Compare commits

...

112 Commits

Author SHA1 Message Date
dde432a16b senkin_alexander_lab_7 is ready 2023-11-05 21:44:12 +04:00
a98d914e7c Merge pull request 'arutunyan_dmitry_lab_6 is ready' (#59) from arutunyan_dmitry_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/59
2023-10-17 17:34:32 +04:00
a4985e4d76 Merge pull request 'antonov_dmitry_lab_7' (#43) from antonov_dmitry_lab_7 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/43
2023-10-17 17:34:01 +04:00
3bb04b059b Merge pull request 'alexandrov_dmitrii_lab_5 is ready' (#51) from alexandrov_dmitrii_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/51
2023-10-17 17:33:26 +04:00
a9e1145b0e Merge pull request 'arutunyan_dmitry_lab_5' (#56) from arutunyan_dmitry_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/56
2023-10-17 17:33:06 +04:00
f44ba0d0a2 Merge pull request 'alexandrov_dmitrii_lab_4 ready' (#44) from alexandrov_dmitrii_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/44
2023-10-17 17:32:38 +04:00
ccf3bfb561 Merge pull request 'arutunyan_dmitry_lab_4 is ready' (#55) from arutunyan_dmitry_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/55
2023-10-17 17:32:23 +04:00
4f349a1d49 Merge pull request 'madyshev_egor_lab_4 is ready' (#58) from madyshev_egor_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/58
2023-10-17 17:32:02 +04:00
f8075403a3 Merge pull request 'madyshev_egor_lab_3 is ready' (#57) from madyshev_egor_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/57
2023-10-17 17:27:54 +04:00
c20695af79 Merge pull request 'arutunyan_dmitry_lab_3 is ready' (#54) from arutunyan_dmitry_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/54
2023-10-17 17:27:35 +04:00
33dba33cc4 Merge pull request 'lipatov_ilya_lab_3' (#47) from lipatov_ilya_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/47
2023-10-17 17:26:20 +04:00
41e0e8598f Merge pull request 'gordeeva_anna_lab_2' (#42) from gordeeva_anna_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/42
2023-10-17 17:25:29 +04:00
53a25975f9 Merge pull request 'lipatov_ilya_lab_2' (#46) from lipatov_ilya_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/46
2023-10-17 17:25:09 +04:00
5e00a83340 Merge pull request 'abanin_daniil_lab_2' (#50) from abanin_daniil_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/50
2023-10-17 17:21:19 +04:00
2239c15572 Merge pull request 'ilbekov_dmitriy_lab_2' (#52) from ilbekov_dmitriy_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/52
2023-10-17 17:20:59 +04:00
07333219ed Merge pull request 'arutunyan_dmitry_lab_2 is ready' (#41) from arutunyan_dmitry_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/41
2023-10-17 17:20:37 +04:00
5891b16f9d Merge pull request 'sergeev_evgenii_lab_1_ready' (#53) from sergeev_evgenii_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/53
2023-10-17 17:19:58 +04:00
81874f0f84 Merge pull request 'abanin_daniil_lab_1' (#48) from abanin_daniil_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/48
2023-10-17 17:18:46 +04:00
ce6105bee6 Merge pull request 'ilbekov_dmitriy_lab_1' (#49) from ilbekov_dmitriy_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/49
2023-10-17 17:18:26 +04:00
ca3b734361 arutunyan_dmitry_lab_6 is ready 2023-10-17 16:16:59 +04:00
2f1d67dc8f Merge pull request 'savenkov_alexander_lab_2 is done' (#39) from savenkov_alexander_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/39
2023-10-16 12:10:31 +04:00
b9ec1fd145 Merge pull request 'savenkov_alexander_lab_1 is done' (#38) from savenkov_alexander_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/38
2023-10-16 11:50:21 +04:00
f84f7abaa9 arutunyan_dmitry_lab_5 is ready 2023-10-16 01:23:28 +04:00
5445cef67d arutunyan_dmitry_lab_1 is ready 2023-10-16 01:21:35 +04:00
b967af636c arutunyan_dmitry_lab_4 is ready 2023-10-16 01:19:01 +04:00
ad60c6221e arutunyan_dmitry_lab_3 is ready 2023-10-16 01:16:02 +04:00
Евгений Сергеев
8942f824d5 lab1 is done 2023-10-16 00:55:14 +04:00
106e02f76b lab2 done 2023-10-15 21:40:08 +04:00
81479f5221 Пятая лабораторная готова 2023-10-15 20:20:22 +04:00
BossMouseFire
abd650a641 Lab2 2023-10-15 19:33:03 +04:00
15936c6996 lab1 done 2023-10-15 19:15:47 +04:00
BossMouseFire
c03b5e3a94 Lab1 2023-10-15 17:58:47 +04:00
16db685d3d lipatov_ilya_lab_3 2023-10-15 17:18:00 +04:00
84fe84a15a lipatov_ilya_lab_2 2023-10-15 13:15:18 +04:00
7ccd400417 Четвёртая лабораторная готова 2023-10-14 19:48:18 +04:00
DmitriyAntonov
c15ab42cd4 реади3 2023-10-14 14:43:47 +04:00
DmitriyAntonov
ef485bf514 реади2 2023-10-12 21:20:23 +04:00
DmitriyAntonov
3a868e5545 реади1 2023-10-12 21:19:26 +04:00
fc2fe74052 arutunyan_dmitry_lab_2 is ready 2023-10-12 20:01:33 +04:00
35826f2461 savenkov_alexander_lab_2 is done 2023-10-12 15:29:03 +04:00
7781a379c3 savenkov_alexander_lab_2 is done 2023-10-12 15:28:53 +04:00
adca415462 savenkov_alexander_lab_1 is done 2023-10-12 15:17:22 +04:00
9613109f32 Merge pull request 'antonov_dmitry_lab_2' (#22) from antonov_dmitry_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/22
2023-10-11 20:10:30 +04:00
d4d25953d2 Merge pull request 'antonov_dmitry_lab_2_without_conflicts' (#24) from antonov_dmitry_lab_2_without_conflicts into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/24
2023-10-11 20:09:51 +04:00
d09383f064 Merge pull request 'antonov_dmitry_lab_4' (#26) from antonov_dmitry_lab_4 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/26
2023-10-11 20:09:03 +04:00
f1ccc12524 Merge pull request 'antonov_dmitry_lab_5' (#27) from antonov_dmitry_lab_5 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/27
2023-10-11 20:08:12 +04:00
0446928927 Merge pull request 'martysheva lab1 don' (#28) from martysheva_tamara_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/28
2023-10-11 20:07:40 +04:00
1dffe857da Merge pull request 'antonov_dmitry_lab_6' (#29) from antonov_dmitry_lab_6 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/29
2023-10-11 20:06:55 +04:00
19ed166e7b Merge pull request 'almukhammetov_bulat_lab_2' (#30) from almukhammetov_bulat_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/30
2023-10-11 20:06:27 +04:00
1a4d9cb435 Merge pull request 'martysheva lab2 done' (#31) from martysheva_tamara_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/31
2023-10-11 20:03:35 +04:00
bac437629a Merge pull request 'alexandrov_dmitrii_lab_3' (#35) from alexandrov_dmitrii_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/35
2023-10-11 20:02:06 +04:00
a062f64611 Merge pull request 'romanova_adelina_lab_1 is ready' (#36) from romanova_adelina_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/36
2023-10-11 20:01:06 +04:00
04862f1077 Merge pull request 'belyaeva ekaterina lab 1 ready' (#37) from belyaeva_ekaterina_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/37
2023-10-11 20:00:43 +04:00
ae4894e12d lab 1 ready 2023-10-10 14:11:18 +04:00
7fe16431a8 romanova_adelina_lab_1 is ready 2023-10-10 11:43:27 +04:00
0c0bbab9e5 Третья лабораторная готова 2023-10-09 23:38:29 +04:00
72507eb3af madyshev_egor_lab_4 is ready 2023-10-09 10:22:50 +04:00
516c7aea4f madyshev_egor_lab_3 is ready 2023-10-09 10:18:50 +04:00
7674b6f48a martysheva lab2 done 2023-10-08 21:10:25 +04:00
BulatReznik
39f0867f3c Add lab2 2023-10-08 18:37:01 +04:00
DmitriyAntonov
2acd2f9b5b реади1 2023-10-08 15:40:22 +04:00
DmitriyAntonov
5865c2147c реади1 2023-10-08 15:38:58 +04:00
DmitriyAntonov
b6ab40cae3 реади 2023-10-08 15:37:46 +04:00
fd951127b0 martysheva lab1 don 2023-10-08 15:34:05 +04:00
DmitriyAntonov
d4e65b3373 реади 2023-10-08 14:21:51 +04:00
DmitriyAntonov
b855fc2dd4 реади 2023-10-08 14:15:58 +04:00
DmitriyAntonov
2065c480df реади 2023-10-08 14:01:37 +04:00
7ce7f86d4b Merge pull request 'alexandrov_dmitrii_lab_2' (#15) from alexandrov_dmitrii_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/15
2023-10-08 13:47:15 +04:00
5992dba12c Merge pull request 'zavrazhnova_svetlana_lab3 is ready' (#16) from zavrazhnova_svetlana_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/16
2023-10-08 13:46:48 +04:00
4e17d37a32 Merge pull request 'madyshev_egor_lab_1 is ready' (#17) from madyshev_egor_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/17
2023-10-08 13:46:18 +04:00
78422060f3 Merge pull request 'madyshev_egor_lab_2 is ready' (#18) from madyshev_egor_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/18
2023-10-08 13:45:42 +04:00
d0fbf61dc0 Merge pull request 'gusev_vladislav_lab_1 is ready' (#19) from gusev_vladislav_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/19
2023-10-08 13:45:05 +04:00
4daf833167 Merge pull request 'almukhammetov_bulat_lab_1' (#20) from almukhammetov_bulat_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/20
2023-10-08 13:44:21 +04:00
964a9042fa Merge pull request 'arutunyan_dmitry_lab_1' (#21) from arutunyan_dmitry_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/21
2023-10-08 13:43:27 +04:00
5a2ec3e827 Merge pull request 'antonov_dmitry_lab_3' (#23) from antonov_dmitry_lab_3 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/23
2023-10-08 13:38:17 +04:00
DmitriyAntonov
8c47411bf1 лаба 3 реади1 2023-10-08 10:52:30 +04:00
DmitriyAntonov
401a5454ee лаба 3 реади 2023-10-08 10:49:00 +04:00
DmitriyAntonov
a847058d44 лаба 3 почти 2023-10-07 22:30:34 +04:00
DmitriyAntonov
de0b7d831a лаба 2 реади 2023-10-07 22:02:25 +04:00
eeb3c15730 Add losted for better merge 2023-10-07 19:43:36 +04:00
bbb46d3cd1 arutunyan_dmitry_lab_1 is ready 2023-10-07 19:28:43 +04:00
88b0909ebf Изменил(а) на 'almukhammetov_bulat_lab_1/README.md' 2023-10-07 12:55:25 +04:00
BulatReznik
fcfd628305 AddLab1 2023-10-07 12:53:20 +04:00
vladg
b239521f36 gusev_vladislav_lab_1 is ready 2023-10-07 12:36:45 +04:00
4747d4f1db madyshev_egor_lab_2 is ready 2023-10-06 23:17:36 +04:00
Svetlnkk
b049265089 zavrazhnova_svetlana_lab3 is ready 2023-10-06 21:58:46 +04:00
dfc7f8c06f madyshev_egor_lab_1 is ready 2023-10-06 21:55:29 +04:00
71887f8076 lab 2 is ready 2023-10-05 18:15:46 +04:00
ae454ae9ef lab 2 is ready 2023-10-05 18:13:38 +04:00
5d8a090a38 lab 2 is ready 2023-10-04 22:14:04 +04:00
06116369e5 Merge pull request 'antonov_dmitry_lab_1' (#9) from antonov_dmitry_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/9
2023-10-02 19:38:21 +04:00
6ad79769f3 Merge pull request 'zavrazhnova_svetlana_lab_2 is ready' (#10) from zavrazhnova_svetlana_lab_2 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/10
2023-10-02 19:37:05 +04:00
DmitriyAntonov
fc35bc8158 лаба 2 степ2 2023-09-30 21:07:59 +04:00
DmitriyAntonov
059d5b0b12 лаба 3 done 2023-09-30 20:35:16 +04:00
DmitriyAntonov
c943260db9 лаба 2 done 2023-09-30 20:26:46 +04:00
Svetlnkk
cfc34f0e10 zavrazhnova_svetlana_lab_2 is ready 2023-09-23 21:36:07 +04:00
DmitriyAntonov
d30caee3db iter5 2023-09-23 21:04:51 +04:00
DmitriyAntonov
0b83c390f5 iter4 2023-09-23 21:01:09 +04:00
DmitriyAntonov
8a288f0abf iter3 2023-09-23 20:53:45 +04:00
DmitriyAntonov
3543ab5163 iter2 2023-09-23 17:42:04 +04:00
DmitriyAntonov
9bf1c4845a iter1 2023-09-23 17:22:03 +04:00
46de7c113c Merge pull request 'alexandrov_dmitrii_lab_1 - Первая лабораторная работа Александров ПИбд-42' (#6) from alexandrov_dmitrii_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/6
2023-09-23 08:57:29 +04:00
d26e2f5535 Merge pull request 'gordeeva_anna_lab_1' (#7) from gordeeva_anna_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/7
2023-09-23 08:56:46 +04:00
63e5a3a708 Merge pull request 'zavrazhnova_svetlana_lab_1 is ready' (#8) from zavrazhnova_svetlana_lab_1 into main
Reviewed-on: http://student.git.athene.tech/Alexey/IIS_2023_1/pulls/8
2023-09-23 08:52:57 +04:00
Svetlnkk
453d40504e zavrazhnova_svetlana_lab_1 is ready 2023-09-23 00:04:23 +04:00
8ee5b74e58 itog 2023-09-21 23:07:09 +04:00
27e65004fa test 2023-09-21 23:02:58 +04:00
9c5a45feed Изменил(а) на 'alexandrov_dmitrii_lab_1/readme.md' 2023-09-21 20:27:32 +04:00
efa81f50bf доделка 2023-09-21 20:19:20 +04:00
Евгений Сергеев
f11ba4d365 init 2023-09-21 20:15:20 +04:00
DmitriyAntonov
94a76f47d8 start 2023-09-19 10:23:19 +04:00
9a7b986e00 alexandrov_dmitrii_lab_1 is ready 2023-09-19 10:19:50 +04:00
227 changed files with 121182 additions and 0 deletions

3
.idea/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,3 @@
# Default ignored files
/shelf/
/workspace.xml

8
.idea/IIS_2023_1.iml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.8 (venv)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

7
.idea/discord.xml generated Normal file
View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="DiscordProjectSettings">
<option name="show" value="ASK" />
<option name="description" value="" />
</component>
</project>

View File

@@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

7
.idea/misc.xml generated Normal file
View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (venv)" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
</project>

8
.idea/modules.xml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/IIS_2023_1.iml" filepath="$PROJECT_DIR$/.idea/IIS_2023_1.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml generated Normal file
View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

151
.idea/workspace.xml generated Normal file
View File

@@ -0,0 +1,151 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="AutoImportSettings">
<option name="autoReloadType" value="SELECTIVE" />
</component>
<component name="ChangeListManager">
<list default="true" id="0ceb130e-88da-4a20-aad6-17f5ab4226ac" name="Changes" comment="">
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
</list>
<option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" />
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
<option name="LAST_RESOLUTION" value="IGNORE" />
</component>
<component name="FileTemplateManagerImpl">
<option name="RECENT_TEMPLATES">
<list>
<option value="Python Script" />
</list>
</option>
</component>
<component name="Git.Settings">
<option name="RECENT_BRANCH_BY_REPOSITORY">
<map>
<entry key="$PROJECT_DIR$" value="main" />
</map>
</option>
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
</component>
<component name="MarkdownSettingsMigration">
<option name="stateVersion" value="1" />
</component>
<component name="ProjectColorInfo">{
&quot;associatedIndex&quot;: 2
}</component>
<component name="ProjectId" id="2VlZqWiOX68aCf0o2y0AtYJWURS" />
<component name="ProjectViewState">
<option name="hideEmptyMiddlePackages" value="true" />
<option name="showLibraryContents" value="true" />
</component>
<component name="PropertiesComponent">{
&quot;keyToString&quot;: {
&quot;RunOnceActivity.OpenProjectViewOnStart&quot;: &quot;true&quot;,
&quot;RunOnceActivity.ShowReadmeOnStart&quot;: &quot;true&quot;,
&quot;last_opened_file_path&quot;: &quot;D:/ulstukek/Course4/IIS/labs&quot;,
&quot;settings.editor.selected.configurable&quot;: &quot;reference.settings.ide.settings.new.ui&quot;
}
}</component>
<component name="RecentsManager">
<key name="CopyFile.RECENT_KEYS">
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_3" />
<recent name="D:\ulstukek\Course4\IIS\IISLabs\IIS_2023_1\zavrazhnova_svetlana_lab_1" />
</key>
</component>
<component name="RunManager" selected="Python.zavrazhnova_svetlana_lab3_2">
<configuration name="zavrazhnova_svetlana_lab3_2" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<module name="IIS_2023_1" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3/zavrazhnova_svetlana_lab3_2.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="zavrazhnova_svetlana_lab_2" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<module name="IIS_2023_1" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_2" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_2/zavrazhnova_svetlana_lab_2.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="zavrazhnova_svetlana_lab_3_1" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<module name="IIS_2023_1" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/zavrazhnova_svetlana_lab_3/zavrazhnova_svetlana_lab_3_1.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<recent_temporary>
<list>
<item itemvalue="Python.zavrazhnova_svetlana_lab_3_1" />
<item itemvalue="Python.zavrazhnova_svetlana_lab_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab3_2" />
<item itemvalue="Python.zavrazhnova_svetlana_lab_3_1" />
</list>
</recent_temporary>
</component>
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
<component name="TaskManager">
<task active="true" id="Default" summary="Default task">
<changelist id="0ceb130e-88da-4a20-aad6-17f5ab4226ac" name="Changes" comment="" />
<created>1695412818437</created>
<option name="number" value="Default" />
<option name="presentableId" value="Default" />
<updated>1695412818437</updated>
</task>
<servers />
</component>
<component name="Vcs.Log.Tabs.Properties">
<option name="TAB_STATES">
<map>
<entry key="MAIN">
<value>
<State />
</value>
</entry>
</map>
</option>
</component>
</project>

View File

@@ -0,0 +1,47 @@
## Лабораторная работа №1
### Работа с типовыми наборами данных и различными моделями
### ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (стартовая точка класс lab1)
### Какие технологии использовались:
* Язык программирования `Python`,
* Библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* Программа гененерирует данные с make_moonsmake_moons (noise=0.3, random_state=rs)
* Сравнивает три типа моделей: инейная, полиномиальная, гребневая полиномиальная регрессии
### Примеры работы:
#### Результаты:
MAE - средняя абсолютная ошибка, измеряет среднюю абсолютную разницу между прогнозируемыми значениями модели и фактическими значениями целевой переменной
MSE - средняя квадратическая ошибка, измеряет среднюю квадратичную разницу между прогнозируемыми значениями модели и фактическими значениями целевой переменной
Чем меньше значения показателей, тем лучше модель справляется с предсказанием
Линейная регрессия
MAE 0.2959889435199454
MSE 0.13997968555679302
Полиномиальная регрессия
MAE 0.21662135861071705
MSE 0.08198825629271855
Гребневая полиномиальная регрессия
MAE 0.2102788716636562
MSE 0.07440133949387796
Лучший результат показала модель **Гребневая полиномиальная регрессия**
![Lin](lin_reg.jpg)
![Pol](pol_reg.jpg)
![Greb](greb_reg.jpg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

View File

@@ -0,0 +1,66 @@
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.datasets import make_moons
from sklearn import metrics
cm_bright = ListedColormap(['#8B0000', '#FF0000'])
cm_bright1 = ListedColormap(['#FF4500', '#FFA500'])
def create_moons():
x, y = make_moons(noise=0.3, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.4, random_state=42)
linear_regretion(X_train, X_test, y_train, y_test)
polynomial_regretion(X_train, X_test, y_train, y_test)
ridge_regretion(X_train, X_test, y_train, y_test)
def linear_regretion(x_train, x_test, y_train, y_test):
model = LinearRegression().fit(x_train, y_train)
y_predict = model.intercept_ + model.coef_ * x_test
plt.title('Линейная регрессия')
print('Линейная регрессия')
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(x_test, y_predict, color='red')
print('MAE', metrics.mean_absolute_error(y_test, y_predict[:, 1]))
print('MSE', metrics.mean_squared_error(y_test, y_predict[:, 1]))
plt.show()
def polynomial_regretion(x_train, x_test, y_train, y_test):
polynomial_features = PolynomialFeatures(degree=3)
X_polynomial = polynomial_features.fit_transform(x_train, y_train)
base_model = LinearRegression()
base_model.fit(X_polynomial, y_train)
y_predict = base_model.predict(X_polynomial)
plt.title('Полиномиальная регрессия')
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(x_train, y_predict, color='blue')
plt.show()
print('Полиномиальная регрессия')
print('MAE', metrics.mean_absolute_error(y_train, y_predict))
print('MSE', metrics.mean_squared_error(y_train, y_predict))
def ridge_regretion(X_train, X_test, y_train, y_test):
model = Pipeline([('poly', PolynomialFeatures(degree=3)), ('ridge', Ridge(alpha=1.0))])
model.fit(X_train, y_train)
y_predict = model.predict(X_test)
plt.title('Гребневая полиномиальная регрессия')
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright1, alpha=0.7)
plt.plot(X_test, y_predict, color='blue')
plt.show()
print('Гребневая полиномиальная регрессия')
print('MAE', metrics.mean_absolute_error(y_test, y_predict))
print('MSE', metrics.mean_squared_error(y_test, y_predict))
create_moons()

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

View File

@@ -0,0 +1,41 @@
## Лабораторная работа №2
### Ранжирование признаков
## ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (стартовая точка lab2)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* Генерирует данные и обучает такие модели, как: LinearRegression, RandomizedLasso, Recursive Feature Elimination (RFE)
* Производиться ранжирование признаков с помощью моделей LinearRegression, RandomizedLasso, Recursive Feature Elimination (RFE)
* Отображение получившихся результатов: 4 самых важных признака по среднему значению, значения признаков для каждой модели
### 4 самых важных признака по среднему значению
* Параметр - x4, значение - 0.56
* Параметр - x1, значение - 0.45
* Параметр - x2, значение - 0.33
* Параметр - x9, значение - 0.33
####Linear Regression
[('x1', 1.0), ('x4', 0.69), ('x2', 0.61), ('x11', 0.59), ('x3', 0.51), ('x13', 0.48), ('x5', 0.19), ('x12', 0.19), ('x14', 0.12), ('x8', 0.03), ('x6', 0.02), ('x10', 0.01), ('x7', 0.0), ('x9', 0.0)]
####Recursive Feature Elimination
[('x9', 1.0), ('x7', 0.86), ('x10', 0.71), ('x6', 0.57), ('x8', 0.43), ('x14', 0.29), ('x12', 0.14), ('x1', 0.0), ('x2', 0.0), ('x3', 0.0), ('x4', 0.0), ('x5', 0.0), ('x11', 0.0), ('x13', 0.0)]
####Randomize Lasso
[('x4', 1.0), ('x2', 0.37), ('x1', 0.36), ('x5', 0.32), ('x6', 0.02), ('x8', 0.02), ('x3', 0.01), ('x7', 0.0), ('x9', 0.0), ('x10', 0.0), ('x11', 0.0), ('x12', 0.0), ('x13', 0.0), ('x14', 0.0)]
#### Результаты:
![Result](result.png)

