2323 lines
149 KiB
Plaintext
Raw Permalink Normal View History

2024-11-30 21:28:28 +03:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Лабораторная работа №3\n",
"\n",
"## Набор данных Students Performance in Exams (Успеваемость студентов на экзаменах)\n",
"\n",
"Выгрузка данных из CSV файла в датафрейм"
]
},
{
"cell_type": "code",
"execution_count": 674,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn import set_config\n",
"\n",
"set_config(transform_output=\"pandas\")\n",
"\n",
"random_state=9\n",
"# Загрузка данных\n",
"df = pd.read_csv(\"..//..//static//csv//StudentsPerformance.csv\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Описание набора \n",
"\n",
"Контекст\n",
"Оценки, полученные студентами\n",
"\n",
"Содержание\n",
"Этот набор данных состоит из оценок, полученных учащимися по различным предметам.\n",
"\n",
"Вдохновение\n",
"Понять влияние происхождения родителей, подготовки к тестированию и т. д. на успеваемость учащихся."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Анализ содержимого\n",
"\n",
"*Объекты наблюдения:* студенты, участвующие в экзаменах.\n",
"\n",
"*Атрибуты объектов:* \n",
"\n",
"1. gender — пол: определяет гендерную принадлежность студента (мужской, женский). \n",
"2. race/ethnicity — этническая принадлежность: группа, к которой относится студент (например, различные расовые/этнические категории). \n",
"3. parental level of education — уровень образования родителей(например, среднее образование, высшее образование и т.д.). \n",
"4. lunch — тип обеда: информация о том, получает ли студент бесплатный или платный обед. \n",
"5. test preparation course — курс подготовки к тесту\n",
"6. math score — результаты экзаменов по математике.\n",
"7. reading score — результаты экзаменов по чтению.\n",
"8. writing score — результаты экзаменов по письму.\n",
"\n",
"\n",
"### Бизнес-цель:\n",
"\n",
"**Цель**: Разработка модели, которая будет классифицировать студентов на основе их предсказанных баллов в одну из категорий: High, Medium, Low. \n",
"\n",
"**Эффект**: Это позволит образовательным учреждениям не только выявлять студентов с низкими результатами, но и более точно классифицировать их на разные группы. Например, те, кто попадает в группу \"High\", могут получить более сложные задания, а те, кто в группе \"Low\", могут потребовать дополнительной помощи.\n",
"\n",
"\n",
"### Техническая цель\n",
"\n",
"**Цель**: Разработка классификационной модели, которая будет работать с целевым признаком \"total_score_discrete\", классифицируя студентов по трем категориям (High, Medium, Low). \n",
"\n",
"**Подход**: Для этой задачи можно использовать алгоритмы классификации, такие как логистическая регрессия, деревья решений или случайные леса. Модели должны учитывать категориальные переменные и их влияние на категориальный целевой признак. Методы переклассификации будут оценивать, в какую категорию попадает студент на основе его характеристик.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Конструирование признаков для решения задач\n",
"\n",
"Можно создать новый признак, который будет представлять общую успеваемость студента. Например, можно суммировать баллы по всем предметам и создать общий балл. \n",
"\n",
"Далее используем дискретизацию числового признака (преобразование баллов в категории) для обучения модели, которая будет работать с дискретными данными, а не с непрерывными.\n",
"\n",
"Категории:\n",
"\n",
"\"Low\", \"Medium\", \"High\" для баллов\n"
]
},
{
"cell_type": "code",
"execution_count": 675,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"# Создание новых признаков\n",
"# - Общий балл\n",
"df['total_score'] = df['math score'] + df['reading score'] + df['writing score']\n",
"\n",
"# - Категоризация баллов по математике, чтению и письму\n",
"def discretize_score(score):\n",
" if score < 200:\n",
" return 0\n",
" elif 200 <= score < 250:\n",
" return 1\n",
" else:\n",
" return 2\n",
"df['total_score_discrete'] = df['total_score'].apply(lambda x: discretize_score(x))\n",
"\n",
"df = df.drop(columns=['math score', 'reading score', 'writing score','total_score'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Выберем три модели для задач классификации\n",
"\n",
"1. Логистическая регрессия (Logistic Regression) — базовая модель для классификации.\n",
"\n",
"2. Дерево решений (Decision Tree) — модель, которая хорошо справляется с выявлением сложных закономерностей.\n",
"\n",
"3. Градиентный бустинг (Gradient Boosting) — мощная ансамблевая модель, обеспечивающая высокое качество предсказаний.\n",
"\n",
"Модели выбраны исходя из того, что они предоставляют разные подходы к решению задачи, и это позволит сравнить эффективность различных методов."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Разделение набора данных на обучающую и тестовые выборки (80/20) для задачи классификации и создание ориентира\n",
"\n",
"Целевой признак -- total_score_discrete"
]
},
{
"cell_type": "code",
"execution_count": 676,
"metadata": {},
"outputs": [],
"source": [
"from utils import split_stratified_into_train_val_test\n",
"\n",
"X_train, X_val, X_test, y_train, y_val, y_test = split_stratified_into_train_val_test(\n",
" df, stratify_colname=\"total_score_discrete\", frac_train=0.80, frac_val=0, frac_test=0.20, random_state=random_state\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Аугментация данных для целевого признака в обучающей выборке"
]
},
{
"cell_type": "code",
"execution_count": 677,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Количество данных в y_train до RandomOverSampling: 800\n",
"Количество данных в X_train до RandomOverSampling: 800\n",
"Количество данных в y_train после RandomOverSampling: 1065\n",
"Количество данных в X_train после RandomOverSampling: 1065\n"
]
}
],
"source": [
"from imblearn.over_sampling import RandomOverSampler\n",
"\n",
"\n",
"print(\"Количество данных в y_train до RandomOverSampling:\", len(y_train))\n",
"print(\"Количество данных в X_train до RandomOverSampling:\", len(X_train))\n",
"\n",
"# Объединяем исходные данные и \"шумные\" данные для увеличения обучающей выборки\n",
"X_train_combined = np.vstack([X_train, X_train])\n",
"y_train_combined = np.hstack([y_train, y_train]) # Убедитесь, что y_train повторяется для новых данных\n",
"\n",
"# Применение oversampling и undersampling\n",
"ros = RandomOverSampler(random_state=42)\n",
"X_train, y_train = ros.fit_resample(X_train, y_train)\n",
"\n",
"\n",
"print(\"Количество данных в y_train после RandomOverSampling:\", len(y_train))\n",
"print(\"Количество данных в X_train после RandomOverSampling:\", len(X_train))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Формирование конвейера"
]
},
{
"cell_type": "code",
"execution_count": 678,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.discriminant_analysis import StandardScaler\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"\n",
"\n",
"columns_to_drop = [\"total_score_discrete\"]\n",
"num_columns = [\n",
" column\n",
" for column in df.columns\n",
" if column not in columns_to_drop and df[column].dtype != \"object\"\n",
"]\n",
"cat_columns = [\n",
" column\n",
" for column in df.columns\n",
" if column not in columns_to_drop and df[column].dtype == \"object\"\n",
"]\n",
"\n",
"num_imputer = SimpleImputer(strategy=\"median\")\n",
"num_scaler = StandardScaler()\n",
"preprocessing_num = Pipeline(\n",
" [\n",
" (\"imputer\", num_imputer),\n",
" (\"scaler\", num_scaler),\n",
" ]\n",
")\n",
"\n",
"cat_imputer = SimpleImputer(strategy=\"constant\", fill_value=\"unknown\")\n",
"cat_encoder = OneHotEncoder(handle_unknown=\"ignore\", sparse_output=False, drop=\"first\")\n",
"preprocessing_cat = Pipeline(\n",
" [\n",
" (\"imputer\", cat_imputer),\n",
" (\"encoder\", cat_encoder),\n",
" ]\n",
")\n",
"\n",
"features_preprocessing = ColumnTransformer(\n",
" verbose_feature_names_out=False,\n",
" transformers=[\n",
" (\"prepocessing_num\", preprocessing_num, num_columns),\n",
" (\"prepocessing_cat\", preprocessing_cat, cat_columns),\n",
" ],\n",
" remainder=\"passthrough\",\n",
" force_int_remainder_cols=False \n",
")\n",
"\n",
"drop_columns = ColumnTransformer(\n",
" verbose_feature_names_out=False,\n",
" transformers=[\n",
" (\"drop_columns\", \"drop\", columns_to_drop),\n",
" ],\n",
" remainder=\"passthrough\",\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Настройка гиперпараметров для каждой модели и обучение\n",
"\n",
"Для каждой модели важно настроить гиперпараметры, чтобы достичь наилучших результатов. Мы будем использовать GridSearchCV для выполнения кросс-валидации и выбора оптимальных гиперпараметров для каждой модели.\n",
"\n",
"##### 1. Логистическая регрессия\n",
"Для логистической регрессии мы настроим гиперпараметры регуляризации C и оптимизатор."
