sergeev_evgenii_lab_5 is done! #173

Open
sergeevevgen wants to merge 2 commits from sergeev_evgenii_lab_5 into main
6 changed files with 84 additions and 0 deletions

View File

@ -0,0 +1,36 @@
# Лабораторная работа №5 - Вспоминаем математику или параллельное перемножение матриц
Задание
Кратко: реализовать умножение двух больших квадратных матриц.
Подробно: в лабораторной работе требуется сделать два алгоритма: обычный и параллельный (задание со * -
реализовать это в рамках одного алгоритма). В параллельном алгоритме предусмотреть ручное задание количества потоков
(число потоков = 1 как раз и реализует задание со *), каждый из которых будет выполнять умножение элементов матрицы в
рамках своей зоны ответственности
Код:
![Alt text](images/img.png)
Код:
![Alt text](images/img_1.png)
Код:
![Alt text](images/img_2.png)
Вывод программы:
![Alt text](images/img_3.png)
Заключение
Сделать несколько бенчмарков последовательного и параллельного алгоритма на умножение двух матриц размером 100x100,
300x300, 500x500 элементов.
Вывод: Параллельный алгоритм работает намного быстрее, так как вычисления происходят в различных потоках в одно и то же
время. Его следует использовать, если в матрице присутствуют огромные числа или сама матрица большой размерности
# Видео
Видео с разбором лабораторной работы:
https://youtu.be/dcVWNjDzG8M

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -0,0 +1,48 @@
import numpy as np
import time
from concurrent.futures import ThreadPoolExecutor
def sequential_matrix_multiply(matrix_a, matrix_b):
return np.dot(matrix_a, matrix_b)
def parallel_matrix_multiply(matrix_a, matrix_b, num_threads):
result = np.zeros_like(matrix_a)
rows, cols = matrix_a.shape
def multiply_row(row):
nonlocal matrix_a, matrix_b, result
result[row, :] = np.dot(matrix_a[row, :], matrix_b)
with ThreadPoolExecutor(max_workers=num_threads) as executor:
executor.map(multiply_row, range(rows))
return result
def benchmark(matrix_size, num_threads=1):
matrix_a = np.random.rand(matrix_size, matrix_size)
matrix_b = np.random.rand(matrix_size, matrix_size)
start_time = time.time()
sequential_result = sequential_matrix_multiply(matrix_a, matrix_b)
sequential_time = time.time() - start_time
start_time = time.time()
parallel_result = parallel_matrix_multiply(matrix_a, matrix_b, num_threads)
parallel_time = time.time() - start_time
return sequential_time, parallel_time
# Пример использования для матриц размером 100x100, 300x300, 500x500 элементов
matrix_sizes = [100, 300, 500]
threads_count = 4 # Указать желаемое количество потоков
for size in matrix_sizes:
sequential_time, parallel_time = benchmark(size, threads_count)
print(f"Размер матрицы: {size}x{size}")
print(f"Время с последовательным выполнением: {sequential_time:.6f} секунд")
print(f"Время с параллельной обработкой ({threads_count} потоков): {parallel_time:.6f} секунд")
print("=" * 30)