View File

@@ -0,0 +1,76 @@
from sklearn.utils import check_X_y, check_random_state
from sklearn.linear_model import Lasso
from scipy.sparse import issparse
from scipy import sparse
def _rescale_data(x, weights):
if issparse(x):
size = weights.shape[0]
weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size))
x_rescaled = x * weight_dia
else:
x_rescaled = x * (1 - weights)
return x_rescaled
class RandomizedLasso(Lasso):
"""
Randomized version of scikit-learns Lasso class.
Randomized LASSO is a generalization of the LASSO. The LASSO penalises
the absolute value of the coefficients with a penalty term proportional
to `alpha`, but the randomized LASSO changes the penalty to a randomly
chosen value in the range `[alpha, alpha/weakness]`.
Parameters
----------
weakness : float
Weakness value for randomized LASSO. Must be in (0, 1].
See also
--------
sklearn.linear_model.LogisticRegression : learns logistic regression models
using the same algorithm.
"""
def __init__(self, weakness=0.5, alpha=1.0, fit_intercept=True,
precompute=False, copy_X=True, max_iter=1000,
tol=1e-4, warm_start=False, positive=False,
random_state=None, selection='cyclic'):
self.weakness = weakness
super(RandomizedLasso, self).__init__(
alpha=alpha, fit_intercept=fit_intercept, precompute=precompute, copy_X=copy_X,
max_iter=max_iter, tol=tol, warm_start=warm_start,
positive=positive, random_state=random_state,
selection=selection)
def fit(self, X, y):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
The training input samples.
y : array-like, shape = [n_samples]
The target values.
"""
if not isinstance(self.weakness, float) or not (0.0 < self.weakness <= 1.0):
raise ValueError('weakness should be a float in (0, 1], got %s' % self.weakness)
X, y = check_X_y(X, y, accept_sparse=True)
n_features = X.shape[1]
weakness = 1. - self.weakness
random_state = check_random_state(self.random_state)
weights = weakness * random_state.randint(0, 1 + 1, size=(n_features,))
# TODO: I am afraid this will do double normalization if set to true
#X, y, _, _ = _preprocess_data(X, y, self.fit_intercept, normalize=self.normalize, copy=False,
# sample_weight=None, return_mean=False)
# TODO: Check if this is a problem if it happens before standardization
X_rescaled = _rescale_data(X, weights)
return super(RandomizedLasso, self).fit(X_rescaled, y)

View File

@@ -0,0 +1,81 @@
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
from RadomizedLasso import RandomizedLasso
from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler
import numpy as np
names = ["x%s" % i for i in range(1, 15)]
def start_point():
X,Y = generation_data()
# Линейная модель
lr = LinearRegression()
lr.fit(X, Y)
# Рекурсивное сокращение признаков
rfe = RFE(lr)
rfe.fit(X, Y)
# Случайное Лассо
randomized_lasso = RandomizedLasso(alpha=.01)
randomized_lasso.fit(X, Y)
ranks = {"Linear Regression": rank_to_dict(lr.coef_), "Recursive Feature Elimination": rank_to_dict(rfe.ranking_),
"Randomize Lasso": rank_to_dict(randomized_lasso.coef_)}
get_estimation(ranks)
print_sorted_data(ranks)
def generation_data():
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
return X, Y
def rank_to_dict(ranks):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
def get_estimation(ranks: {}):
mean = {}
#«Бежим» по списку ranks
for key, value in ranks.items():
for item in value.items():
if(item[0] not in mean):
mean[item[0]] = 0
mean[item[0]] += item[1]
for key, value in mean.items():
res = value/len(ranks)
mean[key] = round(res, 2)
mean_sorted = sorted(mean.items(), key=lambda item: item[1], reverse=True)
print("Средние значения")
print(mean_sorted)
print("4 самых важных признака по среднему значению")
for item in mean_sorted[:4]:
print('Параметр - {0}, значение - {1}'.format(item[0], item[1]))
def print_sorted_data(ranks: {}):
print()
for key, value in ranks.items():
ranks[key] = sorted(value.items(), key=lambda item: item[1], reverse=True)
for key, value in ranks.items():
print(key)
print(value)
start_point()

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

View File

@@ -0,0 +1,56 @@
import random
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.datasets import make_moons
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
rs = random.randrange(50)
X, y = make_moons(n_samples=250, noise=0.3, random_state=rs)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
figure = plt.figure(1, figsize=(16, 9))
axis = figure.subplots(4, 3)
cm = ListedColormap(['#FF0000', "#0000FF"])
arr_res = list(range(len(y_test)))
X_scale = list(range(len(y_test)))
def test(col, model):
global axis
global arr_res
global X_test
global X_train
global y_train
global y_test
model.fit(X_train, y_train)
res_y = model.predict(X_test)
print(model.score(X_test, y_test))
axis[0, col].scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm)
axis[1, col].scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm)
axis[2, col].scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm)
axis[2, col].scatter(X_test[:, 0], X_test[:, 1], c=res_y, cmap=cm)
axis[3, col].plot([i for i in range(len(res_y))], y_test, c="g")
axis[3, col].plot([i for i in range(len(res_y))], res_y, c="r")
def start():
lin = LinearRegression()
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
('linear', LinearRegression())])
ridge = Pipeline([('poly', PolynomialFeatures(degree=3)),
('ridge', Ridge(alpha=1.0))])
test(0, lin)
test(1, poly)
test(2, ridge)
plt.show()
start()

View File

@@ -0,0 +1,46 @@
## Задание
Сгенерировать определенный тип данных и сравнить на нем 3 модели. Построить графики, отобразить качество моделей, объяснить полученные результаты.
Вариант 1.
Данные: make_moons (noise=0.3, random_state=rs)
Модели:
· Линейная регрессия
· Полиномиальная регрессия (со степенью 3)
· Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0)
### Запуск программы
Файл lab1.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует,
### Описание программы
Генерирует один из 50 наборов данных, показывает окно с графиками и пишет оценку моделей обучения по заданию.
Использует библиотеки matplotlib для демонстрации графиков и sklearn для создания и использования моделей.
### Результаты тестирования
Для различных значений rs результаты следующие:
значение - линейная - полиномиальная - гребневая полиномиальная
1 - 0.54 - 0.08 - 0.35
2 - 0.62 - 0.58 - 0.63
3 - 0.6 - 0.67 - 0.65
4 - 0.52 - 0.46 - 0.5
5 - 0.4 - 0.42 - 0.44
Из данных результатов можно заключить, что чёткой зависимости точности от выбранной модели нет.
Однако, после этого я добавил в генератор данных число значений: 500. Результаты оказались более детерминированными:
значение - линейная - полиномиальная - гребневая полиномиальная
1 - 0.54 - 0.63 - 0.63
2 - 0.52 - 0.63 - 0.62
3 - 0.56 - 0.64 - 0.64
4 - 0.5 - 0.63 - 0.62
5 - 0.5 - 0.52 - 0.53
Из данных результатов можно заключить, что в общем случае модель линейной регрессии уступает полиномиальным. Гребневая полиномиальная регрессия чаще уступала обычной полиномиальной, однако в незначительном количестве ситуаций была оценена выше - но во всех случаях результаты были близки, поэтому можно с уверенностью предположить, что результаты идентичны и различаются по воле шума обучения.
После изучения число значений в генераторе заменено на 250, поскольку графики становились неразличимыми^
значение - линейная - полиномиальная - гребневая полиномиальная
1 - 0.48 - 0.54 - 0.54
2 - 0.5 - 0.56 - 0.56
3 - 0.57 - 0.6 - 0.6
4 - 0.57 - 0.66 - 0.68
5 - 0.49 - 0.54 - 0.55
По данным результатам видно, что в большинстве ситуаций уже гребневая полиномиальная регрессия показывает лучшую точность.
Результаты объясняются следующим образом:
Линейная регрессия будучи математически прямой плохо отражает сложные функции и нелинейные зависимости, в то время как полиномиальная регрессия способна отражать перегибы и изменяющиеся в зависимости от меры значений зависимости. Гребневая полиномиальная вышла идентичной простой полиномиальной из-за одинаковых настроек - обе они по заданию имеют третью степень, а гребневая регрессия имеет слишком малый параметр alpha, что результирует в малом эффекте гребневой функции.

View File

@@ -0,0 +1,82 @@
from sklearn.linear_model import LinearRegression, RandomizedLasso
from sklearn.feature_selection import RFE
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
import numpy as np
import random as rand
figure = plt.figure(1, figsize=(16, 9))
axis = figure.subplots(1, 4)
col = 0
y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
def rank_to_dict(ranks, names, n_features):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(n_features, 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
def createView(key, val):
global figure
global axis
global col
global y
axis[col].bar(y, list(val.values()), label=key)
axis[col].set_title(key)
col = col + 1
def start():
np.random.seed(rand.randint(0, 50))
size = 750
n_features = 14
X = np.random.uniform(0, 1, (size, n_features))
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
lr = LinearRegression()
rl = RandomizedLasso()
rfe = RFE(estimator=LinearRegression(), n_features_to_select=1)
lr.fit(X, Y)
rl.fit(X, Y)
rfe.fit(X, Y)
names = ["x%s" % i for i in range(1, n_features + 1)]
rfe_res = rfe.ranking_
for i in range(rfe_res.size):
rfe_res[i] = 14 - rfe_res[i]
ranks = {"Linear regression": rank_to_dict(lr.coef_, names, n_features),
"Random lasso": rank_to_dict(rl.scores_, names, n_features),
"RFE": rank_to_dict(rfe_res, names, n_features)}
mean = {}
for key, value in ranks.items():
for item in value.items():
if item[0] not in mean:
mean[item[0]] = 0
mean[item[0]] += item[1]
for key, value in mean.items():
res = value / len(ranks)
mean[key] = round(res, 2)
ranks["Mean"] = mean
for key, value in ranks.items():
createView(key, value)
ranks[key] = sorted(value.items(), key=lambda y: y[1], reverse=True)
for key, value in ranks.items():
print(key)
print(value)
start()
plt.show()

View File

@@ -0,0 +1,50 @@
### Задание
Выполнить ранжирование признаков с помощью указанных по варианту моделей. Отобразить получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Провести анализ получившихся результатов. Определить, какие четыре признака оказались самыми важными по среднему значению.
Вариант 1.
Модели:
* Линейная регрессия (LinearRegression)
* Случайное Лассо (RandomizedLasso)
* Рекурсивное сокращение признаков (Recursive Feature Elimination RFE)
### Запуск программы
Программа работает на Python 3.7, поскольку только в нём можно подключить нужную версию библиотеки scikit-learn, которая ещё содержит RandomizedLasso.
Файл lab2.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Файл lab2.py содержит непосредственно программу.
Программа создаёт набор данных с 10 признаками для последующего их ранжирования, и обрабатывает тремя моделями по варианту.
Программа строит столбчатые диаграммы, которые показывают как распределились оценки важности признаков, и выводит в консоль отсортированные по убыванию важности признаки.
Таким образом можно легко определить наиважнейшие признаки.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* линейная регрессия показывает хорошие результаты, выделяет все 9 значимых признаков.
* случайное лассо справляется хуже других моделей, иногда выделяя шумовые признаки в значимые, а значимые - в шумовые.
* рекурсивное сокращение признаков показывает хорошие результаты, правильно правильно выделяя 9 самых значимых признаков.
* хотя линейная регрессия и рекурсивное сокращение признаков правильно выделяют значимые признаки, саму значимость они оценивают по-разному.
* среднее значение позволяет c хорошей уверенностью определять истинные значимые признаки.
Итого. Если необходимо просто ранжирование, достаточно взять модель RFE, однако, если необходимо анализировать признаки по коэффициентам, имея меру (коэффициенты), то брать нужно линейную регрессию. Случайное лассо лучше не надо.
Пример консольных результатов:
>Linear regression
>[('x1', 1.0), ('x4', 0.69), ('x2', 0.61), ('x11', 0.59), ('x3', 0.51), ('x13', 0.48), ('x5', 0.19), ('x12', 0.19), ('x14', 0.12), ('x8', 0.03), ('x6', 0.02), ('x10', 0.01), ('x7', 0.0), ('x9', 0.0)]
>Random lasso
>[('x5', 1.0), ('x4', 0.76), ('x2', 0.74), ('x1', 0.72), ('x14', 0.44), ('x12', 0.32), ('x11', 0.28), ('x8', 0.22), ('x6', 0.17), ('x3', 0.08), ('x7', 0.02), ('x13', 0.02), ('x9', 0.01), ('x10', 0.0)]
>RFE
>[('x4', 1.0), ('x1', 0.92), ('x11', 0.85), ('x2', 0.77), ('x3', 0.69), ('x13', 0.62), ('x5', 0.54), ('x12', 0.46), ('x14', 0.38), ('x8', 0.31), ('x6', 0.23), ('x10', 0.15), ('x7', 0.08), ('x9', 0.0)]
>Mean
>[('x1', 0.88), ('x4', 0.82), ('x2', 0.71), ('x5', 0.58), ('x11', 0.57), ('x3', 0.43), ('x13', 0.37), ('x12', 0.32), ('x14', 0.31), ('x8', 0.19), ('x6', 0.14), ('x10', 0.05), ('x7', 0.03), ('x9', 0.0)]
По данным результатам можно заключить, что наиболее влиятельные признаки по убыванию: x1, x4, x2, x5.

View File

@@ -0,0 +1,126 @@
from sklearn.impute import SimpleImputer, MissingIndicator
from sklearn.pipeline import FeatureUnion, make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd
import random as rand
import numpy as np
from matplotlib import pyplot as plt
def rank_to_dict(ranks, names, n_features):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(len(ranks), 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
def part_one():
print('Titanic data analysis\n')
data = pd.read_csv('titanic_data.csv', index_col='PassengerId')
x = data[['Pclass', 'Name', 'Sex']]
y = data[['Survived']]
names = pd.DataFrame(TfidfVectorizer().fit_transform(x['Name']).toarray())
col_names = names[names.columns[1:]].apply(lambda el: sum(el.dropna().astype(float)), axis=1)
col_names.index = np.arange(1, len(col_names) + 1)
col_sexes = []
for index, row in x.iterrows():
if row['Sex'] == 'male':
col_sexes.append(1)
else:
col_sexes.append(0)
x = x.drop(columns=['Sex', 'Name'])
x['Sex'] = col_sexes
x['Name'] = col_names
dtc = DecisionTreeClassifier(random_state=rand.randint(0, 250))
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.05, random_state=rand.randint(0, 250))
dtc.fit(x_train, y_train)
print('model score: ' + str(dtc.score(x_test, y_test)))
res = dict(zip(['Pclass', 'Sex', 'Name'], dtc.feature_importances_))
print('feature importances: ' + str(res))
def part_two():
print('\n---------------------------------------------------------------------------\nSberbank data analysis\n')
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data.drop(columns='price_doc')
y = data[['price_doc']]
x = x.replace(
['NA', 'no', 'yes', 'Investment', 'OwnerOccupier', 'poor', 'satisfactory', 'no data', 'good', 'excellent'],
[0, 0, 1, 0, 1, -1, 0, 0, 1, 2])
x.fillna(0, inplace=True)
names = pd.DataFrame(TfidfVectorizer().fit_transform(x['sub_area']).toarray())
col_area = names[names.columns[1:]].apply(lambda el: sum(el.dropna().astype(float)), axis=1)
col_area.index = np.arange(1, len(col_area) + 1)
col_date = []
for val in x['timestamp']:
col_date.append(val.split('-', 1)[0])
x = x.drop(columns=['sub_area', 'timestamp'])
x['sub_area'] = col_area
x['timestamp'] = col_date
col_price = []
for val in y['price_doc']:
if val < 1500000:
col_price.append('low')
elif val < 3000000:
col_price.append('medium')
elif val < 5500000:
col_price.append('high')
elif val < 10000000:
col_price.append('premium')
else:
col_price.append('oligarch')
y = pd.DataFrame(col_price)
transformer = FeatureUnion(
transformer_list=[
('features', SimpleImputer(strategy='mean')),
('indicators', MissingIndicator())])
dtr = make_pipeline(transformer, DecisionTreeClassifier(random_state=rand.randint(0, 250)))
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=rand.randint(0, 250))
dtr.fit(x_train, y_train)
features = list(x.columns)
print('model score: ' + str(dtr.score(x_test, y_test)))
res = sorted(dict(zip(features, dtr.steps[-1][1].feature_importances_)).items(),
key=lambda el: el[1], reverse=True)
view_y = []
view_x = []
flag = 0
print('feature importances:')
for val in res:
if flag == 8:
break
print(val[0]+" - "+str(val[1]))
view_y.append(val[0])
view_x.append(val[1])
flag = flag + 1
plt.figure(1, figsize=(16, 9))
plt.bar(view_y, view_x)
plt.show()
def start():
part_one()
part_two()
start()

View File

@@ -0,0 +1,60 @@
### Задание
1. По данным о пассажирах Титаника решить задачу классификации с помощью дерева решений, в которой по различным характеристикам пассажиров требуется найти у выживших пассажиров два наиболее важных признака из трех рассматриваемых.
Вариант 1: Pclass,Name,Sex.
2. По данным курсовой работы с помощью дерева решений решить выбранную задачу: классификация - зависимость категории цены от всех остальных факторов, оценка результата и отбор наиболее значимых признаков.
### Запуск программы
Файл lab3.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа состоит из двух частей:
1. Она считывает файл с данными по пассажирам "Титаника", признаки "класс", "имя", "пол" и запись о том, выжил ли пассажир. Данные предобрабатываются: запись о поле кодируется (ж - 0, м - 1), запись об имени кодируется (Tfidf). После этого дерево решений тренируется на данных и результаты выводятся в консоль.
2. Она считывает файл с данными сбербанка по рынку недвижимости. Далее данные предобрабатываются: названия районов кодируется (Tfidf), нечисловые записи цифровизируются, запоняются нулевые записи, записи подразделяются на классы. После этого на данных обучается дерево решений и результат выводится в консоль и на форму. Поскольку признаков слишком много, выводимые результаты ограничены восемью наиболее значимыми.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
По первой задаче:
* Дерево решений показывает неплохие результаты, около 70-75%.
* Однако оценка важности признаков даёт абсолютно неверный результат: наиболее значимым признаком назначается имя пассажира. Это значит, что кодировка не подходит для правильной обработки данных. Возможные решения: обнуление или исключение признака как аналитически очевидно незначимого.
* Помимо неправильной оценки роли имени, пол определяется более чем в два раза более значимым, нежели класс. Действительная статистика (среди спасшихся пассажиров 74% женщин и детей (из которых многие также были мужского пола) и 26% мужчин, 60% первого класса, 44% - второго, 25% - третьего) скорее подтверждает правильность этого вывода.
По второй задаче:
* Дерево решений показывает неплохие результаты, около 70-75%.
* Оценка важности признаков показывает наиболее важным признаком площадь недвижимости, что скорее всего верно.
* После площади с небольшим отрывом идёт количество спортивных объектов в округе. Это неверно хотя бы потому, что в данных присустствуют коррелирующие признаки - площадь жилого пространства и другие. К тому же доступна информация по действительному ранжированию.
* Дальнейшие оценки содержат как правильные, так и неправильные признаки: этаж, количество этажей в доме, район - действительно значимые признаки, но они перемешаны с незначимыми.
Итого. Дерево решений даёт неплохие результаты при классификации. Однако для задач регрессии не подходят, т.к. неверно определяют значимые признаки. При работе также следует тщательнее предобрабатывать данные, в особенности малозначащие текстовые - предложенные методы кодирования показали себя неэффективно на лабораторных данных.
Пример консольных результатов:
>Titanic data analysis
>model score: 0.7777777777777778
>feature importances: {'Pclass': 0.1287795817634186, 'Sex': 0.3381642167551354, 'Name': 0.533056201481446}
>Sberbank data analysis
>model score: 0.7162629757785467
>feature importances:
>full_sq - 0.1801327274709341
>sport_count_3000 - 0.14881362533480907
>floor - 0.03169232872469085
>power_transmission_line_km - 0.027978416524911377
>timestamp - 0.020092007662845194
>max_floor - 0.019985442431576052
>cafe_count_5000_price_2500 - 0.019397048405749438
>sub_area - 0.017477163456413432