]
},
{
"cell_type": "code",
"execution_count": 679,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"d:\\5semestr\\AIM\\aimvenv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py:1623: FutureWarning: \n",
"The format of the columns of the 'remainder' transformer in ColumnTransformer.transformers_ will change in version 1.7 to match the format of the other transformers.\n",
"At the moment the remainder columns are stored as indices (of type int). With the same ColumnTransformer configuration, in the future they will be stored as column names (of type str).\n",
"To use the new behavior now and suppress this warning, use ColumnTransformer(force_int_remainder_cols=False).\n",
"\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"<style>#sk-container-id-6 {\n",
" /* Definition of color scheme common for light and dark mode */\n",
" --sklearn-color-text: black;\n",
" --sklearn-color-line: gray;\n",
" /* Definition of color scheme for unfitted estimators */\n",
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
" --sklearn-color-unfitted-level-3: chocolate;\n",
" /* Definition of color scheme for fitted estimators */\n",
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
" --sklearn-color-fitted-level-1: #d4ebff;\n",
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
"\n",
" /* Specific color for light theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-icon: #696969;\n",
"\n",
" @media (prefers-color-scheme: dark) {\n",
" /* Redefinition of color scheme for dark theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-icon: #878787;\n",
" }\n",
"}\n",
"\n",
"#sk-container-id-6 {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"#sk-container-id-6 pre {\n",
" padding: 0;\n",
"}\n",
"\n",
"#sk-container-id-6 input.sk-hidden--visually {\n",
" border: 0;\n",
" clip: rect(1px 1px 1px 1px);\n",
" clip: rect(1px, 1px, 1px, 1px);\n",
" height: 1px;\n",
" margin: -1px;\n",
" overflow: hidden;\n",
" padding: 0;\n",
" position: absolute;\n",
" width: 1px;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-dashed-wrapped {\n",
" border: 1px dashed var(--sklearn-color-line);\n",
" margin: 0 0.4em 0.5em 0.4em;\n",
" box-sizing: border-box;\n",
" padding-bottom: 0.4em;\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-container {\n",
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
" so we also need the `!important` here to be able to override the\n",
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
" display: inline-block !important;\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-text-repr-fallback {\n",
" display: none;\n",
"}\n",
"\n",
"div.sk-parallel-item,\n",
"div.sk-serial,\n",
"div.sk-item {\n",
" /* draw centered vertical line to link estimators */\n",
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
" background-size: 2px 100%;\n",
" background-repeat: no-repeat;\n",
" background-position: center center;\n",
"}\n",
"\n",
"/* Parallel-specific style estimator block */\n",
"\n",
"#sk-container-id-6 div.sk-parallel-item::after {\n",
" content: \"\";\n",
" width: 100%;\n",
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
" flex-grow: 1;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-parallel {\n",
" display: flex;\n",
" align-items: stretch;\n",
" justify-content: center;\n",
" background-color: var(--sklearn-color-background);\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-parallel-item {\n",
" display: flex;\n",
" flex-direction: column;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-parallel-item:first-child::after {\n",
" align-self: flex-end;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-parallel-item:last-child::after {\n",
" align-self: flex-start;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-parallel-item:only-child::after {\n",
" width: 0;\n",
"}\n",
"\n",
"/* Serial-specific style estimator block */\n",
"\n",
"#sk-container-id-6 div.sk-serial {\n",
" display: flex;\n",
" flex-direction: column;\n",
" align-items: center;\n",
" background-color: var(--sklearn-color-background);\n",
" padding-right: 1em;\n",
" padding-left: 1em;\n",
"}\n",
"\n",
"\n",
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
"clickable and can be expanded/collapsed.\n",
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
"*/\n",
"\n",
"/* Pipeline and ColumnTransformer style (default) */\n",
"\n",
"#sk-container-id-6 div.sk-toggleable {\n",
" /* Default theme specific background. It is overwritten whether we have a\n",
" specific estimator or a Pipeline/ColumnTransformer */\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"/* Toggleable label */\n",
"#sk-container-id-6 label.sk-toggleable__label {\n",
" cursor: pointer;\n",
" display: block;\n",
" width: 100%;\n",
" margin-bottom: 0;\n",
" padding: 0.5em;\n",
" box-sizing: border-box;\n",
" text-align: center;\n",
"}\n",
"\n",
"#sk-container-id-6 label.sk-toggleable__label-arrow:before {\n",
" /* Arrow on the left of the label */\n",
" content: \"▸\";\n",
" float: left;\n",
" margin-right: 0.25em;\n",
" color: var(--sklearn-color-icon);\n",
"}\n",
"\n",
"#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"/* Toggleable content - dropdown */\n",
"\n",
"#sk-container-id-6 div.sk-toggleable__content {\n",
" max-height: 0;\n",
" max-width: 0;\n",
" overflow: hidden;\n",
" text-align: left;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-toggleable__content.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-toggleable__content pre {\n",
" margin: 0.2em;\n",
" border-radius: 0.25em;\n",
" color: var(--sklearn-color-text);\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-toggleable__content.fitted pre {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
" /* Expand drop-down */\n",
" max-height: 200px;\n",
" max-width: 100%;\n",
" overflow: auto;\n",
"}\n",
"\n",
"#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
" content: \"▾\";\n",
"}\n",
"\n",
"/* Pipeline/ColumnTransformer-specific style */\n",
"\n",
"#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator-specific style */\n",
"\n",
"/* Colorize estimator box */\n",
"#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-label label.sk-toggleable__label,\n",
"#sk-container-id-6 div.sk-label label {\n",
" /* The background is the default theme color */\n",
" color: var(--sklearn-color-text-on-default-background);\n",
"}\n",
"\n",
"/* On hover, darken the color of the background */\n",
"#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"/* Label box, darken color on hover, fitted */\n",
"#sk-container-id-6 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator label */\n",
"\n",
"#sk-container-id-6 div.sk-label label {\n",
" font-family: monospace;\n",
" font-weight: bold;\n",
" display: inline-block;\n",
" line-height: 1.2em;\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-label-container {\n",
" text-align: center;\n",
"}\n",
"\n",
"/* Estimator-specific */\n",
"#sk-container-id-6 div.sk-estimator {\n",
" font-family: monospace;\n",
" border: 1px dotted var(--sklearn-color-border-box);\n",
" border-radius: 0.25em;\n",
" box-sizing: border-box;\n",
" margin-bottom: 0.5em;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-estimator.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"/* on hover */\n",
"#sk-container-id-6 div.sk-estimator:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-6 div.sk-estimator.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
"\n",
"/* Common style for \"i\" and \"?\" */\n",
"\n",
".sk-estimator-doc-link,\n",
"a:link.sk-estimator-doc-link,\n",
"a:visited.sk-estimator-doc-link {\n",
" float: right;\n",
" font-size: smaller;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1em;\n",
" height: 1em;\n",
" width: 1em;\n",
" text-decoration: none !important;\n",
" margin-left: 1ex;\n",
" /* unfitted */\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted,\n",
"a:link.sk-estimator-doc-link.fitted,\n",
"a:visited.sk-estimator-doc-link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"/* Span, style for the box shown on hovering the info icon */\n",
".sk-estimator-doc-link span {\n",
" display: none;\n",
" z-index: 9999;\n",
" position: relative;\n",
" font-weight: normal;\n",
" right: .2ex;\n",
" padding: .5ex;\n",
" margin: .5ex;\n",
" width: min-content;\n",
" min-width: 20ex;\n",
" max-width: 50ex;\n",
" color: var(--sklearn-color-text);\n",
" box-shadow: 2pt 2pt 4pt #999;\n",
" /* unfitted */\n",
" background: var(--sklearn-color-unfitted-level-0);\n",
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted span {\n",
" /* fitted */\n",
" background: var(--sklearn-color-fitted-level-0);\n",
" border: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link:hover span {\n",
" display: block;\n",
"}\n",
"\n",
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
"\n",
"#sk-container-id-6 a.estimator_doc_link {\n",
" float: right;\n",
" font-size: 1rem;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1rem;\n",
" height: 1rem;\n",
" width: 1rem;\n",
" text-decoration: none;\n",
" /* unfitted */\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
"}\n",
