgfa23r17509lAAAAV8HpcPPJJ5/Y/x0cHKyvv/7aPm+z2Qg3AADApZwONykpKdejDgAAgHxx1efcZGRkaNOmTTp37lx+1gMAAHBNnA43p0+fVteuXVW0aFFVq1ZNu3btkiS9+OKLGjx4cL4XCAAA4Aynw01sbKzWrFmjpKQkeXt729ujoqL44UwAAOByTp9z8+OPP2rKlCm65557HH4os1q1atq2bVu+FgcAAOAsp/fcHDhwQGXKlMnWfurUKX4VHAAAuJzT4aZu3br65Zdf7PMXAs3YsWMVGRmZf5UBAABcBacPS73//vtq3ry51q9fr3PnzmnYsGFav369Fi9erD/++ON61AgAAJBnTu+5adiwoVavXq1z586pRo0amj17tsqUKaPk5GRFRERcjxoBAADyzOk9N5J06623asyYMfldCwAAwDW7qnCTk3Pnzqlp06aSJE9PT82cOTO/hgYAAMgzp8NNnTp1crwqyhijtWvXauXKlXJz48fGAQCAazgdblq3bp1j+7///qu1a9eqVq1a11oTAADAVXM63MTFxeXYfvbsWcXHx19zQQAAANci38654QZ+AADcXAavOphvY71RJzDfxuLkGAAAYClO77np06dPju2ZmZnXXAxwM8nPv3ik/P2rBwBuZE6Hm1WrVl122b333ntNxQAAAFwrp8PNvHnzrkcdAAAA+YJzbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKW4PNwMHz5coaGh8vb2Vr169bR06dJc+x89elQ9e/ZU2bJl5eXlpdtvv12//vprAVULAAAKO6evlvr0009zXd67d+88jzVlyhT16dNHo0aNUr169ZSQkKDo6Ght2rRJZcqUydY/IyNDTZo0UZkyZTR9+nSVL19eO3fuVPHixZ19GAAAwKKcDjcvv/yyKlSoIHd3d0nS7t27VbZsWRUpUkQ2m82pcDN06FB1795dXbp0kSSNGjVKv/zyi8aNG6c33ngjW/9x48bp8OHDWrx4sTw8PCRJoaGhzj4EAABgYVd1WGr58uVKSUlRSkqKfHx89McffyglJUXbt2/P8xgZGRlasWKFoqKi/leMm5uioqKUnJyc4zozZsxQZGSkevbsqaCgIFWvXl3vv/9+rndHTk9P1/Hjxx0mAABgXU6HG3d3d4cwkZmZedkwkpuDBw8qMzNTQUFBDu1BQUFKTU3NcZ3t27dr+vTpyszM1K+//qp+/fppyJAhGjRo0GW3Ex8fr4CAAPsUEhLidK0AAODG4XS4qVChghITEyVJixcvVlZWlvr06aM333xTxph8L/BiWVlZKlOmjEaPHq2IiAi1a9dOb731lkaNGnXZdWJjY3Xs2DH7tHv37utaIwAAcC2nw02PHj3UuXNnValSRQ888IC6d++u5cuXa+7cuWrSpEmexwkMDJS7u7vS0tIc2tPS0hQcHJzjOmXLltXtt99uP99HksLDw5WamqqMjIwc1/Hy8pK/v7/DBAAArMvpcPPGG2/o119/VdeuXfXNN9/o008/VUhIiBYsWKCwsLA8j+Pp6amIiAj7XiDp/J6ZxMRERUZG5rhOgwYNtHXrVmVlZdnbNm/erLJly8rT09PZhwIAACzI6aulJKlp06Zq2rSpQ5uXl1euh4dy0qdPH3Xq1El169bV3XffrYSEBJ06dcp+9VRMTIzKly+v+Ph4SdLzzz+vzz//XC+99JJefPFFbdmyRe+//75TV2gBAABrczrcXOlqI2cO+7Rr104HDhxQ//79lZqaqtq1a2vmzJn2k4x37dolN7f/7VwKCQnRrFmz9Morr6hmzZoqX768XnrpJb3++uvOPgwAAGBRToeb4sWLy2azZWs3xshms+V6WXZOevXqpV69euW4LCkpKVtbZGSklixZ4tQ2AADAzeOqDktNnz5dJUuWlDFGDz30kMaOHavy5cvnd20AAABOu6pw06BBA/vPI7i7u+vOO+9UlSpV8rUwAACAq+H01VIlS5bUP//8I0k6cuSITp8+rRYtWmjNmjX5XhwAAICznA439957rzp37qzBgwerVatWioiIUJ8+fdS4cWNNmDDhOpQIAACQd06HmxEjRqh69er6+uuv5e/vr4kTJ+qFF17QzJkz1b9//+tRIwAAQJ45fc5NcHCwJk2alK39nnvu0cqVK/OlKAAAgKt1Vb8KfjmBgYH5ORwAAIDTnN5z06dPn1yXDx069KqLAQAAuFZOh5tVq1bZ/71w4UJFRETIx8dHknK8uR8AAEBBcjrczJs3z/5vPz8/TZo0SZUrV87XogAAAK5Wvp5zAwAA4GqEGwAAYClOH5aaMWOG/d9ZWVlKTEzUX3/9ZW9r2bJl/lQGAABwFZwON61bt3aY79Gjh/3fV/Or4AAAAPnJ6XCTlZV1PeoAAADIF5xzAwAALMXpPTfHjx/PsX3//v264447FBAQoKCgIG3YsOGaiwMAAHCW0+GmePHiOd6szxgjm82mw4cP50thAAAAV8PpcCNJ06dPV8mSJR3aDh06pCeeeCJfigIAAP8zeNXBfBvrjTrW/x3Iqwo3DRo0UJkyZRza0tLS8qUgAACAa3FV4Wb9+vU6dOiQ/P39Va5cOX5TCgAAFBpXFW4efPBB+789PT1Vv359Pfroo/lWFAAAwNVyOtykpKRIktLT03Xo0CFt375df/zxh15//fV8Lw4AAMBZToebihUrOsxHRkaqQ4cO6tixo+677z5VrlxZpUuX1p9//plvRQIAAOTVVR2WyknDhg3te3Xc3d3za1gAAACnXFW4OXfunJKSkrRt2za1b99efn5+Sk1NValSpeTr65vfNQIAAOSZ0+Fm586datasmXbt2qX09HQ1adJEfn5++uCDD5Senq5Ro0ZdjzoBAADyxOnflnrppZdUt25dHTlyRD4+Pvb2Nm3aKDExMV+LAwAAcJbTe24WLFigxYsXy9PT06E9NDRUe/bsybfCAAAArobTe26ysrKUmZmZrf2ff/6Rn59fvhQFAABwtZwON02bNlVCQoJ93maz6eTJk4qLi9NDDz2Un7UBAAA4zenDUkOGDFF0dLSqVq2qs2fPqn379tqyZYsCAwP17bffXo8aAQAA8szpcFOhQgWtWbNGkydP1tq1a3Xy5El17dpVHTp0cDjBGAAAwBWu6j43RYoUUceOHfO7FgAAgGt2VeFm06ZN+uyzz7RhwwZJUnh4uHr16qUqVarka3EAAADOcjrcfPfdd3ryySdVt25dRUZGSpKWLFmiGjVqaPLkyXrsscfyvUjgWgxedTDfxnqjTmC+jQUAuD6cDjd9+/ZVbGys3nnnHYf2uLg49e3bl3ADAABcyulLwfft26eYmJhs7R07dtS+ffvypSgAAICr5XS4ue+++7RgwYJs7QsXLlSjRo3ypSgAAICr5fRhqZYtW+r111/XihUrdM8990g6f87NtGnTNHDgQM2YMcOhLwAAQEFyOty88MILkqQRI0ZoxIgROS6Tzt+5OKefaQAAALienA43WVlZ16MOAACAfOH0OTcAAACFWZ7Dze+//66qVavq+PHj2ZYdO3ZM1apV0/z58/O1OAAAAGflOdwkJCSoe/fu8vf3z7YsICBAPXr00CeffJKvxQEAADgrz+FmzZo1atas2WWXN23aVCtWrMiXogAAAK5WnsNNWlqaPDw8Lru8SJEiOnDgQL4UBQAAcLXyHG7Kly+vv/7667LL165dq7Jly+ZLUQAAAFcrz+HmoYceUr9+/XT27Nlsy86cOaO4uDi1aNEiX4sDAABwVp7vc/P222/r+++/1+23365evXrpjjvukCRt3LhRw4cPV2Zmpt56663rVigAAEBe5DncBAUFafHixXr++ecVGxsrY4yk83cijo6O1vDhwxUUFHTdCgUAAMgLp+5QXLFiRf366686cuSItm7dKmOMbrvtNpUoUeJ61QcAAOAUp39+QZJKlCihu+66K79rAQAAuGaF4ucXhg8frtDQUHl7e6tevXpaunRpntabPHmybDabWrdufX0LBAAAN4yr2nOTn6ZMmaI+ffpo1KhRqlevnhISEhQdHa1NmzapTJkyl11vx44devXVV9WoUaPrVtvgVQfzbaw36gTm21gAAODyXL7nZujQoerevbu6dOmiqlWratSoUSpatKjGjRt32XUyMzPVoUMHDRw4UJUrVy7AagEAQGHn0j03GRkZWrFihWJjY+1tbm5uioqKUnJy8mXXe+edd1SmTBl17dpVCxYsyHUb6enpSk9Pt8/n9MOfyB/s6QIAFAYu3XNz8OBBZWZmZruEPCgoSKmpqTmus3DhQn355ZcaM2ZMnrYRHx+vgIAA+xQSEnLNdQMAgMLL5YelnHHixAk9/fTTGjNmjAID8/aXfWxsrI4dO2afdu/efZ2rBAAAruTSw1KBgYFyd3dXWlqaQ3taWpqCg4Oz9d+2bZt27NihRx55xN6WlZUl6fwPd27atEm33nqrwzpeXl7y8vK6DtUDAIDCyKV7bjw9PRUREaHExER7W1ZWlhITExUZGZmtf5UqVbRu3TqtXr3aPrVs2VL333+/Vq9ezSEnAADg+kvB+/Tpo06dOqlu3bq6++67lZCQoFOnTqlLly6SpJiYGJUvX17x8fHy9vZW9erVHdYvXry4JGVrBwAANyeXh5t27drpwIED6t+/v1JTU1W7dm3NnDnTfpLxrl275OZ2Q50aBAAAXMjl4UaSevXqpV69euW4LCkpKdd1J0yYkP8FAQCAGxa7RAAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUUcXUBcN7gVQfzbaw36gTm21gAABQG7LkBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWUijCzfDhwxUaGipvb2/Vq1dPS5cuvWzfMWPGqFGjRipRooRKlCihqKioXPsDAICbi8vDzZQpU9SnTx/FxcVp5cqVqlWrlqKjo7V///4c+yclJempp57SvHnzlJycrJCQEDVt2lR79uwp4MoBAEBh5PJwM3ToUHXv3l1dunRR1apVNWrUKBUtWlTjxo3Lsf/EiRP1wgsvqHbt2qpSpYrGjh2rrKwsJSYm5tg/PT1dx48fd5gAAIB1uTTcZGRkaMWKFYqKirK3ubm5KSoqSsnJyXka4/Tp0/r3339VsmTJHJfHx8crICDAPoWEhORL7QAAoHByabg5ePCgMjMzFRQU5NAeFBSk1NTUPI3x+uuvq1y5cg4B6WKxsbE6duyYfdq9e/c11w0AAAqvIq4u4FoMHjxYkydPVlJSkry9vXPs4+XlJS8vrwKuDAAAuIpLw01gYKDc3d2Vlpbm0J6Wlqbg4OBc1/344481ePBgzZ07VzVr1ryeZQIAgBuISw9LeXp6KiIiwuFk4AsnB0dGRl52vQ8//FDvvvuuZs6cqbp16xZEqQAA4Abh8sNSffr0UadOnVS3bl3dfffdSkhI0KlTp9SlSxdJUkxMjMqXL6/4+HhJ0gcffKD+/ftr0qRJCg0NtZ+b4+vrK19fX5c9DgAAUDi4PNy0a9dOBw4cUP/+/ZWamqratWtr5syZ9pOMd+3aJTe3/+1gGjlypDIyMvT44487jBMXF6cBAwYUZOkAAKAQcnm4kaRevXqpV69eOS5LSkpymN+xY8f1LwgAANywXH4TPwAAgPxEuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZSKMLN8OHDFRoaKm9vb9WrV09Lly7Ntf+0adNUpUoVeXt7q0aNGvr1118LqFIAAFDYuTzcTJkyRX369FFcXJxWrlypWrVqKTo6Wvv378+x/+LFi/XUU0+pa9euWrVqlVq3bq3WrVvrr7/+KuDKAQBAYeTycDN06FB1795dXbp0UdWqVTVq1CgVLVpU48aNy7H/sGHD1KxZM7322msKDw/Xu+++qzvvvFOff/55AVcOAAAKoyKu3HhGRoZWrFih2NhYe5ubm5uioqKUnJyc4zrJycnq06ePQ1t0dLR+/PHHHPunp6crPT3dPn/s2DFJ0vHjx69Y39mTJ67YJ6+OH/fMt7Goyzk3Q11S4a2NupxDXc65GeqSCm9tBVnXhe9tY8yVBzMutGfPHiPJLF682KH9tddeM3fffXeO63h4eJhJkyY5tA0fPtyUKVMmx/5xcXFGEhMTExMTE5MFpt27d18xX7h0z01BiI2NddjTk5WVpcOHD6tUqVKy2WzXNPbx48cVEhKi3bt3y9/f/1pLzVeFtTbqcg51OYe6nFdYa6Mu59wMdRljdOLECZUrV+6KfV0abgIDA+Xu7q60tDSH9rS0NAUHB+e4TnBwsFP9vby85OXl5dBWvHjxqy86B/7+/oXqzXSxwlobdTmHupxDXc4rrLVRl3OsXldAQECe+rn0hGJPT09FREQoMTHR3paVlaXExERFRkbmuE5kZKRDf0maM2fOZfsDAICbi8sPS/Xp00edOnVS3bp1dffddyshIUGnTp1Sly5dJEkxMTEqX7684uPjJUkvvfSSGjdurCFDhujhhx/W5MmTtXz5co0ePdqVDwMAABQSLg837dq104EDB9S/f3+lpqaqdu3amjlzpoKCgiRJu3btkpvb/3Yw1a9fX5MmTdLbb7+tN998U7fddpt+/PFHVa9evcBr9/LyUlxcXLbDXoVBYa2NupxDXc6hLucV1tqoyznU5chmTF6uqQIAALgxuPwmfgAAAPmJcAMAACyFcAMAACyFcAMAACyFcAMUcpzzDwDOcfml4DeSgwcPaty4cUpOTlZqaqqk83dMrl+/vjp37qzSpUu7uEJYkZeXl9asWaPw8HBXlwIANwQuBc+jZcuWKTo6WkWLFlVUVJT9PjxpaWlKTEzU6dOnNWvWLNWtW9fFlRYuZ86c0YoVK1SyZElVrVrVYdnZs2c1depUxcTEFHhdGzZs0JIlSxQZGakqVapo48aNGjZsmNLT09WxY0c98MADBV7Tpb92f8GwYcPUsWNHlSpVSpI0dOjQgiwrm1OnTmnq1KnaunWrypYtq6eeespeG8578cUX1bZtWzVq1MjVpdww9u3bp5EjR2rhwoXat2+f3NzcVLlyZbVu3VqdO3eWu7u7q0vEjeSKP60JY4wx9erVM88++6zJysrKtiwrK8s8++yz5p577nFBZVe2a9cu06VLlwLf7qZNm0zFihWNzWYzbm5u5t577zV79+61L09NTTVubm4FXtdvv/1mPD09TcmSJY23t7f57bffTOnSpU1UVJR54IEHjLu7u0lMTCzwumw2m6ldu7a57777HCabzWbuuusuc99995n777+/wOsKDw83hw4dMsacfy+FhoaagIAAc9ddd5mSJUuaMmXKmO3btxd4XStWrHDY7n/+8x9Tv359U6FCBdOgQQPz7bffFnhNF1x4z992221m8ODBZt++fS6r5VKfffaZefrpp+3Pz3/+8x8THh5u7rjjDhMbG2v+/fffAq9p2bJlJiAgwERERJiGDRsad3d38/TTT5t27dqZ4sWLm/r165vjx48XeF3GGJOenm6mTJliXn75ZfPkk0+aJ5980rz88stm6tSpJj093SU15UVqaqoZOHBggW83KyvLbN++3f4+Sk9PN5MnTzZfffWVOXDgQIHVQbjJI29vb7Nhw4bLLt+wYYPx9vYuwIrybvXq1S4JEa1btzYPP/ywOXDggNmyZYt5+OGHTaVKlczOnTuNMa4LN5GRkeatt94yxhjz7bffmhIlSpg333zTvvyNN94wTZo0KfC64uPjTaVKlbIFqyJFipi///67wOu5wGazmbS0NGOMMR06dDD169c3R48eNcYYc+LECRMVFWWeeuqpAq+rZs2aZs6cOcYYY8aMGWN8fHxM7969zciRI83LL79sfH19zZdfflngdRlz/jmbO3eueemll0xgYKDx8PAwLVu2NP/9739NZmamS2oyxph3333X+Pn5mccee8wEBwebwYMHm1KlSplBgwaZ999/35QuXdr079+/wOtq0KCBGTBggH3+66+/NvXq1TPGGHP48GFTu3Zt07t37wKva8uWLaZy5crG29vbNG7c2LRt29a0bdvWNG7c2Hh7e5uwsDCzZcuWAq8rL1zxub9x40ZTsWJF4+bmZsLCwsz27dtNRESEKVasmClatKgJDAw0mzdvLpBaCDd5FBoaar766qvLLv/qq69MxYoVC66gi/z000+5Tp988olLQkSZMmXM2rVr7fNZWVnmueeeM7fccovZtm2by8KNv7+//QMpMzPTFClSxKxcudK+fN26dSYoKKjA6zLGmKVLl5rbb7/d/N///Z/JyMgwxhSucFO5cmUze/Zsh+WLFi0yISEhBV6Xj4+P2bFjhzHGmDp16pjRo0c7LJ84caKpWrVqgddljONzlpGRYaZMmWKio6ONu7u7KVeunHnzzTdd8qV46623mu+++84Yc/7Lz93d3XzzzTf25d9//70JCwsr8Lp8fHzMtm3b7POZmZnGw8PDpKamGmOMmT17tilXrlyB1xUVFWVatWpljh07lm3ZsWPHTKtWrUzTpk0LvC5jjFmzZk2u05QpUwr887VVq1amZcuWZu3atebll1824eHhplWrViYjI8OcPXvWPPLII6Zjx44FUgvhJo8+//xz4+XlZXr37m1++ukns2TJErNkyRLz008/md69exsfHx8zfPhwl9R2YRe4zWa77OSKEOHn52fWr1+frb1nz56mQoUKZv78+S4LN1u3brXP+/r6Onyw7tixw6V74U6cOGFiYmJMzZo1zbp164yHh4fLw83+/fuNMcaUK1fOrFu3zmG5q56vUqVKmeXLlxtjzgfp1atXOyzfunWr8fHxKfC6jHEMNxfbuXOniYuLs/91W9B8fHzse06NMcbDw8P89ddf9vkdO3aYokWLFnhdFStWNAsXLrTP792719hsNnP69GljjDEpKSkueY/5+Phke79fbO3atS59j13uc/9Ce0G/x0qXLm1WrVpljDHm5MmTxmazmQULFtiXL1q0yNxyyy0FUguXgudRz5499dVXX+nPP//UY489psjISEVGRuqxxx7Tn3/+qQkTJuiFF15wSW1ly5bV999/r6ysrBynlStXuqSuKlWqaPny5dnaP//8c7Vq1UotW7Z0QVVSaGiotmzZYp9PTk7WLbfcYp/ftWuXypYt64rSJEm+vr766quvFBsbq6ioKGVmZrqslgsefPBB3XnnnTp+/Lg2bdrksGznzp0uOaG4efPmGjlypCSpcePGmj59usPyqVOnKiwsrMDrys0tt9yiAQMGKCUlRTNnzizw7QcHB2v9+vWSpC1btigzM9M+L0l///23ypQpU+B1tW7dWs8995xmzpypefPmqUOHDmrcuLF8fHwkSZs2bVL58uULvK7ixYtrx44dl12+Y8cOFS9evMDquVjJkiU1ZswYpaSkZJu2b9+un3/+ucBrOnnypEqWLClJKlasmIoVK+bwWRoSEqK0tLQCqYVLwZ3Qrl07tWvXTv/++68OHjwoSQoMDJSHh4dL64qIiNCKFSvUqlWrHJfbbDaX3CulTZs2+vbbb/X0009nW/b5558rKytLo0aNKvC6nn/+eYfAcOkvyv/2228uuVrqUk8++aQaNmyoFStWqGLFii6rIy4uzmHe19fXYf6///2vS64K+uCDD9SgQQM1btxYdevW1ZAhQ5SUlKTw8HBt2rRJS5Ys0Q8//FDgdUlSxYoVc726x2azqUmTJgVY0XkdOnRQTEyMWrVqpcTERPXt21evvvqqDh06JJvNpvfee0+PP/54gdc1aNAg7du3T4888ogyMzMVGRmpb775xr7cZrMpPj6+wOvq1q2bYmJi1K9fPz344IPZrpIdNGiQXnzxxQKvSzr/ub93797LfjYcPXq0wD/3y5Urp127dtn/WPzwww8dwvKBAwdUokSJgimmQPYP4bqaP3+++e233y67/OTJkyYpKakAKwIKxpEjR8zrr79uqlatary9vY2np6epWLGiad++vVm2bJmryyt0MjMzzXvvvWdatGhh3n//fZOVlWW+/fZbExISYkqVKmU6d+5sTp486bL6zpw5Y06cOOGy7edk8ODBpmzZsvbDPBcO+ZQtW9Z88MEHLqvr+++/N19//fVllx8+fNhMmDChACsypkePHmbMmDGXXR4fH28eeuihAqmF+9wAAHAFKSkpDjdvrVSpkosruvGkpKTI29u7QA77c84NAABXUKlSJfu5lheCze7du/XMM8+4uLKcuaq2DRs2aPz48dq4caMkaePGjXr++ef1zDPPKCUlpcDOZ2TPDQAAV2HNmjW68847C8VJ/5dyRW0zZ85Uq1at5Ovrq9OnT+uHH35QTEyMatWqpaysLP3xxx+aPXt2gZzTyAnFAADkYMaMGbku3759ewFVkl1hrO2dd97Ra6+9pkGDBmny5Mlq3769nn/+eb333nuSpNjYWA0ePLhAwg17bgAAyIGbm9sVrza12Wwu2XNTGGsLCAjQihUrFBYWpqysLHl5eWnp0qWqU6eOJOmvv/5SVFSU/dyl64lzbgAAyEFhvYdYYa7NZrNJOh++vL29FRAQYF/m5+enY8eOFUgdhBsAAHJw4R5il+Oqe4hJhbO2wnSDVM65AQAgB6+99ppOnTp12eVhYWGaN29eAVb0P4WxtsJ0g1TOuQEAAJbCYSkAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBvgBtW5c2e1bt3aoe3AgQOqXr266tWrV2A3ywKAwoZwA1jEgQMH9MADD8jHx0ezZ892uDMoANxMCDeABRw8eFAPPvigvLy8NGfOHIdgs2vXLvsv9fr7+6tt27ZKS0tzWH/Hjh2y2WzZpqNHj0qSBgwYoNq1a9v7Z2RkKCwszKFPTnuSbDabfvzxR/v87t271bZtWxUvXlwlS5ZUq1attGPHDod1xo0bp2rVqsnLy0tly5ZVr169JJ2/+2lONdpsNk2YMMG+vQuTv7+/mjRpom3bttnHPnLkiGJiYlSiRAkVLVpUzZs3d7ijak6OHj2qHj16KCgoSN7e3qpevbp+/vlnSdKECRMuW9Pq1aslSZmZmeratasqVaokHx8f3XHHHRo2bFi27SQlJWUbo3jx4g59xo4dq/DwcHl7e6tKlSoaMWKEfdmF1/DCdi8IDQ1VQkJCro8RsBrCDXCDO3TokKKiolSkSBHNmTPH4QsxKytLrVq10uHDh/XHH39ozpw52r59u9q1a+cwxoV7ec6dO1f79u3Td999l+s2P//882wB6Ur+/fdfRUdHy8/PTwsWLNCiRYvk6+urZs2aKSMjQ5I0cuRI9ezZU88++6zWrVunGTNmKCwsTJK0bNky7du3T/v27VOFChWUkJBgn7/48YwfP1779u3T/PnztX//fr355pv2ZZ07d9by5cs1Y8YMJScnyxijhx56SP/++2+ONWdlZal58+ZatGiRvvnmG61fv16DBw+Wu7u7vY+/v7+9jn379mnp0qXZxqhQoYKmTZum9evXq3///nrzzTc1depUh34XXoNNmzZp37592QLJxIkT1b9/f7333nvasGGD3n//ffXr109fffWVU68DcDPg5xeAG9iRI0cUFRWl9evXKyIiQv7+/g7LExMTtW7dOqWkpCgkJESS9J///EfVqlXTsmXLdNddd0mS/cs9ODhYwcHBKlmy5GW3efjwYQ0aNEivv/66+vXrZ2/38fHRvn37LrvelClTlJWVpbFjx9p/XG/8+PEqXry4kpKS1LRpUw0aNEj/93//p5deesm+3oUaS5cubW9zd3dXQECAgoODs22nePHiCg4Olo+Pj/z8/Ox7sbZs2aIZM2Zo0aJFql+/vqTzgSEkJEQ//vijnnjiiWxjzZ07V0uXLtWGDRt0++23S5IqV67s0MdmsznUcfbsWYflHh4eGjhwoH2+UqVKSk5O1tSpU9W2bVt7+4XXoHz58ipWrFi2w4pxcXEaMmSIHn30Ufs469ev1xdffKFOnTplqx24mbHnBriBzZ8/X1lZWVq9erW2bt2qDz/80GH5hg0bFBISYg82klS1alUVL15cGzZssLcdP35cklSsWLErbvOdd97R/fffr4YNGzq0V69eXUuWLFFKSkqO661Zs0Zbt26Vn5+ffH195evrq5IlS+rs2bPatm2b9u/fr7179+rBBx/M8+PPyVNPPSVfX1+VKFFCJ06cUHx8vKTzz0WRIkVUr149e99SpUrpjjvucHguLrZ69WpVqFDBHmyu1vDhwxUREaHSpUvL19dXo0eP1q5duxz6HD9+XG5ubvLx8cm2/qlTp7Rt2zZ17drV/tz5+vpq0KBBDofdJKl+/foOfS7dDnAzYM8NcAOrXLmyEhMTFRgYqBEjRqhjx456+OGHVbNmTafG2bt3r9zc3HLcE3KxLVu2aOzYsVq9erX++ecfh2XPPPOMfvjhB1WuXDnHkHTy5ElFRERo4sSJ2ZaVLl1abm7587fWJ598oqioKB09elRvvfWWOnfurP/+979XNVZOQcNZkydP1quvvqohQ4YoMjJSfn5++uijj/Tnn3869Nu7d6+CgoJyfB5OnjwpSRozZoxDOJPkcIhMOr+HLDw83D5/3333XfNjAG40hBvgBlajRg0FBgZKkp544gl9//33iomJ0dKlS+Xp6anw8HDt3r1bu3fvtu+9Wb9+vY4ePaqqVavax1m2bJmqVKkib2/vXLf3+uuvq1u3bgoLC8sWbnx8fDR37lylpaXpxIkTkqTbbrvNvvzOO+/UlClTVKZMmWyHzy4IDQ1VYmKi7r//fuefjP8vODjYfp7Oiy++qJYtW+rff/9VeHi4zp07pz///NN+WOrQoUPatGmTw3NxsZo1a+qff/7R5s2br3rvzYXDYC+88IK97dK9LdL516BOnTo5jhEUFKRy5cpp+/bt6tChQ67bCwkJsT9+SSpShI953Hw4LAVYyPDhw7V//377OR5RUVGqUaOGOnTooJUrV2rp0qWKiYlR48aNVbduXWVkZOjrr7/W0KFD1aVLl1zH3rp1q5KSktS/f/9c+wUFBSksLMzhC1aSOnTooMDAQLVq1UoLFixQSkqKkpKS1Lt3b3tQGjBggIYMGaJPP/1UW7Zs0cqVK/XZZ5859RwcPXpUqamp2rRpk7788ktVrlxZHh4euu2229SqVSt1795dCxcu1Jo1a9SxY0eVL19erVq1ynGsxo0b695779Vjjz2mOXPmKCUlRb/99ptmzpyZ53puu+02LV++XLNmzdLmzZvVr18/LVu2zL785MmTSkhI0KRJk3J9DQYOHKj4+Hh9+umn2rx5s9atW6fx48dr6NCheX9ygJsE4QawkJIlS2rMmDH64IMP9Oeff8pms+mnn35SiRIldO+99yoqKkqVK1fWlClTJEnr1q3TgAED1K9fP/Xp0yfXsU+dOqW33nor15ONc1O0aFHNnz9ft9xyix599FGFh4era9euOnv2rH1PTqdOnZSQkKARI0aoWrVqatGixRUv1b5Uly5dVLZsWd111106cuSIpk+fbl82fvx4RUREqEWLFoqMjJQxRr/++qs8PDwuO953332nu+66S0899ZSqVq2qvn37KjMzM8/19OjRQ48++qjatWunevXq6dChQw57cebMmaMxY8boiy++0OOPP37Zcbp166axY8dq/PjxqlGjhho3bqwJEyaoUqVKea4FuFnYzIXrDwEAACyAPTcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBS/h9QjDY1hkB9OAAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1nklEQVR4nO3deVzVZf7//+cBZBEFV0ASFXdNXCkl01wYydAZy7FsqFAsp4LGPTXLpUlJp3LJRrMFqtFyaTSXceGromWkRmloipaOmgZoBiQGGuf8/ujj+XUGK8EDB7ke99vtfbt5rut6X+/XhdPw9L0di81mswkAAMBgbq4uAAAAwNUIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQioIpKTk6WxWL51e2bb75xdYkAUGl4uLoAAOXr2WefVWhoaIn2OnXquKAaAKicCERAFde/f3+Fh4e7ugwAqNS4ZAYY7sqltf/+97/2NqvVqvbt28tisSg5Odlh/OHDh3Xvvfeqfv368vHxUatWrTRlyhRJ0vTp03/zMp3FYlFqaqp9rpUrV6pLly7y8fFRvXr19MADD+j06dMOxxs2bNhV52nevLl9TJMmTTRgwABt2bJFHTt2lLe3t9q2bat///vfDnOdP39e48ePV1hYmGrUqCE/Pz/1799f+/fvdxiXmppqP86+ffsc+k6fPi13d3dZLBatWrWqRJ0dO3Ys8TNOTEyUxWJRjRo1HNqTkpLUp08fBQQEyMvLS23bttWiRYtK7H81w4YNKzGfJK1atarEz1mSioqKNG3aNDVv3lxeXl4KCQnRk08+qaKiIodxFotFCQkJJeYdMGCAmjRpck21ATcizhABKOGdd95RRkZGifYvvvhCPXr0ULVq1TRy5Eg1adJEX3/9tdatW6eZM2fqnnvucQgqY8aMUZs2bTRy5Eh7W5s2bST9HMSGDx+uW265RYmJicrOztb8+fO1a9cuff7556pVq5Z9Hy8vL73++usOtdSsWdPh89GjR3Xffffp0UcfVWxsrJKSkjRkyBBt2rRJf/jDHyRJx44d05o1azRkyBCFhoYqOztbr776qu644w59+eWXCg4OdpjT29tbSUlJmj9/vr3trbfekqenpwoLC0v8fDw8PHTw4EF9/vnn6tSpk709OTlZ3t7eJcYvWrRIN998s/74xz/Kw8ND69at0+OPPy6r1ar4+PgS48vKarXqj3/8oz766CONHDlSbdq0UUZGhubOnasjR45ozZo1TjsWcMOyAaiSkpKSbJJse/fuvaZxx48ft9lsNlthYaGtUaNGtv79+9sk2ZKSkuxje/bsaatZs6btxIkTDnNYrdarzt24cWNbbGxsifZLly7ZAgICbO3atbP9+OOP9vb169fbJNmmTp1qb4uNjbX5+vr+5hoaN25sk2R7//337W15eXm2Bg0a2Dp16mRvKywstBUXFzvse/z4cZuXl5ft2Weftbdt377dJsl2//332+rWrWsrKiqy97Vo0cL2l7/8xSbJtnLlyhJ1Dhw40JaQkGBv//DDD20+Pj62QYMGlVjHxYsXS6wlKirK1rRp099c7y+P979Wrlxpk2Tbvn27ve2dd96xubm52T788EOHsYsXL7ZJsu3atcveJskWHx9fYt7o6Ghb48aNf7cu4EbFJTMADl555RV99913mjZtmkP72bNntXPnTsXFxalRo0YOfRaLpVTH+PTTT5WTk6PHH3/c4cxJdHS0WrdurQ0bNpS67uDgYN199932z35+fnrooYf0+eefKysrS9LPZ5rc3H7+v73i4mJ99913qlGjhlq1aqXPPvusxJwDBw6UxWLR2rVrJUkffvihvvnmG913332/WkdcXJyWLVtmvxSVlJSke+65R/7+/iXG+vj42P+cl5enc+fO6Y477tCxY8eUl5dX6p/Br1m5cqXatGmj1q1b69y5c/atT58+kqTt27c7jC8sLHQYd+7cOV2+fNlp9QCVEYEIgF1eXp5mzZqlsWPHKjAw0KHv2LFjkqR27dpd93FOnDghSWrVqlWJvtatW9v7S6N58+YlglnLli0lyX5/lNVq1dy5c9WiRQt5eXmpXr16ql+/vr744ourBpBq1arpgQce0JtvvilJevPNNzV48GD5+fn9ah3R0dHy8PDQBx98oIKCAq1YsULDhw+/6thdu3YpMjJSvr6+qlWrlurXr6+nnnpKkpwaiI4ePaqDBw+qfv36DtuVn09OTo7D+DfeeKPE2C1btjitHqAy4h4iAHazZ8+Wm5ubJkyYoO+++87V5TjdrFmz9MwzzyguLk5///vfVadOHbm5uWn06NGyWq1X3ScuLk6dOnVSZmamVq5caT9b9GuuhKikpCRdvHhRdevWVZ8+ffTOO+84jPv666/Vt29ftW7dWi+99JJCQkLk6emp//znP5o7d+6v1lMWVqtVYWFheumll67aHxIS4vD5T3/6U4kbq59++mn7mTagKiIQAZAknTlzRvPnz1diYqJq1qxZIhA1bdpUknTgwIHrPlbjxo0lSZmZmfbLNldkZmba+0vjq6++ks1mczhLdOTIEUmyPx21atUq9e7dW2+88YbDvrm5uapXr95V5w0LC1OnTp3sT9b17t1bO3bs+M1a4uLi1KFDB506dUqxsbFXvaS4bt06FRUVae3atQ6XIP/38pUzNGvWTPv371ffvn2v6fJmw4YNFRkZ6dA2b948AhGqNC6ZAZAkzZgxQ4GBgXr00Uev2l+/fn317NlTb775pk6ePOnQZ7PZSnWs8PBwBQQEaPHixQ6PfW/cuFGHDh1SdHR0qes/c+aMVq9ebf+cn5+vt99+Wx07dlRQUJAkyd3dvUStK1euLPGo//+Ki4vTF198YX+0/vfcfPPN6tKli7788ksNGzbsqmPc3d0lOf7s8vLylJSU9Lvzl9a9996r06dP67XXXivR9+OPP6qgoMDpxwRuNJwhAiBJ2rJli5YuXSpPT89fHbNgwQLdfvvt6ty5s0aOHKnQ0FD997//1YYNG0q8r+e3VKtWTbNnz9bw4cN1xx136P7777c/dt+kSRONGTOm1PW3bNlSI0aM0N69exUYGKg333xT2dnZDgFjwIABevbZZzV8+HDddtttysjI0NKlS+1nv37NI488oiFDhlz1xuhfs23bNhUVFf3qG8H79esnT09PDRw4UH/961914cIFvfbaawoICNC33357TccoLi7Wpk2bHNqu/D3s2bNHDRs2VPPmzfXggw9qxYoVevTRR7V9+3Z1795dxcXFOnz4sFasWKHNmzfz8k4Yj0AEQJLUsWNH3X///b85pkOHDvrkk0/0zDPPaNGiRSosLFTjxo117733lvp4w4YNU/Xq1fX8889r4sSJ8vX11d13363Zs2c7vIPoWrVo0UIvv/yyJkyYoMzMTIWGhmr58uWKioqyj3nqqadUUFCgZcuWafny5ercubM2bNigSZMm/ebcHh4ev3pJ7df4+vrK19f3V/tbtWqlVatW6emnn9b48eMVFBSkxx57TPXr11dcXNw1HaOwsFD9+/e/at/EiRN18eJFTZ8+XW5ublqzZo3mzp2rt99+W6tXr1b16tXVtGlTjRo1yn5zNWAyi62057oBoJJp0qSJ2rVrp/Xr17u6lEqjV69e6tWrl6ZPn+7qUoAbAvcQAQAA4xGIAKAKuvXWWx2+RgXAb+MeIgCogubMmePqEoAbCvcQAQAA43HJDAAAGI9ABAAAjMc9RNfAarXqzJkzqlmzZqm/1RsAALiGzWbTDz/8oODgYLm5/fY5IALRNThz5kyJLz8EAAA3hlOnTqlhw4a/OYZAdA1q1qwp6ecfqJ+fn4urAQAA1yI/P18hISH23+O/hUB0Da5cJvPz8yMQAQBwg7mW2124qRoAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPA9XF4DrlDqw7Pv2Wue8OgAAuIFxhggAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPJcGouLiYj3zzDMKDQ2Vj4+PmjVrpr///e+y2Wz2MTabTVOnTlWDBg3k4+OjyMhIHT161GGe8+fPKyYmRn5+fqpVq5ZGjBihCxcuOIz54osv1KNHD3l7eyskJERz5sypkDUCAIDKz6WBaPbs2Vq0aJEWLlyoQ4cOafbs2ZozZ45efvll+5g5c+ZowYIFWrx4sXbv3i1fX19FRUWpsLDQPiYmJkYHDx5USkqK1q9fr507d2rkyJH2/vz8fPXr10+NGzdWenq6/vGPf2j69OlasmRJha4XAABUThbbL0/HVLABAwYoMDBQb7zxhr1t8ODB8vHx0b/+9S/ZbDYFBwdr3LhxGj9+vCQpLy9PgYGBSk5O1tChQ3Xo0CG1bdtWe/fuVXh4uCRp06ZNuuuuu/TNN98oODhYixYt0pQpU5SVlSVPT09J0qRJk7RmzRodPnz4d+vMz8+Xv7+/8vLy5OfnVw4/ieuQOrDs+/Za57w6AACoZErz+9ulZ4huu+02bd26VUeOHJEk7d+/Xx999JH69+8vSTp+/LiysrIUGRlp38ff319du3ZVWlqaJCktLU21atWyhyFJioyMlJubm3bv3m0f07NnT3sYkqSoqChlZmbq+++/L1FXUVGR8vPzHTYAAFB1ebjy4JMmTVJ+fr5at24td3d3FRcXa+bMmYqJiZEkZWVlSZICAwMd9gsMDLT3ZWVlKSAgwKHfw8NDderUcRgTGhpaYo4rfbVr13boS0xM1IwZM5y0SgAAUNm59AzRihUrtHTpUi1btkyfffaZ3nrrLb3wwgt66623XFmWJk+erLy8PPt26tQpl9YDAADKl0vPEE2YMEGTJk3S0KFDJUlhYWE6ceKEEhMTFRsbq6CgIElSdna2GjRoYN8vOztbHTt2lCQFBQUpJyfHYd6ffvpJ58+ft+8fFBSk7OxshzFXPl8Z80teXl7y8vJyziIBAECl59IzRBcvXpSbm2MJ7u7uslqtkqTQ0FAFBQVp69at9v78/Hzt3r1bERERkqSIiAjl5uYqPT3dPmbbtm2yWq3q2rWrfczOnTt1+fJl+5iUlBS1atWqxOUyAABgHpcGooEDB2rmzJnasGGD/vvf/2r16tV66aWXdPfdd0uSLBaLRo8ereeee05r165VRkaGHnroIQUHB2vQoEGSpDZt2ujOO+/UI488oj179mjXrl1KSEjQ0KFDFRwcLEn6y1/+Ik9PT40YMUIHDx7U8uXLNX/+fI0dO9ZVSwcAAJWISy+Zvfzyy3rmmWf0+OOPKycnR8HBwfrrX/+qqVOn2sc8+eSTKigo0MiRI5Wbm6vbb79dmzZtkre3t33M0qVLlZCQoL59+8rNzU2DBw/WggUL7P3+/v7asmWL4uPj1aVLF9WrV09Tp051eFcRAAAwl0vfQ3Sj4D1EAADceG6Y9xABAABUBgQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDyXB6LTp0/rgQceUN26deXj46OwsDB9+umn9n6bzaapU6eqQYMG8vHxUWRkpI4ePeowx/nz5xUTEyM/Pz/VqlVLI0aM0IULFxzGfPHFF+rRo4e8vb0VEhKiOXPmVMj6AABA5efSQPT999+re/fuqlatmjZu3Kgvv/xSL774omrXrm0fM2fOHC1YsECLFy/W7t275evrq6ioKBUWFtrHxMTE6ODBg0pJSdH69eu1c+dOjRw50t6fn5+vfv36qXHjxkpPT9c//vEPTZ8+XUuWLKnQ9QIAgMrJYrPZbK46+KRJk7Rr1y59+OGHV+232WwKDg7WuHHjNH78eElSXl6eAgMDlZycrKFDh+rQoUNq27at9u7dq/DwcEnSpk2bdNddd+mbb75RcHCwFi1apClTpigrK0uenp72Y69Zs0aHDx/+3Trz8/Pl7++vvLw8+fn5OWn1TpI6sOz79lrnvDoAAKhkSvP726VniNauXavw8HANGTJEAQEB6tSpk1577TV7//Hjx5WVlaXIyEh7m7+/v7p27aq0tDRJUlpammrVqmUPQ5IUGRkpNzc37d692z6mZ8+e9jAkSVFRUcrMzNT3339foq6ioiLl5+c7bAAAoOpyaSA6duyYFi1apBYtWmjz5s167LHH9Le//U1vvfWWJCkrK0uSFBgY6LBfYGCgvS8rK0sBAQEO/R4eHqpTp47DmKvN8ctj/FJiYqL8/f3tW0hIiBNWCwAAKiuXBiKr1arOnTtr1qxZ6tSpk0aOHKlHHnlEixcvdmVZmjx5svLy8uzbqVOnXFoPAAAoXy4NRA0aNFDbtm0d2tq0aaOTJ09KkoKCgiRJ2dnZDmOys7PtfUFBQcrJyXHo/+mnn3T+/HmHMVeb45fH+CUvLy/5+fk5bAAAoOpyaSDq3r27MjMzHdqOHDmixo0bS5JCQ0MVFBSkrVu32vvz8/O1e/duRURESJIiIiKUm5ur9PR0+5ht27bJarWqa9eu9jE7d+7U5cuX7WNSUlLUqlUrhyfaAACAmVwaiMaMGaNPPvlEs2bN0ldffaVly5ZpyZIlio+PlyRZLBaNHj1azz33nNauXauMjAw99NBDCg4O1qBBgyT9fEbpzjvv1COPPKI9e/Zo165dSkhI0NChQxUcHCxJ+stf/iJPT0+NGDFCBw8e1PLlyzV//nyNHTvWVUsHAACViIcrD37LLbdo9erVmjx5sp599lmFhoZq3rx5iomJsY958sknVVBQoJEjRyo3N1e33367Nm3aJG9vb/uYpUuXKiEhQX379pWbm5sGDx6sBQsW2Pv9/f21ZcsWxcfHq0uXLqpXr56mTp3q8K4iAABgLpe+h+hGwXuIAAC48dww7yECAACoDAhEAADAeAQiAABgPAIRAAAwnkufMsP/uZ4bowEAwHXjDBEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMF6Z31RdUFCgHTt26OTJk7p06ZJD39/+9rfrLgwAAKCilCkQff7557rrrrt08eJFFRQUqE6dOjp37pyqV6+ugIAAAhEAALihlOmS2ZgxYzRw4EB9//338vHx0SeffKITJ06oS5cueuGFF5xdIwAAQLkqUyDat2+fxo0bJzc3N7m7u6uoqEghISGaM2eOnnrqKWfXCAAAUK7KFIiqVasmN7efdw0ICNDJkyclSf7+/jp16pTzqgMAAKgAZbqHqFOnTtq7d69atGihO+64Q1OnTtW5c+f0zjvvqF27ds6uEQAAoFyV6QzRrFmz1KBBA0nSzJkzVbt2bT322GM6e/aslixZ4tQCAQAAyluZzhCFh4fb/xwQEKBNmzY5rSAAAICKVqYzRH369FFubq6TSwEAAHCNMgWi1NTUEi9jBAAAuFGV+as7LBaLM+sAAABwmTJ/dcfdd98tT0/Pq/Zt27atzAUBAABUtDIHooiICNWoUcOZtQAAALhEmQKRxWLRhAkTFBAQ4Ox6AAAAKlyZ7iGy2WzOrgMAAMBlyhSIpk2bxuUyAABQZZTpktm0adMkSWfPnlVmZqYkqVWrVqpfv77zKgMAAKggZTpDdPHiRcXFxSk4OFg9e/ZUz549FRwcrBEjRujixYvOrhEAAKBclSkQjRkzRjt27NDatWuVm5ur3NxcffDBB9qxY4fGjRvn7BoBAADKVZkumb3//vtatWqVevXqZW+766675OPjo3vvvVeLFi1yVn0AAADlrsyXzAIDA0u0BwQEcMkMAADccMoUiCIiIjRt2jQVFhba23788UfNmDFDERERTisOAACgIpTpktm8efN05513qmHDhurQoYMkaf/+/fL29tbmzZudWiAAAEB5K1MgCgsL09GjR7V06VIdPnxYknT//fcrJiZGPj4+Ti0QAACgvJUpEO3cuVO33XabHnnkEWfXAwAAUOHKdA9R7969df78eWfXAgAA4BJ8lxkAADBemS6ZSVJaWppq16591b6ePXuWuSAAAICKVuZAdPfdd1+13WKxqLi4uMwFAQAAVLQyXTKTpKysLFmt1hIbYQgAANxoyhSILBaLs+sAAABwGW6qBgAAxivTPURWq9XZdQAAALhMmc4QJSYm6s033yzR/uabb2r27NnXXRQAAEBFKlMgevXVV9W6desS7TfffLMWL1583UUBAABUpDIFoqysLDVo0KBEe/369fXtt99ed1EAAAAVqUyBKCQkRLt27SrRvmvXLgUHB193UQAAABWpTDdVP/LIIxo9erQuX76sPn36SJK2bt2qJ598UuPGjXNqgQAAAOWtTIFowoQJ+u677/T444/r0qVLkiRvb29NnDhRkydPdmqBAAAA5c1iu46XCl24cEGHDh2Sj4+PWrRoIS8vL2fWVmnk5+fL399feXl58vPzc/4BUgc6f85r0Wuda44LAEAFKM3v7zJ/l5kk1ahRQ7fccsv1TAEAAOByZQ5En376qVasWKGTJ0/aL5td8e9///u6CwMAAKgoZXrK7L333tNtt92mQ4cOafXq1bp8+bIOHjyobdu2yd/f39k1AgAAlKsyBaJZs2Zp7ty5WrdunTw9PTV//nwdPnxY9957rxo1auTsGgEAAMpVmQLR119/rejoaEmSp6enCgoKZLFYNGbMGC1ZssSpBQIAAJS3MgWi2rVr64cffpAk3XTTTTpw4IAkKTc3VxcvXnRedQAAABWgTDdV9+zZUykpKQoLC9OQIUM0atQobdu2TSkpKerbt6+zawQAAChXZQpECxcuVGFhoSRpypQpqlatmj7++GMNHjxYTz/9tFMLBAAAKG+lejFjfn7+NY0rl5cXuhAvZgQA4MZTbi9mrFWrliwWy++OKy4uLs20AAAALlWqQLR9+3aHzzabTXfddZdef/113XTTTU4tDAAAoKKUKhDdcccdJdrc3d3VrVs3NW3a1GlFoYJcz6U6LrcBAKqQMj12Xx6ef/55WSwWjR492t5WWFio+Ph41a1bVzVq1NDgwYOVnZ3tsN/JkycVHR2t6tWrKyAgQBMmTNBPP/3kMCY1NVWdO3eWl5eXmjdvruTk5ApYEQAAuFFcVyA6deqULl68qLp1615XEXv37tWrr76q9u3bO7SPGTNG69at08qVK7Vjxw6dOXNG99xzj72/uLhY0dHRunTpkj7++GO99dZbSk5O1tSpU+1jjh8/rujoaPXu3Vv79u3T6NGj9fDDD2vz5s3XVTMAAKg6SvWU2YIFC+x/PnfunN599101adJEKSkpZS7gwoUL6ty5s/75z3/queeeU8eOHTVv3jzl5eWpfv36WrZsmf785z9Lkg4fPqw2bdooLS1N3bp108aNGzVgwACdOXNGgYGBkqTFixdr4sSJOnv2rDw9PTVx4kRt2LDB/vJISRo6dKhyc3O1adOma6qxyj5ldj24ZAYAqORK8/u7VGeI5s6dq7lz52revHnatGmTBg4cqOXLl19XsfHx8YqOjlZkZKRDe3p6ui5fvuzQ3rp1azVq1EhpaWmSpLS0NIWFhdnDkCRFRUUpPz9fBw8etI/537mjoqLsc1xNUVGR8vPzHTYAAFB1leqm6uPHjzv14O+9954+++wz7d27t0RfVlaWPD09VatWLYf2wMBAZWVl2cf8Mgxd6b/S91tj8vPz9eOPP8rHx6fEsRMTEzVjxowyrwsAANxYXHZT9alTpzRq1CgtXbpU3t7erirjqiZPnqy8vDz7durUKVeXBAAAypHLAlF6erpycnLUuXNneXh4yMPDQzt27NCCBQvk4eGhwMBAXbp0Sbm5uQ77ZWdnKygoSJIUFBRU4qmzK59/b4yfn99Vzw5JkpeXl/z8/Bw2AABQdbksEPXt21cZGRnat2+ffQsPD1dMTIz9z9WqVdPWrVvt+2RmZurkyZOKiIiQJEVERCgjI0M5OTn2MSkpKfLz81Pbtm3tY345x5UxV+YAAAAo05e7OkPNmjXVrl07hzZfX1/VrVvX3j5ixAiNHTtWderUkZ+fn5544glFRESoW7dukqR+/fqpbdu2evDBBzVnzhxlZWXp6aefVnx8vLy8vCRJjz76qBYuXKgnn3xScXFx2rZtm1asWKENGzZU7IIBAECl5bJAdC3mzp0rNzc3DR48WEVFRYqKitI///lPe7+7u7vWr1+vxx57TBEREfL19VVsbKyeffZZ+5jQ0FBt2LBBY8aM0fz589WwYUO9/vrrioqKcsWSAABAJVSq9xCZivcQXQXvIQIAVHLl9h4iAACAqohABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIzn0kCUmJioW265RTVr1lRAQIAGDRqkzMxMhzGFhYWKj49X3bp1VaNGDQ0ePFjZ2dkOY06ePKno6GhVr15dAQEBmjBhgn766SeHMampqercubO8vLzUvHlzJScnl/fyAADADcKlgWjHjh2Kj4/XJ598opSUFF2+fFn9+vVTQUGBfcyYMWO0bt06rVy5Ujt27NCZM2d0zz332PuLi4sVHR2tS5cu6eOPP9Zbb72l5ORkTZ061T7m+PHjio6OVu/evbVv3z6NHj1aDz/8sDZv3lyh6wUAAJWTxWaz2VxdxBVnz55VQECAduzYoZ49eyovL0/169fXsmXL9Oc//1mSdPjwYbVp00ZpaWnq1q2bNm7cqAEDBujMmTMKDAyUJC1evFgTJ07U2bNn5enpqYkTJ2rDhg06cOCA/VhDhw5Vbm6uNm3a9Lt15efny9/fX3l5efLz83P+wlMHOn/O8tZrnasrAADgN5Xm93eluocoLy9PklSnTh1JUnp6ui5fvqzIyEj7mNatW6tRo0ZKS0uTJKWlpSksLMwehiQpKipK+fn5OnjwoH3ML+e4MubKHP+rqKhI+fn5DhsAAKi6Kk0gslqtGj16tLp376527dpJkrKysuTp6alatWo5jA0MDFRWVpZ9zC/D0JX+K32/NSY/P18//vhjiVoSExPl7+9v30JCQpyyRgAAUDlVmkAUHx+vAwcO6L333nN1KZo8ebLy8vLs26lTp1xdEgAAKEceri5AkhISErR+/Xrt3LlTDRs2tLcHBQXp0qVLys3NdThLlJ2draCgIPuYPXv2OMx35Sm0X4753yfTsrOz5efnJx8fnxL1eHl5ycvLyylrAwAAlZ9LzxDZbDYlJCRo9erV2rZtm0JDQx36u3TpomrVqmnr1q32tszMTJ08eVIRERGSpIiICGVkZCgnJ8c+JiUlRX5+fmrbtq19zC/nuDLmyhwAAMBsLj1DFB8fr2XLlumDDz5QzZo17ff8+Pv7y8fHR/7+/hoxYoTGjh2rOnXqyM/PT0888YQiIiLUrVs3SVK/fv3Utm1bPfjgg5ozZ46ysrL09NNPKz4+3n6W59FHH9XChQv15JNPKi4uTtu2bdOKFSu0YcMGl60dAABUHi597N5isVy1PSkpScOGDZP084sZx40bp3fffVdFRUWKiorSP//5T/vlMEk6ceKEHnvsMaWmpsrX11exsbF6/vnn5eHx/+e91NRUjRkzRl9++aUaNmyoZ555xn6M38Nj91fBY/cAgEquNL+/K9V7iCorAtFVEIgAAJXcDfseIgAAAFcgEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADG83B1AbhBpQ4s+7691jmvDgAAnIAzRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8TxcXQAMlDqw7Pv2Wue8OgAA+D+cIQIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjMeLGXFj4aWOAIBywBkiAABgPAIRAAAwHoEIAAAYj3uIYA7uPwIA/ArOEAEAAOMZFYheeeUVNWnSRN7e3uratav27Nnj6pIAAEAlYEwgWr58ucaOHatp06bps88+U4cOHRQVFaWcnBxXlwYAAFzMYrPZbK4uoiJ07dpVt9xyixYuXChJslqtCgkJ0RNPPKFJkyb95r75+fny9/dXXl6e/Pz8nF/c9dzbgqqNe5cAoMxK8/vbiJuqL126pPT0dE2ePNne5ubmpsjISKWlpbmwMuB3cCM4AFQIIwLRuXPnVFxcrMDAQIf2wMBAHT58uMT4oqIiFRUV2T/n5eVJ+jlplouCy+UzL8y24U5XV3Dj6LHC1RUAKAdXfm9fy8UwIwJRaSUmJmrGjBkl2kNCQlxQDYDy5+/qAgCUox9++EH+/r/937kRgahevXpyd3dXdna2Q3t2draCgoJKjJ88ebLGjh1r/2y1WnX+/HnVrVtXFovlumrJz89XSEiITp06VT73I1UirLVqYq1VE2utmkxaq1RyvTabTT/88IOCg4N/d18jApGnp6e6dOmirVu3atCgQZJ+Djlbt25VQkJCifFeXl7y8vJyaKtVq5ZTa/Lz8zPif5wSa62qWGvVxFqrJpPWKjmu9/fODF1hRCCSpLFjxyo2Nlbh4eG69dZbNW/ePBUUFGj48OGuLg0AALiYMYHovvvu09mzZzV16lRlZWWpY8eO2rRpU4kbrQEAgHmMCUSSlJCQcNVLZBXJy8tL06ZNK3FJripirVUTa62aWGvVZNJapetbrzEvZgQAAPg1xnx1BwAAwK8hEAEAAOMRiAAAgPEIRAAAwHgEogr0yiuvqEmTJvL29lbXrl21Z88eV5dULnbu3KmBAwcqODhYFotFa9ascXVJ5SIxMVG33HKLatasqYCAAA0aNEiZmZmuLqvcLFq0SO3bt7e/8CwiIkIbN250dVnl7vnnn5fFYtHo0aNdXUq5mD59uiwWi8PWunVrV5dVbk6fPq0HHnhAdevWlY+Pj8LCwvTpp5+6uiyna9KkSYm/V4vFovj4eFeX5nTFxcV65plnFBoaKh8fHzVr1kx///vfr+n7y36JQFRBli9frrFjx2ratGn67LPP1KFDB0VFRSknJ8fVpTldQUGBOnTooFdeecXVpZSrHTt2KD4+Xp988olSUlJ0+fJl9evXTwUFBa4urVw0bNhQzz//vNLT0/Xpp5+qT58++tOf/qSDBw+6urRys3fvXr366qtq3769q0spVzfffLO+/fZb+/bRRx+5uqRy8f3336t79+6qVq2aNm7cqC+//FIvvviiateu7erSnG7v3r0Of6cpKSmSpCFDhri4MuebPXu2Fi1apIULF+rQoUOaPXu25syZo5dffrl0E9lQIW699VZbfHy8/XNxcbEtODjYlpiY6MKqyp8k2+rVq11dRoXIycmxSbLt2LHD1aVUmNq1a9tef/11V5dRLn744QdbixYtbCkpKbY77rjDNmrUKFeXVC6mTZtm69Chg6vLqBATJ0603X777a4uwyVGjRpla9asmc1qtbq6FKeLjo62xcXFObTdc889tpiYmFLNwxmiCnDp0iWlp6crMjLS3ubm5qbIyEilpaW5sDI4U15eniSpTp06Lq6k/BUXF+u9995TQUGBIiIiXF1OuYiPj1d0dLTDf7dV1dGjRxUcHKymTZsqJiZGJ0+edHVJ5WLt2rUKDw/XkCFDFBAQoE6dOum1115zdVnl7tKlS/rXv/6luLi46/6C8srotttu09atW3XkyBFJ0v79+/XRRx+pf//+pZrHqDdVu8q5c+dUXFxc4mtCAgMDdfjwYRdVBWeyWq0aPXq0unfvrnbt2rm6nHKTkZGhiIgIFRYWqkaNGlq9erXatm3r6rKc7r333tNnn32mvXv3urqUcte1a1clJyerVatW+vbbbzVjxgz16NFDBw4cUM2aNV1dnlMdO3ZMixYt0tixY/XUU09p7969+tvf/iZPT0/Fxsa6urxys2bNGuXm5mrYsGGuLqVcTJo0Sfn5+WrdurXc3d1VXFysmTNnKiYmplTzEIgAJ4iPj9eBAweq7L0XV7Rq1Ur79u1TXl6eVq1apdjYWO3YsaNKhaJTp05p1KhRSklJkbe3t6vLKXe//Fd0+/bt1bVrVzVu3FgrVqzQiBEjXFiZ81mtVoWHh2vWrFmSpE6dOunAgQNavHhxlQ5Eb7zxhvr376/g4GBXl1IuVqxYoaVLl2rZsmW6+eabtW/fPo0ePVrBwcGl+nslEFWAevXqyd3dXdnZ2Q7t2dnZCgoKclFVcJaEhAStX79eO3fuVMOGDV1dTrny9PRU8+bNJUldunTR3r17NX/+fL366qsursx50tPTlZOTo86dO9vbiouLtXPnTi1cuFBFRUVyd3d3YYXlq1atWmrZsqW++uorV5fidA0aNCgR3tu0aaP333/fRRWVvxMnTuj//b//p3//+9+uLqXcTJgwQZMmTdLQoUMlSWFhYTpx4oQSExNLFYi4h6gCeHp6qkuXLtq6dau9zWq1auvWrVX2/gsT2Gw2JSQkaPXq1dq2bZtCQ0NdXVKFs1qtKioqcnUZTtW3b19lZGRo37599i08PFwxMTHat29flQ5DknThwgV9/fXXatCggatLcbru3buXeDXGkSNH1LhxYxdVVP6SkpIUEBCg6OhoV5dSbi5evCg3N8c44+7uLqvVWqp5OENUQcaOHavY2FiFh4fr1ltv1bx581RQUKDhw4e7ujSnu3DhgsO/Lo8fP659+/apTp06atSokQsrc674+HgtW7ZMH3zwgWrWrKmsrCxJkr+/v3x8fFxcnfNNnjxZ/fv3V6NGjfTDDz9o2bJlSk1N1ebNm11dmlPVrFmzxH1gvr6+qlu3bpW8P2z8+PEaOHCgGjdurDNnzmjatGlyd3fX/fff7+rSnG7MmDG67bbbNGvWLN17773as2ePlixZoiVLlri6tHJhtVqVlJSk2NhYeXhU3V/3AwcO1MyZM9WoUSPdfPPN+vzzz/XSSy8pLi6udBM58ck3/I6XX37Z1qhRI5unp6ft1ltvtX3yySeuLqlcbN++3SapxBYbG+vq0pzqamuUZEtKSnJ1aeUiLi7O1rhxY5unp6etfv36tr59+9q2bNni6rIqRFV+7P6+++6zNWjQwObp6Wm76aabbPfdd5/tq6++cnVZ5WbdunW2du3a2by8vGytW7e2LVmyxNUllZvNmzfbJNkyMzNdXUq5ys/Pt40aNcrWqFEjm7e3t61p06a2KVOm2IqKiko1j8VmK+WrHAEAAKoY7iECAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAFxm586dGjhwoIKDg2WxWLRmzZpSz2Gz2fTCCy+oZcuW8vLy0k033aSZM2eWao6q+y5vAABQ6RUUFKhDhw6Ki4vTPffcU6Y5Ro0apS1btuiFF15QWFiYzp8/r/Pnz5dqDt5UDeCGNmzYMOXm5pb4V2Vqaqp69+6t77//XrVq1XJJbQBKx2KxaPXq1Ro0aJC9raioSFOmTNG7776r3NxctWvXTrNnz1avXr0kSYcOHVL79u114MABtWrVqszH5pIZAACotBISEpSWlqb33ntPX3zxhYYMGaI777xTR48elSStW7dOTZs21fr16xUaGqomTZro4YcfLvUZIgIRACPk5ubq4YcfVv369eXn56c+ffpo//799v7p06erY8eODvukpqbKYrEoNzdXkvTdd9/p/vvv10033aTq1asrLCxM7777bgWuAjDLyZMnlZSUpJUrV6pHjx5q1qyZxo8fr9tvv11JSUmSpGPHjunEiRNauXKl3n77bSUnJys9PV1//vOfS3Us7iECYIQhQ4bIx8dHGzdulL+/v1599VX17dtXR44cUZ06da5pjsLCQnXp0kUTJ06Un5+fNmzYoAcffFDNmjXTrbfeWs4rAMyTkZGh4uJitWzZ0qG9qKhIdevWlSRZrVYVFRXp7bffto9744031KVLF2VmZl7zZTQCEYAq76OPPtKePXuUk5MjLy8vSdILL7ygNWvWaNWqVRo5cuQ1zXPTTTdp/Pjx9s9PPPGENm/erBUrVhCIgHJw4cIFubu7Kz09Xe7u7g59NWrUkCQ1aNBAHh4eDqGpTZs2kn4+w0QgAoD/s3//fl24cMH+L8orfvzxR3399df2zxkZGfb/k5Wk4uJih/HFxcWaNWuWVqxYodOnT+vSpUsqKipS9erVy3cBgKE6deqk4uJi5eTkqEePHlcd0717d/3000/6+uuv1axZM0nSkSNHJEmNGze+5mMRiABUeRcuXFCDBg2Umppaou+XT6C1atVKa9eutX/evXu3HnjgAfvnf/zjH5o/f77mzZunsLAw+fr6avTo0bp06VJ5lg9UaRcuXNBXX31l/3z8+HHt27dPderUUcuWLRUTE6OHHnpIL774ojp16qSzZ89q69atat++vaKjoxUZGanOnTsrLi5O8+bNk9VqVXx8vP7whz+UuNT2WwhEAKq8zp07KysrSx4eHmrSpMmvjvP09FTz5s3tn7/55huH/l27dulPf/qTPSRZrVYdOXJEbdu2LZe6ARN8+umn6t27t/3z2LFjJUmxsbFKTk5WUlKSnnvuOY0bN06nT59WvXr11K1bNw0YMECS5ObmpnXr1umJJ55Qz5495evrq/79++vFF18sVR0EIgA3vLy8PO3bt8+h7cq/ODMyMtStWzdFRERo0KBBmjNnjlq2bKkzZ85ow4YNuvvuuxUeHn5Nx2nRooVWrVqljz/+WLVr19ZLL72k7OxsAhFwHXr16qXfeiVitWrVNGPGDM2YMeNXxwQHB+v999+/rjoIRABueKmpqerUqdNV+3r27Knt27frP//5j6ZMmaLhw4fr7NmzCgoKUs+ePRUYGHjNx3n66ad17NgxRUVFqXr16ho5cqQGDRqkvLw8Zy0FgIvwpmoAVVqTJk2UnJxsf6stAFwNL2YEUKW1bdvW4ckxALgazhABAADjcYYIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABjv/wMurk29XIZGwQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG9CAYAAAARC6x6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqS0lEQVR4nOzdeVhU5dsH8O8wAwOyibIoi4CiooIaWu7ghia4EGKLZqalpZkl4FqvS5nmhlqWtmppLolIhWiSCmKKKaZCuYG4K4ILyCLL8Lx/8Dun2ecAAzOM9+e6uHTOeeaeZw6z3DyriDHGQAghhBBiwswMXQFCCCGEkPpGCQ8hhBBCTB4lPIQQQggxeZTwEEIIIcTkUcJDCCGEEJNHCQ8hhBBCTB4lPIQQQggxeZTwEEIIIcTkUcJDCCGEEJNHCQ8hhBBCTB4lPA0sNzcXU6ZMQatWrWBubg6RSMT/eHl5Gbp6hBBCiEmSGLoCT5MnT54gMDAQ2dnZmDhxInr06AFLS0sAwOrVq/Hw4UMD15AQQggxTZTwNKD4+HhcunQJ8+bNw9KlSxXO7dixgxIeQgghpJ5Ql1YDys7OBgD07dtXUHmRSITp06crHBs+fLhK11dsbCxEIhGSk5P5Y5s3b4ZIJMLVq1f5Y1VVVejcuTNEIhE2b97MH3/99ddVYm7duhVmZmb49NNPddbz0aNHmDlzJry8vCCVSuHu7o7XXnsN+fn5Gu8TFBSELl26qD3Xvn17DB06VKHe69atg7+/PywtLeHk5ITnn38ep06d4sts2rQJAwcOhLOzM6RSKTp27IgNGzaoxPby8oJIJML777+vcm7o0KEQiUQYPnw4fyw5OVnl2gJAaGgoRCIRFi1apPE5yt8/NjZW5ZyNjQ1ef/11leP79u1Dv379YG1tDVtbW4SGhuKff/5RKPP666/DxsZG5b7qXgvqLFq0SKE7VflH/vUBAIcOHeLr1LRpU4waNQrnz5/X+hjyz1++Prdv34aXlxe6d++OoqIi/vi9e/fwxhtvwMXFBZaWlujSpQt++OGHGtVf/npyZeQVFRWhRYsWKnVS97tU9x4ChP1+AODChQt48cUX4eTkBCsrK7Rv3x4ffPCB1vrL/3D169+/v8JxR0dHhIaGIjMzk3+smryf1OHeFyKRCGZmZmjRogVeeuklXL9+XaHcqlWr0Lt3bzRv3hxWVlbo1q2b2te2us8uQPXz6+rVqxCJRFi1apVKWT8/P/Tv35+/re29xFH+LFu4cCHMzMxw8OBBhXJTpkyBhYUFzp49qzEW9zzkXxeVlZUICQlBs2bN8O+//yoc//jjj9GmTRtIpVJ4eXlh/vz5KCsrU4hX288fIZ8fDx48QHR0NPz9/WFjYwM7OzsMGzZM4Tly8bT96PpMa8yohacBNWvWDABUPkAbypYtW5CRkaGz3IEDBzBp0iRMnz4dc+fO1Vq2qKgI/fr1w/nz5zFp0iQEBAQgPz8fv/76K27evAlHR0e19xs/fjwmT56MzMxM+Pn58cdPnjyJS5cu4cMPP+SPvfHGG9i8eTOGDRuGN998E5WVlUhNTUVaWhq6d+8OANiwYQM6deqEkSNHQiKR4LfffsO0adNQVVWFd955R+GxLS0t8dNPP2HlypUwNzcHANy8eRMHDx7kuxi1OXLkCBITE3WWq40tW7ZgwoQJGDp0KJYvX46SkhJs2LABffv2xd9//633cV4bNmxQSJxycnKwYMEChTJ//PEHhg0bhtatW2PRokUoLS3F559/jj59+uD06dM1qlNBQQGGDRsGc3NzJCYm8o9dWlqK/v37IysrC9OnT4e3tzd27dqF119/HY8ePcJ7772nNt6WLVv4/8+cOVPn469evRq5ubmC66vu8YT8fs6dO4d+/frB3NwcU6ZMgZeXF7Kzs/Hbb7/hk08+QXh4OHx8fBTq3qFDB0yZMoU/1qFDB/7/vr6++OCDD8AYQ3Z2NmJiYhASEsInJDV5P2nSr18/TJkyBVVVVcjMzMTatWtx+/ZtpKam8mXWrVuHkSNHYty4cSgvL8eOHTswZswYJCQkIDQ0tNbXtb58+OGH+O233/DGG28gIyMDtra2+P333/HNN9/g448/1pgkavLmm28iOTkZSUlJ6Nixo8LxH374AREREYiKisKJEyewbNkynD9/Hnv27FGIUdfPH02uXLmC+Ph4jBkzBt7e3sjNzcVXX32FoKAg/Pvvv3B1dUWHDh0U3jNff/01zp8/jzVr1vDHOnfuXOs6GD1GGsytW7eYnZ0dc3FxYbGxsezGjRssLy+P5eXlsSFDhjBPT0+F8gDYO++8o3AsNDRUpdyuXbsYAHb48GH+2KZNmxgAlpOTwxhj7MmTJ6xVq1Zs2LBhDADbtGkTX3bChAl8zFOnTjEbGxs2ZswYJpPJdD6nBQsWMAAsLi5O5VxVVZXG+z169IhZWlqyOXPmKByfMWMGs7a2ZkVFRYwxxg4dOsQAsBkzZmiNX1JSonJ+6NChrHXr1grHPD09WXBwMHN0dGSxsbH88Y8//pj17t2beXp6stDQUP744cOHVa5tjx49+Ou4cOFCjc9R/v67du1SOWdtbc0mTJjA3378+DFr2rQpmzx5skK5u3fvMnt7e4XjEyZMYNbW1iox1b0W1Fm4cCEDwPLy8hSOnzx5UuX10bVrV+bs7Mzu37/PHzt79iwzMzNjr732mtbHkb9+T548Yf3792fOzs4sKytLodzatWsZALZ161b+WHl5OevVqxezsbFhhYWFCuU/+OADJhKJFI55enoqXE/uOXLu3bvHbG1t+d+d/DUSiURswYIFCvGU30M1+f0EBgYyW1tbdu3aNYWymt4TynWXFxQUxIKCghSOzZ8/nwFg9+7dY4wJfz9pou7xx44dy5o0aaJwTPl9Vl5ezvz8/NjAgQMVjqv77GJM9fMrJyeHAWArV65UKdupUyeF563tvcSR/yzjZGRkMAsLC/bmm2+yhw8fMjc3N9a9e3dWUVGhMY788+De4/PmzWNisZjFx8crlDlz5gwDwN58802F49HR0QwAO3ToEH+stp8/Qj4/njx5ovKZnZOTw6RSKfvoo4/UPj9118uUUZdWA3J1dcWxY8fg7++PiIgIeHh4wMnJCU5OTjhw4EC9PvYXX3yB+/fvY+HChRrLXLlyBaGhoejatSu2bNkCMzPdL4/du3ejS5cueOGFF1TOKXcnyLO3t8eoUaOwfft2MMYAADKZDDt37kRYWBisra35+CKRSG295eNbWVnx/y8oKEB+fj6CgoJw5coVFBQUKNzPwsIC48aNw6ZNm/hjmzdvxsSJE3U+37i4OJw8eVJQV19NJSUl4dGjR3jllVeQn5/P/4jFYvTo0QOHDx9WuY98ufz8fDx+/Fivdbpz5w7OnDmD119/nW+hBKr/CgwODhbc0lVVVYXXXnsNaWlpSExMRJs2bRTOJyYmokWLFnjllVf4Y+bm5pgxYwaKioqQkpKiUL68vBxSqbRGz+Xjjz+Gvb09ZsyYoXLO2dkZN2/e1Hp/ob+fvLw8HDlyBJMmTUKrVq0UYmh7T2hTUVGB/Px85OXl4fjx49izZw86d+7Mt6AKfT9pU1ZWhvz8fNy7dw9JSUk4dOgQBg0apFBG/n328OFDFBQUoF+/fjh9+rRKvCdPnqi8PisqKtQ+dklJiUpZmUymtuzjx4+Rn5+PR48e6XxOQHXX2OLFi/Htt99i6NChyM/Pxw8//ACJRHgHx/r167Fs2TJ89tlnGDVqlMI57j0QGRmpcDwqKgoAsHfvXoXjtfn84Z6z/I8yqVTKf2bLZDLcv38fNjY2aN++vdrfz9PIZBKeI0eOYMSIEXB1dYVIJEJ8fHyNYzDGsGrVKrRr1w5SqRRubm745JNP9FrPTp06Yd++fWjTpg3c3d2RlJSEpKQk9OjRQ6+PI6+goABLly5FZGQkXFxc1JYpLi7G0KFDkZubiwcPHgj+YM7OzlZoQq+J1157DdevX+ebzP/44w/k5uZi/PjxCvFdXV0VvmzV+fPPPzF48GB+jImTkxPmz58PACoJDwBMnDgR+/fvx507d5CSkoI7d+7gxRdf1PoYMpkM8+fPx7hx4+ql2ffy5csAgIEDB/KJsHxCfO/ePYXyxcXFKuUmTZqk1zpdu3YNQPU4EGUdOnRAfn4+iouLdcb54IMP8PPPP6OsrAwlJSVqH6dt27YqSTbXrcPVg/Po0SO1Y5g0ycnJwVdffYXFixer7Tbo3bs3YmNj8fvvvyMvLw/5+fkK44sA4b+fK1euAECt3xfqHDt2DE5OTnB2dkbv3r1RWVmJXbt2KbxPhbyftNmxYwecnJzg4uKCIUOGwMPDA99++61CmYSEBPTs2ROWlpZo1qwZnJycsGHDBrXvse+++07tdVJn4cKFKmUvXLigtuykSZPg5OQEBwcH2NraYuzYsTq7KWfNmoUuXbrgr7/+wsKFCxW6o3TZt28f36X64MEDlfPXrl2DmZmZQhclALRo0QJNmzZVee0CNf/84Z6z/I/y+66qqgpr1qxB27ZtIZVK4ejoCCcnJ5w7d07t7+dpZDJjeIqLi9GlSxdMmjQJ4eHhtYrx3nvv4cCBA1i1ahX8/f3x4MEDtS/wutq4cSOys7OxZcsWDB48GACwdu1a3L17V++PBQDLly+HmZkZZs2ahfv376stk5+fD2tra/z2228ICwvDsmXLtLYG6cPQoUPh4uKCrVu3IjAwEFu3bkWLFi34ayJUdnY2Bg0aBF9fX8TExMDDwwMWFhZITEzEmjVrUFVVpXKfLl26oEuXLvjxxx9x/vx5jB49GnZ2dlof57vvvsPVq1fx+++/16h+QnH13LJlC1q0aKFyXvkvUktLS/z2228Kx1JTU/HRRx/VS/3q4sSJE9i8eTPWr1+PKVOm4MyZMzVuoZF39+5dtddIkw8++ABt27bFhAkTFMakcFasWIGQkBA8//zzGmPU9PejT507d8bq1asBVLcgffbZZ+jfvz9Onz7N16Wu76chQ4Zg1qxZAKrHlCxfvhwDBgzAqVOnYGVlhdTUVIwcORKBgYH48ssv0bJlS5ibm2PTpk3Ytm2bSrxRo0apDFz+8MMP1X7OTZkyBWPGjFE4NnnyZLX1XLBgAfr164eKigqkp6fjo48+wqNHj7S2Nl65coVPWIWMY5T3119/YfLkybC2tsaSJUswZswYtX8A1KT1rqafP9xzljdixAiF20uXLsX//d//YdKkSfj444/RrFkzmJmZ4f3331f7Gfg0MpmEZ9iwYRg2bJjG82VlZfjggw+wfft2PHr0CH5+fli+fDk/C+D8+fPYsGEDMjMz+Rezt7e33utZUFCAxYsX49lnn8W4ceP0Hl/Z7du3sW7dOixbtgy2trYaE54mTZpg//798PX1xcyZM7F06VK8+OKLCgMn1WnTpo3CbJGaEIvFGDt2LDZv3ozly5cjPj4ekydPhlgsVoj/+++/48GDBxpbeX777TeUlZXh119/VehCUNcFJG/SpElYs2YN7t69q5I4KCspKcHixYsxbdo0eHp61uBZCsd18zg7Owv6khKLxSrlhDbzC8U914sXL6qcu3DhAhwdHQV1lyxevBgTJkxA165d0b17dyxZsgQff/yxwuOcO3cOVVVVCq083F/5ytf833//RUBAgKDn8Pfff2PHjh2Ij49XeG3J8/HxwT///IOMjAz+j5wDBw5g5cqVfBmhv5/WrVsDQK3fF+o4ODgoPGb//v3h6uqKTZs2Yd68eQCEvZ+0admypcJjtG/fHr1790Z8fDxeeeUV7N69G5aWlvj9998VklX5rhl57u7uKtdJ0x92bdu2VSmr6XXl7+/Plx02bBiuX7+OH374AZWVlWrLV1VV4fXXX4ednR3ef/99LF26FBEREYL/MA4ODsaGDRvw5MkTxMfHY8qUKfxsJ6D6tVlVVYXLly8rfF7m5ubi0aNHGj8vavL5I/+cOcq/19jYWAwYMADfffedwvFHjx5pnDzytDGZLi1dpk+fjuPHj2PHjh04d+4cxowZg+eff57P+n/77Te0bt0aCQkJ8Pb2hpeXF9588029t/AsXboU+fn5WLNmTa3782ti8eLFcHFxwdtvv621nJOTE3x9fQEAH330Edzd3TF58mR+PIAmo0ePxtmzZ1VmIgDQeV+genbJw4cP8dZbb6GoqAivvvqqSnzGGBYvXqwxPvfGl3+8goICjR/EnLFjx+LWrVtwdnZWmP6qzrp161BcXMxPK64PQ4cOhZ2dHZYuXap2rENeXl69PbYmLVu2RNeuXfHDDz8oJFOZmZk4cOAAQkJCBMXh/jrt0qULoqOjsXz5coWEICQkBHfv3sXOnTv5Y5WVlfj8889hY2ODoKAg/vipU6eQnZ2NgQMHCnrsuXPnok+fPhg5cqTWcubm5ggICMDgwYMxePBglW4Pob8fJycnBAYG4vvvv1eZ1i3kPSFEaWkpAKhMe9b1fqrLY4jFYohEIoWxNVevXq3V8AF94pJkTZ+nMTExOHbsGL7++mt8/PHH6N27N6ZOnap12Qx5vXv3hlgshrW1NTZu3IgjR47gm2++4c9z74G1a9eqPC4AjbPXavL5I4RYLFZ5fe3atQu3bt2qc2xTYTItPNpcv34dmzZtwvXr1+Hq6goAiI6Oxv79+7Fp0yYsXboUV65cwbVr17Br1y78+OOPkMlkmDlzJiIiInDo0CG91OPatWv47LPP8OKLL6JPnz6C675//37+dl5eHkpLSxWOnTlzBkB102vbtm3h5ubGnztw4AB++uknWFhYCK6nlZUVvv76awwePBgbNmzAtGnTNJadNWsWYmNjMWbMGEyaNAndunXDgwcP8Ouvv2Ljxo06p30+88wz8PPzw65du9ChQweVv9oHDBiA8ePH47PPPsPly5fx/PPPo6qqCqmpqRgwYACmT5+OIUOGwMLCAiNGjOA/6L/55hs4Ozvjzp07Gh/bwcEBd+7c4T/ItTlw4AA++eQTNG/eXGs5Tc6cOaMy5kQmk+HWrVtISUlBUFAQ7OzssGHDBowfPx4BAQF4+eWX4eTkhOvXr2Pv3r3o06cP1q9fX6vHr4uVK1di2LBh6NWrF9544w1+Wrq9vX2t1uxYuHAhdu/ejcmTJ+PPP/+EmZkZpkyZgq+++gqvv/460tPT4eXlhdjYWPz5559Yu3YtbG1tAVQn4+vWrUPr1q3x2muvCXq8AwcO4M8//6xxPZXV5Pfz2WefoW/fvggICMCUKVPg7e2Nq1evYu/evfz7tSZyc3OxdetWANXdz1999RUkEonCmi2A7veTNleuXOEf49atW1i/fj3s7Oz4gcuhoaGIiYnB888/j7Fjx+LevXv44osv4OPjg3PnztX4OdUW916qrKxEeno6fvzxR4waNUptS9b58+fxf//3f3j99df5LqDNmzeja9eumDZtGn7++ecaPfbQoUPx6quvYvbs2RgxYgRatmyJLl26YMKECfj666/x6NEjBAUF4a+//sIPP/yAsLAwDBgwQG2smnz+CDF8+HB89NFHmDhxInr37o2MjAz89NNPfIsjgWlOSwfA9uzZw99OSEhgAJi1tbXCj0QiYS+++CJjjLHJkyczAOzixYv8/dLT0xkAduHCBb3Ua+zYsUwqlfLTXOWpm24OoMY/3HRibkpt165dFabCctNANU1Llzdx4kRmZ2fHbt68qfV53b9/n02fPp25ubkxCwsL5u7uziZMmMDy8/MFXZcVK1YwAGzp0qVqz1dWVrKVK1cyX19fZmFhwZycnNiwYcNYeno6X+bXX39lnTt3ZpaWlszLy4stX76cff/99wrTihljKtM+lWmaFtqyZUtWXFysUBY1mJau7Uf52h8+fJgNHTqU2dvbM0tLS9amTRv2+uuvs1OnTvFlGnJaOmOM/fHHH6xPnz7MysqK2dnZsREjRrB///1X62PIP3/l+iQnJzORSMTWrVvHH8vNzWUTJ05kjo6OzMLCgvn7+6vUw93dnU2aNIndvn1b5bE0TUsfNWqUoDopU56WLn9/Xb8fxhjLzMxkL7zwAmvatCmztLRk7du3Z//3f/+n9rF0TUuXf700bdqU9enThyUmJqotr+v9pOnx5R/D0dGRDRkyhB0/flyh3Hfffcfatm3LpFIp8/X1ZZs2bVKZ/s9Y/U5L534kEgnz9PRkM2bMYA8fPmSMKX6WVVZWsmeffZa5u7uzR48eKcRet24dA8B27typ9bqoe4/n5+czJycn9sILL/DHKioq2OLFi5m3tzczNzdnHh4ebN68eezJkycK963t54/QaelRUVGsZcuWzMrKivXp04cdP35c7bIGnKdtWvpTkfDs2LGDicViduHCBXb58mWFnzt37jDGqteTkUgkCnFKSkoYAHbgwIGGrH6tBQUFqXxBNAZr165lIpFIZc2Sp8GmTZueqg8cUv+e5vcTIdo8FV1azzzzDGQyGe7du6cy0p3Tp08fVFZWIjs7mx+ceOnSJQCqAyaJ/jDG8N133yEoKEhlzRJCSM3Q+4kQzUwm4SkqKkJWVhZ/OycnB2fOnEGzZs3Qrl07jBs3Dq+99hpWr16NZ555Bnl5eTh48CA6d+6M0NBQDB48GAEBAZg0aRLWrl3Lb0kQHByMdu3aGfCZCffcc88pjN8xZsXFxfj1119x+PBhZGRk4JdffjF0lQzCzc1NYUAuIbVB7ydCBDB0E5O+aBorwfVxlpeXswULFjAvLy9mbm7OWrZsyV544QV27tw5PsatW7dYeHg4s7GxYS4uLuz1119XWE6f6A/Xd9+0aVM2f/58Q1eHkEaN3k+E6CZiTE/zJAkhhBBCjNRTsw4PIYQQQp5elPAQQgghxOQZdNCyTCbDokWLsHXrVty9exeurq54/fXX8eGHHwpaiKmqqgq3b9+Gra1tg6xaTAghhBDDY4zh8ePHcHV1Vdl0WBODJjzLly/Hhg0b8MMPP6BTp044deoUJk6cCHt7e8yYMUPn/W/fvg0PD48GqCkhhBBCjM2NGzfg7u4uqKxBE55jx45h1KhR/F4jXl5e2L59O/766y9B9+eWm79x44bGnWYrKipw4MABDBkyBObm5rWqJ8WgGBSjcdaFYlAMitGwMRqqLoWFhfDw8ODzACEMmvD07t0bX3/9NS5duoR27drh7NmzOHr0KL/pmrKysjKFzfIeP34MoHrvJysrK7X3kUgkaNKkCaysrGp94SkGxaAYjbMuFINiUIyGjdFQdeE28K3JcBaDTkuvqqrC/PnzsWLFCojFYshkMnzyySeYN2+e2vKLFi1Su2v2tm3b0KRJk/quLiGEEEKMQElJCcaOHYuCggKNPTzKDJrw7NixA7NmzcLKlSvRqVMnnDlzBu+//z5iYmIwYcIElfLKLTxck1Z+fr7WLq2kpCQEBwfXqWmNYlAMitH46kIxKAbFaNgYDVWXwsJCODo61ijhMWiX1qxZszB37ly8/PLLAAB/f39cu3YNy5YtU5vwSKVSSKVSlePm5uY6L6qQMrpQDIpBMRpnXSgGxaAYDRujvutSm7gGXYenpKREZTqZWCxGVVWVgWpECCGEEFNk0BaeESNG4JNPPkGrVq3QqVMn/P3334iJicGkSZMMWS1CCCGEmBiDJjyff/45/u///g/Tpk3DvXv34OrqirfeegsLFiwwZLUIIYQQYmIMmvDY2tpi7dq1WLt2rSGrQQghhBATR3tpEUIIIcTkUcJDCCGEEJNHCQ8hhBBCTB4lPIQQQggxeZTwEEIIIcTkGXSWFiGEEEIIUL0Y8YULFwAARaVlOJaRDQfHU7CxksLX17fOe2ZSwkMIIYQQg7tw4QK6deumcGzF//5NT09HQEBAneJTwkMIIYQQg/P19UV6ejoA4OKdR4jclYGYMf5o37IpfH196xyfEh5CCCGEGFyTJk34Vhyza/chTS1FB78u6OrZXC/xadAyIYQQQkweJTyEEEIIMXmU8BBCCCHE5FHCQwghhBCTRwkPIYQQQkweJTyEEEIIMXmU8BBCCCHE5FHCQwghhBCTRwkPIYQQQkweJTyEEEIIMXmU8BBCCCHE5FHCQwghhBCTRwkPIYQQQkweJTyEEEIIMXmU8BBCCCHE5FHCQwghhBCTRwkPIYQQQkweJTyEEEIIMXmU8BBCCCHE5FHCQwgh9UgmkyElJQVHjhxBSkoKZDKZoatEyFOJEh5CCKkncXFx8PHxQXBwMGJiYhAcHAwfHx/ExcUZumqEPHUo4SGEkHoQFxeHiIgI+Pv7IzU1Fdu3b0dqair8/f0RERFBSQ8hDYwSHkII0TOZTIaoqCgMHz4c8fHx6NGjB6ysrNCjRw/Ex8dj+PDhiI6Opu4tQhqQQRMeLy8viEQilZ933nnHkNUihJA6SU1NxdWrVzF//nyYmSl+zJqZmWHevHnIyclBamqqgWpIyNNHYsgHP3nypMJfOJmZmQgODsaYMWMMWCtCCKmbO3fuAAD8/PzUnueOc+UIIfXPoC08Tk5OaNGiBf+TkJCANm3aICgoyJDVIoSQOmnZsiWA6j/i1OGOc+UIIfXPoC088srLy7F161ZERkZCJBKpLVNWVoaysjL+dmFhIQCgoqICFRUVau/DHdd0XgiKQTEoRuOsi6Fi9OzZE15eXliyZAl2797Nt2RXVFSgqqoKn3zyCby9vdGzZ0/BcRvz9aAYT08MfcWprKzk/1UXpzaxRYwxVusa6dHPP/+MsWPH4vr163B1dVVbZtGiRVi8eLHK8W3btqFJkyb1XUVCCBHs+PHjWLFiBbp3747Ro0fD09MT165dw+7du3Hq1CnMnj0bvXr1MnQ1CTFKN4qAVRkSRPtXwsNG9XxJSQnGjh2LgoIC2NnZCYppNAnP0KFDYWFhgd9++01jGXUtPB4eHsjPz9f4hCsqKpCUlITg4GCYm5vXqm4Ug2JQjMZZF0PH2LNnD+bMmYOrV6/yx7y9vfHpp5/ihRdeaLB6UAyK0VAx9BXn7PUHiPjmFGInd0eXVs1UzhcWFsLR0bFGCY9RdGldu3YNf/zxh851KaRSKaRSqcpxc3NznRdVSBldKAbFoBiNsy6GivHiiy9i9OjROHz4MPbt24dhw4ZhwIABEIvFDVoPikExGjpGXeNIJBL+X3UxahPXKBKeTZs2wdnZGaGhoYauCiGE6JVYLEZQUBCKi4sRFBRUp2SHEFJ7Bk94qqqqsGnTJkyYMIHP6AghhBBi/B4Ul2P3mX+R++gqLmekAwBYFcPd3Fzs/uckRGYitPXvhgDvDgjp2N6gdTV4hvHHH3/g+vXrmDRpkqGrQgghhJAaOPDPXaw8vhlSp4OA/CoLbgC3ytTp/Hj8eH4Q2jkugY+zmhHIDcTgCc+QIUNgJOOmCSGEEFIDQzq1wOOK15H7qL9KC08LF5f/Wnie7WDQZAcwgoSHEEIIIY1TM2sLTO7TFUBXIDQMQPUsrcTERISEhOhl8LO+0OahhBBCCDF5lPAQQgghxORRwkMIIYQQk0cJDyGEEEJMHiU8hBBCCDF5lPAQQgghxORRwkMIIYQQk0cJDyGEEEJMHiU8hBBCCDF5lPAQQgghxORRwkMIIYQQk0cJDyGEEEJMHiU8hBBCCDF5lPAQQgghxORRwkMIIYQQk0cJDyGEEEJMHiU8hBBCCDF5lPAQQgghxORRwkMIIYQQkycxdAUIIYQQ8nTLyS9GcVklfzs7r5j/VyKpTlWspRJ4O1rX+jEo4SGEEEKIweTkF2PAqmS156JiMxRuH47uX+ukhxIeQgghhBgM17Kz9qWu8HG2qT5WWoaE5OMY3r8XrK2kyLpXhPd3nlFoBaopSngIIYQQYnA+zjbwc7MHAFRUVOCuExDg6QBzc3O9xKdBy4QQQggxeZTwEEIIIcTkUcJDCCGEEJNHCQ8hhBBCTB4lPIQQQggxeZTwEEIIIcTkUcJDCCGEEJNHCQ8hhBBCTJ7BE55bt27h1VdfRfPmzWFlZQV/f3+cOnXK0NUihBBCiAkx6ErLDx8+RJ8+fTBgwADs27cPTk5OuHz5MhwcHAxZLUIIIYSYGIMmPMuXL4eHhwc2bdrEH/P29jZgjQghhBBiigya8Pz6668YOnQoxowZg5SUFLi5uWHatGmYPHmy2vJlZWUoKyvjbxcWFgKo3nOjoqJC7X2445rOC0ExKAbFaJx1oRgUg2I0bIzaxKmsrOT/Vb4v969ymdrUUcQYYzW+l55YWloCACIjIzFmzBicPHkS7733HjZu3IgJEyaolF+0aBEWL16scnzbtm1o0qRJvdeXEEIIIfp1owhYlSFBtH8lPGyElSkpKcHYsWNRUFAAOzs7QY9j0ITHwsIC3bt3x7Fjx/hjM2bMwMmTJ3H8+HGV8upaeDw8PJCfn6/xCVdUVCApKQnBwcG13nGVYlAMitE460IxKAbFaNgYtYnzz+1ChG1IQ/zUnujkaqc2hnKZwsJCODo61ijhMWiXVsuWLdGxY0eFYx06dMDu3bvVlpdKpZBKpSrHzc3NdV5UIWV0oRgUg2I0zrpQDIpBMRo2Rk3iSCQS/l/l8lwM5TK1qZ9Bp6X36dMHFy9eVDh26dIleHp6GqhGhBBCCDFFBk14Zs6cibS0NCxduhRZWVnYtm0bvv76a7zzzjuGrBYhhBBCTIxBE55nn30We/bswfbt2+Hn54ePP/4Ya9euxbhx4wxZLUIIIYSYGIOO4QGA4cOHY/jw4YauBiGEEEJMmMG3liCEEEIIqW+U8BBCCCHE5FHCQwghhBCTRwkPIYQQQkweJTyEEEIIMXmU8BBCCCHE5FHCQwghhBCTRwkPIYSQRkUmkyElJQVHjhxBSkoKZDKZoatEGgFKeAghhDQacXFx8PHxQXBwMGJiYhAcHAwfHx/ExcUZumrEyFHCQwghpFGIi4tDREQE/P39kZqaiu3btyM1NRX+/v6IiIigpIdoRQkPIYQQoyeTyRAVFYXhw4cjPj4ePXr0gJWVFXr06IH4+HgMHz4c0dHR1L1FNKKEhxBCiNFLTU3F1atXMX/+fJiZKX51mZmZYd68ecjJyUFqaqqBakiMHSU8hBBCjN6dO3cAAH5+fmrPc8e5coQoo4SHEEKI0WvZsiUAIDMzU+157jhXjhBllPAQQggxev369YOXlxeWLl2KqqoqhXNVVVVYtmwZvL290a9fPwPVkBg7SngIIYQYPbFYjNWrVyMhIQFhYWFIS0tDaWkp0tLSEBYWhoSEBKxatQpisdjQVSVGSmLoChBCCKl/8ov1WVtbY8CAAY0uOQgPD0dsbCyioqIQGBjIH/f29kZsbCzCw8MNWDti7KiFhxBCTJwpLdYXHh6OrKwsJCUlITIyEklJSbh8+TIlO0QnSngIIcSEmeJifWKxGEFBQQgMDERQUFCja6kihkEJDyGEmCharI+Q/1DCQwghJooW6yPkP5TwEEKIiaLF+gj5D83SIoQQEyW/WF/Pnj1Vzj+ti/WVlJTgwoULKCotw7GMbDg4noKNlRS+vr5o0qSJoatH6gklPIQQYqLkF+uLj49XOPc0L9Z34cIFdOvWjb+94n//pqenIyAgwDCVIvWOurQIIcRE0WJ96vn6+iI9PR3bEg6ixYS12JZwEOnp6fD19TV01Ug9ohYeQggxYbRYn6omTZogICAAZtfuQ5paig5+XdDVs7mhq0XqGSU8hBBi4sLDwzFq1CgcPnwY+/btw7Bhw2q10rIprNZMnl7UpUUIIU+Bui7WZ0qrNZOnEyU8hBBCtDLF1ZrJ04cSHkIIIRrRas3EVFDCQwghRCNarZmYCkp4CCGEaESrNRNTYdCEZ9GiRRCJRAo/tA4CIYQYD/nVmtV5WldrJo2PwVt4OnXqhDt37vA/R48eNXSVCCGE/I/8as1VVVUK557m1ZpJ42PwhEcikaBFixb8j6Ojo6GrRAgh5H9otWZiKgy+8ODly5fh6uoKS0tL9OrVC8uWLUOrVq3Uli0rK0NZWRl/u7CwEABQUVGBiooKtffhjms6LwTFoBgUo3HWhWLoJ8aIESOwY8cOzJkzR2W15h07dmDEiBE1imks16OyspL/t7ZxjOW5GEuM2sSprKyESFKIrIf/okpizR+7XXkbGfcyIJFIcOVhMUSSQv53VZs6ihhjrMb30pN9+/ahqKgI7du3x507d7B48WLcunULmZmZsLW1VSm/aNEiLF68WOX4tm3baIdbQgipZzKZDP/++y8ePnwIBwcHdOzYsVG37NwoAlZlSBDtXwkPG0PX5ul1owj47M5hSJ0Oai1XljcIM1oOgIdN9Y73Y8eORUFBAezs7AQ9jkETHmWPHj2Cp6cnYmJi8MYbb6icV9fC4+Hhgfz8fI1PuKKiAklJSQgODoa5uXmt6kUxKAbFaJx1oRgUQ5uz1x8g4ptTiJ3cHV1aNTNYPUwpRm3i/HO7EC98cwBrXvZCa6f/WnhOpJ1Aj549qlt48ooxc8dV7Jk8BJ1c7VBYWAhHR8caJTwG79KS17RpU7Rr1w5ZWVlqz0ulUkilUpXj5ubmOi+qkDK6UAyKQTEaZ10oBsVQRyKR8P829udibDFqEkcikYBV2sHHoSP8XOwBVCdNNyQ34O/sD3Nzc5hVFoBVPuB/V7Wpn8EHLcsrKipCdnY2TW8khBBCiF4ZNOGJjo5GSkoKrl69imPHjuGFF16AWCzGK6+8YshqEUIIIcTEGLRL6+bNm3jllVdw//59ODk5oW/fvkhLS4OTk5Mhq0UIIYQQE2PQhGfHjh2GfHhCCCGEPCWMagwPIYQQQkh9oISHEEIIISaPEh5CCCGEmDxKeAghhBBi8ijhIYQQQojJo4SHEEIIISbPqLaWIIQQQohwJSUluHDhAopKy3AsIxsOjqdgY1W9BZOvry9trC2HEh5CCCGkkbpw4QK6devG314hdy49PR0BAQENXykjRQkPIYQQ0kj5+voiPT0dF+88QuSuDMSM8Uf7lk35c+Q/lPAQQgghjVSTJk0QEBAAs2v3IU0tRQe/Lujq2dzQ1TJKNGiZEBMgk8mQkpKCI0eOICUlBTKZzNBVIoQQo0IJDyGNXFxcHHx8fBAcHIyYmBgEBwfDx8cHcXFxhq4aIYQYDUp4CGnE4uLiEBERAX9/f6SmpmL79u1ITU2Fv78/IiIiKOkhhJD/oTE8hDRSMpkMUVFRGD58OOLj4yGTyXD//n306NED8fHxCAsLQ3R0NEaNGgWxWGzo6hKicQo1TZ8mDYESHkIaqdTUVFy9ehXbt2+HmZmZwrgdMzMzzJs3D71790Zqair69+9vuIoS8j+aplDT9GnSECjhIaSRunPnDgDAz89P7XnuOFeOEEPTNIWapk+ThkBjeAhppFq2bAkAyMzMVHueO86VI8TQuCnUHfy6QNrCBx38uiAgIIC6s0iDoISHkEaqX79+8PLywtKlS1FVVaVwrqqqCsuWLYO3tzf69etnoBoSQojxoISHkEZKLBZj9erVSEhIQFhYGNLS0lBaWoq0tDSEhYUhISEBq1atogHLhBACGsNDSKMWHh6O2NhYREVFITAwkD/u7e2N2NhYhIeHG7B2hBBiPCjhIaSRCw8Px6hRo3D48GHs27cPw4YNw4ABA6hlhxBC5FDCQ4gJEIvFCAoKQnFxMYKCgijZIYQQJTSGhxBCCCEmjxIeQgghhJg8SngIIYQQYvIo4SGEEEKIyaOEhxBCCCEmr06ztE6dOoWff/4Z169fR3l5ucK5uLi4OlWMEEIIIURfat3Cs2PHDvTu3Rvnz5/Hnj17UFFRgX/++QeHDh2Cvb29PutICCGEEFIntU54li5dijVr1uC3336DhYUF1q1bhwsXLuDFF19Eq1at9FlHQgghhJA6qXXCk52djdDQUACAhYUFiouLIRKJMHPmTHz99dd6qyAhhBBCSF3VOuFxcHDA48ePAQBubm7IzMwEADx69AglJSX6qR0hhBBCiB7UOuEJDAxEUlISAGDMmDF47733MHnyZLzyyisYNGhQjeN9+umnEIlEeP/992tbJUIIIUSrnPxiZN4qQOatAmTnFQMAsvP+O5aTX2zgGpL6UutZWuvXr8eTJ08AAB988AHMzc1x7NgxjB49Gh9++GGNYp08eRJfffUVOnfuXNvqEEIIIVrl5BdjwKpkleNRsRkKtw9H94e3o3UD1Yo0lFonPM2aNeP/b2Zmhrlz59YqTlFREcaNG4dvvvkGS5YsqW11CCGEEK2KyyoBAGtf6gofZxsUl5YhIfk4hvfvBWsrKbLuFeH9nWf4csS01DrhKSws1Hrezs5OUJx33nkHoaGhGDx4sM6Ep6ysDGVlZSp1qKioQEVFhdr7cMc1nReCYlAMitE460IxjDNGZWUl/29t49SmHtzjejWzRHvnJqioMMddJ8Df1Qbm5ua1qtfTfk31EUdd3ZX/VS5TmzqKGGOsxvdCdauOSCRSOc4Yg0gkgkwm0xljx44d+OSTT3Dy5ElYWlqif//+6Nq1K9auXau2/KJFi7B48WKV49u2bUOTJk1q/BwIIYQ0vBtFwKoMCaL9K+FhYzyPa6h66YOp1125TElJCcaOHYuCggLBDSy1buE5fPgwgOoEJyQkBN9++y3c3NwE3//GjRt47733kJSUBEtLS0H3mTdvHiIjI/nbhYWF8PDwwJAhQzQ+4YqKCiQlJSE4OBjm5uaC60cxKAbFqF0MY6pLXWPIZDIkJyfzMfr37w+xWNzg9TC1GGevPwAyTqFnz57o0qqZ7jvoqR7/3C7Eqow09O3bF51c7VRiKJ+vr3rURwxDXVN9xFF33XX9bnT1MqlT64QnKCiI/79YLEbPnj3RunVrwfdPT0/HvXv3EBAQwB+TyWQ4cuQI1q9fj7KyMpUPFqlUCqlUqhLL3Nxc50UVUkYXikExKEbjrEttYsTFxSEqKgpXr14FAMTExMDLywurV69GeHh4g9XDFGNIJBL+34ash6bH5WLUpV5P6zXVRxxtddf0u6lN/eq0l1ZdDBo0CBkZiiPjJ06cCF9fX8yZM6dWf0URQog+xMXFISIiAqGhoYiMjMSlS5fQrl07HDhwABEREYiNja110kMIMQy9JTzqxvNoY2trCz8/P4Vj1tbWaN68ucpxQghpKDKZDFFRUejWrRsyMzORkJDAn/Py8kK3bt0QHR2NUaNG0R9mhDQitU54nnnmGT7JKS0txYgRI2BhYcGfP336dN1rRwghDSw1NRVXr17FtWvXMHz4cGzZsgU3b96Eu7s7VqxYgYSEBDDGkJqaiv79+xu6uoQQgWqd8ISFhfH/HzVqlD7qguTkZL3EIYSQ2rp16xYA4Pnnn0d8fDxkMhnu37+PHj16ID4+HsOHD8e+ffv4coSQxqHWCc/ChQv1WQ9CiImQyWRISUnBkSNHYG1tjQEDBjSqrp+8vDwAQHh4OMzMzBSW2DAzM0NYWBj27dvHlyOENA613ksLqN4o9Ntvv8W8efPw4MEDANVdWfSXDyFPp7i4OPj4+CA4OBgxMTEIDg6Gj48P4uLiDF01wZycnABUP5eqqiqFc1VVVYiPj1coRwhpHGqd8Jw7dw7t2rXD8uXLsWrVKjx69AhA9YfEvHnz9FU/Qkgjwc1s8vf3R2pqKrZv347U1FT4+/sjIiKi0SQ93Hpi+/btQ1hYGNLS0lBaWoq0tDS+dUe+HCGkcah1l1ZkZCRef/11rFixAra2tvzxkJAQjB07Vi+VI4Q0nLp0RXEzm4YPH6523EtYWFiNZjYZslusX79+8PLygqOjI86dO4fAwED+nJeXF7p374779++jX79+DVIfQoh+1LqF5+TJk3jrrbdUjru5ueHu3bt1qhQhpGHVtSuKm9k0f/58mJkpfqyYmZlh3rx5yMnJQWpqar3Xpa7EYjFWr16N9PR0+Pv7Y926dZg+fTrWrVsHPz8/pKenY9WqVY1qXBIhpA4tPFKpVO3SzpcuXaK+bUIaEflF9mbOnInLly+jbdu2SEpKErzI3p07dwBA4xpa3HGunK66qJsO3pAL/oWHhyM2NhZRUVEK6/B4e3vTooPEaOTkF/M7u2fnFfP/cqsSA4C1VAJvR2uD1M/Y1DrhGTlyJD766CP8/PPPAKoXHrx+/TrmzJmD0aNH662ChJD6I7/IXkZGhsKXu6enp+BF9lq2bAkAyMzMRM+ePVXOZ2ZmKpTTVhd9dYvVVXh4OEaNGoXDhw9j3759GDZsWK261hr7rDVinHLyizFgVbLK8ajYDJVjh6P7U9KDOnRprV69GkVFRXB2dkZpaSmCgoLg4+MDW1tbfPLJJ/qsIyGknnBdUadOnULnzp0VBht37twZp06dEtQVxY17Wbp0qdqZTcuWLYO3t7fWcS/67BbTF7FYjKCgIAQGBiIoKKjGiYo+uudKSkpw+vRpHP/rFI5lZOP4X6dw+vRplJSU1PTpEBPCteysfakrEt7ti51vPovxPpXY+eazSHi3LxLe7Yu1L3VVKPu0q3ULj729PZKSknD06FGcO3cORUVFCAgIQM+ePZGeng4AsLGxUdgclBBiXLglJIYNG1anRfa4cS8REREICwvDrFmz+JlNK1euREJCAmJjY7UmDPrqFjMW+uqeu3DhArp168bfXvG/f9PT0+nzlcDH2QZ+bvaoqKjAXScgwNNBLxt/NqTSiuq1rjJvFfDHikvLcCoPaHHtIaytpMi6V1Tnx6lxwqM8bqdz587o3Lkzf/vs2bMYMGAAWrVqhU6dOik0kRNCjIs+F9mTH/ciP7NJ6LgXfXSLGQt9ds/5+voiPT0dF+88QuSuDMSM8Uf7lk3h6+vbQM9GP3SNN6GxJk+v7P8lM3PjlLvjJNiSdVLhiLW09luA1vieTZs21bpRKGMMIpEIOTk5ta4UIaRhyC+yN2nSJIVztVlkry7jXuS7xbjHla+LkG4xY8F1z23fvl1tIjlv3jz07t1b0H5cTZo0QUBAAMyu3Yc0tRQd/Lqgq2fzen4G+iV0vAmNNXk6DenUAgDQxtkGVubVnxUX7xQgKjYDqyP80b6lPYC6J8U1TngOHz6s9fzly5fVTlcnhBgfbvG8/fv3q+2K2r9/v0I5IbhxL8XFxTUa96KPbjFjYWrdc3UlP97Ex9kGxaVlSEg+juH9e/HdFe/vPENjTZ5Szawt8PJzrRSOVVZWvxbaOFnDz81eL49T44QnKChI6/mmTZvWti6EkAYmv8heRkaGSldUt27dGnSRvbp2ixkLU+qe0ydTGG9CGq/ad4YRQho9+VYVdevw7N27t8FbVfQ1HdyQTKl7jhBTQQkPIU85fS+yp491Z2rbLabvetSWfCI5atQoBAcH4/Lly7h27ZrBEklCnnaU8BBC9NaqEhcXh6ioKFy9ehUAEBMTAy8vL6xevbpBu6OMoR7h4eGIjo7GmjVrFBJJiUSC6OjoRtM9R4ipqHHCo+tNyu2aTghpXOraqqLPbSHq0jpjLNtTxMXFYdWqVQgNDcWQIUNw6dIltGvXDgcOHMCqVavQs2dPSnoIaUA1Tnjs7bWPlra3t8drr71W6woRQhoffa47U5fWGWPZnkJdPRITExESEoJ33nmnwbfJKCkpwYULF1BUWoZjGdlwcDwFGyspfH190aRJk3p/fEKMQY0Tnk2bNtVHPQghBlaXVhV9rTtT19YZ+XowxlSeT03Wv6kLfa7Dow+0WjMhddhLi5Dakv9iTUlJUfgyIIZR1z2f9LHujHKrSI8ePWBlZaWwzUV0dLTW1wsXPzs7W+3zuXLlis566IOxrcPDrda8LeEgWkxYi20JB5Gent7oVmsmpC4o4SENSh+bKRL94lpV/P39FTYP9ff3R0REhKDfjfy6M+oIWXdGH5uHcvHHjx+v9vmMHz9eZz30QR/XQ5+41Zo7+HWBtIUPOvh1QUBAAHVnkacKJTykwejji5Xolz5aVQD97Jauj1aR3r17QyKRwNnZGXFxcQrPJy4uDs7OzpBIJOjdu7fW51NX+rgehBD9omnppEEYy2BSokh+rEllZSU+//xzHDp0CFlZWXj33XcFjzXRx7YQ+lid+NixY6isrERubi5eeOEFlfVvcnNz+XL1OXaG1uExfTQQvPGhhIc0CGMbxEmqca0lO3bsQL9+/fj9axITEzF37ly88847CuW0qeu2EPpYnZir53vvvYcvvvhCZf2b9957D+vWrWuQsTO0Do9po4HgjQ8lPKRBGNsgTlKNay1Zt24dXFxcsHjxYkilUpSVlWHhwoVYt26dQjldwsPDMXz4cL6laODAgXj33XdhYWGh8776bCX67LPPEBoayrescFtlfPbZZzV6PnVB6/CYNm4g+MU7jxC5KwMxY/zRvmVTGghuxCjhIQ2CNlM0Tj169AAAWFhY4Pr16xCJRPx6MRMnToStrS3Ky8v5croor6GTmJiI9evXC17huK6tRNwYnubNm2PPnj1gjPHPZ9q0aXB3d8f9+/frfQyPsa3DQ/SPGwhudu0+pKml6ODXBV09mxu6WkQLGrRMGgQN4jROX331FQCgoqICERERSEtL41tVIiIiUFFRoVBOG25Qup+fH9atW4fp06dj3bp18PPzq9Gg9PDwcGRlZSEpKQmRkZFISkrC5cuXBSVM8mN4wsPDFZ5PeHg4cnNzUVlZiWPHjgmqS23pY8YZMV45+cXIvFWAzFsFyM4rBgBk5/13LPNWAXLyiw1cS6KMWnhIg9BHdwXRrLaLBmZnZwMAvvnmGyxZskSlVeXrr7/G5MmT+XLaHj8qKgrdunVDRkaGwpgVT09PdOvWrUYtGrXd5oLrEt26dSs+/PBDleezdetWvPrqq0/dOjxEf3LyizFgVbLK8ajYDJVjh6P7w9vRugFqRYSghIc0mLp2VxgjQ+7IzYmLi0NkZCSuXbsGoHorBk9PT8TExOi8pm3atAEAMMaQlZWlsnnod999p1BOE65F4+rVqxgxYgS2bt2qsEryb7/9xperz0HpXJdomzZt1D6fv/76S6FcfdeDunBNT3FZ9cD+tS91hY+zDYpLy5CQfBzD+/eCtZUUAJB1rwjv7zzDlyXGgbq0SIOqS3eFsTGGRRTj4uIwevRo3Lt3T+H4vXv3MHr0aJ11mTZtGiQSCT788EMwxhAUFITAwEAEBQWBMYYFCxZAIpFg2rRpWuPcunULADBs2DC16/kMGzZMoVx9ke86FYlECs9HJBI1WNcpdeGaPh9nG/i52SPA0wHdnYAATwf4udnDz80ePs42hq4eUYMSHtLguO4K7ouoMXZjGcMiijKZDG+//TYAYNCgQQr1GDRoEABg6tSpWhcNtLCwwMyZM5Gbmwt3d3d8++23ePDgAb799lu4u7sjNzcXM2fO1DnLKi8vD0B1QqtuzEpYWJhCufrCdZ0mJCQgLCxMYQxPWFgYEhISsGrVqnp/zRlLPQgh/6EuLUJqyFgWUUxOTkZeXh769u2LX375RaEev/zyC4KCgnD06FEkJyfzCZA6K1ZUryCyZs0ahZYciUSCWbNm8ee1cXJyAlCdCE6YMEGhmy8oKIhfV4crp0t5ebnKIohCprYD/3WdRkZGKnSdenl51ajrtK4Ly5laFy4ttPcfkaQQOYUXYWZpg8rKStyuvI3zD85DIqn+Ss0pLIJIUmjgWhJlBk14NmzYgA0bNvBTWDt16oQFCxbwzd+EGCNjWUQxOTkZALB48WK19Vi4cCGCg4N1JjwA0LNnT7i6uuL69ev8MVdXV7XjT9Rxc3MDAOzbtw/29vYoLS0FUD2eyMrKir/NldNm9uzZWLNmjcoiiDNnzhSUfHFEIpHgsuroY2G58PBwjBo1SmUsUWNs2aGF9v5j3vQE5v+1VOHYl/u/VCozCEBIA9aK6GLQhMfd3R2ffvop2rZtC8YYfvjhB4waNQp///03OnXqZMiqEaKRqc3A4brnQkNDER0drbBAXkREhOBVkp2cnNR2WXGJh7Ozs84xK7Nnz8bKlSvVLoK4cuVKANCZ9HDPZ/jw4diyZYvC4GmhzwegheWU0fX4T8WjHlgdOhZtnKtbeP48+if69O3Dt/Bk3yvCjJ+0z2wkDc+gY3hGjBiBkJAQtG3bFu3atcMnn3wCGxsbpKWlGbJahGhlLDthc61HCxcuVDswdtGiRQrl1JGfTp6ZmYkZM2Zg/fr1mDFjBjIzM/np5Lo2DwX+S2yU6yLkvkB1N9aaNWvg4uKCmzdvYtKkSXBwcMCkSZNw8+ZNuLi4YM2aNSgvL9f5fOq6GSqgnx3GjWFgu77Qjuv/YZV28LZrj47NO6JDsw5wlbiiQ7MO6Ni8Izo27whvu/ZglXaGriZRYjRjeGQyGXbt2oXi4mL06tVLbZmysjKUlZXxtwsLq/tIKyoq+AXSlHHHNZ0XgmJQDHk9e/aEl5cXlixZgp9//hlHjhzBkSNHIJVKERgYiE8++QTe3t7o2bOn4Li1qUefPn3g5OSEo0ePYsSIEYiOjkZpaSmOHj2KVatW4c8//4SzszP69OmjMW5KSgquXr2Ka9euYdiwYQgJCUFWVhZ8fHxw9epV7Nu3D4wxHD58GEFBQRrrkpKSws8UUzdoGaieOaYtzueff47KykosXrwYjDGFa2Jubo6FCxdi2rRp+PzzzzFjxgytz2fLli0oLy9HcnIy/7vp378/Zs2ahcDAQJ3PRx7XtVZZWVmj38+ePXvw8ssvIyQkBJs2bcLdu3fRokULrFq1ChEREdixYwdeeOEFwfFqWw9jiKF8H+XXe21i1uY9o496PC6t/g46e/0BKisrUfykDKfyAMcrebC2/N+09P8tRij0+dTHcxH6fOpaj/qKo6vutYktYoyxWtdIDzIyMtCrVy88efIENjY22LZtG0JC1Pd7Llq0CIsXL1Y5vm3btqfyrwxiOMePH8fy5cthYWGh0OLA3Z4zZ47GxN2Y6pGcnIy1a9fCxcUF9+7dg/zHgUgkgrOzM3Jzc/H+++9rbSni4gQEBGDevHm4cOECHj58CAcHB/j6+mLZsmU4ffq01jhff/01EhMTsWnTJjg4OKicf/DgASZNmoSQkBBMmTJFbYwjR44gJiYGM2fOxE8//aQwXd/Z2Rnjxo3DmjVrVAY0a3OjCFiVIUG0fyU8BM42lslkmDp1Kjw9PTFv3jyFJJCbln79+nV8+eWXgsfz1KYexhJD1330Ua+GqsfxXBF2XBH2O/ugayWcrepQYS2E1LWhrmt90FX3kpISjB07FgUFBbCzE9aaZvAWnvbt2+PMmTMoKChAbGwsP8OjY8eOKmXnzZuHyMhI/nZhYSE8PDwwZMgQjU+4oqICSUlJCA4Ohrm5ea3qSDEohjKupVH5rwzudkBAgMbEXZ/1CAkJQUVFBb/JJ6eqqgqRkZH4+OOPtd4/KysLAJCbmwtnZ2csXLgQTZo0QUlJCRYvXozc3FwA1ePttD0fLs6UKVMwatQohISEKDyfvLw8fi8rTXGysrKQmJiIsrIy/nnJx/j2228BAAMHDtQYw9raGjExMVi7di0sLS0Vzj1+/Bhr164FUL1ekNAWnrPXHwAZp9CzZ090adVM0H24Fq/du3ejR48eKs/F0dERgYGBsLOzq9d6GEuMf24XYlVGGvr27YtOrnYq10P5vBC1ec/oox49i8vhf/4eWjtZw8pcjEt3CzB7z3mseKED2rWw58tZS8Xwai5sleX6eC7qytRHPeorjq7XGdfDUxMGT3gsLCzg4+MDAOjWrRtOnjyJdevWqd27RyqVQiqVqhw3NzfXeVGFlNGFYlAMoPqv93fffRdAdcIxZMgQfkfuAwcOYO/evXj33XcxevToGs/GqelziYuLw5o1a9TuyL1mzRr06dNH6wBdR0dH/nFv3LjBbx46btw4vPnmm7CxsUFFRQUcHR211qtFixYAgF9++QWTJ09WeD5isZhfablFixYa47z77ruYO3cuFi5ciDfeeIMvZ25uDpFIhMWLF0MikeDdd9/VGCMwMBBmZmaoqqpSO66JMQYzMzMEBgYKvs7cQFSJRCL4Ptzg7a5duyrch/v9du3alS9Xn/Uwlhia7sNdj7rUqybvGX3Uw6WpOcb18lY53q6FfZ03D9Xnc9FWRp/1qK84uupem7hGt/BgVVWVwjgdQoxNcnIy7t27h759++LXX3/F1KlTMXjwYEydOhW//vor+vTpg3v37vHTxuuL/ADdX375BW+//TYGDx6Mt99+G7/88ougAbonT54EoHvzUK6cJtx08/3796tdaG///v0K5dTRxyKIqampfKLTtGlTbNiwAd9//z02bNiApk2bAqj+jKnvTTuNZWA7UcWtofPv/X9x/sF5fg2df+//i5zCi7R+jgkzaAvPvHnzMGzYMLRq1QqPHz/Gtm3bkJycjN9//92Q1SJEK13r3yxatEjw+jd1oY/1gLgxO126dMHZs2cVxrV4enryx3UN9eO2UnB0dERGRobKQnvdunXD/fv3dU5Lr+siiIcOHQIAtGvXDuXl5Zg6dapCPdq2bYvLly/j0KFD9fq7kd9aglt0kUNbSxiWrjV0hK6fwy3EePHOI5TdzcL5TCtU3W/6VC7E2FgYNOG5d+8eXnvtNdy5cwf29vbo3Lkzfv/9dwQHBxuyWoQ0CvpYD6ht27YAgLNnz8LKSnF05b179/gNSblymnBbKXDr+cycOZPv5ktKSsLevXsRGxsrqItvxYoVWLJkCb/S8sCBAwWvtMwtnPjuu+9i6tSpKgv+ffHFF3jvvfcUFlisD/LXIywsDLNmzeJbvFauXImEhATB14P8Jye/GPmPCpGTdQkymQxnMrJRIkmFWCyGt087ODa107k7ubY1dGqyfo7yQoxjf6j+92lciLGxMGjCw+3ETEhj0r9/fyxZsgQLFy5UaTmpqqriZxLW5yrLgH525J42bRqioqJUxrvIMzMz07l5KKC4lUJCQgJ/vDZbKVhYWGDGjBnw8fFBSEiI4P76Vq1aAaieufnmm2/i7NmzuHDhAlxdXdG3b19s375doVx9MrWtJQwtJ78YA1Ylo+xuFu7+8L7K+RYT1kLawgeHo/trTXr+W0PHHhUVFciR5KBDsw4wNzdH1ZMCsEph+71xCzEWlZZh7+HjCB3Qi99qgxgngw9aJqSx6d+/P7/+zahRozB79mz+r/cVK1bg6NGjcHZ2rveERx/dJmKxGLa2tigoKOC3f+Bwt21tbQW3RBh6K4WBAwdi6dKlOH78uEKLVWJiIqKjoxXKNQRDXw9TUlxWvS7L2imhEL3ctbqF5+8z6PpMV4jFYjA7N8z59SJfrr5xCzFWVFTgYf499Hquu14G+pL6QwkPITUkFouxceNGjB49GgcPHlRozeD67jds2CD4S00mkylstin0C1Ef3SapqakoKCjQ+jgFBQU12hdMLBYjKCgIxcXFCAoKatAv9/79+/PT6jVp0qRJvSej8gx5PUxRJ08n+Ln5oKKiAk0qHyNkSD+Ym5sj81YBgIuGrh4xYkY3S4uQxiA8PBy7d++Gs7OzwnFnZ2fs3r1bcHdFXbce4LpNzp07h8DAQLzyyisIDAxERkaGoG6TW7du8f9XHsMjf1u+nDGTyWR48uSJ1jJPnjwRvN0FIcR0UMJDSC2Fh4cjOzsbSUlJiIyMRFJSErKysmqU7ERERMDf3x+pqanYvn07UlNT4e/vj4iIiBrtt1TbncG5hQUBYNCgQQr1kJ/FJF9OF/kWq5SUlAZNLr788kt+PJLyFhdcy0pVVRW+/PJLlfsS0thom2JP0+xVUZcWIXVQ2+4K5U0uZTIZ7t+/z29yGRYWhujoaIwaNUprzLruDJ6fnw8AcHBwwJ49e8AY4+uxZ88eODs74+HDh3w5XeLi4hAVFYWrV68CAGJiYuDl5YXVq1c3yCDdixeruzQcHR1x8+ZNpKam8mNn+vXrB3d3d+Tn5/PlCGnMdE2xry4jbJr904BaeAgxAG4Nnfnz56vdbHPevHnIycnRukCefNK0e/duPHnyBCdPnsSTJ0+we/duQQsP3rx5EwDw8OFDhIeHKywYGB4ejocPHyqU00afLVa1dffuXQDVW0dIpVIEBQUhMDAQQUFBkEqlGDp0qEI5Qhqzikc9sPS577Bz+E789PxPmGYzDT89/xN2Dt+JncN3Yulz36HiUQ9DV9NoUMJDiAHoYw0dLmnq3bs32rVrpzAOqF27dujVq5fOpMnDwwNA9UJ96sYBtWvXTqGcJvpIvpTj1aZbjJuCv2/fPn63ZU5lZSW/qCmtcExMwX9T7DuiQ7MOcJW4okOzDujYvCM6Nu8Ib7v2YJXC9iZ7GlDCQ0gd1PWLuS5bD3DJ0Lx581TG2OTm5mL+/PkK5dThpmdfunQJfn5+WLduHaZPn45169ahU6dOuHTpkkI5TfSRfHHqMpCbS9Dy8/PVbk/Bdc1x5QghTw8aw0NILdVlvIo+1tCRnyGmvPWD/G3lmWTyuDWF8vLycOjQIezdu5c/x83SErKmEJdUzZ8/H6GhoYiMjFTYyPSDDz5QKKdJXcckTZs2DbNmzYKFhQW/QztHLBajSZMmKC8vF7SQIiHEtFALDyG1UNfxKtwaOgkJCWo320xISMCqVau0DliuSfeQtnps3LgRAFSmc3O3hawpxCVV7du3R2ZmJmbMmIH169djxowZyMzMRPv27RXKaaqn/EDuHj16wMrKih/ILaRbjNuAtKSkBI6Ojhg9ejQGDhyI0aNHo3nz5igpKdG5Aak+lZSU4PTp0zj+1ykcy8jG8b9O4fTp01rXCSKE1A9q4SGkhpTHq6SkpODkyZNwdHTE7t27MXr0aEEzrOq69UBKSgr/f3t7e6xZswZSqRRlZWVYtGgRn7CkpKRgyJAhOp+XtlYioS5cuKDSOrN8+XKFxRk10cdmqIDiBqS7d+/mjwvdgFSflPdb4h5Z6H5LOfnF/MrB2XnF/L8SSfVHt7VUonPvKEJINUp4CKkh7ov5rbfeQrt27VS6tKZMmYLffvtN0OrEddl6gNvY08PDA2KxWGVncA8PD9y4cYMvp45MJsP48eO1Ps748eN1Jm/ys54YYzh9+jS/eah84qRtdpQ+BnJz6rIBqT5x+y1dvPMIkbsyEDPGH+1bNhW03xK3d5SyqNgMhdu69o4ihFSjhIeQGpIfLDxixAiVsSZCBgvLq+vWA/b29jh9+jRSUlL4pCkoKAgBAQG4ceOG1vsmJSXx3SuhoaGYO3cu/1w+/fRT7N27FyUlJUhKSsLzzz+vMU5eXvWGi0OHDsXvv/+uMBZIIpEgODgYSUlJfDl19LEZqrzabkCqT9x+S2bX7kOaWooOfl3Q1bO5oPvye0e91BU+zjYoLi1DQvJxDO/fC9ZWUmTdK8L7O8802N5RhDR2lPAQUkPcOJS+ffuq7dIaMGAA/vzzT63jVfTB09MTQHUiEB4ejtmzZ+PZZ5+FVCpFeHg4nyBw5dRZvXo1AKB169b49ddfFRZA/PXXX9G2bVtcuXIFq1ev1prwODk5AQB+//13hIaGYujQofygZfkEiCunTr9+/eDp6Yk5c+Zg9erVKCmrwLGMbDg4nkITqTmWLFmicyA3p6SkBBcuXEBRaRkfg9vJmtvvrLHwcbaBn1v1zt53nYAATwfapJKQWqCEhzy1artpJyc/Px9t27blu4xiYmLg6empsidVfeF2BgegcRNTrpwm169fBwC88cYbKCsrQ2RkJNLS0rB//37ExMRgwoQJWLhwIV9OkxYtWijc5rqxlMcBKZeTJxaLMX36dMyaNQvPPvssf5wb9yISiXRuhsqp69gZQojpoYSHPJXi4uIQGRmpkqzExMToHCx87949ANVfqsrkx8tw5eqL/JRyTQOOdU0pb9WqFS5duoRPPvmEnzoOAGfOnMHGjRv55K1Vq1aC6uTm5ob9+/crdGmJxWK4ubkJ2oCUmy6+Zs0a3L59WyHuypUrBW9PUZexM4QQ00TT0slTJy4uDqNHj1ZJSO7du4fRo0frnFIutKuqvru05KeUK28eyt3WNaU8OjoaQHUXkEgkwquvvoqYmBi8+uqrEIlEKC0tVSinCXctb926BUdHR8ycORNTpkzBzJkz4ejoyCc7upLAJk2aIDo6GtevX8c32+PhOGIWvtkej2vXruGVV17Rel/lOAEBAejg1wXSFj7o4NcFAQEBja47ixCiP9TCQ54qMpkMb7/9ttYyU6dO1TorSX7LAisrKz4pUL6tvLVBfQgPD8fu3bsVWquA6mRLyAKIffr04f/PGMPWrVuxdetWreXU4ZI7X19flJSUYM2aNfw5T09P+Pr64sKFC4KTQLFYjO69+sL6jATde/Ws8UBuQghRRi085KmSnJzMzxQaNGiQwqKBgwYNAlDdCpGcnKwxxpYtW/j/29jYIDAwEB07dkRgYCBsbGzUlqtP4eHhyM7ORlJSEiIjI5GUlISsrCxB3T9z584V9BhCyz1+/FihKwqobvV5/PixoPsTQkh9oRYe8lQ5dOgQAKBnz5745ZdfFGYl/fLLL+jTpw/S0tJw6NAhPgFSlpOTAwCwtLREXl6eylRrS0tLPHnyhC/XEGo7tf3y5csAqpO/gwcPqpznjnPlNJHv0rKwsMCsWbPQunVrXLlyBevWrRPcpUUIIfWFEh7yVOHWpRk3bhwYYyqztF555RWkpaVpXb+GGwfy5MkTWFhYoE+fPpDJZBCLxfjzzz/5FY4bcrxIbWectW3bFgcOHFCb7ADgj7dt21ZrnObNq9eWsbGxgYODA1auXMmfa9WqFR48eICioiK+HHn6iCSFyCm8CDNLG1RWVuJ25W2cf3AeEokEOYVFEEkKDV1FYuIo4SFPFQ8PDwDA559/jlWrVqnM0pJKpQrl1OnSpQv++OMPANVbHhw+fJg/Z2lpqVCuIcTFxWHmzJn81PGYmBi0atUKa9as0dmt9cknn+CLL77Q+RiffPKJ1vMZGdWr/1pZWeHmzZsK527cuIHmzZujqKgIGRkZgra5IKbHvOkJzP9rqcKxL/d/KXd+EICQBq4VeZpQwkMapdq2aHBr11y6dAlOTk6YOXMmiouLYW1tja1bt/IJkLa1ay5dusT/X9OGm8rl6gs340x5ltaNGzcwevRo7N69W2vS89133yncbt++PRwcHPDw4UNcvHhRoVxkZKTGONz2GupWUmaMIT8/X6EcEcaUWkUqHvXA6tCxaONc/Vz+PPon+vTtA4lEgux7RZjxU7ahq0hMHCU8pNGJi4tDVFSUyh5WQmYl9evXD2ZmZqiqqkJ+fr7CbCIuaTAzM9O6mq/Qna6Flqtt8iaTyTBx4kQA1XWXX4uHuz1x4kStM864DUi58vJJjvzxlJQUrQmP/GrOyjPXmjRpwl8Lbas+E1Wm1CrCKu3gbdceHZtXrxqdI8lBh2YdYG5ujqonBWCVmrcdIU8HboV0ALh45xHK7mbhfKYVqu431csq6ZTwkEYlLi4OERERKjtyr1ixAhERETp3GT927BiqqqoAqCYJ3A7dVVVVOHbsmMYF+2xtbRXuw8VTvi1fTtvzqW3ydvDgQRQWVv+Fb25ujrKyMv4cd7uwsBAHDx7U2I3EDSZmjMHJyQmurq7Iz8+Ho6Mjbt++zbfY6Fo0kHvOEokEd+7cwdy5c5GWloaePXvi008/RfPmzflrS4QzllYR2rW9fpjSFij6oLxCOgCM/aH6X32skk4JD2k0ZDIZoqKiMHz4cMTHxyvMsIqPj0dYWBiio6O1tmhwX9zPPPMM7t+/r7Blgru7O5o1a4a///5b6xf8yJEjER8fD5FIBDc3N4UBzu7u7rhx4wYYYxg5cqTW58Mlb/LjfgAgNzdXUPL2448/8v8PDg7GnDlz+ARw+fLl/FYTP/74o8aER34jTisrK5w9exZA9XWSX11Z14adx48fB1C99lDTpk3549yKzcrliDDG0CpCu7bXH9oCRRG3QjoAFJWWYe/h4wgd0ItPAuuKEh7S4GrbhZOamoqrV69i+/btfGsMx8zMDPPmzUPv3r2RmpqqsXWGa7GYNm0aXnvtNXz++ec4dOgQBg4ciHfffRebN2/GW2+9pXVX74KCAgDVrSLKs7nkEyiunKZrMHXqVDDG1G4LwRjTuQAi1yrUoUMHtVPsO3XqhAsXLmgdN2Nm9t9SXMr7Zcnfli+njpDWrJqUI8aDdm2vP7QFiiJuhXQAqKiowMP8e+j1XHe9bZZLCw+SBhUXFwcfHx8EBwcjJiYGwcHB8PHx0bmdAwDcuXMHAODn56f2PHecK6cOt1v3l19+ifbt2yM6OhqJiYmIjo5G+/bt+dYIbbt6azsntFxycjK/Js3gwYMVFkAcPHgwAN0LIHL7XCkPnOZwXVzaNjPV1XIjtJz8tg8FBQVYtWoVQkJCsGrVKoXErybbQxDjwu3aHuDpgO7/27Xdz80ePs42uu9M1KItUBoWJTykwXBdOP7+/gpf8P7+/oiIiNCZ9HBfupmZmWrPc8e1fTm7ubkBAP7++2+UlpZiw4YN2LRpEzZs2IDS0lL8/fffCuXUkd/xOyQkBGFhYfD390dYWBhCQkLUllPGLYDYq1cv/PLLL+jRowesrKz41pkePXoolFOne/fuAKoXQhw5ciTS0tJQWlqKtLQ0jBw5kl/4kCunjvzsLuVWHPnbyrPAlJ0/f57/v4+PD9+1dvPmTfj4+KgtRwghDYm6tEiD0Mf4m379+sHLywtLly5FfHy8wrmqqiosW7YM3t7eWmdY9e7dGxKJBNbW1pBKpZg6dSp/ztPTE/b29iguLkbv3r11PqcOHTrgn3/+4aeyZ2RkwMvLi983Shuuu2js2LFqu+fGjh2LEydOqHQzyRs8eDA+/fRTAMC+ffsUdiiXT1a4FiN1uPE2UqlUZe8vkUgEqVSKsrIyhXE56sivKp2Xl4e1a9fqLEcIIQ2JWnhIg+DG38yfP19tS8K8efOQk5OD1NRUjTHEYjFWr16NhIQEhIWFKbRohIWFISEhAatWrdI6HujYsWOorKxEQUEBOnfujHXr1mH69OlYt24d/P39UVBQgMrKShw7dkxjDK4r6sKFC/D391eI4efnx0/t1raNAjcgeNu2bSozl6qqqrB9+3aFcur079+f34xTXQygelNPTeOZAPCzbMrKytC8eXOMHj0aAwcOxOjRo9G8eXO+W4wrp0mbNm34/yt3ocnfli9HCCENiVp4SIPQx/gboHqjzNjYWERFRSEwMJA/7u3trXNWk3z8rVu34sMPP+RnMnExtm7dildffVVrPbgus6VLl2Ljxo0KMby8vPDJJ59g/vz5WrvWuAUQjx8/jpEjR2LIkCG4fPkyrl27hgMHDiAtLY0vp4lYLOa7xDTp1auX1gSwf//+WLJkCdzc3HD37l3s3r2bPyeRSODm5oZbt25pTZoA4K233sLMmTNhYWGBe/fu4auvvuIHg7/11lto3rw5ysvL8dZbb2mNQwgh9cWgCc+yZcsQFxeHCxcuwMrKCr1798by5cvRvn17Q1aL1AP58Tc9e/ZUOS9k/A0nPDwco0aNwuHDh7Fv3z4MGzZM8EwvLn6bNm2QlZWlEuOvv/7SWQ+ua23t2rXIzc1VOHf16lWsW7dOZ9da//794eTkhLy8PCQmJip0R3HjZXS1zpSXl2Pv3r2wsLBAeXm5ynkLCwvs3bsX5eXlsLCw0FqPW7duISQkBK1bt8alS5fQrl07XLlyBYmJiTrrAQAnTpzg62Rvb8+3MCUmJmL27Nn87RMnTuiMRQgh9cGgXVopKSl45513kJaWhqSkJFRUVGDIkCEoLi42ZLVIPZAff1NRUcFPS09JSUFFRYWg8TfyuN3BAwMDa7Q7uHw91HUDCamHWCyGk5MTn+wEBASgb9++/HTK3NxcODo6aq2TWCzG66+/DgAq09I5EyZM0Brjyy+/RGVlJcrLy+Hi4oKZM2diypQpmDlzJlxcXFBeXo7Kykp8+eWXGmOIxWJ+ZtrBgwexfv16HDhwAOvXr+cHTK9du1bn9ZVvEdPUvaZcjhBCGpJBW3j279+vcHvz5s1wdnZGenq6QncFafy48TcRERGwt7fntx6IiYmBlZUVnjx5gtjYWMGJiyHrUVpaipMnT/IrNZ8+fVrhvEgkwsmTJ1FaWqpxSrhMJsOuXbvg4uKi0krEGIOLiwtiY2OxbNkyjXXhxgo5OTnh5s2bYIwhMTERISEhWLFiBVq2bIn8/HyV7SKUhYeHY+XKlZg1a5bCcW66u5AWV24skb7KEUKIvhnVGB5uvY5mzZqpPV9WVqawfD63rH5FRQUqKirU3oc7rum8EBRDPzEqKys1tmYwxlBZWVmjmIaqB7enlLYYXLnPPvtMbZmUlBR+QUAnJyd06NCB39Lh/PnzfBJ0+PBhBAUFqY3BrQY9dOhQVFZWIjk5GUeOHIFUKkX//v0xZMgQbNu2Dbdu3dJ5jSZPnow+ffog4eCf+OLAObwzpDOGD+oDsViMNm3a6Ly//L5hFhYWmDFjBtq0aYPs7Gx89tlnfJdbSUmJ4N8XN2uspq8LU4mhfB/l17s+YjZUPUwphjJ9fKbWx++lNnH18Vz0FUdXjNrENpqEp6qqCu+//z769OmjcWDrsmXLsHjxYpXjBw4c0LlQU1JSUp3rSDFqH0Mmk+Hdd9/Fs88+i9mzZ+PChQt4+PAhHBwc4OvrixUrVmDGjBmQSCQ1buWpTT1atGih0rLy5MkTtGjRQmc9tM3gUi6XmJio9hzXXWRhYYH8/HwcOXKEPycSifhxOb/99pvGLl4uiYiNjcWBAwf4WWExMTFwdnbm/yAoLy/XWA9lLb3bomnvDmjpXcnHE9IN9eGHH/L/9/Pzg6OjI5o2bQpHR0f4+fnxrWDz588XvJ/WjSIAkCAtLQ231C+9VC8x7pUCZf+tEoDc0uoYvxxOQ9r/GuykYsBZ83qOeqkHd5+jR4/imtzaftzrXdN5Y6yHKcXQpKafqfKvM3WvMUD760zXc9FWRhd9fD/oK46mGEI3Z5ZnNAnPO++8g8zMTBw9elRjmXnz5ins2FxYWAgPDw8MGTIEdnZ2au9TUVGBpKQkBAcH13p5aopR9xgpKSm4d+8edu/ejR49eiAkJEQhhouLCwIDA2FnZ6exRUOf9QCqu1defvllPHnyBJaWltixYwfu3r0LAFrrwa19o0uTJk0UFiKUx3XnqhtszBjjj5eXl2uMkZWVhd9//x1PnjxBVVUVIiMj4ePjg6ysLKxfv56PERwcrDGGsrPXHwAZp9CzZ090aaW+pVWdN998EwDw7LPPIi8vD3PnzuXPeXt7o1u3bkhPT8fdu3frvS51iXH1fjHeW/un2nNbshQ/LpPe7wOv5sL2jqrNc/nndiFWZaShb9++6ORqp/J6Vz5vzPUwpRjKavM5pOl1pvwaAzS/znQ9F3Vl6uO51FccXTG4P+hqwigSnunTpyMhIQFHjhyBu7u7xnJSqRRSqVTluLm5uc6LKqSMLhSj9jG4vam6du2qcB8uRteuXflyNa1XTerBtVbY2dlBKpUqdDl5eHjAzs4OhYWFuHPnjsaYDg4Ogh7LwcFBYwzlXdo17bjOGNMYY9q0aYiOjoZYLEZFRQViYmL4cyKRCGKxGDKZDNOmTRN8fbj1diQSSY1+D9z7Mjc3F1lZWUhJSeFnvwUFBfGrLUul0nqvS11ilMmqZ8hx+0YB0Lh3VJlMVK/PRdN9uNe7PmPWdz30FUMkKcSNkmxYFFbvHn+78jayHmdBIpHgRkkRRJLCeq+HJjX5HFJ+nSm/xgDofJ3pei7ayujzudR3HE0xahPXoAkPYwzvvvsu9uzZg+TkZHh7exuyOqQe6XNael1w06cLCwtVWlfy8vL4gbonTpzA+PHj1cY4d+6cwu1WrVrxg4/lV0ZWLifv9u3b/P8dHR2xePFiWFpa4smTJ1i4cCHfCiVfTtNzkclkcHZ2houLCx48eIBmzZohNzeXj9EQU8FDQkLwzTff4Pr16xg4cCBeeXU8ZE2a41L2FSxevJi/LkJbdwyN2zcKqP5L8+7/9o7S1yaGpHbMm57A/L+WKhz7cv+XcucHAWgcrzHgv9cZvcYahkETnnfeeQfbtm3DL7/8AltbW747wd7eXuuGh6Tx0ce2EPog35KivD+U/G1t40yUB8tdv35d7RYQ2gbVcS1e3Hgd+S0uPDw8+Blg2nZt51qrAgICcPr0aT7B4QYzc8cbYir4unXr8M033wAAjh49qrFret26dfVeF6IoJ7+Y38k8O6+Y/5f7699aKoG3o7CuOUOreNQDq0PHoo1zdQvPn0f/RJ++fSCRSJB9rwgzfso2dBWJETNowrNhwwYAUPnrc9OmTfwaJcQ0yE8HDwsLw6xZs/htIVauXImEhIQaTUuXyWT8Wj7W1taCFx6UJz/jT91tTZSTJldXV1RWVkIikeD27dt8d5W2pKmoqAhAdSsnl6BwuCnm8uXU4VrDTp8+DScnJ3Ts2BF5eXlwcnLCv//+yw8Uru9WM6B6+4jhw4crrDqtbNSoUfSHTAPLyS/GgFXJKsejYjMUbh+O7t8okh5WaQdvu/bo2Ly6VSRHkoMOzTrA3NwcVU8KwCo1/4FAiMG7tMjTo67bQnDi4uIQFRXFT+uOiYmBl5cXVq9erTOG/OB2bQvkaRoEDwCurq7Iz88HoD5hkS+nib+/P9+Np/w+kL/t7++vMQa3o7pEIoGVlRVSUlL4c61atYJEIkFlZSVfrr799ttvCAsLU7vVxahRo1Ra9kj941p2NI0V4caJcOUIMWW0eShpUOHh4cjKykJSUhIiIyORlJSEy5cv1yjZiYiIgL+/P1JTU7F9+3akpqbC398fERERiIuL03r/mzdvCnocbeWsrYX9JaytnPz4IAsLC/Tv3x+BgYHo37+/wjYQmsYRAcBXX30FoHqNDeX63rx5k1+DgyvXEOLj41FSUoIXx0+CpdczeHH8JJSUlFCyY2DcWJEATwd0/99YET83e35gNiFPA0p4SKMhk8kQFRWF4cOH4+eff8aJEyewZcsWnDhxAj///DOGDx+O6OhoyGQyjTGErgGjrZy2Vheh5eS738rLy/lFA5OTkxUGU2vrprt8+bLG+srfli/XEKysrDDv4xVweeljzPt4BXVjEUKMAiU8pEHFxcXBx8cHwcHBiImJQXBwMHx8fHS2zABAamoqrl69Cjs7O9ja2iI6OhqJiYmIjo6Gra0tbG1tkZOTg9TUVI0x5LuLLC0tFc7J39bW3ao82Lk25bTVUWg5oV3C1HVMiOkpraj+wy7zVgEybxXg9LWHOJUHnL72kD+WdU/zGMCnkVGsw0OeDlx31PDhw7FlyxbcvHkT7u7uWLFiBSIiInSO4+FmG/30009wcXHB4sWLIZVKUVZWhoULF2Lbtm0K5dSRb+3gpqCru62tVeThw4fan2gNy9WWra0t/39HR0eMHz8excXFsLa2xpYtW/hxRvLlCCGmIft/yczcOPkB6BJsyTqpUtZaSl/1ACU8pIHId0fFx8dDJpPh/v376NGjB+Lj4xEWFobo6GiMGjVKYzeOo6MjgOoF/ZQ3y3zjjTfg7OyMhw8f8uXU0UeryD///CMohrZyvXv3FhRDW7n09HT+/w8ePMCaNWv422ZmZmrLEUKMg0hSiJzCizCz/G8RxfMPzvPLBeQUVi+kqMmQTi0AAG2cbWBlLsbFOwWIis3A6gh/tG9pz5drTMsO1DdKeEiD4Lqjtm/fDjMzM4VxNmZmZpg3bx569+6N1NRUjYvkZWRU/yXTqlUrtTE8PDzw8OFDZGRkIDg4WG0MV1dXld3NNZXTRNtUcaHl1M1k0lRu2LBhas9x61YB2sfwyJcjhBgHXYsoVpfRvJBiM2sLvPxcK/42N0mhjZM1v2gmUUQJD2kQXDeTn5+f2jV0uA1jtXVH5eTkAKhewXjUqFEIDg7G5cuXce3aNSQlJfEJEVdOHW6LA120ldO1Ua2Qcn/99ZegGNrK2dsL+1ATWo7olykt+Ef0T9siigBoIcV6QAkPaRDc4nfr16/HV199pbKGzpQpUxTKqdOmTRsAwJAhQ7B//36FRe4kEgkGDx6MpKQkvpw68ruSa6OtnLr93GpajlsVWRdt5Tp16iRo5/ZOnToJeiyiP6a24J+pkB/oC1Tvk3YqD2hx7SG/LlFD0baIIgBaSLEeUMJDGkS/fv3g7OyMefPmqQxaXr58OebPnw9nZ2etW0tMmzYNUVFR+P333xEaGoohQ4bg8uXLaNu2LQ4cOIC9e/fCzMwM06ZN0xjj0aNHguqrrZzyYOfalNPH9PiabGJKGhYt+GechA70pUG+pol+q6RG6rKlAzcQmDGG06dP88mK0IHEYrEYtra2KCgowMmTJxEaGoqAgAA8efIEJ09Wf2DZ2tpqrU9hoeZBgELLCR0To62c8j5bgwYNQosWLXD37l0cPHhQYzl5mlZ4rm05on+0OaRxETLQl7oaTRclPESwumzpkJqairy8PIwbNw47d+7E3r17+XMSiQRjx47Ftm3btA5aTk1NRUFBAR9DviVHaAz52UvaaCtXUlIiKIa2co8fP1a4LZ/kaCsnj2v9MTMzU9sSxB0X2ppEiDHTR3cUDfR9ulHCQwTh1tAJCQnBiBEjcPHiRbRv3x5Xrlyp0Ro627ZtQ0hICLy9vXHp0iW0a9cOOTk52L59u0I5bTE2btyI77//Hp9//jkOHTqEgQMH4t1330VZWRm2bdumNYbQ1iht5fQxtV0fXVpcUqapjHxCREhjR91RpK7olUF04tbQad26Nfbv389PBz9w4ADEYjFat26tcw0dZ2dnAICvry8yMzP5Fp4DBw7A09MT7du3x4ULF/hy6nADmjMzM/Hss8+iS5cuuH37Nrp06QKxWMxvxqlt4LPQ7gRt5aysrLR2NcmX08TJyQm3b9/WGcPJyUnjOTc3N43nRCIRn3BpK2dq5GdGATQ7yljoo3WGuqNIXVHCQ3Ti1tABoHaF4+zsbL6cpq4kzvnz51USgXv37qG0tFRnPfr16wcvLy+8++67yM3NxY0bNwBUd615eHjAxcUF3t7eWgc+y2/MqY22cvb29oLGAmmbDv7mm2/io48+0hnjzTff1HiuoKCA/7+lpaXCIGlLS0v+msqXM2Z1TVY0zYwCaHaUoemjdYa6o0hdUcLzFKntgGMusXByclK7wrGrqyvy8vL4curID+C1sbHB22+/zW+DsHXrVv7LWdtAX7FYjDFjxmDlypVq63jjxg3MmjVL63PSx5Ty4uJiQTG0lbt48aKgGNrK6WPwtLHQR7KiPDMKAM2OMhLUOkOMASU8T4m6DDg+ceIEAOCNN95AVVUVP3YmKysL7777LiZOnIgVK1bgxIkTGD9+vNoY3Jeuk5MTHj58qLANgkQigZOTE/Ly8rR+OctkMnz11VcAVAfqcre/+uorLFu2TGPS4+LiImhrCBcXF43n9DEtPS0tTVAMbeXk98hSHi8kf20aw15a+kxWuJlRAGh2lJGg1hliDCjheQrUddNO7st0+/btWLFiBf9lmpiYiNmzZ8PDw0OhnDoPHjwAAOTl5cHS0pL/wAOqE568vDyFcuocPHgQhYWFsLGxQdOmTXHz5k3+nKurKx49eoTCwkIcPHgQQ4YMURtDH6sk62PAsbbZV0LLjR8/Hlu3boWVlZVKl2BZWZlCucaCkhX907Znk679mkj90DWmCQDtdF4PKOExcfrYtLNt27YAgGvXrqmcq6qq4o9z5XTRtku5Nlu2bAFQvUeVcnfRrVu3+IRry5YtGhMefazDo48WHvkvcPkBxsq3tX3RDxo0CHZ2digsLESzZs3QI3Agjt5h6NtShBNHDuHBgwews7PDoEGDBNWXmCZdezZp26+JQ0mTftFO54Zh0leyLovkGZvy8nKVriQhA3D1sWnnm2++iZkzZwKASmuC/G1tA2ybNm0q4FlqLyff2uHk5IRx48bx44B++uknfhsGba0iZ86cEVQPoeVqq3nz5sjNzQWg2jImf7t58+YaY4jFYmzatAmjR4/Gw4cPsS8+FgCwD9VJEwBs2rSp0b7mDUX+yx1Ao/+C17Znk9D9mvSRNJH/0E7nhmGyCU9dxqwYm9mzZ2PNmjV8N1BiYiLmzp2LmTNnYsWKFVrvK79ppzpCNu38+uuv+f/b2NggJCQEDx8+hIODA44cOcInPF9//TUiIyPVxtDH3lHcuBqRSARzc3OFcUBubm58y4i28TdCppPXpFxttWjRAv/++6+gctqEh4dj9+7diIyMVGiB8/T0bJSvdWOg7ssdaPgveH3t+6Rtzyah+zXpI2ki/6ExTYZhkglPXcesGJPZs2dj5cqVaqeDc7OVtCU9ymvXKLd4CVm7JjU1FQDw3HPP4a+//sLu3bsVznPHU1NTNSY8hw4dEvR8tZXjWm4YYyrbJcjf1tbC06RJE0FT4LWN4RGLxQotZdrKaaItKatpufDwcIwaNQqbdiVg3rY/sWxsH0wcM5xadmpJ/ssdgMG+4I1poT19JE2EGJrJJTz6GLNiLMrLy7FmzRq4uLionQ7u7u6ONWvWYMmSJRq7t+TXrsnLy+NbAWJiYuDp6QknJyeda9dws3z++usvhISEwMLCAtnZ2WjTpg3Ky8uRmJioUE4doWvBaCunjy0dHj58KCiGtnJCkh1d5by9vQXFEFpOLBaje6++sD4jQfdePY3+tW3M5L/cARjsC56mchOiXya35jw3ZmX+/PkqS+pzY1ZycnL4Vgtj9uWXX6KyshJLlizhF17jSCQSfPTRR6isrMSXX36pIcJ/a9ecOnUKT548wYYNG/D9999jw4YNePLkCU6dOoWIiAitX5Djxo3jY2VmZiI+Ph4ZGRmIj49HZmYmf1+unDrySYjyGjfyt7UlK/poFdHHDCt9GDhwoF7LEdPDdXs869UMfm72aONUndhw3R5+bvaU7BBSAybXwqOPMSvGglvBePjw4WrPc8e5curIZDLs2rUL3bt3R35+PqZOncqf8/b2Rvfu3REbG6t17Rou2ZLJZLhz5w5eeuklfrByXFwc35KhnJTJkx8TIz9lWvm2trEz+pjKrTwjSlu5+tS/f39+7SFzc3OF583ddnZ21rlyNSGEEGFMroVHfsyKOkLGrBiLNm3aAAASEhLUnueOc+XU4Vq8Pv/8c2RlZSEpKQmRkZFISkrC5cuX8dlnn+ls8ZJfDLCiogI7d+7E5s2bsXPnToUvam2LBlpaWmo8J7ScPrq0tM16qk252hKLxdi4cSMA1USRm4q+YcMG6poihBA9MbmEhxuzsnTpUpVuiaqqKixbtkznmBVjMW3aNEgkEnz44YcKC/UB1QMpFyxYAIlEgmnTpmmMId/iJRaLERQUhMDAQAQFBUEsFgtq8eIWBQRUWz7kb8uXU9apUyeN54SW07axqNBy9+/fFxRDaLm64GZYKdfX2dkZu3fvbjQD6wkhpDEwuYRHLBZj9erVSEhIQFhYGNLS0lBaWoq0tDSEhYUhISEBq1atahR/OVtYWGDmzJnIzc2Fu7s7vv32Wzx48ADffvst3N3dkZubi5kzZ2pdj0cfLV7yrR3BwcHw8vKCtbU1vLy8EBwcrLacMn20zmRlZSk8VuvWreHg4IDWrVsrPLZ8OWVCurNqUq6uwsPDkZ2djW+2x8NxxCx8sz0eWVlZlOwQQoiemdwYHqD6SyQ2NhZRUVEIDAzkj3t7ezeqKenAf1PO16xZo9CSI5FIMGvWLJ3r8Mi3eMXHxyucE9riJd9yc+DAAf7/xcXF/DpHyuWUCVlzRle5y5cv8/+/f/8+3wqjPKNKvlxjYOgZVvK7lKvboRyg2UCE1IeSkhJcuHABF+88QtndLJzPtELV/abw9fUVvA0OEc4kEx6Otg0VG5MVK1Zg8eLFiIyMRFpaGnr27ImYmBhYWVnpvC/X4hUREYGwsDDMmjWLb/FauXIlEhISEBsbq/VLVh/dQPpo4dE2KLo25YjmXcqVdygHNO9SzsWR39RTXeJESVPjpK8FEImqCxcuoFu3bvztsT9U/5ueno6AgAAD1cp0meQ3g/zCg1u3bm3UCw8C1c9HfiXdM2fOYN++fYiJiRH0POra4iU/i0rTLuXK5erDs88+y7coadt/6tlnn63XepgS5V3KlXcoB6Bzl3JNSROgmjhpS5qIcTKmBRBNja+vL9LT01FUWoa9h48jdEAv2FhJ4evra+iqmSSTe4Wa0sKDQHWyM3r0aJXj165dw+jRowUPbuVW4z18+DD27duHYcOGCd5bbN++ffz/pVKpwkrF8rf37duHVatWqY1hbW0taIVja2vNX4by99e2/5SQxyGKuF3Ka7NDuXLSBEAlcdKVNBHjRQsg1p8mTZogICAAFRUVeJh/D72e6y74fUdqzuQSHn1slmksZDIZJk2apLXMpEmTBCdv3Cyt4uJifpaWEPL7W/Xv3x9t2rTBpUuX0K5dO2RnZ/MJkbZ9sPz8/JCcnKzzsTStnwQAt2/fFlRfbeX0sS3EqVOn0