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,892 @@
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
1 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
2 1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.25 S
3 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 PC 17599 71.2833 C85 C
4 3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.925 S
5 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1 C123 S
6 5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.05 S
7 6 0 3 Moran, Mr. James male 0 0 330877 8.4583 Q
8 7 0 1 McCarthy, Mr. Timothy J male 54 0 0 17463 51.8625 E46 S
9 8 0 3 Palsson, Master. Gosta Leonard male 2 3 1 349909 21.075 S
10 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 2 347742 11.1333 S
11 10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 0 237736 30.0708 C
12 11 1 3 Sandstrom, Miss. Marguerite Rut female 4 1 1 PP 9549 16.7 G6 S
13 12 1 1 Bonnell, Miss. Elizabeth female 58 0 0 113783 26.55 C103 S
14 13 0 3 Saundercock, Mr. William Henry male 20 0 0 A/5. 2151 8.05 S
15 14 0 3 Andersson, Mr. Anders Johan male 39 1 5 347082 31.275 S
16 15 0 3 Vestrom, Miss. Hulda Amanda Adolfina female 14 0 0 350406 7.8542 S
17 16 1 2 Hewlett, Mrs. (Mary D Kingcome) female 55 0 0 248706 16 S
18 17 0 3 Rice, Master. Eugene male 2 4 1 382652 29.125 Q
19 18 1 2 Williams, Mr. Charles Eugene male 0 0 244373 13 S
20 19 0 3 Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele) female 31 1 0 345763 18 S
21 20 1 3 Masselmani, Mrs. Fatima female 0 0 2649 7.225 C
22 21 0 2 Fynney, Mr. Joseph J male 35 0 0 239865 26 S
23 22 1 2 Beesley, Mr. Lawrence male 34 0 0 248698 13 D56 S
24 23 1 3 McGowan, Miss. Anna "Annie" female 15 0 0 330923 8.0292 Q
25 24 1 1 Sloper, Mr. William Thompson male 28 0 0 113788 35.5 A6 S
26 25 0 3 Palsson, Miss. Torborg Danira female 8 3 1 349909 21.075 S
27 26 1 3 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson) female 38 1 5 347077 31.3875 S
28 27 0 3 Emir, Mr. Farred Chehab male 0 0 2631 7.225 C
29 28 0 1 Fortune, Mr. Charles Alexander male 19 3 2 19950 263 C23 C25 C27 S
30 29 1 3 O'Dwyer, Miss. Ellen "Nellie" female 0 0 330959 7.8792 Q
31 30 0 3 Todoroff, Mr. Lalio male 0 0 349216 7.8958 S
32 31 0 1 Uruchurtu, Don. Manuel E male 40 0 0 PC 17601 27.7208 C
33 32 1 1 Spencer, Mrs. William Augustus (Marie Eugenie) female 1 0 PC 17569 146.5208 B78 C
34 33 1 3 Glynn, Miss. Mary Agatha female 0 0 335677 7.75 Q
35 34 0 2 Wheadon, Mr. Edward H male 66 0 0 C.A. 24579 10.5 S
36 35 0 1 Meyer, Mr. Edgar Joseph male 28 1 0 PC 17604 82.1708 C
37 36 0 1 Holverson, Mr. Alexander Oskar male 42 1 0 113789 52 S
38 37 1 3 Mamee, Mr. Hanna male 0 0 2677 7.2292 C
39 38 0 3 Cann, Mr. Ernest Charles male 21 0 0 A./5. 2152 8.05 S
40 39 0 3 Vander Planke, Miss. Augusta Maria female 18 2 0 345764 18 S
41 40 1 3 Nicola-Yarred, Miss. Jamila female 14 1 0 2651 11.2417 C
42 41 0 3 Ahlin, Mrs. Johan (Johanna Persdotter Larsson) female 40 1 0 7546 9.475 S
43 42 0 2 Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott) female 27 1 0 11668 21 S
44 43 0 3 Kraeff, Mr. Theodor male 0 0 349253 7.8958 C
45 44 1 2 Laroche, Miss. Simonne Marie Anne Andree female 3 1 2 SC/Paris 2123 41.5792 C
46 45 1 3 Devaney, Miss. Margaret Delia female 19 0 0 330958 7.8792 Q
47 46 0 3 Rogers, Mr. William John male 0 0 S.C./A.4. 23567 8.05 S
48 47 0 3 Lennon, Mr. Denis male 1 0 370371 15.5 Q
49 48 1 3 O'Driscoll, Miss. Bridget female 0 0 14311 7.75 Q
50 49 0 3 Samaan, Mr. Youssef male 2 0 2662 21.6792 C
51 50 0 3 Arnold-Franchi, Mrs. Josef (Josefine Franchi) female 18 1 0 349237 17.8 S
52 51 0 3 Panula, Master. Juha Niilo male 7 4 1 3101295 39.6875 S
53 52 0 3 Nosworthy, Mr. Richard Cater male 21 0 0 A/4. 39886 7.8 S
54 53 1 1 Harper, Mrs. Henry Sleeper (Myna Haxtun) female 49 1 0 PC 17572 76.7292 D33 C
55 54 1 2 Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson) female 29 1 0 2926 26 S
56 55 0 1 Ostby, Mr. Engelhart Cornelius male 65 0 1 113509 61.9792 B30 C
57 56 1 1 Woolner, Mr. Hugh male 0 0 19947 35.5 C52 S
58 57 1 2 Rugg, Miss. Emily female 21 0 0 C.A. 31026 10.5 S
59 58 0 3 Novel, Mr. Mansouer male 28.5 0 0 2697 7.2292 C
60 59 1 2 West, Miss. Constance Mirium female 5 1 2 C.A. 34651 27.75 S
61 60 0 3 Goodwin, Master. William Frederick male 11 5 2 CA 2144 46.9 S
62 61 0 3 Sirayanian, Mr. Orsen male 22 0 0 2669 7.2292 C
63 62 1 1 Icard, Miss. Amelie female 38 0 0 113572 80 B28
64 63 0 1 Harris, Mr. Henry Birkhardt male 45 1 0 36973 83.475 C83 S
65 64 0 3 Skoog, Master. Harald male 4 3 2 347088 27.9 S
66 65 0 1 Stewart, Mr. Albert A male 0 0 PC 17605 27.7208 C
67 66 1 3 Moubarek, Master. Gerios male 1 1 2661 15.2458 C
68 67 1 2 Nye, Mrs. (Elizabeth Ramell) female 29 0 0 C.A. 29395 10.5 F33 S
69 68 0 3 Crease, Mr. Ernest James male 19 0 0 S.P. 3464 8.1583 S
70 69 1 3 Andersson, Miss. Erna Alexandra female 17 4 2 3101281 7.925 S
71 70 0 3 Kink, Mr. Vincenz male 26 2 0 315151 8.6625 S
72 71 0 2 Jenkin, Mr. Stephen Curnow male 32 0 0 C.A. 33111 10.5 S
73 72 0 3 Goodwin, Miss. Lillian Amy female 16 5 2 CA 2144 46.9 S
74 73 0 2 Hood, Mr. Ambrose Jr male 21 0 0 S.O.C. 14879 73.5 S
75 74 0 3 Chronopoulos, Mr. Apostolos male 26 1 0 2680 14.4542 C
76 75 1 3 Bing, Mr. Lee male 32 0 0 1601 56.4958 S
77 76 0 3 Moen, Mr. Sigurd Hansen male 25 0 0 348123 7.65 F G73 S
78 77 0 3 Staneff, Mr. Ivan male 0 0 349208 7.8958 S
79 78 0 3 Moutal, Mr. Rahamin Haim male 0 0 374746 8.05 S
80 79 1 2 Caldwell, Master. Alden Gates male 0.83 0 2 248738 29 S
81 80 1 3 Dowdell, Miss. Elizabeth female 30 0 0 364516 12.475 S
82 81 0 3 Waelens, Mr. Achille male 22 0 0 345767 9 S
83 82 1 3 Sheerlinck, Mr. Jan Baptist male 29 0 0 345779 9.5 S
84 83 1 3 McDermott, Miss. Brigdet Delia female 0 0 330932 7.7875 Q
85 84 0 1 Carrau, Mr. Francisco M male 28 0 0 113059 47.1 S
86 85 1 2 Ilett, Miss. Bertha female 17 0 0 SO/C 14885 10.5 S
87 86 1 3 Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson) female 33 3 0 3101278 15.85 S
88 87 0 3 Ford, Mr. William Neal male 16 1 3 W./C. 6608 34.375 S
89 88 0 3 Slocovski, Mr. Selman Francis male 0 0 SOTON/OQ 392086 8.05 S
90 89 1 1 Fortune, Miss. Mabel Helen female 23 3 2 19950 263 C23 C25 C27 S
91 90 0 3 Celotti, Mr. Francesco male 24 0 0 343275 8.05 S
92 91 0 3 Christmann, Mr. Emil male 29 0 0 343276 8.05 S
93 92 0 3 Andreasson, Mr. Paul Edvin male 20 0 0 347466 7.8542 S
94 93 0 1 Chaffee, Mr. Herbert Fuller male 46 1 0 W.E.P. 5734 61.175 E31 S
95 94 0 3 Dean, Mr. Bertram Frank male 26 1 2 C.A. 2315 20.575 S
96 95 0 3 Coxon, Mr. Daniel male 59 0 0 364500 7.25 S
97 96 0 3 Shorney, Mr. Charles Joseph male 0 0 374910 8.05 S
98 97 0 1 Goldschmidt, Mr. George B male 71 0 0 PC 17754 34.6542 A5 C
99 98 1 1 Greenfield, Mr. William Bertram male 23 0 1 PC 17759 63.3583 D10 D12 C
100 99 1 2 Doling, Mrs. John T (Ada Julia Bone) female 34 0 1 231919 23 S
101 100 0 2 Kantor, Mr. Sinai male 34 1 0 244367 26 S
102 101 0 3 Petranec, Miss. Matilda female 28 0 0 349245 7.8958 S
103 102 0 3 Petroff, Mr. Pastcho ("Pentcho") male 0 0 349215 7.8958 S
104 103 0 1 White, Mr. Richard Frasar male 21 0 1 35281 77.2875 D26 S
105 104 0 3 Johansson, Mr. Gustaf Joel male 33 0 0 7540 8.6542 S
106 105 0 3 Gustafsson, Mr. Anders Vilhelm male 37 2 0 3101276 7.925 S
107 106 0 3 Mionoff, Mr. Stoytcho male 28 0 0 349207 7.8958 S
108 107 1 3 Salkjelsvik, Miss. Anna Kristine female 21 0 0 343120 7.65 S
109 108 1 3 Moss, Mr. Albert Johan male 0 0 312991 7.775 S
110 109 0 3 Rekic, Mr. Tido male 38 0 0 349249 7.8958 S
111 110 1 3 Moran, Miss. Bertha female 1 0 371110 24.15 Q
112 111 0 1 Porter, Mr. Walter Chamberlain male 47 0 0 110465 52 C110 S
113 112 0 3 Zabour, Miss. Hileni female 14.5 1 0 2665 14.4542 C
114 113 0 3 Barton, Mr. David John male 22 0 0 324669 8.05 S
115 114 0 3 Jussila, Miss. Katriina female 20 1 0 4136 9.825 S
116 115 0 3 Attalah, Miss. Malake female 17 0 0 2627 14.4583 C
117 116 0 3 Pekoniemi, Mr. Edvard male 21 0 0 STON/O 2. 3101294 7.925 S
118 117 0 3 Connors, Mr. Patrick male 70.5 0 0 370369 7.75 Q
119 118 0 2 Turpin, Mr. William John Robert male 29 1 0 11668 21 S
120 119 0 1 Baxter, Mr. Quigg Edmond male 24 0 1 PC 17558 247.5208 B58 B60 C
121 120 0 3 Andersson, Miss. Ellis Anna Maria female 2 4 2 347082 31.275 S
122 121 0 2 Hickman, Mr. Stanley George male 21 2 0 S.O.C. 14879 73.5 S
123 122 0 3 Moore, Mr. Leonard Charles male 0 0 A4. 54510 8.05 S
124 123 0 2 Nasser, Mr. Nicholas male 32.5 1 0 237736 30.0708 C
125 124 1 2 Webber, Miss. Susan female 32.5 0 0 27267 13 E101 S
126 125 0 1 White, Mr. Percival Wayland male 54 0 1 35281 77.2875 D26 S
127 126 1 3 Nicola-Yarred, Master. Elias male 12 1 0 2651 11.2417 C
128 127 0 3 McMahon, Mr. Martin male 0 0 370372 7.75 Q
129 128 1 3 Madsen, Mr. Fridtjof Arne male 24 0 0 C 17369 7.1417 S
130 129 1 3 Peter, Miss. Anna female 1 1 2668 22.3583 F E69 C
131 130 0 3 Ekstrom, Mr. Johan male 45 0 0 347061 6.975 S
132 131 0 3 Drazenoic, Mr. Jozef male 33 0 0 349241 7.8958 C
133 132 0 3 Coelho, Mr. Domingos Fernandeo male 20 0 0 SOTON/O.Q. 3101307 7.05 S
134 133 0 3 Robins, Mrs. Alexander A (Grace Charity Laury) female 47 1 0 A/5. 3337 14.5 S
135 134 1 2 Weisz, Mrs. Leopold (Mathilde Francoise Pede) female 29 1 0 228414 26 S
136 135 0 2 Sobey, Mr. Samuel James Hayden male 25 0 0 C.A. 29178 13 S
137 136 0 2 Richard, Mr. Emile male 23 0 0 SC/PARIS 2133 15.0458 C
138 137 1 1 Newsom, Miss. Helen Monypeny female 19 0 2 11752 26.2833 D47 S
139 138 0 1 Futrelle, Mr. Jacques Heath male 37 1 0 113803 53.1 C123 S
140 139 0 3 Osen, Mr. Olaf Elon male 16 0 0 7534 9.2167 S
141 140 0 1 Giglio, Mr. Victor male 24 0 0 PC 17593 79.2 B86 C
142 141 0 3 Boulos, Mrs. Joseph (Sultana) female 0 2 2678 15.2458 C
143 142 1 3 Nysten, Miss. Anna Sofia female 22 0 0 347081 7.75 S
144 143 1 3 Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck) female 24 1 0 STON/O2. 3101279 15.85 S
145 144 0 3 Burke, Mr. Jeremiah male 19 0 0 365222 6.75 Q
146 145 0 2 Andrew, Mr. Edgardo Samuel male 18 0 0 231945 11.5 S
147 146 0 2 Nicholls, Mr. Joseph Charles male 19 1 1 C.A. 33112 36.75 S
148 147 1 3 Andersson, Mr. August Edvard ("Wennerstrom") male 27 0 0 350043 7.7958 S
149 148 0 3 Ford, Miss. Robina Maggie "Ruby" female 9 2 2 W./C. 6608 34.375 S
150 149 0 2 Navratil, Mr. Michel ("Louis M Hoffman") male 36.5 0 2 230080 26 F2 S
151 150 0 2 Byles, Rev. Thomas Roussel Davids male 42 0 0 244310 13 S
152 151 0 2 Bateman, Rev. Robert James male 51 0 0 S.O.P. 1166 12.525 S
153 152 1 1 Pears, Mrs. Thomas (Edith Wearne) female 22 1 0 113776 66.6 C2 S
154 153 0 3 Meo, Mr. Alfonzo male 55.5 0 0 A.5. 11206 8.05 S
155 154 0 3 van Billiard, Mr. Austin Blyler male 40.5 0 2 A/5. 851 14.5 S
156 155 0 3 Olsen, Mr. Ole Martin male 0 0 Fa 265302 7.3125 S
157 156 0 1 Williams, Mr. Charles Duane male 51 0 1 PC 17597 61.3792 C
158 157 1 3 Gilnagh, Miss. Katherine "Katie" female 16 0 0 35851 7.7333 Q
159 158 0 3 Corn, Mr. Harry male 30 0 0 SOTON/OQ 392090 8.05 S
160 159 0 3 Smiljanic, Mr. Mile male 0 0 315037 8.6625 S
161 160 0 3 Sage, Master. Thomas Henry male 8 2 CA. 2343 69.55 S
162 161 0 3 Cribb, Mr. John Hatfield male 44 0 1 371362 16.1 S
163 162 1 2 Watt, Mrs. James (Elizabeth "Bessie" Inglis Milne) female 40 0 0 C.A. 33595 15.75 S
164 163 0 3 Bengtsson, Mr. John Viktor male 26 0 0 347068 7.775 S
165 164 0 3 Calic, Mr. Jovo male 17 0 0 315093 8.6625 S
166 165 0 3 Panula, Master. Eino Viljami male 1 4 1 3101295 39.6875 S
167 166 1 3 Goldsmith, Master. Frank John William "Frankie" male 9 0 2 363291 20.525 S
168 167 1 1 Chibnall, Mrs. (Edith Martha Bowerman) female 0 1 113505 55 E33 S
169 168 0 3 Skoog, Mrs. William (Anna Bernhardina Karlsson) female 45 1 4 347088 27.9 S
170 169 0 1 Baumann, Mr. John D male 0 0 PC 17318 25.925 S
171 170 0 3 Ling, Mr. Lee male 28 0 0 1601 56.4958 S
172 171 0 1 Van der hoef, Mr. Wyckoff male 61 0 0 111240 33.5 B19 S
173 172 0 3 Rice, Master. Arthur male 4 4 1 382652 29.125 Q
174 173 1 3 Johnson, Miss. Eleanor Ileen female 1 1 1 347742 11.1333 S
175 174 0 3 Sivola, Mr. Antti Wilhelm male 21 0 0 STON/O 2. 3101280 7.925 S
176 175 0 1 Smith, Mr. James Clinch male 56 0 0 17764 30.6958 A7 C
177 176 0 3 Klasen, Mr. Klas Albin male 18 1 1 350404 7.8542 S
178 177 0 3 Lefebre, Master. Henry Forbes male 3 1 4133 25.4667 S
179 178 0 1 Isham, Miss. Ann Elizabeth female 50 0 0 PC 17595 28.7125 C49 C
180 179 0 2 Hale, Mr. Reginald male 30 0 0 250653 13 S
181 180 0 3 Leonard, Mr. Lionel male 36 0 0 LINE 0 S
182 181 0 3 Sage, Miss. Constance Gladys female 8 2 CA. 2343 69.55 S
183 182 0 2 Pernot, Mr. Rene male 0 0 SC/PARIS 2131 15.05 C
184 183 0 3 Asplund, Master. Clarence Gustaf Hugo male 9 4 2 347077 31.3875 S
185 184 1 2 Becker, Master. Richard F male 1 2 1 230136 39 F4 S
186 185 1 3 Kink-Heilmann, Miss. Luise Gretchen female 4 0 2 315153 22.025 S
187 186 0 1 Rood, Mr. Hugh Roscoe male 0 0 113767 50 A32 S
188 187 1 3 O'Brien, Mrs. Thomas (Johanna "Hannah" Godfrey) female 1 0 370365 15.5 Q
189 188 1 1 Romaine, Mr. Charles Hallace ("Mr C Rolmane") male 45 0 0 111428 26.55 S
190 189 0 3 Bourke, Mr. John male 40 1 1 364849 15.5 Q
191 190 0 3 Turcin, Mr. Stjepan male 36 0 0 349247 7.8958 S
192 191 1 2 Pinsky, Mrs. (Rosa) female 32 0 0 234604 13 S
193 192 0 2 Carbines, Mr. William male 19 0 0 28424 13 S
194 193 1 3 Andersen-Jensen, Miss. Carla Christine Nielsine female 19 1 0 350046 7.8542 S
195 194 1 2 Navratil, Master. Michel M male 3 1 1 230080 26 F2 S
196 195 1 1 Brown, Mrs. James Joseph (Margaret Tobin) female 44 0 0 PC 17610 27.7208 B4 C
197 196 1 1 Lurette, Miss. Elise female 58 0 0 PC 17569 146.5208 B80 C
198 197 0 3 Mernagh, Mr. Robert male 0 0 368703 7.75 Q
199 198 0 3 Olsen, Mr. Karl Siegwart Andreas male 42 0 1 4579 8.4042 S
200 199 1 3 Madigan, Miss. Margaret "Maggie" female 0 0 370370 7.75 Q
201 200 0 2 Yrois, Miss. Henriette ("Mrs Harbeck") female 24 0 0 248747 13 S
202 201 0 3 Vande Walle, Mr. Nestor Cyriel male 28 0 0 345770 9.5 S
203 202 0 3 Sage, Mr. Frederick male 8 2 CA. 2343 69.55 S
204 203 0 3 Johanson, Mr. Jakob Alfred male 34 0 0 3101264 6.4958 S
205 204 0 3 Youseff, Mr. Gerious male 45.5 0 0 2628 7.225 C
206 205 1 3 Cohen, Mr. Gurshon "Gus" male 18 0 0 A/5 3540 8.05 S
207 206 0 3 Strom, Miss. Telma Matilda female 2 0 1 347054 10.4625 G6 S
208 207 0 3 Backstrom, Mr. Karl Alfred male 32 1 0 3101278 15.85 S
209 208 1 3 Albimona, Mr. Nassef Cassem male 26 0 0 2699 18.7875 C
210 209 1 3 Carr, Miss. Helen "Ellen" female 16 0 0 367231 7.75 Q
211 210 1 1 Blank, Mr. Henry male 40 0 0 112277 31 A31 C
212 211 0 3 Ali, Mr. Ahmed male 24 0 0 SOTON/O.Q. 3101311 7.05 S
213 212 1 2 Cameron, Miss. Clear Annie female 35 0 0 F.C.C. 13528 21 S
214 213 0 3 Perkin, Mr. John Henry male 22 0 0 A/5 21174 7.25 S
215 214 0 2 Givard, Mr. Hans Kristensen male 30 0 0 250646 13 S
216 215 0 3 Kiernan, Mr. Philip male 1 0 367229 7.75 Q
217 216 1 1 Newell, Miss. Madeleine female 31 1 0 35273 113.275 D36 C
218 217 1 3 Honkanen, Miss. Eliina female 27 0 0 STON/O2. 3101283 7.925 S
219 218 0 2 Jacobsohn, Mr. Sidney Samuel male 42 1 0 243847 27 S
220 219 1 1 Bazzani, Miss. Albina female 32 0 0 11813 76.2917 D15 C
221 220 0 2 Harris, Mr. Walter male 30 0 0 W/C 14208 10.5 S
222 221 1 3 Sunderland, Mr. Victor Francis male 16 0 0 SOTON/OQ 392089 8.05 S
223 222 0 2 Bracken, Mr. James H male 27 0 0 220367 13 S
224 223 0 3 Green, Mr. George Henry male 51 0 0 21440 8.05 S
225 224 0 3 Nenkoff, Mr. Christo male 0 0 349234 7.8958 S
226 225 1 1 Hoyt, Mr. Frederick Maxfield male 38 1 0 19943 90 C93 S
227 226 0 3 Berglund, Mr. Karl Ivar Sven male 22 0 0 PP 4348 9.35 S
228 227 1 2 Mellors, Mr. William John male 19 0 0 SW/PP 751 10.5 S
229 228 0 3 Lovell, Mr. John Hall ("Henry") male 20.5 0 0 A/5 21173 7.25 S
230 229 0 2 Fahlstrom, Mr. Arne Jonas male 18 0 0 236171 13 S
231 230 0 3 Lefebre, Miss. Mathilde female 3 1 4133 25.4667 S
232 231 1 1 Harris, Mrs. Henry Birkhardt (Irene Wallach) female 35 1 0 36973 83.475 C83 S
233 232 0 3 Larsson, Mr. Bengt Edvin male 29 0 0 347067 7.775 S
234 233 0 2 Sjostedt, Mr. Ernst Adolf male 59 0 0 237442 13.5 S
235 234 1 3 Asplund, Miss. Lillian Gertrud female 5 4 2 347077 31.3875 S
236 235 0 2 Leyson, Mr. Robert William Norman male 24 0 0 C.A. 29566 10.5 S
237 236 0 3 Harknett, Miss. Alice Phoebe female 0 0 W./C. 6609 7.55 S
238 237 0 2 Hold, Mr. Stephen male 44 1 0 26707 26 S
239 238 1 2 Collyer, Miss. Marjorie "Lottie" female 8 0 2 C.A. 31921 26.25 S
240 239 0 2 Pengelly, Mr. Frederick William male 19 0 0 28665 10.5 S
241 240 0 2 Hunt, Mr. George Henry male 33 0 0 SCO/W 1585 12.275 S
242 241 0 3 Zabour, Miss. Thamine female 1 0 2665 14.4542 C
243 242 1 3 Murphy, Miss. Katherine "Kate" female 1 0 367230 15.5 Q
244 243 0 2 Coleridge, Mr. Reginald Charles male 29 0 0 W./C. 14263 10.5 S
245 244 0 3 Maenpaa, Mr. Matti Alexanteri male 22 0 0 STON/O 2. 3101275 7.125 S
246 245 0 3 Attalah, Mr. Sleiman male 30 0 0 2694 7.225 C
247 246 0 1 Minahan, Dr. William Edward male 44 2 0 19928 90 C78 Q
248 247 0 3 Lindahl, Miss. Agda Thorilda Viktoria female 25 0 0 347071 7.775 S
249 248 1 2 Hamalainen, Mrs. William (Anna) female 24 0 2 250649 14.5 S
250 249 1 1 Beckwith, Mr. Richard Leonard male 37 1 1 11751 52.5542 D35 S
251 250 0 2 Carter, Rev. Ernest Courtenay male 54 1 0 244252 26 S
252 251 0 3 Reed, Mr. James George male 0 0 362316 7.25 S
253 252 0 3 Strom, Mrs. Wilhelm (Elna Matilda Persson) female 29 1 1 347054 10.4625 G6 S
254 253 0 1 Stead, Mr. William Thomas male 62 0 0 113514 26.55 C87 S
255 254 0 3 Lobb, Mr. William Arthur male 30 1 0 A/5. 3336 16.1 S
256 255 0 3 Rosblom, Mrs. Viktor (Helena Wilhelmina) female 41 0 2 370129 20.2125 S
257 256 1 3 Touma, Mrs. Darwis (Hanne Youssef Razi) female 29 0 2 2650 15.2458 C
258 257 1 1 Thorne, Mrs. Gertrude Maybelle female 0 0 PC 17585 79.2 C
259 258 1 1 Cherry, Miss. Gladys female 30 0 0 110152 86.5 B77 S
260 259 1 1 Ward, Miss. Anna female 35 0 0 PC 17755 512.3292 C
261 260 1 2 Parrish, Mrs. (Lutie Davis) female 50 0 1 230433 26 S
262 261 0 3 Smith, Mr. Thomas male 0 0 384461 7.75 Q
263 262 1 3 Asplund, Master. Edvin Rojj Felix male 3 4 2 347077 31.3875 S
264 263 0 1 Taussig, Mr. Emil male 52 1 1 110413 79.65 E67 S
265 264 0 1 Harrison, Mr. William male 40 0 0 112059 0 B94 S
266 265 0 3 Henry, Miss. Delia female 0 0 382649 7.75 Q
267 266 0 2 Reeves, Mr. David male 36 0 0 C.A. 17248 10.5 S
268 267 0 3 Panula, Mr. Ernesti Arvid male 16 4 1 3101295 39.6875 S
269 268 1 3 Persson, Mr. Ernst Ulrik male 25 1 0 347083 7.775 S
270 269 1 1 Graham, Mrs. William Thompson (Edith Junkins) female 58 0 1 PC 17582 153.4625 C125 S
271 270 1 1 Bissette, Miss. Amelia female 35 0 0 PC 17760 135.6333 C99 S
272 271 0 1 Cairns, Mr. Alexander male 0 0 113798 31 S
273 272 1 3 Tornquist, Mr. William Henry male 25 0 0 LINE 0 S
274 273 1 2 Mellinger, Mrs. (Elizabeth Anne Maidment) female 41 0 1 250644 19.5 S
275 274 0 1 Natsch, Mr. Charles H male 37 0 1 PC 17596 29.7 C118 C
276 275 1 3 Healy, Miss. Hanora "Nora" female 0 0 370375 7.75 Q
277 276 1 1 Andrews, Miss. Kornelia Theodosia female 63 1 0 13502 77.9583 D7 S
278 277 0 3 Lindblom, Miss. Augusta Charlotta female 45 0 0 347073 7.75 S
279 278 0 2 Parkes, Mr. Francis "Frank" male 0 0 239853 0 S
280 279 0 3 Rice, Master. Eric male 7 4 1 382652 29.125 Q
281 280 1 3 Abbott, Mrs. Stanton (Rosa Hunt) female 35 1 1 C.A. 2673 20.25 S
282 281 0 3 Duane, Mr. Frank male 65 0 0 336439 7.75 Q
283 282 0 3 Olsson, Mr. Nils Johan Goransson male 28 0 0 347464 7.8542 S
284 283 0 3 de Pelsmaeker, Mr. Alfons male 16 0 0 345778 9.5 S
285 284 1 3 Dorking, Mr. Edward Arthur male 19 0 0 A/5. 10482 8.05 S
286 285 0 1 Smith, Mr. Richard William male 0 0 113056 26 A19 S
287 286 0 3 Stankovic, Mr. Ivan male 33 0 0 349239 8.6625 C
288 287 1 3 de Mulder, Mr. Theodore male 30 0 0 345774 9.5 S
289 288 0 3 Naidenoff, Mr. Penko male 22 0 0 349206 7.8958 S
290 289 1 2 Hosono, Mr. Masabumi male 42 0 0 237798 13 S
291 290 1 3 Connolly, Miss. Kate female 22 0 0 370373 7.75 Q
292 291 1 1 Barber, Miss. Ellen "Nellie" female 26 0 0 19877 78.85 S
293 292 1 1 Bishop, Mrs. Dickinson H (Helen Walton) female 19 1 0 11967 91.0792 B49 C
294 293 0 2 Levy, Mr. Rene Jacques male 36 0 0 SC/Paris 2163 12.875 D C
295 294 0 3 Haas, Miss. Aloisia female 24 0 0 349236 8.85 S
296 295 0 3 Mineff, Mr. Ivan male 24 0 0 349233 7.8958 S
297 296 0 1 Lewy, Mr. Ervin G male 0 0 PC 17612 27.7208 C
298 297 0 3 Hanna, Mr. Mansour male 23.5 0 0 2693 7.2292 C
299 298 0 1 Allison, Miss. Helen Loraine female 2 1 2 113781 151.55 C22 C26 S
300 299 1 1 Saalfeld, Mr. Adolphe male 0 0 19988 30.5 C106 S