"\n",
"#sk-container-id-6 a.estimator_doc_link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"#sk-container-id-6 a.estimator_doc_link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"#sk-container-id-6 a.estimator_doc_link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"</style><div id=\"sk-container-id-6\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unkno...\n",
" &#x27;preparation &#x27;\n",
" &#x27;course&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;,\n",
" &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" LogisticRegression(max_iter=1000,\n",
" random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={&#x27;model__C&#x27;: [0.1, 1, 10],\n",
" &#x27;model__solver&#x27;: [&#x27;liblinear&#x27;, &#x27;saga&#x27;]})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-86\" type=\"checkbox\" ><label for=\"sk-estimator-id-86\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;GridSearchCV<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html\">?<span>Documentation for GridSearchCV</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unkno...\n",
" &#x27;preparation &#x27;\n",
" &#x27;course&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;,\n",
" &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" LogisticRegression(max_iter=1000,\n",
" random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={&#x27;model__C&#x27;: [0.1, 1, 10],\n",
" &#x27;model__solver&#x27;: [&#x27;liblinear&#x27;, &#x27;saga&#x27;]})</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-87\" type=\"checkbox\" ><label for=\"sk-estimator-id-87\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">best_estimator_: Pipeline</label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unknown&#x27;,\n",
" strategy=&#x27;constant&#x27;)),\n",
" (&#x27;...\n",
" [&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;,\n",
" &#x27;parental level of &#x27;\n",
" &#x27;education&#x27;,\n",
" &#x27;lunch&#x27;,\n",
" &#x27;test preparation course&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;, &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" LogisticRegression(C=1, max_iter=1000, random_state=9,\n",
" solver=&#x27;liblinear&#x27;))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-88\" type=\"checkbox\" ><label for=\"sk-estimator-id-88\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;features_preprocessing: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for features_preprocessing: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(force_int_remainder_cols=False, remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;, StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unknown&#x27;,\n",
" strategy=&#x27;constant&#x27;)),\n",
" (&#x27;encoder&#x27;,\n",
" OneHotEncoder(drop=&#x27;first&#x27;,\n",
" handle_unknown=&#x27;ignore&#x27;,\n",
" sparse_output=False))]),\n",
" [&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;,\n",
" &#x27;parental level of education&#x27;, &#x27;lunch&#x27;,\n",
" &#x27;test preparation course&#x27;])],\n",
" verbose_feature_names_out=False)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-89\" type=\"checkbox\" ><label for=\"sk-estimator-id-89\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">prepocessing_num</label><div class=\"sk-toggleable__content fitted\"><pre>[]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-90\" type=\"checkbox\" ><label for=\"sk-estimator-id-90\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;SimpleImputer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html\">?<span>Documentation for SimpleImputer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-91\" type=\"checkbox\" ><label for=\"sk-estimator-id-91\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-92\" type=\"checkbox\" ><label for=\"sk-estimator-id-92\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">prepocessing_cat</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;, &#x27;parental level of education&#x27;, &#x27;lunch&#x27;, &#x27;test preparation course&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-93\" type=\"checkbox\" ><label for=\"sk-estimator-id-93\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;SimpleImputer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html\">?<span>Documentation for SimpleImputer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>SimpleImputer(fill_value=&#x27;unknown&#x27;, strategy=&#x27;constant&#x27;)</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-94\" type=\"checkbox\" ><label for=\"sk-estimator-id-94\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;ignore&#x27;, sparse_output=False)</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"
" transformers=[(&#x27;drop_columns&#x27;, &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-98\" type=\"checkbox\" ><label for=\"sk-estimator-id-98\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">drop_columns</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;total_score_discrete&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-99\" type=\"checkbox\" ><label for=\"sk-estimator-id-99\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">drop</label><div class=\"sk-toggleable__content fitted\"><pre>drop</pre></div> </div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-100\" type=\"checkbox\" ><label for=\"sk-estimator-id-100\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">remainder</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;gender_male&#x27;, &#x27;race/ethnicity_group B&#x27;, &#x27;race/ethnicity_group C&#x27;, &#x27;race/ethnicity_group D&#x27;, &#x27;race/ethnicity_group E&#x27;, &quot;parental level of education_bachelor&#x27;s degree&quot;, &#x27;parental level of education_high school&#x27;, &quot;parental level of education_master&#x27;s degree&quot;, &#x27;parental level of education_some college&#x27;, &#x27;parental level of education_some high school&#x27;, &#x27;lunch_standard&#x27;, &#x27;test preparation course_none&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-101\" type=\"checkbox\" ><label for=\"sk-estimator-id-101\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">passthrough</label><div class=\"sk-toggleable__content fitted\"><pre>passthrough</pre></div> </div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-102\" type=\"checkbox\" ><label for=\"sk-estimator-id-102\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;LogisticRegression<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html\">?<span>Documentation for LogisticRegression</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>LogisticRegression(C=1, max_iter=1000, random_state=9, solver=&#x27;liblinear&#x27;)</pre></div> </div></div></div></div></div></div></div></div></div></div></div>"
],
"text/plain": [
"GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('features_preprocessing',\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder='passthrough',\n",
" transformers=[('prepocessing_num',\n",
" Pipeline(steps=[('imputer',\n",
" SimpleImputer(strategy='median')),\n",
" ('scaler',\n",
" StandardScaler())]),\n",
" []),\n",
" ('prepocessing_cat',\n",
" Pipeline(steps=[('imputer',\n",
" SimpleImputer(fill_value='unkno...\n",
" 'preparation '\n",
" 'course'])],\n",
" verbose_feature_names_out=False)),\n",
" ('drop_columns',\n",
" ColumnTransformer(remainder='passthrough',\n",
" transformers=[('drop_columns',\n",
" 'drop',\n",
" ['total_score_discrete'])],\n",
" verbose_feature_names_out=False)),\n",
" ('model',\n",
" LogisticRegression(max_iter=1000,\n",
" random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={'model__C': [0.1, 1, 10],\n",
" 'model__solver': ['liblinear', 'saga']})"
]
},
"execution_count": 679,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import GridSearchCV\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"# Модель логистической регрессии\n",
"logistic_model = LogisticRegression(max_iter=1000, random_state=random_state)\n",
"\n",
"# Создаём пайплайн, который сначала применяет preprocessing, а потом обучает модель\n",
"logistic_pipeline = Pipeline([\n",
" (\"features_preprocessing\", features_preprocessing),\n",
" (\"drop_columns\", drop_columns),\n",
" (\"model\", logistic_model) # Здесь добавляем модель в пайплайн\n",
"])\n",
"\n",
"# Параметры для настройки\n",
"logistic_param_grid = {\n",
" 'model__C': [0.1, 1, 10], # Регуляризация\n",
" 'model__solver': ['liblinear', 'saga'] # Алгоритм оптимизации\n",
"}\n",
"\n",
"# Настройка гиперпараметров с использованием GridSearchCV\n",
"logistic_search = GridSearchCV(logistic_pipeline, logistic_param_grid, cv=5, n_jobs=-1)\n",
"\n",
"# Обучаем модель\n",
"logistic_search.fit(X_train, y_train.values.ravel())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### 2. Дерево решений\n",
"\n",
"Для дерева решений мы будем настраивать гиперпараметры, такие как максимальная глубина и минимальное количество объектов для разделения.\n"
]
},
{
"cell_type": "code",
"execution_count": 680,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"d:\\5semestr\\AIM\\aimvenv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py:1623: FutureWarning: \n",