L17d50xTp06pbOMKeGSJgC1SpyIcaJ9n4ipMGjCc+TIEaxcuRLp6em4c+cO9uzZg7CwsDrFNKWFBw8dOqRzS4aCggIcOnRIYbaUvsmvjSPf2iM/gFm5nDJPT09Bj6WtnLHMsJLvc9dHOVJNH7uUG9NO5/J1aew7rhNiCgya8BQXF6NLly6YNGmS3sbUyE/D7tmzp8r5xrTw4Pfffy+4XH0mPC+99BJWr14tqJwm+tg81MfHB3///bfOGD4+PhrP2dra4tGjRzpjaNsXDKhOqrStxtxQ09pNiT52KTeWnc411cUQ9SCEVDNowjNs2DAMGzZMrzH1MQ3bWBw7dkyv5Wpr6NChghKeoUOHajynvLt5bcrl5uYq3O7WrRt8fHyQlZWF9PR0jeXk9enTB3v37tVZjz59+ugswxhDenq6QvfWqVOnqGWnlvSxS7mx7HSuXBdD1oMQUq1RjeEpKytTmAlUWFjdJFxRUaGwxcHy5cvx8ssvY+TIkYiKikJpaSmOHj2K1atXIzExETt27EBVVZXgaepcbG37PNVHDG3r2iiXExq3NvWoyZRyTXFrsmmnphjySQ13W/kYd1xTjC1btqBZs2Y667FlyxZB16hz5844mXUXEd+cQuzk7ujcqlmtXifcuIjKyspav85qE0P5PupeH7riqjuv/K+QGKzSDh5N2qCtnR1/3xxJDnxsfWBubo7yokKwyrx6j1HX56KuLjWth6aYuh5X131q81z0UQ9TjmGo7wdlxvJc9BVHV4zaxG5UCc+yZcuwePFileMHDhxQWKRJKpVi9uzZ2LRpk8Ju0y4uLpg9ezakUikSExNr/PhJSUm1q3gtY9QkSajp86lJPebPn6/XcgDg5OSEXr164fjx4yqJnabnIj/7StOGm1w5bdeDaxXSdv7IkSOCngcA3CgCAAnS0tJwS/2C1kYbg7vP0aNHcc3mv+Pyrw9NZYSc5+I8TTG0lalJDE0x9fn7bah6mHIMTkN/PygztueirziaYgj9Q1wBMxIA2J49e7SWefLkCSsoKOB/bty4wQCw/Px8Vl5ervJTWlrK9u3bxyIjI9m+fftYaWmp2nK6foqLi1l8fDwrLi6u1f1rG8Pa2poB0PljbW1dr/WwtLQUVA9LS0uNMYTcn/vRFKNp06Z8GalUqnAf+dtNmzbV+Zy6d++u9rG7d+9e49/tyay7zHNOAjuZdbfWrw9Dxfj7aj7znJPA/r6ar/H1oVxGVwx1cZ6mGEKuq5AYDfH7bah6mHIMQ30/GOtzaahrkp+fzwCwgoICwXlGo2rhkUqlkEqlKsfNzc3VTn01NzfHoEGDUFZWhkGDBtV5eqymx6mvGEKmT3PlalqvmtTjyZMngsvpYwqyphiRkZFYsGABANVFDuVvR0ZG6qzHyZMnUVRUhBHhL+LPv/9Fn2c64re4n2FjI/DPXDncSsISiaTWz99QMTTdR/71oSuutvNcnMYSo4JVD0S/kPvfCtH8ysK3i2BtJcXVB0+0xtBWF6H1qEnM2tynoevB4bZSuPy/rRQuX7CCWUHttlIwlvcdp6G/H5QZ23PRVxxt3+811agSnqdNTRKNhtSxY0eMGjUKv/zyi+A9svRhzpw5fMKjq5wQNjY2WPPNFoRtSMOaqT1rlewQ06J+VWGAVhbWD2PZSoH2sHo6GfQdW1RUpDCWIicnB2fOnEGzZs3QqlUrLfdsXGQyGVJSUnDkyBFYW1sLXuHYWP377781TnSeeeYZQVPKn3nmGY3nLCwsMGvWLKxcuVJjmVmzZmndPZ4QbZRXFQZAKwvrkbFspWAsiRdpWAZNeE6dOoUBAwbwtyMjIwEAEyZMwObNmw1UK/2Ki4tDVFQUvwdUTEwMvLy8sHr16ka1n1ddHT58GE2bNhVUThtud3h1SY+Q3eNNDe10rl/KqwoDtLKwPhnLVgrGkniRhmXQhKd///4mvUCb/CamW7ZsafSbmNaFvb092rRpg+xszWuPtGnTBvb2ur9QVqxYgSVLluCDJSvw1d4TeCu0Bz75cPZT17Kjr53Ota0IDKDRrXBMiC7GkniRhkWd0PXElDYxbdeuHS5duiSonDZZWVnw8fFRm/S0adNG61RxZRYWFhj3xlTsKn8G497o2SiTnbq2zuhjp3NA94rA1WXqd4Xj0orqAfqZt/7bSoUfLHztIb8BqTb6iKEvynUxVD2I6dM0HgkAjUlSQglPPZHfxJQxpjKGpzFtYnr8+HE0b95cUDldsrKyUFBQgKBBQ5B56Qr82rVGysEDglp2TIm+WmeAuu10DmhfERhAg6xwrI/BwsY04Fh9XWjgM9E/TeORABqTpIzebfWE25w0Ozsbr7zyisoYniVLliiUM2bNmjWDi4uL1i0bXFxcBK1gDFR3b23enYiwDWnYPLXnU5fsAPprndEHVmkHb7v26Njcnl8RuEOzDnzSVPWkAKxS+6rf8jEAqMTRFUMfg4WNacCxcl1o4DOpL5rGI3HnyH8o4akn3Oak48ePVzuGZ/z48QrljN3du3fRokULtUmPi4sL7t69a4BaNX51bZ0xFfoYLGxMA46V62KoelDXmumj8UjCUcJTT3r37g2JRILmzZsjLi4OjDF+DE9cXBzc3d1x//599O7d29BVFezu3bt48OABnuvVB1eu30LrVm746/ifglt2CCENi7rWCPkPvcrrybFjx1BZWYnc3FyEh4dj1qxZKC0tRVpaGlauXMm3lBw7dszox/DIa9asGWIPHEXYhjTETu1JyQ4hRoy61gj5DyU89YQbm7N161Z8+OGHCAwM5M95e3tj69atePXVV7WO4enSpQvOnj2r87G6dOlS9wqTGqH1b0hjYCxda4QYA0p46gk3Noebbn348GHs27cPw4YNw4ABA/DXX38plFMnJSVF0GJ9KSkpeqkzEUafM6wIIYQ0DEp46km/fv3g5eWFpUuXIj4+HkFBQSguLkZQUBBEIhGWLVsGb29v9OvXT2MMfS7WR/6jq3VGV8uMMc2wMgbGtP4NIYRoQglPPRGLxVi9ejUiIiIQFhamMoYnISEBsbGxOhcd1OdifUR464yQlpm6zrDS9wrHtYmhaxYPAJ3JijGtf0MIIZrQp089Cg8Px08//YTo6GiFMTxubm746aefBG8rQYv1/ae+W2casmWmvlY4rkkMobN4AM3JijGtf0MIIZpQwlPP2rdvj9u3byscu3XrFtq3b1+jOHVZrC8nvxj5jwqRk3UJMpkMZzKyUSJJhVgshrdPOzg2tWuQL6K6JivG1DqjD/pe4bg2MYTM4gG0/26Maf0bYvo0baVA2ygQXSjhqWfcKpgX7zxC5K4MxIzxR/uWTRtsBcyc/GIMXPsrKh79i/sJq1TONx8eDfOmHXHo/ZH1mvToI1kxptYZfdD3Cse1iUGzeEhjo2krBdpGgehCCU8941bBNLt2H9LUUnTw64Kunrr3pdKX4rJKmDc9AZu2B+HwrI+aEvEoy3uM4jLN3SaAcXUlGUPrjD7G3xBCak7TVgq0jQLRxWQTHq7Zs6i0DMcysuHgeIp/UzxtzZ7auj2EdJuYWleStmRFaKKij/E3xLgZS9eJsdTDWNBWCqS2TC7h4Voi/s04g5eG9eePr/jfvzv3JePZ7t2fqsGT2ro9hHSbmFpXkq5kRUiioo/xN8S4GUvXibHUg5ieB8Xl2H3mX+Q+uorLGelgVQx3c3Ox+5+TEJmJAABt/bshwLsDQjrWbNypMTKphEe+JaKq4glaTFirUiY6KR9mycmNZkG4unYl6VN9TsMW2rKijxh1bfEC6j52Rh/TwfURg2hmLF0nxlIPYnoO/HMXK49vhtTpIMCtgesGyK//fzo/Hj+eH4R2jkvg42xjiGrqjUklPMotEQAadWuEPruSjIE+Wlb0EaOuLV76oI/p4PqIQTQzlq4TY6kHMT1DOrXA44rXkfuov0ILTwsXF8UWnmc7NPpkBzCxhIfDtUQAMOhYkboyta4kfbSs6COGMdDHdHB9xCCEPL2aWVtgcp+uALoCoWGoqKhAYmIiQkJCGt33pRAmmfAYC311R9WlK0lXt4fQLg99dCXpo2XFGFpn9NGVpI/p4DSlnBBChKOEp54YS3eU0G4PXV0e+uhKMgb6SACpK4k0NjTTixATTHjkWyIA1Lo1Aqjb1HZ9dUfVtWVFSLeHkJamunYl6aulqa70kQBSVxJpbGimFyEmmPCoa4kAatYaoc+p7XWd2VTXlhV9dXvUtStJH4mGPpImfSSA1JVEhDKWlhV9zPQyludCSG2ZXMIj3xIBoMatEdxWDCLJY1RVlsHtnQ9Vysw+eg6io7d1bsdgLFOogbp9WBlLoqGPpImSlaeDsXw5G0vLij5mehnLcyGktkwu4ZFviQBQ49YIbisGqdNBrY9TljdI53YMxjSFui4fVsaSaOire44YLy5RAVCnZMVYvpxNaQ0dU3ou5OlkcglPXZVWyFDxqAemPjsSHvYS3LpxHVVVMly8cBHtfdvDzEwMZu2EdZcf6IxlTONe6vJhZSyJBrXOGDd9JCvKiQpQu2TFWL6cTWkNHVN6LuTpRAmPkux7RWCVdli3rxRld7Nw94f3Vcq0mLAW0hY+OsebsEo7FD9ugSo7e5SWluH2Q1eUPm4BayspZE+KGmTcC6cuH1aUaBAh9JGscIkKgDolK/TlTAhRZlIJj3KLCFDzVhH51ozDe+9i1f4WyMu9y593cmmBmc/aYMxL2qeTN9RsIOrCadyMZayJpnoAEFwXfSQrXKICgJIVQohemVTCoz7JAGqSaHCtGXFxcZj77mQMHz4cs2fPxs2bN+Hu7o4VK1Zg7ruT4dPSAd7h4RrrQrOBjJs+Eg19xNDHWBN9JCua6lGTulCyQggxZiaV8CgnGQBqlWjIZDJERUVh+PDhiI+Ph0wmw/3799GjRw/Ex8cjLCwM0dHRGDVqFMRisdoYlKwYN30kGvqIoY+xJvpIVjTVgztHCCGNnUklPMpJBlC7RCM1NRVXr17F9u3bYWZmBplMxp8zMzPDvHnz0Lt3b6SmpqJ///56q7+xM5ZWEX3E0EeioY8Y+hhroo9khca8EEJMnUklPPLq8qV4584dAICfn5/a89xxrlx91UOfMfTBWFpF9BFDH1/wxpIkGEs9CCHEmBlFwvPFF19g5cqVuHv3Lrp06YLPP/8czz33XJ1i1uVLsWXLlgCAzMxM9OzZU+V8ZmamQrn6qoc+Y+iDsbSKGMuUY0IIIY2HwROenTt3IjIyEhs3bkSPHj2wdu1aDB06FBcvXoSzs3Ot49blS7Ffv37w8vLC0qVLER8fr3CuqqoKy5Ytg7e3N/r161ev9dBnDH0wllYRatEghBBSUwZPeGJiYjB58mRMnDgRALBx40bs3bsX33//PebOnVvruHX5UhSLxVi9ejUiIiIQFhaGWbNmobS0FGlpaVi5ciUSEhIQGxurccCyvuqhzxiEEELI08ygCU95eTnS09Mxb948/piZmRkGDx6M48ePq5QvKytDWVkZf7uwsHovqoqKClRUVKh9DO64pvOajBgxAjt27MCcOXMQGBjIH/f29saOHTswYsSIGsWsbT0oBsVobDGMqS4Ug2JQjIaN0VB1qU1sEWOM1bpGdXT79m24ubnh2LFj6NWrF3989uzZSElJwYkTJxTKL1q0CIsXL1aJs23btnobvCuTyfDvv//i4cOHcHBwQMeOHQW17BBCCCGkfpSUlGDs2LEoKCiAnZ2doPsYvEurJubNm4fIyEj+dmFhITw8PDBkyBCNT7iiogJJSUkIDg6udTfQ888/X+cY+qgHxaAYjSGGMdWFYlAMitGwMRqqLlwPT00YNOFxdHSEWCxGbm6uwvHc3Fy0aNFCpbxUKoVUKlU5bm5urvOiCimjC8WgGBSjcdaFYlAMitGwMeq7LrWJa1anmtSRhYUFunXrhoMHD/LHqqqqcPDgQYUuLkIIIYSQujB4l1ZkZCQmTJiA7t2747nnnsPatWtRXFzMz9oihBBCCKkrgyc8L730EvLy8rBgwQLcvXsXXbt2xf79++Hi4mLoqhFCCCHERBg84QGA6dOnY/r06YauBiGEEEJMlEHH8BBCCCGENARKeAghhBBi8ijhIYQQQojJo4SHEEIIISaPEh5CCCGEmDyjmKVVW9w2YNqWmK6oqEBJSQkKCwvrtMQ1xaAYFKPx1YViUAyK0bAxGqou3Pd+TbYDbdQJz+PHjwEAHh4eBq4JIYQQQhra48ePYW9vL6isQXdLr6uqqircvn0btra2EIlEastwG4zeuHFD8I6qFINiUIzaxzCmulAMikExGjZGQ9WFMYbHjx/D1dUVZmbCRuc06hYeMzMzuLu7CyprZ2dXp18gxaAYFKPx1oViUAyK0bAxGqIuQlt2ODRomRBCCCEmjxIeQgghhJg8k094pFIpFi5cCKlUSjEoBsVogBjGVBeKQTEoRsPGMLa6yGvUg5YJIYQQQoQw+RYeQgghhBBKeAghhBBi8ijhIYQQQojJo4SHEEIIISbPJBKeL774Al5eXrC0tESPHj3w119/aS2/a9cu+Pr6wtLSEv7+/khMTKxRjM2bN0MkEin8WFhYaCzfv39/lfIikQihoaF8meeff17l/PPPP6/1eaxbtw729vZ8+RkzZmgtHxcXh+DgYDg5OcHOzg69evXC77//rlBm0aJFKvVwc3PTWQ91z+/u3btqy7/++utqy3fq1IkvM2jQIJXzrVu31lqPZcuWwcfHB2ZmZhCJRLCzs8PXX3+t9T7ffPMN+vXrBwcHBzg4OGDw4MEKv/tly5bB0dGxRr+biIiIGr0+AGGvkZ49e6qc79atm8aYGzZsgKenJ8RiMUQiEZo0aYKPPvqo1tcCUP+7a9q0Kfbt26cx7muvvaZyH2376wi5FppeQ++//77GuIDie79FixY671Pba6IrrrrPEIlE8zqwQq5J165dVc7b2NhovR5jxoxRuY+vr2+drkdN66HuWuiqR21fI7a2tjh16pTWa7Jr1y40a9YMIpGIX9xW232EfK5GRkaq1MXLy0tjzOTkZLXPb//+/RrvI+RztWnTpmrLvPPOO2pjqvvs01a+tr+XJk2a4OOPP9a5L1ZycjICAgIglUrh4+ODzZs3ay2vrNEnPDt37kRkZCQWLlyI06dPo0uXLhg6dCju3buntvyxY8fwyiuv4I033sDff/+NsLAwjBw5EjNnzhQc48SJEwCANWvWIDk5GePGjUOTJk00lo+Li8OdO3f4n8zMTIjFYowZM4YvU1lZidatW+O7774DAHz//ffYvn27xuedk5ODOXPmoEOHDvjss88AVCd+ym80eUeOHEFwcDASExORnp6OAQMGYMSIEfj7778VyrVq1QrvvfceX5dly5ZpjAkAT548AQCsX7+er/udO3fg7Oystvy6desUrseNGzfQrFkzhetx7do1uLq6Ijk5GX/88QcGDRqEiooKFBcXa6zHL7/8gitXrmDmzJmIi4uDi4sL3nrrLa3Ja3JyMl555RUcPnwYx48fh4eHB4YMGYJbt24BAFJSUuDr64s+ffrw9XBzc8O3336rMebFixdhaWmpUHdnZ2etdRfyGrG2tka3bt3w559/4ujRo5gxYwYyMjLwzz//qI35+PFj3Lx5E1FRUUhMTERAQAAWLlyI+Pj4Wl0LTkBAALZu3crX44033sCoUaM01qNZs2awsrJSqLdIJNJYXsi1AKr/SLhz5w727dsHDw8PhQ92deTf+z/++CP/ur1//77G+wi9JjWtC1C9gixXvmPHjpg0aZLGskKviY2NDc6ePcv/nDlzRuv12L17N1xcXJCSkoL3338fEokE33zzTZ2vR03qAQAWFhZo3749X/7cuXM4evRona5HWVkZLC0t8dJLLyExMREnTpzA5s2b4eDgoDHumTNn8NJLL8HV1RU7duzAggULcOfOHWRkZGi8j67P1YcPH+L7779H06ZN+Xps374du3bt0hiT2ycyPDxc4T5t2rTReB8hn6uTJ09Gu3bt+Ou8c+dOAFB5HXEWLFig8LvUVV7o67Rt27ZwcHDAli1b8Ndff+HLL7/EihUr8Pnnn2t8fjk5OQgNDcWAAQNw5swZvP/++3jzzTe1fuepYI3cc889x9555x3+tkwmY66urmzZsmVqy7/44ossNDRU4Zi1tTXr1KmT4BitW7dmFhYWgssrW7NmDbO1tWVFRUX8sQkTJrBRo0YxxhgDwPbs2aM1xuzZsxXqDID16dOHDR06VFAdOB07dmSLFy/mby9cuJB16dJFIa6uuhw+fJgBYA8fPhRUXtmePXuYSCRiV69e1ViPe/fuMQAsJSVFYxzl3y13nxEjRgiuS2VlJbO1tWU//PADf0z+dyOkHps2bWL29vY1qrsyXa8RjoODA/v222/VxlD3WheLxSwoKEhQHXRdC6H1UL4eusor03YtHj9+zNq2bcuSkpJYUFAQe++99zTG4a6H/H1sbW2Zn5+foHowpv2a1KQumzZtYnZ2doLLK1N3Tbp06cLs7OwEx3jxxRdZ27ZtFd5nPXr0YG+99ZbgGOquR03rsWnTJiaVShXqUVPqroefnx9r1qxZjeL06NGDNWnSROHYSy+9VKfP1Tlz5rBWrVrV6Pm98sor/GdqbQn5XH3vvfdYmzZtWFVVldoYyu9dXeWVaXrvuri4sEmTJimUDQ8PZ+PGjdMYS/k7j7Ga/24adQtPeXk50tPTMXjwYP6YmZkZBg8ejOPHj6u9z/HjxxXKl5eXo6SkBEVFRYJilJeX4+rVq6isrISnpyc8PDzwwgsvoHv37hofU9l3332Hl19+GdbW1grHk5OT+VaRjRs3av3LU/l5AMAzzzwjuA5A9earjx8/RrNmzRSOX758Ga6urnwXUl5enqB4Xbt2BQAsXLgQf/75p+B6fPfddxg8eDA8PT011uONN94AAJW6ylO+JgUFBQCqW1yEKikpQUVFhcrjcL+b5557DgB0blZXVFTEvz5efvllnXVXpus10q5dOwQHB6O4uBi9evVSG0P+eshkMuzYsQMAcOfOHUF10HUt2rdvj7feegvffPON1noA/10Pd3d3dO/eHUVFRVrLy9N2LRwdHZGXl4fdu3ejoqJCaxzuerzzzjsIDQ3F4MGD0axZM41dr+pouyY1qQtQ/Vf83bt3MXHiRGRmZmp9vyvTdE0KCwshFothYWGBtm3b4uzZsxpjHD9+HK1bt1Z4nxUXFyMlJUVwPTRdj5rUA6j+XD137hzEYjGsra0xfPhwXL9+XXA91F2PGzduoKioCFKpFBKJBI6OjlizZo3WOOfOnUO7du0wZswYODs745lnnoGlpWWdPld//fVXtGzZkm/tkEql6NGjh9bnd+zYMQCAm5sbxGIxbG1tMWfOHMF1AHR/rnp7e2Pjxo0IDw+HSKR+821A8b27YcMGhIaGai2vXAd1r9NHjx5h8+bN8Pb2xtSpU5GSkoKjR49i2LBhGmOp+84bOnRojX43jbqF59atWwwAO3bsmMLxWbNmseeee07tfczNzdm2bdtUYjg4OAiKwZX/v//7P/b333+z5ORkNnz4cGZhYcG6du2qs84nTpxgANiJEycUjm/fvp398ssv7Ny5cwwAc3d3Z88++yyrrKxUG6dt27Zs6dKl/G0A7MMPP2QAWElJic56MMbY8uXLmYODA8vNzeWPJSYmsp9//pmdPXuW7d+/nwFgjo6OrLCwUGOcCxcusI0bN7JTp04xAGzgwIFMIpGw9PR0nXW4desWE4vFbOfOnQrH5euRmJjImjZtyqRSqdZ6yP9uZTIZCw0NZa1bt2bOzs4668GZOnUqa926NSstLeWPcb+bM2fOsG7dujErKyutv5tjx46xH374gf3999/s0KFDzNnZmYnFYnbjxg1BddD2Glm3bh2zsrJiZmZmzMzMjLVt21ZjPczNzdmnn37KrK2tmVgsZvb29mzq1KmCr4e2axEbG8ssLS0ZACYWi9mvv/6qMc6xY8fYkiVL+HpLJBJmZWUl6HpouxZRUVHMx8eH7dy5k3Xo0IHZ2tqyGTNmaIxlbm7Opk+fzvz8/Pjn1LZtW2ZlZaWzHhxN16SmdVm8eDFzd3dnaWlpLDk5mTVr1oxZWFjU6ZrMmTOHzZ49m8XGxrIFCxYwKysrZmFhobGVwNzcnM2ePVvh/e7t7c3MzMy0vs90XY+a1uPYsWMsMjKSrVixgn333XfsueeeY2KxmLm5uQmqh6brYW5uzszNzdkbb7zBVq9ezVq0aMFEIhH7/vvvNcYSiURMIpGwefPmsdOnT7OvvvqKWVhY1OlzVSqVMnNzcxYWFsZ27NjBZsyYwUQiEWvWrJnG52dhYcEkEgmbOHEi27RpE+vduzcDwBYtWiSoDkI+V+fPn88AMFdXV431kP8sW7hwIROJRMzGxqbO7909e/awSZMmMZFIxAAwAGzJkiVa4yl/5zHG2N69e2v0u6GEp5YJj/xjlpeXs6ZNmzJXV1eddZ4yZQrz9/fXWgYA27BhAwPA/vjjD7Vl6prw/PTTT6xJkyYsKSlJZ12srKwEdz/gf11agYGB7NVXX9VZfunSpax58+asrKxMY5m3336beXh4MBsbG631kP/dvv3228zT05MtWbJE8Bf8smXLmIODAzt79qzGenh6erKjR49q/d2ou4+npyf78MMPBdVD22ukrKyMXb58mZ06dYq9/fbbDAD77rvv1JY1NzdnP/74I19+7ty5zMbGRlAzv65rwdUjPj6eAWD29vbsn3/+0RhPvt6zZs1iZmZmgrpONF2L69evM2dnZ75+2dnZDAALDw/XGEsikTA7OzuF51SThEfTNalpXZTLM8ZYYGAgs7e3F/QaEfIZwhhjf//9NwPAoqKi1J5X/ixkjLGVK1cykUgk6P2u6zUitB7KysvLmZeXF5NKpYLqoel6mJubs169evG3ud9Lhw4dNMYCwFq1aqVwbMSIEXX6XFWuB1dnsVis8fmpu4+rqytzdHTUWQfGhH2uDhkyhA0dOpTZ2dkJus5DhgxhISEhrE2bNnV+nW7fvp25u7uz7du3s8TERAaA2drass2bN2uM99QnPGVlZUwsFquMGXnttdfYyJEj1d7Hw8ODrVmzRiGGSCRinp6egmJoekxPT0/m5uamtb5FRUXMzs6OrV27Vms5LmlwdHRkGzduVFumX79+Cn3+ANj06dMF9Z1v376dWVlZsYSEBJ1lAbA2bdqwuXPn6iwrX/fo6GjWs2dPrWWrqqqYj48Pe//99zWWeeedd5i7uzu7cuUK6969u9Z6cL9b+fssWLCAde7cWWe9V65cyezt7dnJkyd11oMxpvV3o+4+ERER7OWXX9ZZD6GvEY65uTnr16+f2nPKr3XGGPP29taZ8Oi6FsocHR2Zr68vmzJliqDyjDHm7OzM2rRpo7WMtmuxZ88evnWJ+wHARCIRE4vFalu9mjdvrvY+3DFNLWWMab8mNa2LpvLcfbTVo6avD4lEonGMg7rXB9cio+v9XtPXiLZ6qBMREcGaNWumsx7arkerVq3YG2+8oXDM2tpaZTyZPKlUqjJOZPz48UwkEumss6bPVXX1+PLLL5m5ubnG56fuPoMHD2bm5uY66yHkc/Xq1avMzMyMxcfH6/xcVS4v5LNM1+vU3d2drV+/nr/t6OjIRo4cydq3b68xpvJ3HmOMff/99zUaL9aox/BYWFigW7duOHjwIH+sqqoKBw8e1Dg+oFevXgrlLSwsYG1trTBtUlsMdY9ZUVGBW7duaZ1mCFRPdywrK8Orr76q87nl5+fj/v37aNmypaDnAQBnz57VOS5i+/btmDhxIrZv364wVVCbu3fvaqyHJmfOnNF5n5SUFGRlZfHjc+QxxjB9+nTs2bMHhw4dgpOTE7Kzs7XG7NmzJ9auXcvfx9vbG0lJSTqvyYoVK/Dxxx9j//796N69u9Z6eHt74+bNm1p/N8r3adWqFTIyMgRdw5q8Rm7evImKigqNU7zVvUbu378PR0dHjTG1XQtNdbh//z7Mzc1RVlamszxQPZ6IG1uhjbZrMWjQIGRkZODMmTM4c+YMP103KCgIZ86cgVgsVrlPYOD/t3f3QVFV/x/A37sLi8szC+iCgrSiheDkKOioIJmEZiqaI6YioCnmZIpPmU8JX6nQ8DloBBVMMTA1wTQVUBRNxYdACkSeNE0QUzDEYUT5/P7wxx0u7C4sfn+/kvm8Znamvfeczz3ns5dzz957Nodi6NChQp2cnByYmJigZ8+eWusAredE37Y0L5+TkwN3d3eYm5sjICBAaztay0lzhYWFePbsGRwcHDTu13R+HDt2DA0NDTrPVX3Pkdba0dzz58+Rm5uL2traVv9mdOVjyJAhovV7d+7cQW1tLVQqldZ4arUaZWVlom3Z2dmwsLDQ2Q5d42rzdgDA77//rjPPmuoUFhbCzMxMZzsA3eNqo/j4eHTu3Bne3t6tjqtNy48cObJNY1lr5+mTJ0+EdZCNY4iFhQUaGhq0xtR0vrZlfBdp89ToXyopKYmMjIwoISGB8vPzKSQkhCwtLamiooKIXszOm85ez507RwYGBhQVFUUFBQW0evVqkslkJJfL2xxj4sSJZGhoSOvWraP9+/dTjx49RL/CaV6+kaenJ02aNKnF9pqaGpo3bx7t2rVLuEXXtWtXcnR0pBs3bhAR0WeffUbTpk0T6pSWlpJCoaDAwEA6ePCg8O0wOjqabt26pbFOYmIiGRgYUHR0NJWXlwuv6upqocyiRYvo6NGjdOTIEYqPjycAZGJiQhkZGVrjRkZG0oYNGyglJYUAkJeXF0kkEkpMTNRYvlFAQAANHDhQ4+f65ptvkomJCX3//feUmppKXl5epFQqhTZoyvP48eMJAM2ZM4fOnDlDixYtIgMDA9G30OZ1IiMjSS6X0/79+0U5qampISKimTNnkpGREUVHR1N2djbt27eP+vTpQz169KC6ujqNMT08PMjExIT27t1Lx48fJz8/PzIyMhKtaWrPOTJgwACKiYmhrKwsio2NpS5duhAA4Rtl85gBAQEkk8lo+fLllJKSQkOGDCEAtG3btnbloqamhhYvXkzTpk2jpKQk2rNnD7m4uJCVlRVJJBI6ceKExrienp4UFRVFp0+fpqSkJHJxcSEAFBcX1+5cLF68mM6fP09lZWWUnp5O/fr1I4VCQXPnztWaY01/+xKJRPTotb050bct4eHhdPz4cSopKaErV66Qra0tyWQy4bFge3Li7u5O0dHRlJWVRZs3byYzMzPR2jFN+ZBIJDRnzhxKT08X1lRYWVlRZWVlu/OhbzvCw8NpwoQJtHfvXjp8+DD5+PiQVCrV2Y625GPq1Kkkk8lo8eLFtGvXLnJyciKJRELx8fFCueZjU+PdNy8vLzp27BgFBwcTAPr000+11mltXM3OziapVEozZ86kU6dO0erVq0kqlZKpqanQv+YxFyxYQDKZjBYuXEhHjhyhESNGEABatmyZ1nY00jWuLlq0iE6ePEn29vYUEBBAPj4+ZGNjozXP4eHh9PPPP5O9vT0FBQXRBx98QJ06dXqp83Tx4sU0atQoUqlUFBERQa6urmRnZ0c2NjY681xaWkrGxsa0ZMkSKigooOjoaJLJZHTs2DGNfdXklZ/wEBFt3bqVHB0dSS6X04ABA+jChQvCPm9vbwoKChKV37dvH/Xq1Yvkcjm5urrSkSNH9IoRGhpKVlZWwm1oCwsL0c8yNR3z+vXrBEC4KDT15MkTcnd3F+I1fTXGCQoKavFz4o0bN+pVx9vbW2d5ohc/81MqlXrFDQkJ0bvt1dXVpFAoKDY2tkU+iEhjPACiwap5nttTp3v37hrrrF69WmfMprdq/xvtIGr9HOnatStJpVICQFKplOzt7UWLEpvHnDFjBtna2goLA01MTEQLA/XNxZMnT8jX11dYrAyAOnXqRF5eXqI2N4/r6uoqesxjbW1NMTExL5ULX19fsrW1JUNDQ+revTvNmjWLBg0aJLrl3Za//T59+uis09ac6NuW0NBQYbzp0qULKZVKmjx58kvlRKVSCeeHTCYjtVrd6lg4ePBg4bMxMDCgoUOHUnFx8UvlQ992hIaGkrGxseic8vX11dmOtuTD19eXzM3NhbiWlpYUFRUlKqdpbPryyy+Fc9zQ0JCCg4N11mnLuOrl5UUGBgZCnt3d3UX9ax5z7dq1wiJrAGRsbEwLFy5ste2tjatNx/fOnTvTpEmTdOY5NDSUbG1tCQBZW1vTqFGj6OrVq1rLE7Xtc7G2tiapVCo80u3evTutWLFCtOZIU/9OnTpFffv2JblcTmq1WjSmtoWEqJX/tSFjjDHG2CvulV7DwxhjjDHWFjzhYYwxxliHxxMexhhjjHV4POFhjDHGWIfHEx7GGGOMdXg84WGMMcZYh8cTHsYYY4x1eDzhYYwxxliHxxMexhhjjHV4POFhTA/BwcEYN26caNv9+/fh5uaGgQMH4tGjR/9MwxhjjOnEEx7GXsL9+/fx9ttvQ6FQ4MSJE63+q8qMMcb+GTzhYayd/vrrLwwfPhxGRkZIS0sTTXb++OMP+Pn5wdTUFObm5vD398e9e/dE9W/evAmJRNLiVV1dDQAICwtD3759hfJPnz6Fs7OzqIymO04SiQSHDh0S3t++fRv+/v6wtLSEUqmEn58fbt68Kaqzc+dOuLq6wsjICHZ2dpg7dy4AwMnJSWMbJRIJEhIShOM1vszNzfHOO++gpKREiF1VVYXAwEBYWVnB2NgY7777LoqKinTmtrWYu3fvhru7O8zMzKBSqTBlyhRUVlYK+zMzM0V50pSbxvzn5OSIyjg5OWHTpk1a89lU3759ERYWJhxTLpcjKytL2L9u3Tp07ty5xWffKCEhAZaWlsL7W7duwcHBAStXrhS2tZa/hIQESCQSjB07VhR78+bNkEgkCA4O1to3oOU5dOzYMXh6esLS0hLW1tYYPXq0KPfazgeJRILMzEyN/WTs34AnPIy1w4MHD+Dj4wMDAwOkpaWJLloNDQ3w8/PDw4cPcfr0aaSlpaG0tBSTJk0SxWj8d3vT09NRXl6OAwcO6DzmN998o/XCqU19fT1GjBgBMzMzZGVl4dy5czA1NcXIkSPx9OlTAMC3336Ljz/+GCEhIcjLy0NqaiqcnZ0BAJcuXUJ5eTnKy8vRrVs3bNq0SXjftD/x8fEoLy/HmTNnUFlZieXLlwv7goODcfnyZaSmpuL8+fMgIowaNQr19fU6264rZn19PdasWYPc3FwcOnQIN2/eFF3Y/wlvvfUWQkNDMW3aNDx69Ai//vorVq1ahe3bt6NLly6t1q+oqICPjw/8/PwQEREhbG9L/oyNjXH+/Hn8+eefwrbY2Fh07dpV737U1tZi4cKFuHz5MjIyMiCVSjF+/Hg0NDQAgPD5l5eXAwAOHDggvB88eLDex2Ps/4vBP90Axl41VVVV8PHxQX5+Pvr37w9zc3PR/oyMDOTl5aGsrAwODg4AgO+++w6urq64dOkSPDw8AEC4YKlUKqhUKiiVSq3HfPjwISIiIrB06VKsWrVK2K5QKIQLjybJycloaGjA9u3bIZFIALyYSFhaWiIzMxO+vr6IiIjAokWLMH/+fKFeYxttbW2FbTKZDBYWFlCpVC2OY2lpCZVKBYVCATMzM+FuV1FREVJTU3Hu3DnhYpiYmAgHBwccOnQIEydO1Np2bTEBYMaMGcJ/q9VqbNmyBR4eHnj8+DFMTU21xvy/FhERgbS0NISEhOC3335DUFBQizsvmlRVVcHX1xcDBw7E1q1bhe1tzZ+hoSEmT56MnTt3YtWqVTh79ixkMhnc3d317sOECRNE73fu3AlbW1vk5+fDzc2txeevVCo1nhOM/dvwHR7G9HTmzBk0NDQgJycHxcXFWLdunWh/QUEBHBwchMkOAPTu3RuWlpYoKCgQtv39998AABMTk1aP+Z///AfDhg2Dp6enaLubmxsuXLiAsrIyjfVyc3NRXFwMMzMzmJqawtTUFEqlEnV1dSgpKUFlZSXu3r2L4cOHt7n/mkyePBmmpqawsrJCTU0NvvrqKwAvcmFgYICBAwcKZa2trfH666+LcqFPTAC4cuUKxowZA0dHR5iZmcHb2xvAi0eJTXXr1k3ot7aJ0ODBg0Vlmsdo2hY7Ozu89957yM/P1xhLLpcjMTERBw4cQF1dHTZu3KizjwDw7NkzjBo1Cnl5efD19RUmpoB++QsJCcGOHTvQ0NCA2NhYzJo1S+Pxli5dKupvYmKiaH9RUREmT54MtVoNc3NzODk5AWiZW8ZeNTzhYUxParUaGRkZ6N27N2JiYhAWFoZr167pHefu3buQSqWtfjsuKirC9u3bsXbt2hb7ZsyYAQ8PD6jVao0X9cePH6N///7IyckRvW7cuIEpU6ZAoVDo3W5NNm7ciJycHGRnZ0OlUv1XHi9pi1lbW4sRI0bA3NwciYmJuHTpEn788UcAEB7TNcrKyhL1W5Pk5GRRGXt7e61tOXz4MOrr6+Hv76+13b/88guAF3flHj582Go/a2troVAosG3bNoSGhqKioqLVOpq4ubnB3t4eSUlJ+OmnnzBt2jSN5ZYsWSLqb/M7UGPGjMHDhw8RFxeHixcv4uLFiwBa5paxVw0/0mJMT3369IGNjQ0AYOLEiTh48CACAwORnZ0NuVwOFxcX3L59G7dv3xbu8uTn56O6uhq9e/cW4ly6dAlvvPEGOnXqpPN4S5cuxcyZM+Hs7Iw7d+6I9ikUCqSnp+PevXuoqakBAPTs2VPY369fPyQnJ6Nz584tHr01cnJyQkZGBoYNG6Z/Mv6XSqUS1v188sknGDt2LOrr6+Hi4oJnz57h4sWLwiOZBw8eoLCwUJQLfWJev34dDx48QGRkpJDfy5cva4zx2muvidZXaeLg4CAcBwAMDFoOi03bMn/+fIwZM0bjGqSSkhIsWLAAcXFxSE5ORlBQENLT0yGVav9uaWxsjNTUVJiamuLw4cOYPXs2UlJSAEDv/M2ePRsfffQRxo0bp7XfNjY2ov6amZkJi7sbY8fFxcHLywsAcPbsWa1tZ+xVwnd4GHtJ0dHRqKysRHh4OADAx8cHffr0wdSpU3H16lVkZ2cjMDAQ3t7ecHd3x9OnT7F7925s2LAB06dP1xm7uLgYmZmZ+Pzzz3WW69KlC5ydnUUXMgCYOnUqbGxs4Ofnh6ysLJSVlSEzMxPz5s0TJk9hYWFYv349tmzZgqKiIly9elW0jqQtqqurUVFRgcLCQuzYsQNqtRqGhobo2bMn/Pz8MGvWLJw9exa5ubkICAhA165d4efn166Yjo6OkMvl2Lp1K0pLS5Gamoo1a9bo1V591dfXo66uDhUVFdizZw969eoFQ0NDUZnnz58jICAAI0aMwPTp0xEfH49r165h/fr1OmMbGhoKd+ZiY2ORlZWFPXv2AIDe+fP398eKFSuwbNmydvXTysoK1tbWiI2NRXFxMU6ePImFCxe2KxZj/zY84WHsJSmVSsTFxWHt2rW4ePEiJBIJUlJSYGVlhaFDh8LHxwdqtRrJyckAgLy8PISFhWHVqlWtXkxqa2uxYsUKnQuadTE2NsaZM2fg6OiI999/Hy4uLvjwww9RV1cn3PEJCgrCpk2bEBMTA1dXV4wePbrVn403N336dNjZ2cHDwwNVVVXYv3+/sC8+Ph79+/fH6NGjMWjQIBARjh492mLC0NaYtra2SEhIwA8//IDevXsjMjISUVFRemZGP/7+/lAoFOjVqxfKy8uFz7KpL774Ardu3cK2bdsAAHZ2doiNjcXKlSuRm5vbpuPY2dlh8+bNmD9/vvBoS5/8KRQKLF26FC4uLu3qp1QqRVJSEq5cuQI3NzcsWLAAX3/9dbtiMfZvI6HG38YyxhhjjHVQfIeHMcYYYx0eT3gYY4wx1uHxhIcxxhhjHR5PeBhjjDHW4fGEhzHGGGMdHk94GGOMMdbh8YSHMcYYYx0eT3gYY4wx1uHxhIcxxhhjHR5PeBhjjDHW4fGEhzHGGGMd3v8ABom4bwl+IwMAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvlElEQVR4nO3deXxTVfo/8M+5WW7SlZYdQQQRVEARV3CBURQVFHRGlK8LiuIyqPhVR2Xc9aegM477voCjfhU33HBFBBzFERcEUVGgQJXuWdpma3LP+f1RExtaoClJb5bP21dekpube5/cpO2TszxHKKUUiIiIiNKQZnYARERERNvDRIWIiIjSFhMVIiIiSltMVIiIiChtMVEhIiKitMVEhYiIiNIWExUiIiJKW0xUiIiIKG0xUSEiIqK0xUSFiIgoAQ899BA8Hk/s/n333Qefz2deQFmOiUoO2rBhAy666CIMHDgQDocDRUVFOPzww3H//fcjEAiYHR4RUVp7++23ccstt6C8vBwvvPACbrzxRjidTrPDylqCa/3klkWLFuG0006Drus455xzMGzYMDQ1NeE///kPXnvtNZx77rl44oknzA6TiChtLVu2DCeffDLq6+uhaRruueceXHHFFWaHlbWYqOSQsrIy7Lfffujbty+WLFmC3r17xz2+fv16LFq0CLNmzTIpQiKizODxePDjjz+iX79+6Nu3r9nhZDV2/eSQu+++G42NjXj66adbJSkAMGjQoFiSMmbMGOy///5tHmfIkCEYP348AGDTpk0QQkAIgTfeeCNuv2AwiJKSEggh8M9//jO2/ZZbboEQAj169EA4HI57zosvvhg7Xm1tbWz7m2++iQkTJqBPnz7QdR177rknbr/9dhiGEff8sWPHYtiwYfj6668xevRoOJ1ODBgwAI899ljcfkuXLoUQAq+++mqr11dQUIBzzz03dt/lcuHqq6/G8OHDUVBQgKKiIpxwwgn47rvvWj1348aNOO2009CnTx9omhZ7LcOGDWvzWrYkhMCll17aavvEiROxxx57tNr+008/4S9/+QtKS0vhcDhw0EEH4a233orbZ/78+RBC4KuvvorbXltbCyEEbrnllti2zZs3469//SuGDBkCp9OJrl274rTTTsOmTZt2GnvLz0Fbt7Fjx8btX11djfPPPx89e/aEw+HA/vvvj2effXan5wGAPfbYI+79AYALL7wQDocDS5cujdv+yCOPYOjQodB1HX369MHMmTPjxha0J/5t95k/f37cc2fOnAkhRFxM5557bpvv2bbXHAB+++03TJ8+HT179oSu6xg6dCieeeaZVs8NBoO45ZZbMHjwYDgcDvTu3RunnnoqNmzYsNPr3zK+6GciesvLy8Pw4cPx1FNPxc41b948CCHw7bfftorjzjvvhMViwW+//dbqMQBoaGjABRdcgP79+0PXdfTt2xcXX3wxqqqqYvtsG0Nbt+h1Xr16Nc4999xYV3WvXr0wffp01NXVxZ139uzZcDgc+Oyzz2Lboj/nLT8Xn332GRwOB2bPnp3w+9DyeF26dMGoUaPQt29fTJgwoc33lpLDanYA1HnefvttDBw4EKNHj97pvmeffTZmzJiB77//Pu6P7MqVK/Hzzz/jhhtuiNvf4XBg3rx5mDx5cmzb66+/jmAwuN1zNDQ04J133sEpp5wS2zZv3jw4HI5Wz5s/fz4KCgpw5ZVXoqCgAEuWLMFNN92E+vp6/OMf/4jb1+1248QTT8SUKVMwdepUvPzyy7jkkktgt9sxffr0nb72bW3cuBFvvPEGTjvtNAwYMABVVVV4/PHHMWbMGPzwww/o06cPAMAwDJx88snYvHkzrrjiCgwePBhCCNxxxx0Jn3Nn1q5di8MPPxy77bYbrrvuOuTn5+Pll1/G5MmT8dprr8Vd0/ZauXIlPv/8c5xxxhno27cvNm3ahEcffRRjx47FDz/8gLy8vJ0eY+rUqTjxxBPjtm37ByEQCGDs2LFYv349Lr30UgwYMACvvPIKzj33XHg8noRb9G6++WY8/fTTWLBgQVxCdMstt+DWW2/FuHHjcMkll2DdunV49NFHsXLlSnz22Wew2WytjnXhhRfiyCOPBND8+V24cOEOz71+/Xo8+eSTCcXbUlVVFQ477LBYktq9e3e89957OP/881FfXx/rTjAMAxMnTsTHH3+MM844A7NmzUJDQwM++ugjfP/99xg3bhyee+652HGjsbfctueee8ad+95770W3bt1QX1+PZ555BjNmzMAee+yBcePG4S9/+QtmzpyJF154AQcccEDc81544QWMHTsWu+22W5uvyeVyYfXq1bjgggvQq1cvrF+/Ho899hjef/99fPnll+jRoweOOuqouNiiPyPXX399bFv099RHH32EjRs34rzzzkOvXr2wdu1aPPHEE1i7di2++OKLWDJ555134pdffsEpp5yC//73vxgwYECr2MrKyjB58mRMnDgRd955Z8LvQ1uWL1+Od999d7uPUxIoygler1cBUJMmTWrX/h6PRzkcDnXttdfGbb/88stVfn6+amxsVEopVVZWpgCoqVOnKqvVqiorK2P7HnPMMep//ud/FAD1j3/8I7b95ptvjj1n4sSJse2bN29WmqapqVOnKgCqpqYm9pjf728V40UXXaTy8vJUMBiMbRszZowCoO65557YtlAopEaMGKF69OihmpqalFJKffLJJwqAeuWVV1odNz8/X02bNi12PxgMKsMw4vYpKytTuq6r2267LbZt3bp1CoCaM2dO3L5jxoxRQ4cObXWebQFQM2fObLV9woQJqn///nHbjjnmGDV8+PC41y6lVKNHj1Z77bVXbNu8efMUALVy5cq459fU1CgA6uabb45ta+sar1ixQgFQ//73v3cYe/Rz0PJ9jho6dKgaM2ZM7P59992nAKjnn38+tq2pqUmNGjVKFRQUqPr6+h2eq3///rH35/HHH1cA1IMPPhi3T3V1tbLb7eq4446Le+8eeughBUA988wzcfv/8ssvCoB69tlnY9uin9NtX+O8efNi26ZMmaKGDRum+vXrF/eZOe+889Tuu+/eKvZtr/n555+vevfurWpra+P2O+OMM1RxcXHsPXnmmWcUAPWvf/2r1TGllK22bRt7S9HPRFlZWWzbzz//rACou+++O7Zt6tSpqk+fPnHX75tvvml1Ddrj+++/V7quq+nTp7f5+JgxY+I+Iy219bl88cUXFQC1fPnyuO0+n08ddNBBaujQocrr9cZ+zj/55BPl8XjUvvvuqw4++OBWx2zv+9DyeFGHHnqoOuGEE1q9t5Q87PrJEfX19QCAwsLCdu1fXFyMSZMm4cUXX4T6fRiTYRhYsGABJk+ejPz8/Lj9R44ciaFDh8a+JW3evBmffPJJqyb6lqZPn473338flZWVAIBnn30Wo0aNwuDBg1vt23JEfUNDA2pra3HkkUfC7/fjp59+itvXarXioosuit232+246KKLUF1dja+//jpu3+ixWt62pes6NE2LXYO6ujoUFBRgyJAh+Oabb+KOBQBdu3bd7mtOBpfLhSVLlmDKlClx8dfV1WH8+PH45ZdfWjXLe73euNfocrlaHbflNQ6Hw6irq8OgQYPQpUuXuNe5q95991306tULU6dOjW2z2Wy4/PLL0djYiGXLlrXrOG+++Sb++te/4m9/+1urLrPFixejqakJV1xxRey9A4AZM2agqKgIixYtitu/qakJQPN73V5ff/01XnnlFcyZMyfuHADQo0cPVFdXx47bFqUUXnvtNZx00klQSsW9P+PHj4fX641d99deew3dunXDZZdd1uo4LbunEuF2u1FbW4uNGzfi3nvvhcViwZgxY2KPn3POOdi6dSs++eST2LYXXngBTqcTf/7zn3d4bCll3Ovp2bMnTjzxRLz22muQUiYUZ8vPZTAYRG1tLQ477DAAaPW5zMvLw9tvvw2Xy4UpU6bEuoYNw8Dpp58Ot9uNt956K+6YibwP23r99dexcuVKzJ07N6HXRInJmkRl+fLlOOmkk9CnT582x0u0x8svv4wRI0YgLy8P/fv3b9WlkMmKiooA/PHHtD3OOeccbNmyBZ9++imA5l/+VVVVOPvss9vc/7zzzsO8efMANHfVjB49Gnvttdd2jz9ixAgMGzYM//73v6GUwvz583Heeee1ue/atWtxyimnoLi4GEVFRejevTvOOussAM1/hFvq06dPq0QqmvxsO95i+vTp6N69e9xt23oIUkrce++92GuvvaDrOrp164bu3btj9erVceceMmQISkpKcM899+Czzz5DTU0NamtrW43D2VXr16+HUgo33nhjq9hvvvlmAM1jQFoaN25c3H5DhgxpddxAIICbbroJ/fr1i3udHo+n1TXeFZs3b8Zee+3V6o/7PvvsE3t8Z1atWoWpU6fCMIw2k67oMbZ9nXa7HQMHDmx1jui4lYKCgna/juuuuw5HHnkkJk6c2Oqx0aNHIxgM4oYbbsCvv/7aZhJcU1MDj8eDJ554otX7GP05iL6PGzZswJAhQ2C1Jq+3fuTIkejevTv23HNPPPPMM3jooYdwyCGHxB4/9thj0bt3b7zwwgsAmn8OXnzxRUyaNGmnX3i2bNnS6jUtXLgwljAnwuVyYdasWejZsyecTie6d+8e69Zp63MZDAbh8XjwwQcfxLodZ8+ejQ8++ABerxehUChu/0Teh5YMw8Df//53nHnmmdhvv/0Sek2UmKwZo+Lz+bD//vtj+vTpOPXUUxN+/nvvvYczzzwTDz74II477jj8+OOPmDFjBpxOZ5sDHDNNUVER+vTpg++//77dzxk/fjx69uyJ559/HkcddRSef/559OrVC+PGjWtz/7POOgvXXHMNvvjiCzz77LOtxrG0Zfr06XjkkUdwyCGHoLKyElOmTME999wTt4/H48GYMWNQVFSE2267DXvuuSccDge++eYbXHvttQl/Q2vppptuio1JiDrppJPi7t9555248cYbMX36dNx+++0oLS2Fpmm44oor4s5dUFCABQsWYPr06TjiiCPijjF06NAOx7it6Dmvvvrq2KDmbQ0aNCju/sMPPxzXUlVfX9/qW/Fll12GefPm4YorrsCoUaNQXFwMIQTOOOOMXbrGqfDdd9/hhBNOwDHHHIO//e1vOOuss1oN2E1EtFWvV69e7dr/ww8/xOLFi7FixYo2Hz/55JMxffp0/OMf/9juF57oNT3rrLMwbdq0NvdJ5R/A559/Hj179kQwGMSSJUswc+ZMOByOWCuoxWLB//zP/+DJJ5/EI488gs8++wxbt26NfUHYkV69euGjjz6K2/bMM8/gxRdfTDjOKVOm4PPPP8ff/vY3jBgxAgUFBZBS4vjjj2/zczlr1iz07t0bd9xxB84880wAza1fL730EmbPno1Zs2bFfZHt6Pvw9NNPY9OmTfjggw8Sfk2UmKxJVE444QSccMIJ2308FArh+uuvx4svvgiPx4Nhw4bhrrvuiv1ye+655zB58mRcfPHFAICBAwdi9uzZuOuuu2Kj+jPdxIkT8cQTT2DFihUYNWrUTveP/qKaP38+7rrrLrzxxhuYMWMGLBZLm/t37doVJ598cqybZcqUKTv99nTmmWfib3/7G2bNmoW//OUvbX5TW7p0Kerq6vD666/jqKOOim0vKytr85hbt26Fz+eLa1X5+eefAaDVTIzhw4e3Sry2fX2vvvoq/vSnP+Hpp5+O2+7xeNCtW7e4bcceeyzuvvtunHnmmXjssccwcOBAXHXVVa1mJ+2KgQMHAmjuLtle0ritQw45BAcddFDsflvvy6uvvopp06bFJYrRb6fJ1L9/f6xevRpSyrhWlWgXXv/+/Xd6jOHDh+OVV16B0+nEK6+8ggsvvBCrV6+Gw+GIO8a6deti1wto7uIpKytrdd1++OEHCCHabGnallIK1113HU455ZRYF0Rbnn76adx0003YsGFD7I/hscceG3u8e/fuKCwshGEYO30f99xzT/z3v/9FOBxucxBwRxx++OGxn4eJEydi7dq1mDNnTlx37TnnnIN77rkHb7/9Nt577z107959u8lxSw6Ho9VreuCBB1BUVNTqZ2ZH3G43Pv74Y9x666246aabYtt/+eWXNvd/55138NZbb+Gdd97BhAkTsHHjRlx//fW4/fbbcfrppyM/Px8nnXQSFi1ahAkTJgBI7H2I8vv9uPXWW/HXv/61XZ9X2jVZ0/WzM5deeilWrFiBl156CatXr8Zpp52G448/PvaBD4VCsV9yUU6nE7/++mu7mqIzwTXXXIP8/HxccMEFcVMFozZs2ID7778/btvZZ58Nt9uNiy66CI2NjTv9NjV9+vTY9W1PM3ppaSkmTZqE1atXb3dGTjRxUC1K/jQ1NeGRRx5pc/9IJILHH388bt/HH38c3bt3x4EHHrjTmNo6v9qm3NArr7zS5vTM8vJy/PWvf8Xll1+OCy+8EOPGjUNJSUnC59yRHj16YOzYsXj88cdRUVHR6vGampoOHbet1/nggw8mNckCgBNPPBGVlZVYsGBBbFskEsGDDz6IgoKCuHES2zNy5Ejk5+dD0zQ89dRT2LRpE2677bbY4+PGjYPdbscDDzwQ95qefvppeL3e2B+p6Llfe+01HHLIIe36zEZ/h8yZM2en+/bv3x9HH300xo0b12ZC/Oc//xmvvfZamy2dLd/HP//5z6itrcVDDz3Uar9t37OOCgQCrbpF9ttvP+y333546qmn8Nprr+GMM87YafdTW60c3377Ld577z1Mnjy5VZffjrT1sw80l6xvK/7LLrsMkyZNir2/0ZlD0f9PnDgRJ598Mi677LJYFe5E3oeo+++/Hz6fL26WEqVO1rSo7MiWLVswb948bNmyJTaV9Oqrr8b777+PefPm4c4778T48ePxv//7vzj33HPxpz/9CevXr499s6yoqGizJkKm2XPPPfF///d/OP3007HPPvvEVab9/PPPY1NEWzrggAMwbNgwvPLKK9hnn30wcuTIHZ7j+OOPR01NTUJ9/fPnz8fDDz+83W9ao0ePRklJCaZNm4bLL78cQgg899xz2/0F3adPH9x1113YtGkTBg8ejAULFmDVqlV44oknOvRtdOLEibjttttw3nnnYfTo0VizZg1eeOGFuG/qQPMv6LPPPht9+/bt8OC6LVu24P3334/bVlNTg0AggPfffx9jxoyB0+nEww8/jCOOOALDhw/HjBkzMHDgQFRVVWHFihX49ddf26zx0p7X+dxzz6G4uBj77rsvVqxYgcWLFyd9cPCFF16Ixx9/HOeeey6+/vpr7LHHHnj11Vfx2Wef4b777mv3gO+oYcOG4dprr8XcuXNxxhlnYL/99kP37t0xe/Zs3HrrrTj++ONx8sknY926dXjkkUdw8MEHxxLuxYsX48Ybb8Tq1avx9ttvt+t8H374IWbMmNGu1pedmTt3Lj755BMceuihmDFjBvbdd1+4XC588803WLx4cWz8zTnnnIN///vfuPLKK/Hll1/iyCOPhM/nw+LFi/HXv/4VkyZNSvjcb7zxBrp16xbr+vn000/bnIZ7zjnn4OqrrwaAdnX7bNmyBRMmTMBpp52G3XbbDd9//z2efPJJdOvWLW5KcHsUFRXhqKOOwt13341wOIzddtsNH374YZutqXfeeSeqq6tbfdna1gMPPIB9990Xc+bMiSW37X0foj788EPccccdKR84T78zYaZRygFQCxcujN1/5513FACVn58fd7NarWrKlClKqeYpftdcc41yOBzKYrGokpISdcsttygA6osvvjDplaTGzz//rGbMmKH22GMPZbfbVWFhoTr88MPVgw8+GDfdNeruu+9WANSdd97Z6rEdTUvd3uPRqZMtpx+31Nbjn332mTrssMOU0+lUffr0Uddcc4364IMPWk0VjE4F/uqrr9SoUaOUw+FQ/fv3Vw899FDcORKdnnzVVVep3r17K6fTqQ4//HC1YsWKVlMq77zzTqXruvruu+/ijpfI9OSd3VpOKd2wYYM655xzVK9evZTNZlO77babmjhxonr11Vdj+yQyPdntdqvzzjtPdevWTRUUFKjx48ern376KW468PYkMj1ZKaWqqqpi57Lb7Wr48OHtnvLaVjzBYFDtvffe6uCDD1aRSCS2/aGHHlJ77723stlsqmfPnuqSSy5Rbrc79vhll12mjjrqKPX++++3Os/2pic7nU7122+/7TSmtmx7zZVqvhYzZ85U/fr1UzabTfXq1Usdc8wx6oknnojbz+/3q+uvv14NGDAgtt9f/vIXtWHDhp3G3lL0MxG92e12NWjQIHXTTTe1+fNfUVGhLBaLGjx48E5fn1JKNTQ0qBkzZqj+/fsru92uunfvrs4++2y1efPm7T5nR9OTf/31V3XKKaeoLl26qOLiYnXaaaeprVu3xl3Ln3/+Wem63up3VFvTiZVS6o477lC6rquff/45tq0970P0eL1791Y+ny/umG29t5QcWVlCXwiBhQsXxoqPLViwAGeeeSbWrl3bavxBQUFB3AA6wzBQWVmJ7t274+OPP8aJJ56I6upqdO/evTNfQlq5//778b//+7/YtGkTdt99d7PD2aGxY8eitrY2oUHDmWDTpk0YMGAAysrKsqJ1jzJHbW0tevfujZtuugk33nij2eFQDsqJrp8DDjgAhmGgurq61QyPbVkslljFxRdffBGjRo3K6SRFKYWnn34aY8aMSfskhYiSb/78+TAMY7tlCYhSLWsSlcbGRqxfvz52v6ysDKtWrUJpaSkGDx6MM888MzaC/YADDkBNTQ0+/vhj7LfffpgwYQJqa2vx6quvYuzYsQgGg5g3bx5eeeWVdhefyjY+nw9vvfUWPvnkE6xZswZvvvmm2SHlNKfTifHjx3Mpeeo0S5YswQ8//IA77rgDkydPZksemcfkrqekifYdbnuL9hs3NTWpm266Se2xxx7KZrOp3r17q1NOOUWtXr1aKdXcZ3/YYYep/Px8lZeXp4455pisG5uSiGh/fJcuXdTf//53s8Npt/aOByGiHRszZoyy2Wxq7Nix6tdffzU7HMphWTlGhYiIiLJDztRRISIioszDRIWIiIjSVkYPppVSYuvWrSgsLMyKEvdERES5QCmFhoYG9OnTZ6fVijM6Udm6dSv69etndhhERETUAeXl5ejbt+8O98noRCVaaru8vBxFRUUmR0NERETtUV9fj379+rVryYyMTlSi3T1FRUVMVIiIiDJMe4ZtcDAtERERpS0mKkRERJS2mKgQERFR2mKiQkRERGmLiQoRERGlLSYqRERElLaYqBAREVHaYqJCREREaYuJChEREaUtJipERESUtpioEBERUdpiokJERERpi4kKERERpS0mKkQ5IKRCCMqg2WEQESWMiQpRlpNK4vvg9/gi8AVCMmR2OERECWGiQpTl6mU9GmQDqowqbAlvMTscIqKEMFEhynIuw4WACiAog6g2qs0Oh4goIUxUiLKYUgouwwWf9MGAgRqjBlJKs8MiImo3JipEWaxBNsCnfGhSTdCFDr/0wyu9ZodFRNRuTFSIsphLuhCQAViEBYVaISKIoMKoMDssIqJ2Y6JClKWUUnBFmrt9HMIBh+YAFFAd4TgVIsocTFSIspRP+dCoGhFCCEWiCLrQYREW1Bq1HKdCRBmDiQpRlnIZLgRlEBo0ODQH7LDDJmwIqRBqZI3Z4RERtQsTFaIsFJvto3zQhQ4hBIQQyBN5MGCgMlJpdohERO3CRIUoCwVUAI2yEQEVQJEoim13aA4AQI3BFhUiygxMVIiykNtwI6AC0KDBqTlj23WhwwIL6ow6hGXYxAiJiNqHiQpRFnJJF/zSD7uwQxN//JhbYYUudIRVGFVGlYkREhG1DxMVoiwTlEF4DS/8yh/X7QMAQgg4hRMSkuNUiCgjMFEhyjJu6UZQBQEAeVpeq8cdmgMCguNUiCgjMFEhyjIu4/duH8R3+0RFx6l4pAdBGTQhQiKi9mOiQpRFmlQTvNILn/KhQCtocx+rsMKhORBREWyNbO3kCImIEsNEhSiLuA03AjIAANtNVAAgT+RBQaEqwgG1RJTemKgQZZFot48VVliEZbv76UKHgECtUduJ0RERJc7UROWWW26JVcyM3vbee28zQyLKWBEVgUd6dtjtE6ULHTZhQ4NsQL1R30kREhElzmp2AEOHDsXixYtj961W00MiykjRbh+lFAq1wh3uqwkNTuFEvapHRaQCRZaiHe5PRGQW07MCq9WKXr16mR0GUcZzSRcCMgCrsMIqdv6j7RAOeOFFdaQaQ/QhnRAhEVHiTB+j8ssvv6BPnz4YOHAgzjzzTGzZssXskIgyjqEMeAwPGlUj8rX8dj1HFzo0aKiRNZBSpjhCIqKOMTVROfTQQzF//ny8//77ePTRR1FWVoYjjzwSDQ0Nbe4fCoVQX18fdyMiwCM98Es/pJIoEDsenxIVHacSkAG4pCvFERIRdYypicoJJ5yA0047Dfvttx/Gjx+Pd999Fx6PBy+//HKb+8+ZMwfFxcWxW79+/To5YqL05DJcCKgALMICu2Zv13OEEMgTeTBgoNJgOX0iSk+md/201KVLFwwePBjr169v8/HZs2fD6/XGbuXl5Z0cIVH6kUrCbbjRKBuRJ1qXzN8Rh+YAAFRHqlMRGhHRLkurRKWxsREbNmxA796923xc13UUFRXF3YhynVd64Zd+RFRkp7N9thUtp19n1CEiIymKkIio40xNVK6++mosW7YMmzZtwueff45TTjkFFosFU6dONTMsooziNtx/dPuI9nX7RNlgg13YEVIhVEu2qhBR+jF1evKvv/6KqVOnoq6uDt27d8cRRxyBL774At27dzczLKKMoZSCy3DBJ31wCieEEAk9PzpOJaACqIpUoY+1T4oiJSLqGFMTlZdeesnM0xNlvAbZAJ/yoUk1oZulW4eO4dAcgOQ4FSJKT2k1RoWIEhMt8mYRFuhC79AxdKHDCis80oOQDCU5QiKiXcNEhShDKaVQF6mDT/rgEI6Eu32iLGhOcppUEyojnKZMROmFiQpRhvIpH3zKhxBCKBIdnwEnhIBTOKGgUGVUJTFCIqJdx0SFKEO5DBeCMggNWqweSkc5NAcEBGqMmiRFR0SUHExUiDJQbLaP8kEXeoe7faKi41S8hhc+6UtSlEREu46JClEGCqgAGmQDAiqwS90+URZhgUNzwICBikhFEiIkIkoOJipEGchtuBFUzd0+Ts2ZlGPGxqlEOE6FiNIHExWiDOSSLvilH3ZhhyaS82PsEA5o0FBj1EBKmZRjEhHtKiYqRBkmKIPwGl74lT8p3T5RdmGHVVjhl354pTdpxyUi2hVMVIgyjFs2d/sAQJ6W2GrJO6IJDU7hRAQRVBgcp0JE6YGJynb4pA9+6Tc7DKJWXMbv3T5IXrdPVHS8C8vpE1G6YKLShq2Rrfgu+B02Nm00OxSiOE2qCV7phU/5UKgVJv34utBhgQW1Ri3HqRBRWmCi0oZirRiNqhHrwusQlEGzwyGKcRtuBGQAAJCv5Sf9+HbYYRM2hFQItbI26ccnIkoUE5U25Gv5cAgHQjKEsnCZ2eEQxUS7faywwiIsST++EAJ5Io/1VIgobTBR2Y4uWheEVRhbIlvMDoUIABBREXikBz7lQ4FWkLLzRMvxs5w+EaUDJirbUaQVAQKoi9TBHXGbHQ5RrNtHKpmS8SlR0XEqdUYdwjKcsvMQEbUHE5XtsAor7MKOCCLYGOagWjKfS7oQkAHYhA1WYU3ZeaywQhc6wirM1ZSJyHRMVHbAIZpXlC2PlMOQhtnhUA4zlAGP4UGjakzJINqWhBBwCickJCojlSk9FxHRzjBR2QEbbHAIB3zSh62RrWaHQznMIz3wSz8MZaBApG58SpRDa07SOU6FiMzGRGUHhBAo0ApgwEBZhLN/yDwuo7nbxyqssGv2lJ8vOk7FK72cok9EpmKishMFWgEssKAyUslf2GQKqSTchhuNqhF5Inkl83fEKqxwaA6EVZjTlInIVExUdsImbMjT8hBSrKlC5vBKL/zSj4iKpHS2z7byRB4UFAfUEpGpmKi0Q6FWCKUUa6qQKdyGGwEVgEVYYBep7/aJ0oXePE4lwnEqRGQeJirt4BRO2DQbXBEXa6pQp1JKwWW40Cgb4RROCCE67dy60GEVVjTIBjTIhk47LxFRS0xU2sEiLCgQBQgjzJoq1KkaZAN8yoewCjcXIexEmtBi5fS3hjnrjYjMwUSlnQq0AggI/Br5lTVVqNNEi7xZhAW60Dv9/A7hgIJCdaS6089NRAQwUWk3h3DAIRxolI3YavDbJaWeUgp1kTr4pK+5+GAndvtE6UKHBg01sgZSyk4/PxERE5V2allTZVN4k9nhUA7wKR98yocQQigSndvtE6ULHTZhQ0AG4JYcn0VEnY+JSgJYU4U6U7TImwYttqJxZ4uW0zdgoMJgPRUi6nxMVBIQrakSVEHWVKGUis728St/8zRhE7p9opyaEwA4ToWITMFEJUEFWgFrqlDKBVQADbIBARUwrdsnKlpOv86o40ByIup0TFQSlCfyYjVVPBGP2eFQlnIZLgRUc7dPtEXDLDbYYBd2hFQIVZJVaomoczFRSVDLmiobwhvMDoeyVHRasl3YoQlzf0yj41QkJKoiTFSIqHMxUemAljVVOGWTki0og6g36uFXftO7faKig3k5ToWIOhsTlQ5oWVPlN+M3s8OhLOOSLgRV86yyPK1zVkveGYdwwAorPNKDJtlkdjhElEOYqHQAa6pQKrkMF/zSDzvM7/aJsqC5Mm5YhTlNmYg6VXr8FsxA+Vo+a6pQ0jWpJngNL3zKh0Kt0OxwYlqOU2H3DxF1JiYqHWQXdtZUoaRzGX90++Rr+SZHE8+hOSAgUG0wUSGizsNEZRewpgolm9twwy/9sMIKi7CYHU4cXeiwwtrc4iN9ZodDRDmCicouYE0VSqaIisAjPWnX7RNlERY4NEdzOf0Ix6kQUedgorILWFOFksltuBGQAUglUaAVmB1Om5zCCQXFeipE1GmYqOwi1lShZIkWebMJG6zCanY4bXIIBzRoqDFqoJQyOxwiygFMVHYRa6pQMhjKgNtwo1E1pt0g2pbswg6rsMIv/fBKr9nhEFEOYKKyi1hThZLBIz0IyAAMZaBApGe3DwBoQoNTOBFBhONUiKhTMFFJAtZUoV3lMpq7fazCCrtmNzucHYouksh6KkTUGZioJAFrqtCukErGun3yRHqUzN8RXeiwwIIaWcNxWUSUckxUkoQ1VaijvNILv/QjoiJpOS15W3bYYRM2hGQItbLW7HCIKMsxUUkS1lShjnIbbgRUABZhgV2kd7cP0DwuK0/ksZ4KEXUKJipJwpoq1BFKKbgMFxplI5zCCSGE2SG1i67pAIAao8bkSIgo2zFRSSLWVKFENcgG+JQPYRVGkVZkdjjt5hAOWGBBnVGHsAybHQ4RZTEmKknEmiqUqGiRN4uwQBe62eG0mxVW6EJHWIVRZbBKLRGlDhOVJIrWVIkgwpoqtFNKKdRF6uCTPjiEI2O6fYDmz7pTOCEhWU6fiFKKiUqS5Wv5sMLKmiq0Uz7lg0/5EEIIRSJzun2iHJoDAgLVBuupEFHqMFFJMtZUofaKFnnToMGhOcwOJ2HReipe6WVSTkQpw0QlBaI1Vcoj5WaHQmkqOtvHr/zQhZ5R3T5RVmGFQ3MgrMKcpkxEKZM2icrcuXMhhMAVV1xhdii7LFpTpS5SB4/hMTscSkMBFUCDbEBQBTOy2ycqT+RBQXFALRGlTFokKitXrsTjjz+O/fbbz+xQkqJlTZWNTRvNDofSkMtwIaACAP5YOycT6UKHgEBNhPVUiCg1TE9UGhsbceaZZ+LJJ59ESUmJ2eEkTbSmSnmknDVVqBWXdMEv/XAIBzRh+o9hh+lCh1VY0SAb0CAbzA6HiLKQ6b8hZ86ciQkTJmDcuHE73TcUCqG+vj7ulq4cwgFd6KypQq0EZRD1Rj0CKoBCkf5r++yIJrRYOf2t4a1mh0NEWcjUROWll17CN998gzlz5rRr/zlz5qC4uDh269evX4oj7DghBAq1QtZUoVZc0oWgap4lk6el/2rJO+MQDigoVEc4TZmIks+0RKW8vByzZs3CCy+8AIejfVMzZ8+eDa/XG7uVl6f3rJqWNVVCMmR2OJQmXEZzt48d9ozu9onShQ4NGmpkDbs5iSjprGad+Ouvv0Z1dTVGjhwZ22YYBpYvX46HHnoIoVAIFosl7jm6rkPXM6fMeLSmSqNsRFm4DHvre5sdEpmsSTXBa3jhUz501bqaHU5S6EKHTdgQkAG4pTtrXhcRpQfTEpVjjjkGa9asidt23nnnYe+998a1117bKknJVAVaARqMBmyJbGGiQnAZf3T75Gv5JkeTHNFy+h7lQYVRga5WJipElDymJSqFhYUYNmxY3Lb8/Hx07dq11fZMtm1NlS6WLmaHRCZyG274pR9WWGER2ZGMA81TrD3S0zxOJXMaPYkoA2R+B3maY00VigqrMDzSA5/yoVDL7Nk+24qW068z6mBIw+xwiCiLmNai0palS5eaHUJKFGgF8EgPyiPlGCFHQNOYH+Yij+FBQAYglUSBVmB2OEllgw12YUdIhVAlq9BH62N2SESUJfgXsxOwpgoBfxR5swkbrCKtviPssug4FQmJqgjL6RNR8jBR6QTRmioGDGwObzY7HDKBoQy4DTd8ypc1g2i3FV0BmuX0iSiZmKh0knwtHxZYUBGpYE2VHOSRzd0+hjJQILKr2yfKIRywwgq3dKNJNpkdDhFlCSYqnSRaUyWogigLl5kdDnUyl+FCQAZgFVbYNbvZ4aSEBRboQkdYhVFhVJgdDhFlCSYqnahAK4BSClsiW8wOhTqRVBIuw4VG1Yg8kfkl87en5TgVltMnomRhotKJtq2pQrnBK70IyAAiKpJ105K35dAcEBCoNpioEFFyMFHpRKypkptchgsBFYBFWGAX2dntE6ULHVZYm5cJkD6zwyGiLMBEpZMVaAUQECiPlHMBtxyglILbcKNRNsIpnBBCmB1SSlmEBQ7NAQMGKiIcp0JEu46JSidjTZXcUi/r4VM+RFQERVqR2eF0CqdwQkFxnAoRJQUTlU7Gmiq5xSWbZ/toQoMucmMRHIdwQIOGaqMaSimzwyGiDMdExQT5Wj40aKypkuWUUnBFXPBJHxzCkfXdPlF2YYdVWOGXftTLerPDIaIMx0TFBHZhR76Wj6AKYlNkk9nhUIo0qkb4lA9NaEKRyI1uHwDQhAancCKCCLZGtpodDhFluA4vOPLDDz9gy5YtaGqKr0B58skn73JQuaBAK0CD0YDN4c0YYh9idjiUAtEibwIiVl4+Vzg1J7zSi+pINfbR9zE7HCLKYAknKhs3bsQpp5yCNWvWQAgR64OONmsbBpd4b49ta6p0sXQxOyRKouhsH5/yQRd6znT7ROlChwYNNbIGUkquGE5EHZbwb49Zs2ZhwIABqK6uRl5eHtauXYvly5fjoIMOwtKlS1MQYnZiTZXs5ld+NMgGhFQop7p9ouywwy7sCMkQamWt2eEQUQZLOFFZsWIFbrvtNnTr1g2apkHTNBxxxBGYM2cOLr/88lTEmLVYUyV7uQ03AioAoLkbJNdEy+mzngoR7aqEExXDMFBY2FwGvFu3bti6tXmwXP/+/bFu3brkRpflWtZU2Wpw0GE2cUkX/NLfPFVX5Ga3R3RcTo1RY3IkRJTJEh6jMmzYMHz33XcYMGAADj30UNx9992w2+144oknMHDgwFTEmLWiNVVqjBpsCm9CX1tfs0OiJAjKIOqNegRUAN217maHYxqHcMACC+qMOkRkBFatw2P3iSiHJfxV74Ybboh1U9x2220oKyvDkUceiXfffRcPPPBA0gPMdqypkn1c0oWgCgIA8rTsXS15Z6ywQhc6wiqMSqPS7HCIKEMl/BVn/PjxsX8PGjQIP/30E1wuF0pKSnJuZkMyRGuqNMpGbIps4lTlLOAymrt97LDnbLcP8Mc4Fb/yoypSxRZDIuqQpPwWLS0tZZKyCwq0AiilWFI/CzSppuaVg5UPhVqh2eGYzqE5ICBQbXDdHyLqmIRbVE499dQdPv766693OJhcxZoq2cNl/NHtk6/lmxyN+XShwwILvNKLoAzmXOE7Itp1CbeoFBcXx26LFi2Cpmlx2yhxrKmSPdyGG37phw02WITF7HBMZxVWODQHwirMacpE1CEJt6jMmzcv9u9XX30Vd999N2f7JEGBVgCP9KA8Uo4RcgQreWagsArDIz3wKR+6aF3MDidtOIUTjWhElVGFARhgdjhElGH41zBNsKZK5vMYHgRkAFJJFGgFZoeTNhyieZxKTYT1VIgocUxU0oQQAoWiEAYMbApvMjsc6oBokTebsMEqWDMkShc6rMKKBtmABtlgdjhElGES/m3aslZKJBLB/Pnz0a1bt9g2ltHvuHxLPupkXaymiq7pZodE7RRRkdgihEVa7q3tsyOa0OAUTjSoBlSEK1CoczYUEbVfwonKvffeG/t3r1698Nxzz8XuCyGYqOwCG2ysqZKhvNKLgAzAUAbyBWf7bMspnKhHPaoiVRisDzY7HCLKIAknKmVlZamIg9Cc6BVoBWgwGrA5vJmJSgZxGS4EZABWYYVds5sdTtrRhQ4NGmpkDaSUHCxORO3W4d8WTU1NWLduHSKRSDLjyXnb1lSh9CeVhMtwoVE1Ik/kbsn8HdGFDpuwISADcEu32eEQUQZJOFHx+/04//zzkZeXh6FDh2LLli0AgMsuuwxz585NeoC5hjVVMk+02yeiIqxGux3RcvoGDFQYrKdCRO2XcKIye/ZsfPfdd1i6dCkcjj+qTI4bNw4LFixIanC5qkArgIBAeaQ8tgAkpS+X4UJABWARFtgFu322x6k5AQDVEZbTJ6L2S3iMyhtvvIEFCxbgsMMOi1vfZ+jQodiwYUNSg8tV29ZU6atxMbd0pZRq7vaRzd0+XPNq+6Ll9OuMOhjSgEVj5V4i2rmEW1RqamrQo0ePVtt9Ph9/SScJa6pkjnpZD7/yI6zC7PbZCRtssAs7QiqEGsnib0TUPgknKgcddBAWLVoUux9NTp566imMGjUqeZHluHxLPjRosZoqlJ5csnm2jwYNumDdmx2JjlORkFz3h4jaLeGunzvvvBMnnHACfvjhB0QiEdx///344Ycf8Pnnn2PZsmWpiDEnsaZK+lNKwRVxwSd9cGpOtii2g0NzABIsp09E7ZZwi8oRRxyBVatWIRKJYPjw4fjwww/Ro0cPrFixAgceeGAqYsxJ0ZoqSilsDm82OxxqQ6NqhE/5EEIIRYLVaNvDIRywwgq3dKNJNpkdDhFlgA4tSLLnnnviySefTHYstI1ta6p0sXQxOyRqIVrkTYPW3FJAO2WBBbrQEVABVBgV6K/1NzskIkpzSSsPGYlEcPTRR+Poo4/G8ccfn6zD5jTWVElfSqnY2j660Nnt006xcSpKcpoyEbVLwi0qBxxwQJu/lJVSWL16Nb755huWx06iAq0AHulBeaQcI+QIXts04Vd+NMgGhFQIPbTWs+Bo+xyaA0IKVBtMVIho5xJOVCZPntzm9nA4jNWrV2P//fff1ZiohZY1VSqMCuym7WZ2SATAbbgRkAEAfxQyo/bRhQ4rrPAaXvilH3kalx0gou1LOFG5+eab29weDAYxZ86cXQ6I4kVrqtSoGpSFy7CbjYlKOnBJF/zKD4dwQBNs5UqERVjg0BzNBQ0jWzHIPsjskIgojSXtNyz76FOHNVXSS1AGUW/UI6ACKBQs8tYRTuGEguI4FSLaKX4VzADRmipBFcSmyCazw8l5Ltm8tg8Adlt0kEM4oEFDtVENpZTZ4RBRGku46+fKK69sc7thGLscDLUtWlOlwWjA5vBmFn8zmctwwS/9sMPObp8Osgs7rMIKv/SjXtaj2FJsdkhElKYSTlS+/fbb7T521FFH7VIwtH2sqZIeQirUPAhU+dFV62p2OBlLExqcwgmv8mJrZCsTFSLaroQTlU8++SQVcdBORGuquJUbG5s2YqRzpNkh5SS34Y51++Rr+SZHk9mcwgkvvKiOVGMffR+zwyGiNMV26wxSoBVAQKA8Ug4ppdnh5KRoNVobbLAIi9nhZDRd06FBQ42s4eeZiLaLiUoG2bamCnWusArDK73wKR8KNc722VV22GEXdoRkCLWy1uxwiChNMVHJINGaKgYMlIXLzA4n50SLvEkl2e2TBNFy+gYMVBqVZodDRGmKiUqGYU0V87hk82wfm7DBKjq0nidtI7qYI+upENH2MFHJMKypYo6IisBjeOBTPhRoBWaHkzUcwgELLKgz6hCREbPDIaI0lPDXwgceeGCHj19++eUdDoZ2jjVVzOGRHgRkAIYykC/Y7ZMsVlihCx1BFUSlUYm+Wl+zQyKiNJNwonLFFVegb9++sFiaZzyUl5ejd+/esFqtEEIwUekErKnS+aLjU6zCCrtmNzucrBEdp+JXflRFqtDXxkSFiOJ1qKP9q6++Qo8ezUvbFxYWYtmyZRg4cGBSA6PtY02VziWVhMtwoVE1Ik+wZH6yOTQHIIFqg+NUiKi1hMeoWCyWuHL5hmFgxYoVHTr5o48+iv322w9FRUUoKirCqFGj8N5773XoWLmGNVU6j1d6EZABRFSE05JTQBc6rLDCK70IyqDZ4RBRmkk4Uenbty8+/vhjAMDnn38OKSWuvPJK/P3vf094cbG+ffti7ty5+Prrr/HVV1/h6KOPxqRJk7B27dpEw8o5rKnSeVxG8yKEFmGBXbDbJ9mswgqH5kBYhVER4WeZiOIlnKhcdNFFOPfcc7H33nvj6KOPxowZM/DVV19h8eLFOPbYYxM61kknnYQTTzwRe+21FwYPHow77rgDBQUF+OKLLxINK+ewpkrniHX7yOZuHyGE2SFlJadwQkGhyqgyOxQiSjMJj1G57rrrMHLkSHz33XcYMGAA/vznP0MIgU8//RSzZs3qcCCGYeCVV16Bz+fDqFGj2twnFAohFPqjdkh9fX2Hz5cN8i35qJN1sZoquqabHVLWaZAN8Cs/wiqM7pbuZoeTtRzCAQGBmkiN2aEQUZrp0GDa4447Dscdd1zcNl3X8dhjjyV8rDVr1mDUqFEIBoMoKCjAwoULse+++7a575w5c3Drrbd2JOSsFK2p0igbsSmyiVOVU8Alm9f20aBBF0wEU0UXOqzCigbZgAbZwLFARBRjesG3IUOGYNWqVfjvf/+LSy65BNOmTcMPP/zQ5r6zZ8+G1+uN3crLyzs52vQSramilMLm8Gazw8k6Sim4Ii74pA9OzclunxTShBYrp18R5jgVIvpDwi0qhmHg3nvvxcsvv4wtW7agqakp7nGXy5XQ8ex2OwYNGgQAOPDAA7Fy5Urcf//9ePzxx1vtq+s6dJ3faltiTZXUaVSN8CkfQgihVJSaHU7Wcwon6lGPqkgVBuuDzQ6HiNJEwi0qt956K/71r3/h9NNPh9frxZVXXolTTz0Vmqbhlltu2eWApJRx41Box6I1VcIIY2PTRrPDySou449un+iaNJQ6utChQUONrOGUeyKKSThReeGFF/Dkk0/iqquugtVqxdSpU/HUU0/hpptuSni2zuzZs7F8+XJs2rQJa9aswezZs7F06VKceeaZiYaV01hTJfmUUnAbbviUD7rQ2e3TCXShwyZsCMgA3NJtdjhElCYSTlQqKysxfPhwAEBBQQG8Xi8AYOLEiVi0aFFCx6qursY555yDIUOG4JhjjsHKlSvxwQcfJDzNOdexpkry+ZUfDbIBIRVCkSgyO5ycEC2nb8Dg55iIYhIeo9K3b19UVFRg9913x5577okPP/wQI0eOxMqVKxMeP/L0008nenpqQ7SmSo2qQVm4DLvZdjM7pIwXXdtHQMCpOc0OJ2c4NSc80tM8TZnD0YgIHWhROeWUU2KVaS+77DLceOON2GuvvXDOOedg+vTpSQ+Q2iffkg8NWqymCu0al3TBr/zN4yaE6ZPjcoYudFhgQa1RC0MaO38CEWW9hFtU5s6dG/v36aefjt133x0rVqzAXnvthZNOOimpwVH7saZK8gRkAPVGPQIqgO4ai7x1JhtssAs7QiqEGlmDXlovs0MiIpN1qOBbS6NGjdpuJVnqPNGaKg1GAzaHNzNR2QVu6UZABQAAeRpXS+5M0XEqARVARaQCvaxMVIhyXcKJyltvvbXDx08++eQOB0O7hjVVksNluOCXfthhZ7ePCRyaA5BgOX0iAtCBRGXy5Mmxfwsh4lZMFkLAMNivbJZoTRW3cmNjeCNGWkaaHVLGCakQvIYXfuVHV62r2eHkJF3osMIKt3SjSTbBrnHFaqJclvDXRSll7JaXl4f169fH7jNJMV+spkqYNVU6wm380e2Tr+WbHE1ussIKu7AjrMKcpkxE5q/1Q8nFmiq7JlqN1gYbLMJidjg5SQiBPJEHqSSqI9Vmh0NEJmOikmWiNVUMGCgLl5kdTkYJqzA80gOf8nH1XpM5NAeEEKg2mKgQ5bqEx6jU19fH/i2EQGNjY9y2oiJW8TRbviUfdbIuVlNF11g5qz2iRd6UUuz2MVl0nIrX8MIv/Zx9RZTDEk5UunTpElv3RCmFAw44IPZvDqZND6yp0jEu2dztYxVWWMUuz9ynXWARFjg0BxplI7ZGtmKQfZDZIRGRSRL+bfzJJ5+kIg5KolhNFcmaKu0VURF4jOZunyKNrYLpwCmcaEADqiPVTFSIcljCicqYMWNSEQclWZ7Ig03YUGewpkp7eKQHARmAoQzkC3b7pAOHcECDhhqjJtZiS0S5p0Pt2263G08//TR+/PFHAMC+++6L8847D6WlpUkNjjouVlNFsqZKe7gNN/zSD6uwsm5HmrALO6zCCp/0oV7Wo9hSbHZIRGSChGf9LF++HHvssQceeOABuN1uuN1uPPDAAxgwYACWL1+eihipg1hTpX0MZcBluOBTPuQJDtpMF5rQ4BRORBDB1shWs8MhIpMknKjMnDkTp59+OsrKyvD666/j9ddfx8aNG3HGGWdg5syZqYiROog1VdqnXtYjIAOIqAinJacZp3ACAOupEOWwhBOV9evX46qrroLF8kcxLIvFgiuvvBLr169PanC0a1hTpX1chgsBFYBFWGAX7PZJJ7qmN49TkTVsFSTKUQknKiNHjoyNTWnpxx9/xP7775+UoCh58i350KDFaqpQPKkkXIYLjbIReSKPAzbTjB122IUdIRlCnawzOxwiMkHCg2kvv/xyzJo1C+vXr8dhhx0GAPjiiy/w8MMPY+7cuVi9enVs3/322y95kVKH2GBDnpYHn/SxpkobGmQD/NKPsAqju6W72eHQNoQQcAongiqICqMC3a18j4hyTcKJytSpUwEA11xzTZuPRVdUZvG39CCEQKFWiEbZyJoqbXDJ37t9YIEuWME3HTk0ByB/H6fCt4go5yScqJSVcaxDpmFNlbYppeCKNHf7RNeWofTjEA5YYIHLcCEiI7BqrBpMlEsS/onv379/KuKgFGJNlbY1qkb4lA9NaEJX0dXscGg7rLA2j1NRIVQaleir9TU7JCLqRB3+avLDDz9gy5YtaGpqitt+8skn73JQlHz5Wj480oPycDlG2EdA07hwtstoXttHg9bcvUBpSQiBPJGHgAqgKlKFvjYmKkS5JOFEZePGjTjllFOwZs2a2HgUALFmc45LSU9O4YyrqbKbtpvZIZlKKRUr8qYLnd0+aS46TqXGqDE7FCLqZAl/rZ41axYGDBiA6upq5OXlYe3atVi+fDkOOuggLF26NAUhUjKwpko8v/KjUTYipEIoElyEMN3pQocVVnikB0EZNDscIupECScqK1aswG233YZu3bpB0zRomoYjjjgCc+bMweWXX56KGClJWFPlD9FuHwGBPI1l89OdVVjh0BwIqzAqIqyyTJRLEk5UDMNAYWFzmfFu3bph69bmNTj69++PdevWJTc6SqpoTZWgCmJTZJPZ4ZjKZbjgV352+2QQp3BCQaHKqDI7FCLqRAmPURk2bBi+++47DBgwAIceeijuvvtu2O12PPHEExg4cGAqYqQkaVlTZUt4S87WVAnIABpkAwIqgO4aC4hlCodwQECgJsJxKkS5JOFE5YYbboDP5wMA3HbbbZg4cSKOPPJIdO3aFQsWLEh6gJRc0ZoqtUZtztZUiRZ5A8BunwyiCx1WYUWDbECDbOACkkQ5IuFEZfz48bF/Dxo0CD/99BNcLhdKSkrYhJ4BWFMFcBtu+KUfdtihCU7TzhSa0OAUTjSoBlSEK1CoM1EhygVJ+S1dWlrKJCWD5Gv5EBD4Nfxrzq1IG1IheA0v/MrPb+QZKDZOJcJxKkS5IuEWlaOPPnqHjy9ZsqTDwVDniNZUaZANOVdTxW24Y90++Vq+ydFQonShQ4OGGlkDKSULFxLlgIQTlaVLl6Jv3744+eSTYbPZUhETpVi0pkqNqkFZuAy72XInUYlOS7bBBouwmB0OJUgXOmzChoAMwCM9KNVKzQ6JiFIs4URl4cKFeOKJJ/Dqq6/i7LPPxowZMzB48OBUxEYplG/JR52sQ0WkAk2yCXbNbnZIKRdWYXikBz7lQ4lWYnY41AFCCDiFEx7lQYVRgVIrExWibJdwu+mkSZOwaNEirFy5Enl5eRg3bhz+9Kc/4csvv0xFfJQiLWuqlEVyo1Kt23AjIANQSrHbJ4M5NScAoDpSbXIkRNQZOtzB269fP/ztb3/Dtddei2+++QYrVqxIZlyUYtGaKgoKW8JbzA6nU0S7fazCCqvo8HqcZDJd6LDAgjqjLucGgxPlog4lKl9++SUuuOACDBgwACtWrMDbb7+NWbNmJTs2SrFta6pks4iKxLp9CrQCs8OhXWCDDTZhQ1AFUS3ZqkKU7RL+WjlixAi4XC5Mnz4dX375Jbp27QoAqK+vBwAUFXGBt0yRSzVVPNKDgAzAUAbyBbt9MpkQAnmiuduyIlKBXtZeZodERCmUcIvK6tWr8euvv+K2227DoEGDUFJSgpKSEnTp0gUlJRygmGlypaZKtMibVVhzYuBwtnNoDgBgOX2iHJBwi8onn3ySijjIJLlQU8VQBlyGCz7lY2tKltCFDiuscEt3zsxaI8pVCScqY8aMSUUcZJJcqKlSL+sRkAFEVASFFlajzQZWWGEXdgRVEJVGJXbXdjc7JCJKkYQTleXLl+/w8aOOOqrDwZA5sr2mistoXoTQKqywCRYpzAbRcSp+6UdVpAq725ioEGWrhBOVsWPHxtb1UUrFPSaEgGEYyYmMOk20popP+lAWKcMQ+xCzQ0oaqSRchguNshF5Io9rUmURh+aAkALVBmf+EGWzhAfT7r///ujTpw9uvPFGrF+/Hm63O3ZzuVypiJFSLJtrqjTIBvilH2EV5rTkLBMdp1Iv6+GXfrPDIaIUSThR+fbbb/H666/jt99+w6GHHoq//vWvWLVqFYqLi1FcXJyKGKkTZGtNFZds7vaxwAJd6GaHQ0lkERY4NAciKoKtka1mh0NEKdKhgm8HH3wwnnzySWzcuBGjR4/GpEmTcN999yU5NOpM0ZoqYRXGxvBGs8NJCqUUXJHmbh+n5mS3TxZyCicUFMvpE2WxDpfQLy8vxz//+U/MnTsXI0eOxBFHHJHMuMgE2VZTpVE1wqd8aFJNKBSc7ZONdKFDg4Yag/VUiLJVwonKG2+8gRNPPBGHHHIIAoEAlixZgiVLluCggw5KRXzUibatqZLpomv7aEKLFQij7KILHVZhhU/64DW8ZodDRCmQ8KyfU089FX379sWf//xnRCIRPProo3GP/+tf/0pacNS5YjVVZObXVFFKxYq8OYSD3T5ZShManMIJr/Jia2Qrii0cJ0eUbRJOVI466igIIbB27dpWj/GPQebLlpoqfuVHo2xEUAXRU+tpdjiUQk7hhBdeVEeqsY++j9nhEFGSJZyoLF26NAVhULrIlpoqsW4faMjT8swOh1JI13RohoZaWQspJTStw0PviCgNJfwTPW/ePAQCgVTEQmkgW2qquAwX/MoPu7CzpS/L2WFvLqcvg6iTdWaHQ0RJlnCict1116Fnz544//zz8fnnn6ciJjJZy5oq9Ua92eEkLCADaJANCKgAikSR2eFQigkh4BROGDCyYhA4EcVLOFH57bff8Oyzz6K2thZjx47F3nvvjbvuuguVlZWpiI9M0LKmyobwBrPDSVi0yBsAdvvkiOisLtZTIco+CScqVqsVp5xyCt58802Ul5djxowZeOGFF7D77rvj5JNPxptvvpkVNThyXbSmSnm4POPeT7fhhl/6YYcdmuB4hVzgEA5YYIHLcCEiI2aHQ0RJtEu/xXv27IkjjjgCo0aNgqZpWLNmDaZNm4Y999yTg24zXMuaKpVG5rSWhVQIXsMLv/KjUGORt1xhhRV2YUeTauIihURZpkOJSlVVFf75z39i6NChGDt2LOrr6/HOO++grKwMv/32G6ZMmYJp06bt9Dhz5szBwQcfjMLCQvTo0QOTJ0/GunXrOhISJVm0poqhDJRFyswOp93chjvW7ZOv5ZscDXUWIQTyRB4kJCojmZNYE9HOJZyonHTSSejXrx/mz5+PGTNm4LfffsOLL76IcePGAQDy8/Nx1VVXoby8fKfHWrZsGWbOnIkvvvgCH330EcLhMI477jj4fL7EXwklXb4lH5rQsDW8FU2yyexw2sVluOCXfthgg0VYzA6HOlFsnApbVIiySsJ1VHr06IFly5Zh1KhR292ne/fuKCvb+bfw999/P+7+/Pnz0aNHD3z99dc46qijEg2NkqxlTZVNkU0YbB9sdkg7FFZheKQHfuVHiVZidjjUyXShwworPNKDkAxB17haNlE2SDhRefrpp3e6jxAC/fv3TzgYr7d5rY7S0tI2Hw+FQgiFQrH79fWZN3U2k0RrqjTKRmwOb077RMVtuBGQASil2O2Tg6zCCofmgE/6sDWyFQPsA8wOiYiSoN1dP0uWLMG+++7bZnLg9XoxdOhQfPrppx0OREqJK664AocffjiGDRvW5j5z5sxBcXFx7NavX78On4/aJ5NqqkSr0VqFFVaRcA5OWcApnFBQqDKqzA6FiJKk3YnKfffdhxkzZqCoqHUBreLiYlx00UW7tCDhzJkz8f333+Oll17a7j6zZ8+G1+uN3dozDoZ2TabUVImoCDzSg0bViAKtwOxwyCS60CEgUBOpMTsUIkqSdicq3333HY4//vjtPn7cccfh66+/7lAQl156Kd555x188skn6Nu373b303UdRUVFcTdKvUyoqeKRHgRkAFJJTkvOYQ7hgFVY0SAb0CAbzA6HiJKg3YlKVVUVbDbbdh+3Wq2oqUnsW4xSCpdeeikWLlyIJUuWYMAA9imno0yoqRKd7cNun9ymCe2PcvphltMnygbtTlR22203fP/999t9fPXq1ejdu3dCJ585cyaef/55/N///R8KCwtRWVmJyspKLnqYZtK9poqhDLgNN3zKh3zBQbS5LjpOheX0ibJDuxOVE088ETfeeCOCwWCrxwKBAG6++WZMnDgxoZM/+uij8Hq9GDt2LHr37h27LViwIKHjUOqlc00Vr/QiIAOIqAi7fQi60KFBQ7WsTtuuSiJqv3a3kd9www14/fXXMXjwYFx66aUYMmQIAOCnn37Cww8/DMMwcP311yd0cqVUYtGSadK5porLaF6E0CqssIntd09SbrALO2zChoAMwCM9KNXaLndARJmh3YlKz5498fnnn+OSSy7B7NmzY0mGEALjx4/Hww8/jJ49e6YsUDJXutZUkUrCbbjRKBuRJ/IghDA7JDJZdJyKR3lQYVSg1MpEhSiTJTTqsH///nj33Xfhdruxfv16KKWw1157oaSEVUBzwbY1VYos5s+6qpf18Es/wiqM7pbuZodDacKhOQADqI5UY6g+1OxwiGgXdGh6RElJCQ4++OBkx0JpLlpTxS3d2BDegAMsB5gdUqzbxwILdMGS6dTMIRywCAvqjDpIKaFpu7RQPBGZiD+9lJB0qqmilIp1+zg1J7t9KMYGG2zChpAKoVpy9g9RJmOiQglJp5oqDaoBPuVDk2pCoeBsH/qDEAJ5Ig8GDFRG0rP2DxG1DxMVSkg61VSJLkKoCa15TAJRC9HPBOupEGU2JiqUsHSoqaKUQl2kDj7lg0M42O1DrehChxVWuKU77Wr/EFH7MVGhhEVrqgRVEJsim0yJwa/88CkfgirIbh9qkxVW2IUdYRU2vZuSiDqOiQolLFpTRUFhS3iLKTG4DFdztw805Gl5psRA6S06TkUqiapIldnhEFEHMVGhDonWVKkxalBv1Hf6+V2GC37lh13Y2e1D2+XQmrsFqw2OUyHKVExUqEOiNVXCKoyN4Y2deu6ADKBBNsCv/CgS5hedo/SlCx0WWGKFAYko8zBRoQ6L1lTZEt7SqTVVXLK5yBu7fWhnLMICp+ZEREWwNbLV7HCIqAOYqFCHxdVUkZ03WNFtuOGXftiEDZrgR5h2zCmcUFCoidSYHQoRdQB/y1OHxdVUCXdOTZWQCsFreOFXfs72oXbRhQ4NGsepEGUoJiq0S2I1VSKdU1PFbbgRUIHmc2v5KT8fZT5d6LAKK3zSB6/hNTscIkoQExXaJbGaKrJzaqq4DBf80g877LAIS8rPR5lPExqcwokIOE6FKBMxUaFd0pk1VcIqDI/0wK/8KNAKUnouyi5O4QTAcvpEmYiJCu2yzqqpEl3bR0ExUaGE6FrzOJVaWWv6qt9ElBgmKrTLOqumSrQarRVWdvtQQuywwy7sCMog6mSd2eEQUQKYqFBSpLqmSkRF4JEeNKpGtqZQwoQQcAonDBioMCrMDoeIEsBEhZIi1TVVPNIDv/RDKYVCjdOSKXEOzQEArKdClGGYqFBSpLqmSrTbxyIssApr0o9P2c8hHLDAgjqjDhEZMTscImonJiqUNKmqqWIoA27DDZ/yIV+wdgp1jBVW2IUdTaqJxd+IMggTFUqaVNVU8Uov/NKPiIqw24c6TAiBPJEHCYnKSOct+UBEu4aJCiVNqmqquAwXgioIq7DCJmxJOy7lnug4FbaoEGUOJiqUVMmuqSKVhNtwo1E2Ik/kQQiRhCgpV+lChxVWeKQHIRkyOxwiagcmKpRUya6pUi/r4Zd+hFWY05Jpl1mFFQ7hQFiFWU6fKEMwUaGkS2ZNFZfhQkAFYIEFutCTFCHlMqfmhIJClVFldihE1A5MVCjpklVTRSkV6/Zxak52+1BS6EKHgECtUWt2KETUDkxUKOmSVVOlQTXAp3xoUk0oFJztQ8nhEA5YhRX1Rj0aZIPZ4RDRTjBRoZRoWVMlLMMdOkZ0EUJNaLHZGkS7ShManMKJCCKoCLOcPlG6Y6JCKdGypkpZJPFWFaUU6iJ18CkfHMLBbh9KKqdwAuA0ZaJMwESFUmJXa6r4lR8+5UNQBVEkilIQIeUyXejQoKHaqE7JIppElDxMVChl8kQerMLaoZoq0bV9NGhwas4URUi5yi7ssAkbAjIAj/SYHQ4R7QATFUoZi7CgUBR2qKaKy3DBp3ywCzu7fSjpouNUDBioMDhOhSidMVGhlIrWVCmPlLe7iT0gA2iQDQioALt9KGUcmgNQQHWE41SI0hkTFUopp3DCLuyoN+rbXVMlWuRNg4Y8LS/FEVKucggHLMKCOqOO41SI0hgTFUopIQSKRFFCNVVc0gW/9MMmbNAEP6KUGjbYYBM2hFQI1ZKtKkTpin8FKOUSqakSUiHUG/XwKz+7fSilhBDIE3kwYKAy0vEKykSUWkxUKOUSqakS7fYBmse3EKVStJBgTaTG5EiIaHuYqFDKJVJTxWU0d/vYYWe3D6WcLnRYYYVLutAkm8wOh4jawL8E1CnaU1OlSTXBK73wKz8KtIJOjpBykRVW2IUdYRVGpcHuH6J0xESFOkV7aqpE1/ZRUExUqFNEx6lISFRFqswOh4jawESFOs3OaqpEExUrrLAIiwkRUi5yaA4ICK77Q5SmmKhQp9lRTZWIisAjPWhUjWxNoU6lCx0WWFAv6+GXfrPDIaJtMFGhTrOjmipuww2/9EMphUKt0KQIKRdZhAVOzYmIiqAiwnL6ROmGiQp1qu3VVHHL5m4fi7DAKqwmRki5yCmcUFAsp0+UhpioUKdqq6aKoQy4DTd8ysfaKWQKXejQoHGcClEaYqJCnaqtmipe6YVf+hFRERQKdvtQ59OFDquwwid98Bpes8MhohaYqFCn27amistwIaiCsAorbMJmdniUgzShwSmciCCCrZGtZodDRC0wUaFO17KmyobwBrgNNxplI/JEHoQQZodHOcohmsvpc5wKUXphokKmiNZU2RzeDJ/0IazCnO1DpnJoDmjQUCtr26zzQ0TmYKJCpojWVPFJH+plPSywwC7sZodFOcwOO+zCjqAMok7WmR0OEf2OiQqZomVNlYAKwKk52e1DphJCwCmcMGBw3R+iNMJEhUwTranSpJpQJIrMDocIDo3jVIjSjamJyvLly3HSSSehT58+EELgjTfeMDMc6mR2YUdvS2+UaqXQNd3scIjgEA5YYEGdUYeIjJgdDhHB5ETF5/Nh//33x8MPP2xmGGSifEs+ulq7stuH0oIVVtiFHU2qicXfiNKEqbXKTzjhBJxwwglmhkBEFCOEQJ7IQ0AFUBmpRB9bH7NDIsp5GbWoSigUQigUit2vr683MRoiykYOzQFIsEWFKE1k1GDaOXPmoLi4OHbr16+f2SERUZbRhQ4rrPBID0IytPMnEFFKZVSiMnv2bHi93titvLzc7JCIKMtYhRUO4UBYhVEZ4TRlIrNlVNePruvQdc4OIaLUcmpONBqNqDQq0R/9zQ6HKKdlVIsKEVFn0IUOAYEao8bsUIhynqktKo2NjVi/fn3sfllZGVatWoXS0lLsvvvuJkZGRLlMFzqswop6ox4NsoHrUBGZyNQWla+++goHHHAADjjgAADAlVdeiQMOOAA33XSTmWERUY6zCAucwokIIqgIV5gdDlFOM7VFZezYsVBKmRkCEVGbnMKJetSj2qjGYAw2OxyinMUxKkREbdCFDg0aaowaSCnNDocoZzFRISJqg13YYRM2+KUfHukxOxyinMVEhYioDZrQ4BROGDBQYXCcCpFZmKgQEW2HQ3MACqiJcJoykVmYqBARbYdDOGARFtQatRynQmQSJipERNthgw02YUNIhVAtuUghkRmYqBARbYcQAnkiDwYMrvtDZBImKkREO+DQHAA4ToXILExUiIh2QBc6rLDCJV1okk1mh0OUc5ioEBHtgBVW2IUdYRVGpcHuH6LOxkSFiGgHouNUJCSqIlVmh0OUc5ioEBHthENzQECgxuA4FaLOxkSFiGgndKHDAgu80gu/9JsdDlFOYaJCRLQTFmGBQ3MgoiKoiLCcPlFnYqJCRNQOeSIPCgrVERZ+I+pMTFSIiNpBFzo0aKg2mKgQdSYmKkRE7aALHVZhhU