301 300 1 1 Baxter, Mrs. James (Helene DeLaudeniere Chaput) female 50 0 1 PC 17558 247.5208 B58 B60 C
302 301 1 3 Kelly, Miss. Anna Katherine "Annie Kate" female 0 0 9234 7.75 Q
303 302 1 3 McCoy, Mr. Bernard male 2 0 367226 23.25 Q
304 303 0 3 Johnson, Mr. William Cahoone Jr male 19 0 0 LINE 0 S
305 304 1 2 Keane, Miss. Nora A female 0 0 226593 12.35 E101 Q
306 305 0 3 Williams, Mr. Howard Hugh "Harry" male 0 0 A/5 2466 8.05 S
307 306 1 1 Allison, Master. Hudson Trevor male 0.92 1 2 113781 151.55 C22 C26 S
308 307 1 1 Fleming, Miss. Margaret female 0 0 17421 110.8833 C
309 308 1 1 Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) female 17 1 0 PC 17758 108.9 C65 C
310 309 0 2 Abelson, Mr. Samuel male 30 1 0 P/PP 3381 24 C
311 310 1 1 Francatelli, Miss. Laura Mabel female 30 0 0 PC 17485 56.9292 E36 C
312 311 1 1 Hays, Miss. Margaret Bechstein female 24 0 0 11767 83.1583 C54 C
313 312 1 1 Ryerson, Miss. Emily Borie female 18 2 2 PC 17608 262.375 B57 B59 B63 B66 C
314 313 0 2 Lahtinen, Mrs. William (Anna Sylfven) female 26 1 1 250651 26 S
315 314 0 3 Hendekovic, Mr. Ignjac male 28 0 0 349243 7.8958 S
316 315 0 2 Hart, Mr. Benjamin male 43 1 1 F.C.C. 13529 26.25 S
317 316 1 3 Nilsson, Miss. Helmina Josefina female 26 0 0 347470 7.8542 S
318 317 1 2 Kantor, Mrs. Sinai (Miriam Sternin) female 24 1 0 244367 26 S
319 318 0 2 Moraweck, Dr. Ernest male 54 0 0 29011 14 S
320 319 1 1 Wick, Miss. Mary Natalie female 31 0 2 36928 164.8667 C7 S
321 320 1 1 Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone) female 40 1 1 16966 134.5 E34 C
322 321 0 3 Dennis, Mr. Samuel male 22 0 0 A/5 21172 7.25 S
323 322 0 3 Danoff, Mr. Yoto male 27 0 0 349219 7.8958 S
324 323 1 2 Slayter, Miss. Hilda Mary female 30 0 0 234818 12.35 Q
325 324 1 2 Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh) female 22 1 1 248738 29 S
326 325 0 3 Sage, Mr. George John Jr male 8 2 CA. 2343 69.55 S
327 326 1 1 Young, Miss. Marie Grice female 36 0 0 PC 17760 135.6333 C32 C
328 327 0 3 Nysveen, Mr. Johan Hansen male 61 0 0 345364 6.2375 S
329 328 1 2 Ball, Mrs. (Ada E Hall) female 36 0 0 28551 13 D S
330 329 1 3 Goldsmith, Mrs. Frank John (Emily Alice Brown) female 31 1 1 363291 20.525 S
331 330 1 1 Hippach, Miss. Jean Gertrude female 16 0 1 111361 57.9792 B18 C
332 331 1 3 McCoy, Miss. Agnes female 2 0 367226 23.25 Q
333 332 0 1 Partner, Mr. Austen male 45.5 0 0 113043 28.5 C124 S
334 333 0 1 Graham, Mr. George Edward male 38 0 1 PC 17582 153.4625 C91 S
335 334 0 3 Vander Planke, Mr. Leo Edmondus male 16 2 0 345764 18 S
336 335 1 1 Frauenthal, Mrs. Henry William (Clara Heinsheimer) female 1 0 PC 17611 133.65 S
337 336 0 3 Denkoff, Mr. Mitto male 0 0 349225 7.8958 S
338 337 0 1 Pears, Mr. Thomas Clinton male 29 1 0 113776 66.6 C2 S
339 338 1 1 Burns, Miss. Elizabeth Margaret female 41 0 0 16966 134.5 E40 C
340 339 1 3 Dahl, Mr. Karl Edwart male 45 0 0 7598 8.05 S
341 340 0 1 Blackwell, Mr. Stephen Weart male 45 0 0 113784 35.5 T S
342 341 1 2 Navratil, Master. Edmond Roger male 2 1 1 230080 26 F2 S
343 342 1 1 Fortune, Miss. Alice Elizabeth female 24 3 2 19950 263 C23 C25 C27 S
344 343 0 2 Collander, Mr. Erik Gustaf male 28 0 0 248740 13 S
345 344 0 2 Sedgwick, Mr. Charles Frederick Waddington male 25 0 0 244361 13 S
346 345 0 2 Fox, Mr. Stanley Hubert male 36 0 0 229236 13 S
347 346 1 2 Brown, Miss. Amelia "Mildred" female 24 0 0 248733 13 F33 S
348 347 1 2 Smith, Miss. Marion Elsie female 40 0 0 31418 13 S
349 348 1 3 Davison, Mrs. Thomas Henry (Mary E Finck) female 1 0 386525 16.1 S
350 349 1 3 Coutts, Master. William Loch "William" male 3 1 1 C.A. 37671 15.9 S
351 350 0 3 Dimic, Mr. Jovan male 42 0 0 315088 8.6625 S
352 351 0 3 Odahl, Mr. Nils Martin male 23 0 0 7267 9.225 S
353 352 0 1 Williams-Lambert, Mr. Fletcher Fellows male 0 0 113510 35 C128 S
354 353 0 3 Elias, Mr. Tannous male 15 1 1 2695 7.2292 C
355 354 0 3 Arnold-Franchi, Mr. Josef male 25 1 0 349237 17.8 S
356 355 0 3 Yousif, Mr. Wazli male 0 0 2647 7.225 C
357 356 0 3 Vanden Steen, Mr. Leo Peter male 28 0 0 345783 9.5 S
358 357 1 1 Bowerman, Miss. Elsie Edith female 22 0 1 113505 55 E33 S
359 358 0 2 Funk, Miss. Annie Clemmer female 38 0 0 237671 13 S
360 359 1 3 McGovern, Miss. Mary female 0 0 330931 7.8792 Q
361 360 1 3 Mockler, Miss. Helen Mary "Ellie" female 0 0 330980 7.8792 Q
362 361 0 3 Skoog, Mr. Wilhelm male 40 1 4 347088 27.9 S
363 362 0 2 del Carlo, Mr. Sebastiano male 29 1 0 SC/PARIS 2167 27.7208 C
364 363 0 3 Barbara, Mrs. (Catherine David) female 45 0 1 2691 14.4542 C
365 364 0 3 Asim, Mr. Adola male 35 0 0 SOTON/O.Q. 3101310 7.05 S
366 365 0 3 O'Brien, Mr. Thomas male 1 0 370365 15.5 Q
367 366 0 3 Adahl, Mr. Mauritz Nils Martin male 30 0 0 C 7076 7.25 S
368 367 1 1 Warren, Mrs. Frank Manley (Anna Sophia Atkinson) female 60 1 0 110813 75.25 D37 C
369 368 1 3 Moussa, Mrs. (Mantoura Boulos) female 0 0 2626 7.2292 C
370 369 1 3 Jermyn, Miss. Annie female 0 0 14313 7.75 Q
371 370 1 1 Aubart, Mme. Leontine Pauline female 24 0 0 PC 17477 69.3 B35 C
372 371 1 1 Harder, Mr. George Achilles male 25 1 0 11765 55.4417 E50 C
373 372 0 3 Wiklund, Mr. Jakob Alfred male 18 1 0 3101267 6.4958 S
374 373 0 3 Beavan, Mr. William Thomas male 19 0 0 323951 8.05 S
375 374 0 1 Ringhini, Mr. Sante male 22 0 0 PC 17760 135.6333 C
376 375 0 3 Palsson, Miss. Stina Viola female 3 3 1 349909 21.075 S
377 376 1 1 Meyer, Mrs. Edgar Joseph (Leila Saks) female 1 0 PC 17604 82.1708 C
378 377 1 3 Landergren, Miss. Aurora Adelia female 22 0 0 C 7077 7.25 S
379 378 0 1 Widener, Mr. Harry Elkins male 27 0 2 113503 211.5 C82 C
380 379 0 3 Betros, Mr. Tannous male 20 0 0 2648 4.0125 C
381 380 0 3 Gustafsson, Mr. Karl Gideon male 19 0 0 347069 7.775 S
382 381 1 1 Bidois, Miss. Rosalie female 42 0 0 PC 17757 227.525 C
383 382 1 3 Nakid, Miss. Maria ("Mary") female 1 0 2 2653 15.7417 C
384 383 0 3 Tikkanen, Mr. Juho male 32 0 0 STON/O 2. 3101293 7.925 S
385 384 1 1 Holverson, Mrs. Alexander Oskar (Mary Aline Towner) female 35 1 0 113789 52 S
386 385 0 3 Plotcharsky, Mr. Vasil male 0 0 349227 7.8958 S
387 386 0 2 Davies, Mr. Charles Henry male 18 0 0 S.O.C. 14879 73.5 S
388 387 0 3 Goodwin, Master. Sidney Leonard male 1 5 2 CA 2144 46.9 S
389 388 1 2 Buss, Miss. Kate female 36 0 0 27849 13 S
390 389 0 3 Sadlier, Mr. Matthew male 0 0 367655 7.7292 Q
391 390 1 2 Lehmann, Miss. Bertha female 17 0 0 SC 1748 12 C
392 391 1 1 Carter, Mr. William Ernest male 36 1 2 113760 120 B96 B98 S
393 392 1 3 Jansson, Mr. Carl Olof male 21 0 0 350034 7.7958 S
394 393 0 3 Gustafsson, Mr. Johan Birger male 28 2 0 3101277 7.925 S
395 394 1 1 Newell, Miss. Marjorie female 23 1 0 35273 113.275 D36 C
396 395 1 3 Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson) female 24 0 2 PP 9549 16.7 G6 S
397 396 0 3 Johansson, Mr. Erik male 22 0 0 350052 7.7958 S
398 397 0 3 Olsson, Miss. Elina female 31 0 0 350407 7.8542 S
399 398 0 2 McKane, Mr. Peter David male 46 0 0 28403 26 S
400 399 0 2 Pain, Dr. Alfred male 23 0 0 244278 10.5 S
401 400 1 2 Trout, Mrs. William H (Jessie L) female 28 0 0 240929 12.65 S
402 401 1 3 Niskanen, Mr. Juha male 39 0 0 STON/O 2. 3101289 7.925 S
403 402 0 3 Adams, Mr. John male 26 0 0 341826 8.05 S
404 403 0 3 Jussila, Miss. Mari Aina female 21 1 0 4137 9.825 S
405 404 0 3 Hakkarainen, Mr. Pekka Pietari male 28 1 0 STON/O2. 3101279 15.85 S
406 405 0 3 Oreskovic, Miss. Marija female 20 0 0 315096 8.6625 S
407 406 0 2 Gale, Mr. Shadrach male 34 1 0 28664 21 S
408 407 0 3 Widegren, Mr. Carl/Charles Peter male 51 0 0 347064 7.75 S
409 408 1 2 Richards, Master. William Rowe male 3 1 1 29106 18.75 S
410 409 0 3 Birkeland, Mr. Hans Martin Monsen male 21 0 0 312992 7.775 S
411 410 0 3 Lefebre, Miss. Ida female 3 1 4133 25.4667 S
412 411 0 3 Sdycoff, Mr. Todor male 0 0 349222 7.8958 S
413 412 0 3 Hart, Mr. Henry male 0 0 394140 6.8583 Q
414 413 1 1 Minahan, Miss. Daisy E female 33 1 0 19928 90 C78 Q
415 414 0 2 Cunningham, Mr. Alfred Fleming male 0 0 239853 0 S
416 415 1 3 Sundman, Mr. Johan Julian male 44 0 0 STON/O 2. 3101269 7.925 S
417 416 0 3 Meek, Mrs. Thomas (Annie Louise Rowley) female 0 0 343095 8.05 S
418 417 1 2 Drew, Mrs. James Vivian (Lulu Thorne Christian) female 34 1 1 28220 32.5 S
419 418 1 2 Silven, Miss. Lyyli Karoliina female 18 0 2 250652 13 S
420 419 0 2 Matthews, Mr. William John male 30 0 0 28228 13 S
421 420 0 3 Van Impe, Miss. Catharina female 10 0 2 345773 24.15 S
422 421 0 3 Gheorgheff, Mr. Stanio male 0 0 349254 7.8958 C
423 422 0 3 Charters, Mr. David male 21 0 0 A/5. 13032 7.7333 Q
424 423 0 3 Zimmerman, Mr. Leo male 29 0 0 315082 7.875 S
425 424 0 3 Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren) female 28 1 1 347080 14.4 S
426 425 0 3 Rosblom, Mr. Viktor Richard male 18 1 1 370129 20.2125 S
427 426 0 3 Wiseman, Mr. Phillippe male 0 0 A/4. 34244 7.25 S
428 427 1 2 Clarke, Mrs. Charles V (Ada Maria Winfield) female 28 1 0 2003 26 S
429 428 1 2 Phillips, Miss. Kate Florence ("Mrs Kate Louise Phillips Marshall") female 19 0 0 250655 26 S
430 429 0 3 Flynn, Mr. James male 0 0 364851 7.75 Q
431 430 1 3 Pickard, Mr. Berk (Berk Trembisky) male 32 0 0 SOTON/O.Q. 392078 8.05 E10 S
432 431 1 1 Bjornstrom-Steffansson, Mr. Mauritz Hakan male 28 0 0 110564 26.55 C52 S
433 432 1 3 Thorneycroft, Mrs. Percival (Florence Kate White) female 1 0 376564 16.1 S
434 433 1 2 Louch, Mrs. Charles Alexander (Alice Adelaide Slow) female 42 1 0 SC/AH 3085 26 S
435 434 0 3 Kallio, Mr. Nikolai Erland male 17 0 0 STON/O 2. 3101274 7.125 S
436 435 0 1 Silvey, Mr. William Baird male 50 1 0 13507 55.9 E44 S
437 436 1 1 Carter, Miss. Lucile Polk female 14 1 2 113760 120 B96 B98 S
438 437 0 3 Ford, Miss. Doolina Margaret "Daisy" female 21 2 2 W./C. 6608 34.375 S
439 438 1 2 Richards, Mrs. Sidney (Emily Hocking) female 24 2 3 29106 18.75 S
440 439 0 1 Fortune, Mr. Mark male 64 1 4 19950 263 C23 C25 C27 S
441 440 0 2 Kvillner, Mr. Johan Henrik Johannesson male 31 0 0 C.A. 18723 10.5 S
442 441 1 2 Hart, Mrs. Benjamin (Esther Ada Bloomfield) female 45 1 1 F.C.C. 13529 26.25 S
443 442 0 3 Hampe, Mr. Leon male 20 0 0 345769 9.5 S
444 443 0 3 Petterson, Mr. Johan Emil male 25 1 0 347076 7.775 S
445 444 1 2 Reynaldo, Ms. Encarnacion female 28 0 0 230434 13 S
446 445 1 3 Johannesen-Bratthammer, Mr. Bernt male 0 0 65306 8.1125 S
447 446 1 1 Dodge, Master. Washington male 4 0 2 33638 81.8583 A34 S
448 447 1 2 Mellinger, Miss. Madeleine Violet female 13 0 1 250644 19.5 S
449 448 1 1 Seward, Mr. Frederic Kimber male 34 0 0 113794 26.55 S
450 449 1 3 Baclini, Miss. Marie Catherine female 5 2 1 2666 19.2583 C
451 450 1 1 Peuchen, Major. Arthur Godfrey male 52 0 0 113786 30.5 C104 S
452 451 0 2 West, Mr. Edwy Arthur male 36 1 2 C.A. 34651 27.75 S
453 452 0 3 Hagland, Mr. Ingvald Olai Olsen male 1 0 65303 19.9667 S
454 453 0 1 Foreman, Mr. Benjamin Laventall male 30 0 0 113051 27.75 C111 C
455 454 1 1 Goldenberg, Mr. Samuel L male 49 1 0 17453 89.1042 C92 C
456 455 0 3 Peduzzi, Mr. Joseph male 0 0 A/5 2817 8.05 S
457 456 1 3 Jalsevac, Mr. Ivan male 29 0 0 349240 7.8958 C
458 457 0 1 Millet, Mr. Francis Davis male 65 0 0 13509 26.55 E38 S
459 458 1 1 Kenyon, Mrs. Frederick R (Marion) female 1 0 17464 51.8625 D21 S
460 459 1 2 Toomey, Miss. Ellen female 50 0 0 F.C.C. 13531 10.5 S
461 460 0 3 O'Connor, Mr. Maurice male 0 0 371060 7.75 Q
462 461 1 1 Anderson, Mr. Harry male 48 0 0 19952 26.55 E12 S
463 462 0 3 Morley, Mr. William male 34 0 0 364506 8.05 S
464 463 0 1 Gee, Mr. Arthur H male 47 0 0 111320 38.5 E63 S
465 464 0 2 Milling, Mr. Jacob Christian male 48 0 0 234360 13 S
466 465 0 3 Maisner, Mr. Simon male 0 0 A/S 2816 8.05 S
467 466 0 3 Goncalves, Mr. Manuel Estanslas male 38 0 0 SOTON/O.Q. 3101306 7.05 S
468 467 0 2 Campbell, Mr. William male 0 0 239853 0 S
469 468 0 1 Smart, Mr. John Montgomery male 56 0 0 113792 26.55 S
470 469 0 3 Scanlan, Mr. James male 0 0 36209 7.725 Q
471 470 1 3 Baclini, Miss. Helene Barbara female 0.75 2 1 2666 19.2583 C
472 471 0 3 Keefe, Mr. Arthur male 0 0 323592 7.25 S
473 472 0 3 Cacic, Mr. Luka male 38 0 0 315089 8.6625 S
474 473 1 2 West, Mrs. Edwy Arthur (Ada Mary Worth) female 33 1 2 C.A. 34651 27.75 S
475 474 1 2 Jerwan, Mrs. Amin S (Marie Marthe Thuillard) female 23 0 0 SC/AH Basle 541 13.7917 D C
476 475 0 3 Strandberg, Miss. Ida Sofia female 22 0 0 7553 9.8375 S
477 476 0 1 Clifford, Mr. George Quincy male 0 0 110465 52 A14 S
478 477 0 2 Renouf, Mr. Peter Henry male 34 1 0 31027 21 S
479 478 0 3 Braund, Mr. Lewis Richard male 29 1 0 3460 7.0458 S
480 479 0 3 Karlsson, Mr. Nils August male 22 0 0 350060 7.5208 S
481 480 1 3 Hirvonen, Miss. Hildur E female 2 0 1 3101298 12.2875 S
482 481 0 3 Goodwin, Master. Harold Victor male 9 5 2 CA 2144 46.9 S
483 482 0 2 Frost, Mr. Anthony Wood "Archie" male 0 0 239854 0 S
484 483 0 3 Rouse, Mr. Richard Henry male 50 0 0 A/5 3594 8.05 S
485 484 1 3 Turkula, Mrs. (Hedwig) female 63 0 0 4134 9.5875 S
486 485 1 1 Bishop, Mr. Dickinson H male 25 1 0 11967 91.0792 B49 C
487 486 0 3 Lefebre, Miss. Jeannie female 3 1 4133 25.4667 S
488 487 1 1 Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby) female 35 1 0 19943 90 C93 S
489 488 0 1 Kent, Mr. Edward Austin male 58 0 0 11771 29.7 B37 C
490 489 0 3 Somerton, Mr. Francis William male 30 0 0 A.5. 18509 8.05 S
491 490 1 3 Coutts, Master. Eden Leslie "Neville" male 9 1 1 C.A. 37671 15.9 S
492 491 0 3 Hagland, Mr. Konrad Mathias Reiersen male 1 0 65304 19.9667 S
493 492 0 3 Windelov, Mr. Einar male 21 0 0 SOTON/OQ 3101317 7.25 S
494 493 0 1 Molson, Mr. Harry Markland male 55 0 0 113787 30.5 C30 S
495 494 0 1 Artagaveytia, Mr. Ramon male 71 0 0 PC 17609 49.5042 C
496 495 0 3 Stanley, Mr. Edward Roland male 21 0 0 A/4 45380 8.05 S
497 496 0 3 Yousseff, Mr. Gerious male 0 0 2627 14.4583 C
498 497 1 1 Eustis, Miss. Elizabeth Mussey female 54 1 0 36947 78.2667 D20 C
499 498 0 3 Shellard, Mr. Frederick William male 0 0 C.A. 6212 15.1 S
500 499 0 1 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female 25 1 2 113781 151.55 C22 C26 S
501 500 0 3 Svensson, Mr. Olof male 24 0 0 350035 7.7958 S
502 501 0 3 Calic, Mr. Petar male 17 0 0 315086 8.6625 S
503 502 0 3 Canavan, Miss. Mary female 21 0 0 364846 7.75 Q
504 503 0 3 O'Sullivan, Miss. Bridget Mary female 0 0 330909 7.6292 Q
505 504 0 3 Laitinen, Miss. Kristina Sofia female 37 0 0 4135 9.5875 S
506 505 1 1 Maioni, Miss. Roberta female 16 0 0 110152 86.5 B79 S
507 506 0 1 Penasco y Castellana, Mr. Victor de Satode male 18 1 0 PC 17758 108.9 C65 C
508 507 1 2 Quick, Mrs. Frederick Charles (Jane Richards) female 33 0 2 26360 26 S
509 508 1 1 Bradley, Mr. George ("George Arthur Brayton") male 0 0 111427 26.55 S
510 509 0 3 Olsen, Mr. Henry Margido male 28 0 0 C 4001 22.525 S
511 510 1 3 Lang, Mr. Fang male 26 0 0 1601 56.4958 S
512 511 1 3 Daly, Mr. Eugene Patrick male 29 0 0 382651 7.75 Q
513 512 0 3 Webber, Mr. James male 0 0 SOTON/OQ 3101316 8.05 S
514 513 1 1 McGough, Mr. James Robert male 36 0 0 PC 17473 26.2875 E25 S
515 514 1 1 Rothschild, Mrs. Martin (Elizabeth L. Barrett) female 54 1 0 PC 17603 59.4 C
516 515 0 3 Coleff, Mr. Satio male 24 0 0 349209 7.4958 S
517 516 0 1 Walker, Mr. William Anderson male 47 0 0 36967 34.0208 D46 S
518 517 1 2 Lemore, Mrs. (Amelia Milley) female 34 0 0 C.A. 34260 10.5 F33 S
519 518 0 3 Ryan, Mr. Patrick male 0 0 371110 24.15 Q
520 519 1 2 Angle, Mrs. William A (Florence "Mary" Agnes Hughes) female 36 1 0 226875 26 S
521 520 0 3 Pavlovic, Mr. Stefo male 32 0 0 349242 7.8958 S
522 521 1 1 Perreault, Miss. Anne female 30 0 0 12749 93.5 B73 S
523 522 0 3 Vovk, Mr. Janko male 22 0 0 349252 7.8958 S
524 523 0 3 Lahoud, Mr. Sarkis male 0 0 2624 7.225 C
525 524 1 1 Hippach, Mrs. Louis Albert (Ida Sophia Fischer) female 44 0 1 111361 57.9792 B18 C
526 525 0 3 Kassem, Mr. Fared male 0 0 2700 7.2292 C
527 526 0 3 Farrell, Mr. James male 40.5 0 0 367232 7.75 Q
528 527 1 2 Ridsdale, Miss. Lucy female 50 0 0 W./C. 14258 10.5 S
529 528 0 1 Farthing, Mr. John male 0 0 PC 17483 221.7792 C95 S
530 529 0 3 Salonen, Mr. Johan Werner male 39 0 0 3101296 7.925 S
531 530 0 2 Hocking, Mr. Richard George male 23 2 1 29104 11.5 S
532 531 1 2 Quick, Miss. Phyllis May female 2 1 1 26360 26 S
533 532 0 3 Toufik, Mr. Nakli male 0 0 2641 7.2292 C
534 533 0 3 Elias, Mr. Joseph Jr male 17 1 1 2690 7.2292 C
535 534 1 3 Peter, Mrs. Catherine (Catherine Rizk) female 0 2 2668 22.3583 C
536 535 0 3 Cacic, Miss. Marija female 30 0 0 315084 8.6625 S
537 536 1 2 Hart, Miss. Eva Miriam female 7 0 2 F.C.C. 13529 26.25 S
538 537 0 1 Butt, Major. Archibald Willingham male 45 0 0 113050 26.55 B38 S
539 538 1 1 LeRoy, Miss. Bertha female 30 0 0 PC 17761 106.425 C
540 539 0 3 Risien, Mr. Samuel Beard male 0 0 364498 14.5 S
541 540 1 1 Frolicher, Miss. Hedwig Margaritha female 22 0 2 13568 49.5 B39 C
542 541 1 1 Crosby, Miss. Harriet R female 36 0 2 WE/P 5735 71 B22 S
543 542 0 3 Andersson, Miss. Ingeborg Constanzia female 9 4 2 347082 31.275 S
544 543 0 3 Andersson, Miss. Sigrid Elisabeth female 11 4 2 347082 31.275 S
545 544 1 2 Beane, Mr. Edward male 32 1 0 2908 26 S
546 545 0 1 Douglas, Mr. Walter Donald male 50 1 0 PC 17761 106.425 C86 C
547 546 0 1 Nicholson, Mr. Arthur Ernest male 64 0 0 693 26 S
548 547 1 2 Beane, Mrs. Edward (Ethel Clarke) female 19 1 0 2908 26 S
549 548 1 2 Padro y Manent, Mr. Julian male 0 0 SC/PARIS 2146 13.8625 C
550 549 0 3 Goldsmith, Mr. Frank John male 33 1 1 363291 20.525 S
551 550 1 2 Davies, Master. John Morgan Jr male 8 1 1 C.A. 33112 36.75 S
552 551 1 1 Thayer, Mr. John Borland Jr male 17 0 2 17421 110.8833 C70 C
553 552 0 2 Sharp, Mr. Percival James R male 27 0 0 244358 26 S
554 553 0 3 O'Brien, Mr. Timothy male 0 0 330979 7.8292 Q
555 554 1 3 Leeni, Mr. Fahim ("Philip Zenni") male 22 0 0 2620 7.225 C
556 555 1 3 Ohman, Miss. Velin female 22 0 0 347085 7.775 S
557 556 0 1 Wright, Mr. George male 62 0 0 113807 26.55 S
558 557 1 1 Duff Gordon, Lady. (Lucille Christiana Sutherland) ("Mrs Morgan") female 48 1 0 11755 39.6 A16 C
559 558 0 1 Robbins, Mr. Victor male 0 0 PC 17757 227.525 C
560 559 1 1 Taussig, Mrs. Emil (Tillie Mandelbaum) female 39 1 1 110413 79.65 E67 S
561 560 1 3 de Messemaeker, Mrs. Guillaume Joseph (Emma) female 36 1 0 345572 17.4 S
562 561 0 3 Morrow, Mr. Thomas Rowan male 0 0 372622 7.75 Q
563 562 0 3 Sivic, Mr. Husein male 40 0 0 349251 7.8958 S
564 563 0 2 Norman, Mr. Robert Douglas male 28 0 0 218629 13.5 S
565 564 0 3 Simmons, Mr. John male 0 0 SOTON/OQ 392082 8.05 S
566 565 0 3 Meanwell, Miss. (Marion Ogden) female 0 0 SOTON/O.Q. 392087 8.05 S
567 566 0 3 Davies, Mr. Alfred J male 24 2 0 A/4 48871 24.15 S
568 567 0 3 Stoytcheff, Mr. Ilia male 19 0 0 349205 7.8958 S
569 568 0 3 Palsson, Mrs. Nils (Alma Cornelia Berglund) female 29 0 4 349909 21.075 S
570 569 0 3 Doharr, Mr. Tannous male 0 0 2686 7.2292 C
571 570 1 3 Jonsson, Mr. Carl male 32 0 0 350417 7.8542 S
572 571 1 2 Harris, Mr. George male 62 0 0 S.W./PP 752 10.5 S
573 572 1 1 Appleton, Mrs. Edward Dale (Charlotte Lamson) female 53 2 0 11769 51.4792 C101 S
574 573 1 1 Flynn, Mr. John Irwin ("Irving") male 36 0 0 PC 17474 26.3875 E25 S
575 574 1 3 Kelly, Miss. Mary female 0 0 14312 7.75 Q
576 575 0 3 Rush, Mr. Alfred George John male 16 0 0 A/4. 20589 8.05 S
577 576 0 3 Patchett, Mr. George male 19 0 0 358585 14.5 S
578 577 1 2 Garside, Miss. Ethel female 34 0 0 243880 13 S
579 578 1 1 Silvey, Mrs. William Baird (Alice Munger) female 39 1 0 13507 55.9 E44 S
580 579 0 3 Caram, Mrs. Joseph (Maria Elias) female 1 0 2689 14.4583 C
581 580 1 3 Jussila, Mr. Eiriik male 32 0 0 STON/O 2. 3101286 7.925 S
582 581 1 2 Christy, Miss. Julie Rachel female 25 1 1 237789 30 S
583 582 1 1 Thayer, Mrs. John Borland (Marian Longstreth Morris) female 39 1 1 17421 110.8833 C68 C
584 583 0 2 Downton, Mr. William James male 54 0 0 28403 26 S
585 584 0 1 Ross, Mr. John Hugo male 36 0 0 13049 40.125 A10 C
586 585 0 3 Paulner, Mr. Uscher male 0 0 3411 8.7125 C
587 586 1 1 Taussig, Miss. Ruth female 18 0 2 110413 79.65 E68 S
588 587 0 2 Jarvis, Mr. John Denzil male 47 0 0 237565 15 S
589 588 1 1 Frolicher-Stehli, Mr. Maxmillian male 60 1 1 13567 79.2 B41 C
590 589 0 3 Gilinski, Mr. Eliezer male 22 0 0 14973 8.05 S
591 590 0 3 Murdlin, Mr. Joseph male 0 0 A./5. 3235 8.05 S
592 591 0 3 Rintamaki, Mr. Matti male 35 0 0 STON/O 2. 3101273 7.125 S
593 592 1 1 Stephenson, Mrs. Walter Bertram (Martha Eustis) female 52 1 0 36947 78.2667 D20 C
594 593 0 3 Elsbury, Mr. William James male 47 0 0 A/5 3902 7.25 S
