погрешность
This commit is contained in:
@@ -1,4 +1,6 @@
|
||||
import numpy as np
|
||||
import AbsoluteMeasurementErrors as abserror
|
||||
from itertools import product
|
||||
|
||||
result_log = ""
|
||||
|
||||
@@ -9,16 +11,42 @@ def log(*values, sep=" ", end="\n"):
|
||||
print(*values, sep=sep, end=end)
|
||||
|
||||
|
||||
def point_info(x, f):
|
||||
return f"x = {x}, f(x) = {f(x)}"
|
||||
def get_errors_vector(x):
|
||||
return np.array(list(map(abserror.get_error, x)))
|
||||
|
||||
|
||||
def sum_errors_vector(a, b):
|
||||
return np.array([abserror.sum_error(a[i], b[i]) for i in range(len(a))])
|
||||
|
||||
|
||||
def frac_errors_vector(a, b):
|
||||
return np.array([abserror.frac_error(a[i], b) for i in range(len(a))])
|
||||
|
||||
|
||||
def point_info(x, f, x_err):
|
||||
return f"x = {x}, x_err = {x_err}, f(x) = {f(x)}"
|
||||
|
||||
|
||||
def hooke_jeeves(
|
||||
f, x0, delta0, epsilon, alpha, r=lambda x: True, fit=lambda a, b: a < b
|
||||
f,
|
||||
x0,
|
||||
delta0,
|
||||
epsilon,
|
||||
alpha,
|
||||
r=lambda x: True,
|
||||
fit=lambda a, b: a < b,
|
||||
x_err=None,
|
||||
delta_err=None,
|
||||
):
|
||||
x = np.array(x0)
|
||||
delta = np.array(delta0)
|
||||
|
||||
if x_err is None:
|
||||
x_err = get_errors_vector(x)
|
||||
|
||||
if delta_err is None:
|
||||
delta_err = get_errors_vector(delta)
|
||||
|
||||
iteration = 0
|
||||
|
||||
while np.linalg.norm(delta) > epsilon:
|
||||
@@ -28,77 +56,141 @@ def hooke_jeeves(
|
||||
log("=" * 40)
|
||||
log("Итерация", iteration)
|
||||
|
||||
log("Текущая базовая точка", point_info(x, f))
|
||||
log("Текущая базовая точка", point_info(x, f, x_err))
|
||||
|
||||
sample_x = exploratory_search(f, x, delta, r=r, fit=fit)
|
||||
sample_x, sample_x_err = exploratory_search(
|
||||
f, x, delta, r=r, fit=fit, x_err=x_err, delta_err=delta_err
|
||||
)
|
||||
|
||||
if fit(f(sample_x), f(x)):
|
||||
log("Исследующий поиск УДАЧНЫЙ")
|
||||
|
||||
x_p = sample_search(f, x, sample_x, r=r, fit=fit)
|
||||
x_p, x_p_err = sample_search(
|
||||
f, x, sample_x, r=r, fit=fit, x1_err=x_err, x2_err=sample_x_err
|
||||
)
|
||||
|
||||
if fit(f(x_p), f(x)):
|
||||
log("Поиск по образцу УДАЧНЫЙ")
|
||||
x = x_p
|
||||
x, x_err = x_p, x_p_err
|
||||
else:
|
||||
log("Поиск по образцу ПРОВАЛЕН")
|
||||
x = sample_x
|
||||
x, x_err = sample_x, sample_x_err
|
||||
|
||||
log()
|
||||
log("Новая базовая точка", point_info(x, f))
|
||||
log("Новая базовая точка", point_info(x, f, x_err))
|
||||
|
||||
else:
|
||||
log("Исследующий поиск ПРОВАЛЕН")
|
||||
|
||||
log("Уменьшаем шаг", delta, "->", delta / alpha)
|
||||
delta = delta / alpha
|
||||
delta_err = frac_errors_vector(delta, alpha)
|
||||
log("ε =", np.linalg.norm(delta))
|
||||
|
||||
return x, f(x)
|
||||
return x, f(x), x_err
|
||||
|
||||
|
||||
def exploratory_search(f, x, delta, r=lambda x: True, fit=lambda a, b: a < b):
|
||||
# def exploratory_search(
|
||||
# f, x, delta, r=lambda x: True, fit=lambda a, b: a < b, x_err=None
|
||||
# ):
|
||||
# log()
|
||||
# log("Выполняем исследующий поиск")
|
||||
|
||||
# if x_err is None:
|
||||
# x_err = get_errors_vector(x)
|
||||
|
||||
# x_new = np.array(x)
|
||||
# f_x_new = f(x_new)
|
||||
|
||||
# for i in range(len(x)):
|
||||
# x_up = x_new.copy()
|
||||
# x_down = x_new.copy()
|
||||
|
||||
# x_up[i] += delta[i]
|
||||
# x_down[i] -= delta[i]
|
||||
|
||||
# f_x_up = f(x_up)
|
||||
# f_x_down = f(x_down)
|
||||
|
||||
# if not r(x_up) or not r(x_down):
|
||||
# log("Ограничение ОДЗ")
|
||||
|
||||