"The format of the columns of the 'remainder' transformer in ColumnTransformer.transformers_ will change in version 1.7 to match the format of the other transformers.\n",
"At the moment the remainder columns are stored as indices (of type int). With the same ColumnTransformer configuration, in the future they will be stored as column names (of type str).\n",
"To use the new behavior now and suppress this warning, use ColumnTransformer(force_int_remainder_cols=False).\n",
"\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"<style>#sk-container-id-7 {\n",
" /* Definition of color scheme common for light and dark mode */\n",
" --sklearn-color-text: black;\n",
" --sklearn-color-line: gray;\n",
" /* Definition of color scheme for unfitted estimators */\n",
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
" --sklearn-color-unfitted-level-3: chocolate;\n",
" /* Definition of color scheme for fitted estimators */\n",
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
" --sklearn-color-fitted-level-1: #d4ebff;\n",
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
"\n",
" /* Specific color for light theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-icon: #696969;\n",
"\n",
" @media (prefers-color-scheme: dark) {\n",
" /* Redefinition of color scheme for dark theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-icon: #878787;\n",
" }\n",
"}\n",
"\n",
"#sk-container-id-7 {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"#sk-container-id-7 pre {\n",
" padding: 0;\n",
"}\n",
"\n",
"#sk-container-id-7 input.sk-hidden--visually {\n",
" border: 0;\n",
" clip: rect(1px 1px 1px 1px);\n",
" clip: rect(1px, 1px, 1px, 1px);\n",
" height: 1px;\n",
" margin: -1px;\n",
" overflow: hidden;\n",
" padding: 0;\n",
" position: absolute;\n",
" width: 1px;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-dashed-wrapped {\n",
" border: 1px dashed var(--sklearn-color-line);\n",
" margin: 0 0.4em 0.5em 0.4em;\n",
" box-sizing: border-box;\n",
" padding-bottom: 0.4em;\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-container {\n",
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
" so we also need the `!important` here to be able to override the\n",
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
" display: inline-block !important;\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-text-repr-fallback {\n",
" display: none;\n",
"}\n",
"\n",
"div.sk-parallel-item,\n",
"div.sk-serial,\n",
"div.sk-item {\n",
" /* draw centered vertical line to link estimators */\n",
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
" background-size: 2px 100%;\n",
" background-repeat: no-repeat;\n",
" background-position: center center;\n",
"}\n",
"\n",
"/* Parallel-specific style estimator block */\n",
"\n",
"#sk-container-id-7 div.sk-parallel-item::after {\n",
" content: \"\";\n",
" width: 100%;\n",
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
" flex-grow: 1;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-parallel {\n",
" display: flex;\n",
" align-items: stretch;\n",
" justify-content: center;\n",
" background-color: var(--sklearn-color-background);\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-parallel-item {\n",
" display: flex;\n",
" flex-direction: column;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-parallel-item:first-child::after {\n",
" align-self: flex-end;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-parallel-item:last-child::after {\n",
" align-self: flex-start;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-parallel-item:only-child::after {\n",
" width: 0;\n",
"}\n",
"\n",
"/* Serial-specific style estimator block */\n",
"\n",
"#sk-container-id-7 div.sk-serial {\n",
" display: flex;\n",
" flex-direction: column;\n",
" align-items: center;\n",
" background-color: var(--sklearn-color-background);\n",
" padding-right: 1em;\n",
" padding-left: 1em;\n",
"}\n",
"\n",
"\n",
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
"clickable and can be expanded/collapsed.\n",
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
"*/\n",
"\n",
"/* Pipeline and ColumnTransformer style (default) */\n",
"\n",
"#sk-container-id-7 div.sk-toggleable {\n",
" /* Default theme specific background. It is overwritten whether we have a\n",
" specific estimator or a Pipeline/ColumnTransformer */\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"/* Toggleable label */\n",
"#sk-container-id-7 label.sk-toggleable__label {\n",
" cursor: pointer;\n",
" display: block;\n",
" width: 100%;\n",
" margin-bottom: 0;\n",
" padding: 0.5em;\n",
" box-sizing: border-box;\n",
" text-align: center;\n",
"}\n",
"\n",
"#sk-container-id-7 label.sk-toggleable__label-arrow:before {\n",
" /* Arrow on the left of the label */\n",
" content: \"▸\";\n",
" float: left;\n",
" margin-right: 0.25em;\n",
" color: var(--sklearn-color-icon);\n",
"}\n",
"\n",
"#sk-container-id-7 label.sk-toggleable__label-arrow:hover:before {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"/* Toggleable content - dropdown */\n",
"\n",
"#sk-container-id-7 div.sk-toggleable__content {\n",
" max-height: 0;\n",
" max-width: 0;\n",
" overflow: hidden;\n",
" text-align: left;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-toggleable__content.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-toggleable__content pre {\n",
" margin: 0.2em;\n",
" border-radius: 0.25em;\n",
" color: var(--sklearn-color-text);\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-toggleable__content.fitted pre {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-7 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
" /* Expand drop-down */\n",
" max-height: 200px;\n",
" max-width: 100%;\n",
" overflow: auto;\n",
"}\n",
"\n",
"#sk-container-id-7 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
" content: \"▾\";\n",
"}\n",
"\n",
"/* Pipeline/ColumnTransformer-specific style */\n",
"\n",
"#sk-container-id-7 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator-specific style */\n",
"\n",
"/* Colorize estimator box */\n",
"#sk-container-id-7 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-label label.sk-toggleable__label,\n",
"#sk-container-id-7 div.sk-label label {\n",
" /* The background is the default theme color */\n",
" color: var(--sklearn-color-text-on-default-background);\n",
"}\n",
"\n",
"/* On hover, darken the color of the background */\n",
"#sk-container-id-7 div.sk-label:hover label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"/* Label box, darken color on hover, fitted */\n",
"#sk-container-id-7 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator label */\n",
"\n",
"#sk-container-id-7 div.sk-label label {\n",
" font-family: monospace;\n",
" font-weight: bold;\n",
" display: inline-block;\n",
" line-height: 1.2em;\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-label-container {\n",
" text-align: center;\n",
"}\n",
"\n",
"/* Estimator-specific */\n",
"#sk-container-id-7 div.sk-estimator {\n",
" font-family: monospace;\n",
" border: 1px dotted var(--sklearn-color-border-box);\n",
" border-radius: 0.25em;\n",
" box-sizing: border-box;\n",
" margin-bottom: 0.5em;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-estimator.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"/* on hover */\n",
"#sk-container-id-7 div.sk-estimator:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-7 div.sk-estimator.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
"\n",
"/* Common style for \"i\" and \"?\" */\n",
"\n",
".sk-estimator-doc-link,\n",
"a:link.sk-estimator-doc-link,\n",
"a:visited.sk-estimator-doc-link {\n",
" float: right;\n",
" font-size: smaller;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1em;\n",
" height: 1em;\n",
" width: 1em;\n",
" text-decoration: none !important;\n",
" margin-left: 1ex;\n",
" /* unfitted */\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted,\n",
"a:link.sk-estimator-doc-link.fitted,\n",
"a:visited.sk-estimator-doc-link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"/* Span, style for the box shown on hovering the info icon */\n",
".sk-estimator-doc-link span {\n",
" display: none;\n",
" z-index: 9999;\n",
" position: relative;\n",
" font-weight: normal;\n",
" right: .2ex;\n",
" padding: .5ex;\n",
" margin: .5ex;\n",
" width: min-content;\n",
" min-width: 20ex;\n",
" max-width: 50ex;\n",
" color: var(--sklearn-color-text);\n",
" box-shadow: 2pt 2pt 4pt #999;\n",
" /* unfitted */\n",
" background: var(--sklearn-color-unfitted-level-0);\n",
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted span {\n",
" /* fitted */\n",
" background: var(--sklearn-color-fitted-level-0);\n",
" border: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link:hover span {\n",
" display: block;\n",
"}\n",
"\n",
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
"\n",
"#sk-container-id-7 a.estimator_doc_link {\n",
" float: right;\n",
" font-size: 1rem;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1rem;\n",
" height: 1rem;\n",
" width: 1rem;\n",
" text-decoration: none;\n",