595 594 0 3 Bourke, Miss. Mary female 0 2 364848 7.75 Q
596 595 0 2 Chapman, Mr. John Henry male 37 1 0 SC/AH 29037 26 S
597 596 0 3 Van Impe, Mr. Jean Baptiste male 36 1 1 345773 24.15 S
598 597 1 2 Leitch, Miss. Jessie Wills female 0 0 248727 33 S
599 598 0 3 Johnson, Mr. Alfred male 49 0 0 LINE 0 S
600 599 0 3 Boulos, Mr. Hanna male 0 0 2664 7.225 C
601 600 1 1 Duff Gordon, Sir. Cosmo Edmund ("Mr Morgan") male 49 1 0 PC 17485 56.9292 A20 C
602 601 1 2 Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy) female 24 2 1 243847 27 S
603 602 0 3 Slabenoff, Mr. Petco male 0 0 349214 7.8958 S
604 603 0 1 Harrington, Mr. Charles H male 0 0 113796 42.4 S
605 604 0 3 Torber, Mr. Ernst William male 44 0 0 364511 8.05 S
606 605 1 1 Homer, Mr. Harry ("Mr E Haven") male 35 0 0 111426 26.55 C
607 606 0 3 Lindell, Mr. Edvard Bengtsson male 36 1 0 349910 15.55 S
608 607 0 3 Karaic, Mr. Milan male 30 0 0 349246 7.8958 S
609 608 1 1 Daniel, Mr. Robert Williams male 27 0 0 113804 30.5 S
610 609 1 2 Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue) female 22 1 2 SC/Paris 2123 41.5792 C
611 610 1 1 Shutes, Miss. Elizabeth W female 40 0 0 PC 17582 153.4625 C125 S
612 611 0 3 Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren) female 39 1 5 347082 31.275 S
613 612 0 3 Jardin, Mr. Jose Neto male 0 0 SOTON/O.Q. 3101305 7.05 S
614 613 1 3 Murphy, Miss. Margaret Jane female 1 0 367230 15.5 Q
615 614 0 3 Horgan, Mr. John male 0 0 370377 7.75 Q
616 615 0 3 Brocklebank, Mr. William Alfred male 35 0 0 364512 8.05 S
617 616 1 2 Herman, Miss. Alice female 24 1 2 220845 65 S
618 617 0 3 Danbom, Mr. Ernst Gilbert male 34 1 1 347080 14.4 S
619 618 0 3 Lobb, Mrs. William Arthur (Cordelia K Stanlick) female 26 1 0 A/5. 3336 16.1 S
620 619 1 2 Becker, Miss. Marion Louise female 4 2 1 230136 39 F4 S
621 620 0 2 Gavey, Mr. Lawrence male 26 0 0 31028 10.5 S
622 621 0 3 Yasbeck, Mr. Antoni male 27 1 0 2659 14.4542 C
623 622 1 1 Kimball, Mr. Edwin Nelson Jr male 42 1 0 11753 52.5542 D19 S
624 623 1 3 Nakid, Mr. Sahid male 20 1 1 2653 15.7417 C
625 624 0 3 Hansen, Mr. Henry Damsgaard male 21 0 0 350029 7.8542 S
626 625 0 3 Bowen, Mr. David John "Dai" male 21 0 0 54636 16.1 S
627 626 0 1 Sutton, Mr. Frederick male 61 0 0 36963 32.3208 D50 S
628 627 0 2 Kirkland, Rev. Charles Leonard male 57 0 0 219533 12.35 Q
629 628 1 1 Longley, Miss. Gretchen Fiske female 21 0 0 13502 77.9583 D9 S
630 629 0 3 Bostandyeff, Mr. Guentcho male 26 0 0 349224 7.8958 S
631 630 0 3 O'Connell, Mr. Patrick D male 0 0 334912 7.7333 Q
632 631 1 1 Barkworth, Mr. Algernon Henry Wilson male 80 0 0 27042 30 A23 S
633 632 0 3 Lundahl, Mr. Johan Svensson male 51 0 0 347743 7.0542 S
634 633 1 1 Stahelin-Maeglin, Dr. Max male 32 0 0 13214 30.5 B50 C
635 634 0 1 Parr, Mr. William Henry Marsh male 0 0 112052 0 S
636 635 0 3 Skoog, Miss. Mabel female 9 3 2 347088 27.9 S
637 636 1 2 Davis, Miss. Mary female 28 0 0 237668 13 S
638 637 0 3 Leinonen, Mr. Antti Gustaf male 32 0 0 STON/O 2. 3101292 7.925 S
639 638 0 2 Collyer, Mr. Harvey male 31 1 1 C.A. 31921 26.25 S
640 639 0 3 Panula, Mrs. Juha (Maria Emilia Ojala) female 41 0 5 3101295 39.6875 S
641 640 0 3 Thorneycroft, Mr. Percival male 1 0 376564 16.1 S
642 641 0 3 Jensen, Mr. Hans Peder male 20 0 0 350050 7.8542 S
643 642 1 1 Sagesser, Mlle. Emma female 24 0 0 PC 17477 69.3 B35 C
644 643 0 3 Skoog, Miss. Margit Elizabeth female 2 3 2 347088 27.9 S
645 644 1 3 Foo, Mr. Choong male 0 0 1601 56.4958 S
646 645 1 3 Baclini, Miss. Eugenie female 0.75 2 1 2666 19.2583 C
647 646 1 1 Harper, Mr. Henry Sleeper male 48 1 0 PC 17572 76.7292 D33 C
648 647 0 3 Cor, Mr. Liudevit male 19 0 0 349231 7.8958 S
649 648 1 1 Simonius-Blumer, Col. Oberst Alfons male 56 0 0 13213 35.5 A26 C
650 649 0 3 Willey, Mr. Edward male 0 0 S.O./P.P. 751 7.55 S
651 650 1 3 Stanley, Miss. Amy Zillah Elsie female 23 0 0 CA. 2314 7.55 S
652 651 0 3 Mitkoff, Mr. Mito male 0 0 349221 7.8958 S
653 652 1 2 Doling, Miss. Elsie female 18 0 1 231919 23 S
654 653 0 3 Kalvik, Mr. Johannes Halvorsen male 21 0 0 8475 8.4333 S
655 654 1 3 O'Leary, Miss. Hanora "Norah" female 0 0 330919 7.8292 Q
656 655 0 3 Hegarty, Miss. Hanora "Nora" female 18 0 0 365226 6.75 Q
657 656 0 2 Hickman, Mr. Leonard Mark male 24 2 0 S.O.C. 14879 73.5 S
658 657 0 3 Radeff, Mr. Alexander male 0 0 349223 7.8958 S
659 658 0 3 Bourke, Mrs. John (Catherine) female 32 1 1 364849 15.5 Q
660 659 0 2 Eitemiller, Mr. George Floyd male 23 0 0 29751 13 S
661 660 0 1 Newell, Mr. Arthur Webster male 58 0 2 35273 113.275 D48 C
662 661 1 1 Frauenthal, Dr. Henry William male 50 2 0 PC 17611 133.65 S
663 662 0 3 Badt, Mr. Mohamed male 40 0 0 2623 7.225 C
664 663 0 1 Colley, Mr. Edward Pomeroy male 47 0 0 5727 25.5875 E58 S
665 664 0 3 Coleff, Mr. Peju male 36 0 0 349210 7.4958 S
666 665 1 3 Lindqvist, Mr. Eino William male 20 1 0 STON/O 2. 3101285 7.925 S
667 666 0 2 Hickman, Mr. Lewis male 32 2 0 S.O.C. 14879 73.5 S
668 667 0 2 Butler, Mr. Reginald Fenton male 25 0 0 234686 13 S
669 668 0 3 Rommetvedt, Mr. Knud Paust male 0 0 312993 7.775 S
670 669 0 3 Cook, Mr. Jacob male 43 0 0 A/5 3536 8.05 S
671 670 1 1 Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright) female 1 0 19996 52 C126 S
672 671 1 2 Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford) female 40 1 1 29750 39 S
673 672 0 1 Davidson, Mr. Thornton male 31 1 0 F.C. 12750 52 B71 S
674 673 0 2 Mitchell, Mr. Henry Michael male 70 0 0 C.A. 24580 10.5 S
675 674 1 2 Wilhelms, Mr. Charles male 31 0 0 244270 13 S
676 675 0 2 Watson, Mr. Ennis Hastings male 0 0 239856 0 S
677 676 0 3 Edvardsson, Mr. Gustaf Hjalmar male 18 0 0 349912 7.775 S
678 677 0 3 Sawyer, Mr. Frederick Charles male 24.5 0 0 342826 8.05 S
679 678 1 3 Turja, Miss. Anna Sofia female 18 0 0 4138 9.8417 S
680 679 0 3 Goodwin, Mrs. Frederick (Augusta Tyler) female 43 1 6 CA 2144 46.9 S
681 680 1 1 Cardeza, Mr. Thomas Drake Martinez male 36 0 1 PC 17755 512.3292 B51 B53 B55 C
682 681 0 3 Peters, Miss. Katie female 0 0 330935 8.1375 Q
683 682 1 1 Hassab, Mr. Hammad male 27 0 0 PC 17572 76.7292 D49 C
684 683 0 3 Olsvigen, Mr. Thor Anderson male 20 0 0 6563 9.225 S
685 684 0 3 Goodwin, Mr. Charles Edward male 14 5 2 CA 2144 46.9 S
686 685 0 2 Brown, Mr. Thomas William Solomon male 60 1 1 29750 39 S
687 686 0 2 Laroche, Mr. Joseph Philippe Lemercier male 25 1 2 SC/Paris 2123 41.5792 C
688 687 0 3 Panula, Mr. Jaako Arnold male 14 4 1 3101295 39.6875 S
689 688 0 3 Dakic, Mr. Branko male 19 0 0 349228 10.1708 S
690 689 0 3 Fischer, Mr. Eberhard Thelander male 18 0 0 350036 7.7958 S
691 690 1 1 Madill, Miss. Georgette Alexandra female 15 0 1 24160 211.3375 B5 S
692 691 1 1 Dick, Mr. Albert Adrian male 31 1 0 17474 57 B20 S
693 692 1 3 Karun, Miss. Manca female 4 0 1 349256 13.4167 C
694 693 1 3 Lam, Mr. Ali male 0 0 1601 56.4958 S
695 694 0 3 Saad, Mr. Khalil male 25 0 0 2672 7.225 C
696 695 0 1 Weir, Col. John male 60 0 0 113800 26.55 S
697 696 0 2 Chapman, Mr. Charles Henry male 52 0 0 248731 13.5 S
698 697 0 3 Kelly, Mr. James male 44 0 0 363592 8.05 S
699 698 1 3 Mullens, Miss. Katherine "Katie" female 0 0 35852 7.7333 Q
700 699 0 1 Thayer, Mr. John Borland male 49 1 1 17421 110.8833 C68 C
701 700 0 3 Humblen, Mr. Adolf Mathias Nicolai Olsen male 42 0 0 348121 7.65 F G63 S
702 701 1 1 Astor, Mrs. John Jacob (Madeleine Talmadge Force) female 18 1 0 PC 17757 227.525 C62 C64 C
703 702 1 1 Silverthorne, Mr. Spencer Victor male 35 0 0 PC 17475 26.2875 E24 S
704 703 0 3 Barbara, Miss. Saiide female 18 0 1 2691 14.4542 C
705 704 0 3 Gallagher, Mr. Martin male 25 0 0 36864 7.7417 Q
706 705 0 3 Hansen, Mr. Henrik Juul male 26 1 0 350025 7.8542 S
707 706 0 2 Morley, Mr. Henry Samuel ("Mr Henry Marshall") male 39 0 0 250655 26 S
708 707 1 2 Kelly, Mrs. Florence "Fannie" female 45 0 0 223596 13.5 S
709 708 1 1 Calderhead, Mr. Edward Pennington male 42 0 0 PC 17476 26.2875 E24 S
710 709 1 1 Cleaver, Miss. Alice female 22 0 0 113781 151.55 S
711 710 1 3 Moubarek, Master. Halim Gonios ("William George") male 1 1 2661 15.2458 C
712 711 1 1 Mayne, Mlle. Berthe Antonine ("Mrs de Villiers") female 24 0 0 PC 17482 49.5042 C90 C
713 712 0 1 Klaber, Mr. Herman male 0 0 113028 26.55 C124 S
714 713 1 1 Taylor, Mr. Elmer Zebley male 48 1 0 19996 52 C126 S
715 714 0 3 Larsson, Mr. August Viktor male 29 0 0 7545 9.4833 S
716 715 0 2 Greenberg, Mr. Samuel male 52 0 0 250647 13 S
717 716 0 3 Soholt, Mr. Peter Andreas Lauritz Andersen male 19 0 0 348124 7.65 F G73 S
718 717 1 1 Endres, Miss. Caroline Louise female 38 0 0 PC 17757 227.525 C45 C
719 718 1 2 Troutt, Miss. Edwina Celia "Winnie" female 27 0 0 34218 10.5 E101 S
720 719 0 3 McEvoy, Mr. Michael male 0 0 36568 15.5 Q
721 720 0 3 Johnson, Mr. Malkolm Joackim male 33 0 0 347062 7.775 S
722 721 1 2 Harper, Miss. Annie Jessie "Nina" female 6 0 1 248727 33 S
723 722 0 3 Jensen, Mr. Svend Lauritz male 17 1 0 350048 7.0542 S
724 723 0 2 Gillespie, Mr. William Henry male 34 0 0 12233 13 S
725 724 0 2 Hodges, Mr. Henry Price male 50 0 0 250643 13 S
726 725 1 1 Chambers, Mr. Norman Campbell male 27 1 0 113806 53.1 E8 S
727 726 0 3 Oreskovic, Mr. Luka male 20 0 0 315094 8.6625 S
728 727 1 2 Renouf, Mrs. Peter Henry (Lillian Jefferys) female 30 3 0 31027 21 S
729 728 1 3 Mannion, Miss. Margareth female 0 0 36866 7.7375 Q
730 729 0 2 Bryhl, Mr. Kurt Arnold Gottfrid male 25 1 0 236853 26 S
731 730 0 3 Ilmakangas, Miss. Pieta Sofia female 25 1 0 STON/O2. 3101271 7.925 S
732 731 1 1 Allen, Miss. Elisabeth Walton female 29 0 0 24160 211.3375 B5 S
733 732 0 3 Hassan, Mr. Houssein G N male 11 0 0 2699 18.7875 C
734 733 0 2 Knight, Mr. Robert J male 0 0 239855 0 S
735 734 0 2 Berriman, Mr. William John male 23 0 0 28425 13 S
736 735 0 2 Troupiansky, Mr. Moses Aaron male 23 0 0 233639 13 S
737 736 0 3 Williams, Mr. Leslie male 28.5 0 0 54636 16.1 S
738 737 0 3 Ford, Mrs. Edward (Margaret Ann Watson) female 48 1 3 W./C. 6608 34.375 S
739 738 1 1 Lesurer, Mr. Gustave J male 35 0 0 PC 17755 512.3292 B101 C
740 739 0 3 Ivanoff, Mr. Kanio male 0 0 349201 7.8958 S
741 740 0 3 Nankoff, Mr. Minko male 0 0 349218 7.8958 S
742 741 1 1 Hawksford, Mr. Walter James male 0 0 16988 30 D45 S
743 742 0 1 Cavendish, Mr. Tyrell William male 36 1 0 19877 78.85 C46 S
744 743 1 1 Ryerson, Miss. Susan Parker "Suzette" female 21 2 2 PC 17608 262.375 B57 B59 B63 B66 C
745 744 0 3 McNamee, Mr. Neal male 24 1 0 376566 16.1 S
746 745 1 3 Stranden, Mr. Juho male 31 0 0 STON/O 2. 3101288 7.925 S
747 746 0 1 Crosby, Capt. Edward Gifford male 70 1 1 WE/P 5735 71 B22 S
748 747 0 3 Abbott, Mr. Rossmore Edward male 16 1 1 C.A. 2673 20.25 S
749 748 1 2 Sinkkonen, Miss. Anna female 30 0 0 250648 13 S
750 749 0 1 Marvin, Mr. Daniel Warner male 19 1 0 113773 53.1 D30 S
751 750 0 3 Connaghton, Mr. Michael male 31 0 0 335097 7.75 Q
752 751 1 2 Wells, Miss. Joan female 4 1 1 29103 23 S
753 752 1 3 Moor, Master. Meier male 6 0 1 392096 12.475 E121 S
754 753 0 3 Vande Velde, Mr. Johannes Joseph male 33 0 0 345780 9.5 S
755 754 0 3 Jonkoff, Mr. Lalio male 23 0 0 349204 7.8958 S
756 755 1 2 Herman, Mrs. Samuel (Jane Laver) female 48 1 2 220845 65 S
757 756 1 2 Hamalainen, Master. Viljo male 0.67 1 1 250649 14.5 S
758 757 0 3 Carlsson, Mr. August Sigfrid male 28 0 0 350042 7.7958 S
759 758 0 2 Bailey, Mr. Percy Andrew male 18 0 0 29108 11.5 S
760 759 0 3 Theobald, Mr. Thomas Leonard male 34 0 0 363294 8.05 S
761 760 1 1 Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards) female 33 0 0 110152 86.5 B77 S
762 761 0 3 Garfirth, Mr. John male 0 0 358585 14.5 S
763 762 0 3 Nirva, Mr. Iisakki Antino Aijo male 41 0 0 SOTON/O2 3101272 7.125 S
764 763 1 3 Barah, Mr. Hanna Assi male 20 0 0 2663 7.2292 C
765 764 1 1 Carter, Mrs. William Ernest (Lucile Polk) female 36 1 2 113760 120 B96 B98 S
766 765 0 3 Eklund, Mr. Hans Linus male 16 0 0 347074 7.775 S
767 766 1 1 Hogeboom, Mrs. John C (Anna Andrews) female 51 1 0 13502 77.9583 D11 S
768 767 0 1 Brewe, Dr. Arthur Jackson male 0 0 112379 39.6 C
769 768 0 3 Mangan, Miss. Mary female 30.5 0 0 364850 7.75 Q
770 769 0 3 Moran, Mr. Daniel J male 1 0 371110 24.15 Q
771 770 0 3 Gronnestad, Mr. Daniel Danielsen male 32 0 0 8471 8.3625 S
772 771 0 3 Lievens, Mr. Rene Aime male 24 0 0 345781 9.5 S
773 772 0 3 Jensen, Mr. Niels Peder male 48 0 0 350047 7.8542 S
774 773 0 2 Mack, Mrs. (Mary) female 57 0 0 S.O./P.P. 3 10.5 E77 S
775 774 0 3 Elias, Mr. Dibo male 0 0 2674 7.225 C
776 775 1 2 Hocking, Mrs. Elizabeth (Eliza Needs) female 54 1 3 29105 23 S
777 776 0 3 Myhrman, Mr. Pehr Fabian Oliver Malkolm male 18 0 0 347078 7.75 S
778 777 0 3 Tobin, Mr. Roger male 0 0 383121 7.75 F38 Q
779 778 1 3 Emanuel, Miss. Virginia Ethel female 5 0 0 364516 12.475 S
780 779 0 3 Kilgannon, Mr. Thomas J male 0 0 36865 7.7375 Q
781 780 1 1 Robert, Mrs. Edward Scott (Elisabeth Walton McMillan) female 43 0 1 24160 211.3375 B3 S
782 781 1 3 Ayoub, Miss. Banoura female 13 0 0 2687 7.2292 C
783 782 1 1 Dick, Mrs. Albert Adrian (Vera Gillespie) female 17 1 0 17474 57 B20 S
784 783 0 1 Long, Mr. Milton Clyde male 29 0 0 113501 30 D6 S
785 784 0 3 Johnston, Mr. Andrew G male 1 2 W./C. 6607 23.45 S
786 785 0 3 Ali, Mr. William male 25 0 0 SOTON/O.Q. 3101312 7.05 S
787 786 0 3 Harmer, Mr. Abraham (David Lishin) male 25 0 0 374887 7.25 S
788 787 1 3 Sjoblom, Miss. Anna Sofia female 18 0 0 3101265 7.4958 S
789 788 0 3 Rice, Master. George Hugh male 8 4 1 382652 29.125 Q
790 789 1 3 Dean, Master. Bertram Vere male 1 1 2 C.A. 2315 20.575 S
791 790 0 1 Guggenheim, Mr. Benjamin male 46 0 0 PC 17593 79.2 B82 B84 C
792 791 0 3 Keane, Mr. Andrew "Andy" male 0 0 12460 7.75 Q
793 792 0 2 Gaskell, Mr. Alfred male 16 0 0 239865 26 S
794 793 0 3 Sage, Miss. Stella Anna female 8 2 CA. 2343 69.55 S
795 794 0 1 Hoyt, Mr. William Fisher male 0 0 PC 17600 30.6958 C
796 795 0 3 Dantcheff, Mr. Ristiu male 25 0 0 349203 7.8958 S
797 796 0 2 Otter, Mr. Richard male 39 0 0 28213 13 S
798 797 1 1 Leader, Dr. Alice (Farnham) female 49 0 0 17465 25.9292 D17 S
799 798 1 3 Osman, Mrs. Mara female 31 0 0 349244 8.6833 S
800 799 0 3 Ibrahim Shawah, Mr. Yousseff male 30 0 0 2685 7.2292 C
801 800 0 3 Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert) female 30 1 1 345773 24.15 S
802 801 0 2 Ponesell, Mr. Martin male 34 0 0 250647 13 S
803 802 1 2 Collyer, Mrs. Harvey (Charlotte Annie Tate) female 31 1 1 C.A. 31921 26.25 S
804 803 1 1 Carter, Master. William Thornton II male 11 1 2 113760 120 B96 B98 S
805 804 1 3 Thomas, Master. Assad Alexander male 0.42 0 1 2625 8.5167 C
806 805 1 3 Hedman, Mr. Oskar Arvid male 27 0 0 347089 6.975 S
807 806 0 3 Johansson, Mr. Karl Johan male 31 0 0 347063 7.775 S
808 807 0 1 Andrews, Mr. Thomas Jr male 39 0 0 112050 0 A36 S
809 808 0 3 Pettersson, Miss. Ellen Natalia female 18 0 0 347087 7.775 S
810 809 0 2 Meyer, Mr. August male 39 0 0 248723 13 S
811 810 1 1 Chambers, Mrs. Norman Campbell (Bertha Griggs) female 33 1 0 113806 53.1 E8 S
812 811 0 3 Alexander, Mr. William male 26 0 0 3474 7.8875 S
813 812 0 3 Lester, Mr. James male 39 0 0 A/4 48871 24.15 S
814 813 0 2 Slemen, Mr. Richard James male 35 0 0 28206 10.5 S
815 814 0 3 Andersson, Miss. Ebba Iris Alfrida female 6 4 2 347082 31.275 S
816 815 0 3 Tomlin, Mr. Ernest Portage male 30.5 0 0 364499 8.05 S
817 816 0 1 Fry, Mr. Richard male 0 0 112058 0 B102 S
818 817 0 3 Heininen, Miss. Wendla Maria female 23 0 0 STON/O2. 3101290 7.925 S
819 818 0 2 Mallet, Mr. Albert male 31 1 1 S.C./PARIS 2079 37.0042 C
820 819 0 3 Holm, Mr. John Fredrik Alexander male 43 0 0 C 7075 6.45 S
821 820 0 3 Skoog, Master. Karl Thorsten male 10 3 2 347088 27.9 S
822 821 1 1 Hays, Mrs. Charles Melville (Clara Jennings Gregg) female 52 1 1 12749 93.5 B69 S
823 822 1 3 Lulic, Mr. Nikola male 27 0 0 315098 8.6625 S
824 823 0 1 Reuchlin, Jonkheer. John George male 38 0 0 19972 0 S
825 824 1 3 Moor, Mrs. (Beila) female 27 0 1 392096 12.475 E121 S
826 825 0 3 Panula, Master. Urho Abraham male 2 4 1 3101295 39.6875 S
827 826 0 3 Flynn, Mr. John male 0 0 368323 6.95 Q
828 827 0 3 Lam, Mr. Len male 0 0 1601 56.4958 S
829 828 1 2 Mallet, Master. Andre male 1 0 2 S.C./PARIS 2079 37.0042 C
830 829 1 3 McCormack, Mr. Thomas Joseph male 0 0 367228 7.75 Q
831 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) female 62 0 0 113572 80 B28
832 831 1 3 Yasbeck, Mrs. Antoni (Selini Alexander) female 15 1 0 2659 14.4542 C
833 832 1 2 Richards, Master. George Sibley male 0.83 1 1 29106 18.75 S
834 833 0 3 Saad, Mr. Amin male 0 0 2671 7.2292 C
835 834 0 3 Augustsson, Mr. Albert male 23 0 0 347468 7.8542 S
836 835 0 3 Allum, Mr. Owen George male 18 0 0 2223 8.3 S
837 836 1 1 Compton, Miss. Sara Rebecca female 39 1 1 PC 17756 83.1583 E49 C
838 837 0 3 Pasic, Mr. Jakob male 21 0 0 315097 8.6625 S
839 838 0 3 Sirota, Mr. Maurice male 0 0 392092 8.05 S
840 839 1 3 Chip, Mr. Chang male 32 0 0 1601 56.4958 S
841 840 1 1 Marechal, Mr. Pierre male 0 0 11774 29.7 C47 C
842 841 0 3 Alhomaki, Mr. Ilmari Rudolf male 20 0 0 SOTON/O2 3101287 7.925 S
843 842 0 2 Mudd, Mr. Thomas Charles male 16 0 0 S.O./P.P. 3 10.5 S
844 843 1 1 Serepeca, Miss. Augusta female 30 0 0 113798 31 C
845 844 0 3 Lemberopolous, Mr. Peter L male 34.5 0 0 2683 6.4375 C
846 845 0 3 Culumovic, Mr. Jeso male 17 0 0 315090 8.6625 S
847 846 0 3 Abbing, Mr. Anthony male 42 0 0 C.A. 5547 7.55 S
848 847 0 3 Sage, Mr. Douglas Bullen male 8 2 CA. 2343 69.55 S
849 848 0 3 Markoff, Mr. Marin male 35 0 0 349213 7.8958 C
850 849 0 2 Harper, Rev. John male 28 0 1 248727 33 S
851 850 1 1 Goldenberg, Mrs. Samuel L (Edwiga Grabowska) female 1 0 17453 89.1042 C92 C
852 851 0 3 Andersson, Master. Sigvard Harald Elias male 4 4 2 347082 31.275 S
853 852 0 3 Svensson, Mr. Johan male 74 0 0 347060 7.775 S
854 853 0 3 Boulos, Miss. Nourelain female 9 1 1 2678 15.2458 C
855 854 1 1 Lines, Miss. Mary Conover female 16 0 1 PC 17592 39.4 D28 S
856 855 0 2 Carter, Mrs. Ernest Courtenay (Lilian Hughes) female 44 1 0 244252 26 S
857 856 1 3 Aks, Mrs. Sam (Leah Rosen) female 18 0 1 392091 9.35 S
858 857 1 1 Wick, Mrs. George Dennick (Mary Hitchcock) female 45 1 1 36928 164.8667 S
859 858 1 1 Daly, Mr. Peter Denis male 51 0 0 113055 26.55 E17 S
860 859 1 3 Baclini, Mrs. Solomon (Latifa Qurban) female 24 0 3 2666 19.2583 C
861 860 0 3 Razi, Mr. Raihed male 0 0 2629 7.2292 C
862 861 0 3 Hansen, Mr. Claus Peter male 41 2 0 350026 14.1083 S
863 862 0 2 Giles, Mr. Frederick Edward male 21 1 0 28134 11.5 S
864 863 1 1 Swift, Mrs. Frederick Joel (Margaret Welles Barron) female 48 0 0 17466 25.9292 D17 S
865 864 0 3 Sage, Miss. Dorothy Edith "Dolly" female 8 2 CA. 2343 69.55 S
866 865 0 2 Gill, Mr. John William male 24 0 0 233866 13 S
867 866 1 2 Bystrom, Mrs. (Karolina) female 42 0 0 236852 13 S
868 867 1 2 Duran y More, Miss. Asuncion female 27 1 0 SC/PARIS 2149 13.8583 C
869 868 0 1 Roebling, Mr. Washington Augustus II male 31 0 0 PC 17590 50.4958 A24 S
870 869 0 3 van Melkebeke, Mr. Philemon male 0 0 345777 9.5 S
871 870 1 3 Johnson, Master. Harold Theodor male 4 1 1 347742 11.1333 S
872 871 0 3 Balkic, Mr. Cerin male 26 0 0 349248 7.8958 S
873 872 1 1 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47 1 1 11751 52.5542 D35 S
874 873 0 1 Carlsson, Mr. Frans Olof male 33 0 0 695 5 B51 B53 B55 S
875 874 0 3 Vander Cruyssen, Mr. Victor male 47 0 0 345765 9 S
876 875 1 2 Abelson, Mrs. Samuel (Hannah Wizosky) female 28 1 0 P/PP 3381 24 C
877 876 1 3 Najib, Miss. Adele Kiamie "Jane" female 15 0 0 2667 7.225 C
878 877 0 3 Gustafsson, Mr. Alfred Ossian male 20 0 0 7534 9.8458 S
879 878 0 3 Petroff, Mr. Nedelio male 19 0 0 349212 7.8958 S
880 879 0 3 Laleff, Mr. Kristo male 0 0 349217 7.8958 S
881 880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56 0 1 11767 83.1583 C50 C
882 881 1 2 Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 1 230433 26 S
883 882 0 3 Markun, Mr. Johann male 33 0 0 349257 7.8958 S
884 883 0 3 Dahlberg, Miss. Gerda Ulrika female 22 0 0 7552 10.5167 S
885 884 0 2 Banfield, Mr. Frederick James male 28 0 0 C.A./SOTON 34068 10.5 S
886 885 0 3 Sutehall, Mr. Henry Jr male 25 0 0 SOTON/OQ 392076 7.05 S
887 886 0 3 Rice, Mrs. William (Margaret Norton) female 39 0 5 382652 29.125 Q
888 887 0 2 Montvila, Rev. Juozas male 27 0 0 211536 13 S
889 888 1 1 Graham, Miss. Margaret Edith female 19 0 0 112053 30 B42 S
890 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female 1 2 W./C. 6607 23.45 S
891 890 1 1 Behr, Mr. Karl Howell male 26 0 0 111369 30 C148 C
892 891 0 3 Dooley, Mr. Patrick male 32 0 0 370376 7.75 Q

