831 lines
332 KiB
Plaintext
831 lines
332 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"*Вариант 19:* Данные о миллионерах\n",
|
||
"- Определим бизнес-цели и цели технического проекта "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['Rank ', 'Name', 'Networth', 'Age', 'Country', 'Source', 'Industry'], dtype='object')\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"df = pd.read_csv(\"C:/Users/goldfest/Desktop/3 курс/MII/AIM-PIbd-31-LOBASHOV-I-D/static/csv/Forbes Billionaires.csv\")\n",
|
||
"print(df.columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Определение бизнес целей:\n",
|
||
"\n",
|
||
"1. Прогнозирование потенциальных миллионеров на основе анализа данных.\n",
|
||
"2. Оценка факторов, влияющих на достижение статуса миллионера."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Определение целей технического проекта:\n",
|
||
"\n",
|
||
"1. Построить модель машинного обучения для классификации, которая будет прогнозировать вероятность достижения статуса миллионера на основе предоставленных данных о характеристиках миллионеров.\n",
|
||
"2. Провести анализ данных для выявления ключевых факторов, влияющих на достижение статуса миллионера."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>Rank</th>\n",
|
||
" <th>Name</th>\n",
|
||
" <th>Networth</th>\n",
|
||
" <th>Age</th>\n",
|
||
" <th>Country</th>\n",
|
||
" <th>Source</th>\n",
|
||
" <th>Industry</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>1</td>\n",
|
||
" <td>Elon Musk</td>\n",
|
||
" <td>219.0</td>\n",
|
||
" <td>50</td>\n",
|
||
" <td>United States</td>\n",
|
||
" <td>Tesla, SpaceX</td>\n",
|
||
" <td>Automotive</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>2</td>\n",
|
||
" <td>Jeff Bezos</td>\n",
|
||
" <td>171.0</td>\n",
|
||
" <td>58</td>\n",
|
||
" <td>United States</td>\n",
|
||
" <td>Amazon</td>\n",
|
||
" <td>Technology</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Bernard Arnault & family</td>\n",
|
||
" <td>158.0</td>\n",
|
||
" <td>73</td>\n",
|
||
" <td>France</td>\n",
|
||
" <td>LVMH</td>\n",
|
||
" <td>Fashion & Retail</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4</td>\n",
|
||
" <td>Bill Gates</td>\n",
|
||
" <td>129.0</td>\n",
|
||
" <td>66</td>\n",
|
||
" <td>United States</td>\n",
|
||
" <td>Microsoft</td>\n",
|
||
" <td>Technology</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5</td>\n",
|
||
" <td>Warren Buffett</td>\n",
|
||
" <td>118.0</td>\n",
|
||
" <td>91</td>\n",
|
||
" <td>United States</td>\n",
|
||
" <td>Berkshire Hathaway</td>\n",
|
||
" <td>Finance & Investments</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" Rank Name Networth Age Country \\\n",
|
||
"0 1 Elon Musk 219.0 50 United States \n",
|
||
"1 2 Jeff Bezos 171.0 58 United States \n",
|
||
"2 3 Bernard Arnault & family 158.0 73 France \n",
|
||
"3 4 Bill Gates 129.0 66 United States \n",
|
||
"4 5 Warren Buffett 118.0 91 United States \n",
|
||
"\n",
|
||
" Source Industry \n",
|
||
"0 Tesla, SpaceX Automotive \n",
|
||
"1 Amazon Technology \n",
|
||
"2 LVMH Fashion & Retail \n",
|
||
"3 Microsoft Technology \n",
|
||
"4 Berkshire Hathaway Finance & Investments "
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Rank 0\n",
|
||
"Name 0\n",
|
||
"Networth 0\n",
|
||
"Age 0\n",
|
||
"Country 0\n",
|
||
"Source 0\n",
|
||
"Industry 0\n",
|
||
"dtype: int64\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Rank False\n",
|
||
"Name False\n",
|
||
"Networth False\n",
|
||
"Age False\n",
|
||
"Country False\n",
|
||
"Source False\n",
|
||
"Industry False\n",
|
||
"dtype: bool"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Процент пропущенных значений признаков\n",
|
||
"for i in df.columns:\n",
|
||
" null_rate = df[i].isnull().sum() / len(df) * 100\n",
|
||
" if null_rate > 0:\n",
|
||
" print(f'{i} Процент пустых значений: %{null_rate:.2f}')\n",
|
||
"\n",
|
||
"# Проверка на пропущенные данные\n",
|
||
"print(df.isnull().sum())\n",
|
||
"\n",
|
||
"df.isnull().any()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Пропущенных колонок нету, это очень хорошо"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Размер обучающей выборки: 2080\n",
|
||
"Размер контрольной выборки: 520\n",
|
||
"Размер тестовой выборки: 520\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"\n",
|
||
"# Разделение данных на обучающую и тестовую выборки (80% - обучение, 20% - тестовая)\n",
|
||
"train_data, test_data = train_test_split(df, test_size=0.2, random_state=42)\n",
|
||
"\n",
|
||
"# Разделение данных на обучающую и контрольную выборки (80% - обучение, 20% - контроль)\n",
|
||
"train_data, val_data = train_test_split(df, test_size=0.2, random_state=42)\n",
|
||
"\n",
|
||
"print(\"Размер обучающей выборки: \", len(train_data))\n",
|
||
"print(\"Размер контрольной выборки: \", len(val_data))\n",
|
||
"print(\"Размер тестовой выборки: \", len(test_data))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWsklEQVR4nO3de1wU5f4H8M9y2eWyLAgICwqKd1HMwttmIkdJRCpTyixT9Hi0DO2oZUWZt06SWWmal+qUl9Qy83a08i6oiWYo3jX1h0LJgmDcFrnu8/uDdnQFFBFYGD/v12tfsDPPzHxnZnf5MPPMrEIIIUBEREQkU1aWLoCIiIioNjHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAR1UMGgwEpKSn466+/LF0K1bDc3FxcvnwZBoPB0qU8MBh2iEjWli9fDoVCgd9++83SpdzVunXr0LdvXzg5OUGtVsPX1xcffvihpctqEPLy8jB//nzpeVZWFhYtWmS5gm4hhMAXX3yBHj16wMHBARqNBn5+fli1apWlS3tgMOw0EKYPbNPDzs4Obdq0wfjx45GWlmbp8qgeGjlyJBQKBTp16oSKvhVGoVBg/Pjx1Zr37NmzsWnTpvussGYtXrwYy5cvt3QZ1fbWW29hyJAhcHJywpdffomdO3di165deOWVVyxdWoNgb2+PqVOnYvXq1UhJScGMGTOwZcsWS5cFAHjhhRfw8ssvo3379vjmm2+kfTt48GBLl/bAsLF0AXRvZs2aBT8/PxQUFODAgQNYsmQJfvrpJ5w6dQoODg6WLo/qoZMnT2LDhg2IiIiosXnOnj0bzzzzDJ5++ukam+f9Wrx4Mdzd3TFy5EhLl3LP4uLiMGfOHMTExOCtt96ydDkNkrW1NWbOnIkRI0bAaDRCo9Hgxx9/tHRZWLlyJdauXYtVq1bhhRdesHQ5Dywe2WlgwsLC8OKLL+Jf//oXli9fjokTJyIpKQmbN2+2dGlUD9nb26NNmzaYNWtWhUd35CA/P9/SJdy3jz76CI8++iiDzn167bXXcOXKFRw8eBBXrlzBY489ZumSMHfuXDz//PMMOhbGsNPA9enTBwCQlJQEALh+/Tpef/11BAQEQK1WQ6PRICwsDMePHy83bUFBAWbMmIE2bdrAzs4OXl5eGDx4MC5dugQAuHz5stmps9sfwcHB0rxiY2OhUCiwdu1avP3229BqtXB0dMRTTz2FlJSUcss+fPgw+vfvD2dnZzg4OKB379745ZdfKlzH4ODgCpc/Y8aMcm1XrVqFwMBA2Nvbw9XVFUOHDq1w+Xdat1sZjUbMnz8fHTp0gJ2dHTw9PfHSSy+V6zTavHlzPPHEE+WWM378+HLzrKj2uXPnltumAFBYWIjp06ejVatWUKlU8PHxwRtvvIHCwsIKt9XtrKysMHXqVJw4cQIbN268a/uqLE+hUMBgMGDFihXSNhs5ciROnDgBhUKB//3vf1LbhIQEKBQKPPLII2bLCQsLQ/fu3c2GLV68GB06dIBKpYK3tzeioqKQlZVl1iY4OBgdO3ZEQkICgoKC4ODggLfffhvNmzfH6dOnERcXV+Hr07RukydPRuPGjeHo6IhBgwbh2rVrd90mptOBpkejRo0QHByM/fv333VaANizZw969eoFR0dHuLi4YODAgTh79qxZm0OHDqFjx44YOnQoXF1dYW9vj65du5qdKszLy4OjoyP+/e9/l1vGH3/8AWtra8TExEg1N2/evFy72197V65cwSuvvIK2bdvC3t4ebm5uePbZZ3H58mWz6Uzv79jYWGnYkSNH8Pjjj8PJyQmOjo4VbpOK+ktlZGRU+B544oknKqy5Kp8VM2bMkN5nTZs2hU6ng42NDbRabbm6K2Ka3vRwcnJCt27dyp2qNb3+KmP6XDGdTjUYDDh16hR8fHwQHh4OjUZT6bYCgP/7v//Ds88+C1dXVzg4OKBHjx7ljk7dy2dtcHBwuffB+++/DysrK6xZs8Zs+L18JjdEPI3VwJmCiZubG4CyN8umTZvw7LPPws/PD2lpafj888/Ru3dvnDlzBt7e3gCA0tJSPPHEE9i9ezeGDh2Kf//738jNzcXOnTtx6tQptGzZUlrG888/jwEDBpgtNzo6usJ63n//fSgUCrz55ptIT0/H/PnzERISgsTERNjb2wMo+/APCwtDYGAgpk+fDisrKyxbtgx9+vTB/v370a1bt3Lzbdq0qfRBnpeXh3HjxlW47HfffRdDhgzBv/71L1y7dg0LFy5EUFAQjh07BhcXl3LTjB07Fr169QIAbNiwoVwgeOmll7B8+XKMGjUKr776KpKSkvDZZ5/h2LFj+OWXX2Bra1vhdrgXWVlZ0rrdymg04qmnnsKBAwcwduxYtG/fHidPnsS8efPw+++/V7nPzAsvvID33nsPs2bNwqBBg8qFr3td3jfffIN//etf6NatG8aOHQsAaNmyJTp27AgXFxfs27cPTz31FABg//79sLKywvHjx5GTkwONRgOj0YiDBw9K0wJlf2xmzpyJkJAQjBs3DufPn8eSJUtw5MiRcts5MzMTYWFhGDp0KF588UV4enoiODgYEyZMgFqtxjvvvAMA8PT0NFu/CRMmoFGjRpg+fTouX76M+fPnY/z48Vi7du1dt6G7uzvmzZsHoCxYfPrppxgwYABSUlIqfF2Z7Nq1C2FhYWjRogVmzJiBGzduYOHChejZsyeOHj0q/XHPzMzEF198AbVajVdffRWNGzfGqlWrMHjwYKxevRrPP/881Go1Bg0ahLVr1+KTTz6BtbW1tJxvv/0WQggMGzbsrutyqyNHjuDgwYMYOnQomjZtisuXL2PJkiUIDg7GmTNnKj01fvHiRQQHB8PBwQFTpkyBg4MDvvzyS4SEhGDnzp0ICgq6pzoqU53PCpOPP/74nvszfvPNNwDKAtnixYvx7LPP4tSpU2jbtm216s/MzAQAzJkzB1qtFlOmTIGdnV2F2yotLQ2PPvoo8vPz8eqrr8LNzQ0rVqzAU089hR9++AGDBg0ym3dVPmtvt2zZMkydOhUff/yx2ZGm+9nODYagBmHZsmUCgNi1a5e4du2aSElJEd99951wc3MT9vb24o8//hBCCFFQUCBKS0vNpk1KShIqlUrMmjVLGvb1118LAOKTTz4ptyyj0ShNB0DMnTu3XJsOHTqI3r17S8/37t0rAIgmTZqInJwcafj3338vAIhPP/1Umnfr1q1FaGiotBwhhMjPzxd+fn7i8ccfL7esRx99VHTs2FF6fu3aNQFATJ8+XRp2+fJlYW1tLd5//32zaU+ePClsbGzKDb9w4YIAIFasWCENmz59urj1LbF//34BQKxevdps2m3btpUb3qxZMxEeHl6u9qioKHH72+z22t944w3h4eEhAgMDzbbpN998I6ysrMT+/fvNpl+6dKkAIH755Zdyy7tVZGSkcHR0FEIIsWLFCgFAbNiwwayOqKioai3P0dFRREZGlltmeHi46Natm/R88ODBYvDgwcLa2lr8/PPPQgghjh49KgCIzZs3CyGESE9PF0qlUvTr18/stfvZZ58JAOLrr7+WhvXu3VsAEEuXLi237Ntfkyam905ISIjZa27SpEnC2tpaZGVllZvmVpGRkaJZs2Zmw7744gsBQPz66693nLZz587Cw8NDZGZmSsOOHz8urKysxIgRI6RhAAQAERsbKw3Lz88X7du3F1qtVhQVFQkhhNi+fbsAIG1Lk06dOpmt+6hRo4Svr2+5em5/7eXn55drEx8fLwCIlStXSsNM7++9e/cKIYSIiIgQ1tbW4tSpU1KbjIwM4ebmJgIDA6Vhpm1/5MgRaVhF718hyl47t27ne/msuP29m56eLpycnERYWJhZ3ZW5fXohhNixY4cAIL7//ntpWO/evUWHDh0qnY/pM3PZsmVmz5VKpfj999/NtsHt22rixIkCgNn7Lzc3V/j5+YnmzZtL742qftaa6jW9Ln788UdhY2MjXnvtNbOaq/OZ3BDxNFYDExISgsaNG8PHxwdDhw6FWq3Gxo0b0aRJEwCASqWClVXZbi0tLUVmZibUajXatm2Lo0ePSvNZv3493N3dMWHChHLLqOw//6oYMWIEnJycpOfPPPMMvLy88NNPPwEAEhMTceHCBbzwwgvIzMxERkYGMjIyYDAY0LdvX+zbtw9Go9FsngUFBbCzs7vjcjds2ACj0YghQ4ZI88zIyIBWq0Xr1q2xd+9es/ZFRUUAyrZXZdatWwdnZ2c8/vjjZvMMDAyEWq0uN8/i4mKzdhkZGSgoKLhj3X/++ScWLlyId999F2q1utzy27dvj3bt2pnN03Tq8vbl38mwYcPQunXrO/bdqYnl9erVC0ePHpXuH3LgwAEMGDAAnTt3lg7b79+/HwqFQupPsWvXLhQVFWHixInSaxcAxowZU2EnU5VKhVGjRlV53U3Gjh1r9tru1asXSktLceXKlbtOazQape2RmJiIlStXwsvLC+3bt690mtTUVCQmJmLkyJFwdXWVhnfq1AmPP/649J4w6dq1K3r37i09t7e3xyuvvAK9Xi+9d0NCQuDt7Y3Vq1dL7U6dOoUTJ07gxRdflIZ5eHggPT1dep1X5tYjAMXFxcjMzESrVq3g4uJi9nlhkp2djfT0dOzcuROhoaHo0KGDNM7NzQ0jR45EQkJCjVwhWp3PCpP33nsPzs7OePXVV+9pmaZlnD17FkuXLoWjoyN69Ohh1qa0tFRqd7ftazJw4EC0bt1aem7qSH/rtvrpp5/QrVs3s35GarUaY8eOxeXLl3HmzBmzed7ts/ZWv/76K4YMGYKIiAjMnTvXbNz9bOeGhKexGphFixahTZs2sLGxgaenJ9q2bWv2B8JoNOLTTz/F4sWLkZSUhNLSUmmc6VQXUHb6q23btrCxqdmXwK1vaKAsOLVq1UrqA3DhwgUAQGRkZKXzyM7ORqNGjaTnGRkZ5eZ7uwsXLkAIUWm72083mfqC3B4wbp9ndnY2PDw8Khyfnp5u9nzHjh1o3LjxHeu83fTp0+Ht7Y2XXnoJP/zwQ7nlnz17ttJ53r78O7G2tsbUqVMRGRmJTZs2lTskXlPL69WrF0pKShAfHw8fHx+kp6ejV69eOH36tFnY8ff3lwKAKWzcfqpAqVSiRYsW5cJIkyZNoFQq777St/H19TV7bnqNVeWmfSkpKWbbxcvLC+vXr7/j66ey9QKA9u3bY/v27TAYDHB0dAQAtGvXrsJ2QFlfkO7du8PKygrDhg3DkiVLkJ+fDwcHB6xevRp2dnZ49tlnpekeffRRzJkzB1OnTsWrr75a6T8LN27cQExMDJYtW4Y///zTLAhnZ2eXa3/r1XeVrZep3ttPI96r6nxWAGX9Fz///HMsWbLkrv8k3e7WfazRaLB69Wr4+PiYtTl37pzUzsrKCq1atcL06dMr7IBsCtd327eenp64cuVKuX5st7a7cuWKWX+hu33Wmvz5558IDw+HwWBAZmZmuX9mq7udGxqGnQamW7du6NKlS6XjZ8+ejXfffRf//Oc/8d5778HV1RVWVlaYOHFivUjnphrmzp2Lzp07V9jm1j8gRUVFSE1NxeOPP37X+SoUCvz8889mfRkqmicA6PV6AIBWq73jPD08PMz+i77V7aGge/fu+M9//mM27LPPPqv0SrmzZ89i+fLlWLVqVYV9f4xGIwICAvDJJ59UOP3tH8J3M2zYMKnvTkWXjNfE8rp06QI7Ozvs27cPvr6+8PDwQJs2bdCrVy8sXrwYhYWF2L9/f4Vhq6oq649wNxW9LgBU6So1T09P6QZw2dnZ+Prrr9G/f38cOHAAAQEB1arnVveyTiNGjMDcuXOxadMmPP/881izZg2eeOIJODs7S22eeuop/POf/8TcuXPL/Sd/qwkTJmDZsmWYOHEidDodnJ2doVAoMHTo0Ao/Lz766CO0bt0aAwcOvLcVrIZ7/awweeedd9C6dWtERkZWuRO5yc6dOwGUdSxev349hgwZgq1bt5p9/jRv3hxffvklgLI+OQsWLMDw4cPRokWLcp8n1X2t1qSLFy/ikUcewbx58zB8+HCsWLHCLNhUdzs3NAw7MvPDDz/gH//4B7766iuz4VlZWXB3d5eet2zZEocPH0ZxcXGNdLI1Mf2XYCKEwMWLF9GpUydpuUDZf00hISF3nd/x48dRXFx8x4Bnmq8QAn5+fmjTps1d53vmzBkoFIo7djxs2bIldu3ahZ49e1bpQ8vd3b3cOt2pE3F0dDQ6d+6M5557rtLlHz9+HH379r2vU4smpqM7I0eOrDCA3cvyKhuvVCrRrVs37N+/H76+vlLn7169eqGwsBCrV69GWlqaWQfWZs2aAQDOnz+PFi1aSMOLioqQlJRUpdfJnWqqCXZ2dmZ1PPXUU3B1dcVnn32Gzz//vMJpbl2v2507dw7u7u7SUR0/P79K2wEwu0qpY8eOePjhh7F69Wo0bdoUycnJWLhwYblpv/rqK0ybNg2XLl2S/qDd/k/DDz/8gMjISHz88cfSsIKCgnJXwZkEBgaid+/eUKvVVa63uu71swIAjh07hu+++w6bNm2qNNzeya3LGThwIA4fPoyPPvrIbLs5OjqatevVqxeaNGmCHTt2YMSIEWbzc3d3r/K2atas2R3bmV5PJnf7rDUxndry9PTE5s2b8dprr2HAgAHSP2vV2c4NEfvsyIy1tXW5/1TXrVuHP//802xYREQEMjIy8Nlnn5WbR1X+063MypUrkZubKz3/4YcfkJqairCwMABlH5YtW7bERx99hLy8vHLT334p8Lp162BtbV3hZd23Gjx4sHRTsdvrF0JIV0UAQElJCdavX49u3brd8T+WIUOGoLS0FO+99165cSUlJZX+QaiK+Ph4bN68GR988EGlf6SHDBmCP//8U/ov8lY3btyo1vfqvPjii2jVqhVmzpx5X8tzdHSsdP179eqFw4cPY+/evVLYcXd3R/v27TFnzhypjUlISAiUSiUWLFhgtu+++uorZGdnIzw8vErrdqeaalpRURFKSkrueAsALy8vdO7cGStWrDCr69SpU9ixY4fZFY4DBgzAr7/+ioMHD0rDCgoKsGTJEmi1WgQGBprNe/jw4dixYwfmz58PNzc36f11u2bNmqFPnz4ICQmp8A9ZRZ8XCxcuNDv9fTuFQoF+/fph+/btZpfQX79+HStWrECXLl3u+xQWcO+fFUDZXah79uwpXQ14P0pLS1FUVHTX2zyYgmRF4crKygr9+/fH5s2bpduDABVvK9NrID4+XmpnMBjwxRdfoHnz5vD39zeb990+a03atGkjLWPhwoUwGo1mty+oznZuiHhkR2aeeOIJzJo1C6NGjcKjjz6KkydPYvXq1Wb/MQNlh8JXrlyJyZMn49dff0WvXr1gMBik29NX9zC1q6srHnvsMYwaNQppaWmYP38+WrVqhTFjxgAoe/P/97//RVhYGDp06IBRo0ahSZMm+PPPP7F3715oNBps2bIFBoMBixYtwoIFC9CmTRuz+2SY3pAnTpxAfHw8dDodWrZsif/85z+Ijo7G5cuX8fTTT8PJyQlJSUnYuHEjxo4di9dffx27du3Cu+++ixMnTtz1VvK9e/fGSy+9hJiYGCQmJqJfv36wtbXFhQsXsG7dOnz66ad45plnqrWdduzYgccff/yO/0kNHz4c33//PV5++WXs3bsXPXv2RGlpKc6dO4fvv/8e27dvv+sRr9tZW1vjnXfeqbCD770sLzAwELt27cInn3wCb29v+Pn5Sf0NevXqhffffx8pKSlmoSYoKAiff/45mjdvjqZNm0rDGzdujOjoaMycORP9+/fHU089hfPnz2Px4sXo2rWrWcfbOwkMDMSSJUvwn//8B61atYKHh4fUufp+GQwGs9NY33zzDQoKCu56Om7u3LkICwuDTqfD6NGjpUvPnZ2dze4z88Ybb2D16tUICwvDq6++Cnd3d6xatQpnzpzB6tWry/Wte+GFF/DGG29g48aNGDduXLWPzj7xxBP45ptv4OzsDH9/f8THx2PXrl1m/fsq8t5772H79u3o3bs3JkyYIF16npWVVa7vGVAW7jMyMgAAOTk5AMpOr2zbtk1qc+3aNdy4cQPbtm1D//79q/xZcasdO3bc171hTPvYYDBg06ZNuHz5MiZOnGjWJi8vT6r7+vXrWLBgAWxtbSsN5bNmzcK2bdvw2GOP4ZVXXoFKpcKXX36J7OxssyNqb731Fr799lvpNeDq6ooVK1YgKSkJ69evN+ubCdz9s7YiWq0Wc+fOxb/+9S+8+OKLGDBgQLW2c4NkkWvA6J5VdAlnRQoKCsRrr70mvLy8hL29vejZs6eIj483uwTRJD8/X7zzzjvCz89P2NraCq1WK5555hlx6dIlIUT1Lj3/9ttvRXR0tPDw8BD29vYiPDxcXLlypdz0x44dE4MHDxZubm5CpVKJZs2aiSFDhojdu3ebLftuj9svf16/fr147LHHhKOjo3B0dBTt2rUTUVFR4vz580IIISZMmCCCgoLEtm3bytVU0eWnQpRdZhwYGCjs7e2Fk5OTCAgIEG+88Ya4evWq1OZeLz1XKBQiISHBbHhF+6ioqEjMmTNHdOjQQahUKtGoUSMRGBgoZs6cKbKzs8st71a3Xnp+q+LiYtGyZctyl57fy/LOnTsngoKChL29fbn9kJOTI6ytrYWTk5MoKSmRhq9atUoAEMOHD6+w3s8++0y0a9dO2NraCk9PTzFu3Djx119/ldtGlV36q9frRXh4uHBychIApG1Z2Xvn9supKxMZGWn2mlOr1eKRRx4R33zzzR2nM9m1a5fo2bOnsLe3FxqNRjz55JPizJkz5dpdunRJPPPMM8LZ2VnY2dmJrl27ik2bNlU63wEDBggA4uDBg1WqQ4jyl57/9ddfYtSoUcLd3V2o1WoRGhoqzp07J5o1a2a2TyvaVgkJCaJfv35CrVYLBwcHERQUJOLi4syWZ9r29/q41d0+K4S4+d4dOHCg2bRV3cem6U0Pe3t74e/vL+bNm2d2Obbp1gemh4uLi+jZs6d0K4DbLz03OXr0qAgNDRWOjo7CwcFBBAcHl7vFgxA3XwMuLi7Czs5OdOvWTWzdurXCdarKZ21FnylCCNGnTx/h6+srcnNzpWFV2c4NmUIImd5DnupUbGws/vGPf2DdunXVPtpxq8uXL8PPzw9JSUmVnv+fMWMGLl++3KC//JGougYNGoSTJ0/i4sWLli6lxpje9/yzVLma/qx9ULDPDhFRA5Oamooff/wRw4cPt3QpRA0C++xQvaRWqzFs2LA7diDu1KmT9PUXRA+CpKQk/PLLL/jvf/8LW1tbvPTSS5YuqUbZ29sjNDTU0mWQDDHsUL1k6qB5J4MHD66jaojqh7i4OIwaNQq+vr5YsWLFHe8T1RB5enqadVomqinss0NERESyxj47REREJGsMO0RERCRr7LODsjtgXr16FU5OTrV6y3kiIiKqOUII5Obmwtvbu9yNF2/FsAPg6tWr9/ylikRERFQ/pKSkmN2Z/XYMOwCcnJwAlG0sjUZj4WqIiIioKnJycuDj4yP9Ha8Mww5ufluyRqNh2CEiImpg7tYFhR2UiYiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHZqkRACeXl5EEJYuhQiIqIHFsNOLTIYDIhZfwgGg8HSpRARET2wGHZqmdLO3tIlEBERPdAYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNbqTdj54IMPoFAoMHHiRGlYQUEBoqKi4ObmBrVajYiICKSlpZlNl5ycjPDwcDg4OMDDwwNTpkxBSUlJHVdPRERE9VW9CDtHjhzB559/jk6dOpkNnzRpErZs2YJ169YhLi4OV69exeDBg6XxpaWlCA8PR1FREQ4ePIgVK1Zg+fLlmDZtWl2vAhEREdVTFg87eXl5GDZsGL788ks0atRIGp6dnY2vvvoKn3zyCfr06YPAwEAsW7YMBw8exKFDhwAAO3bswJkzZ7Bq1Sp07twZYWFheO+997Bo0SIUFRVZapWIiIioHrF42ImKikJ4eDhCQkLMhickJKC4uNhseLt27eDr64v4+HgAQHx8PAICAuDp6Sm1CQ0NRU5ODk6fPl3pMgsLC5GTk2P2ICIiInmyseTCv/vuOxw9ehRHjhwpN06v10OpVMLFxcVsuKenJ/R6vdTm1qBjGm8aV5mYmBjMnDnzPqsnIiKihsBiR3ZSUlLw73//G6tXr4adnV2dLjs6OhrZ2dnSIyUlpdaWJYRAXl4ehBC1tgwiIiKqnMXCTkJCAtLT0/HII4/AxsYGNjY2iIuLw4IFC2BjYwNPT08UFRUhKyvLbLq0tDRotVoAgFarLXd1lum5qU1FVCoVNBqN2aO2FBXewCdbj8FgMNTaMoiIiKhyFgs7ffv2xcmTJ5GYmCg9unTpgmHDhkm/29raYvfu3dI058+fR3JyMnQ6HQBAp9Ph5MmTSE9Pl9rs3LkTGo0G/v7+db5OlVHa2Vu6BCIiogeWxfrsODk5oWPHjmbDHB0d4ebmJg0fPXo0Jk+eDFdXV2g0GkyYMAE6nQ49evQAAPTr1w/+/v4YPnw4PvzwQ+j1ekydOhVRUVFQqVR1vk5ERERU/1i0g/LdzJs3D1ZWVoiIiEBhYSFCQ0OxePFiaby1tTW2bt2KcePGQafTwdHREZGRkZg1a5YFqyYiIqL6RCHYcxY5OTlwdnZGdnZ2jfbfycvLw+z18bCytsVbT3eBWq2usXkTERE96Kr699vi99khIiIiqk0MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsWDTtLlixBp06doNFooNFooNPp8PPPP0vjg4ODoVAozB4vv/yy2TySk5MRHh4OBwcHeHh4YMqUKSgpKanrVSEiIqJ6ysaSC2/atCk++OADtG7dGkIIrFixAgMHDsSxY8fQoUMHAMCYMWMwa9YsaRoHBwfp99LSUoSHh0Or1eLgwYNITU3FiBEjYGtri9mzZ9f5+hAREVH9Y9Gw8+STT5o9f//997FkyRIcOnRICjsODg7QarUVTr9jxw6cOXMGu3btgqenJzp37oz33nsPb775JmbMmAGlUlnr60BERET1W73ps1NaWorvvvsOBoMBOp1OGr569Wq4u7ujY8eOiI6ORn5+vjQuPj4eAQEB8PT0lIaFhoYiJycHp0+frnRZhYWFyMnJMXsQERGRPFn0yA4AnDx5EjqdDgUFBVCr1di4cSP8/f0BAC+88AKaNWsGb29vnDhxAm+++SbOnz+PDRs2AAD0er1Z0AEgPdfr9ZUuMyYmBjNnzqylNSIiIqL6xOJhp23btkhMTER2djZ++OEHREZGIi4uDv7+/hg7dqzULiAgAF5eXujbty8uXbqEli1bVnuZ0dHRmDx5svQ8JycHPj4+97UeREREVD9Z/DSWUqlEq1atEBgYiJiYGDz00EP49NNPK2zbvXt3AMDFixcBAFqtFmlpaWZtTM8r6+cDACqVSroCzPQgIiIiebJ42Lmd0WhEYWFhheMSExMBAF5eXgAAnU6HkydPIj09XWqzc+dOaDQa6VQYERERPdgsehorOjoaYWFh8PX1RW5uLtasWYPY2Fhs374dly5dwpo1azBgwAC4ubnhxIkTmDRpEoKCgtCpUycAQL9+/eDv74/hw4fjww8/hF6vx9SpUxEVFQWVSmXJVSMiIqJ6wqJhJz09HSNGjEBqaiqcnZ3RqVMnbN++HY8//jhSUlKwa9cuzJ8/HwaDAT4+PoiIiMDUqVOl6a2trbF161aMGzcOOp0Ojo6OiIyMNLsvDxERET3YLBp2vvrqq0rH+fj4IC4u7q7zaNasGX766aeaLIuIiIhkpN712SEiIiKqSQw7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaxYNO0uWLEGnTp2g0Wig0Wig0+nw888/S+MLCgoQFRUFNzc3qNVqREREIC0tzWweycnJCA8Ph4ODAzw8PDBlyhSUlJTU9aoQERFRPWXRsNO0aVN88MEHSEhIwG+//YY+ffpg4MCBOH36NABg0qRJ2LJlC9atW4e4uDhcvXoVgwcPlqYvLS1FeHg4ioqKcPDgQaxYsQLLly/HtGnTLLVKREREVM8ohBDC0kXcytXVFXPnzsUzzzyDxo0bY82aNXjmmWcAAOfOnUP79u0RHx+PHj164Oeff8YTTzyBq1evwtPTEwCwdOlSvPnmm7h27RqUSmWVlpmTkwNnZ2dkZ2dDo9HU2Lrk5eVh9vp4WFnb4q2nu0CtVtfYvImIiB50Vf37XW/67JSWluK7776DwWCATqdDQkICiouLERISIrVp164dfH19ER8fDwCIj49HQECAFHQAIDQ0FDk5OdLRoYoUFhYiJyfH7EFERETyZPGwc/LkSajVaqhUKrz88svYuHEj/P39odfroVQq4eLiYtbe09MTer0eAKDX682Cjmm8aVxlYmJi4OzsLD18fHxqdqWIiIio3rB42Gnbti0SExNx+PBhjBs3DpGRkThz5kytLjM6OhrZ2dnSIyUlpVaXR0RERJZjY+kClEolWrVqBQAIDAzEkSNH8Omnn+K5555DUVERsrKyzI7upKWlQavVAgC0Wi1+/fVXs/mZrtYytamISqWCSqWq4TUhIiKi+sjiR3ZuZzQaUVhYiMDAQNja2mL37t3SuPPnzyM5ORk6nQ4AoNPpcPLkSaSnp0ttdu7cCY1GA39//zqvnYiIiOofix7ZiY6ORlhYGHx9fZGbm4s1a9YgNjYW27dvh7OzM0aPHo3JkyfD1dUVGo0GEyZMgE6nQ48ePQAA/fr1g7+/P4YPH44PP/wQer0eU6dORVRUFI/cEBEREQALh5309HSMGDECqampcHZ2RqdOnbB9+3Y8/vjjAIB58+bBysoKERERKCwsRGhoKBYvXixNb21tja1bt2LcuHHQ6XRwdHREZGQkZs2aZalVIiIionqm3t1nxxJ4nx0iIqKGp8HdZ4eIiIioNjDsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrFk07MTExKBr165wcnKCh4cHnn76aZw/f96sTXBwMBQKhdnj5ZdfNmuTnJyM8PBwODg4wMPDA1OmTEFJSUldrgoRERHVUzaWXHhcXByioqLQtWtXlJSU4O2330a/fv1w5swZODo6Su3GjBmDWbNmSc8dHByk30tLSxEeHg6tVouDBw8iNTUVI0aMgK2tLWbPnl2n60NERET1j0XDzrZt28yeL1++HB4eHkhISEBQUJA03MHBAVqttsJ57NixA2fOnMGuXbvg6emJzp0747333sObb76JGTNmQKlU1uo6EBERUf1Wr/rsZGdnAwBcXV3Nhq9evRru7u7o2LEjoqOjkZ+fL42Lj49HQEAAPD09pWGhoaHIycnB6dOnK1xOYWEhcnJyzB5EREQkTxY9snMro9GIiRMnomfPnujYsaM0/IUXXkCzZs3g7e2NEydO4M0338T58+exYcMGAIBerzcLOgCk53q9vsJlxcTEYObMmbW0JkRERFSfVDvsGAwGxMXFITk5GUVFRWbjXn311XueX1RUFE6dOoUDBw6YDR87dqz0e0BAALy8vNC3b19cunQJLVu2rFbt0dHRmDx5svQ8JycHPj4+1ZoXERER1W/VCjvHjh3DgAEDkJ+fD4PBAFdXV2RkZEhXQ91r2Bk/fjy2bt2Kffv2oWnTpnds2717dwDAxYsX0bJlS2i1Wvz6669mbdLS0gCg0n4+KpUKKpXqnmokIiKihqlafXYmTZqEJ598En/99Rfs7e1x6NAhXLlyBYGBgfjoo4+qPB8hBMaPH4+NGzdiz5498PPzu+s0iYmJAAAvLy8AgE6nw8mTJ5Geni612blzJzQaDfz9/e9txYiIiEh2qhV2EhMT8dprr8HKygrW1tYoLCyEj48PPvzwQ7z99ttVnk9UVBRWrVqFNWvWwMnJCXq9Hnq9Hjdu3AAAXLp0Ce+99x4SEhJw+fJl/O9//8OIESMQFBSETp06AQD69esHf39/DB8+HMePH8f27dsxdepUREVF8egNERERVS/s2NrawsqqbFIPDw8kJycDAJydnZGSklLl+SxZsgTZ2dkIDg6Gl5eX9Fi7di0AQKlUYteuXejXrx/atWuH1157DREREdiyZYs0D2tra2zduhXW1tbQ6XR48cUXMWLECLP78hAREdGDq1p9dh5++GEcOXIErVu3Ru/evTFt2jRkZGTgm2++MbuS6m6EEHcc7+Pjg7i4uLvOp1mzZvjpp5+qvFwiIiJ6cFTryM7s2bOlPjPvv/8+GjVqhHHjxuHatWv44osvarRAIiIiovtRrSM7Xbp0kX738PAodydkIiIiovqiWkd2+vTpg6ysrBouhYiIiKjmVSvsxMbGlruRIBEREVF9VO3vxlIoFDVZBxEREVGtqPbXRQwaNKjSbxTfs2dPtQsiIiIiqknVDjs6nQ5qtbomayEiIiKqcdUKOwqFAlOmTIGHh0dN10NERERUo6rVZ+duNwMkIiIiqi+qFXamT5/OU1hERETUIFTrNNb06dMBANeuXcP58+cBAG3btkXjxo1rrjIiIiKiGlCtIzv5+fn45z//CW9vbwQFBSEoKAje3t4YPXo08vPza7pGIiIiomqrVtiZNGkS4uLi8L///Q9ZWVnIysrC5s2bERcXh9dee62mayQiIiKqtmqdxlq/fj1++OEHBAcHS8MGDBgAe3t7DBkyBEuWLKmp+oiIiIjuS7VPY3l6epYb7uHhwdNYREREVK9UK+zodDpMnz4dBQUF0rAbN25g5syZ0Ol0NVYcERER0f2q1mms+fPno3///mjatCkeeughAMDx48dhZ2eH7du312iBRERERPejWmEnICAAFy5cwOrVq3Hu3DkAwPPPP49hw4bB3t6+RgskIiIiuh/VCjv79u3Do48+ijFjxtR0PUREREQ1qlp9dv7xj3/g+vXrNV0LERERUY3jd2MRERGRrFXrNBYAxMfHo1GjRhWOCwoKqnZBRERERDWp2mFn0KBBFQ5XKBQoLS2tdkFERERENalap7EAQK/Xw2g0lnsw6BAREVF9Uq2wo1AoaroOIiIiolrBDspEREQka9Xqs2M0Gmu6DiIiIqJaUa0jOzExMfj666/LDf/6668xZ86c+y6KiIiIqKZUK+x8/vnnaNeuXbnhHTp0wNKlS++7KCIiIqKaUq2wo9fr4eXlVW5448aNkZqaet9FEREREdWUaoUdHx8f/PLLL+WG//LLL/D29r7vooiIiIhqSrXCzpgxYzBx4kQsW7YMV65cwZUrV/D1119j0qRJ9/TloDExMejatSucnJzg4eGBp59+GufPnzdrU1BQgKioKLi5uUGtViMiIgJpaWlmbZKTkxEeHg4HBwd4eHhgypQpKCkpqc6qERERkcxU62qsKVOmIDMzE6+88gqKiooAAHZ2dnjzzTcRHR1d5fnExcUhKioKXbt2RUlJCd5++23069cPZ86cgaOjIwBg0qRJ+PHHH7Fu3To4Oztj/PjxGDx4sHRkqbS0FOHh4dBqtTh48CBSU1MxYsQI2NraYvbs2dVZPSIiIpIRhbiPm+bk5eXh7NmzsLe3R+vWraFSqe6rmGvXrsHDwwNxcXEICgpCdnY2GjdujDVr1uCZZ54BAJw7dw7t27dHfHw8evTogZ9//hlPPPEErl69Ck9PTwDA0qVL8eabb+LatWtQKpV3XW5OTg6cnZ2RnZ0NjUZzX+twq7y8PMxeHw8ra1u89XQXqNXqGps3ERHRg66qf7+r/XURAKBWq9G1a1d07NjxvoMOAGRnZwMAXF1dAQAJCQkoLi5GSEiI1KZdu3bw9fVFfHw8gLIvJA0ICJCCDgCEhoYiJycHp0+frnA5hYWFyMnJMXsQERGRPFX7i0B/++03fP/990hOTpZOZZls2LDhnudnNBoxceJE9OzZEx07dgRQdtWXUqmEi4uLWVtPT0/o9Xqpza1BxzTeNK4iMTExmDlz5j3XSERERA1PtY7sfPfdd3j00Udx9uxZbNy4EcXFxTh9+jT27NkDZ2fnahUSFRWFU6dO4bvvvqvW9PciOjoa2dnZ0iMlJaXWlymEQF5eHr9qg4iIqI5VK+zMnj0b8+bNw5YtW6BUKvHpp5/i3LlzGDJkCHx9fe95fuPHj8fWrVuxd+9eNG3aVBqu1WpRVFSErKwss/ZpaWnQarVSm9uvzjI9N7W5nUqlgkajMXvUNoPBgJj1h2AwGGp9WURERHRTtcLOpUuXEB4eDgBQKpUwGAxQKBSYNGkSvvjiiyrPRwiB8ePHY+PGjdizZw/8/PzMxgcGBsLW1ha7d++Whp0/fx7JycnQ6XQAAJ1Oh5MnTyI9PV1qs3PnTmg0Gvj7+1dn9WqN0s7e0iUQERE9cKrVZ6dRo0bIzc0FADRp0gSnTp1CQEAAsrKykJ+fX+X5REVFYc2aNdi8eTOcnJykPjbOzs6wt7eHs7MzRo8ejcmTJ8PV1RUajQYTJkyATqdDjx49AAD9+vWDv78/hg8fjg8//BB6vR5Tp05FVFRUjXSaJiIiooatWmEnKCgIO3fuREBAAJ599ln8+9//xp49e7Bz50707du3yvNZsmQJACA4ONhs+LJlyzBy5EgAwLx582BlZYWIiAgUFhYiNDQUixcvltpaW1tj69atGDduHHQ6HRwdHREZGYlZs2ZVZ9WIiIhIZqoVdj777DMUFBQAAN555x3Y2tri4MGDiIiIwNSpU6s8n6p01rWzs8OiRYuwaNGiSts0a9YMP/30U5WXS0RERA+Oewo7pvvR2NjYQK1WS89feeUVvPLKKzVfHREREdF9uqew4+LiAoVCcdd2paWl1S6IiIiIqCbdU9jZu3ev2XMhBAYMGID//ve/aNKkSY0WRkRERFQT7ins9O7du9wwa2tr9OjRAy1atKixouRGCPH3/XV4Q0EiIqK6dl/fjUVVU1xYgIU/H0dxcYmlSyEiInrg3FfYSUlJQX5+Ptzc3GqqHtniDQWJiIgs455OYy1YsED6PSMjA99++y369OlT7e/DIiIiIqpt9xR25s2bBwBQKBRwd3fHk08+eU/31SEiIiKqa/cUdpKSkmqrDiIiIqJawQ7KREREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsWDTv79u3Dk08+CW9vbygUCmzatMls/MiRI6FQKMwe/fv3N2tz/fp1DBs2DBqNBi4uLhg9ejTy8vLqcC2IiIioPrNo2DEYDHjooYewaNGiStv0798fqamp0uPbb781Gz9s2DCcPn0aO3fuxNatW7Fv3z6MHTu2tksnIiKiBsLGkgsPCwtDWFjYHduoVCpotdoKx509exbbtm3DkSNH0KVLFwDAwoULMWDAAHz00Ufw9vau8ZqJiIioYan3fXZiY2Ph4eGBtm3bYty4ccjMzJTGxcfHw8XFRQo6ABASEgIrKyscPny40nkWFhYiJyfH7EFERETyVK/DTv/+/bFy5Urs3r0bc+bMQVxcHMLCwlBaWgoA0Ov18PDwMJvGxsYGrq6u0Ov1lc43JiYGzs7O0sPHx6dW14OIiIgsx6Knse5m6NCh0u8BAQHo1KkTWrZsidjYWPTt27fa842OjsbkyZOl5zk5OQw8REREMlWvj+zcrkWLFnB3d8fFixcBAFqtFunp6WZtSkpKcP369Ur7+QBl/YA0Go3Zg4iIiOSpQYWdP/74A5mZmfDy8gIA6HQ6ZGVlISEhQWqzZ88eGI1GdO/e3VJlEhERUT1i0dNYeXl50lEaAEhKSkJiYiJcXV3h6uqKmTNnIiIiAlqtFpcuXcIbb7yBVq1aITQ0FADQvn179O/fH2PGjMHSpUtRXFyM8ePHY+jQobwSi4iIiABY+MjOb7/9hocffhgPP/wwAGDy5Ml4+OGHMW3aNFhbW+PEiRN46qmn0KZNG4wePRqBgYHYv38/VCqVNI/Vq1ejXbt26Nu3LwYMGIDHHnsMX3zxhaVWiYiIiOoZix7ZCQ4OhhCi0vHbt2+/6zxcXV2xZs2amiyLiIiIZKRB9dkhIiIiulcMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7dUgIgby8PAghLF0KERHRA4Nhpw4VFxbg4y1HkZaWxsBDRERURxh26phCocAnW4/BYDBYuhQiIqIHAsOOBSjt7C1dAhER0QODYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGnDhSUClzIEigq5eXmREREdY1hpw6cuS5wLEPgQKpAKe+vQ0REVKcYdurAtRtlPzMKgKPpgjcUJCIiqkM2li5A7opLBXKKbj5PygUaXy+xXEFEREQPGB7ZqWXXCwQEAAcbIMBNAQD4/XqxZYsiIiJ6gDDs1LKMG2WnrFztAF912bCcIoESI09lERER1QWGnVqWecMIAHBTKeBgA9goAKMAkq/fsHBlREREDwaGnVokhJCO7LjZlX0JqEZZNu7SNX4RKBERUV2waNjZt28fnnzySXh7e0OhUGDTpk1m44UQmDZtGry8vGBvb4+QkBBcuHDBrM3169cxbNgwaDQauLi4YPTo0cjLy6vDtajc1exCFJQCCgAuqrJhprBzkWGHiIioTlg07BgMBjz00ENYtGhRheM//PBDLFiwAEuXLsXhw4fh6OiI0NBQFBQUSG2GDRuG06dPY+fOndi6dSv27duHsWPH1tUq3NHxP3MAlAUdG6uyzskaZdnPixn5FquLiIjoQWLRS8/DwsIQFhZW4TghBObPn4+pU6di4MCBAICVK1fC09MTmzZtwtChQ3H27Fls27YNR44cQZcuXQAACxcuxIABA/DRRx/B29u7ztalIif+DjtudjeHOfM0FhERUZ2qt312kpKSoNfrERISIg1zdnZG9+7dER8fDwCIj4+Hi4uLFHQAICQkBFZWVjh8+HCd13y7k1LYUUjDTKexLmfeQHGp0RJlERERPVDq7U0F9Xo9AMDT09NsuKenpzROr9fDw8PDbLyNjQ1cXV2lNhUpLCxEYWGh9DwnJ6emypYYjQIFJWVhxlV1c7iDDWBjBZQYBa5kGtDKw6nGl01EREQ31dsjO7UpJiYGzs7O0sPHx6fGl2FlpcD6MV3wTBtbqG1vDlcoFHBWlW3239PqR0dqIiIiOau3YUer1QIA0tLSzIanpaVJ47RaLdLT083Gl5SU4Pr161KbikRHRyM7O1t6pKSk1HD1NymtFVAoFGbDboad3FpbLhEREZWpt2HHz88PWq0Wu3fvlobl5OTg8OHD0Ol0AACdToesrCwkJCRIbfbs2QOj0Yju3btXOm+VSgWNRmP2qEsudmWb/QKP7BAREdU6i/bZycvLw8WLF6XnSUlJSExMhKurK3x9fTFx4kT85z//QevWreHn54d3330X3t7eePrppwEA7du3R//+/TFmzBgsXboUxcXFGD9+PIYOHWrxK7HuxFn193dk8cgOERFRrbNo2Pntt9/wj3/8Q3o+efJkAEBkZCSWL1+ON954AwaDAWPHjkVWVhYee+wxbNu2DXZ2N6/lXr16NcaPH4++ffvCysoKERERWLBgQZ2vy71w+fs0VlKGAcWlRtha19sDbERERA2eQgjxwH8jZU5ODpydnZGdnV2jp7Ty8vIwe308SopLzIbbquyw7twNFJUK7H/jH/BxdaixZRIRET0oqvr3m4cULEChUKCJS9nRqZTrvJMyERFRbWLYsRBv57Kw88df/PZzIiKi2sSwYyHeLqawwyM7REREtYlhx0Kamk5j8cgOERFRrWLYsZCbp7F4ZIeIiKg2MexYSBMX9tkhIiKqCww7FmIKO/qcAhSWlFq4GiIiIvli2LEQVwdb2NlaQQggNavA0uUQERHJFsOOhSgUCjRtVHYzQZ7KIiIiqj0MOxbk08geAJDCTspERES1hmHHgm4e2WHYISIiqi0MOxbU9O8jOzyNRUREVHsYdiyIfXaIiIhqH8OOBfm4/t1nh18GSkREVGsYdixACIG8vDw0cSkLO+m5hSgo5r12iIiIagPDjgUUFxbgk63HoBRFcFBaAwCuZvFUFhERUW1g2LEQpZ09FAoFfP7ut8MvBCUiIqodDDsWIp3Kkq7IYr8dIiKi2sCwYyGmU1latQ0AXpFFRERUW2wsXcCDTGlnD6+/vxCUV2QRERHVDh7ZsTDvv8MOj+wQERHVDoYdC2vizLBDRERUmxh2LKzJ30d2MvIKcaOI99ohIiKqaQw7Fqaxs4GTqqzr1J9Z7LdDRERU0xh2LEyhUEiXn/NeO0RERDWPYace8HH9+wtBeUUWERFRjWPYqQeaSjcW5JEdIiKimsawUw80/fsrIxh2iIiIah7DTj3QVOqzw9NYRERENY1hpx7w4ZEdIiKiWsOwY0HSl4H+fa+d64YiGApLLFwVERGRvDDsWFBxYQE+3nIUN3KuQ2NnutcOj+4QERHVpHoddmbMmAGFQmH2aNeunTS+oKAAUVFRcHNzg1qtRkREBNLS0ixY8b1TKBT4ZOsx6egOvxCUiIioZtXrsAMAHTp0QGpqqvQ4cOCANG7SpEnYsmUL1q1bh7i4OFy9ehWDBw+2YLXVo7Szhze/I4uIiKhW2Fi6gLuxsbGBVqstNzw7OxtfffUV1qxZgz59+gAAli1bhvbt2+PQoUPo0aNHXZd6X5q4qAAAyTyyQ0REVKPq/ZGdCxcuwNvbGy1atMCwYcOQnJwMAEhISEBxcTFCQkKktu3atYOvry/i4+PvOM/CwkLk5OSYPSyt+d93Ub50Lc/ClRAREclLvQ473bt3x/Lly7Ft2zYsWbIESUlJ6NWrF3Jzc6HX66FUKuHi4mI2jaenJ/R6/R3nGxMTA2dnZ+nh4+NTi2tRNS0bl4WdC2kMO0RERDWpXp/GCgsLk37v1KkTunfvjmbNmuH777+Hvb19tecbHR2NyZMnS89zcnIsHnhaujsCKLsay1BYAkdVvd41REREDUa9PrJzOxcXF7Rp0wYXL16EVqtFUVERsrKyzNqkpaVV2MfnViqVChqNxuxhaS4OtnBXl/Xb4aksIiKimtOgwk5eXh4uXboELy8vBAYGwtbWFrt375bGnz9/HsnJydDpdBassvpae6gBAL/zVBYREVGNqdfnSl5//XU8+eSTaNasGa5evYrp06fD2toazz//PJydnTF69GhMnjwZrq6u0Gg0mDBhAnQ6XYO7Esuktaca8f+XiQvpuZYuhYiISDbqddj5448/8PzzzyMzMxONGzfGY489hkOHDqFx48YAgHnz5sHKygoREREoLCxEaGgoFi9ebOGqq0cIAV9nWwDARR7ZISIiqjH1Oux89913dxxvZ2eHRYsWYdGiRXVUUe0xGAw4dOYKAOBCOsMOERFRTWlQfXbkrrGm7AqzlL/ycaOo1MLVEBERyQPDTj1iZ2uFRg62EIJXZBEREdUUhp16pqX73zcXZCdlIiKiGsGwU8+0cOedlImIiGoSw04906px2Z2U2UmZiIioZjDs1DOt/v6OrDNXLf/lpERERHLAsFMPCCFgMBgACHTwcoKVouw7slKzb1i6NCIiogaPYaceKC4swMKfj6O4uOwLQP29y76r67fLf1m4MiIiooaPYaeeUNrd/Bb3rs1dAQBHLl+3VDlERESywbBTD90MOzyyQ0REdL8YduqhLs0bAQDO6XOQfaPYwtUQERE1bAw79ZCHkx2auzlACOBoMo/uEBER3Q+GnXpKOpWVxH47RERE94Nhpx4SQiDAq+x+O7wii4iI6P7YWLoAKlNUcANCYYW8vDwIIXDkbBIAIPGPLBQUl8LO1trCFRIRETVMPLJTjxQXFuDjLUeRnp4ONyd7aDUqFJUYEXs+3dKlERERNVgMO/WMQqHAwp+Po6SkFAM6eAAANh7708JVERERNVwMO/WQ6QaDTwSUhZ0959KRlV9kyZKIiIgaLIadeqyNhxrttE4oLhX48WSqpcshIiJqkBh26ikhBPLy8jDo4SYAgE08lUVERFQtDDv1VHFhAT7ZegwhrV2gUJR9dURyZr6lyyIiImpwGHbqMaWdPTw1KvRs6Q4AWBJ30cIVERERNTwMOw3AxJDWAIC1R1JwNjXHwtUQERE1LAw7DUCX5q4ID/CCUQDv/3gWQghLl0RERNRgMOzUY6ZOykajEeODfKC0tsKBixnYfZY3GSQiIqoqhp16zNRJOT09Hav2HMewbt4AgMnfJ+L3tFwLV0dERNQwMOzUc6YbDCrt7BEV1ByBzRohp6AEkV//itTsG+Xam44G8VQXERFRGYadBsTO1hpfRXZBy8aOSM0uwLNLDuJIUqZZG4PBgJj1h2AwGBh8iIiIwLBT7wkh/g4uRuTm5sK6tBDLR3aFl0aJP7IK8NwXh/D+j2dwLbdQmsZ0NOjW4ENERPSgsrF0AXRnxYUFWPjzcSjt7DFnfTyUdvaY/MTD6N6oAInCCpdzgS/3J2H5wcsYEOCF3i1dUFhilKZX2tlLR3gcHR2hUCgsuDZERER1j2GnAbi1346tyg4GgwEODip0sy1Fs0Y2yCyyxSm9AZsTr2Jz4lUoABzR/4a2no5Iu16A2LOpiDt5BTOe00GtVt9xWaYjSQxGREQkFwohkw4dixYtwty5c6HX6/HQQw9h4cKF6NatW5WmzcnJgbOzM7Kzs6HRaGqspry8PMxeH4+S4pK7ti0quAFYWUOpVFaprSkAAWUBpX+XNtj7f3n45f+uIymzfMdlAPB0UqKtpxptvJzRwl2N5u4OaOGuhqdGJQWbvLw8xKw/hLcGd4dCobhr6HnQw9GDvv5ERJZU1b/fsjiys3btWkyePBlLly5F9+7dMX/+fISGhuL8+fPw8PCwdHk17tagAwAKhQLr9xyGykGNb4d3xyc7f0fXFh64kJGPn0/pcT3fCEOpAmm5RUjLvY59F6+bTW9jpUAjRyVc7G3g6mCL9Cwjpm06iUtpOXiqix8au6ihsbOFxt7m75+2cLKzgdLaCjfyDfhgw2FER/QwO2pkCgEODg7Iz883CwO3B4TaCAx1FUJM/aJuX39L1kREROZkcWSne/fu6Nq1Kz777DMAgNFohI+PDyZMmIC33nrrrtM3tCM7lU1va++Il4Nb4asDl5CfmwfgZjAqNgpk5BaiwMYRvm5qxCdlQWFtg6s5RRC4vz+8VgpAZWMFG2sr2FgpoLSxAoQRhoJiuDiqkJNfBE9nB9jYWMPGSgEFjLh6PQ/NG2tga2OD0pIi/JGZhzberrBX2cLW2urvhwI21goojKWwt1NBaRpuo4CN1c2ahQAKi4qgVCqlNSksKsKek1fQp6MvlCrV3+0ECguLAAAqlRK4Zb0VirJnZT9NwwWKi4uhUiohABiFQKmx7KfRKGAUQEFhIQ7+rke3Vp6wtrGFEMKsnRACpaKsbWFhEY4lpaO9twusbGxgZW2D0pISONgppXVW2pStt/T87+1ga1P2/PY9VVhYCDuVqqzwW1S0R29tIsTf09qpbp/0lvWveFrTtiwqLIJSpTT7aWdXtVrKtu7NeZnP2zRe3PxdQNoHEH/