2024-09-13 21:24:33 +04:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Начало лабораборной\n",
|
|
|
|
"\n",
|
|
|
|
"Выгрузка данных из csv файла в датафрейм"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-09-13 21:27:08 +04:00
|
|
|
"execution_count": 3,
|
2024-09-13 21:24:33 +04:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"Index(['gender', 'race/ethnicity', 'parental level of education', 'lunch',\n",
|
|
|
|
" 'test preparation course', 'math score', 'reading score',\n",
|
|
|
|
" 'writing score'],\n",
|
|
|
|
" dtype='object')\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"import pandas as pd\n",
|
|
|
|
"\n",
|
2024-09-13 21:27:08 +04:00
|
|
|
"df = pd.read_csv(\"..//..//static//csv//StudentsPerformance.csv\")\n",
|
2024-09-13 21:24:33 +04:00
|
|
|
"print (df.columns)"
|
|
|
|
]
|
2024-09-13 23:36:58 +04:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 4,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"<class 'pandas.core.frame.DataFrame'>\n",
|
|
|
|
"RangeIndex: 1000 entries, 0 to 999\n",
|
|
|
|
"Data columns (total 8 columns):\n",
|
|
|
|
" # Column Non-Null Count Dtype \n",
|
|
|
|
"--- ------ -------------- ----- \n",
|
|
|
|
" 0 gender 1000 non-null object\n",
|
|
|
|
" 1 race/ethnicity 1000 non-null object\n",
|
|
|
|
" 2 parental level of education 1000 non-null object\n",
|
|
|
|
" 3 lunch 1000 non-null object\n",
|
|
|
|
" 4 test preparation course 1000 non-null object\n",
|
|
|
|
" 5 math score 1000 non-null int64 \n",
|
|
|
|
" 6 reading score 1000 non-null int64 \n",
|
|
|
|
" 7 writing score 1000 non-null int64 \n",
|
|
|
|
"dtypes: int64(3), object(5)\n",
|
|
|
|
"memory usage: 62.6+ KB\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"df.info()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 5,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
" count mean std min 25% 50% 75% max\n",
|
|
|
|
"math score 1000.0 66.089 15.163080 0.0 57.00 66.0 77.0 100.0\n",
|
|
|
|
"reading score 1000.0 69.169 14.600192 17.0 59.00 70.0 79.0 100.0\n",
|
|
|
|
"writing score 1000.0 68.054 15.195657 10.0 57.75 69.0 79.0 100.0\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"print(df.describe().transpose())"
|
|
|
|
]
|
2024-09-13 21:24:33 +04:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "aimenv",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
"version": "3.12.6"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 2
|
|
|
|
}
|