View File

@@ -0,0 +1,40 @@
from scipy.cluster import hierarchy
import pandas as pd
from matplotlib import pyplot as plt
def start():
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data[['full_sq', 'price_doc']]
plt.figure(1, figsize=(16, 9))
plt.title('Дендрограмма кластеризации цен')
prices = [0, 0, 0, 0]
for ind, val in x.iterrows():
val = val['price_doc'] / val['full_sq']
if val < 100000:
prices[0] = prices[0] + 1
elif val < 300000:
prices[1] = prices[1] + 1
elif val < 500000:
prices[2] = prices[2] + 1
else:
prices[3] = prices[3] + 1
print('Результаты подчсёта ручного распределения:')
print('низких цен:'+str(prices[0]))
print('средних цен:'+str(prices[1]))
print('высоких цен:'+str(prices[2]))
print('премиальных цен:'+str(prices[3]))
hierarchy.dendrogram(hierarchy.linkage(x, method='single'),
truncate_mode='lastp',
p=15,
orientation='top',
leaf_rotation=90,
leaf_font_size=8,
show_contracted=True)
plt.show()
start()

View File

@@ -0,0 +1,27 @@
### Задание
Использовать метод кластеризации по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо он подходит для
решения сформулированной вами задачи.
Вариант 1: dendrogram
Была сформулирована следующая задача: необходимо разбить записи на кластеры в зависимости от цен и площади.
### Запуск программы
Файл lab4.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа считывает цены и площади из файла статистики сбербанка по рынку недвижимости.
Поскольку по заданию требуется оценить машинную кластеризацию, для сравнения программа подсчитывает и выводит в консоль количество записей в каждом из выделенных вручную классов цен.
Далее программа кластеризует данные с помощью алгоритма ближайших точек (на другие памяти нету) и выводит дендрограмму на основе кластеризации.
Выводимая дендрограмма ограничена 15 последними (верхними) объединениями.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* Последние объединения в дендрограмме - объединения выбросов с 'основным' кластером, то есть 10-20 записей с кластером с более чем 28000 записями.
* Это правильная информация, так как ручная классификация показывает, что премиальных (аномально больших) цен как раз порядка 20, остальные относятся к другим классам.
* Поскольку в имеющихся данных нет ограничений по ценам, выбросы аномально высоких цен при использовании данного алгоритма формируют отдельные кластеры, что негативно сказывается на наглядности.
* Ценовое ограничение также не дало положительнх результатов: снова сформировался 'основной' кластер, с которым последними объединялись отдельные значения.
* Значит, сам алгоритм не эффективен.
Итого: Алгоритм ближайших точек слишком чувствителен к выбросам, поэтому можно признать его неэффективным для необработанных данных. Дендрограмма как средство визуализации скорее уступает по наглядности диаграмме рассеяния.

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,48 @@
from matplotlib import pyplot as plt
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
import pandas as pd
def start():
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data[['timestamp', 'full_sq', 'floor', 'max_floor', 'build_year', 'num_room', 'material', 'kremlin_km']]
y = data[['price_doc']]
x = x.replace('NA', 0)
x.fillna(0, inplace=True)
col_date = []
for val in x['timestamp']:
col_date.append(val.split('-', 1)[0])
x = x.drop(columns='timestamp')
x['timestamp'] = col_date
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=42)
poly = Pipeline([('poly', PolynomialFeatures(degree=3)),
('linear', LinearRegression())])
poly.fit(x_train, y_train)
y_mean = y['price_doc'].mean()
y_predicted = poly.predict(x_test)
for i, n in enumerate(y_predicted):
if n < 10000:
y_predicted[i] = y_mean
print('Оценка обучения:')
print(metrics.r2_score(y_test, y_predicted))
plt.figure(1, figsize=(16, 9))
plt.title('Сравнение результатов обучения')
plt.scatter(x=[i for i in range(len(y_test))], y=y_test, c='g', s=5)
plt.scatter(x=[i for i in range(len(y_test))], y=y_predicted, c='r', s=5)
plt.show()
start()

View File

@@ -0,0 +1,36 @@
### Задание
Использовать регрессию по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо она подходит для
решения сформулированной вами задачи.
Вариант 1: полиномиальная регрессия
Была сформулирована следующая задача: необходимо предсказывать стоимость жилья по избранным признакам при помощи регрессии.
### Запуск программы
Файл lab5.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа считывает цены на жильё как выходные данные и следующие данные как входные: год размещения объявления, площадь, этаж, количество этажей, год постройки, количество комнат, материал, расстояние до кремля (условного центра).
Далее она обрабатывает данные (цифровизирует нулевые данные), оставляет только год объявления.
После обработки программа делит данные на 99% обучающего материала и 1% тестового и обучает модель полиномиальной регрессии со степенью 3.
Далее модель генерирует набор предсказаний на основе тестовых входных данных. Эти предсказания обрабатываются: убираются отрицательные цены.
Далее программа оценивает предсказания по коэффициенту детерминации и выводит результат в консоль. А также показывает диаграммы рассеяния для действительных (зелёные точки) и предсказанных (красные точки) цен.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* Полные данные алгоритм обрабатывает плохо, поэтому было необходимо было выбирать наиболее значимые признаки.
* В зависимости от данных, разные степени регрессии дают разный результат. В общем случае обычная линейная регрессия давала коэффициент около 0.3. При добавлении же степеней полиномиальная регрессия выдавала выбросные значения цен: например, -300 миллионов, что негативно сказывалось на результате.
* Для того, чтобы явно выбросные результаты не портили оценку (коэффициент соответственно становился -1000) эти выбросные значения заменялись на средние.
* Опытным путём было найдено, что наилучшие результаты (коэффициент 0.54) показывает степень 3.
* Результат 0.54 - наилучший результат - можно назвать неприемлимым: только в половине случаев предсказанная цена условно похожа на действительную.
* Возможно, включением большего количества признаков и использованием других моделей (линейная, например, не давала выбросов) удастся решить проблему.
Пример консольного вывода:
>Оценка обучения:
>
>0.5390648784908953
Итого: Алгоритм можно привести к некоторой эффективности, однако для конкретно этих данных он не подходит. Лучше попытаться найти другую модель регрессии.

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,53 @@
Вариант 2
Задание:
Используя код из пункта «Регуляризация и сеть прямого распространения «из [1] (стр. 228), сгенерируйте определенный тип данных и сравните на нем 3 модели (по варианту)Постройте графики, отобразите качество моделей, объясните полученные результаты.
Данные:
make_circles (noise=0.2, factor=0.5, random_state=rs) Модели: · Линейную регрессию · Полиномиальную регрессию (со степенью 3) · Гребневую полиномиальную регрессию (со степенью 3, alpha= 1.0)
Запуск:
Запустите файл lab1.py
Описание программы:
1. Генерирует набор данных с использованием функции make_circles из scikit-learn. Этот набор данных представляет собой два класса, где точки одного класса окружают точки другого класса с добавленным шумом.
2. Разделяет данные на обучающий и тестовый наборы с помощью функции train_test_split.
3. Создает три разные модели для классификации данных:
4. Линейная регрессия (Logistic Regression).
5. Полиномиальная регрессия третьей степени (Polynomial Regression).
6. Гребневая полиномиальная регрессия третьей степени с регуляризацией и альфой равной единице (Ridge Polynomial Regression).
7. Обучаем каждую из этих моделей на обучающем наборе данных и оцениваем их точность на тестовом наборе данных.
8. Выводит результаты точности каждой модели.
9. Разделение областей предсказаний моделей (границы решения).
10. Тестовые и обучающие точки, окрашенные в соответствии с классами. (красным и синим)
Результаты:
<p>
<div>Точность</div>
<img src="Рисунок1.png">
</p>
<p>
<div>Графики регрессии</div>
<img src="Рисунок2.png">
<img src="Рисунок3.png">
<img src="Рисунок4.png">
</p>
Исходя из получивших графиков и точночсти с данным типом генерации данных из этих трех моделей наиболее точной получились полиномиальную регрессия (со степенью 3) и гребневaz полиномиальная регрессия (со степенью 3, alpha= 1.0). Они так же являются идентичными между собой. Чтобы проверить это утверждение я провел дополнительное тестирование и написал скрипт, который для 10 разных random_state (2-11) вычисляет точность для трех разных моделей.
Результаты:
Значения точности для каждой модели:
Линейная регрессия 0.40 0.52 0.44 0.56 0.48 0.49 0.50 0.49 0.46 0.40
Полиномиальная регрессия (со степенью 3) 0.63 0.67 0.74 0.64 0.80 0.73 0.64 0.81 0.46 0.62
Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0) 0.63 0.67 0.74 0.64 0.80 0.73 0.64 0.81 0.46 0.62
Средние значения точности:
Линейная регрессия - Средняя точность: 0.47
Полиномиальная регрессия (со степенью 3) - Средняя точность: 0.68
Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0) - Средняя точность: 0.68
Утверждение также подтвердилось.