" /* unfitted */\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
"}\n",
"\n",
"#sk-container-id-7 a.estimator_doc_link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"#sk-container-id-7 a.estimator_doc_link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"#sk-container-id-7 a.estimator_doc_link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"</style><div id=\"sk-container-id-7\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unkno...\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;,\n",
" &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" DecisionTreeClassifier(random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={&#x27;model__max_depth&#x27;: [5, 10, None],\n",
" &#x27;model__min_samples_leaf&#x27;: [1, 2, 4],\n",
" &#x27;model__min_samples_split&#x27;: [2, 5, 10]})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-103\" type=\"checkbox\" ><label for=\"sk-estimator-id-103\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;GridSearchCV<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html\">?<span>Documentation for GridSearchCV</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unkno...\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;,\n",
" &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" DecisionTreeClassifier(random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={&#x27;model__max_depth&#x27;: [5, 10, None],\n",
" &#x27;model__min_samples_leaf&#x27;: [1, 2, 4],\n",
" &#x27;model__min_samples_split&#x27;: [2, 5, 10]})</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-104\" type=\"checkbox\" ><label for=\"sk-estimator-id-104\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">best_estimator_: Pipeline</label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unknown&#x27;,\n",
" strategy=&#x27;constant&#x27;)),\n",
" (&#x27;...\n",
" [&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;,\n",
" &#x27;parental level of &#x27;\n",
" &#x27;education&#x27;,\n",
" &#x27;lunch&#x27;,\n",
" &#x27;test preparation course&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;, &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" DecisionTreeClassifier(max_depth=10, min_samples_split=10,\n",
" random_state=9))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-105\" type=\"checkbox\" ><label for=\"sk-estimator-id-105\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;features_preprocessing: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for features_preprocessing: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(force_int_remainder_cols=False, remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;, StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unknown&#x27;,\n",
" strategy=&#x27;constant&#x27;)),\n",
" (&#x27;encoder&#x27;,\n",
" OneHotEncoder(drop=&#x27;first&#x27;,\n",
" handle_unknown=&#x27;ignore&#x27;,\n",
" sparse_output=False))]),\n",
" [&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;,\n",
" &#x27;parental level of education&#x27;, &#x27;lunch&#x27;,\n",
" &#x27;test preparation course&#x27;])],\n",
" verbose_feature_names_out=False)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-106\" type=\"checkbox\" ><label for=\"sk-estimator-id-106\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">prepocessing_num</label><div class=\"sk-toggleable__content fitted\"><pre>[]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-107\" type=\"checkbox\" ><label for=\"sk-estimator-id-107\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;SimpleImputer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html\">?<span>Documentation for SimpleImputer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-108\" type=\"checkbox\" ><label for=\"sk-estimator-id-108\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-109\" type=\"checkbox\" ><label for=\"sk-estimator-id-109\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">prepocessing_cat</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;, &#x27;parental level of education&#x27;, &#x27;lunch&#x27;, &#x27;test preparation course&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-110\" type=\"checkbox\" ><label for=\"sk-estimator-id-110\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;SimpleImputer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html\">?<span>Documentation for SimpleImputer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>SimpleImputer(fill_value=&#x27;unknown&#x27;, strategy=&#x27;constant&#x27;)</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-111\" type=\"checkbox\" ><label for=\"sk-estimator-id-111\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;ignore&#x27;, sparse_output=False)</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label
" transformers=[(&#x27;drop_columns&#x27;, &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-115\" type=\"checkbox\" ><label for=\"sk-estimator-id-115\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">drop_columns</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;total_score_discrete&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-116\" type=\"checkbox\" ><label for=\"sk-estimator-id-116\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">drop</label><div class=\"sk-toggleable__content fitted\"><pre>drop</pre></div> </div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-117\" type=\"checkbox\" ><label for=\"sk-estimator-id-117\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">remainder</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;gender_male&#x27;, &#x27;race/ethnicity_group B&#x27;, &#x27;race/ethnicity_group C&#x27;, &#x27;race/ethnicity_group D&#x27;, &#x27;race/ethnicity_group E&#x27;, &quot;parental level of education_bachelor&#x27;s degree&quot;, &#x27;parental level of education_high school&#x27;, &quot;parental level of education_master&#x27;s degree&quot;, &#x27;parental level of education_some college&#x27;, &#x27;parental level of education_some high school&#x27;, &#x27;lunch_standard&#x27;, &#x27;test preparation course_none&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-118\" type=\"checkbox\" ><label for=\"sk-estimator-id-118\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">passthrough</label><div class=\"sk-toggleable__content fitted\"><pre>passthrough</pre></div> </div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-119\" type=\"checkbox\" ><label for=\"sk-estimator-id-119\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;DecisionTreeClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.tree.DecisionTreeClassifier.html\">?<span>Documentation for DecisionTreeClassifier</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>DecisionTreeClassifier(max_depth=10, min_samples_split=10, random_state=9)</pre></div> </div></div></div></div></div></div></div></div></div></div></div>"
],
"text/plain": [
"GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('features_preprocessing',\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder='passthrough',\n",
" transformers=[('prepocessing_num',\n",
" Pipeline(steps=[('imputer',\n",
" SimpleImputer(strategy='median')),\n",
" ('scaler',\n",
" StandardScaler())]),\n",
" []),\n",
" ('prepocessing_cat',\n",
" Pipeline(steps=[('imputer',\n",
" SimpleImputer(fill_value='unkno...\n",
" verbose_feature_names_out=False)),\n",
" ('drop_columns',\n",
" ColumnTransformer(remainder='passthrough',\n",
" transformers=[('drop_columns',\n",
" 'drop',\n",
" ['total_score_discrete'])],\n",
" verbose_feature_names_out=False)),\n",
" ('model',\n",
" DecisionTreeClassifier(random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={'model__max_depth': [5, 10, None],\n",
" 'model__min_samples_leaf': [1, 2, 4],\n",
" 'model__min_samples_split': [2, 5, 10]})"
]
},
"execution_count": 680,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.tree import DecisionTreeClassifier\n",
"\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import GridSearchCV\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"# Модель дерева решений\n",
"decision_tree_model = DecisionTreeClassifier(random_state=random_state)\n",
"\n",
"# Создаём пайплайн, который сначала применяет preprocessing, а потом обучает модель\n",
"decision_tree_pipeline = Pipeline([\n",
" (\"features_preprocessing\", features_preprocessing),\n",
" (\"drop_columns\", drop_columns),\n",
" (\"model\", decision_tree_model) # Здесь добавляем модель в пайплайн\n",
"])\n",
"\n",
"# Параметры для настройки\n",
"tree_param_grid = {\n",
" 'model__max_depth': [5, 10, None], # Глубина дерева\n",
" 'model__min_samples_split': [2, 5, 10], # Минимальное количество объектов для разделения\n",
" 'model__min_samples_leaf': [1, 2, 4], # Минимальное количество объектов в листе\n",
"}\n",
"\n",
"tree_search = GridSearchCV(decision_tree_pipeline, tree_param_grid, cv=5, n_jobs=-1)\n",
"\n",
"# Обучаем модель\n",
"tree_search.fit(X_train, y_train.values.ravel())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### 3. Градиентный бустинг\n",
"\n",
"Для градиентного бустинга будем настраивать параметры, такие как количество деревьев и скорость обучения."
