AIM-PIbd-31-Kozyrev-S-S/lab_2/lab_2.ipynb
2024-10-07 21:07:16 +04:00

141 KiB
Raw Blame History

Выбранные темы: цены на кофе, магазины, оценки студентов Далее идут выбранные таблицы

In [64]:
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler

label_encoder = LabelEncoder()

# Функция для применения oversampling
def apply_oversampling(X, y):
    oversampler = RandomOverSampler(random_state=42)
    X_resampled, y_resampled = oversampler.fit_resample(X, y)
    return X_resampled, y_resampled

# Функция для применения undersampling
def apply_undersampling(X, y):
    undersampler = RandomUnderSampler(random_state=42)
    X_resampled, y_resampled = undersampler.fit_resample(X, y)
    return X_resampled, y_resampled

def split_stratified_into_train_val_test(
    df_input,
    stratify_colname="y",
    frac_train=0.6,
    frac_val=0.15,
    frac_test=0.25,
    random_state=None,
):
    """
    Splits a Pandas dataframe into three subsets (train, val, and test)
    following fractional ratios provided by the user, where each subset is
    stratified by the values in a specific column (that is, each subset has
    the same relative frequency of the values in the column). It performs this
    splitting by running train_test_split() twice.

    Parameters
    ----------
    df_input : Pandas dataframe
        Input dataframe to be split.
    stratify_colname : str
        The name of the column that will be used for stratification. Usually
        this column would be for the label.
    frac_train : float
    frac_val   : float
    frac_test  : float
        The ratios with which the dataframe will be split into train, val, and
        test data. The values should be expressed as float fractions and should
        sum to 1.0.
    random_state : int, None, or RandomStateInstance
        Value to be passed to train_test_split().

    Returns
    -------
    df_train, df_val, df_test :
        Dataframes containing the three splits.
    """

    if frac_train + frac_val + frac_test != 1.0:
        raise ValueError(
            "fractions %f, %f, %f do not add up to 1.0"
            % (frac_train, frac_val, frac_test)
        )

    if stratify_colname not in df_input.columns:
        raise ValueError("%s is not a column in the dataframe" % (stratify_colname))

    X = df_input  # Contains all columns.
    y = df_input[
        [stratify_colname]
    ]  # Dataframe of just the column on which to stratify.

    # Split original dataframe into train and temp dataframes.
    df_train, df_temp, y_train, y_temp = train_test_split(
        X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state
    )

    # Split the temp dataframe into val and test dataframes.
    relative_frac_test = frac_test / (frac_val + frac_test)
    df_val, df_test, y_val, y_test = train_test_split(
        df_temp,
        y_temp,
        stratify=y_temp,
        test_size=relative_frac_test,
        random_state=random_state,
    )

    assert len(df_input) == len(df_train) + len(df_val) + len(df_test)

    return df_train, df_val, df_test

Отслеживание цен на акции Старбакс. Объекты связаны между собой датой, т.е. каждая следующая строка это новый день. Можно узнать как, относительно изменения цен на акции, идут продажи акций. Поможет для трейдинговых компаний. Целевым признаком является количество покупающих.

In [4]:
df1 = pd.read_csv("../data/coffee.csv")
df1.info()
print(df1.isnull().sum())
print(df1.describe())
print()
print(df1["Date"].value_counts().unique())
print()
plt.plot(df1["Date"], df1["High"])
plt.show()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8036 entries, 0 to 8035
Data columns (total 7 columns):
 #   Column     Non-Null Count  Dtype  
---  ------     --------------  -----  
 0   Date       8036 non-null   object 
 1   Open       8036 non-null   float64
 2   High       8036 non-null   float64
 3   Low        8036 non-null   float64
 4   Close      8036 non-null   float64
 5   Adj Close  8036 non-null   float64
 6   Volume     8036 non-null   int64  
dtypes: float64(5), int64(1), object(1)
memory usage: 439.6+ KB
Date         0
Open         0
High         0
Low          0
Close        0
Adj Close    0
Volume       0
dtype: int64
              Open         High          Low        Close    Adj Close  \
count  8036.000000  8036.000000  8036.000000  8036.000000  8036.000000   
mean     30.054280    30.351487    29.751322    30.058857    26.674025   
std      33.615577    33.906613    33.314569    33.615911    31.728090   
min       0.328125     0.347656     0.320313     0.335938     0.260703   
25%       4.392031     4.531250     4.304922     4.399610     3.414300   
50%      13.325000    13.493750    13.150000    13.330000    10.352452   
75%      55.250000    55.722501    54.852499    55.267499    47.464829   
max     126.080002   126.320000   124.809998   126.059998   118.010414   