View File

@@ -0,0 +1,83 @@
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.datasets import make_circles
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
# Используя код из пункта «Регуляризация и сеть прямого распространения»из [1](стр. 228),
# сгенерируйте определенный тип данных и сравните на нем 3 модели (по варианту).
# Постройте графики, отобразите качество моделей, объясните полученные результаты.
# Модели
# Линейная регрессия
# Полиномиальная регрессия (со степенью 3)
# Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
# Данные
# make_circles (noise=0.2, factor=0.5, random_state=rs)
random_state = np.random.RandomState(2)
# Генерируем датасет
circles_dataset = make_circles(noise=0.2, factor=0.5, random_state=random_state)
X, y = circles_dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=random_state)
# Создаем модели
models = []
# Линейная регрессия
linear_model = LogisticRegression(random_state=random_state)
models.append(("Линейная регрессия", linear_model))
# Полиномиальная регрессия (со степенью 3)
poly_model = make_pipeline(PolynomialFeatures(degree=3), StandardScaler(),
LogisticRegression(random_state=random_state))
models.append(("Полиномиальная регрессия (со степенью 3)", poly_model))
# Гребневая полиномиальная регрессия (со степенью 3 и alpha=1.0)
ridge_poly_model = make_pipeline(PolynomialFeatures(degree=3), StandardScaler(),
LogisticRegression(penalty='l2', C=1.0, random_state=random_state))
models.append(("Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0)", ridge_poly_model))
# Обучаем и оцениваем модели
results = []
for name, model in models:
model.fit(X_train, y_train) # обучаем
y_pred = model.predict(X_test) # предсказываем
accuracy = accuracy_score(y_test, y_pred) # определяем точность
results.append((name, accuracy))
# Выводим результаты
for name, accuracy in results:
print(f"{name} - Точность: {accuracy:.2f}")
# Строим графики
cmap_background = ListedColormap(['#FFAAAA', '#AAAAFF'])
cmap_points = ListedColormap(['#FF0000', '#0000FF'])
plt.figure(figsize=(15, 5))
for i, (name, model) in enumerate(models):
plt.subplot(1, 3, i + 1)
xx, yy = np.meshgrid(np.linspace(X[:, 0].min() - 1, X[:, 0].max() + 1, 100),
np.linspace(X[:, 1].min() - 1, X[:, 1].max() + 1, 100))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=cmap_background, alpha=0.5)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_points, marker='o', label='Тестовые точки')
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cmap_points, marker='x', label='Обучающие точки')
plt.legend()
plt.title(name)
plt.text(0.5, -1.2, 'Красный класс', color='r', fontsize=12)
plt.text(0.5, -1.7, 'Синий класс', color='b', fontsize=12)
plt.tight_layout()
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

View File

@@ -0,0 +1,40 @@
Вариант 2
Задание:
Используя код из [1](пункт «Решение задачи ранжирования признаков», стр. 205), выполните ранжирование признаков с помощью указанных по варианту моделей. Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку. Проведите анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению? (Названия\индексы признаков и будут ответом на задание).
Данные:
Линейная регрессия (LinearRegression)
Рекурсивное сокращение признаков (Recursive Feature Elimination RFE)
Сокращение признаков Случайными деревьями (Random Forest Regressor)
Запуск:
Запустите файл lab2.py
Описание программы:
1. Генерирует случайные данные для задачи регрессии с помощью функции make_regression, создавая матрицу признаков X и вектор целевой переменной y.
2. Создает DataFrame data, в котором столбцы представляют признаки, а последний столбец - целевую переменную.
3. Разделяет данные на матрицу признаков X и вектор целевой переменной y.
4. Создает список моделей для ранжирования признаков: линейной регрессии, рекурсивного сокращения признаков и сокращения признаков случайными деревьями.
5. Создает словарь model_scores для хранения оценок каждой модели.
6. Обучает и оценивает каждую модель на данных:
7. Вычисляет ранги признаков и нормализует их в диапазоне от 0 до 1.
8. Выводит оценки признаков каждой модели и их средние оценки.
9. Находит четыре наиболее важных признака по средней оценке и выводит их индексы и значения.
Результаты:
![Alt text](image.png)
![Alt text](image-1.png)
![Alt text](image-2.png)
![Alt text](image-3.png)
![Alt text](image-4.png)
Выводы:
Четыре наиболее важных признака, определенных на основе средних оценок, включают Признак 6, Признак 1, Признак 2 и Признак 5. Эти признаки имеют наибольшую среднюю важность среди всех признаков.

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB

View File

@@ -0,0 +1,75 @@
import numpy as np
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
# Используя код из [1](пункт «Решение задачи ранжирования признаков», стр. 205), выполните ранжирование признаков
# с помощью указанных по варианту моделей. Отобразите получившиеся значения\оценки каждого признака каждым
# методом\моделью и среднюю оценку. Проведите анализ получившихся результатов. Какие четыре признака оказались
# самыми важными по среднему значению? (Названия\индексы признаков и будут ответом на задание).
# Линейная регрессия (LinearRegression), Рекурсивное сокращение признаков (Recursive Feature Elimination RFE),
# Сокращение признаков Случайными деревьями (Random Forest Regressor)
random_state = np.random.RandomState(2)
# Генерация случайных данных для регрессии
X, y = make_regression(n_samples=100, n_features=10, noise=0.1, random_state=random_state)
# Создание DataFrame для данных
data = pd.DataFrame(X, columns=[f'признак_{i}' for i in range(X.shape[1])])
data['целевая_переменная'] = y
# Разделение данных на признаки (X) и целевую переменную (y)
X = data.drop('целевая_переменная', axis=1)
y = data['целевая_переменная']
# Создаем модели
models = [
("Линейная регрессия", LinearRegression()),
("Рекурсивное сокращение признаков", RFE(LinearRegression(), n_features_to_select=1)),
("Сокращение признаков Случайными деревьями", RandomForestRegressor())
]
# Словарь для хранения оценок каждой модели
model_scores = {}
# Обучение и оценка моделей
for name, model in models:
model.fit(X, y)
if name == "Рекурсивное сокращение признаков":
# RFE возвращает ранжирование признаков
rankings = model.ranking_
# Нормализация рангов так, чтобы они находились в диапазоне от 0 до 1
normalized_rankings = 1 - (rankings - 1) / (np.max(rankings) - 1)
model_scores[name] = normalized_rankings
elif name == "Сокращение признаков Случайными деревьями":
# Важность признаков для RandomForestRegressor
feature_importances = model.feature_importances_
# Нормализация значений важности признаков в диапазоне от 0 до 1
normalized_importances = MinMaxScaler().fit_transform(feature_importances.reshape(-1, 1))
model_scores[name] = normalized_importances.flatten()
elif name == "Линейная регрессия":
# Коэффициенты признаков для Linear Regression
coefficients = model.coef_
# Нормализация коэффициентов так, чтобы они находились в диапазоне от 0 до 1
normalized_coefficients = MinMaxScaler().fit_transform(np.abs(coefficients).reshape(-1, 1))
model_scores[name] = normalized_coefficients.flatten()
# Вывод оценок каждой модели
for name, scores in model_scores.items():
print(f"{name} оценки признаков:")
for feature, score in enumerate(scores, start=1):
print(f"Признак {feature}: {score:.2f}")
print(f"Средняя оценка: {np.mean(scores):.2f}")
print()
# Находим четыре наиболее важных признака по средней оценке
all_feature_scores = np.mean(list(model_scores.values()), axis=0)
sorted_features = sorted(enumerate(all_feature_scores, start=1), key=lambda x: x[1], reverse=True)
top_features = sorted_features[:4]
print("Четыре наиболее важных признака:")
for feature, score in top_features:
print(f"Признак {feature}: {score:.2f}")

View File

@@ -0,0 +1,97 @@
# Лаб 1
Работа с типовыми наборами данных и различными моделями
# Вариант 3
Данные: make_classification (n_samples=500, n_features=2,
n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
# Запуск
Выполнением скрипта файла (вывод в консоль + рисует графики).
# Модели:
1. Линейная регрессия
1. Полиномиальная регрессия (со степенью 3)
1. Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0)
# Графики
<div>
Качество каждой модели может быть оценено на основе среднеквадратичной ошибки (MSE).
Более низкая MSE указывает на лучшее соответствие данным.
Однако выбор модели зависит от набора данных и лежащей в основе взаимосвязи между объектами и целевой переменной.
Линейная регрессия: Линейная регрессия предполагает линейную зависимость между признаками и целевой переменной.
Это хорошо работает, когда взаимосвязь линейна, а шум в наборе данных минимален.
Лучше всего сработала на наборе лун. Хуже всего на кругах.
На линейном наборе показала себя на равне с остальными.
Полиномиальная и гребневая показали примерно одинаково на всех наборах.
Полиномиальная регрессия (степень=3):
Полиномиальная регрессия обеспечивает более гибкую подгонку за счет полинома более высокого порядка(кубическая кривая).
Она может выявить более сложные взаимосвязи между объектами и целевой переменной.
Она может сработать лучше, чем линейная регрессия, если истинная взаимосвязь нелинейна.
Гребневая регрессия (степень= 3, альфа=1,0):
В случае полиномиальной регрессии с регуляризацией (альфа=1,0) модель добавляет коэффициент регуляризации
для управления сложностью обучения. Регуляризация помогает предотвратить переобучение, когда набор
данных содержит шум или когда он ограничен.
</div>
<p>
<div>Набор лун (moon_dataset)</div>
<img src="screens/myplot1.png" width="650" title="датасет 1">
</p>
<p>
<div>Графики регрессии</div>
<img src="screens/myplot2.png" width="450" title="линейная модель">
<img src="screens/myplot3.png" width="450" title="полиномиальная модель">
<img src="screens/myplot4.png" width="450" title="гребневая модель">
<div>
Линейная MSE: 0.0936
Полиномиальная (degree=3) MSE: 0.0674
Гребневая (degree=3, alpha=1.0) MSE: 0.0682
</div>
</p>
<p>
<div>Набор кругов (circles_dataset)</div>
<img src="screens/myplot5.png" width="650" title="датасет 2">
</p>
<p>
<div>Графики регрессии</div>
<img src="screens/myplot6.png" width="450" title="линейная модель">
<img src="screens/myplot7.png" width="450" title="полиномиальная модель">
<img src="screens/myplot8.png" width="450" title="гребневая модель">
<div>
Линейная MSE: 0.2684
Полиномиальная (degree=3) MSE: 0.1341
Гребневая (degree=3, alpha=1.0) MSE: 0.1312
</div>
</p>
<p>
<div>Набор линейный (linearly_dataset)</div>
<img src="screens/myplot9.png" width="650" title="датасет 3">
</p>
<p>
<div>Графики регрессии</div>
<img src="screens/myplot10.png" width="450" title="линейная модель">
<img src="screens/myplot11.png" width="450" title="полиномиальная модель">
<img src="screens/myplot12.png" width="450" title="гребневая модель">
<div>
Линейная MSE: 0.1101
Полиномиальная (degree=3) MSE: 0.1045
Гребневая (degree=3, alpha=1.0) MSE: 0.1078
</div>
</p>
<div>
Итоговая модель подбирается учитывая зависимость в данных,
как правило полиномиальная регрессия справляется лучше, а коэф регуляризации в гребневой регрессии помогает избежать
переобучения.
</div>

View File

@@ -0,0 +1,97 @@
import numpy as np
from matplotlib import pyplot as plt
from skimage.metrics import mean_squared_error
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
X, y = make_classification(
n_features=2,
n_redundant=0,
n_informative=2,
random_state=0,
n_clusters_per_class=1
)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_dataset = (X, y)
moon_dataset = make_moons(noise=0.3, random_state=0)
circles_dataset = make_circles(noise=0.2, factor=0.5, random_state=1)
datasets = [moon_dataset, circles_dataset, linearly_dataset]
"""
Данные:
· moon_dataset
· circles_dataset
· linearly_dataset
"""
for ds_cnt, ds in enumerate(datasets):
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=.4, random_state=42
)
"""
Модели:
· Линейную регрессию
· Полиномиальную регрессию (со степенью 3)
· Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
"""
# Линейная
linear_regression = LinearRegression()
linear_regression.fit(X_train, y_train)
linear_predictions = linear_regression.predict(X_test)
linear_mse = mean_squared_error(y_test, linear_predictions)
# Полиномиальная (degree=3)
poly_regression = make_pipeline(PolynomialFeatures(degree=3), LinearRegression())
poly_regression.fit(X_train, y_train)
poly_predictions = poly_regression.predict(X_test)
poly_mse = mean_squared_error(y_test, poly_predictions)
# Гребневая (degree=3, alpha=1.0)
poly_regression_alpha = make_pipeline(PolynomialFeatures(degree=3), Ridge(alpha=1.0))
poly_regression_alpha.fit(X_train, y_train)
poly_alpha_predictions = poly_regression_alpha.predict(X_test)
poly_alpha_mse = mean_squared_error(y_test, poly_alpha_predictions)
# График данных
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm')
plt.title('Датасет №' + str(ds_cnt))
plt.xlabel('X')
plt.ylabel('Y')
# График линейной модели
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=linear_predictions, cmap='coolwarm')
plt.title('Линейная ds'+ str(ds_cnt))
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
# График полиномиальной модели (degree=3)
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=poly_predictions, cmap='coolwarm')
plt.title('Полиномиальная (degree=3) ds' + str(ds_cnt))
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
# График гребневой модели (degree=3, alpha=1.0)
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=poly_alpha_predictions, cmap='coolwarm')
plt.title('Гребневая (degree=3, alpha=1.0) ds' + str(ds_cnt))
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
# Сравнение качества
print('Линейная MSE:', linear_mse)
print('Полиномиальная (degree=3) MSE:', poly_mse)
print('Гребневая (degree=3, alpha=1.0) MSE:', poly_alpha_mse)

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -0,0 +1,84 @@
# Лаб 2
Ранжирование признаков
Выполните ранжирование признаков с помощью указанных по варианту моделей.
Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку.
Проведите анализ получившихся результатов.
Какие четыре признака оказались самыми важными по среднему значению?
(Названия\индексы признаков и будут ответом на задание).
# Вариант 3
Линейная регрессия (LinearRegression) , Сокращение признаков
Случайными деревьями (Random Forest Regressor), Линейная корреляция
(f_regression)
Я использовал датасет Predict students' dropout and academic success
https://www.kaggle.com/datasets/thedevastator/higher-education-predictors-of-student-retention
Он используется мной по заданию на курсовую работу
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Модели:
1. Линейная регрессия (LinearRegression)
1. Сокращение признаков cлучайными деревьями (Random Forest Regressor)
1. Линейная корреляция (f_regression)
# Пояснения
<div>
Выбор наиболее подходящего метода ранжирования объектов зависит от специфики набора данных и требований
к модели.
Линейная регрессия - это простой и понятный метод, который может быть использован для предсказания значений.
Он хорошо работает, если зависимость между переменными является линейной.
Однако, если данные содержат сложные нелинейные зависимости, линейная регрессия может
оказаться не очень эффективной.
Уменьшение признаков с помощью случайных деревьев (Random Forest Regressor) - это мощный метод,
который способен обрабатывать сложные взаимосвязи в данных, даже если они нелинейные.
Он основан на идее создания ансамбля деревьев решений, каждое из которых дает свой голос за
наиболее подходящий ответ. Случайные леса обычно дают хорошие результаты и являются устойчивыми
к переобучению.
Линейная корреляция или f_regression - это статистический метод, который используется для измерения
степени связи между двумя переменными. Он может помочь определить, есть ли вообще связь между переменными,
но не подходит для ранжирования объектов.
</div>
### 4 самых важных признака в среднем:
1. Признак: Curricular units 2nd sem (approved), Оценка: 0.8428
2. Признак: Tuition fees up to date, Оценка: 0.4797
3. Признак: Curricular units 1st sem (approved), Оценка: 0.2986
4. Признак: Curricular units 2nd sem (grade), Оценка: 0.2778
### 4 самых важных для lr_scores линейной регрессии:
1. 0.3917 'Tuition fees up to date'
2. 0.2791 'International'
3. 0.2075 'Curricular units 2nd sem (approved)'
4. 0.1481 'Debtor'
### 4 самых важных для rf_scores рандом forests:
1. 0.4928 'Curricular units 2nd sem (approved)'
2. 0.061 'Tuition fees up to date'
3. 0.0458 'Curricular units 2nd sem (grade)'
4. 0.0308 'Curricular units 1st sem (grade)'
### 4 самых важных для f_regression:
1. 2822.104 'Curricular units 2nd sem (approved)'
2. 2093.3315 'Curricular units 2nd sem (grade)'
3. 1719.4229 'Curricular units 1st sem (approved)'
4. 1361.6144 'Curricular units 1st sem (grade)'
### Объяснение:
<div>
В общем, выбор между линейной регрессией и случайными лесами зависит от характеристик данных.
Если данные имеют линейную зависимость, то линейная регрессия будет предпочтительнее.
Если данные содержат сложные, возможно нелинейные взаимосвязи, то Random Forest может быть лучшим выбором.
В любом случае, важно провести предварительное исследование данных и тестирование различных моделей,
чтобы выбрать наиболее подходящую.
</div>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,106 @@
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import f_regression
from sklearn.preprocessing import MinMaxScaler
# загрузка dataset
data = pd.read_csv('dataset.csv')
# разделение dataset на тренировочную и тестовую выборки
X = data.drop(['Target'], axis=1)
y = data['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Тренировка моделей
# Линейная регрессия
lr = LinearRegression()
lr.fit(X_train, y_train)
# Сокращение признаков случайными деревьями с помощью Random Forest Regressor
rf = RandomForestRegressor()
rf.fit(X_train, y_train)
# Ранжирование признаков использую каждую модель/метод
# Получение абсолютных значений коэффициентов в качестве оценок важности признаков
lr_scores = abs(lr.coef_)
# Получение оценок важности объектов из модели Random Forest Regressor
rf_scores = rf.feature_importances_
# Отображение итоговых оценок по каждой колонке
feature_names = X.columns.tolist()
# показать оценки рангов по модели линейной регрессии
print("оценки линейной регрессии:")
for feature, score in zip(feature_names, lr_scores):
print(f"{feature}: {round(score, 4)}")
# оценки метода рандомных лесов
print("\nоценки Random Forest:")
for feature, score in zip(feature_names, rf_scores):
print(f"{feature}: {round(score, 4)}")
# вычисление значений оценки для f_regression
f_scores, p_values = f_regression(X, y)
# оценки f_regression
print("\nоценки f_regression:")
for feature, score in zip(feature_names, f_scores):
print(f"{feature}: {round(score, 4)}")
# использую MinMaxScaler для точных средних значений рангов
scaler = MinMaxScaler()
lr_scores_scaled = scaler.fit_transform(lr_scores.reshape(-1, 1)).flatten()
rf_scores_scaled = scaler.fit_transform(rf_scores.reshape(-1, 1)).flatten()
f_scores_scaled = scaler.fit_transform(f_scores.reshape(-1, 1)).flatten()
# вычисление средних оценок для каждого признака
average_scores = {}
for feature in feature_names:
average_scores[feature] = (lr_scores_scaled[feature_names.index(feature)] +
rf_scores_scaled[feature_names.index(feature)] +
f_scores_scaled[feature_names.index(feature)]) / 3
# получаем среднюю оценку признаков
sorted_features = sorted(average_scores.items(), key=lambda x: x[1], reverse=True)
# получаем самых важных признака
top_4_features = sorted_features[:4]
# отображаем 4 самые важные
print("\n4 самых важных признака в среднем:")
for feature, score in top_4_features:
print(f"Признак: {feature}, Оценка: {round(score, 4)}")
# отображаем самых важных признака для каждого метода/модели
top_lr_indices = np.argsort(lr_scores)[-4:][::-1]
top_rf_indices = np.argsort(rf_scores)[-4:][::-1]
top_f_indices = np.argsort(f_scores)[-4:][::-1]
top_lr_features = [feature_names[i] for i in top_lr_indices]
top_rf_features = [feature_names[i] for i in top_rf_indices]
top_f_features = [feature_names[i] for i in top_f_indices]
top_lr_features_score = [lr_scores[i] for i in top_lr_indices]
top_rf_features_score = [rf_scores[i] for i in top_rf_indices]
top_f_features_score = [f_scores[i] for i in top_f_indices]
print("\n4 самых важных для lr_scores:")
print(top_lr_features)
for i in top_lr_features_score:
print(round(i, 4))
print("\n4 самых важных для rf_scores:")
print(top_rf_features)
for i in top_rf_features_score:
print(round(i, 4))
print("\n4 самых важных для f_scores:")
print(top_f_features)
for i in top_f_features_score:
print(round(i, 4))

View File

@@ -0,0 +1,85 @@
# Лаб 3
Деревья решений
Часть 1. По данным о пассажирах Титаника решите задачу классификации
(с помощью дерева решений), в которой по различным характеристикам
пассажиров требуется найти у выживших пассажиров два наиболее важных
признака из трех рассматриваемых (по варианту). Пример решения задачи
можно посмотреть здесь: [1] (стр.188). Скачать данные можно по ссылке:
https://www.kaggle.com/datasets/heptapod/titanic
Часть 2. Решите с помощью библиотечной реализации дерева решений
задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету
«Методы искусственного интеллекта» на 99% ваших данных. Проверьте
работу модели на оставшемся проценте, сделайте вывод.
# Вариант 3
Признаки Sex,Age,SibSp
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Описание модели:
DecisionTreeClassifier - это алгоритм машинного обучения, используемый для задач классификации и регрессии.
Он представляет собой дерево решений, где на каждом узле дерева решается, какой вопрос задать дальше
(признак для дальнейшего разбиения данных), а в листьях находятся окончательные ответы.
# Результаты
На данных для Титаника модель определяет важность признаков с точность 75% (исключает 'sibsp').
Эти два признака обладают статистической важностью.
<p>
<div>Титаник</div>
<img src="screens/titanic.png" width="650" title="Титаник 1">
</p>
На данных моего датасета модель справляется на 52.768%, если в качестве предлагаемых параметров
на вход идут ['Gender', 'Debtor', 'International'] (исключает 'International').
<p>
<div>Мой датасет 1</div>
<img src="screens/mydataset1.png" width="650" title="Мой датасет 1">
</p>
И на 70.961, если на вход идут ['Gender', 'Debtor', 'Curricular units 2nd sem (approved)']
(исключает 'Gender').
<p>
<div>Мой датасет 2</div>
<img src="screens/mydataset2.png" width="650" title="Мой датасет 2">
</p>
Такой результат можно объяснить большей значимостью признака 'Curricular units 2nd sem (approved)'
вместо 'International' (было показано в предыдущей лабораторной).
Из-за того, что мы взяли статистически более значимый признак, модель выдает нам большую точность.
Точность 52.768% указывает на то, что модель работает на уровне случайности, что означает, что она
работает не лучше, чем случайное угадывание. Для этого может быть несколько причин:
1. Признаки все имеет малое значение: то есть для сравнения подаются признаки статистически малозначимые.
2. Недостаточно данных: Набор данных может содержать недостаточно информации или примеров для
изучения моделью. Если набор данных невелик или нерепрезентативен, модель, возможно, не сможет
хорошо обобщить новые данные.
3. Несбалансированные классы: Если классы в вашей целевой переменной несбалансированы
(например, случаев, не связанных с отсевом, гораздо больше, чем случаев отсева), модель может
быть смещена в сторону прогнозирования класса большинства.
4. Переобучение: Модель может быть переобучена обучающими данным, что означает, что она изучает шум
в данных, а не лежащие в их основе закономерности. Это может произойти, если модель слишком сложна по
сравнению с объемом доступных данных.
5. Недостаточное соответствие: С другой стороны, модель может быть слишком простой, чтобы отразить
взаимосвязи в данных. Важно выбрать соответствующий уровень сложности модели.
<div>
При отборе признаков должна учитываться их статистическая значимость, вычисленная различными способами
(например с помощью лин регрессии, Random Forest Regressor, линейной корреляции f_regression или других).
Так же должно быть достаточно данных, в модели должно быть сведено к минимуму переобучение.
</div>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,35 @@
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
# прочитали датасет
data = pd.read_csv('dataset.csv')
# определение признаков
# целевая переменная - Target
X = data[['Gender', 'Debtor', 'Curricular units 2nd sem (approved)']]
y = data['Target'] # Assuming 'Dropout' is the target variable
# разделили данные на тренировочную и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# создали модель decision tree classifier
dt_classifier = DecisionTreeClassifier(random_state=42)
dt_classifier.fit(X_train, y_train)
# получили значения модели для 2ух самых важных признаков
feature_importances = dt_classifier.feature_importances_
top_features_indices = feature_importances.argsort()[-2:][::-1]
top_features = X.columns[top_features_indices]
# вывод результата
print("2 самых важных признака:", top_features)
# получили значения модели для проверки точности
predictions = dt_classifier.predict(X_test)
# вычислили точность модели
accuracy = accuracy_score(y_test, predictions)
print("точность модели:", accuracy)

