комит
This commit is contained in:
parent
cdbdc2fd39
commit
fa6ac0aa75
159
lab_2/lab2.ipynb
159
lab_2/lab2.ipynb
@ -4,7 +4,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Загрузка данных в DataFrame \"Список форбс\"\n",
|
||||
"<b>Загрузка данных в DataFrame \"Список форбс\"</b>\n",
|
||||
"\n",
|
||||
"О рейтинге\n",
|
||||
"The World's Billionaires (\"Миллиардеры мира\") - ежегодный рейтинг самых богатых миллиардеров мира, составляемый и публикуемый в марте американским деловым журналом Forbes. Общее состояние каждого человека, включенного в список, оценивается в долларах США на основе его документально подтвержденных активов, а также с учетом долгов и других факторов. Этот рейтинг представляет собой список самых богатых людей, зарегистрированных по документам, за исключением тех, чье благосостояние не может быть полностью установлено.\n",
|
||||
@ -23,7 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -31,17 +31,17 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||||
"Index: 2600 entries, Automotive to Food & Beverage \n",
|
||||
"Index: 2600 entries, 1 to 2578\n",
|
||||
"Data columns (total 6 columns):\n",
|
||||
" # Column Non-Null Count Dtype \n",
|
||||
"--- ------ -------------- ----- \n",
|
||||
" 0 Rank 2600 non-null int64 \n",
|
||||
" 1 Name 2600 non-null object \n",
|
||||
" 2 Networth 2600 non-null float64\n",
|
||||
" 3 Age 2600 non-null int64 \n",
|
||||
" 4 Country 2600 non-null object \n",
|
||||
" 5 Source 2600 non-null object \n",
|
||||
"dtypes: float64(1), int64(2), object(3)\n",
|
||||
" 0 Name 2600 non-null object \n",
|
||||
" 1 Networth 2600 non-null float64\n",
|
||||
" 2 Age 2600 non-null int64 \n",
|
||||
" 3 Country 2600 non-null object \n",
|
||||
" 4 Source 2600 non-null object \n",
|
||||
" 5 Industry 2600 non-null object \n",
|
||||
"dtypes: float64(1), int64(1), object(4)\n",
|
||||
"memory usage: 142.2+ KB\n",
|
||||
"(2600, 6)\n"
|
||||
]
|
||||
@ -67,15 +67,15 @@
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Rank</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Networth</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>Country</th>\n",
|
||||
" <th>Source</th>\n",
|
||||
" <th>Industry</th>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>Industry</th>\n",
|
||||
" <th>Rank</th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
@ -86,73 +86,73 @@
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>Automotive</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Elon Musk</td>\n",
|
||||
" <td>219.0</td>\n",
|
||||
" <td>50</td>\n",
|
||||
" <td>United States</td>\n",
|
||||
" <td>Tesla, SpaceX</td>\n",
|
||||
" <td>Automotive</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>Technology</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>Jeff Bezos</td>\n",
|
||||
" <td>171.0</td>\n",
|
||||
" <td>58</td>\n",
|
||||
" <td>United States</td>\n",
|
||||
" <td>Amazon</td>\n",
|
||||
" <td>Technology</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>Fashion & Retail</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Bernard Arnault & family</td>\n",
|
||||
" <td>158.0</td>\n",
|
||||
" <td>73</td>\n",
|
||||
" <td>France</td>\n",
|
||||
" <td>LVMH</td>\n",
|
||||
" <td>Fashion & Retail</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>Technology</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>Bill Gates</td>\n",
|
||||
" <td>129.0</td>\n",
|
||||
" <td>66</td>\n",
|
||||
" <td>United States</td>\n",
|
||||
" <td>Microsoft</td>\n",
|
||||
" <td>Technology</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>Finance & Investments</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>Warren Buffett</td>\n",
|
||||
" <td>118.0</td>\n",
|
||||
" <td>91</td>\n",
|
||||
" <td>United States</td>\n",
|
||||
" <td>Berkshire Hathaway</td>\n",
|
||||
" <td>Finance & Investments</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Rank Name Networth Age \\\n",
|
||||
"Industry \n",
|
||||
"Automotive 1 Elon Musk 219.0 50 \n",
|
||||
"Technology 2 Jeff Bezos 171.0 58 \n",
|
||||
"Fashion & Retail 3 Bernard Arnault & family 158.0 73 \n",