vAwEYhREFBYWwsVWisKgItra2MN72iaZQ3Fyjm/tZIf1uGnH7/r91fFHRze2suGWeCsXN1VVAcfP3v38xtalw/QVQWFgAlcqu0jZm63Gf71OzedVR1r511woIFBYUQmWnggIKCNz5T8/d/jLdafS9/lm79Z8Phdnw29rd9plR0TTlaqmwvoraVfw+uPu87r6uVVlepe1uG1bVGsTNkSgsLIJKpUT/AC9o7GzvWu+9qOrf7wYfdoqKiuDg4IAffvgBTz/9tDQ8MjISWVlZ2Lx5c7lpCgsLUVh48+ql7Oxs+Pr6IiUlpcbDzgff70dxcfFd2xYX3YDCyho2NtULO6bphbEUtkr7u7a1VdqjuOgGbGztkVdQgBtFAraaRujRygM7TqWioNiIQqMCxUbAs5EaVzLzYaeyRaahGKVCUe4PChER0Z1smdATfu53PgJ+r3JycuDj44OsrCw4OztX2q7Bn8bKyMhAaWkpPD09zYZ7enri3LlzFU4TExODmTNnlhvu4+NTKzU2JGstXQAREclS5/m1N+/c3Fx5h53qiI6OxuTJk6XnRqMR169fh5ubW430pTAlzZo+UkQ1g/un/uK+qb+4b+q3B3X/CCGQm5sLb2/vO7Zr8GHH3d0d1tbWSEtLMxuelpYGrVZb4TQqlQqqv/txmLi4uNR4bRqN5oF60TU03D/1F/dN/cV9U789iPvnTkd0TBr8HZSVSiUCAwOxe/duaZjRaMTu3buh0+ksWBkRERHVBw3+yA4ATJ48GZGRkejSpQu6deuG+fPnw2AwYNSoUZYujYiIiCxMFmHnueeew7Vr1zBt2jTo9Xp07twZ27ZtK9dpua6oVCpMnz693Kkyqh+4f+ov7pv6i/umfuP+ubMGf+k5ERER0Z00+D47RERERHfCsENERESyxrBDREREssawQ0RERLLGsFMLFi1ahObNm8POzg7du3fHr7/+aumSHjgzZsz4+8sebz7atWsnjS8oKEBUVBTc3NygVqsRERFR7saUVDP27duHJ598Et7e3lAoFNi0aZPZeCEEpk2bBi8vL9jb2yMkJAQXLlwwa3P9+nUMGzYMGo0GLi4uGD16NPLy8upwLeTrbvtn5MiR5d5L/fv3N2vD/VM7YmJi0LVrVzg5OcHDwwNPP/00zp8/b9amKp9lycnJCA8Ph4ODAzw8PDBlyhSUlNz9C6rlhGGnhq1duxaTJ0/G9OnTcfToUTz00EMIDQ1Fenq6pUt74HTo0AGpqanS48CBA9K4SZMmYcuWLVi3bh3i4uJw9epVDB482ILVypfBYMBDDz2ERYsWVTj+ww8/xIIFC7B06VIcPnwYjo6OCA0NRUFBgdRm2LBhOH36NHbu3ImtW7di3759GDt2bF2tgqzdbf8AQP/+/c3eS99++63ZeO6f2hEXF4eoqCgcOnQIO3fuRHFxMfr16weDwSC1udtnWWlpKcLDw1FUVISDBw9ixYoVWL58OaZNm2aJVbIcQTWqW7duIioqSnpeWloqvL29RUxMjAWrevBMnz5dPPTQQxWOy8rKEra2tmLdunXSsLNnzwoAIj4+vo4qfDABEBs3bpSeG41GodVqxdy5c6VhWVlZQqVSiW+//VYIIcSZM2cEAHHkyBGpzc8//ywUCoX4888/66z2B8Ht+0cIISIjI8XAgQMrnYb7p+6kp6cLACIuLk4IUbXPsp9++klYWVkJvV4vtVmyZInQaDSisLCwblfAgnhkpwYVFRUhISEBISEh0jArKyuEhIQgPj7egpU9mC5cuABvb2+0aNECw4YNQ3JyMgAgISEBxcXFZvupXbt28PX15X6qY0lJSdDr9Wb7wtnZGd27d5f2RXx8PFxcXNClSxepTUhICKysrHD48OE6r/lBFBsbCw8PD7Rt2xbjxo1DZmamNI77p+5kZ2cDAFxdXQFU7bMsPj4eAQEBZjfZDQ0NRU5ODk6fPl2H1VsWw04NysjIQGlpabk7N3t6ekKv11uoqgdT9+7dsXz5cmzbtg1LlixBUlISevXqhdzcXOj1eiiVynJf/sr9VPdM2/tO7xm9Xg8PDw+z8TY2NnB1deX+qgP9+/fHypUrsXv3bsyZMwdxcXEICwtDaWkpAO6fumI0GjFx4kT07NkTHTt2BIAqfZbp9foK31+mcQ8KWXxdBNHtwsLCpN87deqE7t27o1mzZvj+++9hb29vwcqIGpahQ4dKvwcEBKBTp05o2bIlYmNj0bdvXwtW9mCJiorCqVOnzPoeUtXxyE4Ncnd3h7W1dbme8GlpadBqtRaqigDAxcUFbdq0wcWLF6HValFUVISsrCyzNtxPdc+0ve/0ntFqteU6+JeUlOD69evcXxbQokULuLu74+LFiwC4f+rC+PHjsXXrVuzduxdNmzaVhlfls0yr1Vb4/jKNe1Aw7NQgpVKJwMBA7N69WxpmNBqxe/du6HQ6C1ZGeXl5uHTpEry8vBAYGAhbW1uz/XT+/HkkJydzP9UxPz8/aLVas32Rk5ODw4cPS/tCp9MhKysLCQkJUps9e/bAaDSie/fudV7zg+6PP/5AZmYmvLy8AHD/1CYhBMaPH4+NGzdiz5498PPzMxtflc8ynU6HkydPmgXSnTt3QqPRwN/fv25WpD6wdA9pufnuu++ESqUSy5cvF2fOnBFjx44VLi4uZj3hqfa99tprIjY2ViQlJYlffvlFhISECHd3d5Geni6EEOLll18Wvr6+Ys+ePeK3334TOp1O6HQ6C1ctT7m5ueLYsWPi2LFjAoD45JNPxLFjx8SVK1eEEEJ88MEHwsXFRWzevFmcOHFCDBw4UPj5+YkbN25I8+jfv794+OGHxeHDh8WBAwdE69atxfPPP2+pVZKVO+2f3Nxc8frrr4v4+HiRlJQkdu3aJR555BHRunVrUVBQIM2D+6d2jBs3Tjg7O4vY2FiRmpoqPfLz86U2d/ssKykpER07dhT9+vUTiYmJYtu2baJx48YiOjraEqtkMQw7tWDhwoXC19dXKJVK0a1bN3Ho0CFLl/TAee6554SXl5dQKpWiSZMm4rnnnhMXL16Uxt+4cUO88sorolGjRsLBwUEMGjRIpKamWrBi+dq7d68AUO4RGRkphCi7/Pzdd98Vnp6eQqVSib59+4rz58+bzSMzM1M8//zzQq1WC41GI0aNGiVyc3MtsDbyc6f9k5+fL/r16ycaN24sbG1tRbNmzcSYMWPK/fPG/VM7KtovAMSyZcukNlX5LLt8+bIICwsT9vb2wt3dXbz22muiuLi4jtfGshRCCFHXR5OIiIiI6gr77BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQEd2H2NhYKBSKct9PRET1B8MOEdWJkSNHQqFQ4IMPPjAbvmnTJigUiirPp3nz5pg/f34NV1c1wcHBmDhxokWWTUTVx7BDRHXGzs4Oc+bMwV9//WXpUu5JUVGRpUsgovvAsENEdSYkJARarRYxMTGVtjlw4AB69eoFe3t7+Pj44NVXX4XBYABQdmTlypUrmDRpEhQKBRQKBYQQaNy4MX744QdpHp07d5a+lds0T5VKhfz8fABAcnIyBg4cCLVaDY1GgyFDhiAtLU1qP2PGDHTu3Bn//e9/4efnBzs7O4wcORJxcXH49NNPpWVfvnxZmiYhIQFdunSBg4MDHn30UZw/f76mNhsR3SeGHSKqM9bW1pg9ezYWLlyIP/74o9z4S5cuoX///oiIiMCJEyewdu1aHDhwAOPHjwcAbNiwAU2bNsWsWbOQmpqK1NRUKBQKBAUFITY2FgDw119/4ezZs7hx4wbOnTsHAIiLi0PXrl3h4OAAo9GIgQMH4vr164iLi8POnTvxf//3f3juuefMarl48SLWr1+PDRs2IDExEZ9++il0Oh3GjBkjLdvHx0dq/8477+Djjz/Gb7/9BhsbG/zzn/+spa1IRPfKxtIFENGDZdCgQejcuTOmT5+Or776ymxcTEwMhg0bJvWLad26NRYsWIDevXtjyZIlcHV1hbW1NZycnKDVaqXpgoOD8fnnnwMA9u3bh4cffhharRaxsbFo164dYmNj0bt3bwDA7t27cfLkSSQlJUlhZeXKlejQoQOOHDmCrl27Aig7dbVy5Uo0btxYWo5SqYSDg4PZsk3ef/99aRlvvfUWwsPDUVBQADs7uxrackRUXTyyQ0R1bs6cOVixYgXOnj1rNvz48eNYvnw51Gq19AgNDYXRaERSUlKl8+vduzfOnDmDa9euIS4uDsHBwQgODkZsbCyKi4tx8OBBBAcHAwDOnj0LHx8fs6My/v7+cHFxMaunWbNmZkHnbjp16iT9bjqFlp6eXuXpiaj2MOwQUZ0LCgpCaGgooqOjzYbn5eXhpZdeQmJiovQ4fvw4Lly4gJYtW1Y6v4CAALi6uiIuLs4s7MTFxeHIkSMoLi7Go48+ek81Ojo63lN7W1tb6XfT1WVGo/Ge5kFEtYOnsYjIIj744AN07twZbdu2lYY98sgjOHPmDFq1alXpdEqlEqWlpWbDFAoFevXqhc2bN+P06dN47LHH4ODggMLCQnz++efo0qWLFF7at2+PlJQUpKSkSEd3zpw5g6ysLPj7+9+x5oqWTUT1H4/sEJFFBAQEYNiwYViwYIE07M0338TBgwcxfvx4JCYm4sKFC9i8ebPUQRkou8/Ovn378OeffyIjI0MaHhwcjG+//RadO3eGWq2GlZUVgoKCsHr1aqkvDVB2RZhp2UePHsWvv/6KESNGoHfv3ujSpcsda27evDkOHz6My5cvIyMjg0duiBoIhh0isphZs2aZBYZOnTohLi4Ov//+O3r16oWHH34Y06ZNg7e3t9k0ly9fRsuWLc361PTu3RulpaVS3xygLADdPkyhUGDz5s1o1KgRgoKCEBISghYtWmDt2rV3rff111+HtbU1/P390bhxYyQnJ9/fBiCiOqEQQghLF0FERERUW3hkh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZO3/AQUuQ7VW7JWiAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZFUlEQVR4nO3deVxU1f8/8NedAYZ93xUFccEd99BEVFLRzK0ss1IztXJJaftQmUsLmn3LNbVfuaWlWS5pZe64obmEuwQKisoiKvs+c35/4NwcBxARGBhez8fjPuDee+6975k7M7y499w7khBCgIiIiMhIKQxdABEREVFVYtghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BARERmYRqNBamoqrly5YuhSjBLDDhHVeqtWrYIkSThx4oShS6Ea5tChQ9i/f788vn//fhw+fNhwBd0nKSkJU6dORcOGDWFmZgYXFxe0aNECGRkZhi7N6DDs1CDaD2ztYG5ujqZNm2LSpElITk42dHlUA40ePRqSJKFNmzYo6ZtfJEnCpEmTKrTuzz//HFu2bHnMCivXN998g1WrVhm6DKpFEhIS8Oabb+Ls2bM4e/Ys3nzzTSQkJBi6LMTGxqJTp05Yv349JkyYgO3bt2PXrl3Ys2cPrKysDF2e0TExdAGkb/bs2fDx8UFeXh4OHTqEpUuX4o8//sC5c+dgaWlp6PKoBjp79iw2bdqEYcOGVdo6P//8czz77LMYPHhwpa3zcX3zzTdwdnbG6NGjDV0K1RJDhw7F/Pnz0aZNGwBAQEAAhg4dauCqgAkTJsDMzAxHjx5FvXr1DF2O0WPYqYFCQkLQsWNHAMBrr70GJycnfPXVV9i6dStGjBhh4OqoprGwsICXlxdmz56NoUOHQpIkQ5dU6XJychj0qUJUKhWOHDmCc+fOAQBatWoFpVJp0JpOnjyJvXv3YufOnQw61YSnsWqBXr16AQDi4uIAAHfu3ME777yD1q1bw9raGra2tggJCcHp06f1ls3Ly8PMmTPRtGlTmJubw8PDA0OHDsXly5cBAPHx8Tqnzh4cgoKC5HXt378fkiRhw4YN+OCDD+Du7g4rKys888wzJR4WPnbsGPr16wc7OztYWlqiR48epZ4rDwoKKnH7M2fO1Gu7du1adOjQARYWFnB0dMQLL7xQ4vbLemz302g0mD9/Plq2bAlzc3O4ublhwoQJuHv3rk47b29vPP3003rbmTRpkt46S6p93rx5es8pAOTn52PGjBlo3LgxVCoVvLy88N577yE/P7/E5+pBCoUCH330Ec6cOYPNmzc/tH15tidJErKzs7F69Wr5ORs9ejTOnDkDSZLw22+/yW1PnjwJSZLQvn17ne2EhISgS5cuOtO++eYbtGzZEiqVCp6enpg4cSLS0tJ02gQFBaFVq1Y4efIkAgMDYWlpiQ8++ADe3t44f/48IiIiSnx9ah9baGgoXFxcYGVlhSFDhuDWrVsPfU60pwO1g4ODA4KCgnDw4MFyLevt7a0zbe3atVAoFJgzZ47O9L1796J79+6wsrKCvb09Bg0ahIsXL+q0mTlzJiRJQmpqqs70EydOQJIk+TTegzWXNMTHxwP477W7c+dO+Pv7w9zcHC1atMCmTZv0Hs+VK1fw3HPPwdHREZaWlnjiiSfw+++/l+t5K+l9O3r0aFhbWz/0eXyU91dRURE++eQT+Pr6QqVSwdvbGx988IHee8bb2xujR4+GUqlE27Zt0bZtW2zatAmSJOnts9Jq0j4mhUIBd3d3PP/887h27ZrcRvs58+WXX5a6Hu0+1Tp69CjMzc1x+fJl+f3g7u6OCRMm4M6dO3rLb9y4Uf7Mc3Z2xksvvYQbN27otNE+z1euXEHfvn1hZWUFT09PzJ49W+cUt7be+08HZ2ZmokOHDvDx8UFiYqI8vbyfjbUBj+zUAtpg4uTkBKD4w2jLli147rnn4OPjg+TkZCxfvhw9evTAhQsX4OnpCQBQq9V4+umnsWfPHrzwwgt46623kJmZiV27duHcuXPw9fWVtzFixAj0799fZ7thYWEl1vPZZ59BkiS8//77SElJwfz58xEcHIyoqChYWFgAKP5QDwkJQYcOHTBjxgwoFAqsXLkSvXr1wsGDB9G5c2e99davXx/h4eEAgKysLLzxxhslbnv69OkYPnw4XnvtNdy6dQuLFi1CYGAg/vnnH9jb2+stM378eHTv3h0AsGnTJr1AMGHCBKxatQpjxozBlClTEBcXh8WLF+Off/7B4cOHYWpqWuLz8CjS0tLkx3Y/jUaDZ555BocOHcL48ePRvHlznD17Fl9//TX+/fffcveZefHFF/HJJ59g9uzZGDJkSKlHd8q7vR9++AGvvfYaOnfujPHjxwMAfH190apVK9jb2+PAgQN45plnAAAHDx6EQqHA6dOnkZGRAVtbW2g0Ghw5ckReFij+wJ81axaCg4PxxhtvIDo6GkuXLsXx48f1nufbt28jJCQEL7zwAl566SW4ubkhKCgIkydPhrW1NT788EMAgJubm87jmzx5MhwcHDBjxgzEx8dj/vz5mDRpEjZs2PDQ59DZ2Rlff/01AOD69etYsGAB+vfvj4SEhBJfV6XZuXMnXn31VUyaNAn/+9//5Om7d+9GSEgIGjVqhJkzZyI3NxeLFi1Ct27dcOrUqXL98b3fhAkTEBwcLI+//PLLGDJkiM4pGhcXF/n3mJgYPP/883j99dcxatQorFy5Es899xx27NiBp556CgCQnJyMrl27IicnB1OmTIGTkxNWr16NZ555Br/88guGDBmiV8f9z5u2jqr22muvYfXq1Xj22Wfx9ttv49ixYwgPD8fFixfLDPxFRUXya6e8unfvjvHjx0Oj0eDcuXOYP38+bt68Wa4gXJrbt28jLy8Pb7zxBnr16oXXX38dly9fxpIlS3Ds2DEcO3YMKpUKAOTPpk6dOiE8PBzJyclYsGABDh8+rPeZp1ar0a9fPzzxxBP44osvsGPHDsyYMQNFRUWYPXt2ibUUFhZi2LBhuHbtGg4fPgwPDw95XnV8NlYbQTXGypUrBQCxe/ducevWLZGQkCDWr18vnJychIWFhbh+/boQQoi8vDyhVqt1lo2LixMqlUrMnj1bnrZixQoBQHz11Vd629JoNPJyAMS8efP02rRs2VL06NFDHt+3b58AIOrVqycyMjLk6T///LMAIBYsWCCvu0mTJqJv377ydoQQIicnR/j4+IinnnpKb1tdu3YVrVq1ksdv3bolAIgZM2bI0+Lj44VSqRSfffaZzrJnz54VJiYmetNjYmIEALF69Wp52owZM8T9L/uDBw8KAGLdunU6y+7YsUNvesOGDcWAAQP0ap84caJ48K30YO3vvfeecHV1FR06dNB5Tn/44QehUCjEwYMHdZZftmyZACAOHz6st737jRo1SlhZWQkhhFi9erUAIDZt2qRTx8SJEyu0PSsrKzFq1Ci9bQ4YMEB07txZHh86dKgYOnSoUCqV4s8//xRCCHHq1CkBQGzdulUIIURKSoowMzMTffr00XntLl68WAAQK1askKf16NFDABDLli3T2/aDr0kt7XsnODhY5zU3bdo0oVQqRVpamt4y9xs1apRo2LChzrRvv/1WABB///13uZc9ceKEsLa2Fs8995zee9Tf31+4urqK27dvy9NOnz4tFAqFeOWVV+Rp2tforVu3dJY/fvy4ACBWrlxZYh0Pvubu17BhQwFA/Prrr/K09PR04eHhIdq1aydPmzp1qgCg8/rIzMwUPj4+wtvbW+8xjRw5Uvj4+JRZx/2v0bKU9/0VFRUlAIjXXntNp90777wjAIi9e/fqrPP+1/A333wjVCqV6Nmzp97+Lq2mB98DL774orC0tJTHy/oM1Xrwc0c73rt3b1FUVCRP176OFy1aJIQQoqCgQLi6uopWrVqJ3Nxcud327dsFAPHxxx/L00aNGiUAiMmTJ8vTNBqNGDBggDAzM5NfT9p6V65cKTQajRg5cqSwtLQUx44d06n5UT4bawOexqqBgoOD4eLiAi8vL7zwwguwtrbG5s2b5XO7KpUKCkXxrlOr1bh9+zasra3RrFkznDp1Sl7Pr7/+CmdnZ0yePFlvG4/Tr+OVV16BjY2NPP7ss8/Cw8MDf/zxBwAgKioKMTExePHFF3H79m2kpqYiNTUV2dnZ6N27Nw4cOACNRqOzzry8PJibm5e53U2bNkGj0WD48OHyOlNTU+Hu7o4mTZpg3759Ou0LCgoAQP4PqSQbN26EnZ0dnnrqKZ11dujQAdbW1nrrLCws1GmXmpqKvLy8Muu+ceMGFi1ahOnTp+sdzt+4cSOaN28OPz8/nXVqT10+uP2yjBw5Ek2aNNE7bF3Z2+vevTtOnTqF7OxsAMWX9vbv3x/+/v7yf7sHDx6EJEl48sknARQf1SgoKMDUqVPl1y4AjBs3Dra2tnqnSVQqFcaMGVPux641fvx4ndd29+7doVarcfXq1Ycuq73PSWpqKqKiorBmzRp4eHigefPm5dr2lStXMGDAAPj7++OHH37QeZyJiYmIiorC6NGj4ejoKE9v06YNnnrqKfm9c787d+7o7KP09PRy1VEaT09PnSMztra2eOWVV/DPP/8gKSkJAPDHH3+gc+fO8n4DAGtra4wfPx7x8fG4cOGCzjoLCgrKfH/drzzvl/K8v7TPVWhoqM70t99+GwBKPeWWk5OD2bNnY9KkSWjQoEG5agaKT42mpqYiJSUFu3btwt69e9G7d+8S15+amoq7d++W+v57UGhoqE7/oZdffhlubm7yYzhx4gRSUlLw5ptv6nw+DhgwAH5+fiU+1vuvvtRejVlQUIDdu3frtX333Xexbt06/Pzzz3pH2x/1s7Gm42msGmjJkiVo2rQpTExM4ObmhmbNmul8cGo0GixYsADffPMN4uLioFar5XnaU11A8emvZs2awcSkcndzkyZNdMYlSULjxo3l/gExMTEAgFGjRpW6jvT0dDg4OMjjqampeut9UExMDIQQpbZ78JCqti9IWf0FYmJikJ6eDldX1xLnp6Sk6Izv3LlT59RAecyYMQOenp6YMGECfvnlF73tX7x4sdR1Prj9siiVSnz00UcYNWoUtmzZUuIph8rYXvfu3VFUVITIyEh4eXkhJSUF3bt3x/nz53XCTosWLeQ/7Nqw0axZM511mZmZoVGjRnphpF69ejAzM3v4g37Ag3/EtK+x8vQxSEhI0HlePDw88Ouvv5arv0l2djb69u2L5ORkODk56f0zUdrjB4DmzZvjr7/+QnZ2ts4lxyW1fRyNGzfWq6tp06YAivtxuLu74+rVq3r9rLQ1AsWPo1WrVvL0tLS0cj8/9z+3Xl5eePvtt/HWW2/ptCvP++vq1atQKBRo3LixznR3d3fY29uXGmy/+uor5OXl4YMPPtALSmVZv3491q9fL4936tQJ3333nV67GTNmYMaMGQAAc3Nz9OrVC/Pnzy/x80q7H/z8/HSmK5VKNGnSRP4sLet14+fnh0OHDulMUygUaNSokc60+/fx/ZYvX46jR48CKPn98aifjTUdw04N1LlzZ/lqrJJ8/vnnmD59Ol599VV88skncHR0hEKhwNSpU/WOmBiCtoZ58+bB39+/xDb3f0AWFBQgMTFR7jdQ1nolScKff/5Z4tUUD37oav9bdXd3L3Odrq6uWLduXYnzH/zg7dKlCz799FOdaYsXL8bWrVtLXP7ixYtYtWoV1q5dW+L5bY1Gg9atW+Orr74qcXkvL69Say/JyJEj5b47JV0yXhnb69ixI8zNzXHgwAE0aNAArq6uaNq0Kbp3745vvvkG+fn5OHjwYIlhq7y0fb8eVWlX2ZTnP203NzesXbsWQHEYX7FiBfr164dDhw6hdevWZS6bmpoKKysrbNu2DYMHD0Z4eLj8h6+ifv31V9ja2srj//77LyZOnPhY66xsSUlJaNiw4UPbmZubY9u2bQCKO8OuWLECU6dOhYeHB4YPHy63e5T316McnU5NTcW8efMQFhamc2StPPr06YN3330XQHFfrrlz56Jnz544ceKEzut0/PjxeO6556BWq3Hx4kXMnDkTgwcPxvnz5/XWWdHXd2U6evQoPvvsMxw/fhzTpk1Dv3794OzsLM9/1M/Gmo5hpxb65Zdf0LNnT3z//fc609PS0nRerL6+vjh27BgKCwsrtSOZ9siNlhACsbGx8n0stB2fbW1tdTpQlub06dMoLCwsM+Bp1yuEgI+Pj/zfSlkuXLgASZLK/A/Z19cXu3fvRrdu3cr1AeTs7Kz3mMrqRBwWFgZ/f388//zzpW7/9OnT6N27d6VcMq49ujN69OgS/0A8yvZKm29mZobOnTvj4MGDaNCggdz5u3v37sjPz8e6deuQnJyMwMBAeRntH8To6Gid/zwLCgoQFxdXrtdJWTVVBnNzc506nnnmGTg6OmLx4sVYvnx5mctaWlpix44d8PPzw7Rp0/D5559j+PDh8hGR+x//gy5dugRnZ2e9G8kFBgbqvJ8fpZN0SWJjYyGE0HkO//33XwCQO0c3bNiw1BrvfxxA8Smn2NhY9OvX76HbViqVOs/tgAED4OjoiB07duiEnfK8vxo2bAiNRoOYmBidU4zJyclIS0srMXx9+umnsLGx0TuSVB4eHh46NTVr1gxdu3bFli1bdG4F0qRJE7ld3759kZOTgw8//FDnyi0tHx8fAPrvB+3jateunfxYte20p5q1oqOj9R6rRqPBlStXdD4fH9zHWq+++io++OAD3Lx5Ey1atMC0adPwww8/yPMf9bOxpmOfnVpIqVTq/ae6ceNGvUsRhw0bhtTUVCxevFhvHeU9p1ySNWvWIDMzUx7/5ZdfkJiYiJCQEABAhw4d4Ovriy+//BJZWVl6yz94KfDGjRuhVCpLvOz0fkOHDoVSqcSsWbP06hdC4Pbt2/J4UVERfv31V3Tu3LnMw+zDhw+HWq3GJ598ojevqKhI77LoRxEZGYmtW7dizpw5pf6RHj58OG7cuIH/9//+n9683NxcuV/Mo3jppZfQuHFjzJo167G2Z2VlVerj7969O44dO4Z9+/bJYcfZ2RnNmzfH3Llz5TZawcHBMDMzw8KFC3X23ffff4/09HQMGDCgXI+trJoqW0FBAYqKisp1CwAXFxf5lMTs2bNRv359jBs3Tn6sHh4e8Pf3x+rVq3XqP3fuHHbu3Kl3JWRVuHnzps6VShkZGVizZg38/f3lo5/9+/fH33//jcjISLlddnY2vv32W3h7e6NFixby9K1btyI3N1fvj3B5aJ+XitzvRvtczZ8/X2e69mjlg6+l+Ph4LF26FDNnzqyUP9q5ubkA8NDXhfYId0mPsXfv3lCpVFi4cKHO0XjtPwraz8KOHTvC1dUVy5Yt09nen3/+iYsXL5b4vrn/814IgcWLF8PU1FSvn5H2/enp6Ym5c+di7dq12Llzpzy/Kj8bDYFHdmqhp59+GrNnz8aYMWPQtWtXnD17FuvWrdM7V/vKK69gzZo1CA0Nxd9//43u3bsjOzsbu3fvxptvvolBgwZVaPuOjo548sknMWbMGCQnJ2P+/Plo3Lgxxo0bB6D4vPF3332HkJAQtGzZEmPGjEG9evVw48YN7Nu3D7a2tti2bRuys7OxZMkSLFy4EE2bNtX5/hptSDpz5gwiIyMREBAAX19ffPrppwgLC0N8fDwGDx4MGxsbxMXFYfPmzRg/fjzeeecd7N69G9OnT8eZM2fkQ+el6dGjByZMmIDw8HBERUWhT58+MDU1RUxMDDZu3IgFCxbg2WefrdDztHPnTjz11FNlHrV4+eWX8fPPP+P111/Hvn370K1bN6jValy6dAk///wz/vrrr4ce8XqQUqnEhx9+WGIH30fZXocOHbB792589dVX8PT0hI+Pj9yfo3v37vjss8+QkJCgE2oCAwOxfPlyeHt7o379+vJ0FxcXhIWFYdasWejXrx+eeeYZREdH45tvvkGnTp3w0ksvleuxdejQAUuXLsWnn36Kxo0bw9XVtUJ/bEuSnZ2tcxrrhx9+QF5e3iOfjrOwsMC3336L4OBgLF26FG+++SaA4tO6ISEhCAgIwNixY+VLz+3s7Eq8n1Rla9q0KcaOHYvjx4/Dzc0NK1asQHJyMlauXCm3+d///oeffvoJISEhmDJlChwdHbF69WrExcXh119/hUKhQE5ODmbMmIFvvvkGXbt2RZ8+fR66bbVajR07dgAoPo21cuVKZGdnV+ju3G3btsWoUaPw7bffIi0tDT169MDff/+N1atXY/DgwejZs6dO+4iICDRv3rxCHd6B4o7n2tfFjRs3sHjxYtja2uqFh+joaOzYsQMajQYXLlzAvHnz0KlTpxJvGujo6IiPPvoI06dPR9++fTFo0CBcuXIFixcvRtu2bfHaa68BKO6HOHfuXIwZMwY9evTAiBEj5EvPvb29MW3aNJ31mpubY8eOHRg1ahS6dOmCP//8E7///js++OCDMk87jR8/Hj/++CNef/11+U79VfnZaBAGuAKMSqG97PD48eNltsvLyxNvv/228PDwEBYWFqJbt24iMjJS9OjRQ++y3JycHPHhhx8KHx8fYWpqKtzd3cWzzz4rLl++LISo2KXnP/30kwgLCxOurq7CwsJCDBgwQFy9elVv+X/++UcMHTpUODk5CZVKJRo2bCiGDx8u9uzZo7Pthw0PXvr566+/iieffFJYWVkJKysr4efnJyZOnCiio6OFEEJMnjxZBAYGih07dujV9OAloFrffvut6NChg7CwsBA2NjaidevW4r333hM3b96U2zzqpeeSJImTJ0/qTC9pHxUUFIi5c+eKli1bCpVKJRwcHESHDh3ErFmzRHp6ut727lfaZb2FhYXC19dX79LzR9nepUuXRGBgoLCwsNDbDxkZGUKpVAobGxudS2fXrl0rAIiXX365xHoXL14s/Pz8hKmpqXBzcxNvvPGGuHv3rt5z1LJlyxKXT0pKEgMGDBA2NjYCgPxclvbe0b5m9+3bV+L6tLSX7WoHa2tr0b59e/HDDz+UuZx22ZIuYx4zZoywtbWVbxkhhBC7d+8W3bp1ExYWFsLW1lYMHDhQXLhwQWe5qrr0fMCAAeKvv/4Sbdq0ESqVSvj5+YmNGzfqtb18+bJ49tlnhb29vTA3NxedO3cW27dvl+dfv35deHl5ialTp5b4+nywjvI+t4/y/iosLBSzZs2SP9e8vLxEWFiYyMvL01snALF582ad6aXtswdpl9cOzs7Ook+fPiIyMlJu8+DnmEKhEPXr1xejRo2S931