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@@ -0,0 +1,40 @@
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# прочитали датасет
data = pd.read_csv("titanic_data.csv")
# определение признаков
features = ['Sex', 'Age', 'sibsp']
# целевая переменная - выжившие
target = 'Survived'
# разделили данные на тренировочную и тестовую выборки
train_data, test_data, train_labels, test_labels = train_test_split(
data[features],
data[target],
test_size=0.2,
random_state=42
)
# создали модель decision tree classifier
model = DecisionTreeClassifier()
# натренировали модель
model.fit(train_data, train_labels)
# получили значения модели для проверки точности
predictions = model.predict(test_data)
# вычислили точность модели
accuracy = accuracy_score(test_labels, predictions)
print("точность модели:", accuracy)
# нашли два самых важных признака
importances = model.feature_importances_
indices = (-importances).argsort()[:2]
important_features = [features[i] for i in indices]
print("два самых важных признака:", important_features)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,78 @@
# Лаб 4 Кластеризация
Использовать метод кластеризации по варианту для данных из датасета курсовой
Predict students' dropout and academic success (отсев студентов), самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо он подходит для
решения сформулированной вами задачи.
# Вариант 3
Метод t-SNE
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Описание модели:
T-Distributed Stochastic Neighbor Embedding (t-SNE) - это метод визуализации и снижения размерности,
используемый для визуализации многомерных данных в виде двумерной или трехмерной графики.
Результатом работы t-SNE является визуализация данных, где близкие точки в исходном пространстве отображаются
близко друг к другу, а отдаленные точки - далеко. Это позволяет исследователям изучать структуру данных и
находить кластеры и структуры, которые могут быть не видны при прямом наблюдении исходного пространства высокой размерности.
# Задача кластеризации
Учитывая набор данных, содержащий информацию о студентах, включая их пол, международный статус и ВВП,
цель состоит в том, чтобы сгруппировать этих студентов в отдельные кластеры на основе этих признаков.
Цель состоит в том, чтобы выявить естественные закономерности или подгруппы среди учащихся, которые могут
иметь сходные характеристики с точки зрения пола, международного статуса и экономического происхождения.
Такая кластеризация может помочь в адаптации образовательных программ, служб поддержки или вмешательств
к конкретным группам учащихся для улучшения академических результатов и показателей удержания.
Цель анализа - выявить значимые идеи, которые могут быть использованы для улучшения общего образовательного опыта
и показателей успешности различных групп учащихся.
# Результаты
Для применения метода уменьшения размерности t-SNE использованы признаки "Гендер", "Международный" и "ВВП".
Данные проецируются на двумерную плоскость, при этом сохраняя локальную структуру данных.
Как интерпретировать результаты на графике:
1. Пол:
- Поскольку "Пол" является категориальной переменной (бинарной, как "Мужчина" или "Женщина"),
- Ожидается увидеть на графике отчетливые кластеры или разделения. Каждая точка представляет учащегося,
- и лица одинакового пола должны быть сгруппированы вместе.
2. Международный:
- "Международный" также является бинарной категориальной переменной (например, "Да" или "Нет" указывает,
- является ли студент иностранным), вы можете увидеть разделение между иностранными и немеждународными студентами.
- Это может привести к образованию двух различных кластеров.
3. ВВП:
- "ВВП" - это непрерывная переменная, и ее значения будут представлены в виде точек на графике. В зависимости от
- распределения значений ВВП вы можете наблюдать градиент или закономерность в данных.
Теперь, когда посмотреть на график, должны быть видны точки, разбросанные по двумерному пространству. Похожие точки
находятся близко друг к другу, а непохожие - дальше друг от друга.
- Результаты:
- Видны четкие кластеры, это говорит о том, что эти признаки являются хорошими показателями для разделения
- студентов на группы.
- Доминирующими признаками являются "гендер" и "Интернациональность", можно увидеть два различных кластера,
- в одном из которых, например, в основном учатся местные студенты мужского пола, а в другом - иностранные студентки
- женского пола.
- "ВВП" оказывает сильное влияние, можно увидеть градиент точек, указывающий на корреляцию между ВВП и
- некоторой базовой закономерностью в данных.
Конкретная интерпретация будет зависеть от фактического распределения и характеристик данных.
Также важно отметить, что t-SNE - это стохастический алгоритм, поэтому его многократное выполнение с одними и теми
же параметрами может привести к несколько иным результатам. Поэтому рекомендуется изучить графики из нескольких прогонов,
чтобы получить четкое представление о структуре данных.
<p>
<div>График</div>
<img src="screens/myplot.png" width="650" title="График">
</p>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,22 @@
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
# загрузка датасета
data = pd.read_csv('dataset.csv')
# выделение необходимых признаков
X = data[['Gender', 'International', 'GDP']]
# применение t-SNE для сокращения размерности
tsne = TSNE(n_components=2, random_state=42)
X_tsne = tsne.fit_transform(X)
# визуализация данных
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=data['Target'], cmap='viridis')
plt.colorbar()
plt.xlabel('t-SNE х')
plt.ylabel('t-SNE у')
plt.title('t-SNE визуализация')
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

View File

@@ -0,0 +1,42 @@
# Лаб 5 Регрессия
Использовать регрессию по варианту для данных из датасета курсовой
Predict students' dropout and academic success (отсев студентов),
самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит
для решения сформулированной вами задачи.
# Вариант 3
Лассо-регрессия
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Описание модели:
Лассо (Lasso) — это метод регрессионного анализа, который используется в статистике и
машинном обучении для предсказания значения зависимой переменной.
Регрессия Лассо использует регуляризацию L1 для добавления штрафа, равного абсолютному
значению коэффициентов. Это уменьшает некоторые коэффициенты и устанавливает другие равными 0,
выполняя автоматический выбор функции. Обычная регрессия не имеет регуляризации.
# Задача регрессии
Для прогнозирования отсева учащихся и набора данных об успеваемости спрогнозируйте отсев
используя регрессию Лассо для признаков
'Curricular units 2nd sem (approved)' - (Учебные блоки 2-го семестра (утверждены))
'Curricular units 2nd sem (grade)' - (Учебные блоки 2-го семестра (класс))
'Tuition fees up to date' - (Стоимость обучения")
# Результаты
Точность регрессии для вышеперечисленных признаков составили 0.6256 (alpha = 0.01)
При изменении коэффициента регуляризации в диапозоне от 0.01 до 1.5 наблюдается только ухудшение качества
модели, таким образом для заданных параметров подходит больше обычная модель линейной регрессии, так как
по этим признакам судя по результатам наблюдается линейная зависимость.
Для этих признаков модель регрессии подходит плохо, нужно искать другую.
<p>
<div>График</div>
<img src="screens/myplot.png" width="650" title="График">
</p>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,47 @@
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import Lasso
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
# загрузка данных
data = pd.read_csv('dataset.csv')
X = (data[
['Curricular units 2nd sem (approved)',
'Tuition fees up to date',
'Curricular units 2nd sem (grade)']]
)
y = data['Target']
# тренировка модели
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
lasso_model = Lasso(alpha=0.01)
lasso_model.fit(X_train, y_train)
# оценка модели
y_pred_train = lasso_model.predict(X_train)
y_pred_test = lasso_model.predict(X_test)
# оценка результатов модели
train_accuracy = accuracy_score(y_train, np.round(y_pred_train))
test_accuracy = accuracy_score(y_test, np.round(y_pred_test))
# вывод результатов
print(f"Тренировочная Accuracy: {train_accuracy}")
print(f"Тест Accuracy: {test_accuracy}")
# коэффициенты значимости признаков
coefficients = lasso_model.coef_
feature_names = X.columns
# вывод в консоль коэффициентов значимости
for feature, coef in zip(feature_names, coefficients):
print(f"{feature}: {coef}")
plt.figure(figsize=(10, 6))
plt.barh(feature_names, coefficients)
plt.xlabel('коэффициент')
plt.title('Значимости признаков по регрессии Лассо')
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -0,0 +1,89 @@
# Лаб 6 Нейронная сеть
Использовать нейронную сеть MLPClassifier по варианту для данных из датасета курсовой
Predict students' dropout and academic success (отсев студентов),
самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит
для решения сформулированной вами задачи.
# Вариант 3
Нейронная сеть MLPClassifier
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Задача регрессии
Для прогнозирования отсева учащихся и набора данных об успеваемости спрогнозируйте отсев
используя нейронную сеть для признаков
'Curricular units 2nd sem (approved)' - (Учебные блоки 2-го семестра (утверждены))
'Curricular units 2nd sem (grade)' - (Учебные блоки 2-го семестра (класс))
'Tuition fees up to date' - (Стоимость обучения")
# Описание модели:
"MLPClassifier" - это тип искусственной нейронной сети прямого действия, которая широко используется для задач классификации.
Объяснение некоторых ключевых параметров:
1. hidden_layer_sizes:
- Этот параметр определяет количество нейронов в каждом скрытом слое и количество скрытых слоев в сети.
- Это кортеж, где каждый элемент представляет количество нейронов в определенном скрытом слое.
- Например, `hidden_layer_sizes=(100, 100)` означает, что есть два скрытых слоя, причем первый слой
- содержит 100 нейронов, а второй слой также содержит 100 нейронов.
2. activation:
- Этот параметр определяет функцию активации для скрытых слоев. Функция активации привносит
нелинейность в сеть, позволяя ей изучать сложные паттерны.
- Распространенные варианты включают:
- "identity": линейная функция активации (обычно не используется на практике).
- "logistic": сигмовидная логистическая функция
- "tanh": гиперболическая касательная функция
- "relu": Выпрямленная линейная единица измерения
3. solver:
- Этот параметр определяет алгоритм, используемый для оптимизации весов нейронной сети.
- Распространенные варианты включают:
- `adam": оптимизатор на основе стохастического градиента, сочетающий идеи RMSProp и Momentum.
- `sgd": Стохастический градиентный спуск.
- `lbfgs": алгоритм Бройдена-Флетчера-Гольдфарба-Шанно с ограниченной памятью.
4. alpha:
- Параметр штрафа L2 (условие регуляризации). Это помогает предотвратить переобучение,
наказывая за большие веса.
- Более высокие значения "альфа" приводят к более сильной регуляризации.
5. max_iter:
- Максимальное количество итераций для тренировочного процесса. Этот параметр помогает
предотвратить бесконечное обучение модели.
6. learning_rate:
- График скорости обучения для обновления веса. Он определяет размер шага, с которым веса
обновляются во время тренировки.
- Опции включают 'constant', 'invscaling', и 'adaptive'.
7. random_state:
- Начальное значение, используемое генератором случайных чисел. Установка начального значения
гарантирует воспроизводимость результатов.
8. batch_size:
- Количество образцов, использованных в каждой мини-партии во время обучения. Это влияет
на скорость конвергенции и использование памяти.
9. early_stopping:
- Если установлено значение "True", обучение прекратится, если оценка проверки не улучшится.
Это помогает предотвратить переобучение.
10. validation_fraction:
- Доля обучающих данных, которую следует отложить в качестве валидационного набора для ранней
остановки.
# Результат:
Из прошлой лабораторной точность регрессии для вышеперечисленных признаков составила 0.6256 (alpha = 0.01)
Точность нейронной сети для вышеперечисленных признаков составила 72.32%
(при изменении описанных выше параметров оценка не улучается)
На примере тех же самых признаков нейронная сеть обеспечивает
лучшее качество предсказания отсева студентов.
<p>
<div>Результат</div>
<img src="screens/img.png" width="650" title="Результат">
</p>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,51 @@
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler
# загрузка датасета
data = pd.read_csv('dataset.csv')
# выбор признаков
features = [
'Curricular units 2nd sem (approved)',
'Curricular units 2nd sem (grade)',
'Tuition fees up to date',
]
target = 'Target'
X = data[features]
y = data[target]
# разбиваем на тестовую и тренировочную выборки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# стандартизация признаков
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# тренируем нейронную сеть MLPClassifier
classifier = MLPClassifier(
hidden_layer_sizes=(50, 50), # два скрытых слоя с 50 нейронами каждый
activation='relu', # relu функция активации
solver='adam', # оптимизатор на основе стохастического градиента
alpha=0.0001, # L2 штраф (регуляризация)
max_iter=1000, # макс итераций
learning_rate='constant', # постоянная скорость обучения
random_state=42, # Random начало для воспроизведения результата
batch_size=32, # размер мини партии
early_stopping=True, # для предотвращения переобучения
validation_fraction=0.2, # 20% данных для проверки
verbose=True, # для оттображения итераций
)
classifier.fit(X_train, y_train)
# предсказываем значение
y_pred = classifier.predict(X_test)
# оцениваем результат
accuracy = np.mean(y_pred == y_test)
print(f'Оценка точности: {accuracy*100:.2f}%')

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

View File

@@ -0,0 +1,115 @@
# Лаб 7 RNN
Выбрать художественный текст (четные варианты русскоязычный,
нечетные англоязычный) и обучить на нем рекуррентную нейронную сеть
для решения задачи генерации. Подобрать архитектуру и параметры так,
чтобы приблизиться к максимально осмысленному результату. Далее
разбиться на пары четный-нечетный вариант, обменяться разработанными
сетями и проверить, как архитектура товарища справляется с вашим текстом.
В завершении подобрать компромиссную архитектуру, справляющуюся
достаточно хорошо с обоими видами текстов.
# Вариант 3
Рекуррентная нейронная сеть и задача
генерации текста
# Запуск
Выполнением скрипта файла (вывод в консоль).
# Описание модели:
Использованы библиотеки:
* numpy (np): популярная библиотека для научных вычислений.
* tensorflow (tf): библиотека для тренировки нейросетей.
* Sequential: тип Keras модель которая позволяет создавать нейросети слой за слоем.
* Embedding, LSTM, Dense: различные типы слоев в нейросетях.
* Tokenizer: класс для конвертации слов в числовой понятный для нейросети формат.
<p></p>
Каждая строка текста переводится в числа с помощью Tokernizer.
Класс Tokenizer в Keras - это утилита обработки текста, которая преобразует текст в
последовательность целых чисел. Он присваивает уникальное целое число (индекс) каждому слову
в тексте и создает словарь, который сопоставляет каждое слово с соответствующим индексом.
Это позволяет вам работать с текстовыми данными в формате, который может быть передан в нейронную сеть.
Все это записывается в input_sequences.
Строим RNN модель используя Keras:
* Embedding: Этот слой превращает числа в векторы плотности фиксированного размера. Так же известного
как "word embeddings". Вложения слов - это плотные векторные представления слов в непрерывном
векторном пространстве.Они позволяют нейронной сети изучать и понимать взаимосвязи между словами
на основе их контекста в содержании текста.
* LSTM: это тип рекуррентной нейронной сети (RNN), которая предназначена для обработки
зависимостей в последовательностях.
* Dense: полносвязный слой с множеством нейронов, нейронов столько же сколько и уникальных слов.
Он выводит вероятность следующего слова.
* Модель обучаем на разном количестве эпох, по умолчанию epochs = 100 (итераций по всему набору данных).
Определеяем функцию generate_text которая принимает стартовое слово, а также, число слов для генерации.
Модель генерирует текст путем многократного предсказания следующего слова на основе предыдущих слов в
начальном тексте.
* В конце мы получаем сгенерированную на основе текста последовательность.
# Задача генерации англоязычного текста
На вход подаем историю с похожими повторяющимися слова. Историю сохраняем в файл.
Задача проверить насколько сеть не станет повторять текст, а будет действительно генерировать
относительно новый текст.
# Результаты
Тестируется английский текст, приложенный в репозитории.
* на 50 эпохах ответ на I want
* I want to soar high up in the sky like to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i want to
* на 100 эпох ответ на I want
* I want to fly i want to soar high up in the sky like a bird to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to spread my wings and soar into the open sky to glide far above the
* на 150 эпохах ответ на I want
* I want to fly i want to spread my wings and soar into the open sky to glide far above the earth unbounded by gravity i want to fly i want to fly i want to fly i want to soar high up in the sky like a bird to glide through
* на 220 эпохах ответ на I want
* I want to fly i want to soar high up in the sky like a bird to glide through the clouds feeling the wind beneath my wings i want to fly i want to fly i want to fly i want to fly i want to fly i want to fly i
* На 220 эпохах результаты хуже, это произошло скорее всего из-за переобучения(грубый повтор).
* На 50 эпохах нейронная сеть плохо обучена (из 1 места плюс повтор)
* На 100 эпохах средний результат (из 2 мест)
* На 150 эпохах нейронная сеть показывает наилучший результат (из 3 разных мест без повтора)
Так же модель работает и на русском тексте. Вот что сгенерировала модель на 150 эпохах.
Предложения взяты из разных мест и выглядят осмысленно.
"Я хочу летать потому что в этом заложено желание преодолевать границы хочу чувствовать себя
свободным словно ветер несущим меня к новым приключениям я хочу летать и продолжать этот бескрайний
полет вперед ибо в этом полете заключена вся суть моего существования существования существования
существования существования трудности трудности трудности неважными хочу летать потому что."
Чем больше текст мы берем, тем более интересные результаты получаем, но моих вычислительных мощностей уже не хватит.
Так же чем больше прогонов, тем лучше модель, но тоже не до бесконечности можно получить хороший результат.
<p>
<div>Обучение</div>
<img src="screens/img_2.png" width="650" title="Обучение">
</p>
<p>
<div>Результат</div>
<img src="screens/img_3.png" width="650" title="Результат">
</p>
<p>
<div>Обучение 1</div>
<img src="screens/step1.png" width="650" title="Обучение 1">
</p>
<p>
<div>Обучение 2</div>
<img src="screens/step2.png" width="650" title="Обучение 2">
</p>
<p>
<div>Обучение 3</div>
<img src="screens/step3.png" width="650" title="Обучение 3">
</p>
<p>
<div>Обучение 4</div>
<img src="screens/step4.png" width="650" title="Обучение 4">
</p>
<p>
<div>Обучение 5</div>
<img src="screens/step5.png" width="650" title="Обучение 5">
</p>

View File

@@ -0,0 +1,55 @@
import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences
# загрузка текста
with open('rus.txt', encoding='utf-8') as file:
text = file.read()
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in text.split('\n'):
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
max_sequence_length = max([len(x) for x in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')
predictors, labels = input_sequences[:, :-1], input_sequences[:, -1]
# создание RNN модели
model = Sequential()
model.add(Embedding(total_words, 100, input_length=max_sequence_length - 1))
model.add(LSTM(150))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# тренировка модели
model.fit(predictors, labels, epochs=150, verbose=1)
# генерация текста на основе модели
def generate_text(seed_text, next_words, model, max_sequence_length):
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre')
predicted = np.argmax(model.predict(token_list), axis=-1)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
return seed_text
generated_text = generate_text("Я хочу", 50, model, max_sequence_length)
print(generated_text)

Binary file not shown.

View File

@@ -0,0 +1,11 @@
Я хочу летать. Почувствовать ветер в лицо, свободно парить в небесах. Я хочу летать, словно птица, освободившись от земных оков. Летать, словно орел, покоряя небесные просторы. Я хочу летать, чувствовать каждый момент поднятия в воздух, каждый поворот, каждое крыло, взмахнувшее в танце с аэродинамикой.
Я хочу летать над горами, смотреть на вершины, которые кажутся такими далекими с земли. Хочу летать над океанами, наблюдая за волнами, встречая закаты, окрашивающие водную гладь в огонь. Я хочу летать над городами, где жизнь бурлит своим ритмом, а улицы выглядят как мозаика, расстилающаяся под ногами.
Я хочу летать, ощущать тот подъем, когда ты понимаешь, что земля осталась позади, а ты свободен, как никогда. Я хочу летать и видеть этот мир с высоты, где все проблемы кажутся такими маленькими и неважными. Хочу летать и чувствовать себя частью этого огромного космического танца, где звезды танцуют свои вечерние вальсы.
Я хочу летать, несмотря ни на что, преодолевая любые преграды. Хочу летать, потому что в этом чувствую свое настоящее "я". Летать значит освобождаться от гравитации рутины, подниматься над повседневностью, смотреть на мир с высоты своей мечты.
Я хочу летать, потому что в этом заключена свобода души. Хочу ощутить, как воздух обволакивает меня, как каждая клетка моего тела ощущает эту свободу. Хочу летать, потому что это моя мечта, которая дает мне силы двигаться вперед, преодолевая все трудности.
Я хочу летать, потому что в этом заложено желание преодолевать границы. Хочу чувствовать себя свободным, словно ветер, несущим меня к новым приключениям. Я хочу летать и продолжать этот бескрайний полет вперед, ибо в этом полете заключена вся суть моего существования.

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

View File

@@ -0,0 +1,16 @@
I want to fly. I want to soar high up in the sky like a bird. To glide through the clouds, feeling the wind beneath my wings. I want to fly.
I imagine what it would be like, to be able to spread my arms and take off into the endless blue. To swoop and dive and twirl through the air unencumbered by gravity's pull. I want to fly.
I watch the birds outside my window, floating effortlessly on the breeze. How I wish I could join them up there. To break free of the bounds of this earth and taste the freedom of flight. I want to fly.
Over and over I dream of flying. I flap my arms but remain stuck to the ground. Still I gaze up hopefully at the sky. One day, I tell myself. One day I will fly. I want to fly.
I want to fly. I want to spread my wings and soar into the open sky. To glide far above the earth unbounded by gravity. I want to fly.
Ever since I was a child I've dreamed of flying. I would flap my arms trying in vain to take off. I envied the birds and their gift of flight. On windy days, I'd run with the breeze, hoping it would lift me up. But my feet stayed planted. Still my desire to fly remained.
As I grew up, my dreams of flying never left. I'd gaze out plane windows high above the earth and ache to sprout wings. I'd watch birds for hours wishing I could join their effortless flight. At night I'd have vivid dreams of gliding among the clouds. Then I'd awake still earthbound and sigh. My longing to fly unchanged.
I want to know what it feels like to swoop and dive through the air. To loop and twirl on the wind currents with ease. To soar untethered by gravity's grip. But I'm trapped on the ground, wings useless and weighted. Still I stare upwards hoping. Still I imagine what could be. Still I want to fly.
They say it's impossible, that humans aren't meant for flight. But I refuse to let go of this dream. I gaze up, envying the way the birds own the sky while my feet stay planted. I flap and I hope. And still I want to fly.

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Some files were not shown because too many files have changed in this diff Show More