             Volume  
count  8.036000e+03  
mean   1.470459e+07  
std    1.340021e+07  
min    1.504000e+06  
25%    7.817750e+06  
50%    1.169815e+07  
75%    1.778795e+07  
max    5.855088e+08  

[1]

No description has been provided for this image

Данные по всем параметрам являются правильными, без шумов, без выбросов, актуальными.

Магазины. Каждая строка представляет собой магазин, его площадь, количество продуктов, количество покупателей и объем продаж. Позволяет увидеть изменения количества продаж относительно размеров магазина и количества покупателей. Ключевой признак - количество продаж

In [5]:
df2 = pd.read_csv("../data/store.csv")
df2.info()
print(df2.isnull().sum())
print(df2.describe())
print()



plt.scatter(df2["Store_Sales"], df2["Daily_Customer_Count"])
plt.show()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 896 entries, 0 to 895
Data columns (total 5 columns):
 #   Column                Non-Null Count  Dtype
---  ------                --------------  -----
 0   Store ID              896 non-null    int64
 1   Store_Area            896 non-null    int64
 2   Items_Available       896 non-null    int64
 3   Daily_Customer_Count  896 non-null    int64
 4   Store_Sales           896 non-null    int64
dtypes: int64(5)
memory usage: 35.1 KB
Store ID                0
Store_Area              0
Items_Available         0
Daily_Customer_Count    0
Store_Sales             0
dtype: int64
        Store ID    Store_Area  Items_Available  Daily_Customer_Count  \
count  896.000000   896.000000       896.000000            896.000000   
mean   448.500000  1485.409598      1782.035714            786.350446   
std    258.797218   250.237011       299.872053            265.389281   
min      1.000000   775.000000       932.000000             10.000000   
25%    224.750000  1316.750000      1575.500000            600.000000   
50%    448.500000  1477.000000      1773.500000            780.000000   
75%    672.250000  1653.500000      1982.750000            970.000000   
max    896.000000  2229.000000      2667.000000           1560.000000   

         Store_Sales  
count     896.000000  
mean    59351.305804  
std     17190.741895  
min     14920.000000  
25%     46530.000000  
50%     58605.000000  
75%     71872.500000  
max    116320.000000  

No description has been provided for this image

Данные имеют некоторое количество выбросов, что видно на графике.

Оценки студентов. Показывает оценки конкретного студента. Аналитика относительно гендера, расы, уровня образования родителей. Поможет для онлайн-школ для опредения контенгента покупателей курсов. Ключевыми значениями являются оценки по предметам.

In [6]:
df3 = pd.read_csv("../data/student.csv")
df3.info()
df3["score"] = (df3["math score"] + df3["reading score"] + df3["writing score"]) / 3
print(df3.head())
print(df3.isnull().sum())
print(df3.describe())
print()
plt.scatter(df3["score"], df3["parental level of education"])
plt.show()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
 #   Column                       Non-Null Count  Dtype 
---  ------                       --------------  ----- 
 0   gender                       1000 non-null   object
 1   race/ethnicity               1000 non-null   object
 2   parental level of education  1000 non-null   object
 3   lunch                        1000 non-null   object
 4   test preparation course      1000 non-null   object
 5   math score                   1000 non-null   int64 
 6   reading score                1000 non-null   int64 
 7   writing score                1000 non-null   int64 
dtypes: int64(3), object(5)
memory usage: 62.6+ KB
   gender race/ethnicity parental level of education         lunch  \
0  female        group B           bachelor's degree      standard   
1  female        group C                some college      standard   
2  female        group B             master's degree      standard   
3    male        group A          associate's degree  free/reduced   
4    male        group C                some college      standard   