pnztLlizReT9MmDBB59YEWhs2bBDt2rUTKpVKODo6ipEjR+q8rrSPycrKSly+fFn06dNHWFpaCjc3NzFjxgydWwbcf+n5/aKjo4W5ubmYNm2azvTyfDbWBpIQj3E+g+qU/fv3o2fPnti4cWOlJPr4+Hj4+PggLi6u1BuqzZw5E/Hx8fzyR6LH4O3tjVatWmH79u2GLoWqyOjRo/HLL7+U2HWA2GeHiIiIjBz77JDBWFtbY+TIkWV2IG7Tpo389RdEREQVwbBDBuPs7Cx3/CvN/d/zQ0REVBHss0NERERGjX12iIiIyKgx7BAREZFRY58dFN/p8ubNm7CxsanS29ETERFR5RFCIDMzE56enjpfmP0ghh0U30b9Ub9wkYiIiGqGhIQEnbu2P4hhB4CNjQ2A4ifr/m8ZJiIioporIyMDXl5e8t/x0jDs4L9vUra1tWXYISIiqmUe1gWFHZSJiIjIqDHsEBERkVFj2CEiIiKjxrBDRERERo1hh4iIiIyaQcPOgQMHMHDgQHh6ekKSJGzZskVnviRJJQ7z5s2T23h7e+vNnzNnTjU/EiIiIqqpDBp2srOz0bZtWyxZsqTE+YmJiTrDihUrIEkShg0bptNu9uzZOu0mT55cHeUTERFRLWDQ++yEhIQgJCSk1Pnu7u4641u3bkXPnj3RqFEjnek2NjZ6bYmIiIiAWtRnJzk5Gb///jvGjh2rN2/OnDlwcnJCu3btMG/ePBQVFZW5rvz8fGRkZOgMREREZJxqzR2UV69eDRsbGwwdOlRn+pQpU9C+fXs4OjriyJEjCAsLQ2JiIr766qtS1xUeHo5Zs2ZVdclERERUA0hCCGHoIoDizsibN2/G4MGDS5zv5+eHp556CosWLSpzPStWrMCECROQlZUFlUpVYpv8/Hzk5+fL49rv1khPT+fXRRAREdUSGRkZsLOze+jf71pxZOfgwYOIjo7Ghg0bHtq2S5cuKCoqQnx8PJo1a1ZiG5VKVWoQIiIiIuNSK/rsfP/99+jQoQPatm370LZRUVFQKBRwdXWthsqIiIiopjPokZ2srCzExsbK43FxcYiKioKjoyMaNGgAoPgQ1caNG/F///d/estHRkbi2LFj6NmzJ2xsbBAZGYlp06bhpZdegoODQ7U9DiIiIqq5DBp2Tpw4gZ49e8rjoaGhAIBRo0Zh1apVAID169dDCIERI0boLa9SqbB+/XrMnDkT+fn58PHxwbRp0+T1EBEREdWYDsqGVN4OThUR8GQgkpKSy2zj7u6GyEMHKnW7RERExs6oOijXZklJyZiydFuZbRa+MbCaqiEiIqp7akUHZSIiIqKKYtghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Awadg4cOICBAwfC09MTkiRhy5YtOvNHjx4NSZJ0hn79+um0uXPnDkaOHAlbW1vY29tj7NixyMrKqsZHQURERDWZQcNOdnY22rZtiyVLlpTapl+/fkhMTJSHn376SWf+yJEjcf78eezatQvbt2/HgQMHMH78+KounYiIiGoJE0NuPCQkBCEhIWW2UalUcHd3L3HexYsXsWPHDhw/fhwdO3YEACxatAj9+/fHl19+CU9Pz0qvmYiIiGqXGt9nZ//+/XB1dUWzZs3wxhtv4Pbt2/K8yMhI2Nvby0EHAIKDg6FQKHDs2LFS15mfn4+MjAydgYiIiIxTjQ47/fr1w5o1a7Bnzx7MnTsXERERCAkJgVqtBgAkJSXB1dVVZxkTExM4OjoiKSmp1PWGh4fDzs5OHry8vKr0cRAREZHhGPQ01sO88MIL8u+tW7dGmzZt4Ovri/3796N3794VXm9YWBhCQ0Pl8YyMDAYeIiIiI1Wjj+w8qFGjRnB2dkZsbCwAwN3dHSkpKTptioqKcOfOnVL7+QDF/YBsbW11BiIiIjJOtSrsXL9+Hbdv34aHhwcAICAgAGlpaTh58qTcZu/evdBoNOjSpYuhyiQiIqIaxKCnsbKysuSjNAAQFxeHqKgoODo6wtHREbNmzcKwYcPg7u6Oy5cv47333kPjxo3Rt29fAEDz5s3Rr18/jBs3DsuWLUNhYSEmTZqEF154gVdiEREREQADH9k5ceIE2rVrh3bt2gEAQkND0a5dO3z88cdQKpU4c+YMnnnmGTRt2hRjx45Fhw4dcPDgQahUKnkd69atg5+fH3r37o3+/fvjySefxLfffmuoh0REREQ1jEGP7AQFBUEIUer8v/7666HrcHR0xI8//liZZREREZERqVV9doiIiIgeFcMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREaNYYeIiIiMGsMOERERGTWGHSIiIjJqDDtERERk1Bh2iIiIyKgx7BAREZFRY9ghIiIio8awQ0REREbNoGHnwIEDGDhwIDw9PSFJErZs2SLPKywsxPvvv4/WrVvDysoKnp6eeOWVV3Dz5k2ddXh7e0OSJJ1hzpw51fxIiIiIqKYyaNjJzs5G27ZtsWTJEr15OTk5OHXqFKZPn45Tp05h06ZNiI6OxjPPPKPXdvbs2UhMTJSHyZMnV0f5REREVAuYGHLjISEhCAkJKXGenZ0ddu3apTNt8eLF6Ny5M65du4YGDRrI021sbODu7l6ltRIREVHtVKv67KSnp0OSJNjb2+tMnzNnDpycnNCuXTvMmzcPRUVFZa4nPz8fGRkZOgMREREZJ4Me2XkUeXl5eP/99zFixAjY2trK06dMmYL27dvD0dERR44cQVhYGBITE/HVV1+Vuq7w8HDMmjWrOsomIiIiA6sVYaewsBDDhw+HEAJLly7VmRcaGir/3qZNG5iZmWHChAkIDw+HSqUqcX1hYWE6y2VkZMDLy6tqiiciIiKDqvFhRxt0rl69ir179+oc1SlJly5dUFRUhPj4eDRr1qzENiqVqtQgRERERMalRocdbdCJiYnBvn374OTk9NBloqKioFAo4OrqWg0VEhERUU1n0LCTlZWF2NhYeTwuLg5RUVFwdHSEh4cHnn32WZw6dQrbt2+HWq1GUlISAMDR0RFmZmaIjIzEsWPH0LNnT9jY2CAyMhLTpk3DSy+9BAcHB0M9LCIiIqpBDBp2Tpw4gZ49e8rj2n40o0aNwsyZM/Hbb78BAPz9/XWW27dvH4KCgqBSqbB+/XrMnDkT+fn58PHxwbRp03T64xAREVHdZtCwExQUBCFEqfPLmgcA7du3x9GjRyu7LCIiIjIiteo+O0RERESPimGHiIiIjBrDDhERERk1hh0iIiIyagw7REREZNQYdoiIiMioMewQERGRUWPYISIiIqPGsENERERGjWGHiIiIjBrDDhERERk1hh0iIiIyagw7REREZNQYdoiIiMioMewQERGRUWPYISIiIqPGsENERERGjWGHiIiIjBrDDhERERk1hh0iIiIyagw7REREZNQYdoiIiMioMewQERGRUWPYISIiIqPGsENERERGjWGHiIiIjBrDDhERERk1hh0iIiIyagw7REREZNQYdoiIiMioMewQERGRUWPYISIiIqNmYugCCEhMSoRP42alznd3d0PkoQPVWBEREZHxYNipATQaDaYs3Vbq/IVvDKzGaoiIiIwLT2MRERGRUWPYISIiIqPGsENERERGjWGHiIiIjBrDDhERERm1Cl+NlZ2djYiICFy7dg0FBQU686ZMmfLYhRERERFVhgod2fnnn3/QuHFjjBgxApMmTcKnn36KqVOn4oMPPsD8+fPLvZ4DBw5g4MCB8PT0hCRJ2LJli858IQQ+/vhjeHh4wMLCAsHBwYiJidFpc+fOHYwcORK2trawt7fH2LFjkZWVVZGHRUREREaoQmFn2rRpGDhwIO7evQsLCwscPXoUV69eRYcOHfDll1+Wez3Z2dlo27YtlixZUuL8L774AgsXLsSyZctw7NgxWFlZoW/fvsjLy5PbjBw5EufPn8euXbuwfft2HDhwAOPHj6/IwyIiIiIjVKHTWFFRUVi+fDkUCgWUSiXy8/PRqFEjfPHFFxg1ahSGDh1arvWEhIQgJCSkxHlCCMyfPx8fffQRBg0aBABYs2YN3NzcsGXLFrzwwgu4ePEiduzYgePHj6Njx44AgEWLFqF///748ssv4enpWZGHR0REREakQkd2TE1NoVAUL+rq6opr164BAOzs7JCQkFAphcXFxSEpKQnBwcHyNDs7O3Tp0gWRkZEAgMjISNjb28tBBwCCg4OhUChw7NixUtedn5+PjIwMnYGIiIiMU4XCTrt27XD8+HEAQI8ePfDxxx9j3bp1mDp1Klq1alUphSUlJQEA3NzcdKa7ubnJ85KSkuDq6qoz38TEBI6OjnKbkoSHh8POzk4evLy8KqVmIiIiqnkqFHY+//xzeHh4AAA+++wzODg44I033sCtW7fw7bffVmqBVSEsLAzp6enyUFlHo4iIiKjmqVCfnftPG7m6umLHjh2VVpCWu7s7ACA5OVkOVtpxf39/uU1KSorOckVFRbhz5468fElUKhVUKlWl10xEREQ1T4WO7PTq1QtpaWmVXIouHx8fuLu7Y8+ePfK0jIwMHDt2DAEBAQCAgIAApKWl4eTJk3KbvXv3QqPRoEuXLlVaHxEREdUOFTqys3//fr0bCVZEVlYWYmNj5fG4uDhERUXB0dERDRo0wNSpU/Hpp5+iSZMm8PHxwfTp0+Hp6YnBgwcDAJo3b45+/fph3LhxWLZsGQoLCzFp0iS88MILvBKLiIiIADzGHZQlSXrsjZ84cQI9e/aUx0NDQwEAo0aNwqpVq/Dee+8hOzsb48ePR1paGp588kns2LED5ubm8jLr1q3DpEmT0Lt3bygUCgwbNgwLFy587NqIiIjIOFQ47AwZMgRmZmYlztu7d2+51hEUFAQhRKnzJUnC7NmzMXv27FLbODo64scffyzX9oiIiKjuqXDYCQgIgLW1dWXWQkRERFTpKhR2JEnCu+++q3ePGyIiIqKapkJXY5V16omIiIioJqlQ2JkxYwZPYREREVGtUKHTWDNmzAAA3Lp1C9HR0QCAZs2awcXFpfIqIyIiIqoEFTqyk5OTg1dffRWenp4IDAxEYGAgPD09MXbsWOTk5FR2jUREREQVVqGwM23aNEREROC3335DWloa0tLSsHXrVkRERODtt9+u7BqJiIiIKqxCp7F+/fVX/PLLLwgKCpKn9e/fHxYWFhg+fDiWLl1aWfURERERPZYKn8Zyc3PTm+7q6srTWERERFSjVCjsBAQEYMaMGcjLy5On5ebmYtasWfKXdBIRERHVBBU6jTV//nz069cP9evXR9u2bQEAp0+fhrm5Of76669KLZCIiIjocVQo7LRu3RoxMTFYt24dLl26BAAYMWIERo4cCQsLi0otkIiIiOhxVCjsHDhwAF27dsW4ceMqux4iIiKiSlWhPjs9e/bEnTt3KrsWIiIiokrH78YiIiIio1ah01gAEBkZCQcHhxLnBQYGVrggIiIiospU4bAzZMiQEqdLkgS1Wl3hgoiIiIgqU4VOYwFAUlISNBqN3sCgQ0RERDVJhcKOJEmVXQcRERFRlWAHZSIiIjJqFeqzo9FoKrsOIiIioipRoSM74eHhWLFihd70FStWYO7cuY9dFBEREVFlqVDYWb58Ofz8/PSmt2zZEsuWLXvsooiIiIgqS4XCTlJSEjw8PPSmu7i4IDEx8bGLIiIiIqosFQo7Xl5eOHz4sN70w4cPw9PT87GLIiIiIqosFeqgPG7cOEydOhWFhYXo1asXAGDPnj1477338Pbbb1dqgURERESPo0Jh591338Xt27fx5ptvoqCgAABgbm6O999/H2FhYZVaIBEREdHjqFDYkSQJc+fOxfTp03Hx4kVYWFigSZMmUKlUlV0fERER0WOp8HdjAYC1tTU6depUWbUQERERVboKh50TJ07g559/xrVr1+RTWVqbNm167MKIiIiIKkOFrsZav349unbtiosXL2Lz5s0oLCzE+fPnsXfvXtjZ2VV2jUREREQVVqGw8/nnn+Prr7/Gtm3bYGZmhgULFuDSpUsYPnw4GjRoUNk1EhEREVVYhcLO5cuXMWDAAACAmZkZsrOzIUkSpk2bhm+//bZSCyQiIiJ6HBUKOw4ODsjMzAQA1KtXD+fOnQMApKWlIScnp/KqIyIiInpMFeqgHBgYiF27dqF169Z47rnn8NZbb2Hv3r3YtWsXevfuXdk1EhEREVVYhcLO4sWLkZeXBwD48MMPYWpqiiNHjmDYsGH46KOPKrVAIiIiosfxSGEnIyOjeCETE1hbW8vjb775Jt58883Kr46IiIjoMT1S2LG3t4ckSQ9tp1arK1wQERERUWV6pLCzb98+nXEhBPr374/vvvsO9erVq9TCiIiIiCrDI4WdHj166E1TKpV44okn0KhRo0orioiIiKiyVOjS8+rk7e0NSZL0hokTJwIAgoKC9Oa9/vrrBq6aiIiIaorH+iLQhIQE5OTkwMnJqbLq0XP8+HGdPkDnzp3DU089heeee06eNm7cOMyePVset7S0rLJ6iIiIqHZ5pLCzcOFC+ffU1FT89NNP6NWrV5V+H5aLi4vO+Jw5c+Dr66tzSs3S0hLu7u5VVgMRERHVXo8Udr7++msAgCRJcHZ2xsCBA6v1vjoFBQVYu3YtQkNDda4KW7duHdauXQt3d3cMHDgQ06dPL/PoTn5+PvLz8+Vx7SX0REREZHweKezExcVVVR3lsmXLFqSlpWH06NHytBdffBENGzaEp6cnzpw5g/fffx/R0dHYtGlTqesJDw/HrFmzqqHi8itUa5CRWwgHSzMoFA+/vJ+IiIjKRxJCCEMXUV59+/aFmZkZtm3bVmqbvXv3onfv3oiNjYWvr2+JbUo6suPl5YX09HTY2tpWas0+jZthytLS601Mz8Wajb/ByrcD1BoBN1sV+rV0h72lmdxm4RsDERcbXal1ERER1XYZGRmws7N76N/vGn81ltbVq1exe/duvPbaa2W269KlCwAgNja21DYqlQq2trY6gyFk5BZiS9RNmPu0h1ojIAFIzsjHT38n4PKtLIPUREREZGxqTdhZuXIlXF1dMWDAgDLbRUVFAQA8PDyqoaqKU2sE/jyXhIIiDQqSYjCySwOM7uYNTztzFKg1+Ot8EjLzCg1dJhERUa1XK8KORqPBypUrMWrUKJiY/NfN6PLly/jkk09w8uRJxMfH47fffsMrr7yCwMBAtGnTxoAVP9zRK7eRlJEHMxMF7v65AM7WKtiam2JY+/rwsDNHoVrgYEyqocskIiKq9WpF2Nm9ezeuXbuGV199VWe6mZkZdu/ejT59+sDPzw9vv/02hg0bVmafnpogI7cQJ6/eBQAE+7lCnXlLnqdQSOjZzBUSgJiULFy9nW2gKomIiIzDY91UsLr06dMHJfWj9vLyQkREhAEqejznbqZDAKjvYIEmbjZ6811sVGhb3x5R19Ow/99bEFKtyKREREQ1Ev+KVjO1RuDcjeL7+rSpX/rNGJ/wdYSFqRJpOYWAZ6vqKo+IiMjoMOxUs9iULOQWqmGlUqKRs3Wp7VQmSrT0vHeVWKOu1VQdERGR8WHYqWZnbqQBAFp52kH5kJsHtq5378iPW1Neik5ERFRBDDvV6HZWPm6m5UGSisPOw9hamMLH2QoAsO7otaouj4iIyCgx7FSj2HtHZ7ydrGBtXr6+4dqjO7+cTEBugfohrYmIiOhBDDvVKD41BwDQ6N7RmvJo6GQJZN9GRl4R/jyXWFWlERERGS2GnWqSU1CEpIw8AMVHdspLIUnA1RMAgD/OJlVJbURERMaMYaeaXL1dfFTHxVpV7lNYsutnAAAHYm7xKySIiIgeEcNONYlLLb4Tsrez5aMvnJGIRs5WKCjSYO+llEqujIiIyLgx7FQDtUbg6p3iIzs+j9BfR0sCENLaHQDwJ09lERERPRKGnWqQmJ6LgiINLEyVcLM1r9A6QloVf4v7vugUZOcXVWZ5RERERo1hpxrE3+uv09DJsrjDcQW09LRFA0dL5BdpsD/61sMXICIiIgAMO9Xixt1cAEADxwr017lHkiT5VNaO8zyVRUREVF4MO1VMKE2Rkll8ybmnvcVjreup5m4AgAP/3oJao/8t8ERERKSPYaeqOTaARgBWKiVsH/WS8wf4e9nDzsIU6bmFiEq4W0kFEhERGTeGnarm5AMAqGdnAamC/XW0TJQKdG/iDADYd4n9doiIiMqDYaeqOTcC8PinsLR6NnMFUHxVFhERET0cw04VUmsE4OQNoPLCTo9mLgCA8zczkHLv6yeIiIiodAw7VehiYgZgag4zpQJO1maVsk5naxXa1C/+JvT9//JUFhER0cMw7FShE/F3AAAe9uYVvr9OSYLuncraz1NZRERED8WwU4WOXy2+YsrTrnJOYWn1vHcq62BMKorUmkpdNxERkbFh2KkiQggcjys+slOvkvrraLWpbw9bcxNk5hXhzI30Sl03ERGRsWHYqSJCAJ8ObgVE74ObrapS161USOjqW3wJ+uGY1EpdNxERkbFh2KkiCoWEPi3dIZ3dBhNl5T/NT967387BWIYdIiKisjDs1FLamwv+c+0uvwWdiIioDAw7tVQDR0vUd7BAoVrg73t9g4iIiEgfw04tJUmSfHTnIPvtEBERlYphpxbr1vheJ2X22yEiIioVw04t1s3XGZIERCdn8qsjiIiISsGwU4s5WJmhlWfxV0cc4tEdIiKiEjHs1HLaU1kMO0RERCVj2KnltJ2UD8WkQghh4GqIiIhqHhNDF0APl5iUCJ/GzUqcJxQmwKDPkJIJxKRkoambTTVXR0REVLMx7NQCGo0GU5ZuK3X+gh+3A27NcCgmlWGHiIjoATyNZQyS/wXAfjtEREQlYdgxBsnRAICjV26jUK0xcDFEREQ1C8OOMUhPhJOVGXIK1PjnWpqhqyEiIqpRGHaMgASBrtpL0GNuGbgaIiKimoVhx0h05/12iIiISsSwYyS63bvfzunr6cjIKzRwNURERDVHjQ47M2fOhCRJOoOfn588Py8vDxMnToSTkxOsra0xbNgwJCcnG7Biw6lnb4FGzlZQawQiL982dDlEREQ1Ro0OOwDQsmVLJCYmysOhQ4fkedOmTcO2bduwceNGRERE4ObNmxg6dKgBqzWsJ5vwW9CJiIgeVONvKmhiYgJ3d3e96enp6fj+++/x448/olevXgCAlStXonnz5jh69CieeOKJ6i7V4Lo1dsaayKs4FMOwQ0REpFXjj+zExMTA09MTjRo1wsiRI3Ht2jUAwMmTJ1FYWIjg4GC5rZ+fHxo0aIDIyMgy15mfn4+MjAydwRgE+DpBqZBwJTUbN9JyDV0OERFRjVCjw06XLl2watUq7NixA0uXLkVcXBy6d++OzMxMJCUlwczMDPb29jrLuLm5ISkpqcz1hoeHw87OTh68vLyq8FFUH1tzU7StbwcAOMyjO0RERABqeNgJCQnBc889hzZt2qBv3774448/kJaWhp9//vmx1hsWFob09HR5SEhIqKSKDe/Je5egH2S/HSIiIgA1POw8yN7eHk2bNkVsbCzc3d1RUFCAtLQ0nTbJyckl9vG5n0qlgq2trc5gLJ5s4gIAOBKbCo1GGLgaIiIiw6tVYScrKwuXL1+Gh4cHOnToAFNTU+zZs0eeHx0djWvXriEgIMCAVRpWuwb2sDJT4nZ2AS4mGUdfJCIiosdRo8POO++8g4iICMTHx+PIkSMYMmQIlEolRowYATs7O4wdOxahoaHYt28fTp48iTFjxiAgIKBOXomlZapUoEsjJwDgVVlERESo4WHn+vXrGDFiBJo1a4bhw4fDyckJR48ehYtL8amar7/+Gk8//TSGDRuGwMBAuLu7Y9OmTQau2vCe5FdHEBERyWr0fXbWr19f5nxzc3MsWbIES5YsqaaKaofu924u+HfcHeQVqmFuqjRwRURERIZTo4/sUMU0drWGm60K+UUanLx619DlEBERGRTDjhGSJAndeCqLiIgIAMOO0dKeymInZSIiqusYdoyU9sjOuZvpuJWZb+BqiIiIDIdhx0i52pijdT07CAHsj04xdDlEREQGw7BjxHr6uQIA9jHsEBFRHcawY8R63Qs7B/5NRUGRxsDVEBERGQbDjhFrU88OztZmyMovwon4O4Yuh4iIyCAYdoyYQiEhqFnx0Z09l3gqi4iI6iaGHSPXW9tvh2GHiIjqKIYdI/dkE2eYKiVcSc1GXGq2ocshIiKqdgw7Rs7G3BRdfIq/BX3n+SQDV0NERFT9GHbqgL6t3AEAOxh2iIioDmLYqQP6tHADAPxzLQ3JGXkGroaIiKh6MezUAW625mjfwB4AT2UREVHdw7BTR/RtyVNZRERUN5kYugB6fIlJifBp3KzMNs7ezYCOE3D0yh2k5RTA3tKsmqojIiIyLIYdI6DRaDBl6bYy2yx8YyD8nrbBpaRM7LqQjOc6elVTdURERIbF01h1SEgrDwDA9jOJBq6EiIio+jDs1CED2xaHnUOxqbidlW/gaoiIiKoHw04d0sjFGq3r2UGtEfjjLI/uEBFR3cCwU8cM8vcEAPx2+qaBKyEiIqoeDDt1zNNtPCFJwPH4u7iRlmvocoiIiKocw04d425nji4+jgCAbTy6Q0REdQDDTh00yL8eAGDzqRsQQhi4GiIioqrFsFMH9W/tAZWJAtHJmTh9Pd3Q5RAREVUphp06yM7CFCH3vgl9w/EEA1dDRERUtRh26qjhnYrvoLzt9E3kFqgNXA0REVHVYdipo57wcUIDR0tk5RfxnjtERGTUGHbqKIVCwvCO9QEAG07wVBYRERkvhp067NkOXlBIwN9xd/BvcqahyyEiIqoSDDt1mLudOZ5q4QYAWH0k3rDFEBERVRGGnTpudFcfAMCmUzeQnlto4GqIiIgqH8NOHfdEI0c0c7NBbqEaG9l3h4iIjBDDTh0nSRJGd/MGAKyJvAq1hndUJiIi48KwQxjsXw92Fqa4dicHuy8mG7ocIiKiSmVi6ALI8CzMlCj69wDgFYAJCzYBexdAeqCNu7sbIg8dMEh9REREj4NhhwAA2VF/QtmwK9SODTH0sw3wcrTUmb/wjYEGqoyIiOjx8DQWAQCk/Cy09LQFABy/esfA1RAREVUehh2SdWjgAEkCEu7kIjkjz9DlEBERVQqGHZLZWpiimZsNAOBYHI/uEBGRcajRYSc8PBydOnWCjY0NXF1dMXjwYERHR+u0CQoKgiRJOsPrr79uoIprv84+jpAkIC41G4npuYYuh4iI6LHV6LATERGBiRMn4ujRo9i1axcKCwvRp08fZGdn67QbN24cEhMT5eGLL74wUMW1n4OlGVp4FPfdOXL5toGrISIienw1+mqsHTt26IyvWrUKrq6uOHnyJAIDA+XplpaWcHd3r+7yjFZnH0dcSszE9bu5uHYnBw0euDKLiIioNqnRR3YelJ6eDgBwdHTUmb5u3To4OzujVatWCAsLQ05OTpnryc/PR0ZGhs5A/7E1N0XrenYAgMOxqRCCd1UmIqLaq0Yf2bmfRqPB1KlT0a1bN7Rq1Uqe/uKLL6Jhw4bw9PTEmTNn8P777yM6OhqbNm0qdV3h4eGYNWtWdZRda3X0dsCFxAykZObjUlKmocshIiKqsFoTdiZOnIhz587h0KFDOtPHjx8v/966dWt4eHigd+/euHz5Mnx9fUtcV1hYGEJDQ+XxjIwMeHl5VU3htZSVygSdvB1w+PJtHL6cCqE0M3RJREREFVIrws6kSZOwfft2HDhwAPXr1y+zbZcuXQAAsbGxpYYdlUoFlUpV6XXWZIlJifBp3KzU+UnJSXrT/L3scfZGOjLyigC/XlVZHhERUZWp0WFHCIHJkydj8+bN2L9/P3x8fB66TFRUFADAw8OjiqurXTQaDaYs3Vbq/PcHtdebZqJUoHsTF/x+NhFo2hNXb2ejoZNVVZZJRERU6Wp0B+WJEydi7dq1+PHHH2FjY4OkpCQkJSUhN7f4/i+XL1/GJ598gpMnTyI+Ph6//fYbXnnlFQQGBqJNmzYGrt44+LpYwcvBAlCa4qMt59hZmYiIap0aHXaWLl2K9PR0BAUFwcPDQx42bNgAADAzM8Pu3bvRp08f+Pn54e2338awYcOwbVvpRzDo0UiShJ5+roC6EAdjUvHb6ZuGLomIiOiR1PjTWGXx8vJCRERENVVTdzlYmgEXdwGt+uOT7RfQo6kL7C3ZYZmIiGqHGn1kh2qQf/ehsas1UrMKMPO384auhoiIqNxq9JEdqjmSbl4H1n8G9JyMLVE3sWXp55BunNFp4+7uhshDBwxUIRERUckYdqhcNBoN3vpsMQ7HpuLE1buwCByLkV0awEr130to4RsDDVghERFRyXgaix5Jl0aOcLY2Q26hGrsvJvPqLCIiqvEYduiRmCgU6NPCHUqFhPjbOfjnWpqhSyIiIioTww49MhcbFQKbOAMADl9ORVJ6noErIiIiKh3DDlVI63p2aOJqDY0A/jiXiJyCIkOXREREVCKGHaoQSZLQu7kr7C1MkZlXhD/OJkFIfDkREVHNw79OVGEqEyUGtvWEmVKBG2m5gP8QQ5dERESkh2GHHoujlRn6tnQrHvHthu8OXjFsQURERA9g2KHH1sjFGk82Lu6w/OnvF7E16oaBKyIiIvoPww5VivYN7IGY4rsnv7PxNCL+vWXYgoiIiO5h2KFKIUkScHorBrTxQKFaYNyaEzgYw8BDRESGx7BDlUaCwNfD/RHc3A0FRRq8tpqBh4iIDI9hhyqVmYkCS0a2Q28/V+QXafDqquPYfuamocsiIqI6jGGHKp3KRIlvXmqP/q3dUagWmPzTP1hxKI7fo0VERAbBsENVQmWixKIR7fHyEw0hBDB7+wX879ezyC9SG7o0IiKqYxh2qMooFRJmD2qJsBA/SBKw4UQCXvj2KBLu5Bi6NCIiqkMYdqhKSZKECT18sXJ0J9iam+Cfa2nov+Ag78VDRETVxsTQBVDdENTMFdsnd8fUDf/g1LU0vLU+Cn+eTcLMZ1rC3c4cABDwZCCSkpLLXI+7uxsiDx2ojpKJiMhIMOxQtWngZImfJwRg4d5YLNkXix3nk3AoNhXTnmqKl59oiKSkZExZuq3MdSx8Y2A1VUtERMaCp7GoWpkoFQh9qim2TXoSbb3skZVfhE+2X0CfryMg6rXhFVtERFTpGHbIIFp42mLTG13x+ZDWcLY2Q/ztHCBgNNYevYaLiRnQaBh6iIiocjDskMEoFRJe7NIA+9/tiSm9GgMFubiTU4CdF5KxOjIeZ66noVCtMXSZRERUyzHskMFZq0wQ2qcZ8Mcn6OrrBAtTJTLyirAv+ha+PxSHiH9v4U52gaHLJCKiWoodlKnGkIry0MnbEf5e9jh/MwP/XLuLjLwiRCWkISohDfXtLSDq+yOvUA1zU6WhyyUiolqCYYdqHFOlAv5e9mhb3w5X7+Tg7PV0xKVm43paLvDEK+j06W4MaOOBoe3ro2NDBygUkqFLJiKiGoxhh6rNw+6jk5ScpDMuSRK8nazg7WSFzLxCnLuRgb/PxyITjlh/PAHrjyfAy9ECQ9rVx9B29eDtbFXVD4GIiGohhh2qNg+7j877g9qXOs/G3BQBvk74+8sxWL/zMDaduo4/ziYh4U4uFu6JwcI9MfD3ssfTbTzQv7UHPO0tquIhEBFRLcSwQ5UmMSkRPo2blTr/wSM3FSFB4IlGTniikRNmPdMKOy8kYdOpGzgYc0vu2/Pp7xeB1DjgehRw/QykvHR5+fLcgflhR6B4F2ciotqFYYcqjUajqfCRm4qwMFNikH89DPKvh5TMPOw4l4SPv/sNcPEFnH2KB/8h8LA3h6+LNXxdrLE6dOhD1/uwI1C8izMRUe3CsEO1ysOOHiUnJ+GDHyMReysL/yZnIjE9DzfTioeDManAU+/iy7+iEdzCDW3q2bFzMxFRHcCwQ7VKeY4eWZubwN/LHv5e9sjMK0RsShaupGbjRlouhJ0HFu+LxeJ9sXC1UaF3czf0aOqCro2dYGtuWo2PhIiIqgvDDhk1G3NTtGvggHYNHJBXqMbyLz/BgLHvYH90ClIy8/HT39fw09/XoFRIaOdlj8CmLhCODaARAgqJR32IiIwBww7VGeamSkjXTmLJyPbIL1Ij8vJt7L2UgkMxqbiSmo0TV+/ixNW7QK+p+PbAFTRwtCwenCx51IeIqBZj2KE6SWWiRFAzVwQ1cwUAJNzJwcGYVByMuYU/T8UhHxaISclCTEoWAMDOwhT17C1Q38ECwtLBkKUTEdEjYtghAuDlaIkXuzTAi10awHvWSxgevh5Xb+fg2p0cJKXnIT23EOm5hbiQmAH0n45uc/aiSyNHPOHjhHYN7OHrYs3OzkRENRTDDtEDJKGBh50FPOws8EQjJ+QXqZGYlofrabm4cTcXSWnFnZ03nbqBTaduAABsVCZo42V3r2O0A/y97OFiozLwIyEiIoBhh+qYh126Dujf/FBlooS3s5X8dRQLJj+L1b/twbErt3Ei/i7O3khHZn4RDsfexuHY2/8tmHMXSE/8b8hIBDJTIWkKeWNCIqJqxLBDdcrDLl0HHn7zQ6koHz2auqBHUxcAQJFag+jkzOI7OF9Lw8a9JwA7d8DSoXjwaKGzvJXKBInXo/HeL6fh5WAJV1sVXG3M4WKjgquNCnaWplCZ8FvdiYgqi9GEnSVLlmDevHlISkpC27ZtsWjRInTu3NnQZVEdYKJUoKWnHVp62mFkl4b4JWw4JizagtTMAqRm5+N2VgFSs/JxO7sABUUaZOUXAS6++PnE9VLXaWaigK25CWzMTWFppoSJUgEThQSlQtL5qZAkCABCiHs/IY8f+/s4CgoK7q1RAqR7P+/9XlhYCFOlAigqANSFgLoAKLr3U10IFObBzsoMc2Z+BOt7tVirTOS6zE0VkKr48nyNRiC3UI3s/CJkFxT/zClQI7ugCDn5xeOffvEVMnLzARMVoLj3kSZJ9z1WCZaWlhj+7FCYmShgplTAVKmAqYkEM6VCZ5rKVAFzEyXMTZUwN1XIP0eMGIFbSYn3nqdCSEKjV2t1HK3jV5kQVYxRhJ0NGzYgNDQUy5YtQ5cuXTB//nz07dsX0dHRcHV1NXR5VAepTJSo52CBeg7/fSGpEAJ5hRqk5xZiw5JwTPtwNm6k5SAlMx8pGflIyczH7ex8CAEUFGmQmlWA1KyCMrbyEA4+Zc4uz8X06QDeWHeqxHkmCgnW5iawVhWHHxtzE9ioTGBjbgIrlQmU98IYUJw9FJIECcVhLK9QjbxCzb2fauQVFY/nFKiRU1CE7PzinzkF6ocX6Rv80CY5AFYdiS/HIy5Fpzd0RiUJMFEoikOnsjh4Jt64gmeXHpEDkspUeS84FYcmi/sClMpUCVOFBG1WLH5mgAd+3NuWJE9LNPNCn4+/+q/NA8vv+P4LbDt9E5JUPE26l3Gle43/G5fk6dq2KGnefcvgwfF7xP2/3z8CwEQpyUFSGyrNTBQwVUr3fiqgMqn60ExkFGHnq6++wrhx4zBmzBgAwLJly/D7779jxYoV+N///mfg6sjYVPQLTyVJgoWZEhZmSkgJp/BWcBO9NmqNQFZ+EYKfHoJbaVmAqTmgVAEKBSApAEkp/25n74Cw/71f6h+rt999D31Hh+r9QdT+XVk3732MeGcOitQChWoNCjUCRWqNPF6g1uDMsYMwt7YDTMyLazG1AExVgKRAkUYgLacQaTmFAHIf4xktB6EpPgJVlH/fUDyel5WO9oF9YaZUFD81D/yxBoC9P/8/WNvYFh/5USh1fyqVUFlYoUtAV+QXqpFXpEF+oRq52iBWqEF6Vg6g/C8eagRQoNYAagCF9yY6eBXfp6kqdX4ROy+UfmQHT7yCyT/9U7U1VAEzk+LQozJRFv80ve93k+LgqLq/jWlxcLq/namyOFxLkgSlBCgUxb8rJEApaedBDuHaAF4aUeqc4n9cHlVZiwgIqDWAWqMp/ikENBqBIk3xT7UQUGv+GzTivnn32ml/Fqk1//2uKX4/F8ltNChU67eNvRKHIrW499ny32cMFEr5p9Kk+PX/4HtL+7mTn59f/D598AELAQgNFBKw54MB8LnX97G61fqwU1BQgJMnTyIsLEyeplAoEBwcjMjIyBKXyc/PL94x96SnF38rdkZGRqXXp9GokZedVWYbIUSZbR53PrdRudtQq9UY/+VPpc7/eET3h25Do1GX+nqTAKTEXcLrX/1c5jqWhQ5Hf7/wUueL+L/hbasodX7uv5HwttHOL7mP0L4PwjH7p4O66xUChRqB/CI11n42DT/8+BOyC9TIyitEZl5R8SmnfDU0QkAIFP/Ef6fXIAHmyuI/WBamCoR//jl6v/g6TCQFTJRS8Smme0cATJQS5r7aFzPX7C71v/+PR3RH95fL/oLXzZEb8PYDj+N+y0KHY/H/vVrq/Nb+7THh/zYU/5EQAkXqB/9waPDbss/x9fz5yL93xCq/SI3cQk3xuFqNgvuOZOUXaVCk0dx7Pu89r/c9v/JzLU8r/nn4cCS8/Nr+Nx3F5y214zdjzqNTp47y6czieULn9Ob9pzuhM/7f7/fXIR5Yx5UrcbB39SzxedL+AUy5GQ8Xz4bQCEAD7R/p4tOSGiGgeeAPf14+kFfqs09VTmlZ8keARgBQA2o1NIWPcZQZEjQCyMzMQIZZOY7WPgLt5+hDA6io5W7cuCEAiCNHjuhMf/fdd0Xnzp1LXGbGjBnyZy8HDhw4cODAoXYPCQkJZWaFWn9kpyLCwsIQGhoqj2s0Gty5cwdOTk7lOneckZEBLy8vJCQkwNbWtipLpQriPqoduJ9qB+6n2qEu7ichBDIzM+HpWfLRRq1aH3acnZ2hVCqRnKx7Hjs5ORnu7u4lLqNSqaBS6d7wzd7e/pG3bWtrW2deULUV91HtwP1UO3A/1Q51bT/Z2dk9tE3pJ/RrCTMzM3To0AF79uyRp2k0GuzZswcBAQEGrIyIiIhqglp/ZAcAQkNDMWrUKHTs2BGdO3fG/PnzkZ2dLV+dRURERHWXUYSd559/Hrdu3cLHH3+MpKQk+Pv7Y8eOHXBzc6uS7alUKsyYMUPvVBjVHNxHtQP3U+3A/VQ7cD+VThKiAjcMICIiIqolan2fHSIiIqKyMOwQERGRUWPYISIiIqPGsENERERGjWHnES1ZsgTe3t4wNzdHly5d8Pfffxu6pDrtwIEDGDhwIDw9PSFJErZs2aIzXwiBjz/+GB4eHrCwsEBwcDBiYmIMU2wdFh4ejk6dOsHGxgaurq4YPHgwoqOjddrk5eVh4sSJcHJygrW1NYYNG6Z3s1CqOkuXLkWbNm3kG9IFBATgzz//lOdz/9RMc+bMgSRJmDp1qjyN+0ofw84j2LBhA0JDQzFjxgycOnUKbdu2Rd++fZGSkmLo0uqs7OxstG3bFkuWLClx/hdffIGFCxdi2bJlOHbsGKysrNC3b1/k5fFrB6tTREQEJk6ciKNHj2LXrl0oLCxEnz59kJ2dLbeZNm0atm3bho0bNyIiIgI3b97E0KFlf8EnVZ769etjzpw5OHnyJE6cOIFevXph0KBBOH/+PADun5ro+PHjWL58Odq0aaMznfuqBJXybZx1ROfOncXEiRPlcbVaLTw9PUV4eLgBqyItAGLz5s3yuEajEe7u7mLevHnytLS0NKFSqcRPP/1kgApJKyUlRQAQERERQoji/WJqaio2btwot7l48aIAICIjIw1VZp3n4OAgvvvuO+6fGigzM1M0adJE7Nq1S/To0UO89dZbQgi+l0rDIzvlVFBQgJMnTyI4OFieplAoEBwcjMjISANWRqWJi4tDUlKSzj6zs7NDly5duM8MLD09HQDg6OgIADh58iQKCwt19pWfnx8aNGjAfWUAarUa69evR3Z2NgICArh/aqCJEydiwIABOvsE4HupNEZxB+XqkJqaCrVarXdXZjc3N1y6dMlAVVFZkpKSAKDEfaadR9VPo9Fg6tSp6NatG1q1agWgeF+ZmZnpfSEv91X1Onv2LAICApCXlwdra2ts3rwZLVq0QFRUFPdPDbJ+/XqcOnUKx48f15vH91LJGHaIqFpNnDgR586dw6FDhwxdCj2gWbNmiIqKQnp6On755ReMGjUKERERhi6L7pOQkIC33noLu3btgrm5uaHLqTV4GqucnJ2doVQq9Xq0Jycnw93d3UBVUVm0+4X7rOaYNGkStm/fjn379qF+/frydHd3dxQUFCAtLU2nPfdV9TIzM0Pjxo3RoUMHhIeHo23btliwYAH3Tw1y8uRJpKSkoH379jAxMYGJiQkiIiKwcOFCmJiYwM3NjfuqBAw75WRmZoYOHTpgz5498jSNRoM9e/YgICDAgJVRaXx8fODu7q6zzzIyMnDs2DHus2omhMCkSZOwefNm7N27Fz4+PjrzO3ToAFNTU519FR0djWvXrnFfGZBGo0F+fj73Tw3Su3dvnD17FlFRUfLQsWNHjBw5Uv6d+0ofT2M9gtDQUIwaNQodO3ZE586dMX/+fGRnZ2PMmDGGLq3OysrKQmxsrDweFxeHqKgoODo6okGDBpg6dSo+/fRTNGnSBD4+Ppg+fTo8PT0xePBgwxVdB02cOBE//vgjtm7dChsbG7nvgJ2dHSwsLGBnZ4exY8ciNDQUjo6OsLW1xeTJkxEQEIAnnnjCwNXXDWFhYQgJCUGDBg2QmZmJH3/8Efv378dff/3F/VOD2NjYyH3dtKysrODk5CRP574qgaEvB6ttFi1aJBo0aCDMzMxE586dxdGjRw1dUp22b98+AUBvGDVqlBCi+PLz6dOnCzc3N6FSqUTv3r1FdHS0YYuug0raRwDEypUr5Ta5ubnizTffFA4ODsLS0lIMGTJEJCYmGq7oOubVV18VDRs2FGZmZsLFxUX07t1b7Ny5U57P/VNz3X/puRDcVyWRhBDCQDmLiIiIqMqxzw4REREZNYYdIiIiMmoMO0RERGTUGHaIiIjIqDHsEBERkVFj2CEiIiKjxrBDRERERo1hh4joMezfvx+SJOl9FxER1RwMO0RULUaPHg1JkjBnzhyd6Vu2bIEkSeVej7e3N+bPn1/J1ZVPUFAQpk6dapBtE1HFMewQUbUxNzfH3LlzcffuXUOX8kgKCgoMXQIRPQaGHSKqNsHBwXB3d0d4eHipbQ4dOoTu3bvDwsICXl5emDJlCrKzswEUH1m5evUqpk2bBkmSIEkShBBwcXHBL7/8Iq/D398fHh4eOutUqVTIyckBAFy7dg2DBg2CtbU1bG1tMXz4cCQnJ8vtZ86cCX9/f3z33Xfw8fGBubk5Ro8ejYiICCxYsEDednx8vLzMyZMn0bFjR1haWqJr166Ijo6urKeNiB4Tww4RVRulUonPP/8cixYtwvXr1/XmX758Gf369cOwYcNw5swZbNiwAYcOHcKkSZMAAJs2bUL9+vUxe/ZsJCYmIjExEZIkITAwEPv37wcA3L17FxcvXkRubi4uXboEAIiIiECnTp1gaWkJjUaDQYMG4c6dO4iIiMCuXbtw5coVPP/88zq1xMbG4tdff8WmTZsQFRWFBQsWICAgAOPGjZO37eXlJbf/8MMP8X//9384ceIETExM8Oqrr1bRs0hEj8rE0AUQUd0yZMgQ+Pv7Y8aMGfj+++915oWHh2PkyJFyv5gmTZpg4cKF6NGjB5YuXQpHR0colUrY2NjA3d1dXi4oKAjLly8HABw4cADt2rWDu7s79u/fDz8/P+zfvx89evQAAOzZswdnz55FXFycHFbWrFmDli1b4vjx4+jUqROA4lNXa9asgYuLi7wdMzMzWFpa6mxb67PPPpO38b///Q8DBgxAXl4ezM3NK+mZI6KK4pEdIqp2c+fOxerVq3Hx4kWd6adPn8aqVatgbW0tD3379oVGo0FcXFyp6+vRowcuXLiAW7duISIiAkFBQQgKCsL+/ftRWFiII0eOICgoCABw8eJFeHl56RyVadGiBezt7XXqadiwoU7QeZg2bdrIv2tPoaWkpJR7eSKqOgw7RFTtAgMD0bdvX4SFhelMz8rKwoQJExAVFSUPp0+fRkxMDHx9fUtdX+vWreHo6IiIiAidsBMREYHjx4+jsLAQXbt2faQaraysHqm9qamp/Lv26jKNRvNI6yCiqsHTWERkEHPmzIG/vz+aNWsmT2vfvj0uXLiAxo0bl7qcmZkZ1Gq1zjRJktC9e3ds3boV58+fx5NPPglLS0vk5+dj+fLl6NixoxxemjdvjoSEBCQkJMhHdy5cuIC0tDS0aNGizJpL2jYR1Xw8skNEBtG6dWuMHDkSCxculKe9//77OHLkCCZNmoSoqCjExMRg69atcgdloPg+OwcOHMCNGzeQmpoqTw8KCsJPP/0Ef39/WFtbQ6FQIDAwEOvWrZP70gDFV4Rpt33q1Cn8/fffeOWVV9CjRw907NixzJq9vb1x7NgxxMfHIzU1lUduiGoJhh0iMpjZs2frBIY2bdogIiIC//77L7p374527drh448/hqenp84y8fHx8PX11elT06NHD6jVarlvDlAcgB6cJkkStm7dCgcHBwQGBiI4OBiNGjXChg0bHlrvO++8A6VSiRYtWsDFxQXXrl17vCeAiKqFJIQQhi6CiIiIqKrwyA4REREZNYYdIiIiMmoMO0RERGTUGHaIiIjIqDHsEBERkVFj2CEiIiKjxrBDRERERo1hh4iIiIwaww4REREZNYYdIiIiMmoMO0RERGTUGHaIiIjIqP1/7ab6IMSBaVQAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWLElEQVR4nO3deVwV9f4/8NecAxz2fVdQRMUVUVRCBTExRVNTy5tZaZl6Sy217UtlLmVods01rV+LWZZmuWSL5QouaG64S2jgyiIq+37O5/cHMnnYBAQODK/n4zEPmP09M+ccXsx8Zo4khBAgIiIiUiiVoQsgIiIiqksMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtEREQPQAiB27dvIy4uztClUAUYdoiIAKxZswaSJOHo0aOGLoXuOnPmDLZs2SL3x8TE4NdffzVcQffIzMzEO++8Ax8fH5iYmMDBwQFt27ZFbGysoUujcjDsKEzJB3ZJZ2pqirZt22Lq1KlITk42dHnUAI0fPx6SJMHX1xflfXuMJEmYOnVqjZb9wQcf6P2xagg++eQTrFmzxtBlUBVkZmZi8uTJOHToEOLi4vDKK6/g9OnThi4Lt27dQmBgIJYtW4bHH38cW7duxY4dO7B37160bNnS0OVROYwMXQDVjXnz5sHLywt5eXnYv38/Vq1ahd9++w1nzpyBubm5ocujBuj06dPYtGkTRo0aVWvL/OCDD/D444/jscceq7VlPqhPPvkEjo6OGD9+vKFLofsIDAyUOwBo27YtJk6caOCqgNdffx2JiYmIjo5Gx44dDV0OVQHDjkKFhYWhe/fuAIAXXngBDg4OWLx4MbZu3YoxY8YYuDpqaMzMzODh4YF58+Zh5MiRkCTJ0CXVupycHAb9RmjLli04d+4ccnNz0blzZ5iYmBi0npSUFHz99ddYvXo1g04jwstYTcTDDz8MAIiPjwcA3L59G6+99ho6d+4MS0tLWFtbIywsDCdPniwzb15eHubMmYO2bdvC1NQUbm5uGDlyJC5dugQASEhI0Lt0VroLCQmRl7V3715IkoQNGzbgrbfegqurKywsLDBs2DBcvXq1zLoPHz6MQYMGwcbGBubm5ujbty8OHDhQ7jaGhISUu/45c+aUmfbbb7+Fv78/zMzMYG9vjyeffLLc9Ve2bffS6XRYsmQJOnbsCFNTU7i4uGDy5Mm4c+eO3nQtW7bEo48+WmY9U6dOLbPM8mpftGhRmX0KAPn5+Zg9ezZat24NjUYDDw8PvPHGG8jPzy93X5WmUqnwzjvv4NSpU9i8efN9p6/K+iRJQnZ2Nr7++mt5n40fPx6nTp2CJEn4+eef5WmPHTsGSZLQrVs3vfWEhYUhICBAb9gnn3yCjh07QqPRwN3dHVOmTEFaWpreNCEhIejUqROOHTuG4OBgmJub46233kLLli1x9uxZREZGlvv6LNm2mTNnwsnJCRYWFhgxYgRu3rx5331ScjmwpLOzs0NISAj27dtXrfnK6xISEuTpf//9dwQFBcHCwgJWVlYYMmQIzp49W2a5Fy5cwOjRo+Hk5AQzMzP4+Pjg7bffBgDMmTPnvuvcu3evvKyNGzfK7xdHR0c8/fTTuH79eo23v6rHsOTYdOjQAf7+/jh58mS577/ylP48cHR0xJAhQ3DmzBm96e53mbakaUDJMThy5Ah0Oh0KCgrQvXt3mJqawsHBAWPGjMGVK1fKzL979275eNna2mL48OE4f/683jQlx6PkmFlbW8PBwQGvvPIK8vLyytR77+dCUVERBg8eDHt7e5w7d05v2qp+zjUFPLPTRJQEEwcHBwDAP//8gy1btuCJJ56Al5cXkpOT8emnn6Jv3744d+4c3N3dAQBarRaPPvoodu3ahSeffBKvvPIKMjMzsWPHDpw5cwbe3t7yOsaMGYPBgwfrrTc8PLzceubPnw9JkvDmm28iJSUFS5YsQWhoKGJiYmBmZgag+EMiLCwM/v7+mD17NlQqFb766is8/PDD2LdvH3r27Flmuc2bN0dERAQAICsrCy+++GK56541axZGjx6NF154ATdv3sTy5csRHByMEydOwNbWtsw8kyZNQlBQEABg06ZNZQLB5MmTsWbNGjz33HN4+eWXER8fjxUrVuDEiRM4cOAAjI2Ny90P1ZGWliZv2710Oh2GDRuG/fv3Y9KkSWjfvj1Onz6Njz/+GH///XeV28w89dRTeO+99zBv3jyMGDGiwj8oVV3fN998gxdeeAE9e/bEpEmTAADe3t7o1KkTbG1tERUVhWHDhgEA9u3bB5VKhZMnTyIjIwPW1tbQ6XQ4ePCgPC9Q/Edh7ty5CA0NxYsvvojY2FisWrUKR44cKbOfb926hbCwMDz55JN4+umn4eLigpCQEEybNg2WlpbyH34XFxe97Zs2bRrs7Owwe/ZsJCQkYMmSJZg6dSo2bNhw333o6OiIjz/+GABw7do1LF26FIMHD8bVq1fLfV0Bxa+d0NBQuf+ZZ57BiBEjMHLkSHmYk5OTvE/HjRuHgQMHYuHChcjJycGqVavQp08fnDhxQm4vcurUKQQFBcHY2BiTJk1Cy5YtcenSJWzbtg3z58/HyJEj0bp1a3n5M2bMQPv27fX2dfv27QFAfl336NEDERERSE5OxtKlS3HgwIEy75eqbH91jmFpb7755n2OgL527drh7bffhhACly5dwuLFizF48OByQ0lV3bp1C0DxPyj+/v5YsGABbt68iWXLlmH//v04ceIEHB0dAQA7d+5EWFgYWrVqhTlz5iA3NxfLly9H7969cfz48TLte0aPHo2WLVsiIiIChw4dwrJly3Dnzh2sXbu2wnpeeOEF7N27Fzt27ECHDh3k4TX5nFM0QYry1VdfCQBi586d4ubNm+Lq1ati/fr1wsHBQZiZmYlr164JIYTIy8sTWq1Wb974+Hih0WjEvHnz5GFffvmlACAWL15cZl06nU6eD4BYtGhRmWk6duwo+vbtK/fv2bNHABDNmjUTGRkZ8vAffvhBABBLly6Vl92mTRsxcOBAeT1CCJGTkyO8vLzEgAEDyqyrV69eolOnTnL/zZs3BQAxe/ZseVhCQoJQq9Vi/vz5evOePn1aGBkZlRkeFxcnAIivv/5aHjZ79mxx71tn3759AoBYt26d3rzbt28vM7xFixZiyJAhZWqfMmWKKP12LF37G2+8IZydnYW/v7/ePv3mm2+ESqUS+/bt05t/9erVAoA4cOBAmfXda9y4ccLCwkIIIcTXX38tAIhNmzbp1TFlypQarc/CwkKMGzeuzDqHDBkievbsKfePHDlSjBw5UqjVavH7778LIYQ4fvy4ACC2bt0qhBAiJSVFmJiYiEceeUTvtbtixQoBQHz55ZfysL59+woAYvXq1WXWXfo1WaLkvRMaGqr3mpsxY4ZQq9UiLS2tzDz3GjdunGjRooXesM8++0wAEH/99Vel896r9HEvkZmZKWxtbcXEiRP1hiclJQkbGxu94cHBwcLKykpcvnxZb9p7t+teLVq0KPc4FRQUCGdnZ9GpUyeRm5srD//ll18EAPHuu+/Kw6qy/dU9hvcep99++00AEIMGDSrzXilP6fmFEOKtt94SAERKSoo8rPTru7SS10V8fLxef4cOHUROTo48Xcln26uvvioP8/PzE87OzuLWrVvysJMnTwqVSiWeffZZeVjJZ8qwYcP01v3SSy8JAOLkyZN69Za8PsLDw4VarRZbtmzRm6+6n3NNAS9jKVRoaCicnJzg4eGBJ598EpaWlti8eTOaNWsGANBoNFCpig+/VqvFrVu3YGlpCR8fHxw/flxezk8//QRHR0dMmzatzDoepF3Hs88+CysrK7n/8ccfh5ubG3777TcAxbeYxsXF4amnnsKtW7eQmpqK1NRUZGdno3///oiKioJOp9NbZl5eHkxNTStd76ZNm6DT6TB69Gh5mampqXB1dUWbNm2wZ88evekLCgoAFO+vimzcuBE2NjYYMGCA3jL9/f1haWlZZpmFhYV606WmppY5VV3a9evXsXz5csyaNQuWlpZl1t++fXu0a9dOb5klly5Lr78yY8eORZs2bTBv3rxy78yqrfUFBQXh+PHjyM7OBgDs378fgwcPhp+fn3zZY9++fZAkCX369AFQ/F9yQUEBpk+fLr92AWDixImwtrYuc0uyRqPBc889V+VtLzFp0iS913ZQUBC0Wi0uX75833l1Op28P2JiYrB27Vq4ubnJZ0kexI4dO5CWloYxY8bo7Xe1Wo2AgAB5v9+8eRNRUVF4/vnn4enpqbeM6r5njx49ipSUFLz00kt6760hQ4agXbt2Zfb5/ba/usewhBAC4eHhGDVqVJnLmpUpea/dvHkT0dHR2Lx5M3x9feUzLyXy8vKQmpqKW7dulflcqciUKVPks9BA8WUzf39/eRsSExMRExOD8ePHw97eXp7O19cXAwYMkD/rSi/zXiWfu+VNu2LFCkRERGDZsmUYPny43rjqfs41BbyMpVArV65E27ZtYWRkBBcXF/j4+Oh9uOh0OixduhSffPIJ4uPjodVq5XEll7qA4stfPj4+MDKq3ZdKmzZt9PolSULr1q3l6+IlD+caN25chctIT0+HnZ2d3J+amlpmuaXFxcVBCFHhdKVPoZe0IygdMEovMz09Hc7OzuWOT0lJ0ev/888/5csSVTV79my4u7tj8uTJ+PHHH8us//z58xUus/T6K6NWq/HOO+9g3Lhx2LJlC0aMGFFmmtpYX1BQEIqKihAdHQ0PDw+kpKQgKCgIZ8+e1Qs7HTp0kP9QlIQNHx8fvWWZmJigVatWZcJIs2bNatSYtXRAKHmNlW5/VZ6rV6/q7Rc3Nzf89NNPlb5+qqrkPVESKkuztrYGUHyJGgA6der0wOusaJ8DxZeI9u/frzfsfttf3WNYYt26dTh79ix++OEHfPfdd1Wu/+DBg3r1tGnTBlu2bCkT+r744gt88cUXci0BAQFYvHixfJPHvUrmbdeuXZlx7du3l9+fle279u3b448//kB2djYsLCz06ruXt7c3VCqVXpstoLjdVsnzoG7fvl1m+dX9nGsKGHYUqmfPnuW+UUt88MEHmDVrFp5//nm89957sLe3h0qlwvTp06v8n01dKqlh0aJF8PPzK3eae/+AFBQUIDExEQMGDLjvciVJwu+//w61Wl3pMgEgKSkJAODq6lrpMp2dnbFu3bpyx5cOBQEBAXj//ff1hq1YsQJbt24td/7z589jzZo1+Pbbb8v9kNLpdOjcuTMWL15c7vweHh4V1l6esWPHym13yrtlvDbWV9KwMyoqCp6ennB2dkbbtm0RFBSETz75BPn5+di3b1+5Yauq7v2vuzrKe10AqPBM171cXFzw7bffAigO419++SUGDRqE/fv3o3PnzjWqp0TJe+Kbb74p9/VY2/+Q1ERdbH9BQQFmzZqFCRMmoG3bttWa19fXF//73/8AQG5XExISguPHj+vtw+HDh2Pq1KkQQiA+Ph7z5s3Do48+Wu4TkWv6uqqJis7E/fXXX5g4cSIsLCzw/vvv44knntALVdX9nGsKDP/uIIP48ccf0a9fP/m/mRJpaWl6p3i9vb1x+PBhFBYW1up/A6U/RIQQuHjxInx9feX1AsX/rd7beLMiJ0+eRGFhYaUBr2S5Qgh4eXlV6YPz3LlzkCSp3P/O7l3mzp070bt37yp9EDo6OpbZpsoaEYeHh8PPzw//+c9/Klz/yZMn0b9//1q5Zbzk7M748ePLDWDVWV9F401MTNCzZ0/s27cPnp6ecuPvoKAg5OfnY926dUhOTkZwcLA8T4sWLQAAsbGxaNWqlTy8oKAA8fHxVXqdVFZTbTA1NdWrY9iwYbC3t8eKFSvw6aefPtCyS94Tzs7OlW5ryb4pfddRTdy7z0ufUYqNjZXHl7jf9tfkGH7yySdISUkp967K+7Gzs9NbZkhICNzd3fHVV1/p3TzRvHlzveksLS0xduxYnDhxoswyvby85G0ovU8uXLggNzq+d1tLu3DhAhwdHfXO6gDFn4slyweAixcvQqfTlWnIPGDAAKxatQp5eXnYsmULJk2aJN/pClT/c64pYJudJkqtVpf5T3Xjxo1lbicdNWoUUlNTsWLFijLLqMp/uhVZu3YtMjMz5f4ff/wRiYmJCAsLAwD4+/vD29sbH330EbKyssrMX/pW4I0bN0KtVpd7W/e9Ro4cCbVajblz55apXwgh32kBFN/S+dNPP6Fnz56V/ic0evRoaLVavPfee2XGFRUVlbmltjqio6OxdetWLFiwoMI/0qNHj8b169fx//7f/yszLjc3V24XUx1PP/00Wrdujblz5z7Q+iwsLCrc/qCgIBw+fBh79uyRw46joyPat2+PhQsXytOUCA0NhYmJCZYtW6Z37L744gukp6djyJAhVdq2ymqqbQUFBSgqKqryIwAqM3DgQFhbW+ODDz5AYWFhmfEl7wknJycEBwfjyy+/LHPXUXXfs927d4ezszNWr16ttw2///47zp8/f999Xnr7q3sMMzMzMX/+fMyYMaPSs6tVlZubCwD3PR4lZ9HKOyvStWtXuLq6ltkn+/btw9GjR+XPIDc3N/j5+eHrr7/We72dOXMGf/75Z5k7V4Hi5gf3Wr58OQDIn4slevXqBbVaDQsLC6xevRpRUVF678fqfM41FTyz00Q9+uijmDdvHp577jn06tULp0+fxrp16/T+2wKKGxKvXbsWM2fOxF9//YWgoCBkZ2dj586deOmll8o0jKsqe3t79OnTB8899xySk5OxZMkStG7dWn46qkqlwueff46wsDB07NgRzz33HJo1a4br169jz549sLa2xrZt25CdnY2VK1di2bJlaNu2rd6zQUpC0qlTpxAdHY3AwEB4e3vj/fffR3h4OBISEvDYY4/BysoK8fHx2Lx5MyZNmoTXXnsNO3fuxKxZs3Dq1Cls27at0m3p27cvJk+ejIiICMTExOCRRx6BsbEx4uLisHHjRixduhSPP/54jfbTn3/+iQEDBlT6n/wzzzyDH374Af/973+xZ88e9O7dG1qtFhcuXMAPP/yAP/74475nvEpTq9V4++23y23gW531+fv7Y+fOnVi8eDHc3d3h5eUlNzANCgrC/PnzcfXqVb1QExwcjE8//RQtW7ZE8+bN5eFOTk4IDw/H3LlzMWjQIAwbNgyxsbH45JNP0KNHDzz99NNV2jZ/f3+sWrUK77//Plq3bg1nZ+cK28FUV3Z2tt5lnG+++QZ5eXkPdDmuhLW1NVatWoVnnnkG3bp1w5NPPgknJydcuXIFv/76K3r37i3/U7Js2TL06dMH3bp1w6RJk+Dl5YWEhAT8+uuviImJqfI6jY2NsXDhQjz33HPo27cvxowZI9963rJlS8yYMaNa21/dY3j8+HE4OjrijTfeqNE+S05OlutJTU3Fp59+CiMjozL/FF25cgXbt2+XL2PNnz8fLVq0QNeuXcuchTYyMsKHH36IZ599FkFBQRg7dqx8iax58+Z6t8cvWrQIYWFhCAwMxIQJE+Rbz21sbMo9UxUfH49hw4Zh0KBBiI6OxrfffounnnoKXbp0qXAbBw4ciKeffhpvvPEGhg4dCjc3typ/zjUp9Xz3F9Wxktsijxw5Uul0eXl54tVXXxVubm7CzMxM9O7dW0RHR5d7u2ZOTo54++23hZeXlzA2Nhaurq7i8ccfF5cuXRJC1OzW8++//16Eh4cLZ2dnYWZmJoYMGVLmNlkhhDhx4oQYOXKkcHBwEBqNRrRo0UKMHj1a7Nq1S2/d9+tK31b7008/iT59+ggLCwthYWEh2