49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
import numpy as np
|
||
import time
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
|
||
|
||
def sequential_matrix_multiply(matrix_a, matrix_b):
|
||
return np.dot(matrix_a, matrix_b)
|
||
|
||
|
||
def parallel_matrix_multiply(matrix_a, matrix_b, num_threads):
|
||
result = np.zeros_like(matrix_a)
|
||
rows, cols = matrix_a.shape
|
||
|
||
def multiply_row(row):
|
||
nonlocal matrix_a, matrix_b, result
|
||
result[row, :] = np.dot(matrix_a[row, :], matrix_b)
|
||
|
||
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||
executor.map(multiply_row, range(rows))
|
||
|
||
return result
|
||
|
||
|
||
def benchmark(matrix_size, num_threads=1):
|
||
matrix_a = np.random.rand(matrix_size, matrix_size)
|
||
matrix_b = np.random.rand(matrix_size, matrix_size)
|
||
|
||
start_time = time.time()
|
||
sequential_result = sequential_matrix_multiply(matrix_a, matrix_b)
|
||
sequential_time = time.time() - start_time
|
||
|
||
start_time = time.time()
|
||
parallel_result = parallel_matrix_multiply(matrix_a, matrix_b, num_threads)
|
||
parallel_time = time.time() - start_time
|
||
|
||
return sequential_time, parallel_time
|
||
|
||
|
||
# Пример использования для матриц размером 100x100, 300x300, 500x500 элементов
|
||
matrix_sizes = [100, 300, 500]
|
||
threads_count = 4 # Указать желаемое количество потоков
|
||
|
||
for size in matrix_sizes:
|
||
sequential_time, parallel_time = benchmark(size, threads_count)
|
||
print(f"Размер матрицы: {size}x{size}")
|
||
print(f"Время с последовательным выполнением: {sequential_time:.6f} секунд")
|
||
print(f"Время с параллельной обработкой ({threads_count} потоков): {parallel_time:.6f} секунд")
|
||
print("=" * 30)
|