  test preparation course  math score  reading score  writing score      score  
0                    none          72             72             74  72.666667  
1               completed          69             90             88  82.333333  
2                    none          90             95             93  92.666667  
3                    none          47             57             44  49.333333  
4                    none          76             78             75  76.333333  
gender                         0
race/ethnicity                 0
parental level of education    0
lunch                          0
test preparation course        0
math score                     0
reading score                  0
writing score                  0
score                          0
dtype: int64
       math score  reading score  writing score        score
count  1000.00000    1000.000000    1000.000000  1000.000000
mean     66.08900      69.169000      68.054000    67.770667
std      15.16308      14.600192      15.195657    14.257326
min       0.00000      17.000000      10.000000     9.000000
25%      57.00000      59.000000      57.750000    58.333333
50%      66.00000      70.000000      69.000000    68.333333
75%      77.00000      79.000000      79.000000    77.666667
max     100.00000     100.000000     100.000000   100.000000

No description has been provided for this image

Для всех выбранных тем отсутствуют пустые ячейки. Заполнение пустых ячеек не требуется. Данные вполне реальные.

Разбиение наборов на выборки.

Акции старбакс.

In [69]:
data = df1[["Volume", "High", "Low"]].copy()
data["Volume_Grouped"] = pd.cut(data["Volume"], bins=50, labels=False)

interval_counts = data["Volume_Grouped"].value_counts().sort_index()

min_samples_per_interval = 5
for interval, count in interval_counts.items():
    if count < min_samples_per_interval:
        data.loc[data["Volume_Grouped"] == interval, "Volume_Grouped"] = -1


df_coffee_train, df_coffee_val, df_coffee_test = split_stratified_into_train_val_test(
    data, stratify_colname="Volume_Grouped", frac_train=0.60, frac_val=0.20, frac_test=0.20)

print("Обучающая выборка: ", df_coffee_train.shape)
print(df_coffee_train["Volume_Grouped"].value_counts())

X_resampled, y_resampled = apply_oversampling(df_coffee_train, df_coffee_train["Volume_Grouped"])
df_coffee_train_adasyn = pd.DataFrame(X_resampled)

print("Обучающая выборка после oversampling: ", df_coffee_train_adasyn.shape)
print(df_coffee_train_adasyn["Volume_Grouped"].value_counts())

print("Контрольная выборка: ", df_coffee_val.shape)
print(df_coffee_val["Volume_Grouped"].value_counts())

print("Тестовая выборка: ", df_coffee_test.shape)
print(df_coffee_test["Volume_Grouped"].value_counts())
Обучающая выборка:  (4821, 4)
Volume_Grouped
 0    2802
 1    1460
 2     369
 3     111
 4      40
 5      18
-1      10
 6       7
 7       4
Name: count, dtype: int64
Обучающая выборка после oversampling:  (25218, 4)
Volume_Grouped
 0    2802
 4    2802
 1    2802
 2    2802
 3    2802
 5    2802
-1    2802
 7    2802
 6    2802
Name: count, dtype: int64
Контрольная выборка:  (1607, 4)
Volume_Grouped
 0    934
 1    487
 2    123
 3     37
 4     13
 5      6
-1      4
 6      2
 7      1
Name: count, dtype: int64
Тестовая выборка:  (1608, 4)
Volume_Grouped
 0    934
 1    487
 2    124
 3     37
 4     14
 5      6
-1      3
 6      2
 7      1
Name: count, dtype: int64