rVrJ6ZMmSJiY2OFEEJMmzZNBAcHi+3bt5epqfSt5yU+++wz4e/vL8zMzISVlZXo3LmzeOONN8SNGzfkaap767kkSeLYsWN6w8s7RgUFBWLhwoWiY8eOQqPRCDs7O+Hv7y/mzp0r0tPTy6zvXvfeen6vwsJC4e3tXe6tuVVd34ULF0RwcLAwMzMrcxwyMjKEWq0WVlZWoqioSB7+7bffCgDimWeeKbfeFStWiHbt2gljY2Ph4uIiXnzxRXHnzp0y+6hjx47lzp+UlCSGDBkirKysBAB5X1b03il5ze7Zs6fc5ZUYN26c3mvO0tJSdOvWTXzzzTeVzlcaKrj1/N56Bg4cKGxsbISpqanw9vYW48ePF0ePHtWb7syZM2LEiBHC1tZWmJqaCh8fHzFr1qxyl1nRreclNmzYILp27So0Go2wt7cXY8eOlR9jUaI621/VYwhAfPzxx3rDK3r/lVYyf0lna2srevfuLX777Te96e6dRpIk4erqKkaOHCnOnz8vhCh763mJH374QW+fjBkzptzPsJ07d4revXsLMzMzYW1tLYYOHSrOnTtX7jadO3dOPP7448LKykrY2dmJqVOn6t3yX1Jv6ddHamqqcHJyEiNGjNAbfr/PuaZEEuIBrkUQVdPevXvRr18/bNy4scZnO+6VkJAALy8vxMfHV/gFfHPmzEFCQgK//JGIGqSSBy3evHmzzG3xVDvYZoeIiIgUjW12qFEruWuisgbEvr6+8tdfEBFR08OwQ42ao6Oj3ACxIvd+xxARETU9bLNDREREisY2O0RERKRoDDtERESkaGyzg+KnZd64cQNWVlZ1+ih5IiIiqj1CCGRmZsLd3V3vy65LY9gBcOPGjWp/WSIRERE1DFevXtV74nppDDsArKysABTvLGtrawNXQ0RERFWRkZEBDw8P+e94RRh28O+3IFtbWzPsEBERNTL3a4LCBspERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgGDTtRUVEYOnQo3N3dIUkStmzZojdekqRyu0WLFsnTtGzZssz4BQsW1POWEBERUUNl0LCTnZ2NLl26YOXKleWOT0xM1Ou+/PJLSJKEUaNG6U03b948vemmTZtWH+UTERFRI2DQ5+yEhYUhLCyswvGurq56/Vu3bkW/fv3QqlUrveFWVlZlpiUiIiICGlGbneTkZPz666+YMGFCmXELFiyAg4MDunbtikWLFqGoqKjSZeXn5yMjI0OvIyIiImVqNE9Q/vrrr2FlZYWRI0fqDX/55ZfRrVs32Nvb4+DBgwgPD0diYiIWL15c4bIiIiIwd+7cui6ZiIiIGgBJCCEMXQRQ3Bh58+bNeOyxx8od365dOwwYMADLly+vdDlffvklJk+ejKysLGg0mnKnyc/PR35+vtxf8t0a6enp/LoIIiKiRiIjIwM2Njb3/fvdKM7s7Nu3D7GxsdiwYcN9pw0ICEBRURESEhLg4+NT7jQajabCIERERETK0ija7HzxxRfw9/dHly5d7jttTEwMVCoVnJ2d66EyIiIiaugMemYnKysLFy9elPvj4+MRExMDe3t7eHp6Aig+RbVx40b873//KzN/dHQ0Dh8+jH79+sHKygrR0dGYMWMGnn76adjZ2dXbdhAREVHDZdCwc/ToUfTr10/unzlzJgBg3LhxWLNmDQBg/fr1EEJgzJgxZebXaDRYv3495syZg/z8fHh5eWHGjBnycoiIiIgaTANlQ6pqA6eaCOwTjKSk5EqncXV1QfT+qFpdLxERkdIpqoFyY5aUlIyXV22rdJplLw6tp2qIiIiankbRQJmIiIiophh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRDBp2oqKiMHToULi7u0OSJGzZskVv/Pjx4yFJkl43aNAgvWlu376NsWPHwtraGra2tpgwYQKysrLqcSuIiIioITNo2MnOzkaXLl2wcuXKCqcZNGgQEhMT5e7777/XGz927FicPXsWO3bswC+//IKoqChMmjSprksnIiKiRsLIkCsPCwtDWFhYpdNoNBq4urqWO+78+fPYvn07jhw5gu7duwMAli9fjsGDB+Ojjz6Cu7t7rddMREREjUuDb7Ozd+9eODs7w8fHBy+++CJu3bolj4uOjoatra0cdAAgNDQUKpUKhw8frnCZ+fn5yMjI0OuIiIhImRp02Bk0aBDWrl2LXbt2YeHChYiMjERYWBi0Wi0AICkpCc7OznrzGBkZwd7eHklJSRUuNyIiAjY2NnLn4eFRp9tBREREhmPQy1j38+STT8q/d+7cGb6+vvD29sbevXvRv3//Gi83PDwcM2fOlPszMjIYeIiIiBSqQZ/ZKa1Vq1ZwdHTExYsXAQCurq5ISUnRm6aoqAi3b9+usJ0PUNwOyNraWq8jIiIiZWpUYefatWu4desW3NzcAACBgYFIS0vDsWPH5Gl2794NnU6HgIAAQ5VJREREDYhBL2NlZWXJZ2kAID4+HjExMbC3t4e9vT3mzp2LUaNGwdXVFZcuXcIbb7yB1q1bY+DAgQCA9u3bY9CgQZg4cSJWr16NwsJCTJ06FU8++STvxCIiIiIABj6zc/ToUXTt2hVdu3YFAMycORNdu3bFu+++C7VajVOnTmHYsGFo27YtJkyYAH9/f+zbtw8ajUZexrp169CuXTv0798fgwcPRp8+ffDZZ58ZapOIiIiogTHomZ2QkBAIISoc/8cff9x3Gfb29vjuu+9qsywiIiJSkEbVZoeIiIiouhh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0QwadqKiojB06FC4u7tDkiRs2bJFHldYWIg333wTnTt3hoWFBdzd3fHss8/ixo0besto2bIlJEnS6xYsWFDPW0JEREQNlUHDTnZ2Nrp06YKVK1eWGZeTk4Pjx49j1qxZOH78ODZt2oTY2FgMGzaszLTz5s1DYmKi3E2bNq0+yiciIqJGwMiQKw8LC0NYWFi542xsbLBjxw69YStWrEDPnj1x5coVeHp6ysOtrKzg6upap7USERFR49So2uykp6dDkiTY2trqDV+wYAEcHBzQtWtXLFq0CEVFRZUuJz8/HxkZGXodERERKZNBz+xUR15eHt58802MGTMG1tbW8vCXX34Z3bp1g729PQ4ePIjw8HAkJiZi8eLFFS4rIiICc+fOrY+yiYiIyMAaRdgpLCzE6NGjIYTAqlWr9MbNnDlT/t3X1xcmJiaYPHkyIiIioNFoyl1eeHi43nwZGRnw8PCom+KJiIjIoBp82CkJOpcvX8bu3bv1zuqUJyAgAEVFRUhISICPj0+502g0mgqDEBERESlLgw47JUEnLi4Oe/bsgYODw33niYmJgUqlgrOzcz1USERERA2dQcNOVlYWLl68KPfHx8cjJiYG9vb2cHNzw+OPP47jx4/jl19+gVarRVJSEgDA3t4eJiYmiI6OxuHDh9GvXz9YWVkhOjoaM2bMwNNPPw07OztDbRYRERE1IAYNO0ePHkW/fv3k/pJ2NOPGjcOcOXPw888/AwD8/Pz05tuzZw9CQkKg0Wiwfv16zJkzB/n5+fDy8sKMGTP02uMQERFR02bQsBMSEgIhRIXjKxsHAN26dcOhQ4dquywiIiJSkEb1nB0iIiKi6mLYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkUzMnQBBCQmJcKrtU+F411dXRC9P6oeKyIiIlIOhp0GQKfT4eVV2yocv+zFofVYDRERkbLwMhYREREpGsMOERERKRrDDhERESkaww4REREpGsMOERERKVqN78bKzs5GZGQkrly5goKCAr1xL7/88gMXRkRERFQbanRm58SJE2jdujXGjBmDqVOn4v3338f06dPx1ltvYcmSJVVeTlRUFIYOHQp3d3dIkoQtW7bojRdC4N1334WbmxvMzMwQGhqKuLg4vWlu376NsWPHwtraGra2tpgwYQKysrJqsllERESkQDUKOzNmzMDQoUNx584dmJmZ4dChQ7h8+TL8/f3x0UcfVXk52dnZ6NKlC1auXFnu+A8//BDLli3D6tWrcfjwYVhYWGDgwIHIy8uTpxk7dizOnj2LHTt24JdffkFUVBQmTZpUk80iIiIiBarRZayYmBh8+umnUKlUUKvVyM/PR6tWrfDhhx9i3LhxGDlyZJWWExYWhrCwsHLHCSGwZMkSvPPOOxg+fDgAYO3atXBxccGWLVvw5JNP4vz589i+fTuOHDmC7t27AwCWL1+OwYMH46OPPoK7u3tNNo+IiIgUpEZndoyNjaFSFc/q7OyMK1euAABsbGxw9erVWiksPj4eSUlJCA0NlYfZ2NggICAA0dHRAIDo6GjY2trKQQcAQkNDoVKpcPjw4QqXnZ+fj4yMDL2OiIiIlKlGYadr1644cuQIAKBv37549913sW7dOkyfPh2dOnWqlcKSkpIAAC4uLnrDXVxc5HFJSUlwdnbWG29kZAR7e3t5mvJERETAxsZG7jw8PGqlZiIiImp4ahR2PvjgA7i5uQEA5s+fDzs7O7z44ou4efMmPvvss1otsC6Eh4cjPT1d7mrrbBQRERE1PDVqs3PvZSNnZ2ds37691goq4erqCgBITk6Wg1VJv5+fnzxNSkqK3nxFRUW4ffu2PH95NBoNNBpNrddMREREDU+Nzuw8/PDDSEtLq+VS9Hl5ecHV1RW7du2Sh2VkZODw4cMIDAwEAAQGBiItLQ3Hjh2Tp9m9ezd0Oh0CAgLqtD4iIiJqHGp0Zmfv3r1lHiRYE1lZWbh48aLcHx8fj5iYGNjb28PT0xPTp0/H+++/jzZt2sDLywuzZs2Cu7s7HnvsMQBA+/btMWjQIEycOBGrV69GYWEhpk6diieffJJ3YhERERGAB3iCsiRJD7zyo0ePol+/fnL/zJkzAQDjxo3DmjVr8MYbbyA7OxuTJk1CWloa+vTpg+3bt8PU1FSeZ926dZg6dSr69+8PlUqFUaNGYdmyZQ9cGxERESlDjcPOiBEjYGJiUu643bt3V2kZISEhEEJUOF6SJMybNw/z5s2rcBp7e3t89913VVofERERNT01DjuBgYGwtLSszVqIiIiIal2Nwo4kSXj99dfLPOOGiIiIqKGp0d1YlV16IiIiImpIahR2Zs+ezUtYRERE1CjU6DLW7NmzAQA3b95EbGwsAMDHxwdOTk61VxkRERFRLajRmZ2cnBw8//zzcHd3R3BwMIKDg+Hu7o4JEyYgJyentmskIiIiqrEahZ0ZM2YgMjISP//8M9LS0pCWloatW7ciMjISr776am3XSERERFRjNbqM9dNPP+HHH39ESEiIPGzw4MEwMzPD6NGjsWrVqtqqj4iIiOiB1PgylouLS5nhzs7OvIxFREREDUqNwk5gYCBmz56NvLw8eVhubi7mzp0rf0knERERUUNQo8tYS5YswaBBg9C8eXN06dIFAHDy5EmYmprijz/+qNUCiYiIiB5EjcJO586dERcXh3Xr1uHChQsAgDFjxmDs2LEwMzOr1QKJiIiIHkSNwk5UVBR69eqFiRMn1nY9RERERLWqRm12+vXrh9u3b9d2LURERES1jt+NRURERIpWo8tYABAdHQ07O7tyxwUHB9e4ICIiIqLaVOOwM2LEiHKHS5IErVZb44KIiIiIalONLmMBQFJSEnQ6XZmOQYeIiIgakhqFHUmSarsOIiIiojrBBspERESkaDVqs6PT6Wq7DiIiIqI6UaMzOxEREfjyyy/LDP/yyy+xcOHCBy6KiIiIqLbUKOx8+umnaNeuXZnhHTt2xOrVqx+4KCIiIqLaUqOwk5SUBDc3tzLDnZyckJiY+MBFEREREdWWGoUdDw8PHDhwoMzwAwcOwN3d/YGLIiIiIqotNWqgPHHiREyfPh2FhYV4+OGHAQC7du3CG2+8gVdffbVWCyQiIiJ6EDUKO6+//jpu3bqFl156CQUFBQAAU1NTvPnmmwgPD6/VAomIiIgeRI3CjiRJWLhwIWbNmoXz58/DzMwMbdq0gUajqe36iIiIiB5Ijb8bCwAsLS3Ro0eP2qqFiIiIqNbVOOwcPXoUP/zwA65cuSJfyiqxadOmBy6MiIiIqDbU6G6s9evXo1evXjh//jw2b96MwsJCnD17Frt374aNjU1t10hERERUYzUKOx988AE+/vhjbNu2DSYmJli6dCkuXLiA0aNHw9PTs7ZrJCIiIqqxGoWdS5cuYciQIQAAExMTZGdnQ5IkzJgxA5999lmtFkhERET0IGoUduzs7JCZmQkAaNasGc6cOQMASEtLQ05OTu1VR0RERPSAatRAOTg4GDt27EDnzp3xxBNP4JVXXsHu3buxY8cO9O/fv7ZrJCIiIqqxGoWdFStWIC8vDwDw9ttvw9jYGAcPHsSoUaPwzjvv1GqBRERERA+iWmEnIyOjeCYjI1haWsr9L730El566aXar46IiIjoAVUr7Nja2kKSpPtOp9Vqa1wQERERUW2qVtjZs2ePXr8QAoMHD8bnn3+OZs2a1WphRERERLWhWmGnb9++ZYap1Wo89NBDaNWqVa0VRURERFRbanTreX1q2bIlJEkq002ZMgUAEBISUmbcf//7XwNXTURERA3FA30R6NWrV5GTkwMHB4faqqeMI0eO6LUBOnPmDAYMGIAnnnhCHjZx4kTMmzdP7jc3N6+zeoiIiKhxqVbYWbZsmfx7amoqvv/+ezz88MN1+n1YTk5Oev0LFiyAt7e33iU1c3NzuLq61lkNRERE1HhVK+x8/PHHAABJkuDo6IihQ4fW63N1CgoK8O2332LmzJl6d4WtW7cO3377LVxdXTF06FDMmjWr0rM7+fn5yM/Pl/tLbqEnIiIi5alW2ImPj6+rOqpky5YtSEtLw/jx4+VhTz31FFq0aAF3d3ecOnUKb775JmJjY7Fp06YKlxMREYG5c+fWQ8VVV6jVISO3EHbmJlCp7n97PxEREVWNJIQQhi6iqgYOHAgTExNs27atwml2796N/v374+LFi/D29i53mvLO7Hh4eCA9PR3W1ta1WrNXax+8vKriehPTc7F248+w8PaHVifgYq3BoI6usDU3kadZ9uJQxF+MrdW6iIiIGruMjAzY2Njc9+93g78bq8Tly5exc+dOvPDCC5VOFxAQAAC4ePFihdNoNBpYW1vrdYaQkVuILTE3YOrVDVqdgAQgOSMf3/91FZduZhmkJiIiIqVpNGHnq6++grOzM4YMGVLpdDExMQAANze3eqiq5rQ6gd/PJKGgSIeCpDiMDfDE+N4t4W5jigKtDn+cTUJmXqGhyyQiImr0GkXY0el0+OqrrzBu3DgYGf3bzOjSpUt47733cOzYMSQkJODnn3/Gs88+i+DgYPj6+hqw4vs79M8tJGXkwcRIhTu/L4WjpQbWpsYY1a053GxMUagV2BeXaugyiYiIGr1GEXZ27tyJK1eu4Pnnn9cbbmJigp07d+KRRx5Bu3bt8Oqrr2LUqFGVtulpCDJyC3Hs8h0AQGg7Z2gzb8rjVCoJ/XycIQGIS8nC5VvZBqqSiIhIGR7ooYL15ZFHHkF57ag9PDwQGRlpgIoezJkb6RAAmtuZoY2LVZnxTlYadGlui5hradj7900IqVFkUiIiogaJf0XrmVYncOZ68XN9fJtX/DDGh7ztYWasRlpOIeDeqb7KIyIiUhyGnXp2MSULuYVaWGjUaOVoWeF0GiM1OrrfvUusVa96qo6IiEh5GHbq2anraQCATu42UN/n4YGdm9098+PSlreiExER1RDDTj26lZWPG2l5kKTisHM/1mbG8HK0AACsO3SlrssjIiJSJIadenTx7tmZlg4WsDStWtvwkrM7Px67itwC7X2mJiIiotIYdupRQmoOAKDV3bM1VdHCwRzIvoWMvCL8fiaxrkojIiJSLIadepJTUISkjDwAxWd2qkolScDlowCA304n1UltRERESsawU08u3yo+q+NkqanyJSzZtVMAgKi4m/wKCSIiompi2Kkn8anFT0Ju6Whe/ZkzEtHK0QIFRTrsvpBSy5UREREpG8NOPdDqBC7fLj6z41WN9jolJABhnV0BAL/zUhYREVG1MOzUg8T0XBQU6WBmrIaLtWmNlhHWqfhb3PfEpiA7v6g2yyMiIlI0hp16kHC3vU4LB/PiBsc10NHdGp725sgv0mFv7M37z0BEREQAGHbqxfU7uQAAT/satNe5S5Ik+VLW9rO8lEVERFRVDDt1TKiNkZJZfMu5u63ZAy1rQHsXAEDU3zeh1ZX9FngiIiIqi2Gnrtl7QicAC40a1tW95bwUPw9b2JgZIz23EDFX79RSgURERMrGsFPXHLwAAM1szCDVsL1OCSO1CkFtHAEAey6w3Q4REVFVMOzUNcdWAB78ElaJfj7OAIrvyiIiIqL7Y9ipQ1qdABxaAqi9sNPXxwkAcPZGBlLufv0EERERVYxhpw6dT8wAjE1holbBwdKkVpbpaKmBb/Pib0Lf+zcvZREREd0Pw04dOppwGwDgZmta4+frlCfk7qWsvbyURUREdF8MO3XoyOXiO6bcbWrnElaJfncvZe2LS0WRVleryyYiIlIahp06IoTAkfjiMzvNaqm9Tgnf5rawNjVCZl4RTl1Pr9VlExERKQ3DTh0RAnj/sU5A7B64WGtqddlqlYRe3sW3oB+IS63VZRMRESkNw04dUakkPNLRFdLpbTBS1/5u7nP3eTv7LjLsEBERVYZhp5EqebjgiSt3+C3oRERElWDYaaQ87c3R3M4MhVqBv+62DSIiIqKyGHYaKUmS5LM7+9huh4iIqEIMO41Y79Z3Gymz3Q4REVGFGHYasd7ejpAkIDY5k18dQUREVAGGnUbMzsIEndyLvzpiP8/uEBERlYthp5EruZTFsENERFQ+hp1GrqSR8v64VAghDFwNERFRw2Nk6ALo/hKTEuHV2qfccUJlBAyfj5RMIC4lC21drOq5OiIiooaNYacR0Ol0eHnVtgrHL/3uF8DFB/vjUhl2iIiISuFlLCVI/hsA2+0QERGVh2FHCZJjAQCH/rmFQq3OwMUQERE1LAw7SpCeCAcLE+QUaHHiSpqhqyEiImpQGHYUQIJAr5Jb0ONuGrgaIiKihoVhRyGC+LwdIiKicjHsKETvu8/bOXktHRl5hQauhoiIqOFo0GFnzpw5kCRJr2vXrp08Pi8vD1OmTIGDgwMsLS0xatQoJCcnG7Biw2lma4ZWjhbQ6gSiL90ydDlEREQNRoMOOwDQsWNHJCYmyt3+/fvlcTNmzMC2bduwceNGREZG4saNGxg5cqQBqzWsPm34LehERESlNfiHChoZGcHV1bXM8PT0dHzxxRf47rvv8PDDDwMAvvrqK7Rv3x6HDh3CQw89VN+lGlzv1o5YG30Z++MYdoiIiEo0+DM7cXFxcHd3R6tWrTB27FhcuXIFAHDs2DEUFhYiNDRUnrZdu3bw9PREdHR0pcvMz89HRkaGXqcEgd4OUKsk/JOajetpuYYuh4iIqEFo0GEnICAAa9aswfbt27Fq1SrEx8cjKCgImZmZSEpKgomJCWxtbfXmcXFxQVJSUqXLjYiIgI2Njdx5eHjU4VbUH2tTY3RpbgMAOMCzO0RERAAaeNgJCwvDE088AV9fXwwcOBC//fYb0tLS8MMPPzzQcsPDw5Geni53V69eraWKDa/P3VvQ97HdDhEREYAGHnZKs7W1Rdu2bXHx4kW4urqioKAAaWlpetMkJyeX28bnXhqNBtbW1nqdUvRp4wQAOHgxFTqdMHA1REREhteowk5WVhYuXboENzc3+Pv7w9jYGLt27ZLHx8bG4sqVKwgMDDRglYbV1dMWFiZq3MouwPkkZbRFIiIiehANOuy89tpriIyMREJCAg4ePIgRI0ZArVZjzJgxsLGxwYQJEzBz5kzs2bMHx44dw3PPPYfAwMAmeSdWCWO1CgGtHACAd2URERGhgYeda9euYcyYMfDx8cHo0aPh4OCAQ4cOwcmp+FLNxx9/jEcffRSjRo1CcHAwXF1dsWnTJgNXbXh9+NURREREsgb9nJ3169dXOt7U1BQrV67EypUr66mixiHo7sMF/4q/jbxCLUyN1QauiIiIyHAa9JkdqpnWzpZwsdYgv0iHY5fvGLocIiIig2LYUSBJktCbl7KIiIgAMOwoVsmlLDZSJiKipo5hR6FKzuycuZGOm5n5Bq6GiIjIcBh2FMrZyhSdm9lACGBvbIqhyyEiIjIYhh0F69fOGQCwh2GHiIiaMIYdBXv4btiJ+jsVBUU6A1dDRERkGAw7CubbzAaOlibIyi/C0YTbhi6HiIjIIBh2FEylkhDiU3x2Z9cFXsoiIqKmiWFH4fqXtNth2CEioiaKYUfh+rRxhLFawj+p2YhPzTZ0OURERPWOYUfhrEyNEeBV/C3of55NMnA1RERE9Y9hpwkY2MkVALCdYYeIiJoghp0m4JEOLgCAE1fSkJyRZ+BqiIiI6hfDThPgYm2Kbp62AHgpi4iImh6GnSZiYEdeyiIioqbJyNAF0INLTEqEV2ufSqdxbOkDdJ+MQ//cRlpOAWzNTeqpOiIiIsNi2FEAnU6Hl1dtq3SaZS8ORbtHrXAhKRM7ziXjie4e9VQdERGRYfEyVhMS1skNAPDLqUQDV0JERFR/GHaakKFdisPO/oupuJWVb+BqiIiI6gfDThPSyskSnZvZQKsT+O00z+4QEVHTwLDTxAz3cwcA/HzyhoErISIiqh8MO03Mo77ukCTgSMIdXE/LNXQ5REREdY5hp4lxtTFFgJc9AGAbz+4QEVETwLDTBA33awYA2Hz8OoQQBq6GiIiobjHsNEGDO7tBY6RCbHImTl5LN3Q5REREdYphpwmyMTNG2N1vQt9w5KqBqyEiIqpbDDtN1OgexU9Q3nbyBnILtAauhoiIqO4w7DRRD3k5wNPeHFn5RXzmDhERKRrDThOlUkkY3b05AGDDUV7KIiIi5WLYacIe9/eASgL+ir+Nv5MzDV0OERFRnWDYacJcbUwxoIMLAODrgwmGLYaIiKiOMOw0ceN7eQEANh2/jvTcQgNXQ0REVPsYdpq4h1rZw8fFCrmFWmxk2x0iIlIghp0mTpIkjO/dEgCwNvoytDo+UZmIiJSFYYfwmF8z2JgZ48rtHOw8n2zocoiIiGqVkaELIMMzM1Gj6O8owCMQk5duAnYvhVRqGldXF0TvjzJIfURERA+CYYcAANkxv0Pdohe09i0wcv4GeNib641f9uJQA1VGRET0YHgZiwAAUn4WOrpbAwCOXL5t4GqIiIhqD8MOyfw97SBJwNXbuUjOyDN0OURERLWCYYdk1mbG8HGxAgAcjufZHSIiUoYGHXYiIiLQo0cPWFlZwdnZGY899hhiY2P1pgkJCYEkSXrdf//7XwNV3Pj19LKHJAHxqdlITM81dDlEREQPrEGHncjISEyZMgWHDh3Cjh07UFhYiEceeQTZ2dl6002cOBGJiYly9+GHHxqo4sbPztwEHdyK2+4cvHTLwNUQERE9uAZ9N9b27dv1+tesWQNnZ2ccO3YMwcHB8nBzc3O4urrWd3mK1dPLHhcSM3HtTi6u3M6BZ6k7s4iIiBqTBn1mp7T09HQAgL29vd7wdevWwdHREZ06dUJ4eDhycnIqXU5+fj4yMjL0OvqXtakxOjezAQAcuJgKIfhUZSIiarwa9Jmde+l0OkyfPh29e/dGp06d5OFPPfUUWrRoAXd3d5w6dQpvvvkmYmNjsWnTpgqXFRERgblz59ZH2Y1W95Z2OJeYgZTMfFxIyjR0OURERDXWaMLOlClTcObMGezfv19v+KRJk+TfO3fuDDc3N/Tv3x+XLl2Ct7d3ucsKDw/HzJkz5f6MjAx4eHjUTeGNlIXGCD1a2uHApVs4cCkVQm1i6JKIiIhqpFGEnalTp+KXX35BVFQUmjdvXum0AQEBAICLFy9WGHY0Gg00Gk2t19mQJSYlwqu1T4Xjk5KTygzz87DF6evpyMgrAto9XJflERER1ZkGHXaEEJg2bRo2b96MvXv3wsvL677zxMTEAADc3NzquLrGRafT4eVV2yoc/+bwbmWGGalVCGrjhF9PJwJt++HyrWy0cLCoyzKJiIhqXYNuoDxlyhR8++23+O6772BlZYWkpCQkJSUhN7f4+S+XLl3Ce++9h2PHjiEhIQE///wznn32WQQHB8PX19fA1SuDt5MFPOzMALUx3tlyho2ViYio0WnQYWfVqlVIT09HSEgI3Nzc5G7Dhg0AABMTE+zcuROPPPII2rVrh1dffRWjRo3Ctm0Vn8Gg6pEkCf3aOQPaQuyLS8XPJ28YuiQiIqJqafCXsSrj4eGByMjIeqqm6bIzNwHO7wA6DcZ7v5xD37ZOsDVng2UiImocGvSZHWpA/t6D1s6WSM0qwJyfzxq6GiIioipr0Gd2qOFIunENWD8f6DcNW2JuYMuqDyBdP6U3jaurC6L3RxmoQiIiovIx7FCV6HQ6vDJ/BQ5cTMXRy3dgFjwBYwM8YaH59yW07MWhBqyQiIiofLyMRdUS0MoejpYmyC3UYuf5ZN6dRUREDR7DDlWLkUqFRzq4Qq2SkHArByeupBm6JCIiokox7FC1OVlpENzGEQBw4FIqktLzDFwRERFRxRh2qEY6N7NBG2dL6ATw25lE5BQUGbokIiKicjHsUI1IkoT+7Z1ha2aMzLwi/HY6CULiy4mIiBoe/nWiGtMYqTG0iztM1CpcT8sF/EYYuiQiIqIyGHbogdhbmGBgR5fiHu/e+HzfP4YtiIiIqBSGHXpgrZws0ad1cYPl9389j60x1w1cERER0b8YdqhWdPO0BeKKn5782saTiPz7pmELIiIiuothh2qFJEnAya0Y4uuGQq3AxLVHsS+OgYeIiAyPYYdqjQSBj0f7IbS9CwqKdHjhawYeIiIyPIYdqlUmRiqsHNsV/ds5I79Ih+fXHMEvp24YuiwiImrCGHao1mmM1Pjk6W4Y3NkVhVqBad+fwJf74/k9WkREZBAMO1QnNEZqLB/TDc881AJCAPN+OYf/++k08ou0hi6NiIiaGIYdqjNqlYR5wzsiPKwdJAnYcPQqnvzsEK7ezjF0aURE1IQw7FCdkiQJk/t646vxPWBtaoQTV9IweOk+PouHiIjqjZGhC6CmIcTHGb9MC8L0DSdw/EoaXlkfg99PJ2HOsI5wtTEFAAT2CUZSUnKly3F1dUH0/qj6KJmIiBSCYYfqjaeDOX6YHIhluy9i5Z6L2H42CfsvpmLGgLZ45qEWSEpKxsurtlW6jGUvDq2naomISCl4GYvqlZFahZkD2mLb1D7o4mGLrPwivPfLOTzycSREM1/esUVERLWOYYcMooO7NTa92AsfjOgMR0sTJNzKAQLH49tDV3A+MQM6HUMPERHVDoYdMhi1SsJTAZ7Y+3o/vPxwa6AgF7dzCvDnuWR8HZ2AU9fSUKjVGbpMIiJq5Bh2yOAsNUaY+YgP8Nt76OXtADNjNTLyirAn9ia+2B+PyL9v4nZ2gaHLJCKiRooNlKnBkIry0KOlPfw8bHH2RgZOXLmDjLwixFxNQ8zVNDS3NYNo7oe8Qi1MjdWGLpeIiBoJhh1qcIzVKvh52KJLcxtcvp2D09fSEZ+ajWtpucBDz6LH+zsxxNcNI7s1R/cWdlCpJEOXTEREDRjDDtWb+z1HJyk5Sa9fkiS0dLBASwcLZOYV4sz1DPx19iIyYY/1R65i/ZGr8LA3w4iuzTGyazO0dLSo600gIqJGiGGH6s39nqPz5vBuFY6zMjVGoLcD/vroOaz/8wA2Hb+G304n4ertXCzbFYdlu+Lg52GLR33dMLizG9xtzepiE4iIqBFi2KFak5iUCK/WPhWOL33mpiYkCDzUygEPtXLA3GGd8Oe5JGw6fh374m7KbXve//U8kBoPXIsBrp2ClJcuz1+VJzDf7wwUn+JMRNS4MOxQrdHpdDU+c1MTZiZqDPdrhuF+zZCSmYftZ5Lw7uc/A07egKNXcec3Am62pvB2soS3kyW+njnyvsu93xkoPsWZiKhxYdihRuV+Z4+Sk5Pw1nfRuHgzC38nZyIxPQ830oq7fXGpwIDX8dEfsQjt4ALfZjZs3ExE1AQw7FCjUpWzR5amRvDzsIWfhy0y8wpxMSUL/6Rm43paLoSNG1bsuYgVey7C2UqD/u1d0LetE3q1doC1qXE9bgkREdUXhh1SNCtTY3T1tENXTzvkFWrx6UfvYciE17A3NgUpmfn4/q8r+P6vK1CrJHT1sEVwWycIe0/ohIBK4lkfIiIlYNihJsPUWA3pyjGsHNsN+UVaRF+6hd0XUrA/LhX/pGbj6OU7OHr5DvDwdHwW9Q887c2LOwdznvUhImrEGHaoSdIYqRHi44wQH2cAwNXbOdgXl4p9cTfx+/F45MMMcSlZiEvJAgDYmBmjma0ZmtuZQZjbGbJ0IiKqJoYdIgAe9uZ4KsATTwV4ouXcpzE6Yj0u38rBlds5SErPQ3puIdJzC3EuMQMYPAu9F+xGQCt7POTlgK6etvB2smRjZyKiBophh6gUSejgZmMGNxszPNTKAflFWiSm5eFaWi6u38lFUlpxY+dNx69j0/HrAAArjRF8PWzuNoy2g5+HLZysNAbeEiIiAhh2qIm5363rQNmHH2qM1GjpaCF/HcXSaY/j65934fA/t3A04Q5OX09HZn4RDly8hQMXb/07Y84dID3x3y4jEchMhaQr5IMJiYjqEcMONSn3u3UduP/DD6WifPRt64S+bZ0AAEVaHWKTM4uf4HwlDRt3HwVsXAFzu+LOrYPe/BYaIyRei8UbP56Eh505nK01cLYyhZOVBs5WGtiYG0NjxG91JyKqLYoJOytXrsSiRYuQlJSELl26YPny5ejZs6ehy6ImwEitQkd3G3R0t8HYgBb4MXw0Ji/fgtTMAqRm5+NWVgFSs/JxK7sABUU6ZOUXAU7e+OHotQqXaWKkgrWpEaxMjWFuooaRWgUjlQS1StL7qZIkCABCiLs/Ifcf/usICgoK7i5RAqS7P+/+XlhYCGO1CigqALSFgLYAKLr7U1sIFObBxsIEC+a8A8u7tVhqjOS6TI1VkOr49nydTiC3UIvs/CJkFxT/zCnQIrugCDn5xf3vf7gYGbn5gJEGUN39SJOke7ZVgrm5OUY/PhImRiqYqFUwVqtgbCTBRK3SG6YxVsHUSA1TYzVMjVXyzzFjxuBmUuLd/VQISejK1FofZ+v4VSZENaOIsLNhwwbMnDkTq1evRkBAAJYsWYKBAwciNjYWzs7Ohi6PmiCNkRrN7MzQzO7fLyQVQiCvUIf03EJsWBmBGW/Pw/W0HKRk5iMlIx8pmfm4lZ0PIYCCIh1SswqQmlVQyVruw86r0tFVuZk+HcCL646XO85IJcHS1AiWmuLwY2VqBCuNEaxMjWChMYL6bhgDirOHSpIgoTiM5RVqkVeou/tTi7yi4v6cAi1yCoqQnV/8M6dAe/8ivUPvO0kOgDUHE6qwxRXo8aJeryQBRipVcehUFwfPxOv/4PFVB+WApDFW3w1OxaHJ7J4ApTFWw1gloSQrFu8ZoNSPu+uS5GGJJh545N3F/05Tav7tX3yIbSdvQJKKh0l3M650d+J/+yV5eMm0KG/cPfOgdP9d4t7f7+0BYKSW5CBZEipNjFQwVkt3f6qgMar70EykiLCzePFiTJw4Ec899xwAYPXq1fj111/x5Zdf4v/+7/8MXB0pTU2/8FSSJJiZqGFmooZ09TheCW1TZhqtTiArvwihj47AzbQswNgUUGsAlQqQVICkln+3sbVD+P+9WeEfq1dffwMDx88s8wex5O/KukVvYsxrC1CkFSjU6lCoEyjS6uT+Aq0Opw7vg6mlDWBkWlyLsRlgrAEkFYp0Amk5hUjLKQSQ+wB7tAqErvgMVFH+PV1xf15WOroFD4SJWlW8a0r9sQaA3T/8P1haWRef+VGp9X+q1dCYWSAgsBfyC7XIK9Ihv1CL3JIgVqhDelYOoP43HuoEUKDVAVoAhXcH2nkUP6epLvV8Cn+eq/jMDh56FtO+P1G3NdQBE6Pi0KMxUhf/NL7nd6Pi4Ki5dxrj4uB073TG6uJwLUkS1BKgUhX/rpIAtVQyDnIILwngFREVjin+x6W6KptFQECrA7Q6XfFPIaDTCRTpin9qhYBW92+nE/eMuztdyc8ire7f33XF7+cieRodCrVlp734TzyKtOLuZ8u/nzFQqeWfaqPi13/p91bJ505+fn7x+7T0BgsBCB1UErDrrSHwutv2sb41+rBTUFCAY8eOITw8XB6mUqkQGhqK6OjocufJz88vPjB3pacXfyt2RkZGrden02mRl51V6TRCiEqnedDxXEftrkOr1WLSR99XOP7dMUH3XYdOp63w9SYBSIm/gP8u/qHSZayeORqD20VUOF4k/IWW1qoKx+f+HY2WViXjy28jtOetCMz7fp/+coVAoU4gv0iLb+fPwDfffY/sAi2y8gqRmVdUfMkpXwudEBACxT/x7+U1SICpuvgPlpmxChEffID+T/0XRpIKRmqp+BLT3TMARmoJC58fiDlrd1b43/+7Y4IQ9EzlX/C6OXoDXi21HfdaPXM0Vvzv+QrHd/brhsn/21D8R0IIFGlL/+HQ4efVH+DjJUuQf/eMVX6RFrmFuuJ+rRYF95zJyi/SoUinu7s/7+7Xe/avvK/lYcU/DxyIhke7Lv8OR/F1y5L+G3Fn0aNHd/lyZvE4oXd5897LndDr//f3e+sQpZbxzz/xsHV2L3c/lfwBTLmRACf3FtAJQIeSP9LFlyV1QkBX6g9/Xj6QV+HepzqnNi//I0AnAGgBrRa6wgc4ywwJOgFkZmYgw6QKZ2uroeRz9L4BVDRy169fFwDEwYMH9Ya//vrromfPnuXOM3v2bPmzlx07duzYsWPXuLurV69WmhUa/ZmdmggPD8fMmTPlfp1Oh9u3b8PBwaFK144zMjLg4eGBq1evwtraui5LpRriMWoceJwaBx6nxqEpHichBDIzM+HuXv7ZxhKNPuw4OjpCrVYjOVn/OnZycjJcXV3LnUej0UCj0X/gm62tbbXXbW1t3WReUI0Vj1HjwOPUOPA4NQ5N7TjZ2Njcd5qKL+g3EiYmJvD398euXbvkYTqdDrt27UJgYKABKyMiIqKGoNGf2QGAmTNnYty4cejevTt69uyJJUuWIDs7W747i4iIiJouRYSd//znP7h58ybeffddJCUlwc/PD9u3b4eLi0udrE+j0WD27NllLoVRw8Fj1DjwODUOPE6NA49TxSQhavDAACIiIqJGotG32SEiIiKqDMMOERERKRrDDhERESkaww4REREpGsNONa1cuRItW7aEqakpAgIC8Ndffxm6pCYtKioKQ4cOhbu7OyRJwpYtW/TGCyHw7rvvws3NDWZmZggNDUVcXJxhim3CIiIi0KNHD1hZWcHZ2RmPPfYYYmNj9abJy8vDlClT4ODgAEtLS4waNarMw0Kp7qxatQq+vr7yA+kCAwPx+++/y+N5fBqmBQsWQJIkTJ8+XR7GY1UWw041bNiwATNnzsTs2bNx/PhxdOnSBQMHDkRKSoqhS2uysrOz0aVLF6xcubLc8R9++CGWLVuG1atX4/Dhw7CwsMDAgQORl8evHaxPkZGRmDJlCg4dOoQdO3agsLAQjzzyCLKzs+VpZsyYgW3btmHjxo2IjIzEjRs3MHJk5V/wSbWnefPmWLBgAY4dO4ajR4/i4YcfxvDhw3H27FkAPD4N0ZEjR/Dpp5/C19dXbziPVTlq5ds4m4iePXuKKVOmyP1arVa4u7uLiIgIA1ZFJQCIzZs3y/06nU64urqKRYsWycPS0tKERqMR33//vQEqpBIpKSkCgIiMjBRCFB8XY2NjsXHjRnma8+fPCwAiOjraUGU2eXZ2duLzzz/n8WmAMjMzRZs2bcSOHTtE3759xSuvvCKE4HupIjyzU0UFBQU4duwYQkND5WEqlQqhoaGIjo42YGVUkfj4eCQlJekdMxsbGwQEBPCYGVh6ejoAwN7eHgBw7NgxFBYW6h2rdu3awdPTk8fKALRaLdavX4/s7GwEBgby+DRAU6ZMwZAhQ/SOCcD3UkUU8QTl+pCamgqtVlvmqcwuLi64cOGCgaqiyiQlJQFAucesZBzVP51Oh+nTp6N3797o1KkTgOJjZWJiUuYLeXms6tfp06cRGBiIvLw8WFpaYvPmzejQoQNiYmJ4fBqQ9evX4/jx4zhy5EiZcXwvlY9hh4jq1ZQpU3DmzBns37/f0KVQKT4+PoiJiUF6ejp+/PFHjBs3DpGRkYYui+5x9epVvPLKK9ixYwdMTU0NXU6jwctYVeTo6Ai1Wl2mRXtycjJcXV0NVBVVpuS48Jg1HFOnTsUvv/yCPXv2oHnz5vJwV1dXFBQUIC0tTW96Hqv6ZWJigtatW8Pf3x8RERHo0qULli5dyuPTgBw7dgwpKSno1q0bjIyMYGRkhMjISCxbtgxGRkZwcXHhsSoHw04VmZiYwN/fH7t27ZKH6XQ67Nq1C4GBgQasjCri5eUFV1dXvWOWkZGBw4cP85jVMyEEpk6dis2bN2P37t3w8vLSG+/v7w9jY2O9YxUbG4srV67wWBmQTqdDfn4+j08D0r9/f5w+fRoxMTFy1717d4wdO1b+nceqLF7GqoaZM2di3Lhx6N69O3r27IklS5YgOzsbzz33nKFLa7KysrJw8eJFuT8+Ph4xMTGwt7eHp6cnpk+fjvfffx9t2rSBl5cXZs2aBXd3dzz22GOGK7oJmjJlCr777jts3boVVlZWctsBGxsbmJmZwcbGBhMmTMDMmTNhb28Pa2trTJs2DYGBgXjooYcMXH3TEB4ejrCwMHh6eiIzMxPfffcd9u7diz/++IPHpwGxsrKS27qVsLCwgIODgzycx6ochr4drLFZvny58PT0FCYmJqJnz57i0KFDhi6pSduzZ48AUKYbN26cEKL49vNZs2YJFxcXodFoRP/+/UVsbKxhi26CyjtGAMRXX30lT5ObmyteeuklYWdnJ8zNzcWIESNEYmKi4YpuYp5//nnRokULYWJiIpycnET//v3Fn3/+KY/n8Wm47r31XAgeq/JIQghhoJxFREREVOfYZoeIiIgUjWGHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiOgB7N27F5IklfkuIiJqOBh2iKhejB8/HpIkYcGCBXrDt2zZAkmSqrycli1bYsmSJbVcXdWEhIRg+vTpBlk3EdUcww4R1RtTU1MsXLgQd+7cMXQp1VJQUGDoEojoATDsEFG9CQ0NhaurKyIiIiqcZv/+/QgKCoKZmRk8PDzw8ssvIzs7G0DxmZXLly9jxowZkCQJkiRBCAEnJyf8+OOP8jL8/Pzg5uamt0yNRoOcnBwAwJUrVzB8+HBYWlrC2toao0ePRnJysjz9nDlz4Ofnh88//xxeXl4wNTXF+PHjERkZiaVLl8rrTkhIkOc5duwYunfvDnNzc/Tq1QuxsbG1tduI6AEx7BBRvVGr1fjggw+wfPlyXLt2rcz4S5cuYdCgQRg1ahROnTqFDRs2YP/+/Zg6dSoAYNOmTWjevDnmzZuHxMREJCYmQpIkBAcHY+/evQCAO3fu4Pz588jNzcWFCxcAAJGRkejRowfMzc2h0+kwfPhw3L59G5GRkdixYwf++ecf/Oc//9Gr5eLFi/jpp5+wadMmxMTEYOnSpQgMDMTEiRPldXt4eMjTv/322/jf//6Ho0ePwsjICM8//3wd7UUiqi4jQxdARE3LiBEj4Ofnh9mzZ+OLL77QGxcREYGxY8fK7WLatGmDZcuWoW/fvli1ahXs7e2hVqthZWUFV1dXeb6QkBB8+umnAICoqCh07doVrq6u2Lt3L9q1a4e9e/eib9++AIBdu3bh9OnTiI+Pl8PK2rVr0bFjRxw5cgQ9evQAUHzpau3atXBycpLXY2JiAnNzc711l5g/f768jv/7v//DkCFDkJeXB1NT01rac0RUUzyzQ0T1buHChfj6669x/vx5veEnT57EmjVrYGlpKXcDBw6ETqdDfHx8hcvr27cvzp07h5s3byIyMhIhISEICQnB3r17UVhYiIMHDyIkJAQAcP78eXh4eOidlenQoQNsbW316mnRooVe0LkfX19f+feSS2gpKSlVnp+I6g7DDhHVu+DgYAwcOBDh4eF6w7OysjB58mTExMTI3cmTJxEXFwdvb+8Kl9e5c2fY29sjMjJSL+xERkbiyJEjKCwsRK9evapVo4WFRbWmNzY2ln8vubtMp9NVaxlEVDd4GYuIDGLBggXw8/ODj4+PPKxbt244d+4cWrduXeF8JiYm0Gq1esMkSUJQUBC2bt2Ks2fPok+fPjA3N0d+fj4+/fRTdO/eXQ4v7du3x9WrV3H16lX57M65c+eQlpaGDh06VFpzeesmooaPZ3aIyCA6d+6MsWPHYtmyZfKwN998EwcPHsTUqVMRExODuLg4bN26VW6gDBQ/ZycqKgrXr19HamqqPDwkJATff/89/Pz8YGlpCZVKheDgYKxbt05uSwMU3xFWsu7jx4/jr7/+wrPPPou+ffuie/fuldbcsmVLHD58GAkJCUhNTeWZG6JGgmGHiAxm3rx5eoHB19cXkZGR+PvvvxEUFISuXbvi3Xffhbu7u948CQkJ8Pb21mtT07dvX2i1WrltDlAcgEoPkyQJW7duhZ2dHYKDgxEaGopWrVphw4YN9633tddeg1qtRocOHeDk5IQrV6482A4gonohCSGEoYsgIiIiqis8s0NERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIr2/wE2BK+JMQ/EiAAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Среднее значение Networth в обучающей выборке: 5.05858173076923\n",
|
||
"Среднее значение Networth в контрольной выборке: 4.069423076923076\n",
|
||
"Среднее значение Networth в тестовой выборке: 4.069423076923076\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Оценка сбалансированности целевой переменной (Networth)\n",
|
||
"# Визуализация распределения целевой переменной в выборках (гистограмма)\n",
|
||
"import seaborn as sns\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"def plot_networth_distribution(data, title):\n",
|
||
" sns.histplot(data['Networth'], kde=True)\n",
|
||
" plt.title(title)\n",
|
||
" plt.xlabel('Networth')\n",
|
||
" plt.ylabel('Частота')\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
"plot_networth_distribution(train_data, 'Распределение Networth в обучающей выборке')\n",
|
||
"plot_networth_distribution(val_data, 'Распределение Networth в контрольной выборке')\n",
|
||
"plot_networth_distribution(test_data, 'Распределение Networth в тестовой выборке')\n",
|
||
"\n",
|
||
"# Оценка сбалансированности данных по целевой переменной (Networth)\n",
|
||
"print(\"Среднее значение Networth в обучающей выборке: \", train_data['Networth'].mean())\n",
|
||
"print(\"Среднее значение Networth в контрольной выборке: \", val_data['Networth'].mean())\n",
|
||
"print(\"Среднее значение Networth в тестовой выборке: \", test_data['Networth'].mean())\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWsklEQVR4nO3de1wU5f4H8M9y2eWyLAgICwqKd1HMwttmIkdJRCpTyixT9Hi0DO2oZUWZt06SWWmal+qUl9Qy83a08i6oiWYo3jX1h0LJgmDcFrnu8/uDdnQFFBFYGD/v12tfsDPPzHxnZnf5MPPMrEIIIUBEREQkU1aWLoCIiIioNjHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAR1UMGgwEpKSn466+/LF0K1bDc3FxcvnwZBoPB0qU8MBh2iEjWli9fDoVCgd9++83SpdzVunXr0LdvXzg5OUGtVsPX1xcffvihpctqEPLy8jB//nzpeVZWFhYtWmS5gm4hhMAXX3yBHj16wMHBARqNBn5+fli1apWlS3tgMOw0EKYPbNPDzs4Obdq0wfjx45GWlmbp8qgeGjlyJBQKBTp16oSKvhVGoVBg/Pjx1Zr37NmzsWnTpvussGYtXrwYy5cvt3QZ1fbWW29hyJAhcHJywpdffomdO3di165deOWVVyxdWoNgb2+PqVOnYvXq1UhJScGMGTOwZcsWS5cFAHjhhRfw8ssvo3379vjmm2+kfTt48GBLl/bAsLF0AXRvZs2aBT8/PxQUFODAgQNYsmQJfvrpJ5w6dQoODg6WLo/qoZMnT2LDhg2IiIiosXnOnj0bzzzzDJ5++ukam+f9Wrx4Mdzd3TFy5EhLl3LP4uLiMGfOHMTExOCtt96ydDkNkrW1NWbOnIkRI0bAaDRCo9Hgxx9/tHRZWLlyJdauXYtVq1bhhRdesHQ5Dywe2WlgwsLC8OKLL+Jf//oXli9fjokTJyIpKQmbN2+2dGlUD9nb26NNmzaYNWtWhUd35CA/P9/SJdy3jz76CI8++iiDzn167bXXcOXKFRw8eBBXrlzBY489ZumSMHfuXDz//PMMOhbGsNPA9enTBwCQlJQEALh+/Tpef/11BAQEQK1WQ6PRICwsDMePHy83bUFBAWbMmIE2bdrAzs4OXl5eGDx4MC5dugQAuHz5stmps9sfwcHB0rxiY2OhUCiwdu1avP3229BqtXB0dMRTTz2FlJSUcss+fPgw+vfvD2dnZzg4OKB379745ZdfKlzH4ODgCpc/Y8aMcm1XrVqFwMBA2Nvbw9XVFUOHDq1w+Xdat1sZjUbMnz8fHTp0gJ2dHTw9PfHSSy+V6zTavHlzPPHEE+WWM378+HLzrKj2uXPnltumAFBYWIjp06ejVatWUKlU8PHxwRtvvIHCwsIKt9XtrKysMHXqVJw4cQIbN268a/uqLE+hUMBgMGDFihXSNhs5ciROnDgBhUKB//3vf1LbhIQEKBQKPPLII2bLCQsLQ/fu3c2GLV68GB06dIBKpYK3tzeioqKQlZVl1iY4OBgdO3ZEQkICgoKC4ODggLfffhvNmzfH6dOnERcXV+Hr07RukydPRuPGjeHo6IhBgwbh2rVrd90mptOBpkejRo0QHByM/fv333VaANizZw969eoFR0dHuLi4YODAgTh79qxZm0OHDqFjx44YOnQoXF1dYW9vj65du5qdKszLy4OjoyP+/e9/l1vGH3/8AWtra8TExEg1N2/evFy72197V65cwSuvvIK2bdvC3t4ebm5uePbZZ3H58mWz6Uzv79jYWGnYkSNH8Pjjj8PJyQmOjo4VbpOK+ktlZGRU+B544oknKqy5Kp8VM2bMkN5nTZs2hU6ng42NDbRabbm6K2Ka3vRwcnJCt27dyp2qNb3+KmP6XDGdTjUYDDh16hR8fHwQHh4OjUZT6bYCgP/7v//Ds88+C1dXVzg4OKBHjx7ljk7dy2dtcHBwuffB+++/DysrK6xZs8Zs+L18JjdEPI3VwJmCiZubG4CyN8umTZvw7LPPws/PD2lpafj888/Ru3dvnDlzBt7e3gCA0tJSPPHEE9i9ezeGDh2Kf//738jNzcXOnTtx6tQptGzZUlrG888/jwEDBpgtNzo6usJ63n//fSgUCrz55ptIT0/H/PnzERISgsTERNjb2wMo+/APCwtDYGAgpk+fDisrKyxbtgx9+vTB/v370a1bt3Lzbdq0qfRBnpeXh3HjxlW47HfffRdDhgzBv/71L1y7dg0LFy5EUFAQjh07BhcXl3LTjB07Fr169QIAbNiwoVwgeOmll7B8+XKMGjUKr776KpKSkvDZZ5/h2LFj+OWXX2Bra1vhdrgXWVlZ0rrdymg04qmnnsKBAwcwduxYtG/fHidPnsS8efPw+++/V7nPzAsvvID33nsPs2bNwqBBg8qFr3td3jfffIN//etf6NatG8aOHQsAaNmyJTp27AgXFxfs27cPTz31FABg//79sLKywvHjx5GTkwONRgOj0YiDBw9K0wJlf2xmzpyJkJAQjBs3DufPn8eSJUtw5MiRcts5MzMTYWFhGDp0KF588UV4enoiODgYEyZMgFqtxjvvvAMA8PT0NFu/CRMmoFGjRpg+fTouX76M+fPnY/z48Vi7du1dt6G7uzvmzZsHoCxYfPrppxgwYABSUlIqfF2Z7Nq1C2FhYWjRogVmzJiBGzduYOHChejZsyeOHj0q/XHPzMzEF198AbVajVdffRWNGzfGqlWrMHjwYKxevRrPP/881Go1Bg0ahLVr1+KTTz6BtbW1tJxvv/0WQggMGzbsrutyqyNHjuDgwYMYOnQomjZtisuXL2PJkiUIDg7GmTNnKj01fvHiRQQHB8PBwQFTpkyBg4MDvvzyS4SEhGDnzp0ICgq6pzoqU53PCpOPP/74nvszfvPNNwDKAtnixYvx7LPP4tSpU2jbtm216s/MzAQAzJkzB1qtFlOmTIGdnV2F2yotLQ2PPvoo8vPz8eqrr8LNzQ0rVqzAU089hR9++AGDBg0ym3dVPmtvt2zZMkydOhUff/yx2ZGm+9nODYagBmHZsmUCgNi1a5e4du2aSElJEd99951wc3MT9vb24o8//hBCCFFQUCBKS0vNpk1KShIqlUrMmjVLGvb1118LAOKTTz4ptyyj0ShNB0DMnTu3XJsOHTqI3r17S8/37t0rAIgmTZqInJwcafj3338vAIhPP/1Umnfr1q1FaGiotBwhhMjPzxd+fn7i8ccfL7esRx99VHTs2FF6fu3aNQFATJ8+XRp2+fJlYW1tLd5//32zaU+ePClsbGzKDb9w4YIAIFasWCENmz59urj1LbF//34BQKxevdps2m3btpUb3qxZMxEeHl6u9qioKHH72+z22t944w3h4eEhAgMDzbbpN998I6ysrMT+/fvNpl+6dKkAIH755Zdyy7tVZGSkcHR0FEIIsWLFCgFAbNiwwayOqKioai3P0dFRREZGlltmeHi46Natm/R88ODBYvDgwcLa2lr8/PPPQgghjh49KgCIzZs3CyGESE9PF0qlUvTr18/stfvZZ58JAOLrr7+WhvXu3VsAEEuXLi237Ntfkyam905ISIjZa27SpEnC2tpaZGVllZvmVpGRkaJZs2Zmw7744gsBQPz66693nLZz587Cw8NDZGZmSsOOHz8urKysxIgRI6RhAAQAERsbKw3Lz88X7du3F1qtVhQVFQkhhNi+fbsAIG1Lk06dOpmt+6hRo4Svr2+5em5/7eXn55drEx8fLwCIlStXSsNM7++9e/cKIYSIiIgQ1tbW4tSpU1KbjIwM4ebmJgIDA6Vhpm1/5MgRaVhF718hyl47t27ne/msuP29m56eLpycnERYWJhZ3ZW5fXohhNixY4cAIL7//ntpWO/evUWHDh0qnY/pM3PZsmVmz5VKpfj999/NtsHt22rixIkCgNn7Lzc3V/j5+YnmzZtL742qftaa6jW9Ln788UdhY2MjXnvtNbOaq/OZ3BDxNFYDExISgsaNG8PHxwdDhw6FWq3Gxo0b0aRJEwCASqWClVXZbi0tLUVmZibUajXatm2Lo0ePSvNZv3493N3dMWHChHLLqOw//6oYMWIEnJycpOfPPPMMvLy88NNPPwEAEhMTceHCBbzwwgvIzMxERkYGMjIyYDAY0LdvX+zbtw9Go9FsngUFBbCzs7vjcjds2ACj0YghQ4ZI88zIyIBWq0Xr1q2xd+9es/ZFRUUAyrZXZdatWwdnZ2c8/vjjZvMMDAyEWq0uN8/i4mKzdhkZGSgoKLhj3X/++ScWLlyId999F2q1utzy27dvj3bt2pnN03Tq8vbl38mwYcPQunXrO/bdqYnl9erVC0ePHpXuH3LgwAEMGDAAnTt3lg7b79+/HwqFQupPsWvXLhQVFWHixInSaxcAxowZU2EnU5VKhVGjRlV53U3Gjh1r9tru1asXSktLceXKlbtOazQape2RmJiIlStXwsvLC+3bt690mtTUVCQmJmLkyJFwdXWVhnfq1AmPP/649J4w6dq1K3r37i09t7e3xyuvvAK9Xi+9d0NCQuDt7Y3Vq1dL7U6dOoUTJ07gxRdflIZ5eHggPT1dep1X5tYjAMXFxcjMzESrVq3g4uJi9nlhkp2djfT0dOzcuROhoaHo0KGDNM7NzQ0jR45EQkJCjVwhWp3PCpP33nsPzs7OePXVV+9pmaZlnD17FkuXLoWjoyN69Ohh1qa0tFRqd7ftazJw4EC0bt1aem7qSH/rtvrpp5/QrVs3s35GarUaY8eOxeXLl3HmzBmzed7ts/ZWv/76K4YMGYKIiAjMnTvXbNz9bOeGhKexGphFixahTZs2sLGxgaenJ9q2bWv2B8JoNOLTTz/F4sWLkZSUhNLSUmmc6VQXUHb6q23btrCxqdmXwK1vaKAsOLVq1UrqA3DhwgUAQGRkZKXzyM7ORqNGjaTnGRkZ5eZ7uwsXLkAIUWm72083mfqC3B4wbp9ndnY2PDw8Khyfnp5u9nzHjh1o3LjxHeu83fTp0+Ht7Y2XXnoJP/zwQ7nlnz17ttJ53r78O7G2tsbUqVMRGRmJTZs2lTskXlPL69WrF0pKShAfHw8fHx+kp6ejV69eOH36tFnY8ff3lwKAKWzcfqpAqVSiRYsW5cJIkyZNoFQq777St/H19TV7bnqNVeWmfSkpKWbbxcvLC+vXr7/j66ey9QKA9u3bY/v27TAYDHB0dAQAtGvXrsJ2QFlfkO7du8PKygrDhg3DkiVLkJ+fDwcHB6xevRp2dnZ49tlnpekeffRRzJkzB1OnTsWrr75a6T8LN27cQExMDJYtW4Y///zTLAhnZ2eXa3/r1XeVrZep3ttPI96r6nxWAGX9Fz///HMsWbLkrv8k3e7WfazRaLB69Wr4+PiYtTl37pzUzsrKCq1atcL06dMr7IBsCtd327eenp64cuVKuX5st7a7cuWKWX+hu33Wmvz5558IDw+HwWBAZmZmuX9mq7udGxqGnQamW7du6NKlS6XjZ8+ejXfffRf//Oc/8d5778HV1RVWVlaYOHFivUjnphrmzp2Lzp07V9jm1j8gRUVFSE1NxeOPP37X+SoUCvz8889mfRkqmicA6PV6AIBWq73jPD08PMz+i77V7aGge/fu+M9//mM27LPPPqv0SrmzZ89i+fLlWLVqVYV9f4xGIwICAvDJJ59UOP3tH8J3M2zYMKnvTkWXjNfE8rp06QI7Ozvs27cPvr6+8PDwQJs2bdCrVy8sXrwYhYWF2L9/f4Vhq6oq649wNxW9LgBU6So1T09P6QZw2dnZ+Prrr9G/f38cOHAAAQEB1arnVveyTiNGjMDcuXOxadMmPP/881izZg2eeOIJODs7S22eeuop/POf/8TcuXPL/Sd/qwkTJmDZsmWYOHEidDodnJ2doVAoMHTo0Ao/Lz766CO0bt0aAwcOvLcVrIZ7/awweeedd9C6dWtERkZWuRO5yc6dOwGUdSxev349hgwZgq1bt5p9/jRv3hxffvklgLI+OQsWLMDw4cPRokWLcp8n1X2t1qSLFy/ikUcewbx58zB8+HCsWLHCLNhUdzs3NAw7MvPDDz/gH//4B7766iuz4VlZWXB3d5eet2zZEocPH0ZxcXGNdLI1Mf2XYCKEwMWLF9GpUydpuUDZf00hISF3nd/x48dRXFx8x4Bnmq8QAn5+fmjTps1d53vmzBkoFIo7djxs