82 lines
3.3 KiB
Plaintext
82 lines
3.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" ID Price Levy Manufacturer Model Prod. year Category \\\n",
|
|
"0 45654403 13328 1399 LEXUS RX 450 2010 Jeep \n",
|
|
"1 44731507 16621 1018 CHEVROLET Equinox 2011 Jeep \n",
|
|
"2 45774419 8467 - HONDA FIT 2006 Hatchback \n",
|
|
"3 45769185 3607 862 FORD Escape 2011 Jeep \n",
|
|
"4 45809263 11726 446 HONDA FIT 2014 Hatchback \n",
|
|
"\n",
|
|
" Leather interior Fuel type Engine volume Mileage Cylinders \\\n",
|
|
"0 Yes Hybrid 3.5 186005 km 6.0 \n",
|
|
"1 No Petrol 3 192000 km 6.0 \n",
|
|
"2 No Petrol 1.3 200000 km 4.0 \n",
|
|
"3 Yes Hybrid 2.5 168966 km 4.0 \n",
|
|
"4 Yes Petrol 1.3 91901 km 4.0 \n",
|
|
"\n",
|
|
" Gear box type Drive wheels Doors Wheel Color Airbags \n",
|
|
"0 Automatic 4x4 04-May Left wheel Silver 12 \n",
|
|
"1 Tiptronic 4x4 04-May Left wheel Black 8 \n",
|
|
"2 Variator Front 04-May Right-hand drive Black 2 \n",
|
|
"3 Automatic 4x4 04-May Left wheel White 0 \n",
|
|
"4 Automatic Front 04-May Left wheel Silver 4 \n",
|
|
"Index(['ID', 'Price', 'Levy', 'Manufacturer', 'Model', 'Prod. year',\n",
|
|
" 'Category', 'Leather interior', 'Fuel type', 'Engine volume', 'Mileage',\n",
|
|
" 'Cylinders', 'Gear box type', 'Drive wheels', 'Doors', 'Wheel', 'Color',\n",
|
|
" 'Airbags'],\n",
|
|
" dtype='object')\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import seaborn as sns\n",
|
|
"import sklearn\n",
|
|
"from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n",
|
|
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
|
"from sklearn.compose import ColumnTransformer\n",
|
|
"from sklearn.pipeline import Pipeline\n",
|
|
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
|
|
"from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n",
|
|
"from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n",
|
|
"from sklearn.metrics import mean_squared_error, f1_score, accuracy_score, roc_auc_score, confusion_matrix, classification_report\n",
|
|
"df = pd.read_csv(\"./static/csv/car_price_prediction.csv\")\n",
|
|
"print(df.head())\n",
|
|
"print(df.columns)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|