]
},
{
"cell_type": "code",
"execution_count": 681,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"d:\\5semestr\\AIM\\aimvenv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py:1623: FutureWarning: \n",
"The format of the columns of the 'remainder' transformer in ColumnTransformer.transformers_ will change in version 1.7 to match the format of the other transformers.\n",
"At the moment the remainder columns are stored as indices (of type int). With the same ColumnTransformer configuration, in the future they will be stored as column names (of type str).\n",
"To use the new behavior now and suppress this warning, use ColumnTransformer(force_int_remainder_cols=False).\n",
"\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"<style>#sk-container-id-8 {\n",
" /* Definition of color scheme common for light and dark mode */\n",
" --sklearn-color-text: black;\n",
" --sklearn-color-line: gray;\n",
" /* Definition of color scheme for unfitted estimators */\n",
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
" --sklearn-color-unfitted-level-3: chocolate;\n",
" /* Definition of color scheme for fitted estimators */\n",
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
" --sklearn-color-fitted-level-1: #d4ebff;\n",
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
"\n",
" /* Specific color for light theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-icon: #696969;\n",
"\n",
" @media (prefers-color-scheme: dark) {\n",
" /* Redefinition of color scheme for dark theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-icon: #878787;\n",
" }\n",
"}\n",
"\n",
"#sk-container-id-8 {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"#sk-container-id-8 pre {\n",
" padding: 0;\n",
"}\n",
"\n",
"#sk-container-id-8 input.sk-hidden--visually {\n",
" border: 0;\n",
" clip: rect(1px 1px 1px 1px);\n",
" clip: rect(1px, 1px, 1px, 1px);\n",
" height: 1px;\n",
" margin: -1px;\n",
" overflow: hidden;\n",
" padding: 0;\n",
" position: absolute;\n",
" width: 1px;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-dashed-wrapped {\n",
" border: 1px dashed var(--sklearn-color-line);\n",
" margin: 0 0.4em 0.5em 0.4em;\n",
" box-sizing: border-box;\n",
" padding-bottom: 0.4em;\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-container {\n",
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
" so we also need the `!important` here to be able to override the\n",
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
" display: inline-block !important;\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-text-repr-fallback {\n",
" display: none;\n",
"}\n",
"\n",
"div.sk-parallel-item,\n",
"div.sk-serial,\n",
"div.sk-item {\n",
" /* draw centered vertical line to link estimators */\n",
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
" background-size: 2px 100%;\n",
" background-repeat: no-repeat;\n",
" background-position: center center;\n",
"}\n",
"\n",
"/* Parallel-specific style estimator block */\n",
"\n",
"#sk-container-id-8 div.sk-parallel-item::after {\n",
" content: \"\";\n",
" width: 100%;\n",
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
" flex-grow: 1;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-parallel {\n",
" display: flex;\n",
" align-items: stretch;\n",
" justify-content: center;\n",
" background-color: var(--sklearn-color-background);\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-parallel-item {\n",
" display: flex;\n",
" flex-direction: column;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-parallel-item:first-child::after {\n",
" align-self: flex-end;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-parallel-item:last-child::after {\n",
" align-self: flex-start;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-parallel-item:only-child::after {\n",
" width: 0;\n",
"}\n",
"\n",
"/* Serial-specific style estimator block */\n",
"\n",
"#sk-container-id-8 div.sk-serial {\n",
" display: flex;\n",
" flex-direction: column;\n",
" align-items: center;\n",
" background-color: var(--sklearn-color-background);\n",
" padding-right: 1em;\n",
" padding-left: 1em;\n",
"}\n",
"\n",
"\n",
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
"clickable and can be expanded/collapsed.\n",
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
"*/\n",
"\n",
"/* Pipeline and ColumnTransformer style (default) */\n",
"\n",
"#sk-container-id-8 div.sk-toggleable {\n",
" /* Default theme specific background. It is overwritten whether we have a\n",
" specific estimator or a Pipeline/ColumnTransformer */\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"/* Toggleable label */\n",
"#sk-container-id-8 label.sk-toggleable__label {\n",
" cursor: pointer;\n",
" display: block;\n",
" width: 100%;\n",
" margin-bottom: 0;\n",
" padding: 0.5em;\n",
" box-sizing: border-box;\n",
" text-align: center;\n",
"}\n",
"\n",
"#sk-container-id-8 label.sk-toggleable__label-arrow:before {\n",
" /* Arrow on the left of the label */\n",
" content: \"▸\";\n",
" float: left;\n",
" margin-right: 0.25em;\n",
" color: var(--sklearn-color-icon);\n",
"}\n",
"\n",
"#sk-container-id-8 label.sk-toggleable__label-arrow:hover:before {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"/* Toggleable content - dropdown */\n",
"\n",
"#sk-container-id-8 div.sk-toggleable__content {\n",
" max-height: 0;\n",
" max-width: 0;\n",
" overflow: hidden;\n",
" text-align: left;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-toggleable__content.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-toggleable__content pre {\n",
" margin: 0.2em;\n",
" border-radius: 0.25em;\n",
" color: var(--sklearn-color-text);\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-toggleable__content.fitted pre {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-8 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
" /* Expand drop-down */\n",
" max-height: 200px;\n",
" max-width: 100%;\n",
" overflow: auto;\n",
"}\n",
"\n",
"#sk-container-id-8 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
" content: \"▾\";\n",
"}\n",
"\n",
"/* Pipeline/ColumnTransformer-specific style */\n",
"\n",
"#sk-container-id-8 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator-specific style */\n",
"\n",
"/* Colorize estimator box */\n",
"#sk-container-id-8 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-label label.sk-toggleable__label,\n",
"#sk-container-id-8 div.sk-label label {\n",
" /* The background is the default theme color */\n",
" color: var(--sklearn-color-text-on-default-background);\n",
"}\n",
"\n",
"/* On hover, darken the color of the background */\n",
"#sk-container-id-8 div.sk-label:hover label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"/* Label box, darken color on hover, fitted */\n",
"#sk-container-id-8 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator label */\n",
"\n",
"#sk-container-id-8 div.sk-label label {\n",
" font-family: monospace;\n",
" font-weight: bold;\n",
" display: inline-block;\n",
" line-height: 1.2em;\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-label-container {\n",
" text-align: center;\n",
"}\n",
"\n",
"/* Estimator-specific */\n",
"#sk-container-id-8 div.sk-estimator {\n",
" font-family: monospace;\n",
" border: 1px dotted var(--sklearn-color-border-box);\n",
" border-radius: 0.25em;\n",
" box-sizing: border-box;\n",
" margin-bottom: 0.5em;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-estimator.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"/* on hover */\n",
"#sk-container-id-8 div.sk-estimator:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-8 div.sk-estimator.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
"\n",
"/* Common style for \"i\" and \"?\" */\n",
"\n",
".sk-estimator-doc-link,\n",
"a:link.sk-estimator-doc-link,\n",
"a:visited.sk-estimator-doc-link {\n",
" float: right;\n",
" font-size: smaller;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1em;\n",
" height: 1em;\n",
" width: 1em;\n",
" text-decoration: none !important;\n",
" margin-left: 1ex;\n",
" /* unfitted */\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted,\n",
"a:link.sk-estimator-doc-link.fitted,\n",
"a:visited.sk-estimator-doc-link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"/* Span, style for the box shown on hovering the info icon */\n",
".sk-estimator-doc-link span {\n",
" display: none;\n",
" z-index: 9999;\n",
" position: relative;\n",
" font-weight: normal;\n",
" right: .2ex;\n",
" padding: .5ex;\n",
" margin: .5ex;\n",
" width: min-content;\n",
" min-width: 20ex;\n",
" max-width: 50ex;\n",
" color: var(--sklearn-color-text);\n",
" box-shadow: 2pt 2pt 4pt #999;\n",
" /* unfitted */\n",
" background: var(--sklearn-color-unfitted-level-0);\n",
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted span {\n",
" /* fitted */\n",
" background: var(--sklearn-color-fitted-level-0);\n",
" border: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link:hover span {\n",
" display: block;\n",
"}\n",
"\n",
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
"\n",
"#sk-container-id-8 a.estimator_doc_link {\n",
" float: right;\n",
" font-size: 1rem;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1rem;\n",
" height: 1rem;\n",
" width: 1rem;\n",
" text-decoration: none;\n",
" /* unfitted */\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
"}\n",
"\n",
"#sk-container-id-8 a.estimator_doc_link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"#sk-container-id-8 a.estimator_doc_link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"#sk-container-id-8 a.estimator_doc_link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"</style><div id=\"sk-container-id-8\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unkno...\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;,\n",
" &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" GradientBoostingClassifier(random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={&#x27;model__learning_rate&#x27;: [0.05, 0.1, 0.2],\n",