|
||||
"Technology 4 Bill Gates 129.0 66 \n",
|
||||
"Finance & Investments 5 Warren Buffett 118.0 91 \n",
|
||||
" Name Networth Age Country \\\n",
|
||||
"Rank \n",
|
||||
"1 Elon Musk 219.0 50 United States \n",
|
||||
"2 Jeff Bezos 171.0 58 United States \n",
|
||||
"3 Bernard Arnault & family 158.0 73 France \n",
|
||||
"4 Bill Gates 129.0 66 United States \n",
|
||||
"5 Warren Buffett 118.0 91 United States \n",
|
||||
"\n",
|
||||
" Country Source \n",
|
||||
"Industry \n",
|
||||
"Automotive United States Tesla, SpaceX \n",
|
||||
"Technology United States Amazon \n",
|
||||
"Fashion & Retail France LVMH \n",
|
||||
"Technology United States Microsoft \n",
|
||||
"Finance & Investments United States Berkshire Hathaway "
|
||||
" Source Industry \n",
|
||||
"Rank \n",
|
||||
"1 Tesla, SpaceX Automotive \n",
|
||||
"2 Amazon Technology \n",
|
||||
"3 LVMH Fashion & Retail \n",
|
||||
"4 Microsoft Technology \n",
|
||||
"5 Berkshire Hathaway Finance & Investments "
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -160,7 +160,7 @@
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"df = pd.read_csv(\"..//..//static//csv//Forbes Billionaires.csv\", index_col=\"Industry\")\n",
|
||||
"df = pd.read_csv(\"..//..//static//csv//Forbes Billionaires.csv\", index_col=\"Rank\")\n",
|
||||
"\n",
|
||||
"df.info()\n",
|
||||
"\n",
|
||||
@ -169,6 +169,52 @@
|
||||
"df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<b>2. Проблемная область</b>\n",
|
||||
"<br><br>\n",
|
||||
"Анализ данных из списка миллиардеров Forbes позволяет не только понять текущее состояние богатства в мире, но и выявить более глубокие тенденции и паттерны, которые могут помочь в принятии бизнес-решений, понимании экономических процессов и определении направлений для дальнейших исследований. Эти данные могут быть основой для многочисленных статей, отчетов и аналитических исследований, что делает их ценными для широкого круга специалистов в различных областях."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<b>3. Анализ содержимого</b>\n",
|
||||
"<br><br>\n",
|
||||
"\n",
|
||||
"1. Объектами наблюдения являются миллиардеры.\n",
|
||||
"2. В качестве атбирутов вредставлены: имя, величина богатства, возраст, страна, источник, индустрия\n",
|
||||
"3. Связей между объектами нет"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<b>4. Бизнес-цели</b>\n",
|
||||
"<br><br>\n",
|
||||
"1. Сравнив свой бизнес с другими успешными компаниями, основанными миллиардерами, можно извлечь ценные уроки о сильных сторонами и недостатках своей компании.\n",
|
||||
"2. Анализируя, в каких секторах работают миллиардеры и какие компании они развивают, можно выявить растущие рынки и индустрии, в которые стоит инвестировать.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Привести примеры целей технического проекта для каждой выделенной ранее\n",
|
||||
"бизнес-цели. Что поступает на вход, что является целевым признаком?\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@ -188,42 +234,29 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Survived 0\n",
|
||||
"Pclass 0\n",
|
||||
"Name 0\n",
|
||||
"Sex 0\n",
|
||||
"Age 177\n",
|
||||
"SibSp 0\n",
|
||||
"Parch 0\n",
|
||||
"Ticket 0\n",
|
||||
"Fare 0\n",
|
||||
"Cabin 687\n",
|
||||
"Embarked 2\n",
|
||||
"Networth 0\n",
|
||||
"Age 0\n",
|
||||
"Country 0\n",
|
||||
"Source 0\n",
|
||||
"Industry 0\n",
|
||||
"dtype: int64\n",
|
||||
"\n",
|
||||
"Survived False\n",
|
||||
"Pclass False\n",
|
||||
"Name False\n",
|
||||
"Sex False\n",
|
||||
"Age True\n",
|
||||
"SibSp False\n",
|
||||
"Parch False\n",
|
||||
"Ticket False\n",
|
||||
"Fare False\n",
|
||||
"Cabin True\n",
|
||||
"Embarked True\n",
|
||||
"Networth False\n",
|
||||
"Age False\n",
|
||||
"Country False\n",
|
||||
"Source False\n",
|
||||
"Industry False\n",
|
||||
"dtype: bool\n",
|
||||
"\n",
|
||||
"Age процент пустых значений: %19.87\n",
|
||||
"Cabin процент пустых значений: %77.10\n",
|
||||
"Embarked процент пустых значений: %0.22\n"
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
Loading…
Reference in New Issue
Block a user