Магазины

In [68]:
data = df2[["Store_Sales", "Store_Area", "Daily_Customer_Count"]].copy()
data["Sales_Grouped"] = pd.cut(data["Store_Sales"], bins=6, labels=False)

interval_counts = data["Sales_Grouped"].value_counts().sort_index()

min_samples_per_interval = 10
for interval, count in interval_counts.items():
    if count < min_samples_per_interval:
        data.loc[data["Sales_Grouped"] == interval, "Sales_Grouped"] = -1

df_shop_train, df_shop_val, df_shop_test = split_stratified_into_train_val_test(
    data, stratify_colname="Sales_Grouped", frac_train=0.60, frac_val=0.20, frac_test=0.20)


print("Обучающая выборка: ", df_shop_train.shape)
print(df_shop_train["Sales_Grouped"].value_counts())

X_resampled, y_resampled = apply_oversampling(df_shop_train, df_shop_train["Sales_Grouped"])
df_shop_train_adasyn = pd.DataFrame(X_resampled)

print("Обучающая выборка после oversampling: ", df_shop_train_adasyn.shape)
print(df_shop_train_adasyn["Sales_Grouped"].value_counts())

print("Контрольная выборка: ", df_shop_val.shape)
print(df_shop_val["Sales_Grouped"].value_counts())

print("Тестовая выборка: ", df_shop_test.shape)
print(df_shop_test["Sales_Grouped"].value_counts())
Обучающая выборка:  (537, 4)
Sales_Grouped
 2    184
 3    148
 1    135
 4     45
 0     20
-1      5
Name: count, dtype: int64
Обучающая выборка после oversampling:  (1104, 4)
Sales_Grouped
 3    184
 1    184
 2    184
 0    184
-1    184
 4    184
Name: count, dtype: int64
Контрольная выборка:  (179, 4)
Sales_Grouped
 2    61
 3    49
 1    45
 4    15
 0     7
-1     2
Name: count, dtype: int64
Тестовая выборка:  (180, 4)
Sales_Grouped
 2    61
 3    50
 1    45
 4    15
 0     7
-1     2
Name: count, dtype: int64

Оценки студентов

In [67]:
data = df3[["score", "gender", "race/ethnicity"]].copy()
data["score_grouped"] = pd.cut(data["score"], bins=5, labels=False)

data["gender"] = label_encoder.fit_transform(data['gender'])
data["race/ethnicity"] = label_encoder.fit_transform(data['race/ethnicity'])

interval_counts = data["score_grouped"].value_counts().sort_index()

min_samples_per_interval = 10
for interval, count in interval_counts.items():
    if count < min_samples_per_interval:
        data.loc[data["score_grouped"] == interval, "score_grouped"] = -1

df_mark_train, df_mark_val, df_mark_test = split_stratified_into_train_val_test(
    data, stratify_colname="score_grouped", frac_train=0.60, frac_val=0.20, frac_test=0.20)




print("Обучающая выборка: ", df_mark_train.shape)
print(df_mark_train["score_grouped"].value_counts())

X_resampled, y_resampled = apply_oversampling(df_mark_train, df_mark_train["score_grouped"])
df_mark_train_adasyn = pd.DataFrame(X_resampled)

print("Обучающая выборка после oversampling: ", df_mark_train_adasyn.shape)
print(df_mark_train_adasyn["score_grouped"].value_counts())

print("Контрольная выборка: ", df_mark_val.shape)
print(df_mark_val["score_grouped"].value_counts())

print("Тестовая выборка: ", df_mark_test.shape)
print(df_mark_test["score_grouped"].value_counts())
Обучающая выборка:  (600, 4)
score_grouped
 3    283
 2    181
 4    101
 1     31
-1      4
Name: count, dtype: int64
Обучающая выборка после oversampling:  (1415, 4)
score_grouped
 2    283
 4    283
 3    283
 1    283
-1    283
Name: count, dtype: int64
Контрольная выборка:  (200, 4)
score_grouped
 3    95
 2    61
 4    33
 1    10
-1     1
Name: count, dtype: int64
Тестовая выборка:  (200, 4)
score_grouped
 3    94
 2    60
 4    34
 1    11
-1     1
Name: count, dtype: int64