/64DW8ZodDlDOYqBARtYMmNDiFExFEsDWy1exwiHIGExUionZyCJbTJ+psTFSIiNrJoTmgQUONrIGU0uxwiHICExUionayww6bsCEog6iTdWaHQ5QTmKgQEbVTtJy+AYPr/hB1EiYqREQJcGjN41RYT4WoczBRISJKQLScfp1Rh4iMmB0OUdZjokJElAAbbLALO5pUE4u/EXUCJipERAmIjlORkKiMcJwKUaoxUSEiSlB0nEqNwXoqRKnGRIWIKEG60GGFFW7pRkiGzA6HKKsxUSEiSpBVWOEQDoRVmN0/RCnGRIWIqAOcmhMKivVUiFKMiQoRUQfoQoeA4DgVohRjokJE1AG60GEVVtQb9fBJn9nhEGUtJipERB1gERY4hRMGDPwW/s3scIiyFhMVIqIOcormcSrs/iFKHavZARARZSpd6NCgodqohpQSmsbvfslmKAMhFUJIhRBUQQRVECEZQgQR5Gv5KNKKUKQVwSZsZodKKcJEhYiog+zCDpuwwS/98EovSrQSs0PKOEopRBBpTkBUCEEZ/CMpkUEEVACGMhBBBBEVQQQRhFUYTaoJFliQp+VBFzq6WLqg1FIaS1ysgn/esgXfSSKiDtKEBqdwwqM82GpsRYmViUpblFKtW0V+/3dABtCkmmJJiKEMhFW4ORlBE6SSUFAQENCEBk1psGk2OIQDTaoJLsMVW87AoTngFE44NAdKtBKUWEpQpBWhUCtk4pLB+M4REe0Ch+YADKAmUgPoZkdjHkMZcQlISIUQkiEEVAABFWhORFR8q0j0JiEhICCEgAYNFlhgEzYUi2LoaJ5dZRM2CCHaPHeTbEKjbIRP+eCSLkhDohLxiUupVoouli6xxMUiLJ18haijmKgQEe0Ch3DAIiyoNWqzepyKUgphhFt3z/w+ZiSWjPzeKhJBBE2qCWEVRkRF4ltFfk9GdKGjUCuMTfW2wLLdZGRH7JodpVopSlEKAAjJUCxx8UkflKFQISqakxbhgFNzxhKXYq0YBVoBNJGd71s2YKJCRLQLbLDBJmwIqRCqZTV6ab3MDqnDpJJoUk2tWkba6qKJto40qSaEEf6ji+b3VhENGmzChnwtH3bYY+N5OiMh0DUduqajK7oCAIIyiEbZCL/yo1E2AgZaJy6WUpRoJSiyFCFf5DNxSSNMVIiIdoEQAnkiDy7lQmWkEr2s6Z2obNtF07J1JKACCKtwc4vINgNXIyoCKSSEau6iscASS0byRB506LBpNlhh7VCrSCo5NEdsxWspJUIIxRKXBtkAGMDWyFY4hbP5pjnR1dI11lWUL/LT7jXlEiYqRES7yKE5AIm0qKcS7aKJdslsm5QEVbBVq0gY4bguGqC5oJ0GDVY0L8Bo1+zQhd7cKgItY/9wa5oGJ5qTEaA5cQkiCJ/0wad8qJf1EIaIJS4O4UCelodulm4othSjSCtCnsjL2NefiZioEBHtIl3osMIKl+FCk2yCXbOn9HxSybhZNNsmIiEVip/Su50ummiriFVYTemiSQeapiEPecjT8tAd3SGlRACBWIuLV3qhGRp+i/yGPJEHh+ZAvpaPrlrXWOLiFE4mLinERIWIaBdZYYVd2BFUQVQZVein9dvlY0ZUJD4R+b2LJiADCCIYawGJJiRxXTS/z6KBACy//9eyi8au2Ts8cDXbaZqGfOQjX8sH0Nzi4oc/1uLiiXigQcOv4tfm66npKNAK4hIXh3Dw2iYRExUiol0UHafiV35URirRz7bzRCXWRbPtDJrfk5LtddE0qSYYyojNoom2jFhhhVM4YdNsWdFFky40TUMBClCgFQBoTlx8aJ5N1KAa4I64Y4lLdCp0gVaAblo3FFmKUKwVQ9dyeN56EjBRISJKAofmgJAibpxKtIum1SyadnbRAIi1ikS7aAq1wlgXjVVYc6aLJl1omoZCFKJQKwTQnLg0qkY0ykbUq/pY4lIuymMtLsVaMUosJSjWilFkKYIumLgkgokKEVES6EKHBRZ4pRdrQmsQlmEEEF/ozIDRqosGaK5wG01G7MLOLpoMomkailCEIksRACAiI7H6LV7lhRExUI3q5vf193L/xZZilGqlsa4irlO0Y0xUiIiSwCIscGpONMpG/Bz6OVb4bNtCZ1ZY4dSc8QNX2UWTNayaFcUoRrGlGEBz4tKoGuGTPnikB4YyUBWpgi50rlPUTrwaRERJ0s3SDVDNY1acwskuGoJVs6ILuqCLpQuA5sSlQTXAL/3x6xT9XniO6xS1ltuvnogoiWzCht623maHQWnMqllRguZEBPh9naLfW1xcRvM6RRWogFNzbneBxVxbp4iJChERkUnsmh2lKEWp5Y91inzSh0bVCL/0Nycu25T73zZxyfbWOiYqREREaSK6TlHLBRYbZMNO1ynqonVBkaUIBSL7FlhkokJERJSmookL8Mc6RdHicztap6jYUoxirTgr1iliokJERJQBWq5T1A3dWi2wGF2nKFbu//d1ilousJiJ6xSlRaLy8MMP4x//+AcqKyux//7748EHH8QhhxxidlhERERpq60FFrddpygucdF+X2BR65ZR6xSZnqgsWLAAV155JR577DEceuihuO+++zB+/HisW7cOPXr0MDs8IiKijNDWOkXRxKXlOkW/id8yap0ioZRSZgZw6KGH4uCDD8ZDDz0EoPnC9uvXD5dddhmuu+66HT63vr4excXF8Hq9KCoqSmpcv4Z/xXeh79DV0jWpxyUiIjJDy3WKAqq5anK0GnLLdYriEhfNkZJYEvn7bWqLSlNTE77++mvMnj07tk3TNIwbNw4rVqwwMTIiIqLs0tY6RT7la16nSNbDLVuvU1SkFaGXpRd2t+9uWtymJiq1tbUwDAM9e/aM296zZ0/89NNPrfYPhUIIhUKx+16vF0BzZpZsDeEGNIYa0SSakn5sIiKidOKEM9ZV5JEeuOBqXvoBGlxWF7rkd0nq+aJ/t9vTqWP6GJVEzJkzB7feemur7f367XxJdSIiIkovDQ0NKC4u3uE+piYq3bp1g8ViQVVVVdz2qqoq9OrVq9X+s2fPxpVXXhm7L6WEy+VC165dkz74p76+Hv369UN5eXnSx7/QH3idOwevc+fgde4cvM6dJ1XXWimFhoYG9OnTZ6f7mpqo2O12HHjggfj4448xefJkAM3Jx8cff4xLL7201f66rkPX9bhtXbp0SWmMRUVF/EHoBLzOnYPXuXPwOncOXufOk4prvbOWlCjTu36uvPJKTJs2DQcddBAOOeQQ3HffffD5fDjvvPPMDo2IiIhMZnqicvrpp6OmpgY33XQTKisrMWLECLz//vutBtgSERFR7jE9UQGASy+9tM2uHjPpuo6bb765VVcTJRevc+fgde4cvM6dg9e586TDtTa94BsRERHR9mTXWtBERESUVZioEBERUdpiokJERERpi4kKERERpa2cTFSWL1+Ok046CX369IEQAm+88cZOn7N06VKMHDkSuq5j0KBBmD9/fsrjzHSJXuelS5dCCNHqVllZ2TkBZ6g5c+bg4IMPRmFhIXr06IHJkydj3bp1O33eK6+8gr333hsOhwPDhw/Hu+++2wnRZq6OXOf58+e3+jw7HKlZjTabPProo9hvv/1iRcZGjRqF9957b4fP4ec5cYleZ7M+zzmZqPh8Puy///54+OGH27V/WVkZJkyYgD/96U9YtWoVrrjiClxwwQX44IMPUhxpZkv0OketW7cOFRUVsVuPHj1SFGF2WLZsGWbOnIkvvvgCH330EcLhMI477jj4fL7tPufzzz/H1KlTcf755+Pbb7/F5MmTMXnyZHz//fedGHlm6ch1Bporerb8PG/evLmTIs5cffv2xdy5c/H111/jq6++wtFHH41JkyZh7dq1be7Pz3PHJHqdAZM+zyrHAVALFy7c4T7XXHONGjp0aNy2008/XY0fPz6FkWWX9lznTz75RAFQbre7U2LKVtXV1QqAWrZs2Xb3mTJlipowYULctkMPPVRddNFFqQ4va7TnOs+bN08VFxd3XlBZrKSkRD311FNtPsbPc/Ls6Dqb9XnOyRaVRK1YsQLjxo2L2zZ+/HisWLHCpIiy24gRI9C7d28ce+yx+Oyzz8wOJ+N4vV4AQGlp6Xb34Wd617XnOgNAY2Mj+vfvj379+u302yq1ZhgGXnrpJfh8PowaNarNffh53nXtuc6AOZ9nJirtUFlZ2aqkf8+ePVFfX49AIGBSVNmnd+/eeOyxx/Daa6/htddeQ79+/TB27Fh88803ZoeWMaSUuOKKK3D44Ydj2LBh291ve59pjgdqn/Ze5yFDhuCZZ57Bm2++ieeffx5SSowePRq//vprJ0abmdasWYOCggLouo6LL74YCxcuxL777tvmvvw8d1wi19msz3NalNAnApp/CIYMGRK7P3r0aGzYsAH33nsvnnvuORMjyxwzZ87E999/j//85z9mh5LV2nudR40aFfftdPTo0dhnn33w+OOP4/bbb091mBltyJAhWLVqFbxeL1599VVMmzYNy5Yt2+4fUeqYRK6zWZ9nJirt0KtXL1RVVcVtq6qqQlFREZxOp0lR5YZDDjmEf3Tb6dJLL8U777yD5cuXo2/fvjvcd3uf6V69eqUyxKyQyHXels1mwwEHHID169enKLrsYbfbMWjQIADAgQceiJUrV+L+++/H448/3mpffp47LpHrvK3O+jyz66cdRo0ahY8//jhu20cffbTDfjxKjlWrVqF3795mh5HWlFK49NJLsXDhQixZsgQDBgzY6XP4mU5cR67ztgzDwJo1a/iZ7gApJUKhUJuP8fOcPDu6ztvqtM9zpw/fTQMNDQ3q22+/Vd9++60CoP71r3+pb7/9Vm3evFkppdR1112nzj777Nj+GzduVHl5eepvf/ub+vHHH9XDDz+sLBaLev/99816CRkh0et87733qjfeeEP98ssvas2aNWrWrFlK0zS1ePFis15CRrjkkktUcXGxWrp0qaqoqIjd/H5/bJ+zzz5bXXfddbH7n332mbJareqf//yn+vHHH9XNN9+sbDabWrNmjRkvISN05Drfeuut6oMPPlAbNmxQX3/9tTrjjDOUw+FQa9euNeMlZIzrrrtOLVu2TJWVlanVq1er6667Tgkh1IcffqiU4uc5WRK9zmZ9nnMyUYlOg932Nm3aNKWUUtOmTVNjxoxp9ZwRI0You92uBg4cqObNm9fpcWeaRK/zXXfdpfbcc0/lcDhUaWmpGjt2rFqyZIk5wWeQtq4xgLjP6JgxY2LXPerll19WgwcPVna7XQ0dOlQtWrSocwPPMB25zldccYXafffdld1uVz179lQnnnii+uabbzo/+Awzffp01b9/f2W321X37t3VMcccE/vjqRQ/z8mS6HU26/MslFIqtW02RERERB3DMSpERESUtpioEBERUdpiokJERERpi4kKERERpS0mKkRERJS2mKgQERFR2mKiQkRERGmLiQoRURp7++23MWPGDEgpsWjRIvzlL38xOySiTsVEhchk5557LiZPnhy3raamBsOGDcOhhx4Kr9drTmCUFsaNG4dVq1ZB13X8z//8Dy677DKzQyLqVFw9mSjN1NTU4Oijj4bT6cSHH36I4uJis0MiEzmdTnz55ZeorKxEaWkpdF03OySiTsUWFaI0Ultbi2OOOQa6ruOjjz6KS1K2bNmCSZMmoaCgAEVFRZgyZUqrpe03bdoEIUSrm8fjAQDccsstGDFiRGz/pqYmDBo0KG6ftlp4hBB44403YvfLy8sxZcoUdOnSBaWlpZg0aRI2bdoU95xnnnkGQ4cOha7r6N27Ny699FIAwB577NFmjEIIzJ8/P3a+6K2oqAjHHnssNmzYEDu22+3GOeecg5KSEuTl5eGEE07AL7/8st3rumTJEuy///5wOp3o0aMHLrjggtjrXbp06XbjEUIAAOrq6jB16lTstttuyMvLw/Dhw/Hiiy/Gji+lxOTJk3HsscciHA4DAObPn48uXbrE9vn8889RVFSEDz74oN3XMfpeCCHQu3dvNDY2oqSkJO64RNmOiQpRmqirq8O4ceNgtVrx0Ucfxf0xklJi0qRJcLlcWLZsGT766CNs3LgRp59+etwxokt3LV68GBUVFXjttdd2eM6HHnqoVbKzM+FwGOPHj0dhYSE+/fRTfPbZZygoKMDxxx+PpqYmAMCjjz6KmTNn4sILL8SaNWvw1ltvYdCgQQCAlStXoqKiAhUVFejbty/uu+++2P2Wr2fevHmoqKjA8uXLUV1djb///e+xx84991x89dVXeOutt7BixQoopXDiiSfGkoRt6bqOuXPn4ocffsAbb7yBn3/+GSeeeCKUUhg9enTs/NHrFb1fUVEBAAgGgzjwwAOxaNEifP/997jwwgtx9tln48svvwQAaJqGF198EY2Njbjgggtanf/nn3/GySefjAceeADjx49v93Xc1q233opIJJLQ+0WU8VK+7CER7dC0adPUUUcdpUaMGKFsNps67LDDVCQSidvnww8/VBaLRW3ZsiW2be3atQqA+vLLL2Pb1q1bpwCo77//Xin1xwrWbrdbKaXUzTffrPbff3+llFJ1dXWqpKRE3X777XH7XHzxxeq4446LOz8AtXDhQqWUUs8995waMmSIklLGHg+FQsrpdKoPPvhAKaVUnz591PXXX7/T196/f/82VyJveT6Px6MOP/xwNWPGDKWUUj///LMCoD777LPY/rW1tcrpdKqXX355p+dUSqmamhql67r66KOP4rZHr1d7TJgwQV111VWtjrvXXnupv//972revHmquLhYVVZWqgEDBqhbb701bt/2XMdp06apSZMmKaWa39v8/Hx14403quLi4nbFSJQN2KJClAaWL18OKSVWrVqF9evX4+677457/Mcff0S/fv3Qr1+/2LZ9990XXbp0wY8//hjbVl9fDwDIz8/f6Tlvu+02/OlPf8IRRxwRt33YsGH44osvUFZW1ubzvvvuO6xfvx6FhYUoKChAQUEBSktLEQwGsWHDBlRXV2Pr1q045phj2v362zJ16lQUFBSgpKQEDQ0NmDNnDoDma2G1WnHooYfG9u3atSuGDBkSdy22dfHFF8fi3WOPPdDU1IRvv/22XbEYhoHbb78dw4cPR2lpKQoKCvDBBx9gy5Ytcft169YN++yzD+68807Mnz8fkUgEEyZMQFlZGY488si4fXd2Hbd1zTXX4KKLLsLAgQPbFTNRtuBgWqI0MHDgQHz88cfo1q0bHnnkEZx11lmYMGEC9ttvv4SOs3XrVmiahl69eu1wv19++QVPPfUUVq1ahV9//TXusenTp2PhwoUYOHBgmwlPY2MjDjzwQLzwwgutHuvevTs0LTnff+69916MGzcOHo8H119/Pc4991y8/fbbHT7ebbfdhquvvjp2f/To0XA6ne167j/+8Q/cf//9uO+++zB8+HDk5+fjiiuuaNVF8/rrr+M///kPFi1ahClTpsDn86FXr16YO3cuLr74YqxevTo2GHZn17GlZcuW4dNPP8W8efPw5ptvJvrSiTIaW1SI0sDw4cPRrVs3AMBpp52GU089Feecc07sD+E+++yD8vJylJeXx57zww8/wOPxYN99941tW7lyJfbee284HI4dnu/aa6/FBRdcEBs30pLT6cTixYtRWVmJVatWYdWqVXGPjxw5Er/88gt69OiBQYMGxd2Ki4tRWFiIPfbYAx9//HFHLwcAoFevXhg0aBAOOuggXHbZZVi0aBHC4TD22WcfRCIR/Pe//43tW1dXh3Xr1sVdi221jDccDqOmpgbDhw9vVyyfffYZJk2ahLPOOgv7778/Bg4ciJ9//jlun/r6elx22WX45z//iRNPPBG333478vLysGDBAlx99dXIz8/H//t//y+2/86uY5RSCldddRVuvPFGlJSUtPfyEWUNJipEaejhhx9GdXU1br31VgDNtTSGDx+OM888E9988w2+/PJLnHPOORgzZgwOOuggNDU14bnnnsO//vUvnHfeeTs89vr167F06VLcdNNNO9yvZ8+esT+cLZ155pno1q0bJk2ahE8//RRlZWVYunQpLr/88ljrzC233IJ77rkHDzzwAH755Rd88803ePDBBxO6Bh6PB5WVlVi3bh2efvppDBw4EDabDXvttRcmTZqEGTNm4D//+Q++++47nHXWWdhtt90wadKkNo+1ePFiLFy4EBs3bsTixYsxZcoUHHXUURgzZky7Ytlrr73w0Ucf4fPPP8ePP/6Iiy66qNUg5Ouuuw5DhgyJXf+SkhLYbDbk5+fDYrHgySefxD333IMffvih3dcRAD7++GN4vV7MnDkzoetHlC2YqBClodLSUjz55JO466678N///hdCCLz55psoKSnBUUcdhXHjxmHgwIFYsGABAGDNmjW45ZZbcOONN+LKK6/c4bF9Ph+uv/56lJaWdii2vLw8LF++HLvvvjtOPfVU7LPPPjj//PMRDAZRVFQEAJg2bRruu+8+PPLIIxg6dCgmTpy4w+nDbTnvvPPQu3dvHHzwwXC73Xj11Vdjj82bNw8HHnggJk6ciFGjRkEphXfffRc2m63NY1mtVtx6660YOnQopkyZggMOOGCnM6JauuGGGzBy5EiMHz8eY8eORa9eveKmcK9YsQLPPvssHn/88e0e48ADD8Qll1yCCy+8EEqpdl1HoPn9mjt37nZfG1G2E0r9Pp+RiIiIKM2wRYWIiIjSFhMVIiIiSltMVIiIiChtMVEhIiKitMVEhYiIiNIWExUiIiJKW0xUiIiIKG0xUSEiIqK0xUSFiIiI0hYTFSIiIkpbTFSIiIgobTFRISIiorT1/wGs5ye64HcoXQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwZUlEQVR4nOzdeXycZbk//s+zzj6TyWRv0zQtbWlDFwpUKbJoQSwguFFFPLKc4/EoKOpPj3L0K6BiD8d9O7ieUsGtKogiClg2KUuhtKWENt3SJE2zZ/blWe/fH3fnaSZbkzTtJOn1fr3ygkwmk3smaZ4r930tAmOMgRBCCCFkhhGLvQBCCCGEkJOBghxCCCGEzEgU5BBCCCFkRqIghxBCCCEzEgU5hBBCCJmRKMghhBBCyIxEQQ4hhBBCZiQKcgghhBAyI1GQQwghhJAZiYIcQgghhMxIFOTMcH/4wx8gCMKwb2eddVaxl0fIlHLjjTfC7/eP+HFBEHDrrbeewhVNPffdd9+Iv1PodwuZauRiL4CcGv/1X/+FxYsXO+/ffffdRVwNIWS6+8pXvoL6+voht9PvFjKVUJBzmrjssstwySWXOO///Oc/R29vb/EWRAiZ1tauXYtzzz13yO30u4VMJXRcNcPpug4AEMXjf6vz29CHDh1ybrNtG8uWLYMgCLjvvvuc21977TXceOONmDdvHtxuN6qqqnDzzTejr6+v4DHvvPPOYbezZflYfH3JJZfgrLPOwrZt27B69Wp4PB7U19fjxz/+8ZDn8uUvfxnnnHMOQqEQfD4fLrzwQjz11FMF9zt06JDzdf70pz8VfCyXyyEcDkMQBHzzm98css6KigoYhlHwOb/5zW+cxxv4y/vhhx/GlVdeiZqaGrhcLsyfPx9f/epXYVnWcV/r/Nfbs2cP1q1bh2AwiEgkgttuuw25XK7gvhs2bMDb3vY2VFRUwOVyYcmSJbj33nuHfdy//e1vuPjiixEIBBAMBnHeeefh17/+dcF9XnrpJVxxxRUIh8Pw+XxYtmwZvve97xXcZ8+ePXjf+96H0tJSuN1unHvuufjzn/885Ott374d73jHO1BeXl7w/b3qqquc++R/rl555ZWCz+3t7YUgCLjzzjuHvC4DpVIpVFVVQRAEPP300wUfu/fee3HWWWfB6/UWfP0//OEPzn0ymQz27NlzUi+8f/vb33DhhRfC5/MhEAjgyiuvRGNjY8F9RjoKyx8pD3xu//znP3Httddizpw5cLlcqK2txac//Wlks9lR1/HKK69AEARs3LhxyMcee+wxCIKARx55BACQTCbxqU99CnPnzoXL5UJFRQUuu+wyvPrqqxN4BY5vpGOugX98AcDBgwdx7bXXorS0FF6vF29+85vx17/+teA+Tz/99JDvMwD4/X7ceOONBbfdeuutQ36mxvr7K++SSy4Zdu0Df3YBOs6cimgnZ4bLBzkul2tCn3///fdj165dQ25/4okncPDgQdx0002oqqpCY2MjfvrTn6KxsREvvvjikF8q9957b8Ev+MFBVzQaxRVXXIF169bhuuuuw6ZNm/Cxj30Mqqri5ptvBgAkEgn8/Oc/x3XXXYePfOQjSCaT+MUvfoHLL78cW7duxYoVKwoe0+12Y8OGDXjXu97l3Pbggw8OCSIGSiaTeOSRR/Dud7/buW3Dhg1wu91DPu++++6D3+/HZz7zGfj9fjz55JP48pe/jEQigW984xsjfo2B1q1bh7lz52L9+vV48cUX8f3vfx/RaBS//OUvC167hoYGXH311ZBlGX/5y1/w8Y9/HLZt45ZbbilYz80334yGhgbcfvvtKCkpwfbt2/H3v/8dH/zgBwHw79tVV12F6upq3HbbbaiqqsLu3bvxyCOP4LbbbgMANDY24oILLsCsWbPwhS98AT6fD5s2bcK73vUu/PGPf3Rem3g8jrVr14Ixhs985jOora0FAHz6058e03Mfq29961vo6uoacvvvfvc7fPzjH8cll1yCT3ziE/D5fNi9eze+/vWvF9xv69ateOtb34o77rhjyEVpMtx///244YYbcPnll+Oee+5BJpPBvffei7e85S3Yvn075s6dO+7H/P3vf49MJoOPfexjiEQi2Lp1K37wgx/g8OHD+P3vfz/i55177rmYN28eNm3ahBtuuKHgY7/73e8QDodx+eWXAwD+4z/+A3/4wx9w6623YsmSJejr68Nzzz2H3bt3Y+XKleNe81h95zvfQVlZGYChR1tdXV1YvXo1MpkMPvnJTyISiWDjxo24+uqr8Yc//KHg3+WJGO/vLwCYPXs21q9fD4AH3h/72McmZS3kJGNkRvvud7/LALCdO3cW3H7xxRezhoaGgts2bNjAALDm5mbGGGO5XI7NmTOHrV27lgFgGzZscO6byWSGfK3f/OY3DAB79tlnndvuuOMOBoD19PSMuMaLL76YAWDf+ta3nNs0TWMrVqxgFRUVTNd1xhhjpmkyTdMKPjcajbLKykp28803O7c1NzczAOy6665jsiyzzs5O52Nr1qxhH/zgBxkA9o1vfGPIOq+77jp21VVXObe3tLQwURTZddddN+R5DPcafPSjH2Ver5flcrkRn+/Ar3f11VcX3P7xj398yPdruK9z+eWXs3nz5jnvx2IxFggE2Jve9CaWzWYL7mvbNmOMv3719fWsrq6ORaPRYe/DGH+Nli5dWvAcbNtmq1evZgsWLHBue+yxxxgA9pvf/Kbgserq6tiVV17pvJ//uXr55ZcL7tfT08MAsDvuuGPI65LX3d3NAoGA8zP41FNPOR+77rrrWElJScHzfeqppxgA9vvf/37IbQO/zkhuuOEG5vP5Rvw4AHbLLbc47yeTSVZSUsI+8pGPFNyvs7OThUKhgttHeuzf//73Q57bcN/z9evXM0EQWEtLy6jP4fbbb2eKorD+/n7nNk3TWElJScG/k1AoVPBcxmqk72fecL9bGGPsZz/7GQNQsP6LL76YXXzxxc77n/rUpxgA9s9//tO5LZlMsvr6ejZ37lxmWRZjbPjvM2OM+Xw+dsMNNxTcdsstt7DBl7qx/v7KW716NTvrrLOc94f72WVs6M8HKT46rprh8tuv5eXl4/7cH/3oR+jr68Mdd9wx5GMej8f5/1wuh97eXrz5zW8GgAltd8uyjI9+9KPO+6qq4qMf/Si6u7uxbds2AIAkSVBVFQA/Ruvv74dpmjj33HOH/ZorV65EQ0MD7r//fgBAS0sLnnrqqSHb2QPdfPPN+Pvf/47Ozk4AwMaNG3H++edj4cKFQ+478DVIJpPo7e3FhRde6ByPjMXAnRgA+MQnPgEAePTRR4f9OvF4HL29vbj44otx8OBBxONxAPwv02QyiS984Qtwu90Fj5n/q3T79u1obm7Gpz71KZSUlAx7n/7+fjz55JNYt26d85x6e3vR19eHyy+/HPv27UN7e7vznAEgEomM6bnm155/6+/vP+7nfPWrX0UoFMInP/nJIR9LJpPwer1Dnu9gl1xyCRhjJ2UX54knnkAsFsN1111X8NwkScKb3vSmIUepAAru19vb67yOAw38nqfTafT29mL16tVgjGH79u2jrun9738/DMPAgw8+6Nz2+OOPIxaL4f3vf79zW0lJCV566SUcOXJkIk993Mayq/zoo49i1apVeMtb3uLc5vf78e///u84dOgQ3njjjUlZy3h/f+VyueP+nA1+vL6+Pti2PSnrJRM3Y4KcZ599Fu985ztRU1MzbC7GWDDG8M1vfhMLFy6Ey+XCrFmzpn2lQEtLC2RZHneQE4/H8fWvfx2f+cxnUFlZOeTj/f39uO2221BZWQmPx4Py8nKn0iJ/4R2Pmpoa+Hy+gtvygcXAHKGNGzdi2bJlcLvdiEQiKC8vx1//+tcRv+ZNN92EDRs2AODHOatXr8aCBQtGXMeKFStw1lln4Ze//CUYY7jvvvtw0003DXvfxsZGvPvd70YoFEIwGER5eTk+9KEPARj7azB4LfPnz4coigXPecuWLbj00kvh8/lQUlKC8vJy/Nd//VfB1zlw4AAAjFq6O5b77N+/H4wx/L//9/9QXl5e8JYPdru7uwHwoxFFUXDnnXdi+/btzkV7pF/sl156acHjLVq0aLSXBs3NzfjJT36Cu+66a9gLzPnnn48jR47gzjvvRGtrK3p7eyf0s3ci9u3bBwB429veNuT1evzxx53XKi+dTg+5X/44dqDW1lbceOONKC0thd/vR3l5OS6++GIAx//ZWr58Oc4880z87ne/c2773e9+h7KyMrztbW9zbvuf//kfvP7666itrcWqVatw55134uDBgxN+LY4nFosBwKgl+i0tLcP+XOQrQ1taWiZlLeP9/dXb24tQKDSmx/7FL36B8vJylJWVwePx4KKLLhqSj0ZOnRmTk5NOp7F8+XLcfPPNeM973jOhx7jtttvw+OOP45vf/CaWLl2K/v7+Mf21OZU1NTVh3rx5BYm+Y3HPPfdAFEV87nOfGzYZb926dXj++efxuc99DitWrIDf74dt23jHO95x0v56eeCBB3DjjTfiXe96Fz73uc+hoqICkiRh/fr1zgV8sA996EP4z//8T7z44ovYuHEjvvSlLx3369x888343//9X6xatQqdnZ1Yt24dvvWtbxXcJxaL4eKLL0YwGMRXvvIVzJ8/H263G6+++io+//nPT/g1GJwLcODAAaxZswZnnnkmvv3tb6O2thaqquLRRx/Fd77znUl/rfOP99nPftbJ3RjsjDPOAADU1dVhw4YNuO2224bkcCxbtmzI5/3oRz8q2BFLJBJ473vfO+JavvjFL2LBggW44YYb8M9//nPIxz/96U+jqakJX/3qV3HXXXcd/8mdBPnX6/7770dVVdWQjw/+d+d2u/GXv/yl4LZ//vOf+MpXvuK8b1kWLrvsMvT39+Pzn/88zjzzTPh8PrS3t+PGG28c0/f8/e9/P+6++2709vYiEAjgz3/+M6677rqC9axbtw4XXnghHnroITz++OP4xje+gXvuuQcPPvgg1q5dO67XYSw6Ozvh9/uH/DFTDOP5/aXrOjo6OnDZZZeN6bGvueYa3HrrrWCMobm5GV/5yldw1VVXYd++fQgEAifj6ZBRzJggZ+3ataP+w9Q0DV/84hfxm9/8BrFYDGeddRbuueceJ7N/9+7duPfee/H66687f0kM1wNiOtE0DTt27ChIvB2LI0eO4Hvf+x7Wr1+PQCAwJMiJRqPYvHkz7rrrLnz5y192bs//VTsRR44cQTqdLvgFuHfvXgBwEjf/8Ic/YN68eXjwwQcLgoHhjtPyIpEIrr76aufoa926dcetsrn++uvxuc99Drfddhve9773DfuL6emnn0ZfXx8efPBBXHTRRc7tzc3NY3q+efv27Sv4Odu/fz9s23ae81/+8hdomoY///nPmDNnjnO/wccg8+fPBwC8/vrrThAy2MD7XHrppcPeZ968eQAARVFGvM9A119/PVpbW3HXXXfh/vvvRzgcdnazBlu1alVByfFo34ft27fjt7/9Lf70pz9BkqRh7+PxePCzn/0M27dvRygUwh133IGdO3fis5/97HHXPVnyr2lFRcWYXi9JkobcL7/Dkbdr1y7s3bsXGzduxIc//GHn9ieeeGLM63r/+9+Pu+66C3/84x9RWVmJRCKBD3zgA0PuV11djY9//OP4+Mc/ju7ubqxcuRJ33333SQly3njjjYJeXcOpq6tDU1PTkNvzx791dXUnvI7x/v7auXMnDMMYtlx+OLNnzy74Hvv9flx//fXYvn17we8KcmrMmOOq47n11lvxwgsv4Le//S1ee+01XHvttXjHO97h/GD/5S9/wbx58/DII4+gvr4ec+fOxb/9279N652cX//619A0DWvWrBnX5911112orKzEf/zHfwz78fxFhzFWcPt3v/vdCa0TAEzTxE9+8hPnfV3X8ZOf/ATl5eU455xzRvy6L730El544YVRH/vmm292vuejbZXnlZaW4pprrsFrr7027FHCSGvRdR3/+7//e9zHH+hHP/pRwfs/+MEPAMC5yAz3deLxuHMEl/f2t78dgUAA69evH1IFlv/clStXor6+Ht/97neHXFjz96moqMAll1yCn/zkJ+jo6Biy3p6enoL3X331Vdxxxx347//+b1x77bW49NJLx5y7MJovfOELuOCCC3D11VePer/bb78dra2teOCBB3DppZc6PysDncwS8ssvvxzBYBBf//rXh7QeAIa+XmMx3PecMTakzH80ixcvxtKlS/G73/0Ov/vd71BdXV1wgbUsa8ixTEVFBWpqaqBp2rjXfDxtbW3YsmVLwXHZcK644gps3bq14N90Op3GT3/6U8ydOxdLliw54bWM9/fX73//e0iSVNAWYTzyO0MjBevk5JoxOzmjaW1txYYNG9Da2oqamhoAfDv+73//OzZs2ICvf/3rOHjwIFpaWvD73/8ev/zlL2FZFj796U/jfe97H5588skiP4PxSafT+MEPfoCvfOUrkCQJjDE88MADBffp6upCKpXCAw88gMsuu6wg7+bxxx/Hr371KyfJd7BgMIiLLroI//M//wPDMDBr1iw8/vjj497FGKimpgb33HMPDh06hIULF+J3v/sdduzYgZ/+9KdQFAUAcNVVV+HBBx/Eu9/9blx55ZVobm7Gj3/8YyxZsgSpVGrEx37HO96Bnp6eMQU4effddx9+9KMfOaWug61evRrhcBg33HADPvnJT0IQBNx///1DfnEeT3NzM66++mq84x3vwAsvvIAHHngAH/zgB7F8+XIAPHhRVRXvfOc78dGPfhSpVAo/+9nPUFFRURCEBINBfOc738G//du/4bzzzsMHP/hBhMNh7Ny5E5lMBhs3boQoirj33nvxzne+EytWrMBNN92E6upq7NmzB42NjXjssccA8MDrLW95C5YuXYqPfOQjmDdvHrq6uvDCCy/g8OHD2LlzJwAePHzwgx/EJZdc4pSfT5bHH38cW7ZsGfU+//jHP/Cd73wH999//6h/4Y+3hNwwDHzta18b8eOvvPIKvva1r+FLX/oSgsEg7r33XvzLv/wLVq5ciQ984AMoLy9Ha2sr/vrXv+KCCy7AD3/4w+N+zYHOPPNMzJ8/H5/97GfR3t6OYDCIP/7xj4hGo+N6nPe///348pe/DLfbjX/9138taNuQTCYxe/ZsvO9978Py5cvh9/vxj3/8Ay+//PKQo9kTde+992L9+vXwer3DJpAP9IUvfAG/+c1vsHbtWnzyk59EaWkpNm7ciObmZvzxj38c0npix44dBf+uLctCe3s7/v73vzu3tba2AgD+/ve/O0fMY/n9lU6n8aMf/Qjf//73sXDhwoI+RvnfN6+99hpeeOEFnH/++QVf7+9//7tzXHX33Xejrq4OZ5999vheODI5TnU516kAgD300EPO+4888ggDwHw+X8GbLMts3bp1jDHGPvKRjzAArKmpyfm8bdu2MQBsz549p/opnJB8CfVY3/Klq/nS0BUrVhSUFOcfb2AJ+eHDh9m73/1uVlJSwkKhELv22mvZkSNHRiwJPl4JeUNDA3vllVfY+eefz9xuN6urq2M//OEPC+5n2zb7+te/zurq6pjL5WJnn302e+SRR9gNN9zA6urqhqx3YIn4cK/PcCXkI61zuI9v2bKFvfnNb2Yej4fV1NSw//zP/3TKqgeWA4/2eG+88QZ73/vexwKBAAuHw+zWW28dUgL+5z//mS1btoy53W42d+5cds8997D/+7//Kyj3H3jf1atXM4/Hw4LBIFu1atWQEu/nnnuOXXbZZSwQCDCfz8eWLVvGfvCDHxTc58CBA+zDH/4wq6qqYoqisFmzZrGrrrqK/eEPf3Du8+///u8sEomw9vb2gs+djBLya665puC++ZLh/Ova29vLampq2HXXXTfs/U6khHys/24Gf93LL7+chUIh5na72fz589mNN97IXnnllYLHHmsJ+RtvvMEuvfRS5vf7WVlZGfvIRz7Cdu7cOeTf4Wj27dvnrPW5554r+Jimaexzn/scW758ufNzsHz5cva///u/x33c8ZaQr1q1il177bXD/h4dXELOGP/Ze9/73sdKSkqY2+1mq1atYo888kjBffLf0/G+5f+9jOX311h/jw4sWR94uyAIrKqqir3nPe9hu3fvPu7rSk6O0yLI+e1vf8skSWJ79uxh+/btK3jr6OhgjDH25S9/mcmyXPA4mUyGAWCPP/74qVz+Ccv/4zzehXas9zvZRuqrMZONJfgjU1P+Ik+ml+H+KBhN/vfjaJ9zxx13DOnLQ6aW0+K46uyzz4ZlWeju7saFF1447H0uuOACmKaJAwcOOMmE+cTXyUh2I4QQQsipNWOCnFQqhf379zvvNzc3Y8eOHSgtLcXChQtx/fXX48Mf/jC+9a1v4eyzz0ZPTw82b96MZcuW4corr8Sll16KlStX4uabb8Z3v/tdp2X+ZZddNmwjuKksn80/XH+bidyPEHLM8uXL8cUvfrHYyyDjdPnllxc0ATye/O/H0XL5li1b5uR5kqlJYGycmZJT1NNPP423vvWtQ26/4YYbcN999znJhL/85S/R3t6OsrIyvPnNb8Zdd92FpUuXAuBlzJ/4xCfw+OOPw+fzYe3atfjWt76F0tLSU/10TiuXXHIJent78frrrxd7KafMnXfeibvuugs9PT0jJjcTQgg5MTMmyCGEEEIIGei06ZNDCCGEkNMLBTmEEEIImZGKmnhsWRbuvPNOPPDAA+js7ERNTQ1uvPFGfOlLXxoyw2c4tm3jyJEjCAQCY7o/IYQQQoqPMYZkMomampohTR4nU1GDnHvuuQf33nsvNm7ciIaGBrzyyiu46aabEAqFjtsZE+CJwrW1tadgpYQQQgiZbG1tbZg9e/ZJe/yiBjnPP/88rrnmGlx55ZUA+CDG3/zmN9i6deuYPj8/OLGtrQ3BYPCkrZMQQgghkyeRSKC2tvakT2YvapCzevVq/PSnP8XevXuxcOFC7Ny5E8899xy+/e1vj+nz80dUwWCQghxCCCFkmjnZqSZFDXK+8IUvIJFI4Mwzz4QkSbAsC3fffTeuv/76Ye+vaVrBhNxEInGqlkoIIYSQaaao1VWbNm3Cr371K/z617/Gq6++io0bN+Kb3/wmNm7cOOz9169fj1Ao5LxRPg4hhBBCRlLUZoC1tbX4whe+gFtuucW57Wtf+xoeeOAB7NmzZ8j9h9vJqa2tRTwep+MqQgghZJpIJBIIhUIn/fpd1OOqTCYzpHRMkiTYtj3s/V0uF1wu16lYGiGEEEKmuaIGOe985ztx9913Y86cOWhoaMD27dvx7W9/GzfffHMxl0UIIYSQGaCox1XJZBL/7//9Pzz00EPo7u5GTU0NrrvuOnz5y1+GqqrH/fxTtd1FCCGEkMlzqq7f03pAJwU5hBBCyPRzqq7fNLuKEEIIITMSBTmEEEIImZEoyCGEEELIjFTU6ipCCCFkpsn0ZZDtz8JT6oE34i32ck5rFOQQQgghk8DIGmjc1Ii2LW3QUzpUv4raC2rRsK4Bikcp9vJOS3RcRQghhEyCxk2NaHq4CYIkIDQnBEES0PRwExo3NRZ7aactCnIIIYSQE5Tpy6BtSxt8lT74K/2Q3TL8lX74Kn1o29KGTF+m2Es8LVGQQwghhJygbH8WekqHO+QuuN0dckNP6cj2Z4u0stMbBTmEEELICfKUeqD6VeTiuYLbc/EcVL8KT6mnSCs7vVGQQwghhJwgb8SL2gtqke5KI9WVgpkzkepKId2VRu0FtVRlVSRUXUUIIYRMgoZ1DQCAti1tiLfGofpVLLpmkXM7OfUoyCGEEEImgeJRsOKGFVh41ULqkzNFUJBDCCGETCJvxEvBzRRBOTmEEEIImZEoyCGEEELIjERBDiGEEEJmJApyCCGEEDIjUZBDCCGEkBmJghxCCCGEzEgU5BBCCCFkRqIghxBCCCEzEgU5hBBCCJmRKMghhBBCyIxEQQ4hhBBCZiQKcgghhBAyI1GQQwghhJAZiYIcQgghhMxIFOQQQgghZEaiIIcQQgghMxIFOYQQQgiZkSjIIYQQQsiMJBd7AYQQQqavTF8G2f4sPKUeeCPeYi+HkAIU5BBCCBk3I2ugcVMj2ra0QU/pUP0qai+oRcO6BigepdjLIwRAkY+r5s6dC0EQhrzdcsstxVwWIYSQ42jc1Iimh5sgSAJCc0IQJAFNDzehcVNjsZdGiKOoOzkvv/wyLMty3n/99ddx2WWX4dprry3iqgghhIwm05dB25Y2+Cp98Ff6AQB+N/9v25Y2LLxqIR1dkSmhqDs55eXlqKqqct4eeeQRzJ8/HxdffHExl0UIIWQU2f4s9JQOd8hdcLs75Iae0pHtzxZpZYQUmjLVVbqu44EHHsDNN98MQRCKvRxCCCEj8JR6oPpV5OK5gttz8RxUvwpPqadIKyOk0JRJPP7Tn/6EWCyGG2+8ccT7aJoGTdOc9xOJxClYGSGEkIG8ES9qL6hF08NNAPgOTi6eQ7orjUXXLKKjKjJlTJmdnF/84hdYu3YtampqRrzP+vXrEQqFnLfa2tpTuEJCCCF5DesasOiaRWAWQ7w1DmYxLLpmERrWNRR7aYQ4BMYYK/YiWlpaMG/ePDz44IO45pprRrzfcDs5tbW1iMfjCAaDp2KphBBy2hquJw71ySETkUgkEAqFTvr1e0ocV23YsAEVFRW48sorR72fy+WCy+U6RasihBACjN4TxxvxUnBDpqyiH1fZto0NGzbghhtugCxPiZiLEELIANQTh0xXRQ9y/vGPf6C1tRU333xzsZdCCCFkkME9cWS3DH+lH75KH9q2tCHTlyn2EgkZUdG3Tt7+9rdjCqQFEUIIGUa+J05oTqjgdnfIjXhrHNn+LB1XkSmr6Ds5hBBCpi7qiUOmMwpyCCGEjCjfEyfdlUaqKwUzZyLVlUK6K43aC2ppF4dMaUU/riKEEDK15XvftG1pQ7w1DtWvUk8cMi1QkEMIIWRUikfBihtWYOFVC6knDplWKMghhBAyJtQTh0w3lJNDCCGEkBmJghxCCCGEzEgU5BBCCCFkRqIghxBCCCEzEgU5hBBCCJmRKMghhBBCyIxEQQ4hhBBCZiQKcgghhBAyI1GQQwghhJAZiYIcQgghhMxIFOQQQgghZEaiIIcQQgghMxIFOYQQQgiZkSjIIYQQQsiMREEOIYQQQmYkCnIIIYQQMiNRkEMIIYSQGYmCHEIIIYTMSBTkEEIIIWRGoiCHEEIIITMSBTmEEEIImZEoyCGEEELIjERBDiGEEEJmJApyCCGEEDIjUZBDCCGEkBmJghxCCCGEzEgU5BBCCCFkRqIghxBCCCEzEgU5hBBCCJmRih7ktLe340Mf+hAikQg8Hg+WLl2KV155pdjLIoQQQsg0Jxfzi0ejUVxwwQV461vfir/97W8oLy/Hvn37EA6Hi7ksQgghhMwARQ1y7rnnHtTW1mLDhg3ObfX19UVcESGEEEJmiqIeV/35z3/Gueeei2uvvRYVFRU4++yz8bOf/WzE+2uahkQiUfBGCCGEEDKcogY5Bw8exL333osFCxbgsccew8c+9jF88pOfxMaNG4e9//r16xEKhZy32traU7xiQgghhEwXAmOMFeuLq6qKc889F88//7xz2yc/+Um8/PLLeOGFF4bcX9M0aJrmvJ9IJFBbW4t4PI5gMHhK1kwIIYSQE5NIJBAKhU769buoOznV1dVYsmRJwW2LFy9Ga2vrsPd3uVwIBoMFb4QQQgghwylqkHPBBRegqamp4La9e/eirq6uSCsihBBCyExR1CDn05/+NF588UV8/etfx/79+/HrX/8aP/3pT3HLLbcUc1mEEEIImQGKGuScd955eOihh/Cb3/wGZ511Fr761a/iu9/9Lq6//vpiLosQQgghM0BRE49P1KlKXCKEEELI5DktEo8JIYQQQk4WCnIIIYQQMiNRkEMIIYSQGYmCHEIIIYTMSBTkEEIIIWRGoiCHEEIIITMSBTmEEEIImZEoyCGEEELIjCQXewGEEEImT6Yvg2x/Fp5SD7wRb7GXQ0hRUZBDCCEzgJE10LipEW1b2qCndKh+FbUX1KJhXQMUj1Ls5RFSFHRcRQghM0DjpkY0PdwEQRIQmhOCIAloergJjZsai700QoqGghxCCJnmMn0ZtG1pg6/SB3+lH7Jbhr/SD1+lD21b2pDpyxR7iYQUBQU5hBAyzWX7s9BTOtwhd8Ht7pAbekpHtj9bpJURUlwU5BBCyDTnKfVA9avIxXMFt+fiOah+FZ5ST5FWRkhxUZBDCCHTnDfiRe0FtUh3pZHqSsHMmUh1pZDuSqP2glqqsiKnLaquIoSQGaBhXQMAoG1LG+Ktcah+FYuuWeTcTsjpiIIcQgiZARSPghU3rMDCqxZSnxxCjqIghxBCxmg6NNrzRrxTdm2EnGoU5BBCyHFQoz1CpidKPCaEkOOgRnuETE8U5BBCZqRMXwZ9+/pOuBEeNdojZPqi4ypCyIwy2UdL+UZ7oTmhgtvdITfirXFk+7OUA0PIFEU7OYSQGWWyj5ao0R4h0xcFOYSQGeNkHC1Roz1Cpi8KcgghM8bJmuHUsK4Bi65ZBGYxxFvjYBajRnuETAOUk0MImTEGHi353X7n9hM9WqJGe4RMT7STQwiZMU720ZI34kVkQYQCHEKmCdrJIYTMKDTDiRCSR0EOIWRGOZlHS9NhrAMh5BgKcgghM9JkznCisQ6ETE+Uk0MIIcdBYx0ImZ4oyCGEkFHQWAdCpi8KcgghZBQnq/cOIeTkK2qQc+edd0IQhIK3M888s5hLIoSQAjTWgZDpq+iJxw0NDfjHP/7hvC/LRV8SIYQ48r13mh5uAsB3cHLxHNJdaSy6ZhFVWREyhRU9opBlGVVVVcVeBiGEjIh67xAyPRU9yNm3bx9qamrgdrtx/vnnY/369ZgzZ86w99U0DZqmOe8nEolTtUxCyGmMxjoQMj0VNSfnTW96E+677z78/e9/x7333ovm5mZceOGFSCaTw95//fr1CIVCzlttbe0pXjEh5HRGYx0ImV4Exhgr9iLyYrEY6urq8O1vfxv/+q//OuTjw+3k1NbWIh6PIxgMnsqlEkIIIWSCEokEQqHQSb9+F/24aqCSkhIsXLgQ+/fvH/bjLpcLLpfrFK+KEEIIIdPRlOqTk0qlcODAAVRXVxd7KYQQQgiZ5ooa5Hz2s5/FM888g0OHDuH555/Hu9/9bkiShOuuu66YyyKEEELIDFDU46rDhw/juuuuQ19fH8rLy/GWt7wFL774IsrLy4u5LEIIIYTMAEUNcn77298W88sTQgghZAabUjk5hBBCCCGThYIcQgghhMxIFOQQQgghZEaiIIcQQgghM9KUagZICCGkeDJ9GZrNRWYUCnIIIeQ0Z2QNNG5qRNuWNugpHapfRe0FtWhY1wDFoxR7eYRMGB1XEULIaa5xUyOaHm6CIAkIzQlBkAQ0PdyExk2NxV4aISeEghxCCDmNZfoyaNvSBl+lD/5KP2S3DH+lH75KH9q2tCHTlyn2EgmZMApyCCHkNJbtz0JP6XCH3AW3u0Nu6Ckd2f5skVZGyImjIIcQQk5jnlIPVL+KXDxXcHsunoPqV+Ep9RRpZYScOApyCCHkNOaNeFF7QS3SXWmkulIwcyZSXSmku9KovaCWqqzItEbVVYSQk2K0cmQqVZ5aGtY1AADatrQh3hqH6lex6JpFzu2ETFcU5BBCJtVo5cgAqFR5ClI8ClbcsAILr1pIwSeZUSjIIYRMqnw5sq/Sh9CcEHLxHJoebnI+PtLHVtywokgrJnneiJeCGzKjUJBDCJk0g8uRAcDv5v9t3twMAMN+rG1LGxZetZAusISQSUWJx4SQSTNaOXI2mkU2mqVSZULIKUNBDiFk0oxWjuwJe+AJe6hUmRByylCQQwiZNKOVI9evqUf9mnoqVSaEnDKUk0MImVRjKUemUmVCyKkgMMZYsRcxUYlEAqFQCPF4HMFgsNjLIYQMQH1yCCEjOVXXb9rJIYScFKOVI1OpMiHkVKCcHEIIIYTMSBTkEEIIIWRGoiCHEEIIITMS5eQQQmY0SnIm5PRFQQ4hZEYabVAoDQMl5PRAx1WEkBkpPyhUkASE5oQgSAKaHm5C46bGYi+NEHKKUJBDCJlxBg8Kld0y/JV++Cp9aNvShkxfpthLJIScAid0XPXKK69g06ZNaG1tha7rBR978MEHT2hhhBAyUflBoaE5oYLb3SE34q1xZPuzlJ9DyGlgwjs5v/3tb7F69Wrs3r0bDz30EAzDQGNjI5588kmEQqHjPwAhhJwkow0KpWGghJw+JhzkfP3rX8d3vvMd/OUvf4Gqqvje976HPXv2YN26dZgzZ85krpEQQsZltEGhNAyUkNPHhIOcAwcO4MorrwQAqKqKdDoNQRDw6U9/Gj/96U8nbYGEEDIRDesasOiaRWAWQ7w1DmYxGgZKyGlmwjk54XAYyWQSADBr1iy8/vrrWLp0KWKxGDIZSuojhBSX4lGw4oYVWHjVQuqTQ8hpasI7ORdddBGeeOIJAMC1116L2267DR/5yEdw3XXXYc2aNeN+vP/+7/+GIAj41Kc+NdElEUJOA5m+DPr29Y25Qsob8SKyIEIBDiGnoQnv5Pzwhz9ELseT+r74xS9CURQ8//zzeO9734svfelL43qsl19+GT/5yU+wbNmyiS6HEDLDUXM/Qsh4TTjIKS0tdf5fFEV84QtfmNDjpFIpXH/99fjZz36Gr33taxNdDiFkhss39/NV+hCaE0IunkPTw00AgBU3rCju4gghU9KEj6sSicSob2N1yy234Morr8Sll1563Ptqmjbhr0MImb6ouR8hZCImvJNTUlICQRCG3M4YgyAIsCzruI/x29/+Fq+++ipefvnlMX3N9evX46677hr3Wgkh0xs19yOETMSEg5ynnnoKAA9qrrjiCvz85z