# if fit(f_x_up, f_x_new) and fit(f_x_up, f_x_down) and r(x_up):
|
||||
# x_new = x_up
|
||||
# f_x_new = f_x_up
|
||||
# elif fit(f_x_down, f_x_new) and r(x_down):
|
||||
# x_new = x_down
|
||||
# f_x_new = f_x_down
|
||||
|
||||
# if any([x_new[i] != x[i] for i in range(len(x))]):
|
||||
# log("Найдена точка", x_new, f(x_new))
|
||||
|
||||
# return x_new, x_err
|
||||
|
||||
|
||||
def exploratory_search(
|
||||
f, x, delta, r=lambda x: True, fit=lambda a, b: a < b, x_err=None, delta_err=None
|
||||
):
|
||||
log()
|
||||
log("Выполняем исследующий поиск")
|
||||
|
||||
x_new = np.array(x)
|
||||
f_x_new = f(x_new)
|
||||
if x_err is None:
|
||||
x_err = get_errors_vector(x)
|
||||
|
||||
for i in range(len(x)):
|
||||
x_up = x_new.copy()
|
||||
x_down = x_new.copy()
|
||||
if delta_err is None:
|
||||
delta_err = get_errors_vector(delta)
|
||||
|
||||
x_up[i] += delta[i]
|
||||
x_down[i] -= delta[i]
|
||||
dxs = product(*[[d, -d] for d in delta])
|
||||
|
||||
f_x_up = f(x_up)
|
||||
f_x_down = f(x_down)
|
||||
x = np.array(x)
|
||||
t_x_err = None
|
||||
t_f = f(x)
|
||||
t_x = None
|
||||
|
||||
if not r(x_up) or not r(x_down):
|
||||
log("Ограничение ОДЗ")
|
||||
for dx in dxs:
|
||||
if fit(f(x + dx), t_f) and r(x + dx):
|
||||
t_f = f(x + dx)
|
||||
t_x = x + dx
|
||||
t_x_err = x_err + delta_err
|
||||
|
||||
if fit(f_x_up, f_x_new) and fit(f_x_up, f_x_down) and r(x_up):
|
||||
x_new = x_up
|
||||
f_x_new = f_x_up
|
||||
elif fit(f_x_down, f_x_new) and r(x_down):
|
||||
x_new = x_down
|
||||
f_x_new = f_x_down
|
||||
if t_x is not None:
|
||||
log("Найдена точка", t_x, t_f)
|
||||
return t_x, t_x_err
|
||||
|
||||
if any([x_new[i] != x[i] for i in range(len(x))]):
|
||||
log("Найдена точка", x_new, f(x_new))
|
||||
return x_new
|
||||
return x, x_err
|
||||
|
||||
|
||||
def sample_search(f, x1, x2, r=lambda x: True, fit=lambda a, b: a < b):
|
||||
def sample_search(
|
||||
f, x1, x2, r=lambda x: True, fit=lambda a, b: a < b, x1_err=None, x2_err=None
|
||||
):
|
||||
log()
|
||||
log("Выполняем поиск по образцу")
|
||||
|
||||
if x1_err is None:
|
||||
x1_err = get_errors_vector(x1)
|
||||
|
||||
if x2_err is None:
|
||||
x2_err = get_errors_vector(x2)
|
||||
|
||||
x2_last = x2.copy()
|
||||
x2_last_err = x2_err.copy()
|
||||
|
||||
while fit(f(x2), f(x1)):
|
||||
x2_last = x2.copy()
|
||||
x2_last_err = x2_err.copy()
|
||||
|
||||
if not r(x2 + (x2 - x1)):
|
||||
log("Ограничение ОДЗ")
|
||||
break
|
||||
|
||||
x2, x1 = x2 + (x2 - x1), x2
|
||||
log("Найдена точка", x2, f(x2))
|
||||
return x2
|
||||
|
||||
t_err = x2_err.copy()
|
||||
x2_err = x2_err + (x2_err + x1_err)
|
||||
x1_err = t_err.copy()
|
||||
|
||||
log("Найдена точка", x2_last, f(x2_last))
|
||||
return x2_last, x2_last_err
|
||||
|
||||
|
||||
def example():
|
||||
@@ -143,18 +235,21 @@ def example():
|
||||
]
|
||||
)
|
||||
|
||||
x, val = hooke_jeeves(f, x0, delta0, epsilon, alpha, r=r, fit=fit)
|
||||
return x, val
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
x, val = example()
|
||||
x, val, x_err = hooke_jeeves(f, x0, delta0, epsilon, alpha, r=r, fit=fit)
|
||||
|
||||
log()
|
||||
log("=" * 40)
|
||||
log("Точка экстремумв:", x)
|
||||
log("Минимальное значение функции:", val)
|
||||
log("Абсолютная погрешность:", x_err)
|
||||
log("Максимальное значение функции:", val)
|
||||
|
||||
with open("result.log", "w", encoding="utf-8") as file:
|
||||
file.write(result_log)
|
||||
|
||||
|
||||
def main():
|
||||
example()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user