" &#x27;model__max_depth&#x27;: [3, 5],\n",
" &#x27;model__n_estimators&#x27;: [100, 200]})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-120\" type=\"checkbox\" ><label for=\"sk-estimator-id-120\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;GridSearchCV<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html\">?<span>Documentation for GridSearchCV</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unkno...\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;,\n",
" &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" GradientBoostingClassifier(random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={&#x27;model__learning_rate&#x27;: [0.05, 0.1, 0.2],\n",
" &#x27;model__max_depth&#x27;: [3, 5],\n",
" &#x27;model__n_estimators&#x27;: [100, 200]})</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-121\" type=\"checkbox\" ><label for=\"sk-estimator-id-121\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">best_estimator_: Pipeline</label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[(&#x27;features_preprocessing&#x27;,\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;,\n",
" StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unknown&#x27;,\n",
" strategy=&#x27;constant&#x27;)),\n",
" (&#x27;...\n",
" sparse_output=False))]),\n",
" [&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;,\n",
" &#x27;parental level of &#x27;\n",
" &#x27;education&#x27;,\n",
" &#x27;lunch&#x27;,\n",
" &#x27;test preparation course&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;drop_columns&#x27;,\n",
" ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;drop_columns&#x27;, &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)),\n",
" (&#x27;model&#x27;,\n",
" GradientBoostingClassifier(max_depth=5, random_state=9))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-122\" type=\"checkbox\" ><label for=\"sk-estimator-id-122\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;features_preprocessing: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for features_preprocessing: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(force_int_remainder_cols=False, remainder=&#x27;passthrough&#x27;,\n",
" transformers=[(&#x27;prepocessing_num&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(strategy=&#x27;median&#x27;)),\n",
" (&#x27;scaler&#x27;, StandardScaler())]),\n",
" []),\n",
" (&#x27;prepocessing_cat&#x27;,\n",
" Pipeline(steps=[(&#x27;imputer&#x27;,\n",
" SimpleImputer(fill_value=&#x27;unknown&#x27;,\n",
" strategy=&#x27;constant&#x27;)),\n",
" (&#x27;encoder&#x27;,\n",
" OneHotEncoder(drop=&#x27;first&#x27;,\n",
" handle_unknown=&#x27;ignore&#x27;,\n",
" sparse_output=False))]),\n",
" [&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;,\n",
" &#x27;parental level of education&#x27;, &#x27;lunch&#x27;,\n",
" &#x27;test preparation course&#x27;])],\n",
" verbose_feature_names_out=False)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-123\" type=\"checkbox\" ><label for=\"sk-estimator-id-123\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">prepocessing_num</label><div class=\"sk-toggleable__content fitted\"><pre>[]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-124\" type=\"checkbox\" ><label for=\"sk-estimator-id-124\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;SimpleImputer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html\">?<span>Documentation for SimpleImputer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-125\" type=\"checkbox\" ><label for=\"sk-estimator-id-125\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-126\" type=\"checkbox\" ><label for=\"sk-estimator-id-126\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">prepocessing_cat</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;gender&#x27;, &#x27;race/ethnicity&#x27;, &#x27;parental level of education&#x27;, &#x27;lunch&#x27;, &#x27;test preparation course&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-127\" type=\"checkbox\" ><label for=\"sk-estimator-id-127\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;SimpleImputer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html\">?<span>Documentation for SimpleImputer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>SimpleImputer(fill_value=&#x27;unknown&#x27;, strategy=&#x27;constant&#x27;)</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-128\" type=\"checkbox\" ><label for=\"sk-estimator-id-128\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;ignore&#x27;, sparse_output=False)</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label
" transformers=[(&#x27;drop_columns&#x27;, &#x27;drop&#x27;,\n",
" [&#x27;total_score_discrete&#x27;])],\n",
" verbose_feature_names_out=False)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-132\" type=\"checkbox\" ><label for=\"sk-estimator-id-132\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">drop_columns</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;total_score_discrete&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-133\" type=\"checkbox\" ><label for=\"sk-estimator-id-133\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">drop</label><div class=\"sk-toggleable__content fitted\"><pre>drop</pre></div> </div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-134\" type=\"checkbox\" ><label for=\"sk-estimator-id-134\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">remainder</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;gender_male&#x27;, &#x27;race/ethnicity_group B&#x27;, &#x27;race/ethnicity_group C&#x27;, &#x27;race/ethnicity_group D&#x27;, &#x27;race/ethnicity_group E&#x27;, &quot;parental level of education_bachelor&#x27;s degree&quot;, &#x27;parental level of education_high school&#x27;, &quot;parental level of education_master&#x27;s degree&quot;, &#x27;parental level of education_some college&#x27;, &#x27;parental level of education_some high school&#x27;, &#x27;lunch_standard&#x27;, &#x27;test preparation course_none&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-135\" type=\"checkbox\" ><label for=\"sk-estimator-id-135\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">passthrough</label><div class=\"sk-toggleable__content fitted\"><pre>passthrough</pre></div> </div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-136\" type=\"checkbox\" ><label for=\"sk-estimator-id-136\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;GradientBoostingClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html\">?<span>Documentation for GradientBoostingClassifier</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>GradientBoostingClassifier(max_depth=5, random_state=9)</pre></div> </div></div></div></div></div></div></div></div></div></div></div>"
],
"text/plain": [
"GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('features_preprocessing',\n",
" ColumnTransformer(force_int_remainder_cols=False,\n",
" remainder='passthrough',\n",
" transformers=[('prepocessing_num',\n",
" Pipeline(steps=[('imputer',\n",
" SimpleImputer(strategy='median')),\n",
" ('scaler',\n",
" StandardScaler())]),\n",
" []),\n",
" ('prepocessing_cat',\n",
" Pipeline(steps=[('imputer',\n",
" SimpleImputer(fill_value='unkno...\n",
" verbose_feature_names_out=False)),\n",
" ('drop_columns',\n",
" ColumnTransformer(remainder='passthrough',\n",
" transformers=[('drop_columns',\n",
" 'drop',\n",
" ['total_score_discrete'])],\n",
" verbose_feature_names_out=False)),\n",
" ('model',\n",
" GradientBoostingClassifier(random_state=9))]),\n",
" n_jobs=-1,\n",
" param_grid={'model__learning_rate': [0.05, 0.1, 0.2],\n",
" 'model__max_depth': [3, 5],\n",
" 'model__n_estimators': [100, 200]})"
]
},
"execution_count": 681,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.ensemble import GradientBoostingClassifier\n",
"\n",
"# Модель градиентного бустинга\n",
"gradient_boosting_model = GradientBoostingClassifier(random_state=random_state)\n",
"\n",
"# Создаём пайплайн, который сначала применяет preprocessing, а потом обучает модель\n",
"gradient_boosting_pipeline = Pipeline([\n",
" (\"features_preprocessing\", features_preprocessing),\n",
" (\"drop_columns\", drop_columns),\n",
" (\"model\", gradient_boosting_model) # Здесь добавляем модель в пайплайн\n",
"])\n",
"\n",
"# Параметры для настройки\n",
"gb_param_grid = {\n",
" 'model__n_estimators': [100, 200], # Количество деревьев\n",
" 'model__learning_rate': [0.05, 0.1, 0.2], # Темп обучения\n",
" 'model__max_depth': [3, 5], # Глубина деревьев\n",
"}\n",
"\n",
"gb_search = GridSearchCV(gradient_boosting_pipeline, gb_param_grid, cv=5, n_jobs=-1)\n",
"\n",
"# Обучаем модель\n",
"gb_search.fit(X_train, y_train.values.ravel())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Оценка качества моделей\n",
"\n",
"Для оценки качества моделей будем использовать следующие метрики:\n",
"\n",
"Accuracy — это базовая метрика, которая подходит для сбалансированных данных. Она поможет понять, какой процент всех предсказаний был верным.\n",
"\n",
"Precision и Recall — эти метрики важны, когда данные могут быть несбалансированными. Для многоклассовых задач важно использовать macro-average, что означает вычисление этих метрик для каждого класса и усреднение.\n",
"\n",
"F1-Score — хорошая метрика для задач с несбалансированными классами, так как она учитывает и точность, и полноту. Это важно, если ложные положительные и ложные отрицательные ошибки одинаково важны.\n",
"\n",
"ROC AUC — используется для оценки качества модели в контексте разделения классов, особенно если у нас есть вероятности для каждого класса. Это даст дополнительную информацию о том, насколько хорошо модель различает классы.\n",
"\n",
"MCC — это особенно полезно для оценки качества модели в случае несбалансированных данных. Это метрика, которая дает более сбалансированное представление о том, как модель предсказывает все классы."