/HrFmzxvz5bW1tuO222/DEE0/A7XaP6XNuv/12fOYzn3HeTyQSqK2tHd/CCSHTzsDmfn6337mdmvsRQkYjMMbYiT5IIBDAzp07MW/evDF/zp/+9Ce8+93vhiRJzm2WZUEQBIiiCE3TCj42nEQigVAohHg8jmAwOOH1E0Kmvh0bdzg5Oe6QG7l4DumuNBZds4hycgiZZk7V9fuEZlediDVr1mDXrl0Ft910000488wz8fnPf/64AQ4h5MRl+jLTpodMvolf25Y2xFvjUP0qNfcjhIxq0oKc4fJzRhMIBHDWWWcV3Obz+RCJRIbcTgiZXNOxHJua+xFCxmvCQc7ZZ5/tBDbZbBbvfOc7oaqq8/FXX331xFdHCJmw0XZppms59nTaeSKEFN+Eg5x3vetdzv9fc801k7EWPP3005PyOISczo63SzO4HBuAk8zbtqUNC69aOOUCiOm480QIKb4JBzl33HHHZK6DEDJJjrdLMx3LsafrzhMhpLgm3AwQAGKxGH7+85/j9ttvR39/PwB+TNXe3j4piyOEjM9YmuYNLMceaKqWY1MjQELIRE04yHnttdewcOFC3HPPPfjmN7+JWCwGAHjwwQdx++23T9b6CCHjkN+lcYeO9Z4yMgZsy3byWbwRL2ovqEW6K41UVwpmzkSqK4V0Vxq1F9ROuV2c4Z4TwHee9JSObH+2SCsjhEx1Ew5yPvOZz+DGG2/Evn37Cpr5XXHFFXj22WcnZXGEkPEZuEtjGRY6d3Ti4OaDOPTUIfQ09uDA4wdgZA00rGvAomsWgVkM8dY4mMWmbDn2dNt5IoRMHRPOyclPDh9s1qxZ6OzsPKFFEUImVkmU36Vp3NSIzu2dSHenIbtlCIKAQE0AzZubofpVrLhhxbQpx84/p3wOzuBGgFN13YSQ4ptwkONyuYYdkLl3716Ul5ef0KIIOV0MF8icSCWRkTVg6RZysRy6G7sBBrjDblStqELlskpk+7MFFVT5t6mOGgESQiZiwkHO1Vdfja985SvYtGkTAN4MsLW1FZ///Ofx3ve+d9IWSMhMNFogcyKVRI2bGrH3kb1gFoMgCgADtISGZHsSlcsqp3QF1WioESAhZCImnJPzrW99C6lUChUVFchms7j44otxxhlnIBAI4O67757MNRIy4+QDGUESEJoTgiAJaHq4Cdv/b7tTSeQKuKCndbgCrjFVEuWrkPSkjmxfFpIiQfEqkFQJ0YNRdG7vnPZ5LN6IF5EFEQpwCCFjMuGdnFAohCeeeALPPfccXnvtNaRSKaxcuRJvfvObsW3bNgCA3+/HypUrJ22xhMwEg0uijYwBURbhCrnQ8mwLTM2EbdhIdaZg6RYkVYK/yg/Vr466A5PtzyLTl0GmLwNXyAVBEpDpzUCURdimjd6mXgiCgCXrllCQQAg5LYw7yBmch7Ns2TIsW7bMeX/nzp1461vfijlz5qChoQGPPPLIia+SkBkkXxLtr/ajc0cn4m1xWLoFQRQgKXwwbaYvA2/EC3fIDTNnoueNHpTUlYy6A+Mp9UCURRgZA65KF2SP7DwWADCbYc5FcyiPhRBy2hh3kFNSUjLqME7GGARBQHNz8wktjJCZKl8S3bm9E8mOJFSfCnfIjWx/FrloDpJLGvJvbCwDcL0RL+ouqkP7S+1O3orqV8EsBk+pB5FFEaz8t5U0BoEQctoYd5Dz1FNPjfrxffv24aMf/eiEF0TITOeNeFG5vBIHHj8AxatAdsswcyYYYwjUBJDuTiM8P8yDnngOkiqhbHEZVN/ox1UAcPbNZ/PeOP84CKvLguJTEJgdgCvgQv2aejqmIoScVsYd5Fx88cWjfrykpGSiayHktFF3UR1eu/81GDnjWCCzqAz+WX4cfOwgvGVeVJ9dDSNrQPEo0JKasyMzGsWjYO3312L7/21Hy7MtsE3b6TNDx1SEkNPNhBOPCSETF6gJoHJZJSzdghpQoXgUKF4Fqa4UgrOD0BM6tKQ2ocZ3ikfBqltW4awPnEXl1oSQ09oJDegkhExMfndFS2iwTRuCKDjzo5Z+aCmWrFtywiMXqNyaEHK6o50cQsZpIuMWhjNaF1/Fo4za+G60NUzW+gghZLobd5Dznve8Z9SP56eREzLTnMi4hYEGBiGjdfEdbuTCaGsAMCnrI4SQmWLcQU4oFDruxz/84Q9PeEGETFUnMm4BGD1AGeuOy2hrAHBC6yOEkJlm3EHOhg0bTsY6CJnSBncpBgC/m/934MDL0ZxokDTaGvY9ug+WZsEddk94fYQQMtNQ4jEhY5DvUuwOuQtud4fc0FM6sv3ZUT9/cIAiu2X4K/1jmkk12hosw0K8NY7DLxxG+8vt6Hi1A507OmEZ1rjWRwghMxEFOYSMQX5kQqwlBiNjOLePdeDliQZJ+TWofhW5eM65raexB727eyG7ZbjDbtgGn1HV09gzrvVNRKYvg759fWMK0Ka68TyXmfS8CZnpqLqKkOMwsgb2PrIXsdYYovujUAMqwvPCCNQEkO3Ljql/zcAAJX+MBIwvCMmXneePuCRVQm9TLxhjKF9SDgDOEM7YoRjcYTe0uDbm/jpjNVkJ2CM5ldVh43kuJ/t5E0ImHwU5hBxHPpcmsiAC1aciejCKrte6YKQNrLhpxZj61wwOUCbS5A8oLDuPHozC1m2ULylHeUO5c5/ooShy0RyMjDGh/jrHc6K5RSMpRhAxnudysp43IeTkoSCHkFEMzqUJzgqioqEC8bY4JEXCwqsWjvkCPFpfnLFSPIpTdt5/oB8v//BlKD7FmV5etaIK7hI3jKyBt33tbYgsiIz/SY9iMhKwR3Kqg4jxPJeT+bwJIScPBTmEjCKfSxOac6x1guJVUFJXgnhrfNSBmYOPXQYGKPnbASBxODHuo5l8D53eNb1Ddoe0BD+imuwAByh8PYyM4czWcofcx309RnO8IKJ2dS0AOK/ZZBxnDfe9BTDscxnPfQkhUwcFOYSMYiK5NMc7dvFGvFC8yqQczUzG7tB4eEo9kN0yDr90GFpCg6VbkFQJrqAL4frwhBOcRwoiFK+Cti1tePJLTwIMSHWnIECAr8IHd4n7hI6zxvO9nYycKkLIqUdBDiGjGC2Xpn5NvVMVNfCv+LEcu0zW0cxwu0Mnc0fBG/FCkAT0NfXBXeKGK+iCltCQ6kih9IzSCX/tkYKIzu2dSHWlUHZmGdI9acRb4hAEAYpPgSfiOaHjrPHkSU1WThUh5NSiIIeQ4xi8WyK7ZXgiHnRs60DblraCXRgjYxw3dyP//5OZ3zHcCIiTIdOXAbMYys4sQy6eg57WIXtklFWVgVkMmb7MhNYxXBCR6kohejCKkvoS+Cp86NrV5Tx2qjOFioYKACeWEzOenbBTvWtGCDlxFOQQchyDd0sOPH4AzZub4av0wVfhK9iFqV1di0xfBp6IB0bGgOLlxygDczcATNv8jmx/FmbOxKxVs8Bs5uTkCKJwwmsfHETYlg1/lR/VK6thZA1YuuX0GcrFczCyxgm/ZuPZCTvVu2aEkBNHQQ457Y21L0v+Y107u4bdhWl5pgWpzhR6GntgWzZcQRdCtSGUN5QPyd0YT37HVJoqXnCsVOl3grhUV+qEc1MGBxEA8Pw3nke2LwtRESGIAsycCYD3CFI8yqTlxIxnJ+xU7ZoRQk4cBTnktDUwQTjTl4Eoi6i7qA5n33x2QSLrwCBjtCqbQ08fQuJwAoGaABKHE9BTOjp3diLTm4GvwleQuzGW/I6p2HzuVOSm5IMII2uAMYZDzxyCKIswNRNmxoTqV1HeUA4tqVFODCFkVBTkkNNW46ZG7P7jbmhJDdloFkbaQPvWdnTu6MTa76917jMwyKhcXgnZLQ/ZhUl1ppCL5VC2uAzeci9ysRzirXGYmolcNIeFVy/EwncudO4/lvyOqdp87lTlpjRuakS6O41wfRjZ/iyYzWDChOyWofpUMItRTgwhZFQU5JDTUr4vi5bUkOpMQfWpcFW6kO3P4uATB7H9/7ZD9atDgozmzc3wRDxId6UBHNvJSB5Jwl3CJ4D37umFkTUQnB0EAOQSOaQ709j7l71OcHK8/I6p3HzuVOSm5J9/oCYAf6Xf6cmjp3Qwi+G8W89D6fyJV3MRQk4PRR3Qee+992LZsmUIBoMIBoM4//zz8be//a2YSyKniWx/lh9DRbNQfSpUvwpRFvkgTkXEgSeOJRcPnhrOLIb6NfVgFkO8Ne68H5wVROxQDPG2OFSfCncJT5JVPLzcebhp496I1zkGG/ixgQM9jYyBTF8GRsYYdaDnqR4c6Y14EVkQmXCgMdp6Bw80Vby8v5C/0g/btOEJFz8/iRAy9RV1J2f27Nn47//+byxYsACMMWzcuBHXXHMNtm/fjoYG2oImJ09+qriRNuCqdDm3mzkTqk+FmTWRtbII1AQKPi9fzTP/7fNx1gfOQvJIEi3PtqBrZxcS7Qkk2hKwTAuh2hBiLTHkojwxtueNHigeBckjyTHl3OSb7rVvbUcunnOa7rlDbpTMLSlItJ2KuTujGct6J6v53lRK2iaEnHpF3cl55zvfiSuuuAILFizAwoULcffdd8Pv9+PFF18s5rLIacAb8aLuojqYmolUZ8o5CtHTOjylHvgr/fCEPcjFcwWfN/Ai64140fJsC5oeboKlW6i9oBaB2QHoKR09TT3IRXNwl7gRrA3CNmykulJoebbFeax8zo2lW1D8CizdQtPDTWjc1Og03evd0wszeyzw6t3TC0EShm0+KEgCQnNCECTBeZyTbSK7R2NZbz7BOd2VRqorBTNnItWVQrorjdoLao8bsBhZAzs27sDm2zfj6TuexubbN2PHxh0wssaEnyshZPqZMjk5lmXh97//PdLpNM4///xh76NpGjRNc95PJBKnanlkhjGyBiSXBNWrIt4WR7o7DXeJGyX1JVADKurX1APAiFVEilfB1h9txdYfbIVt2Uj3pCEIAhhjkN0ytLgGpVSBv9oP27DBGEPJ3BJ07exyAoKWZ1qQjWYRa4kVjEdoeaYFtatrwSyGyKIItITmNN2LVEYKmu4VK3dnortH41nviSQ4T9WkbULIqVX0IGfXrl04//zzkcvl4Pf78dBDD2HJkiXD3nf9+vW46667TvEKyUwx8Ohi7yN7sf/R/Zhz4RzEDsUQPRiFmTUhCAIWv2dxwYV0uIts/iJqWza8ES9SXSlkenngEZgVgJEyYGZNRJujcPldKJlbgsrllUh1pJx8mp43epDpz8AddMMdcsPMmUi0J2BmTcQOxWDmTFQuq4SR4bsPnrAHpmYiejCK6IEovBFv0QZHTjSIGM96J5rgPJWTtgkhp1bRg5xFixZhx44diMfj+MMf/oAbbrgBzzzzzLCBzu23347PfOYzzvuJRAK1tbWncrlkGhq86yDKImKtMUQWRBCcFURwVhDVZ1cj3haHpEhYeNVCZzdiuIusU/kzK4BMXwZmzoSZ46XNpmZCtVUoPgWWaSHXn4ORNpCL5ZA4nMCsVbOcRONcLAdJlqD6VQC8QaCR4feV3BISRxLo2N4BURYhyiIEQYCe0cFMhq0/3Ir6NfWoX1MP1a86zfgUjwLFO/YmeZm+DKIHomBgY65WOpEgYiK5NuNtvjddJ4ZT/hAhk6/oQY6qqjjjjDMAAOeccw5efvllfO9738NPfvKTIfd1uVxwuVxDbidkNIN3HWItMUT3R6H6VARn8TJvxaugpK5k2Ivg4IvswItorjaHrl1dsDSLBzk5k+d9iICRNiBIAhSPAsuwEDsUg6/K5+zAuEvczmPlP9c2bXhKPTj8/GEYScN53Gx/FpmeDBSfglmrZkHxKTyfx7B4w7ynDkFURKcKSQ2oWPyexSNeLI2sgdd+9Rpee+A1JNuSAIBgbRBLr1+KZR9aNuqR04kEEaeimeB0mxg+3RLHCZlOipp4PBzbtgvybgg5EYN3HWS3jFBtCGpARfRg1DkKAsZ+ERx4ES1vKEfZojIIogA9pUMQBd4fxwZklwxRFsFs5gz1THWk0LevD55SD8qXlCM4OwjGGHLxHBhjCM4OIjwvjJ7GHpQtKUPJvBJYugUtqfFRBj4FkYURp5x91wO7kGhLoKS+BIpPgZExEG2OwlfhGzV3pXFTI7bduw3xljjUoAo1qCLeGse2H287bsLywOc/0Fhfv4Z1DVh0zaKCEvzJbOp3oknLp1oxE8cJmemKupNz++23Y+3atZgzZw6SySR+/etf4+mnn8Zjjz1WzGWRGWS4XQfFqyA8L4yu17oQb4ujpK5kXLsJg3cjKpdVQktq6Gvq4wFIlR9Hth1xAhtPmPfeYRZDqiOF2CF+VFZ3cR1ysRxCdSFIigTLsKDFNZQ1lGHfX/bxsQY2g23akFWZJzGbNmzTBsDnNyUOJ1BzXg3KFpUda5iX1CEIAh8QOsxOQKYvg+bNzdAzOt/1OXpcJkoi9IyO5s3Nox45nehuzKloJjhdJoZT/hAhJ1dRg5zu7m58+MMfRkdHB0KhEJYtW4bHHnsMl112WTGXRWaQkY4uAjUBGGkDkiJN6CI4+CIaWRBB2ZllYBZDuicNSZYgu2V4I14wmwEAtIQG2SOjZG7JkMfIH1MsumYRsv1ZpLpSvIlgqQd6Ske6K410dxr+Kr8TuKS7eddlX4UPAA/eFK8C1aeOemyU7c8iG80CAiC7j/0KkN0yjIyBbDR73LyVyQgiTuagy+kyMXy65g8RMl0UNcj5xS9+UcwvT04DI+06ZPuyWHHTxC+CI11E88mjT335Kez/236nrw2zeKBz5rvPRGRBZMTHAIDNt29GydwSpDr5UYvqV3kycTSHcH0Ygigg1ZWCltAQnB2EpVsFazvesZGnlO8ugcF5fID/PwODJ+w57pHTdAkipvrE8OmWP0TIdFP0xGNCTrbRdh0UjzLqRfB4FS8DL6ID7zvnwjk4/MJh5GI52IYNQRTgLnGj5ryaUR+jb18f9JSO6pXViB6IIt4WRy6eg6fMA9kjw1/ld55Dw7oGWLqF/X/bD2Dsx0beiBf1a+rR09iDTF8GtsWPv7S4Bk/Yg/o19WMODPJrzzcFnKrBzlR1KhKxCTmdUZBDZrzx7DrkAxXZI6N5c/OYKl6GK1GPt8Yx77J5fGJ5jHc+tk0bXTu6nEZ+w8n/ZW9kDFStqEJkYcTJs5FUCas/t9q5nzfi5U0NVWncx0YN6xpgGRZPXD7Mm2qG5oSw9Pql4zpyGqkyqH5NPcysSUHPGEyX/CFCpiOBMcaKvYiJSiQSCIVCiMfjCAaDxV4OmUYG79AMvlgnjiRgJA1UrayCN+J1/rquX1OP+W+fX3Dx3rFxB97Y9AbUoApfhQ/p7jRan2tF5bJKzDpvlvM1zZyJeGscl9x1iXNkNZwdG3c4Je+D/7If3Ggv/zzyxhtUTKRPzmhrzfRl0PlqJ5SAgmBNcFqXQ5/qvjXUJ4ecTk7V9Zt2cshpZaSdB8uwsP/R/fBV+uAt96JjewcszUKmJ4PgrCA8kge9e3qx9Qdb0fxkM1SfivKGcsx961zs2LADqa4URFmEpErwV/qheBVEm6OoaKiA4uUX9/GUWAOj/2U/Wm+V8TiRnJXhKoMyPXyyu57RUbW8ypnHBUyfcQrF6lsz1fOHCJmOKMghp5XhxhG8sekNaGkN5YvL4a/0I9OXgSiLkN0y4m1xRBZG0Le3D4n2BJjFkO3LoueNHjQ/2YxXfvIKLwOvDcEVcMHM8VEO+QZ+g0vU69fUOzsvI13QxnK8NhVmMw2uDDIyBuJtcbhCLtimDWYzJ/iZTuXQU+G1JYRMjinXDJCQk2W4xoD+Sj/UoIpkWxKSKgHgQUb+/y3dQjbKgxVJlmBbNpLtSag+Fe6wG9neLGzdhpbQIMoiVL8K1afC0iyE5oScEnUtrkGQBbRtaRvzVGxvxIvIgsiQwGCk5+Gr9KFtS1vBRPCJTAkfq8FNAY2s4VR6Sark7Hq4Q27oKb3gWG2qGs9rSwiZ+mgnh5w2RupJku8zk+5OwxP2QPEqCNWG0LmzE7KHz6PSEhqYzSAwAa6QC6pfBWMMEABX0IVcNIdciB9H2ZYNPa1jxU0rsPT6pdj1611oeriJdxcOqAjPCztjGYDx7w6MpbeK4lVO+pHL4MogSZVgmzb0FD+qGu8x3VRAfWsImVloJ4dMa+PZqRhpHIGlWwjWBqElNGcMgLfcC2+pF/4KP4y0AVES4Sv3QfErTgM9ZjFIigR32A3Vr8IyLOTiOZg5E6XzS7H0+qVo3tyMlmda+MWx3AvVx8dJZHoyE94dyD+PVGcKmb6MM5piYDBxqkYFDBzRkOnJwF/ph7fUC2+5d8qPUxjOiY6sIIRMLbSTQ6aNgdUnE9mpGK0nydLrlw4pxV71yVVOKfSBxw9g/6P7kYvnoKd1iJIIUzMRmhNCNpqFGuRfP9vLuwUvuXYJFI+Cti1tcAVd/CjLp0KU+d8V0eYoXEEX9LQ+7t0BxavwoZzPHIIoi1B8CjxhD1wBFxa/dzEAOEcurgD/Gq6Ay7l9MnNjBucPDSy9n47l0NS3hpCZhYIcMuUNV+3CGEO6K43ArMCYkkPzAVL9mnoAIzcGHCnZV/bIPK8klnU+LzwvDFfQha5dXXAFXOh+rdvpidOxrQN6SkculoO/2g9JlWDmTMgeGbl4Dpm+DHKxHBSPggOPH0BwdnDMx0iNmxqR7k4jXB9GujuNXDSHbH8WZ1x+BurX1KPj1Q6kulOwDRupzhQs3eJVX1V+qH71pBy5DKwMmg6dkEdDfWsImTmoTw6Z8gb3Ykl1pXDoqUMoqS/B3IvnOvdLdaXALIY169c4F9aBAVK+aqruojosumbRmJrVDQ6wAMCyLAgQEG+JO0ENAOhJHVUrqxCcFUQunkOiNeFUbaU6Uuht6oWZM5Htz0IQBLgjbpTMKYEn7Bm1B87ANWb6Mth8+2Ywxo+Hos1RPsiTMUiShOqV1TA1E23Pt8E2bITmhKB4FZg5E5m+DErqSrDuj+umTeBRzN4x1LeGkJOH+uQQguF7sYiyyHdyetJ80rZXgZExeF7I0QtT/qLUuKkRux/cDT2pO/kr7S+1o3NHJ9Z+f23B7slwF7XhyonTXWlA5lO7q86ugq/ChwOPH4CZM6EndV6Rc3QOUe/uXsRb4wjUBBBMB3Hk5SNgFoO7zI2qpVUobyhHtj9bcIw0Wp+WfGJsLp5D9GAUqk+FK+BCvDWOZE8S7hI3Zr1pFhhj0NM60r1plMwpAcBziIysMS2SZ4vVq2Yg6ltDyPRHQQ6Z0gZWu1iGhZ7GHkSbo9DiGnLRHNpfboekSkgcTsDMmJBcknP8Y2QMfpFM6kh28LJvV6UL2f4sDv7jILb/33asumXVqKMJBgdYHsmD7l3d6H69G55SD7SUhlhLDMxmcJe4nb46ileBO+SGr8KH6nOrEd3Pe+e4w26E6kKoPrsa7hDfARpcuTNan5aFVy2EKItOgKP6VegZHVpSg6RI0NM6Ond0wtRMQAAy3RnYhg1JkcDAkDqSwpNfehILrlgwJbsQ5wPNA48fQPPmZupVQwg5IRTkkCltYLVL/shH9alwhXiwcmTrETDGeEKvAARqAjjw2AEeqKyuRaYvg0xfxgkI8o9pdVloebYFZ33gLOx9ZO+wQUWqMzWknLhzeydih2IwdROWaSHZnuQBBQNcJS4obgXZKC/hzsX5UdbKf10JAOh4tQNbf7QViluBbdrOLtTAyp2BO1cjJQ2Xn1WO5qeaIakSku1JpHvT0FM6ZI+MxOEEtIQGSZIg+2VYugVLs8AYg7fUy/vXeCdevj4Wg3fExnLsM/hYsaexB4GaAMoWl0FSJGdnbDo1FSSEFB8FOWRKy1e7NG5qRPRg1Cnflt0yXCEXPzoCoPpVKD4FzGbQkhratrShdnUtRFmEkTHgqnQ5j2nmTCg+HmhED0SH7NbkL6g9jT0QZZFPAZc86Nzeifat7TA1E7ZuI9ObgTvohiIp0OIa0p1piLKIthfa4Cv3OdVO+Uqwlmda0L2rG+nuNBSvwkdIRLzO/bwRL/r29SEX4xVcQ5KGfTxpeOkHl2L/o/vRu7cXRsqAqIiQvTIEJsBIG1ADKrxlXqS6UhAkAYwxWDkLlmkhsjCCkroSpLpSkx4wDN4Rk90y//oWg5kzRz1yGrh75Yl4YFs2EocT6GnsQdWKKgDUq4YQMn7UJ4dMCaP1u2lY14C6i+tgG7azK1E6vxSuoAuKR4HiVeCv8qOkrgSugAvZaNZ5nOqV1TAzJtI9aadRnZ7W4QnzXQUGBj2lO0dHee6QG3pah6/Kh+iBKJr/0YyuXV2wdAuCKECURdiGDTNnwtIt2JYNQRIgyAKMjIFYcwy+Sh/q19TjpR+8xIO05qjTPNDMmUh3pQvu17evDwBvSti7u5cnJ4fcEAQBvbt7ebPCUg9Cs0NYcu0SSJIEX4UPpWeUwhv2OmuwchYESYAkS5BUCczkTQtL5pSgvKH82PMb1IX4RLsjD+7NEzsUw76/7kO0OTpqr57BeVeeEo9Tdh9viw/bB+hUOZkdowkhJx/t5JCiGkuCqeJRsPJfV6Ln9R5YhoVQbQhaUkPn9qO5J+CVVZZuwR3mfU0EQcCBxw+ga2cXBElAsj2JXCzn7BQIgoDK5ZUonV/qHIfld3Asw8Lhlw4jeSSJ6MEokkeS0OIaREUEGKAGVUiKBMuwYGommMUgSiICNQGIquhMHu/f14/H/7/H0fFKBw8+dAueUg9cs13IxrKwDRvlDeXo39ePJ//rSdimDVEWkepMwbbtgtdpcBFk3UV1eO3+12DkDBgZA+6wG66gC/E2PkLCMix+RBfkHZjdITeqV1ZDUvi4ioEBw2Qk+Wb6Mmje3AzJJcEVcIHZzDmuy3eLHmmO1eAuw/mO091vdMNKWMjFctCS2intVTMVEp8JISeOdnJIUY2lM28+p2PWm2bB0ixoSQ39+/uhpTRAAE+qtRnS3WnEDsVgZA3YzMaO/9uBju0dULwKFL/CxzPENWR7szAyBjq2dWDvI3tRc14N0l1pp9tx2/Nt6GvqgyDy4x9XwAVBFviRmF8BjsYfsluGpEgQZR7geEo9UH0qAtUBZPuz6D/QDz2tQ3JJECQB2f4stKQGAHD5XRBEAenuNPoP9PPg7WhytZbU4A65wRgPFBhjKF9SDl+lz9l5CdQEULmsEtUrqjH3krmYf9l8LH7PYvjKfIDIj/mCs4MQIMDWbdiGDS2pDduF+ES7IxtZA6/+4lW0bWlD184uHNx8EB2vdsDMmXAFXbB0y5nRNdwO0nBdhssbyhGcFYQoicj0ZcAsdkp71ZyqjtGEkJOLdnJI0QxXHj4wwbR+Tb3TPTef4+GJeKDFNcSaY1ADvCmgrMpO+baW0OCv8ePwlsOwLRuhWt4nRvWriDZHoSd01K6udSaDNz3chDOuOAOLrlmEti1t6NvXh1RHCuH5Yegp3tlYcknIxXKwTRv+aj8fxmmJyEVzEEQ+ywoAtLiG8oZyGFkDvXt6IXtkhOvDSHWkYFs2JJU/jq/CB0vjx17JI0moARWh2hBkt8ynmQddMLIGZr9pNmSXzKu4khqYxZyjmoGdeWWPDEEUnITokrklULwK9DRPRi5rKIOlWTzIimsFze2O9z0YS85OPt9IVPlrJQgCYq0x2JoNMN5IMb/7MdyR00hdhj1hD5a8bwnmv33+Ke1VMxmvCSFkaqAghxTN8YYh7vr1LrS/2D6kR03F0gpoSQ3B2iBSR1KIt8WR7EhCVPgU8KoVVWh5ugUQwJOOgy5ILn5MY1s2VL9a0MvmyNYjWLN+DRZetRAdr3bglR+/Am/Ei7YX2pxRDO6wG+muNGzDhupVEV4QRv++fr5DEteQ6kxB8SrobepF52udSHek4SnzINGWQKAmgP79/ZC9MnJR/hwEUYCn1INsfxaVyyqdYZaiIkJSJcT3x9HybAvUgAqX3wV3iRtnXXdWwcV1cGde27IRqA6g9oJaiJIILakh3hJHoj2BXCyH0OwQqldXY+kHlyI0m7/micMJZPoyvD/P0Wqvgd+D4yX55gOC/MT1fPWb6lORSqVg9psoW1wGQRScHaThjpxG6zJ8qo+HaEgnITMHBTmkaAYeU+QDDoD/tS/KInpe7yn4a9plu5CL5dC7pxeesAdm1kSwNghvGR8G6Qrw6eDukBuiJEIQBb4jEPHANmw+RVwSCtYw8MLlKfXAHXJD9anQkhps3UaqO8WPqTwKLz3XLdiGDcWtYM4Fc9C3t4/vpHTzr5WNZqH4FLgjfGhnb1MvSs8oRdmiMvTu6YWVswCBP/fwvDBkt4xATcBZT09jD7S4BlfABdu0kWhNgFkMgdoALIMf+wzMVVpxwwrUrq5F7FAMrpAL23++HUbGgL/Sj769fYg2R3kCc9gNd4kb7S+2w1/px4obVsDIGjjw+AH0NPbAtmy4gi6EakMobygfc5LvwIAgf994WxymZkJxK6g+txouv+u44xEGz8AqZpfh0X4uaUgnIdMLBTmkaEYbhjjrTbPQtbML7pDbaQIYb4vDzJowcyY8ZR6kO9NOvksumnOOfQLVAaghFbkoz2cxczw52DZtuAIueMLHLlK5eA6yW3aSlHOxHI5sO4LkkSQszeJ3Opr34ypxQZIleMu8sE0bLf9sgRbX+JRyRYQo8zdBEOAt9cIyLAiCgERbAlVnV6F0finm3DQHi9/Dh2h6Sj1Ojx5R5js4vU29Tr8fLanxtQp8B6rpoSZIiuT0thlpplfqCM8tygc4jDGE54ZRMrewdHzvI3vRvLkZ/mo/Eu0JmFkTPW/0QEtocJe4x5TkWxAQVPpRtaIKkYURxNvikBQJl3/ncgAYc+AyFboM05BOQo6Z7uNNKMghRTXSMUXVyio+aLIzxXdvjh6D5PNj4i1xeMIeMDBefZPS4Cn1oLyhHJIioXJZJQ4/fxi2yRNuRUmEN+J18lvyuzyJ1gRkn4z9j+6Hv8aP3qZeJA4nYOtHs4sFADZg6RZy/TmE54edTsjxQ3EIksB3XWxe3i55eE6KZVoI14eROJJALpqDkTGwZN0S5/hl4MBQPaWj5dkWnvej2yg9o5T34Anx3SDbtJGL5yC5JOx5aA/8NX7UrKwZtolhqj0FX6UPWkLjc7XCboTnhgtKx+OtcfQf6HfyTsoWlzlBpJbQkDySxOL3Lh5Tku9wAYGW1GBpFs54xxnOL8Xp9suRhnSS091MqTCkIIcU1eBjCtkjo3lzM17+wcs8n+RIArZhw1fuAwDe/E4VobpUZHozsC1eOQQLiLfGET0YRUldCfyVfgRmByCKIrzlXvgr/Zhz4RzoaR2HXzjslIVbhoXU7hQkl4RYSwx9+/v44x0liAIklwTbsCG6+MwsLa7ByPJ15BOImc5g2zbspA1RFaHFNITqQvBV+GBkDbzta29DZEEE8cNx7PrVLvQ09vBeOd1pMDC4Q27IHhm+Kh/cYTdSnSmoPt6hWc/whOrDLx2GFtfQ8WoHgrVBQATKzywfkhzLLIbz/7/z8cK3XoDiUVAyt8R5PvkjFwGCc8wkKZKzA5ONZZHty2L+2+eP+RfZVAkIJvMvzql0fEZIMYw2XmY6jVahIIdMCfljioETx2svqOVlybu6IAgC/NV+hOpCSHYkke5OIxfjuxvMZrAtG0xnOPjEQVQsq4AW06D6VHjLvZBdMqrOrgIEoPeNXhgZA/HWOJjFULa4DNloFqIkon9/P9/BEQAwAALvT2MZFpjFAA1IHk7iwBMHYBs2PGEPkkeSvMzbZvxoCIwHEGkdXbu64K/wY9E1iyB7ZDz3P8+h6eEmxFviUAMqJFWCFudl8OoSFaE5ISTbkujb28cbF6Z5dVe6Mw0jbcC2bd6HJuRCvCUOPa3DHXQjOOvYBN/8To0n7MGCKxbw8RRdqSFHLuH54SF5J0bW4NVevmN5J2MJHIodEJzMvzinwvEZIafaTKowpCCHTBnD/cOqu6gO2f4sbMtG7epaKB4Fyb8mnf4xln40b4bxt2xfFm3Pt0EURbhKXFCDKnzlPux6YBeYzeAqcSHdk+YJvYxBEAXILtnJ20E+Lzn/XxFgBm/EZws2mMEnnVuaBcXHS9ONtAEIfDo6JF4hJbtlZHuzWPLeJbB0Cw996CH07e3jpfBeGbZhI3kk6QQEqc4UKhoqULWyCv37eN+ceGucX6RFgIHP5/KV++AKupxjuL59fahoqHCqogYmxx6vYil/zGTmTHS82oF4SxyWbsEVcuHxzz2OmnNq0LWza8yBQ7ECgpnyFychU8VMqjCkIIdMGfl/WN5yPtQxP7KhdEEpul7rQqY34yTk5gMPZjPe0nJAQ2Bbt6GGVJgZE907uiEKIj/yiWvQUhpkl8x3gCyG6KEoQrUhmFmT78KIPFEXNpx8HId19DaLf109ocNf7YcoibB0Pm7CE/GgYkkF/FV+5OI5WLqFpj/xYZ+MMRgZgzfD682CgQEM8EQ8TsM8b8QLI23g3I+di7bn23DomUPo2NbB71fqAbMZogejsA1+TJfqSiHaHEXp/NJhk2NH22HJB0HPrX8OsZYYZJcMf7UfkiJhz4N7cOjJQzhj7RlTOnCYSX9xEjJVzKQKQwpyyJQhe2QkjyTRsb3DqTYK1fK8ltL5pZAUCW1b2sBM5gx+BFAYiAAAg1PtZOkW+g/yfjZGxnD+8dptNgzNALMY4m1xhGpDfB6VbjsBkG3yXB8AEGQBgsBnVjEwiIroDOnMV1WFZodQv6ae78x08ZyansYeqEHVSQRm9oDdIhvOIE5/pR+K59hE8pL6EkQPRuEKuCApEoyswTv/MgbFozivT76hoKRII+bCjLTDongU1K6uhW3ZCM4Kwlfpc8ZV5BO+RVks6Ck01QKHmfQXJyFTxUyqMKQgh0wZzZuboSd1mDkT7hI3mM3Qsb0DroALy/5lGapXVuPlH72MssVlaHu+Df37+gt2cAbKBzSWwfvaWIYFZjMoPgXZaBZmznQSjI2sgdSRlFOurXpVQAAvIRd4wJTq4EGLqIh8Fyelw7B46XhkYQSZ3gwv2z4YhW3avAz+zbPQ8UoHUl0pZPoy/OsNyPeBBMACstEsyheXF8xnat7cjKaHm+CJeOAudSPVleKDNgGYGZMHNUEV5YvLEaoN4bxbz0Pp/FIAvMHfWPNiYodisHQLgeqAM9fKNvigT9uwkYvlnMeZioHDTPqLk5CpZKoUFJwoCnLIlJA/dqhaWYVMTwaxlhgyPRloSQ3ZaBbbfrYNLr8LWkJD2eIyzH3bXCQOJ2BmzKEPJgKmZkJP6fxdie9GmBkTuVgOyc4kbNuGKInOEZVpmPD6vDj3Y+eic3snstEsPGEP6tfUo7epFy997yVYhgVJlWBZFi8Xd/Ep31XLqpwy976mPngjXiy6ZhHq19Rj/6P7ET0YhSAKPLA5egTGbD7Uk8kMikvhwdPR+Uz1a+rx7Feeha/Sh1RHCpnuDD8SM/m2EjMZLMFCoCqA6pXVSHWkYGomXv35q7yxn2mPOfm2ZG4JFI8CLaFBdvNfB/m1CKIAd8mx6exTMXCYSX9xEjKVFLugYLJQkEOmhIHHDsFZQVi6BS2hwQUXnyoOAVpCg5Ez0Lu7F5IiYfabZqN1SyuYzfgxEHCsKspi0BIaJJcEX5UPy/9lOdpeaMP+v+2HmTGdwAcC4Al7oPgUmFkTcy6Yg+UfXl7wjzp+OI49D+5Boj0BzeYDNgVRgCiKzu5OZGEEoboQogejWHXrKsxaNYsfL4EfT8kemR9/MYAJ/LjNU+6B6lVRfU41zv//zkfp/FJ4I1707etzcpOizXxnyF3iRi6RA7MYZK8MUeTl7OnuNJJHkvjHF/6BREsCakBFeF4Yik8ZUw5NZEEEcy6cg31/3QcAcAV5IAkA7hI3bNOGmTOndOAwU/7iJGQqmu4VhhTkkClh4LGDy3Yh1ZWCK+BCIp6A7JLhq+RDLVkvg2Va6N3bi9lvng3PHg/0hA7Fp8DSLehp3Rnf4Aq44CnzYPG7F+Ocj5yDZR9ahqe+/BReufcVQOQ7Fu4SN/xVfmfXh4EN+Ucdmh3Cqk+uwnPrn+NVXRaDqZsQLREuuHD4xcOQVAnukBslc0sQnh8GwAM3f4Ufqk9Fd2M3zIwJy7Qge2SIkghRFOEOubHgigWYvWr2kNci3Z2GmTV5x2VVcgaRyooMZvEmiB3bO5zEZ2+5F6IkInowCkmR4K/2jymH5tJ7LgUAtP6zFamOFGSPjDPfc6ZTXTXVA4eZ8hcnIWTyUZBDpoSBxw65WA5G1gAY7zTsr+QVP4IgQPEp8FX4kGhLINOTQdnCMuSiOYTmhtC/vx+WbiEbzUJSJOeopenhJiy5dglCs0N4021vwu4/7UbqSIoP10xoTm5OydwSJ68FKOwRIylHxzkYNvSMDgGC8/n+Kj+MtIHejl6E54edC6yn1AN3iRuuEC/5tnQLWkzjlVgSQ3B2EGf/69nDJgrXXlCLxk2NAPiulJE1IEp8UGg+x0iV+JyuQE0AvXt6nWGiAJ8fFaoLIdOTOW4OjbfUi6t/djX69vUhdiiGkrkliCyIDHkNpnrgMN3/4iSETL6iBjnr16/Hgw8+iD179sDj8WD16tW45557sGjRomIui5yg410YR/p4w7oG6CkdB584CDPLk2vdpW6oAd7518yZkN0ySupKnGTbQE0AzZubse/RfcjFc7xhnsR3MVSvCj2to/9AP3b9ehfe8p9vQfPmZqhuPh4iH0TpSR1qQEX9pbwyanBzOVEWEW+NwxV0QU/rUIMqMj28V46ZNZFsT8Jf7UekMgJmMWeqtzfiReXySrx878s8GKr0wxvh5fHuoBvL/mUZzvnIOcO+hvnAZ8eGHU5Scz5oysVy8Ff5sfi9i9G/r58fax2MwsyZzoT1XDyHdHea72YNyKEZ7XsTWRBxgpu8yQgcplOgRAiZWYoa5DzzzDO45ZZbcN5558E0TfzXf/0X3v72t+ONN96Az+cr5tLIBByv8+zAj2f6eOl13UV1OPvmswHwpm5dO7sgSAJ85fx4yl/jdwZOWqaF4KwgtISGRdcsco54GtY1INWVwuEX+dgD2cWTjFWfClESofpV9Lzeg85dndixYQffBTkaABlZA7Zpg8UYdm7YiXhLHFVnV6H5H81Oc7lYSwx9e/sAkQ/q1FM6zIwJQRIgSLysvHplNRSvgt49vWj6SxNK5/PePm1b2pDpzvCmhTbgLfdi9qrZ8JZ70f5SO9rPay/Y/cnLH8HUr6nHjo07sP/R/Uh38c7H4fowFl2zCNXnViPWzKujQrUhPtwTfJinbdnQE7ozP6oYc2hmyuwbQsj0JTDGRijCPfV6enpQUVGBZ555BhdddNFx759IJBAKhRCPxxEMBo97f3Jy5P9SP/D4ATRv5sHB4CqXFTeswI6NO7D7wd3QkzoyfRkYGQO2YWPeZfMwa9Us7P/bfudzE+0JdG7vhOrnuzi5WA7uEjfKl5Sj+pxq1F1Uh0BNAN6IF1t/tBVNDzch3ZdG/95+SCovhXYFXZDdMsLzwvxYZ3YAr//mdXjLvLyHze4eaDENkptXSalBFVaWd/ytWFrBB3qGPTCyBvY8vAeZbt6gUHJJfAilzsvSJVnizQezJizdgqiIfOaVIqF0filP5BV4T5yyhWWY9aZZ6NzRib49fShbUoZAdeC4F/9MXwbRA1EYOQPdu7qdTsSJIwkYSQMVyyqQ7k4jejAKPaWjdH4pVty0wnnMgeMyhvvenMj3faQdmpPxNSd7jYSQ4jhV1+8plZMTj8cBAKWlpcN+XNM0aJrmvJ9IJE7JusjwBu/M9DT2IFATQNniMp74OqCBXO1qPodKT+pIdvD5SK5KFw+OHjuAnjd6ULmsEp5SD3oaexBtjkJLatAzOpb/y3Isft9iCBDQ8mwLunbyHRLZLcMyLbS/1A5mM8huGbJLBhhg27zHS805NQjUBGBpFp8Z5VedRF0za/Kmfgbf+ch3JM70ZJDqTPEmf5LoVF5ZmgWb2XArblim5TQjtHQL2Z6s87owxqu9bNlG7FDMGRdhmzaObDuC5JEkjIwB2cM7DGtJDW9segPAyJVQA2d75QPJ0JwQFJ+Czlc7EWuOIVATwKzzZqH8rHIs/eBShGbzBnmT3RV4LDs0p7oT8eBghnaRCCHAFApybNvGpz71KVxwwQU466yzhr3P+vXrcdddd53ilZGRDJwZ5Il4YFs2EocT6GnsQWRhBEbWgKRKvO/NoRgyfRlk+jJQfaqzQ+Mp9UBP60i0JVBzbg2OvHIEHds7eOM7gTem2/3H3QjODkJSpYILfPvWdnS/3g0IQLg+DNu0IcgCP0oSBdiWjWhzFLloDme++0z0vNGD8Lwwb9h39EiH2Yx3UJYFGBnj2Jwqw4YgCsileBK0ElB4abrOCgKa4eTHQtgWH7JpWRZEgScE26aNvr19kFwSIgsi6NjWAUu3YJs2dmzYgfo19U5wMthwgUNwVhCiLMJIG05DwMHBw2R3BR7LrKhT1Yl4pGDGMizsf3T/uOZZ0a4PITPPlAlybrnlFrz++ut47rnnRrzP7bffjs985jPO+4lEArW1tadieWSQwRdcI2PAFXTByBg4su0Ienb38AZ4APyVfviqfBBlEVpSgyfMOxFLisSTZQMq9KSOg5sP8knghs3HMkgiBElALpbDjvt28EDHJcEVcIHZDLl4Du6wG9m+rNMlWXbJvD+OIjk7MaZmIt4eh23ZCNTwzr59+/p4z5qjwZSoiLAMy3l+lmHx8Q0S3+nJ9o4e2BQ42p8w37RPEAU+E2vAAND8gM7QnBDcIfeQBOnBr3W2P4vYoRiSHUmE54ULPu4OuaHF+es63MV5MrsCj3WHZnBLACNr8KaDSW1SGwoOF3C9sekNaGkN5YvLx7SLRLs+hMxcUyLIufXWW/HII4/g2WefxezZs0e8n8vlgsvlOoUrIyMZ/Je64lUQmBVAyzMtMNIGZK/MAw2RN91rf7EdkktCpjuDbG8WikeB7JWdrrqxlhgSrceOH23Nhn10KJVt2shEM4gejELxKuh5owfeci+vOAp7YKQNaEl+jGlmTUiyBHeY96zJ9ecQb41j1/27oPgUKB4Fs8+fjZpza5DtzyLdmXaCMQxsnmzzNZwoZjCILhGKWwEDg+rnCc9aXOOBnutYMJZPkM5XZ+Uvvi3PtKDnDX67FueTx0vnlSJUF4Ir4BpT4BA+I4yWZ1oADN8VeKy7GGPdofFGvKhZVYNt926DntGdcRaqV8U5HztnUnZKRgq4crEcevf0omp51ahrzKMp5oTMXEUNchhj+MQnPoGHHnoITz/9NOrr64u5HDIOw+0OWBofd5BPuhUEAYIiwBV0YdevdkGURPgqfUj3pKFndeQSfABk4kgCdm7AXKeBBMDK8h2WrMV3bLS4hnRnGpKbl4F7y/lFNXYoBj2tQ3bJqFhSgeSRJKLNUR5EKHygZao7hf1/2++UpUPkIxbyX+NkYIwfh3nDXnjLvYg1x/iwTsZ41ZhmIRfPITg7CD2tOxfh/MU3G80i05/hs6UEINmeRLI9CdcOF1wh14iBw8Adilwsx3v57O51EoEXXbMIC9+5EDs27hjzLsa4doXy30sBECCACazw9hM0UsDlq+CVmenuNJ9HNsoaaYo5ITNbUYOcW265Bb/+9a/x8MMPIxAIoLOzEwAQCoXg8Uyd+ThkqMEzgyRVQv/+foiyCF+FD94yLz8C0iyke9LIdGfgCvFqJ3fQjWx/lueiGPaxaeLDGfAhURL5xZIx3pAvKzj9Y9K9aZg634rxlnkRqgvh8EuHAfDgi9mM5+AcbaznKnFBEnkgxhiD5JNga7YzBHPSSIDk4o0JvWVemFne68fl5zuSekrng0ABxFvjSHWkcODxA5A9Mtq2tMEVdCHWEoM76Oa7QCkdWlJzJpPnc5uGCxwG7lCE54XhiXiQaE2gemU1Vv7bSieR+Xi7GIN3eY43KypfCdb6z1bUrKqBK1B4XHXk5SOYe8lcADih/JeRAi5LtxCs5a0GUl2pUedZ0RRzQma2ogY59957LwDgkksuKbh9w4YNuPHGG0/9gsi4DJwZFD0YBbMZ3KVuuEvcULx8F0AQBESbozAyBrzlXt6oLpqDmeMBifPXPTD6X/gSD6QEWeCBwdH8GXeY57OIGp8jJbtlaEkNbS+0QU/rgM3nTEkuCWb22OTxbH8WskvmScIMsNIWIMKZDD5ZBFGAJ+yBmTWR6kpB8SkI1gbhCrpgWzYUt4J0Txqym8+2yjc31FM69JQOxc/HVbhDbliGBVMzobj5Y+gpHZHFEUiShNZ/tmLxexY7F+TRdiiiB6LHvU/bljbUr6lH8+bmIbs8C9+50LnPwJEP+V2h5s3NiLfFEWuOobyhHFUrquD18nXZlo22LW148ktPOkd0E81/GS3gWnr9UkiqdNx5VjTFnJCZrejHVWT6GjgzKHogiq0/3Ir+g/1IdaTAbJ5/ku5J8yorhVdZMcZnLjkBzfF+BHhREgRR4GXfGg+ORFHkycfRnBM8MZs5DQCz/Vk+SVsQoPpVWCavYMpjNkO2PwsMTLuxwZOQXeKk5OMAPCfHtmyc86/noGcPnxCez1fRkzq2/WQbbyioiPDX+FG5tBJmzkRPYw9EWYSt25BUnqAtiHyUhCiLPD8npiHbxxOiJVVC6aJSrP7MahgZAx2vdiDZwTsxGxnDCToH7lAAGHUXY9evdqH9pfYRd3kGz4ra9rNt2PZjnoPDbP59bt/aDkEUUHNODQCgc3snUl0plJ1ZBn+V/4TzX0Ybzql4lOPOs6Ip5oTMbFMi8ZhMH8MlqHojXihe3iQv0ZaAmTWRi/F8G1Hmf60LAg9S8p1/8wRJcKaGDyHyo6dMXwbMZDBNPqxSlERnaKWRM5DsSKJ0XilEVYSZM/mRkEvm5ekpnR9vpfWCgMrMmcMHWGxyEo4HyvZmMfsts7HgygVgYAXTxg89fQi5eA65KL+wtkRb4K/iQz2rz61G+4vtcAVdSLQnIAiCU/auJTQIosB3gAwbRtbAG799A/FDcTCLoXNnJ6IHopBcEgI1AZTUlaC8oXzIDoXqV5HqSh079gKgJ/koi57GnoLqOVEW4Qq6CnJVBu4c7frVLmSj/GdDdsvOUeWRbUcQnheGltAQPRhFSX0JSuaWADjx/JfjDeccy1gKmmJOyMxFQQ4Zk+OV2TZuakS6K43wvDCy0Sy0OB98WX1uNXp39zoX6HhrvOBxBZGPRTCzA0qbBP6meBTYls0v5JbNgw/Gq61ERYS3wotURwqWZiHaHOVHWEfjk3ySsyDyEvSCyilgUo+kjscyLDz7tWcRmhUqeN08pR5ocQ2J1gRcQRdEVQSzGHp398Jf7ceqW1dB9ano2NbhBI6eUg/S3bwiTA2ovDJMOBYM7n9sP0rqSqAndSheBVpCQ7orDT2tIxfPwRP2ODsURtYAYwzNTzbzozyL7xLJbhmz3jwLAhPgLfeic0cn4m1xWLoFQRKguBUkjyQLgof+A/1ItCV4IvTRgClYG4Rt29BiGnr39DoT36tXVhe8PpOR/3IiM7ZoijkhMxcFOWRMRiuzLVtchsbfNcIVcqHszDJko7wKykgbzrGVltQgSiIkl8SPjY4GI7Z+rFQcAs+xkb0y/OV+iC4RZsZEydwSpLpSOPLKEefzmM140vLRxntmtnBnxgLvc8NMxmdMybxMnFnshKp7REWEbfNgy9mRElF47DWYDUT3R+Hyu6D4FOd1W3jVQliWBS2hOaMfbMuGmTOhp3S8+L0X4Y14UX1ONd786TdDdss48vIRPH3H00h18yNBJjI+piKgon9fP9SAimx/Fq6gC75KHxKHE9CTOmRTRqojhSXvW+LsUOQDU8WrONVelm7BHeR9d6wc34lJdaag+vjE82x/FqlYCi3PtqByaaXzFIV8A6CBr5UkwhvxQpRErPzISlQtr8Lz33ie91QKHGsFMVXyX2iKOSEzDwU55LhGSlA1cyaeW/8cjCwfhQABzmgFS7cgqRIkRYKnzAMBAtLd6aHHRAKOBQgC39kx0yb6E/2QXBKMjMGni+t2wecwiyHdlR65Msvi866YzWBmTB5cWTYPSCa6iyMASkCBFtUKn8MYTrfMnInO7Z0QRAHB2UG0bWmDv8aPdNfRqjDGAxxLswAG5KwcEm0JKF4FzZub+WupStj36D6+A2MzSC4J/ko/RIk3WWQ2g+yRnREXoiQiOCuITF8GZWeWwcgYmHXeLCgexfmeKj7eyVn1q061WzaahTflBbMYEu0JuPy8Ks7MmWCMITwvjK6dXU4/HwAIzw8jUBtAvCUOURKd++diOZTUlaD+rfVTLv+FOhwTMvNRkEOOa6Qy245XOxBricFf5efjFLImzJzp5G7oaR2KT0GmOwMtqcFX6YPskXlwYvMdFUEU+P8DgM0Dk/wFV0/ogAhk+7K8KsoGDy7y7Vas41dmCQI/zlF8vErJSBoTeg1cYRfC88Po39s//p0gka9VT+vo3tWNYG0QHds7sPeRvUh1pIb9FNuw0d3YjVR3CuH6MHbct4OPiDhaDm/pFtKdaWSjWcgqDyoFUYCvzAdT498H1a/CyBgwszyRmdkMW3+4FfVr6lG+pBxdr3UhG8si3hIHsxkUjwLFq8DMmUgcTsAdcsNbyi/+uXgOkiqhbFEZwvPDSHWkCo6XvBEvln1oGW/+l9Z5A0AGeEu9WPqhpc79pkL+C3U4JuT0QUEOOa7hymwzfRnEW+KQXTK85V5k+7MQRRGWfbSKKX96wQCIgCiLzu6DpEowdZM3C5SEgt40zGLQ4gN2So7OgLIsq6C5nNM4cJSAw0gZTmJzrj937HPHGaSICs+VGVj6Pi42v7CKssgrjl5qR29Tb2Ee0mBHA0AjZSB6MIpsNAt3kOe0uEvcMDUTuWgOVs6CJEtwhVx8TEbWhDvsRuJwAkbGQLYvC8uwoPgUlJ1Z5hyXHfzHQWcIKQAnMRwAZI8MWZVhZAxUr6yG4lWg+lUnCMonKg8+Xlp2/TJICp8vlo1m4Ql7UL+mviCAmQr5L9ThmJDTBwU55LgGHjOYOROSIiF6KApLt+Cv9kOAAEmVAAB26ug077QBSDwYyufBmBrfXVADKliCOZVCBYHHMAHIkG7E4tH7HS9gYTxoUjwKjJwxpmOlIQReAaandb6zdByyj++q5Ad95tm6DVu3YQomuhu7C4/fhiPB2eGyLRtm1oQ6iw82tQx+FOgKucAshrmXzEXZIp4L1b+v3ynNTnfzhGNRFgEGZHqPDkcNqDjy8hEEZweR7Eg6c7WYzRslqkGeOOyNeFG9shrtL7Xz4yfNRLwtDj2hY8m6JUOCk/EEMMXKf6EOx4ScXijIIWOy8J0L0fpcK1r/2cp3JSTRGaIpKuKxYZg5E8xizs5N/lgKjO8WGBkDZs6Erdt8FwfjTwSWFGlIKfqIjua6CKIAJjKejzOer8cAKzf2JB4zax7bxRouCBtQoi5IwrHXZ5D8FHXbsiExyekTZBnHukRLqgTLsOAr90HxKhBEAVpcQ2RBBLZlw0jznRzVryJYG4SZNdG1qwv+Kj+MrIHShaVwBV3IxfgOFbMZr9ryqQhUB1AytwRLr18KT6kHO+7bgURbAoIkIFQXgmVYThfjwYYLYKZK/gt1OCbk9EJBDhnW4IvS3r/sRfJIEuVLynnpsiDg0NOHkO5OQ5RFKF4F6e40n9Mk8Iu3qfEjKYgABDgJs06F1GjjHEYx5gAnf