{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " ID Price Levy Manufacturer Model Prod. year Category \\\n", "0 45654403 13328 1399 LEXUS RX 450 2010 Jeep \n", "1 44731507 16621 1018 CHEVROLET Equinox 2011 Jeep \n", "2 45774419 8467 - HONDA FIT 2006 Hatchback \n", "3 45769185 3607 862 FORD Escape 2011 Jeep \n", "4 45809263 11726 446 HONDA FIT 2014 Hatchback \n", "\n", " Leather interior Fuel type Engine volume Mileage Cylinders \\\n", "0 Yes Hybrid 3.5 186005 km 6.0 \n", "1 No Petrol 3 192000 km 6.0 \n", "2 No Petrol 1.3 200000 km 4.0 \n", "3 Yes Hybrid 2.5 168966 km 4.0 \n", "4 Yes Petrol 1.3 91901 km 4.0 \n", "\n", " Gear box type Drive wheels Doors Wheel Color Airbags \n", "0 Automatic 4x4 04-May Left wheel Silver 12 \n", "1 Tiptronic 4x4 04-May Left wheel Black 8 \n", "2 Variator Front 04-May Right-hand drive Black 2 \n", "3 Automatic 4x4 04-May Left wheel White 0 \n", "4 Automatic Front 04-May Left wheel Silver 4 \n", "Index(['ID', 'Price', 'Levy', 'Manufacturer', 'Model', 'Prod. year',\n", " 'Category', 'Leather interior', 'Fuel type', 'Engine volume', 'Mileage',\n", " 'Cylinders', 'Gear box type', 'Drive wheels', 'Doors', 'Wheel', 'Color',\n", " 'Airbags'],\n", " dtype='object')\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import sklearn\n", "from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n", "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.linear_model import LinearRegression, LogisticRegression\n", "from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n", "from sklearn.metrics import mean_squared_error, f1_score, accuracy_score, roc_auc_score, confusion_matrix, classification_report\n", "df = pd.read_csv(\"./static/csv/car_price_prediction.csv\")\n", "print(df.head())\n", "print(df.columns)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 2 }