]
},
{
"cell_type": "code",
"execution_count": 682,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.4550\n",
"Precision (macro): 0.4669\n",
"Recall (macro): 0.5094\n",
"F1-Score (macro): 0.4323\n",
"ROC AUC (macro): 0.6811\n",
"MCC: 0.2188\n",
"Confusion Matrix:\n",
"[[51 12 26]\n",
" [30 20 33]\n",
" [ 3 5 20]]\n"
]
}
],
"source": [
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, matthews_corrcoef\n",
"\n",
"# Получаем предсказания\n",
"y_pred = logistic_search.predict(X_test)\n",
"\n",
"# Оценка качества модели\n",
"accuracy = accuracy_score(y_test, y_pred)\n",
"precision = precision_score(y_test, y_pred, average='macro') # Для многоклассовой задачи используем macro\n",
"recall = recall_score(y_test, y_pred, average='macro')\n",
"f1 = f1_score(y_test, y_pred, average='macro')\n",
"roc_auc = roc_auc_score(y_test, logistic_search.predict_proba(X_test), multi_class='ovr', average='macro')\n",
"mcc = matthews_corrcoef(y_test, y_pred)\n",
"\n",
"# Матрица ошибок\n",
"conf_matrix = confusion_matrix(y_test, y_pred)\n",
"\n",
"# Печать метрик\n",
"print(f\"Accuracy: {accuracy:.4f}\")\n",
"print(f\"Precision (macro): {precision:.4f}\")\n",
"print(f\"Recall (macro): {recall:.4f}\")\n",
"print(f\"F1-Score (macro): {f1:.4f}\")\n",
"print(f\"ROC AUC (macro): {roc_auc:.4f}\")\n",
"print(f\"MCC: {mcc:.4f}\")\n",
"print(f\"Confusion Matrix:\\n{conf_matrix}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 683,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.4050\n",
"Precision (macro): 0.3830\n",
"Recall (macro): 0.4010\n",
"F1-Score (macro): 0.3819\n",
"ROC AUC (macro): 0.5808\n",
"MCC: 0.0763\n",
"Confusion Matrix:\n",
"[[41 32 16]\n",
" [30 29 24]\n",
" [ 8 9 11]]\n"
]
}
],
"source": [
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, matthews_corrcoef\n",
"\n",
"# Получаем предсказания\n",
"y_pred = tree_search.predict(X_test)\n",
"\n",
"# Оценка качества модели\n",
"accuracy = accuracy_score(y_test, y_pred)\n",
"precision = precision_score(y_test, y_pred, average='macro') # Для многоклассовой задачи используем macro\n",
"recall = recall_score(y_test, y_pred, average='macro')\n",
"f1 = f1_score(y_test, y_pred, average='macro')\n",
"roc_auc = roc_auc_score(y_test, tree_search.predict_proba(X_test), multi_class='ovr', average='macro')\n",
"mcc = matthews_corrcoef(y_test, y_pred)\n",
"\n",
"# Матрица ошибок\n",
"conf_matrix = confusion_matrix(y_test, y_pred)\n",
"\n",
"# Печать метрик\n",
"print(f\"Accuracy: {accuracy:.4f}\")\n",
"print(f\"Precision (macro): {precision:.4f}\")\n",
"print(f\"Recall (macro): {recall:.4f}\")\n",
"print(f\"F1-Score (macro): {f1:.4f}\")\n",
"print(f\"ROC AUC (macro): {roc_auc:.4f}\")\n",
"print(f\"MCC: {mcc:.4f}\")\n",
"print(f\"Confusion Matrix:\\n{conf_matrix}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 684,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.4100\n",
"Precision (macro): 0.3873\n",
"Recall (macro): 0.3889\n",
"F1-Score (macro): 0.3783\n",
"ROC AUC (macro): 0.5806\n",
"MCC: 0.0895\n",
"Confusion Matrix:\n",
"[[42 30 17]\n",
" [25 31 27]\n",
" [ 7 12 9]]\n"
]
}
],
"source": [
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, matthews_corrcoef\n",
"\n",
"# Получаем предсказания\n",
"y_pred = gb_search.predict(X_test)\n",
"\n",
"# Оценка качества модели\n",
"accuracy = accuracy_score(y_test, y_pred)\n",
"precision = precision_score(y_test, y_pred, average='macro') # Для многоклассовой задачи используем macro\n",
"recall = recall_score(y_test, y_pred, average='macro')\n",
"f1 = f1_score(y_test, y_pred, average='macro')\n",
"roc_auc = roc_auc_score(y_test, gb_search.predict_proba(X_test), multi_class='ovr', average='macro')\n",
"mcc = matthews_corrcoef(y_test, y_pred)\n",
"\n",
"# Матрица ошибок\n",
"conf_matrix = confusion_matrix(y_test, y_pred)\n",
"\n",
"# Печать метрик\n",
"print(f\"Accuracy: {accuracy:.4f}\")\n",
"print(f\"Precision (macro): {precision:.4f}\")\n",
"print(f\"Recall (macro): {recall:.4f}\")\n",
"print(f\"F1-Score (macro): {f1:.4f}\")\n",
"print(f\"ROC AUC (macro): {roc_auc:.4f}\")\n",
"print(f\"MCC: {mcc:.4f}\")\n",
"print(f\"Confusion Matrix:\\n{conf_matrix}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Логистическая регрессия показывает наилучшие результаты по большинству метрик, включая точность, полноту, F1-Score и ROC AUC. Она также имеет лучший MCC, что говорит о лучшем качестве предсказаний с учетом всех классов. Хотя все модели показывают относительно низкие значения, логистическая регрессия явно выделяется среди других.\n",
"\n",
"Лучшей моделью является логистическая регрессия на основе анализа метрик."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Оценка смещения и дисперсии лучшей модели (логистическая регрессия)."
]
},
{
"cell_type": "code",
"execution_count": 685,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Средняя точность на обучающих данных (кросс-валидация): 0.5023474178403756\n",
"Точность на обучающей выборке: 0.536150234741784\n",
"Точность на тестовой выборке: 0.47\n",
"Смещение (Bias): 0.53\n",
"Дисперсия (Variance): 0.000581895126628314\n"
]
}
],
"source": [
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.model_selection import KFold\n",
"\n",
"# Кросс-валидация на обучающих данных\n",
"kf = KFold(n_splits=5, shuffle=True, random_state=random_state)\n",
"train_accuracies = cross_val_score(logistic_pipeline, X_train, y_train.values.ravel(), cv=kf, scoring=\"accuracy\")\n",
"\n",
"# Прогнозирование на обучающих и тестовых данных\n",
"logistic_pipeline.fit(X_train, y_train.values.ravel())\n",
"train_accuracy = accuracy_score(y_train, logistic_pipeline.predict(X_train))\n",
"test_accuracy = accuracy_score(y_test, logistic_pipeline.predict(X_test))\n",
"\n",
"# Смещение (Bias)\n",
"bias = 1 - test_accuracy # Ошибка на тестовой выборке\n",
"\n",
"# Дисперсия (Variance)\n",
"variance = np.var(train_accuracies) # Дисперсия на обучающей выборке\n",
"\n",
"# Выводим результаты\n",
"print(f\"Средняя точность на обучающих данных (кросс-валидация): {np.mean(train_accuracies)}\")\n",
"print(f\"Точность на обучающей выборке: {train_accuracy}\")\n",
"print(f\"Точность на тестовой выборке: {test_accuracy}\")\n",
"print(f\"Смещение (Bias): {bias}\")\n",
"print(f\"Дисперсия (Variance): {variance}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Оценка модели: \n",
"\n",
"Смещение высокое (Bias = 53%) — это указывает на недообучение модели. Модель не может хорошо предсказать целевой признак на тестовых данных, что означает, что она слишком простая для данного набора данных или её регуляризация слишком сильна.\n",
"\n",
"Дисперсия низкая (Variance = 0.00058) — это также подтверждает, что модель не переобучена. Она не слишком чувствительна к изменениям в обучающих данных."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "aimvenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}