3/tFNaLj6Xi6mjwwxgbclyX/7gg8N0V1adC9vBBpqnOFLS45uzm2IYNT5nHOTZKdaYQa+FzsQKzAhBkvsOmpTTEDsX49yRnIt2T5uX5uo1Zq2YBAHoae2AzG7JLRtXyKli6hbqL6+CNeNG+td3J21G9/Hu/9897ISnScY93plr+C3U4JuT0QkEOKTDcRalsSRl2/3E3Mr0ZiDIfdBmqDaHmTTU48vIRGDkDzGBQfLwhoJbQ+PGQBSfp18yZQ45wJmyKNsoWFRGM8bL1YQOc/DHbwKO5o12WndtEOB2Qg7OD8EQ8iDfHEZgVQC6ag57h/W4A/nmSJCHVlUL0QBSx1hisnAVPxOPsEHnLvUi0J2CkDL6+ozO8RElEd2M3ZI8M27ZhGnzwqepTkepMYemHlqJhXQNe+fEr2PPQHlgGT2w2NRN6XEfpwtIxHe9MtfyXqVbhRQg5uSjIIQWGuyht/9l2JDuSCNWFoPp4xU77S+0QFAGiIKKsoQwVZ1XAFXTh0FOH0LWzC3pOh5XhOy5GypjcwGSKBjm2yY/FRiLKPIGZWezY+AjjWM8gQRYg+2RIsgRP2IPIggj6mvp4UrEqOVVmgiBAcktQPAqSnUns/uNuAICv0gfFrUB2y4i1xmBrNtSQ6uQmMYlBFHmQqvpUmFkTnTs7kWhNQA2qiCyIQPEoYBaDpVno3tWN7b/Yjlwix5s2ijxJ2cyaiB6MwlvmHfV4Z6rmv0yFCi9CyKlBQc5paKT8iOEuSi7bBdPg+RqM8VwbI2Pw3ZsMg6/SB3fIjd7GXuQSOaQ7006p85jnU43HwF2PfJXV5E5hKCC5pIJOyqNig47gBu3Q2IZdsHZ30I2KsyrQt78PsiKj5jw+sdsyLGS6MwjVhRBrjsHMmk5Vmjvo5gnbjDlJ3JmeDLzlXp63o1lwBV1wB91I96aRi+V48KXwXBsA8FX4ILkkJNuTPDFZ5R2nYy0xKB4FuXgOXbu64Aq50L+Pl8wzkUFQBYiSyNfXyxPKRzveGZz/YmQMPsdM5XPMipX/MhUqvAghpwYFOaeR4+VHDJeUmS99VrwK9CSvLsr2Z505VLlYDn17+yBIArobu09+/suggElSpJP6Nd1hN3LJHJ9SPg6iejTxOp9vk0++lvkYC9uykYvlkOnJoLS+FKULShGcFQTAx0DEW+LY9+g+ZHoyECURbubmJfhuCVbSgpHjx0+qjwc57pAbgiAg3ZuGFteg+BU+2ytt8DWIvCGhK+TiR2BtcegZHZJbgqzIfGCnAKfXkZkzoWf1gkA1P/kd4AFb6cLSUYODfP5Lpi+DTE/GGQ1hmzb8lX7InpF//ZyKRGXqcEzIzEdBzmlktPyIhVctRDaa5b1cBiVlWpoF2SujbGEZooeiyMayzoXTNm0kO5PQYho/nsLRqiF2tDQ832FYwuTMixpUbp7v7XKypDvTgARIXomXso9xV2pIiTgDIPMcEFPjE8UFQUC2P8vLwYN8zEF+gnjfvj6YmglJ5WMwsr1ZmLoJZh6rWEseTsIddjvHYIpfgepT4a/2I3mEf08kVYISVAAbvGmgZiHeFkcumuM7PiG3M9qB2Qy5RA6KW+E9jMDHYeSP1/KvtyAKkD0yFl61cNTXIJ//svX7W5Hpz8BdwtdqpA3oSR3Nm5uH5OVMtURlQsj0RkHOaSJ/FOUKupzybn+lH7ZpY8eGHWje3MwDliNJ6EkdFcsqkDic4I3o+njwY+ZMqEHV6W2Tbz6nxbWC4xznyIbhWGAzWbGIwHdDmMkKk3hPJgtOAHdCTPCp6AKDrMrwRrxgjCHVyedyecIe9O3rQ+/eXmegqKiIEFXxWOl5PnC0AUMzYPfY8FXyLsf5URqh2hBEgU9/r2ioQKY3gyPbjsDWeV+iXCwHURJRtaIKzGRItCWcpoDMZLBMy2kLILtlGFmeUyVIPN9I9aqoXFaJioaK4z7l+jX12LFhB/SsDtu0IakSKpdVwlvuHTYvZ6olKhNCpjcKck4TySNJdL3WxXNpjvZYCdWGYGgG+g/0w1/tR0ldCRSfgo5XOrDv0X3QEhpEWYS7xA3Fq6Bvbx/0jO6UiFuaNaEOwickX17Npmj28XFYugXJLSFQHYDiVZxp6z2NPRAVEenedMHEdNvkPXEg8uBOUiSnSWC+r43iUeCJeJBsT8IV5J2P6y+tR8e2Dvgr/QjUBCBKIqLNUZ4vpVsIVAUQqg1BDajo298HI2U4idPuoBtGzoAgCPBV+JDqSPF+PSrv11NSV4Jl/7JsTEc9ZtZEoCaAyuWVQ0ZHDO5LM1UTlQkh0xcFOaeJlmdbkOpMQfEq8JR6YOb4PCMtrcHld0H18R0aX4UPelpHti8LySXxQY9H/8r3V/rRf7Cfj2XQzMJJ3KeKxZv7TSeCfDQoO9qI0NIs5OJ86nf54nKoIRUd2ztgxsyhO14MYAIDTP44ik+Bu8QNV4A38ctGs9CSGiqXV2LpdUtRd1EdAjUBAMDmA5v50WOlH1UrqhBZGEG8LQ5JkVB+Vjn2P7ofnlJexdXb1AvYQGBW4NgMsqOVWK6gCwy8/1F4Xhjn/Ps5Y65EyuflWLrlBC7A8H1pqFEfIWSyUZBzGsj0ZdC1s8tp46+leGCT7c8i25eFIAo4/NJh3gclZyLZngQTePWOKInQkzpkrwzbsPnMKQinPriZxgY2QAQA2DzXx9It6Fkdrc+38plYI72mRzetFI8CT5kH3lIvJIXvqoiyiNIzSnH2v52NmpU18Ea8TtJu5fJKNG9uBsADBS2pwUgbkMtkNP2lCf1N/XxMh4uXrPur/HwOWV8Wtm3DylnQEhpK5pYgPC+MyhWVWPrBpQjNDo2w0KHG05eGGvURQiYbBTmngfxRlZ7RYWo8hybrzjpl4QCQS+SgxTToaR2wj+VfCKIAUzehJTVA4FU1oihO2V41U9IIjQFzsRxanmnhOyb5URXDva4MEBQBgigg2ZZEpjvDK5NsvrtjZAzs3LATOzfshGXygZ0AILtlKH7eiTrdnYY34oWv0oeOVzqQjWURmBWAbfIqL8WjoOH9DZj/9vlOMNF/oB9aXIMr5ELp/NErqUYz1r401KiPEDLZKMg5DQw8qgrPDUNP6Uj18hEB+XEBsFFwgWUmQ7aPlxUPHjtg27SNc8KOvoS2ZkNwCVC8yqiVYpIswVfpg57Ske3P8u+dzHvfWKaFTH8GXa91IRfNwR12o3J5JcwMz3vxRrwIzw8jPD+Mrp08L8sdckNSJCheBbJLhp7R0f5SO876wFlQvMqIFU5GxhhTaffgEvCx9qWhRn2EkMlEQc4MNPACAwBdO7sQnhdGsiPJG7KlDeR6czxxeJQZSxOdLUWAimUVSHWmkOnNHPdoj4FXNA07xwoAJCBYG4QgCvCW8aMq27ahJ3V4I15ED0YBmycpq14Vtm6jc3snREGEO+yGbdpQvAqaNzcj2ZnkYyGsY7OzXH4XBElANppFtj+LvY/sHVLhtPuPu9H6XCsEQRi1tHu0EvCxoEZ9hJDJREHODDLcBSZ8Rhi5WA5VZ1fBFXShY0cHsn1Zp0KHcmtOjr69fSiZWwItoR13irlt2E7QARnHJqUL4NPFJQHuEjcszULicALB2Tzg0RIaZA9v5JefRyV7ZJg5E5ZmgckMsluGltIgSiICNQF07uyEntZ5lZNHgW3aSPemIXtkKF4FsUMxNG9uHlLh1LunF12vdWHuW+fCW+5FujuNNza9AaCwtHu4EvCxBkgDUaM+QshkEIu9ADJ58hcYQRIQmhOCIAloeaYFifYEos1RqAEVqk9FoCrAczpGHrNETpCVsxA/HIdlWmP6VyYoAmABoijCU+qB5JGg+BWnP1GyPenkRAmSANu2IcmSU8YvCALvWKyZzrgLM2ci2hxFpjeD9pfbkWhP8K7JigTbsGHpFm8FYFrQEzoShxN46fsvOUdF+Q7HRsZANpqFIAmIt8XR+lwrul/vRv/BfuzYsAPxw3EAQ0vAZbcMf6UfWlLDwScOwjIs5+ey6eEmNG5qPInfAUIIoSBnxhh4gXEFXNDTOmS3DD2lo/v1bhz4+wHseWgPYs0x6BmdH0XRadRJZaZM3vNmtN2yowGKKImAxBO+Dc2AlbNgpAyeCA4gG80i0ZYAExiy/VmYaROhOSHYtu0M7VQ8Csws76ZsZAyYWRPMYvBG+BFX7+5eAEDVyiq4S9wwcyYf2yGKEEQBnjIPwvPCEFURPW/0oKexBwDfITTSBmzDRqIlAUEQ4A65Ibtl9B/ox65f7+JrPFoC7g65naeXD5BEhTcnlN0yXAEXJJeE5s3NyPRlTsprTwghAB1XzQiZvgwOPX0I/Qf7nVEBlm5BS2rIRfmARneJG0bGgJbUkOnJwBV0wUgbxV76aU+QeBm4pEhgFoOZPdoJ8GiTRWYyMJFXwZlZE4IkwMyacIfdCNYHoQZU5PpzYDaDqZuwbZsHDhZ/DFHlO0P5hoKiLCJYE4TiUtC/vx/Z/ixyCd4BOXYwBlHgJek9jT3obepFqC4EPcmr8pjJ4KpwQfXzQZ+ixAOXntd7kOnLDFsCng+QVJ8KURbRuaMT8bY4zCw/Unv1F6/iTZ94E41sIIScFLSTM40ZWQPbfrYNm967CY9/9nG0/rMVLc+0INWV4rs4CZ0HMgwI1ATgLfdCdstgNuOt+knR5edCiZLolO3zD6Dg/5nNIMg88Tg/Tbxvdx8EQcCFX7wQtRfVQk/qsHXbObqCBJgZkx9TMYbKpZUI1YbQ+Wonevf0wtRMHrwc7ZysJ3XeFBBA2eIy2IaN6MEoJFXC7DfP5sdllg3btKGndOhpHeF5YehpHR2vdgAAai+oRborjVRXig/5TPJxDp5SD2LNMfQ29UIQBEguCaIqouWZFjq2IoScNLSTM401bmrEth9vQ6YvA8u0wCwGZjGkOlIw0gaMLB/hYOomn4fEAMWn8GqekzzYkowR4+XhrpALuUSO/9kxMFfKBh/pIBSOdLB1G8GaIAI1ASy8aiHe+MMbEASBj3VwSdDiGu8MLQAuvwu1q2udHb3ooShMw3QGeAqSAEmWYGQNyB4Z8dY4qldWwxvxYtWtqxCeH4aRNfDghx5EuivtzKAqPaMUWlJD9EAUr/z4FXgjXtSsqsEZa8/AkZePOCXg8y6dh8ThBHqbeiG7+a8cM2eibFEZ/NV+GtlACDlpKMiZpjJ9GTRvboae0QEBfMcmf3G0AS2m8f8XeUM/S7MgCAIs0TpWyUOKT+K7I0xgfHyGAAgQeMJyngUwkX+/RIkfbRkZA5n+DHqberH/sf2IHYo5eS+CKMD22tCSGizDgqmZyPRmYGkWZr15FsCAyBkRHH7hMNxhN3LRHJLtSVimxZORLQYrZ+HM954JBp4DBAAN1zZg36P74Aq64Kvwoeu1LvTv7UfZmWWILIggF89h/6P7seiaRVizfo1TAq54Fbz0/Zfw6k9fhSmYUDwKyhaVobyhHMxiI45sGNxrZ6wm+nmEkJmHgpxpKtufRTaa5Ts1GdNJJBako3OS8smuDGAG4/OPRDg7OJJbcuYoUQJy8cgeGe6gG6X1pbCyFnLRHO+Zc3QIar6UXJREKB4Fkio508atnIXogSheu/815GI5APz7K7t5ObhlWDAyPGFYUiSc8Y4zUL+mHtH9UViGBTWgOsdljPHZVLbFE5njh+PY9tNt2P7z7bxarzaEsjPLEKgJgFkMicMJpDpSKDuzDLPPnw1JkYYM04wsiDjPc+W/rURPYw+vsKoN8eGkAFL9qSEjG0brtTNa7s7Az8v0ZSDKIuouqsPZN59NOT+EnKYoyJmmPKUeeMIe2JYNI2fAMo42kxvYwO/ozo6gCmAGO9bVWOT/tS0+dZqa/hWPmTYhlfExDIpf4eMeorxRo+gSIQh8nIOkSLAt2xm7AYFP+IYEZPozzlR427DhDrudIMkVdGHlv67E0g8t5V/DozijE9whN+ItcR4QqCJcQRfvsQMLDMwZ0skYQ6w1BsWnwBP2oH5NPSILI3jlx68gsiACSZGc5zPSME1vxIv6NfVoergJWpJ32h5pZMNwvXbyox4G9uQZrHFTI3b/cTe0pIZsNAsjbaB9azs6d3Ri7ffXUqBDyGmIEo+nKW/EizkXzoGt2zDSvOTYNuxjf/0fpXgVVCyu4B1z84mtR7/rgiDwHR5SPAzQ0zoqV1TCHXTD1m34KnyoPqcaZYvK4Al74C3z8iMti/E8m6NHXKLCgyDFpcBX4YMgC7BNG1pCg5ExILtkLLhyAQKzA3j+G8/j6TuexubbN8MyLJyx9gyUzC3huzk2g+pVeVm4S+bjHtwKmMWckm9m8mMrV9CFrp1dKJlbAm/Ey7snDzDaMM2GdQ1YdM0i54iKWWzIyIaReu34Kn3ODs1w8p+nJTWkOlOQZAn+Sj8Uj4KDTxzE9v/bPrnfN0LItEA7OdPA4ByD/PvZaBYMx4Zs5oMb0SU6xxyyR4bkkuAKuJBgCX4HE/xIRBHoqGoKyPZksfWHW/lx1NGRDenuNGzDRmRhBFVnV6HthTZ07+qGJPMAJJvJwjItqD4V6R5+X9klwxZtuAIuVJ9bjYVXLoTkkrD/0f0FuyL5vJnLvnEZogeieP5bz0MQBah+FS3PtPD+Okd/pkRFhCiJ/Ogra0BURegp3rtnvMM0xzKyId9rJzSncNL5SDtEAz8v05dBNpqF6lOdMndPqQeWYaHl2Rac9YGzKEeHkNMMBTlT2ODcBNktO0dSuXgObc8fzVnwqTA1k48HYLzyRvbKkFUZqk+FntJ5x9xBBVXMoAhnqrByFizNgqRIcFkuWKaFssVlqDm3BkbWgCvo4kGMbkMICIAIp5RblPjWXL7yylvmxVvvfCvC88PYfPvmISMagGN5M7NWzcKCKxag6eEm2G4boirCNm0wxiCrMv95MvnPleJRYOu2s1Mz0WGao41sGK7XDjD6DlH+80RZhJE24Kp0ObebOROqT4Vt2iMGSISQmauoQc6zzz6Lb3zjG9i2bRs6Ojrw0EMP4V3velcxlzSlDM5NaN/ajt49vYgsisBb4YUW12BqJj9SCLlgZk0YGQOwjyagumS4S90wssc65yKfPkEV5FOPwId1moYJW7fR29TLjyJ1C5meDBSfAtktY9aqWYi3xtH2XBts3Ybo5VVZsPnnZ6NZuMPuIbsiRoa3FZBUCZmejHPRHxisuPwupOU0AED2ytDiGpjNeD5OqQdaQivYqZnsYZreiHfcO0T5z6u7qA7tW9udtZg5E3paR6A6AG/EO2KARAiZuYoa5KTTaSxfvhw333wz3vOe9xRzKVNOPsfAFXJBlEXoaR25eA6uoAvRg1H0NPY43XHNjAkzYxZ8PmMMelpH186uwrECFNxMTYyXjgsCfwMAPa7DKregeBUwmyEXy8EddiNQHYAoi2h7oc3ZaZEUCZKbH3UxiyF6KApPiO9uZPoyyPRkEG+Lw9It2KbN8108/J//wGOk5JEkDv7jIJoebkK8NQ7ZJTvVVeH6MOourhuyUzPZwzQnukN09s1no3NHpzMnS/WpCFQHoAZ4dRbt4hBy+ilqkLN27VqsXbu2mEuYspJHkuh6rYs39LMZv8jFc5AVGenu9LEp4iMxjx4zkGmDWQy2yKeJmzDBwI4lGIsCmMkgHC2ZE2WRH1/JPBcHACRVgqqqMHMmXvnRK1C8ChJHEogf4gM03WE3bNNGLpqDIAlo3txcUK2UD1Yql1Zi+YeXI3ogCgYGT5jvgJyqvjNjyd0Z6fPWfn8ttv/fdrQ82wLbtJ2doeMFSISQmWla5eRomgZN05z3E4lEEVdz8vTt68O2n2xDvC0Od8gNNaBCS2jQ4v9/e3ceHlV59g/8e86ZOWdmMpOZrDMJIYvsO2FJGlGhL/wEtRTa/mr1RQWlVVt8hWJRaYtgrYXK+7Yorm9/Bb1aFTdEahVLI4pgTCASdsMetiSQbZLJ7HOe3x+HOeaQhS3JJDP357pyXeacZ8485zbJ3Dznee7HB0/QoyQ4tIN4VGIhZcuNkD8EnufhqfUg4FIm/Oo5pVp1Q0WDUgFZFACfUuyRMQY5qKy0EyQBBpsBZocZnMDh3N5zAAd4G7wIepVdyn0uH7Y8sQXJQ5ORMT6jVT8uHp0JT3YPn+sOVzNCpDfqkTcvD8PvGE4FAQkhvSvJWb58OZ588slId6PL1B6pReGvC3F251m4z7khyzI89R4IkqBUK/aHlImn4VVRPDre4Zr0LoKyrD/oC4IXeJhSTEqi0+CB3qRH0B+Er9mHk9tPQm/UQ4qX4KlVCkJygrJ8POQPwZJhgS3bhlAgBFelC3JAVvYqCxeLlBmYj6GxuRFv3PoGJi+fjJGzRrZZR+ZqC/NFWmc/QiOE9E69qk7O4sWL4XQ61a9Tp05FukudIuAJoOy1Mrz5vTdxaOMhZflwSIYckhHyhOBv8MPX6IPsVzIaFmDfFvcjvRpn4CAlSHCMdSCpfxJ0Rh30Rj0S+yVCDilbM+j0Ovib/AgFQtAb9BDNSm2b5upmgAdEi7LqKC41DpJFAsdzCLgDOL//PJwVTmVCc4gpj78CsvLYS1A28fTWe1H85+J2N8kMT37nBA7WTCs4gUP5B+UR31TTXetG7eHaduvmEEII0MtGciRJgiRJl27Yy+xaswt7/r4H9SfqlWJvvjYa0YTh6MMB1jQrDAkG9C3oC1e1C75mH4xWI/re0BdHPz6qJLQXHkXFpcSBEzg0VzXDnGZWRvh4DryOVx5dQSkS2HS6CaeLT8PX6FM2/mzywt/oV0b/LtRPAgN4kQdkwNvkxfHC4602yby4MB/Qegl6d4+W9NaRJUJIZPSqkZxoE/AEUPJCCYqfK0b17mrIPhkIXvp1JEowoKmqCYHmACq2VuBM8Rl4aj3wuXwI+UIQ40Uk9EtQNrk0KlWNg74gOJ6D3qhX69iE/CE0nWmCoBcgxiujPDUHapRHVSEZeqMevJ7XFH7kdTx4ngcncOD1PDz1HnXOTVh4CbrBatAcN1gN8Lv8rdp3h546skQI6ZkiOpLjcrlw5MgR9fvjx4+jrKwMiYmJyMzMjGDPusf+t/fjwDsH0FzdjKCfspuYcmE0RQ7K8DZ61UnDckBG06kmHFh/AJJFUlbIcUpiEZ6TJYgCdEYddCYdAnVK7RtwSrIjB2QIBgEBb0CZZAwgfXw6xDgRNd/UqBtycrwyh0eKl6ATdTAmGFvVkbnawnxdpSeOLBFCeraIjuTs3LkTubm5yM3NBQAsXLgQubm5eOKJJyLZrW7hPO3E1//va5zbdw4+p48eR8UKTtkBnhOUqsUswBD0BBH0KJONDTYDBElAsDkId51S3ya+TzyShiTB1+hDKBCCIAlKdWRRgKWPBSyoDNF4G7yQQzLi0+ORcF0C9HF6hPwh+F1+5PxHDkyppm+Tq5AM0SJCZ9RBNInImZzTKkEIL79urm6Gq9qFoDcIV7ULzdXNEak7cy0jSzSHh5DYFNGRnEmTJn2771KM2fHiDpzdeRYhH2U3MYVB2TGe49TVcSF/SEledIKy8glMeSRl0MOaZYW1rxVBb1BJXKr08Ll88LuVSsZ6kx7eBi8ESYDf6QdjyuaXclAGdMq8m5pvamCwGjBg2gB4nB7UldfB2+iFTtQhPiMeI+4agZzJOag9XNtqyfXVFubrClczskRzeAiJbb1q4nE0CHgC2LVmF0pfKUXISwlOTAoBjGffTgK+MLoS9AWhN+rB8RwgKMkPCzGMf2i8+jgp4Amg7NUyHPn4CBqONSjXY4CnxqM+hgq6gwADDHFKdeTm6mYkDkzEDY/doG7wWne0Dhw4mNPNOF54HFt/t7XNJOBqC/N1havZ8uHirVG8Tq/6+paFEAkh0YmSnG628+WdKHmuBN4Gb6S7QiLpwvJ/wSAoG2KGlBHNcCXrcBVjf7MfxgQjkgYkqS+19rXCYDPAmmmFaBFxcutJhPwhBL1BhHwhdbUVxyn1lCSrhOaqZvX1LWvIlLxQgvIPymFJt3SYBPSUujNXMrJEc3gIIZTkdJOAJ4Di1cX48pkvlTk4VOMm5gmSAGOSEd46L2Sm/EAEfUEIekHZBdyoa/UhHP7gtmZaYbab4a51g9fzsKRb4KpyIdAcgGgWIYgCAu4AfE0+JA9ObrULd3hEsWR1CeSQDHetG94GL1KGpQDouUnAlYwsXbxBaZjBaoDzpJN2JSckBlCS0w0CngD+8cA/cPifh+Gt92qW8pIYxQP6OD18jcou39BD3ZdKDskQ9SKSBiYhqX+SZq7JxR/cvI6Hv9GvLDsPKI8/A54AQoEQeIFH8qBkWNIt4DhOc53wYxw5pOzvJAeVXc8BIHlwco9PAi5nZKmnrQ4jhHQ/SnK6WMATwAf3fYCD6w8qk0EpwSGcsn0Dk5WVVTqjDknZSfC7/eD1vLJNAzhIFglZE7M0H+YXf3A3HG9AMBBEyB+CTtRBF6+Dp84DTs/BkeuANcvaas5KeDTI0scCd60bclCGaBYBQNkvzWaIiiTgaubwEEKiCxUD7GK71uzCkU1HlDkX9IiKXJhozAlKQT9BLyBtTBoGTh8I+3A7RJOorrLKmpilzjUJL4EGoC7rbjjRgPoT9TDEK5u4ihYRklVSl6Hr4/RgIdZqzkp4NMhsN8Pa1wp/sx9+lx+8joev0Yems00RWSLeFYbdPgyDZgwCCymrztqKByEketFIThdy17pxdPNRhAIhdWIpiXEXVlRxPAeOV6r2Jg1IgqAX4BjtQNLAJDhPOSHoBYyZOwYAUPZamWYJdPr4dPS/tT+ObT4GX70PhgQDMgZnwJZjgxyUEfQF4axwYtRdo5D93exWyUrL0aDwHBznKacyv0fgoyoJ6Emrwwgh3Y+SnC4U/hdz0E3VjMkFnFK7JmV4CnLn5EIQBRz5+Ah4HQ+D1YDm883w1HrUxyllr5W1WgJ95OMjGDRjEP7j9/+BT3/7KfQmPWxZyq7j5/efR015DeSAjPKN5fA3+1vVhLn4MU7y4GQYEgxoOtOEQTMGIW9eXqSi02V6yuowQkj3oiSnk7lr3eq/GAGg6usqmocTqy48luIEDowxsBCDIAkQTSIGzxiM3PuUSt8hfwgnPj2BMyVnEGgOwGAzoLK0EiUvlKCytLLDJdADbh2A8g/K4ap2wXnSifMHzoPjOCQPSYY+Tt9uTZi2lmKPmDUiakZwCCEEoCSn07RVWbV6T7WymorEJgZABhinzMfSiTp1J/GTW0/C7DBD0Auo3l2NhooGNFc1w5ZjQ5/8Pgi4Ayj/oBy+Rh+yJ2VrLttyCXQ4KTleeBy15bXQGXVIHpisPrqSrFKby8HpMQ4hJBZQktNJLq6sev7geZzZcSbS3SLdTYAywfzC6F24uJ/epFfnwRisBljSLdj7970Q40SYUkwIeAPQGXVorm5G/dF6OEY7EPQE4TzphKvaBVuWTX2Llkugw8lK8pBkeOo9sGZa0XSmCRVbKxDyh9Qdy5vONrWZxNBjHEJINKPVVZ0gvCRXkAR4nV6cLT2LE1tO0GqqGMUJHDg9d+EbZbk4r+PVCsSAMi+n8XQjdHE6NJ5uhOuMC16nF556D6rKqpQl4g4zDDZlrsylNshM7JcIS5oFNQdrUFNeA47jYLAaIAdkuKpdqNhaEYFIEEJIZNFITieoP1aPY4XH4KnzIOAOQA5QPZyYFVIeT3E6Drxe2V4hFAgh4A5AEAWYUkzgBR51h+sgh2R4671wVjjBCRx4Qfk3h6fOg3N7zyFxQCJShqYgbWwaqndXd7iNgSnJBPsoO47+6yj0Jj10Bh2C3iAYY7Bl21C9uxruWjeN2hBCYgolOZ2g6M9FcJ5yUi0comAACzAwniEuIQ6CXkDzuWYYbAYEPUG4G5UtFBhjOLf/HCwOCziBg7vGray+0vNoONkAQRIw4NYB6HdzP/S7uR8AdDh3JuumLOz52x4EvAF4nV4IooDkQclI6JcAV6WrR1cwJoSQrkBJzlUKr6Ly1HtwbPMxsCCj0RvyrQu1cHyNPljSLTAkKtV2fU4fjAlGOHIdcJ93o3pvNXgdj/g+8Qh6g/A2eKE36cGCDHqzHpWllTi1/ZRmd/D2WNItsI+0I+QPQbSIyi7iJj1c1a6oqGBMCCFXipKcK9RyFZW71o1TX56Cp8YT6W6RHkYQBeiMOoR8ISXRSbPA6/QiITsBGQUZ6hYDztNO+Bv98MZ5YUwyImVoCvRxykThgCsAU6IJcalx7e4O3lLL+jc6ow4cz6lzeGgbA0JILKKJx1covIoq5A/h3P5zaK5ujnSXSA/D6S7UxQEDx3MY8oMhmLhsIuwj7cielA2D1QBAWQqelpsGvUmPhH4JyLwhE9YsK4LuIHg9r+40rjPoYLabEWePU5Pr9tA2BoQQ8i0aybkC7lo3Kj6vgKfeg/MHz6PuUB09ooolXIuvUPtteB0P0SxCNIvgdTzy5+fDmGjEoY2HWu2IbUm3INCsjNi4z7shmkVk3pSJytJKNRkKa1kfp71RGap/Qwgh36Ik5wp46jw4f+A83HXKfBxKcKIYj1bJDC8qO4Qz1sH/+AunBL2AkC+E66Zch6QBSQDQ5o7YnloPRt+rTUoAoPBoYauEqGV9nEuh+jeEEEJJzmVz17rRcKIBzdXNaK5pRsAViHSXSFfhAFOyCYYEZeQk5A8plYtlplYxVkd0wloc00k6iBYRWTdlYcofp6hN2tpKIfwoSW/Ua5KSthIimltDCCFXhpKcS2g50bihogHOM06wAA3hRC0O0Fv0iEuNAwDEpcTBU+eBHJTBZAa5RY0AnaSDMckIXuBhSbfA7DBDlmWMvGskHKMc6ghO2JU8SuooISKEEHJ5KMm5hF1rduHgewfha/bBVeWiBCdacYBkk2BxWKA36pE6MhWCXkDAE0DNgRrwIo+gJwiv0wsWYgh4A5CDMvRxeqXacLoFnloPhvxgCIb9344Tkct5lERzawgh5NpRktOOgCeAXWt2ofi5YjhPOxHytjfTlPQ2nI4Dx3FqlWFTiglJA5Jgy7YhPS8dYMDZHWfVjVbzHs5DzuQcBD1B9RoBbwBHPjqC8/vPQw7K4DiuS0ZaaG4NIYRcPUpy2rH/7f3Yt24f6o7Wtb+ShvQKnMSB+Rl4kQfHc0plagBinIjBPxiMiUsnIugJakZLhvxwyCVHUBwjHGpRSBppIYSQnoeSnDaEN9ysOVhDCU5vFN4JHIB9tB2J/RPhqnQh5A/BVekCAJgdZgy/czjGPTgOeqO+1SUudwSFRloIIaTnoiSnDZ46DxpONMDTQJWMe53wsm8eMKeZkT42HZ5aD8b8dAwGfm8g6o7WgQOHhH4JlJwQQkiUoySnDcZEI3wuH43i9BKcnoNklsDreIAHWJDBkGCAfaRdM1fm4mXahBBCohslOW0wJZmQOjQVZ4rORLorBIAhwQBbjg1x9jjUHa6Dp/7Cku4gg2STkDkhEwNuHYC0MWlwVblgy7bBmGikuTKEEBLjKMm5SLguTsAdUOZ20GhOl+L1PKR4CQFPAHJIhhQnQWfWIS4lDgNuGYCsm7KQNiYNANSkJfw4UbJKMCYYNYmMfYRdvTYlN4QQEtsoyblIeAPOOHscsiZmoeLzCkp0rgFn4MCCFyoFc8p2B5JZgs6kAwdlI0tBLyB1eCpy/k8OHKMcSB6U3KqQHvBt0mJKMrV5nhBCCGmJkpwWwquq4uxxMNvNMCYaIZpEHNtyDKFmynQuxhk48Bz/bQ0hHpDiJaSNScOIu0ZgzJwxqD1ci+o91ZDiJdiybfDWe8HAkNgvEQBQf7Re/Z5GXgghhHQmSnJa8NR54Hf5Yc20AlBGHewj7Wg63YSqsqoI966HuLDtQdaNWZi2ahqMCUac+OwEmiqb0CevDzLyMjTNkwYkdTjqQokNIYSQrkJJTgvGRCNEs6jZ/fn8/vNw17rBCd8WkYtqIsBxHHR6HXgdD17HI2VoCsY/PB4cUyoF20faNYnL0B8NjWCHCSGEkLb1iCTnhRdewMqVK1FVVYVRo0Zh9erVyMvL6/Z+mJJMmt2fBVFATXkNeB2PxIGJqC2vRYv9GXsfAdAZdQj5QmBBBo7noDPqkHVjFsb9YhziUuPUGjLhyb22bBvNfyGEENIrRTzJeeutt7Bw4UK8/PLLyM/Px6pVqzB16lSUl5cjNTW12/vTcvfn+mP1kAMykockI2VYCg6xQ6j9prbb+3RZJMA+xI6MCRk4tfUUao/UQvbL4AQOpmQT+t/SH9+Z/x3YR9hxuuQ0zhSfgTndjJxJOW0+MqLJvYQQQno7jjEW0Wcw+fn5GD9+PJ5//nkAgCzL6Nu3L/7rv/4Ljz/+eIevbWxshNVqhdPpRHx8fKf2y13rRv3RepQ8XwJ9nB5muxlepxf7390P12lXp77XpfAiD32cHjqDDoIoQGfQwZRqQtqYNDhGO2DtY2014lJ7uBZVu6tgsBqQNiaN5r4QQgjpMbry87uliI7k+P1+lJaWYvHixeoxnucxZcoUFBUVtWrv8/ng8/nU7xsbG7usb+E9iXIm56iPrwxWA5IHJCPoDSLoCSLoDipLo6+S3qxHfEY8vE1e+Jv8YLJyMWOSEY4RDtiybOg3rR+SByVrXnc5Be4uNeGXEEIIiXYRTXJqamoQCoVgt9s1x+12O7755ptW7ZcvX44nn3yyu7oHQPv4ynnSCVu2DQn9EsBCDI2nG+F1eeEY5YA5xYzyjeWoP16PkC8EWZbB8zwYz8ALPHSiDkxm4HU8HKMdyJ+fj74FfQEoq7ouRpV6CSGEkGsT8Tk5V2Lx4sVYuHCh+n1jYyP69u3bpe+pN+oxevZoDPzeQM02Ae5ad6ttA/Ln56PuaB18TmW0SbJKaj2YjjaGpGSGEEII6XwRTXKSk5MhCAKqq6s1x6urq+FwOFq1lyQJkiR1V/c0wo+v2vu+vWMtzxFCCCGk+/CRfHNRFDF27FgUFhaqx2RZRmFhIQoKCiLYM0IIIYT0dhF/XLVw4ULMnj0b48aNQ15eHlatWoXm5mbce++9ke4aIYQQQnqxiCc5P/nJT3D+/Hk88cQTqKqqwujRo7Fp06ZWk5EJIYQQQq5ExOvkXIvuWmdPCCGEkM7TXZ/fEZ2TQwghhBDSVSjJIYQQQkhUoiSHEEIIIVGJkhxCCCGERCVKcgghhBASlSjJIYQQQkhUinidnGsRXv3elbuRE0IIIaRzhT+3u7qKTa9OcpqamgCgyzfpJIQQQkjna2pqgtVq7bLr9+pigLIs4+zZs7BYLOA47rJeE965/NSpU1RAEBSPi1E8tCgeWhQPLYqHFsVDq6N4MMbQ1NSE9PR08HzXzZzp1SM5PM8jIyPjql4bHx9PP4QtUDy0KB5aFA8tiocWxUOL4qHVXjy6cgQnjCYeE0IIISQqUZJDCCGEkKgUc0mOJElYunQpJEmKdFd6BIqHFsVDi+KhRfHQonhoUTy0ekI8evXEY0IIIYSQ9sTcSA4hhBBCYgMlOYQQQgiJSpTkEEIIISQqUZJDCCGEkKgUU0nOCy+8gOzsbBgMBuTn56OkpCTSXbpmy5cvx/jx42GxWJCamoqZM2eivLxc08br9WLevHlISkqC2WzGj370I1RXV2vanDx5ErfddhtMJhNSU1OxaNEiBINBTZvPPvsMY8aMgSRJ6N+/P1599dWuvr1rtmLFCnAchwULFqjHYi0eZ86cwV133YWkpCQYjUaMGDECO3fuVM8zxvDEE08gLS0NRqMRU6ZMweHDhzXXqKurw6xZsxAfHw+bzYa5c+fC5XJp2uzZswc33ngjDAYD+vbti2eeeaZb7u9KhUIhLFmyBDk5OTAajejXrx+eeuopzR460RyTrVu3Yvr06UhPTwfHcdiwYYPmfHfe+zvvvIPBgwfDYDBgxIgR+Oijjzr9fi+lo3gEAgE89thjGDFiBOLi4pCeno577rkHZ8+e1VwjVuJxsQcffBAcx2HVqlWa4z0qHixGrFu3jomiyNasWcP279/PfvaznzGbzcaqq6sj3bVrMnXqVLZ27Vq2b98+VlZWxm699VaWmZnJXC6X2ubBBx9kffv2ZYWFhWznzp3sO9/5Drv++uvV88FgkA0fPpxNmTKF7dq1i3300UcsOTmZLV68WG1z7NgxZjKZ2MKFC9mBAwfY6tWrmSAIbNOmTd16v1eipKSEZWdns5EjR7L58+erx2MpHnV1dSwrK4vNmTOHFRcXs2PHjrFPPvmEHTlyRG2zYsUKZrVa2YYNG9ju3bvZ97//fZaTk8M8Ho/aZtq0aWzUqFHsq6++Yl988QXr378/u/POO9XzTqeT2e12NmvWLLZv3z725ptvMqPRyF555ZVuvd/L8fTTT7OkpCT24YcfsuPHj7N33nmHmc1m9uyzz6ptojkmH330EfvNb37D1q9fzwCw999/X3O+u+59+/btTBAE9swzz7ADBw6w3/72t0yv17O9e/d2eQxa6igeDQ0NbMqUKeytt95i33zzDSsqKmJ5eXls7NixmmvESjxaWr9+PRs1ahRLT09nf/7znzXnelI8YibJycvLY/PmzVO/D4VCLD09nS1fvjyCvep8586dYwDY559/zhhTfkn1ej1755131DYHDx5kAFhRURFjTPmh5nmeVVVVqW1eeuklFh8fz3w+H2OMsUcffZQNGzZM814/+clP2NSpU7v6lq5KU1MTGzBgANu8eTObOHGimuTEWjwee+wxdsMNN7R7XpZl5nA42MqVK9VjDQ0NTJIk9uabbzLGGDtw4AADwHbs2KG2+fjjjxnHcezMmTOMMcZefPFFlpCQoMYn/N6DBg3q7Fu6Zrfddhu77777NMd++MMfslmzZjHGYismF3+Idee933777ey2227T9Cc/P5898MADnXqPV6KjD/WwkpISBoBVVFQwxmIzHqdPn2Z9+vRh+/btY1lZWZokp6fFIyYeV/n9fpSWlmLKlCnqMZ7nMWXKFBQVFUWwZ53P6XQCABITEwEApaWlCAQCmnsfPHgwMjMz1XsvKirCiBEjYLfb1TZTp05FY2Mj9u/fr7ZpeY1wm54av3nz5uG2225r1edYi8fGjRsxbtw4/PjHP0Zqaipyc3Pxl7/8RT1//PhxVFVVae7FarUiPz9fEw+bzYZx48apbaZMmQKe51FcXKy2uemmmyCKotpm6tSpKC8vR319fVff5hW5/vrrUVhYiEOHDgEAdu/ejW3btuGWW24BEJsxCevOe+8tv0MXczqd4DgONpsNQOzFQ5Zl3H333Vi0aBGGDRvW6nxPi0dMJDk1NTUIhUKaDy0AsNvtqKqqilCvOp8sy1iwYAEmTJiA4cOHAwCqqqogiqL6CxnW8t6rqqrajE34XEdtGhsb4fF4uuJ2rtq6devw9ddfY/ny5a3OxVo8jh07hpdeegkDBgzAJ598gp///Od4+OGH8dprrwH49n46+t2oqqpCamqq5rxOp0NiYuIVxaynePzxx3HHHXdg8ODB0Ov1yM3NxYIFCzBr1iwAsRmTsO689/ba9NTYAMp8vsceewx33nmnuuFkrMXjj3/8I3Q6HR5++OE2z/e0ePTqXciJ1rx587Bv3z5s27Yt0l2JmFOnTmH+/PnYvHkzDAZDpLsTcbIsY9y4cfjDH/4AAMjNzcW+ffvw8ssvY/bs2RHuXWS8/fbbeP311/HGG29g2LBhKCsrw4IFC5Cenh6zMSGXFggEcPvtt4MxhpdeeinS3YmI0tJSPPvss/j666/BcVyku3NZYmIkJzk5GYIgtFpBU11dDYfDEaFeda6HHnoIH374IbZs2YKMjAz1uMPhgN/vR0NDg6Z9y3t3OBxtxiZ8rqM28fHxMBqNnX07V620tBTnzp3DmDFjoNPpoNPp8Pnnn+O5556DTqeD3W6PqXikpaVh6NChmmNDhgzByZMnAXx7Px39bjgcDpw7d05zPhgMoq6u7opi1lMsWrRIHc0ZMWIE7r77bvzyl79UR/5iMSZh3Xnv7bXpibEJJzgVFRXYvHmzOooDxFY8vvjiC5w7dw6ZmZnq39eKigo88sgjyM7OBtDz4hETSY4oihg7diwKCwvVY7Iso7CwEAUFBRHs2bVjjOGhhx7C+++/j08//RQ5OTma82PHjoVer9fce3l5OU6ePKnee0FBAfbu3av5wQz/Ioc/IAsKCjTXCLfpafGbPHky9u7di7KyMvVr3LhxmDVrlvrfsRSPCRMmtCopcOjQIWRlZQEAcnJy4HA4NPfS2NiI4uJiTTwaGhpQWlqqtvn0008hyzLy8/PVNlu3bkUgEFDbbN68GYMGDUJCQkKX3d/VcLvd4Hntnz5BECDLMoDYjElYd957b/kdCic4hw8fxr///W8kJSVpzsdSPO6++27s2bNH8/c1PT0dixYtwieffAKgB8bjiqYp92Lr1q1jkiSxV199lR04cIDdf//9zGazaVbQ9EY///nPmdVqZZ999hmrrKxUv9xut9rmwQcfZJmZmezTTz9lO3fuZAUFBaygoEA9H14yffPNN7OysjK2adMmlpKS0uaS6UWLFrGDBw+yF154oUcumW5Ly9VVjMVWPEpKSphOp2NPP/00O3z4MHv99deZyWRif//739U2K1asYDabjX3wwQdsz549bMaMGW0uGc7NzWXFxcVs27ZtbMCAAZoloQ0NDcxut7O7776b7du3j61bt46ZTKaIL5duy+zZs1mfPn3UJeTr169nycnJ7NFHH1XbRHNMmpqa2K5du9iuXbsYAPanP/2J7dq1S10t1F33vn37dqbT6dh///d/s4MHD7KlS5dGZMl0R/Hw+/3s+9//PsvIyGBlZWWav7EtVwbFSjzacvHqKsZ6VjxiJslhjLHVq1ezzMxMJooiy8vLY1999VWku3TNALT5tXbtWrWNx+Nhv/jFL1hCQgIzmUzsBz/4AausrNRc58SJE+yWW25hRqORJScns0ceeYQFAgFNmy1btrDRo0czURTZddddp3mPnuziJCfW4vGPf/yDDR8+nEmSxAYPHsz+93//V3NelmW2ZMkSZrfbmSRJbPLkyay8vFzTpra2lt15553MbDaz+Ph4du+997KmpiZNm927d7MbbriBSZLE+vTpw1asWNHl93Y1Ghsb2fz581lmZiYzGAzsuuuuY7/5zW80H1rRHJMtW7a0+Tdj9uzZjLHuvfe3336bDRw4kImiyIYNG8b++c9/dtl9t6ejeBw/frzdv7FbtmxRrxEr8WhLW0lOT4oHx1iLMp+EEEIIIVEiJubkEEIIIST2UJJDCCGEkKhESQ4hhBBCohIlOYQQQgiJSpTkEEIIISQqUZJDCCGEkKhESQ4hhBBCohIlOYSQmPHXv/4VN998c6dec9myZbDb7eA4Dhs2bGizzaZNmzB69Gh16whCSPegJIeQKDFnzhxwHNfu18WbksYar9eLJUuWYOnSpZ12zYMHD+LJJ5/EK6+8gsrKStxyyy3Izs7GqlWrNO2mTZsGvV6P119/vdPemxByaZTkEBJFpk2bhsrKSs3Xe++9F+lu9Qjvvvsu4uPjMWHChE675tGjRwEAM2bMgMPhgCRJ7badM2cOnnvuuU57b0LIpVGSQ0gUkSQJDodD85WYmNhm27ZGe8rKytTz7733HoYNGwZJkpCdnY3/+Z//0bz+4hGLVatWITs7u9V7tHyE87e//Q3jxo2DxWKBw+HAf/7nf2p2ew+bNGlSq761fK85c+Zg5syZlxsWAMC6deswffp0zbHPPvsMeXl5iIuLg81mw4QJE1BRUaGeX7FiBex2OywWC+bOnYvHH38co0ePBqA8pgpfj+d5cByHSZMmoaKiAr/85S/VfodNnz4dO3fuVBMjQkjXoySHkBgU3rJu7dq1qKysRElJieZ8aWkpbr/9dtxxxx3Yu3cvli1bhiVLluDVV1+9pvcNBAJ46qmnsHv3bmzYsAEnTpzAnDlz2mz7s5/9TB2NysjIuKb3BYBt27Zh3Lhx6vfBYBAzZ87ExIkTsWfPHhQVFeH+++9XE5O3334by5Ytwx/+8Afs3LkTaWlpePHFF9XX/+pXv8LatWsBQO3n+vXrkZGRgd/97nfqsbDMzEzY7XZ88cUX13wvhJDLo4t0Bwgh3S8QCAAAUlJS4HA44PV6Nef/9Kc/YfLkyViyZAkAYODAgThw4ABWrlzZblJyOe677z71v6+77jo899xzGD9+PFwuF8xms3rO5/PBarXC4XAAAARBuOr3BICGhgY4nU6kp6erxxobG+F0OvG9730P/fr1AwAMGTJEPb9q1SrMnTsXc+fOBQD8/ve/x7///W81VmazGTabDQDUfob7Gh6pulh6erpmpIgQ0rVoJIeQGNTY2AgAiIuLa/P8wYMHW81dmTBhAg4fPoxQKHTV71taWorp06cjMzMTFosFEydOBACcPHlS0662thbx8fEdXuvDDz+E2WxGQkICRo0ahTVr1rTb1uPxAAAMBoN6LDExEXPmzMHUqVMxffp0PPvss5qRl4MHDyI/P19znYKCgsu70XYYjUa43e5rugYh5PJRkkNIDDp79iwAaEY2ulpzczOmTp2K+Ph4vP7669ixYwfef/99AIDf71fbBYNBnDp1Cjk5OR1e77vf/S7Kysrw5Zdf4p577sFPf/pT7Nixo822SUlJ4DgO9fX1muNr165FUVERrr/+erz11lsYOHAgvvrqq2u80/bV1dUhJSWly65PCNGiJIeQGLRjxw5YLBb1Mc3FhgwZgu3bt2uObd++HQMHDrzqR0fffPMNamtrsWLFCtx4440YPHhwm5OOi4uL4fV6ceONN3Z4vbi4OPTv3x9DhgzBI488gqSkJOzevbvNtqIoYujQoThw4ECrc7m5uVi8eDG+/PJLDB8+HG+88QYAJQbFxcWatpeTAImi2OZol9frxdGjR5Gbm3vJaxBCOgclOYTEEFmWsXHjRvz617/GPffc027C8sgjj6CwsBBPPfUUDh06hNdeew3PP/88fvWrX2naBYNBeL1eeL1eBINBMMbU78NzVwKBAGRZRmZmJkRRxOrVq3Hs2DFs3LgRTz31lOZ6VVVVWLJkCSZMmABJklBVVYWqqiqEQiE0NTWpj53C9+L1etHU1IS33noLtbW1GD58eLv3PnXqVGzbtk39/vjx41i8eDGKiopQUVGBf/3rXzh8+LA6L2f+/PlYs2YN1q5di0OHDmHp0qXYv3//JWOcnZ2NrVu34syZM6ipqVGPf/XVV5Ak6ZofeRFCrgAjhESF2bNnsxkzZrQ6vmXLFgaA1dfXs5qaGtanTx+2aNEi5vV61TbHjx9nANiuXbvUY++++y4bOnQo0+v1LDMzk61cuVJz3aysLAbgsr62bNnCGGPsjTfeYNnZ2UySJFZQUMA2btyoed+JEyd2eJ21a9eq9xo+ptPpWP/+/dnzzz/fYXz279/PjEYja2hoYIwxVlVVxWbOnMnS0tKYKIosKyuLPfHEEywUCqmvefrpp1lycjIzm81s9uzZ7NFHH2WjRo1Sz7///vvs4j+jRUVFbOTIkUySJM25+++/nz3wwAMd9pEQ0rk4xi6sJSWEkC4wc+ZMLFiwAJMmTbpk20mTJmHZsmVttl2wYAFGjx59Tau7fvzjH2PMmDFYvHjxVb1+2bJl2LBhg6ae0OWoqanBoEGDsHPnzkvONSKEdB56XEUI6VKiKILnL+9PTWJiIkRRbPNcfHw8jEbjNfVl5cqVmqXq3eXEiRN48cUXKcEhpJvRSA4hhFymqx3JIYREBiU5hBBCCIlK9LiKEEIIIVGJkhxCCCGERCVKcgghhBASlSjJIYQQQkhUoiSHEEIIIVGJkhxCCCGERCVKcgghhBASlSjJIYQQQkhUoiSHEEIIIVHp/wNiobIK+c4PdgAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"# 1. Столбчатая диаграмма: средняя цена по количеству спален\n",
|
||
"data_frame.groupby(\"bedrooms\")[\"price\"].mean().plot.bar(color=\"skyblue\")\n",
|
||
"plt.title(\"Средняя цена по количеству спален\")\n",
|
||
"plt.xlabel(\"Количество спален\")\n",
|
||
"plt.ylabel(\"Средняя цена\")\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"# 2. Гистограмма: распределение цен\n",
|
||
"data_frame[\"price\"].plot.hist(bins=30, color=\"orange\", alpha=0.7)\n",
|
||
"plt.title(\"Гистограмма цен\")\n",
|
||
"plt.xlabel(\"Цена\")\n",
|
||
"plt.ylabel(\"Частота\")\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"# 3. Ящик с усами: цена по количеству ванных комнат\n",
|
||
"data_frame.boxplot(column=\"price\", by=\"bathrooms\")\n",
|
||
"plt.title(\"Ящик с усами цен по количеству ванных комнат\")\n",
|
||
"plt.suptitle(\"\")\n",
|
||
"plt.xlabel(\"Количество ванных комнат\")\n",
|
||
"plt.ylabel(\"Цена\")\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"# 4. Диаграмма с областями: суммарная цена по количеству этажей\n",
|
||
"data_frame.groupby(\"floors\")[\"price\"].sum().plot.area(color=\"lightgreen\", alpha=0.5)\n",
|
||
"plt.title(\"Суммарная цена по количеству этажей\")\n",
|
||
"plt.xlabel(\"Количество этажей\")\n",
|
||
"plt.ylabel(\"Суммарная цена\")\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"# 5. Диаграмма рассеяния: цена vs. площадь\n",
|
||
"data_frame.plot.scatter(x=\"sqft_living\", y=\"price\", color=\"purple\", alpha=0.5)\n",
|
||
"plt.title(\"Диаграмма рассеяния: Цена vs Площадь\")\n",
|
||
"plt.xlabel(\"Площадь (sqft)\")\n",
|
||
"plt.ylabel(\"Цена\")\n",
|
||
"plt.show()\n"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": ".venv",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.5"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|