2bIldu3ahZ49e1bpQ8vd3b3cOt2pE3F0dDQ6d+6M5557rtLlHz9+HH379r2vU4smpqM7I0eOrDCA3cvyKhuvVCrRrVs37N+/H76+vlLn7169eqGwsBCrV69GWlqaWQfWZs2aAQDOnz+PFi1aSMOLioqQlJRUpdfJnWqqCXZ2dmZ1PPXUU3B1dcVnn32Gzz//vMJpbl2v2507dw7u7u7SUR0/P79K2wEwu0qpY8eOePjhh7F69Wo0bdoUycnJWLhwYblpv/rqK0ybNg2XLl2S/qDd/k/DDz/8gMjISHz88cfSsIKCgnJXwZkEBgaid+/eUKvVVa63uu71swIAjh07hu+++w6bNm2qNNzeya3LGThwIA4fPoyPPvrIbLs5OjqatevVqxeaNGmCHTt2YMSIEWbzc3d3r/K2atas2R3bmV5PJnf7rDUxndry9PTE5s2b8dprr2HAgAHSP2vV2c4NEfvsyIy1tXW5/1TXrVuHP//802xYREQEMjIy8Nlnn5WbR1X+063MypUrkZubKz3/4YcfkJqairCwMABlH5YtW7bERx99hLy8vHLT334p8Lp162BtbV3hZd23Gjx4sHRTsdvrF0JIV0UAQElJCdavX49u3brd8T+WIUOGoLS0FO+99165cSUlJZX+QaiK+Ph4bN68GR988EGlf6SHDBmCP//8U/ov8lY3btyo1vfqvPjii2jVqhVmzpx5X8tzdHSsdP179eqFw4cPY+/evVLYcXd3R/v27TFnzhypjUlISAiUSiUWLFhgtu+++uorZGdnIzw8vErrdqeaalpRURFKSkrueAsALy8vdO7cGStWrDCr69SpU9ixY4fZFY4DBgzAr7/+ioMHD0rDCgoKsGTJEmi1WgQGBprNe/jw4dixYwfmz58PNzc36f11u2bNmqFPnz4ICQmp8A9ZRZ8XCxcuNDv9fTuFQoF+/fph+/btZpfQX79+HStWrECXLl3u+xQWcO+fFUDZXah79uwpXQ14P0pLS1FUVHTX2zyYgmRF4crKygr9+/fH5s2bpduDABVvK9NrID4+XmpnMBjwxRdfoHnz5vD39zeb990+a03atGkjLWPhwoUwGo1mty+oznZuiHhkR2aeeOIJzJo1C6NGjcKjjz6KkydPYvXq1Wb/MQNlh8JXrlyJyZMn49dff0WvXr1gMBik29NX9zC1q6srHnvsMYwaNQppaWmYP38+WrVqhTFjxgAoe/P/97//RVhYGDp06IBRo0ahSZMm+PPPP7F3715oNBps2bIFBoMBixYtwoIFC9CmTRuz+2SY3pAnTpxAfHw8dDodWrZsif/85z+Ijo7G5cuX8fTTT8PJyQlJSUnYuHEjxo4di9dffx27du3Cu+++ixMnTtz1VvK9e/fGSy+9hJiYGCQmJqJfv36wtbXFhQsXsG7dOnz66ad45plnqrWdduzYgccff/yO/0kNHz4c33//PV5++WXs3bsXPXv2RGlpKc6dO4fvv/8e27dvv+sRr9tZW1vjnXfeqbCD770sLzAwELt27cInn3wCb29v+Pn5Sf0NevXqhffffx8pKSlmoSYoKAiff/45mjdvjqZNm0rDGzdujOjoaMycORP9+/fHU089hfPnz2Px4sXo2rWrWcfbOwkMDMSSJUvwn//8B61atYKHh4fUufp+GQwGs9NY33zzDQoKCu56Om7u3LkICwuDTqfD6NGjpUvPnZ2dze4z88Ybb2D16tUICwvDq6++Cnd3d6xatQpnzpzB6tWry/Wte+GFF/DGG29g48aNGDduXLWPzj7xxBP45ptv4OzsDH9/f8THx2PXrl1m/fsq8t5772H79u3o3bs3JkyYIF16npWVVa7vGVAW7jMyMgAAOTk5AMpOr2zbtk1qc+3aNdy4cQPbtm1D//79q/xZcasdO3bc171hTPvYYDBg06ZNuHz5MiZOnGjWJi8vT6r7+vXrWLBgAWxtbSsN5bNmzcK2bdvw2GOP4ZVXXoFKpcKXX36J7OxssyNqb731Fr799lvpNeDq6ooVK1YgKSkJ69evN+ubCdz9s7YiWq0Wc+fOxb/+9S+8+OKLGDBgQLW2c4NkkWvA6J5VdAlnRQoKCsRrr70mvLy8hL29vejZs6eIj483uwTRJD8/X7zzzjvCz89P2NraCq1WK5555hlx6dIlIUT1Lj3/9ttvRXR0tPDw8BD29vYiPDxcXLlypdz0x44dE4MHDxZubm5CpVKJZs2aiSFDhojdu3ebLftuj9svf16/fr147LHHhKOjo3B0dBTt2rUTUVFR4vz580IIISZMmCCCgoLEtm3bytVU0eWnQpRdZhwYGCjs7e2Fk5OTCAgIEG+88Ya4evWq1OZeLz1XKBQiISHBbHhF+6ioqEjMmTNHdOjQQahUKtGoUSMRGBgoZs6cKbKzs8st71a3Xnp+q+LiYtGyZctyl57fy/LOnTsngoKChL29fbn9kJOTI6ytrYWTk5MoKSmRhq9atUoAEMOHD6+w3s8++0y0a9dO2NraCk9PTzFu3Djx119/ldtGlV36q9frRXh4uHBychIApG1Z2Xvn9supKxMZGWn2mlOr1eKRRx4R33zzzR2nM9m1a5fo2bOnsLe3FxqNRjz55JPizJkz5dpdunRJPPPMM8LZ2VnY2dmJrl27ik2bNlU63wEDBggA4uDBg1WqQ4jyl57/9ddfYtSoUcLd3V2o1WoRGhoqzp07J5o1a2a2TyvaVgkJCaJfv35CrVYLBwcHERQUJOLi4syWZ9r29/q41d0+K4S4+d4dOHCg2bRV3cem6U0Pe3t74e/vL+bNm2d2Obbp1gemh4uLi+jZs6d0K4DbLz03OXr0qAgNDRWOjo7CwcFBBAcHl7vFgxA3XwMuLi7Czs5OdOvWTWzdurXCdarKZ21FnylCCNGnTx/h6+srcnNzpWFV2c4NmUIImd5DnupUbGws/vGPf2DdunXVPtpxq8uXL8PPzw9JSUmVnv+fMWMGLl++3KC//JGougYNGoSTJ0/i4sWLli6lxpje9/yzVLma/qx9ULDPDhFRA5Oamooff/wRw4cPt3QpRA0C++xQvaRWqzFs2LA7diDu1KmT9PUXRA+CpKQk/PLLL/jvf/8LW1tbvPTSS5YuqUbZ29sjNDTU0mWQDDHsUL1k6qB5J4MHD66jaojqh7i4OIwaNQq+vr5YsWLFHe8T1RB5enqadVomqinss0NERESyxj47REREJGsMO0RERCRr7LODsjtgXr16FU5OTrV6y3kiIiKqOUII5Obmwtvbu9yNF2/FsAPg6tWr9/ylikRERFQ/pKSkmN2Z/XYMOwCcnJwAlG0sjUZj4WqIiIioKnJycuDj4yP9Ha8Mww5ufluyRqNh2CEiImpg7tYFhR2UiYiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHZqkRACeXl5EEJYuhQiIqIHFsNOLTIYDIhZfwgGg8HSpRARET2wGHZqmdLO3tIlEBERPdAYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNbqTdj54IMPoFAoMHHiRGlYQUEBoqKi4ObmBrVajYiICKSlpZlNl5ycjPDwcDg4OMDDwwNTpkxBSUlJHVdPRERE9VW9CDtHjhzB559/jk6dOpkNnzRpErZs2YJ169YhLi4OV69exeDBg6XxpaWlCA8PR1FREQ4ePIgVK1Zg+fLlmDZtWl2vAhEREdVTFg87eXl5GDZsGL788ks0atRIGp6dnY2vvvoKn3zyCfr06YPAwEAsW7YMBw8exKFDhwAAO3bswJkzZ7Bq1Sp07twZYWFheO+997Bo0SIUFRVZapWIiIioHrF42ImKikJ4eDhCQkLMhickJKC4uNhseLt27eDr64v4+HgAQHx8PAICAuDp6Sm1CQ0NRU5ODk6fPl3pMgsLC5GTk2P2ICIiInmyseTCv/vuOxw9ehRHjhwpN06v10OpVMLFxcVsuKenJ/R6vdTm1qBjGm8aV5mYmBjMnDnzPqsnIiKihsBiR3ZSUlLw73//G6tXr4adnV2dLjs6OhrZ2dnSIyUlpdaWJYRAXl4ehBC1tgwiIiKqnMXCTkJCAtLT0/HII4/AxsYGNjY2iIuLw4IFC2BjYwNPT08UFRUhKyvLbLq0tDRotVoAgFarLXd1lum5qU1FVCoVNBqN2aO2FBXewCdbj8FgMNTaMoiIiKhyFgs7ffv2xcmTJ5GYmCg9unTpgmHDhkm/29raYvfu3dI058+fR3JyMnQ6HQBAp9Ph5MmTSE9Pl9rs3LkTGo0G/v7+db5OlVHa2Vu6BCIiogeWxfrsODk5oWPHjmbDHB0d4ebmJg0fPXo0Jk+eDFdXV2g0GkyYMAE6nQ49evQAAPTr1w/+/v4YPnw4PvzwQ+j1ekydOhVRUVFQqVR1vk5ERERU/1i0g/LdzJs3D1ZWVoiIiEBhYSFCQ0OxePFiaby1tTW2bt2KcePGQafTwdHREZGRkZg1a5YFqyYiIqL6RCHYcxY5OTlwdnZGdnZ2jfbfycvLw+z18bCytsVbT3eBWq2usXkTERE96Kr699vi99khIiIiqk0MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsWDTtLlixBp06doNFooNFooNPp8PPPP0vjg4ODoVAozB4vv/yy2TySk5MRHh4OBwcHeHh4YMqUKSgpKanrVSEiIqJ6ysaSC2/atCk++OADtG7dGkIIrFixAgMHDsSxY8fQoUMHAMCYMWMwa9YsaRoHBwfp99LSUoSHh0Or1eLgwYNITU3FiBEjYGtri9mzZ9f5+hAREVH9Y9Gw8+STT5o9f//997FkyRIcOnRICjsODg7QarUVTr9jxw6cOXMGu3btgqenJzp37oz33nsPb775JmbMmAGlUlnr60BERET1W73ps1NaWorvvvsOBoMBOp1OGr569Wq4u7ujY8eOiI6ORn5+vjQuPj4eAQEB8PT0lIaFhoYiJycHp0+frnRZhYWFyMnJMXsQERGRPFn0yA4AnDx5EjqdDgUFBVCr1di4cSP8/f0BAC+88AKaNWsGb29vnDhxAm+++SbOnz+PDRs2AAD0er1Z0AEgPdfr9ZUuMyYmBjNnzqylNSIiIqL6xOJhp23btkhMTER2djZ++OEHREZGIi4uDv7+/hg7dqzULiAgAF5eXujbty8uXbqEli1bVnuZ0dHRmDx5svQ8JycHPj4+97UeREREVD9Z/DSWUqlEq1atEBgYiJiYGDz00EP49NNPK2zbvXt3AMDFixcBAFqtFmlpaWZtTM8r6+cDACqVSroCzPQgIiIiebJ42Lmd0WhEYWFhheMSExMBAF5eXgAAnU6HkydPIj09XWqzc+dOaDQa6VQYERERPdgsehorOjoaYWFh8PX1RW5uLtasWYPY2Fhs374dly5dwpo1azBgwAC4ubnhxIkTmDRpEoKCgtCpUycAQL9+/eDv74/hw4fjww8/hF6vx9SpUxEVFQWVSmXJVSMiIqJ6wqJhJz09HSNGjEBqaiqcnZ3RqVMnbN++HY8//jhSUlKwa9cuzJ8/HwaDAT4+PoiIiMDUqVOl6a2trbF161aMGzcOOp0Ojo6OiIyMNLsvDxERET3YLBp2vvrqq0rH+fj4IC4u7q7zaNasGX766aeaLIuIiIhkpN712SEiIiKqSQw7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaxYNO0uWLEGnTp2g0Wig0Wig0+nw888/S+MLCgoQFRUFNzc3qNVqREREIC0tzWweycnJCA8Ph4ODAzw8PDBlyhSUlJTU9aoQERFRPWXRsNO0aVN88MEHSEhIwG+//YY+ffpg4MCBOH36NABg0qRJ2LJlC9atW4e4uDhcvXoVgwcPlqYvLS1FeHg4ioqKcPDgQaxYsQLLly/HtGnTLLVKREREVM8ohBDC0kXcytXVFXPnzsUzzzyDxo0bY82aNXjmmWcAAOfOnUP79u0RHx+PHj164Oeff8YTTzyBq1evwtPTEwCwdOlSvPnmm7h27RqUSmWVlpmTkwNnZ2dkZ2dDo9HU2Lrk5eVh9vp4WFnb4q2nu0CtVtfYvImIiB50Vf37XW/67JSWluK7776DwWCATqdDQkICiouLERISIrVp164dfH19ER8fDwCIj49HQECAFHQAIDQ0FDk5OdLRoYoUFhYiJyfH7EFERETyZPGwc/LkSajVaqhUKrz88svYuHEj/P39odfroVQq4eLiYtbe09MTer0eAKDX682Cjmm8aVxlYmJi4OzsLD18fHxqdqWIiIio3rB42Gnbti0SExNx+PBhjBs3DpGRkThz5kytLjM6OhrZ2dnSIyUlpVaXR0RERJZjY+kClEolWrVqBQAIDAzEkSNH8Omnn+K5555DUVERsrKyzI7upKWlQavVAgC0Wi1+/fVXs/mZrtYytamISqWCSqWq4TUhIiKi+sjiR3ZuZzQaUVhYiMDAQNja2mL37t3SuPPnzyM5ORk6nQ4AoNPpcPLkSaSnp0ttdu7cCY1GA39//zqvnYiIiOofix7ZiY6ORlhYGHx9fZGbm4s1a9YgNjYW27dvh7OzM0aPHo3JkyfD1dUVGo0GEyZMgE6nQ48ePQAA/fr1g7+/P4YPH44PP/wQer0eU6dORVRUFI/cEBEREQALh5309HSMGDECqampcHZ2RqdOnbB9+3Y8/vjjAIB58+bBysoKERERKCwsRGhoKBYvXixNb21tja1bt2LcuHHQ6XRwdHREZGQkZs2aZalVIiIionqm3t1nxxJ4nx0iIqKGp8HdZ4eIiIioNjDsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrFk07MTExKBr165wcnKCh4cHnn76aZw/f96sTXBwMBQKhdnj5ZdfNmuTnJyM8PBwODg4wMPDA1OmTEFJSUldrgoRERHVUzaWXHhcXByioqLQtWtXlJSU4O2330a/fv1w5swZODo6Su3GjBmDWbNmSc8dHByk30tLSxEeHg6tVouDBw8iNTUVI0aMgK2tLWbPnl2n60NERET1j0XDzrZt28yeL1++HB4eHkhISEBQUJA03MHBAVqttsJ57NixA2fOnMGuXbvg6emJzp0747333sObb76JGTNmQKlU1uo6EBERUf1Wr/rsZGdnAwBcXV3Nhq9evRru7u7o2LEjoqOjkZ+fL42Lj49HQEAAPD09pWGhoaHIycnB6dOnK1xOYWEhcnJyzB5EREQkTxY9snMro9GIiRMnomfPnujYsaM0/IUXXkCzZs3g7e2NEydO4M0338T58+exYcMGAIBerzcLOgCk53q9vsJlxcTEYObMmbW0JkRERFSfVDvsGAwGxMXFITk5GUVFRWbjXn311XueX1RUFE6dOoUDBw6YDR87dqz0e0BAALy8vNC3b19cunQJLVu2rFbt0dHRmDx5svQ8JycHPj4+1ZoXERER1W/VCjvHjh3DgAEDkJ+fD4PBAFdXV2RkZEhXQ91r2Bk/fjy2bt2Kffv2oWnTpnds2717dwDAxYsX0bJlS2i1Wvz6669mbdLS0gCg0n4+KpUKKpXqnmokIiKihqlafXYmTZqEJ598En/99Rfs7e1x6NAhXLlyBYGBgfjoo4+qPB8hBMaPH4+NGzdiz5498PPzu+s0iYmJAAAvLy8AgE6nw8mTJ5Geni612blzJzQaDfz9/e9txYiIiEh2qhV2EhMT8dprr8HKygrW1tYoLCyEj48PPvzwQ7z99ttVnk9UVBRWrVqFNWvWwMnJCXq9Hnq9Hjdu3AAAXLp0Ce+99x4SEhJw+fJl/O9//8OIESMQFBSETp06AQD69esHf39/DB8+HMePH8f27dsxdepUREVF8egNERERVS/s2NrawsqqbFIPDw8kJycDAJydnZGSklLl+SxZsgTZ2dkIDg6Gl5eX9Fi7di0AQKlUYteuXejXrx/atWuH1157DREREdiyZYs0D2tra2zduhXW1tbQ6XR48cUXMWLECLP78hAREdGDq1p9dh5++GEcOXIErVu3Ru/evTFt2jRkZGTgm2++MbuS6m6EEHcc7+Pjg7i4uLvOp1mzZvjpp5+qvFwiIiJ6cFTryM7s2bOlPjPvv/8+GjVqhHHjxuHatWv44osvarRAIiIiovtRrSM7Xbp0kX738PAodydkIiIiovqiWkd2+vTpg6ysrBouhYiIiKjmVSvsxMbGlruRIBEREVF9VO3vxlIoFDVZBxEREVGtqPbXRQwaNKjSbxTfs2dPtQsiIiIiqknVDjs6nQ5qtbomayEiIiKqcdUKOwqFAlOmTIGHh0dN10NERERUo6rVZ+duNwMkIiIiqi+qFXamT5/OU1hERETUIFTrNNb06dMBANeuXcP58+cBAG3btkXjxo1rrjIiIiKiGlCtIzv5+fn45z//CW9vbwQFBSEoKAje3t4YPXo08vPza7pGIiIiomqrVtiZNGkS4uLi8L///Q9ZWVnIysrC5s2bERcXh9dee62mayQiIiKqtmqdxlq/fj1++OEHBAcHS8MGDBgAe3t7DBkyBEuWLKmp+oiIiIjuS7VPY3l6epYb7uHhwdNYREREVK9UK+zodDpMnz4dBQUF0rAbN25g5syZ0Ol0NVYcERER0f2q1mms+fPno3///mjatCkeeughAMDx48dhZ2eH7du312iBRERERPejWmEnICAAFy5cwOrVq3Hu3DkAwPPPP49hw4bB3t6+RgskIiIiuh/VCjv79u3Do48+ijFjxtR0PUREREQ1qlp9dv7xj3/g+vXrNV0LERERUY3jd2MRERGRrFXrNBYAxMfHo1GjRhWOCwoKqnZBRERERDWp2mFn0KBBFQ5XKBQoLS2tdkFERERENalap7EAQK/Xw2g0lnsw6BAREVF9Uq2wo1AoaroOIiIiolrBDspEREQka9Xqs2M0Gmu6DiIiIqJaUa0jOzExMfj666/LDf/6668xZ86c+y6KiIiIqKZUK+x8/vnnaNeuXbnhHTp0wNKlS++7KCIiIqKaUq2wo9fr4eXlVW5448aNkZqaet9FEREREdWUaoUdHx8f/PLLL+WG//LLL/D29r7vooiIiIhqSrXCzpgxYzBx4kQsW7YMV65cwZUrV/D1119j0qRJ9/TloDExMejatSucnJzg4eGBp59+GufPnzdrU1BQgKioKLi5uUGtViMiIgJpaWlmbZKTkxEeHg4HBwd4eHhgypQpKCkpqc6qERERkcxU62qsKVOmIDMzE6+88gqKiooAAHZ2dnjzzTcRHR1d5fnExcUhKioKXbt2RUlJCd5++23069cPZ86cgaOjIwBg0qRJ+PHHH7Fu3To4Oztj/PjxGDx4sHRkqbS0FOHh4dBqtTh48CBSU1MxYsQI2NraYvbs2dVZPSIiIpIRhbiPm+bk5eXh7NmzsLe3R+vWraFSqe6rmGvXrsHDwwNxcXEICgpCdnY2GjdujDVr1uCZZ54BAJw7dw7t27dHfHw8evTogZ9//hlPPPEErl69Ck9PTwDA0qVL8eabb+LatWtQKpV3XW5OTg6cnZ2RnZ0NjUZzX+twq7y8PMxeHw8ra1u89XQXqNXqGps3ERHRg66qf7+r/XURAKBWq9G1a1d07NjxvoMOAGRnZwMAXF1dAQAJCQkoLi5GSEiI1KZdu3bw9fVFfHw8gLIvJA0ICJCCDgCEhoYiJycHp0+frnA5hYWFyMnJMXsQERGRPFX7i0B/++03fP/990hOTpZOZZls2LDhnudnNBoxceJE9OzZEx07dgRQdtWXUqmEi4uLWVtPT0/o9Xqpza1BxzTeNK4iMTExmDlz5j3XSERERA1PtY7sfPfdd3j00Udx9uxZbNy4EcXFxTh9+jT27NkDZ2fnahUSFRWFU6dO4bvvvqvW9PciOjoa2dnZ0iMlJaXWlymEQF5eHr9qg4iIqI5VK+zMnj0b8+bNw5YtW6BUKvHpp5/i3LlzGDJkCHx9fe95fuPHj8fWrVuxd+9eNG3aVBqu1WpRVFSErKwss/ZpaWnQarVSm9uvzjI9N7W5nUqlgkajMXvUNoPBgJj1h2AwGGp9WURERHRTtcLOpUuXEB4eDgBQKpUwGAxQKBSYNGkSvvjiiyrPRwiB8ePHY+PGjdizZw/8/PzMxgcGBsLW1ha7d++Whp0/fx7JycnQ6XQAAJ1Oh5MnTyI9PV1qs3PnTmg0Gvj7+1dn9WqN0s7e0iUQERE9cKrVZ6dRo0bIzc0FADRp0gSnTp1CQEAAsrKykJ+fX+X5REVFYc2aNdi8eTOcnJykPjbOzs6wt7eHs7MzRo8ejcmTJ8PV1RUajQYTJkyATqdDjx49AAD9+vWDv78/hg8fjg8//BB6vR5Tp05FVFRUjXSaJiIiooatWmEnKCgIO3fuREBAAJ599ln8+9//xp49e7Bz50707du3yvNZsmQJACA4ONhs+LJlyzBy5EgAwLx582BlZYWIiAgUFhYiNDQUixcvltpaW1tj69atGDduHHQ6HRwdHREZGYlZs2ZVZ9WIiIhIZqoVdj777DMUFBQAAN555x3Y2tri4MGDiIiIwNSpU6s8n6p01rWzs8OiRYuwaNGiSts0a9YMP/30U5WXS0RERA+Oewo7pvvR2NjYQK1WS89feeUVvPLKKzVfHREREdF9uqew4+LiAoVCcdd2paWl1S6IiIiIqCbdU9jZu3ev2XMhBAYMGID//ve/aNKkSY0WRkRERFQT7ins9O7du9wwa2tr9OjRAy1atKixouRGCPH3/XV4Q0EiIqK6dl/fjUVVU1xYgIU/H0dxcYmlSyEiInrg3FfYSUlJQX5+Ptzc3GqqHtniDQWJiIgs455OYy1YsED6PSMjA99++y369OlT7e/DIiIiIqpt9xR25s2bBwBQKBRwd3fHk08+eU/31SEiIiKqa/cUdpKSkmqrDiIiIqJawQ7KREREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsWDTv79u3Dk08+CW9vbygUCmzatMls/MiRI6FQKMwe/fv3N2tz/fp1DBs2DBqNBi4uLhg9ejTy8vLqcC2IiIioPrNo2DEYDHjooYewaNGiStv0798fqamp0uPbb781Gz9s2DCcPn0aO3fuxNatW7Fv3z6MHTu2tksnIiKiBsLGkgsPCwtDWFjYHduoVCpotdoKx509exbbtm3DkSNH0KVLFwDAwoULMWDAAHz00Ufw9vau8ZqJiIioYan3fXZiY2Ph4eGBtm3bYty4ccjMzJTGxcfHw8XFRQo6ABASEgIrKyscPny40nkWFhYiJyfH7EFERETyVK/DTv/+/bFy5Urs3r0bc+bMQVxcHMLCwlBaWgoA0Ov18PDwMJvGxsYGrq6u0Ov1lc43JiYGzs7O0sPHx6dW14OIiIgsx6Knse5m6NCh0u8BAQHo1KkTWrZsidjYWPTt27fa842OjsbkyZOl5zk5OQw8REREMlWvj+zcrkWLFnB3d8fFixcBAFqtFunp6WZtSkpKcP369Ur7+QBl/YA0Go3Zg4iIiOSpQYWdP/74A5mZmfDy8gIA6HQ6ZGVlISEhQWqzZ88eGI1GdO/e3VJlEhERUT1i0dNYeXl50lEaAEhKSkJiYiJcXV3h6uqKmTNnIiIiAlqtFpcuXcIbb7yBVq1aITQ0FADQvn179O/fH2PGjMHSpUtRXFyM8ePHY+jQobwSi4iIiABY+MjOb7/9hocffhgPP/wwAGDy5Ml4+OGHMW3aNFhbW+PEiRN46qmn0KZNG4wePRqBgYHYv38/VCqVNI/Vq1ejXbt26Nu3LwYMGIDHHnsMX3zxhaVWiYiIiOoZix7ZCQ4OhhCi0vHbt2+/6zxcXV2xZs2amiyLiIiIZKRB9dkhIiIiulcMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7dUgIgby8PAghLF0KERHRA4Nhpw4VFxbg4y1HkZaWxsBDRERURxh26phCocAnW4/BYDBYuhQiIqIHAsOOBSjt7C1dAhER0QODYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGnDhSUClzIEigq5eXmREREdY1hpw6cuS5wLEPgQKpAKe+vQ0REVKcYdurAtRtlPzMKgKPpgjcUJCIiqkM2li5A7opLBXKKbj5PygUaXy+xXEFEREQPGB7ZqWXXCwQEAAcbIMBNAQD4/XqxZYsiIiJ6gDDs1LKMG2WnrFztAF912bCcIoESI09lERER1QWGnVqWecMIAHBTKeBgA9goAKMAkq/fsHBlREREDwaGnVokhJCO7LjZlX0JqEZZNu7SNX4RKBERUV2waNjZt28fnnzySXh7e0OhUGDTpk1m44UQmDZtGry8vGBvb4+QkBBcuHDBrM3169cxbNgwaDQauLi4YPTo0cjLy6vDtajc1exCFJQCCgAuqrJhprBzkWGHiIioTlg07BgMBjz00ENYtGhRheM//PBDLFiwAEuXLsXhw4fh6OiI0NBQFBQUSG2GDRuG06dPY+fOndi6dSv27duHsWPH1tUq3NHxP3MAlAUdG6uyzskaZdnPixn5FquLiIjoQWLRS8/DwsIQFhZW4TghBObPn4+pU6di4MCBAICVK1fC09MTmzZtwtChQ3H27Fls27YNR44cQZcuXQAACxcuxIABA/DRRx/B29u7ztalIif+DjtudjeHOfM0FhERUZ2qt312kpKSoNfrERISIg1zdnZG9+7dER8fDwCIj4+Hi4uLFHQAICQkBFZWVjh8+HCd13y7k1LYUUjDTKexLmfeQHGp0RJlERERPVDq7U0F9Xo9AMDT09NsuKenpzROr9fDw8PDbLyNjQ1cXV2lNhUpLCxEYWGh9DwnJ6emypYYjQIFJWVhxlV1c7iDDWBjBZQYBa5kGtDKw6nGl01EREQ31dsjO7UpJiYGzs7O0sPHx6fGl2FlpcD6MV3wTBtbqG1vDlcoFHBWlW3239PqR0dqIiIiOau3YUer1QIA0tLSzIanpaVJ47RaLdLT083Gl5SU4Pr161KbikRHRyM7O1t6pKSk1HD1NymtFVAoFGbDboad3FpbLhEREZWpt2HHz88PWq0Wu3fvlobl5OTg8OHD0Ol0AACdToesrCwkJCRIbfbs2QOj0Yju3btXOm+VSgWNRmP2qEsudmWb/QKP7BAREdU6i/bZycvLw8WLF6XnSUlJSExMhKurK3x9fTFx4kT85z//QevWreHn54d3330X3t7eePrppwEA7du3R//+/TFmzBgsXboUxcXFGD9+PIYOHWrxK7HuxFn193dk8cgOERFRrbNo2Pntt9/wj3/8Q3o+efJkAEBkZCSWL1+ON954AwaDAWPHjkVWVhYee+wxbNu2DXZ2N6/lXr16NcaPH4++ffvCysoKERERWLBgQZ2vy71w+fs0VlKGAcWlRtha19sDbERERA2eQgjxwH8jZU5ODpydnZGdnV2jp7Ty8vIwe308SopLzIbbquyw7twNFJUK7H/jH/BxdaixZRIRET0oqvr3m4cULEChUKCJS9nRqZTrvJMyERFRbWLYsRBv57Kw88df/PZzIiKi2sSwYyHeLqawwyM7REREtYlhx0Kamk5j8cgOERFRrWLYsZCbp7F4ZIeIiKg2MexYSBMX9tkhIiKqCww7FmIKO/qcAhSWlFq4GiIiIvli2LEQVwdb2NlaQQggNavA0uUQERHJFsOOhSgUCjRtVHYzQZ7KIiIiqj0MOxbk08geAJDCTspERES1hmHHgm4e2WHYISIiqi0MOxbU9O8jOzyNRUREVHsYdiyIfXaIiIhqH8OOBfm4/t1nh18GSkREVGsYdixACIG8vDw0cSkLO+m5hSgo5r12iIiIagPDjgUUFxbgk63HoBRFcFBaAwCuZvFUFhERUW1g2LEQpZ09FAoFfP7ut8MvBCUiIqodDDsWIp3Kkq7IYr8dIiKi2sCwYyGmU1latQ0AXpFFRERUW2wsXcCDTGlnD6+/vxCUV2QRERHVDh7ZsTDvv8MOj+wQERHVDoYdC2vizLBDRERUmxh2LKzJ30d2MvIKcaOI99ohIiKqaQw7Fqaxs4GTqqzr1J9Z7LdDRERU0xh2LEyhUEiXn/NeO0RERDWPYace8HH9+wtBeUUWERFRjWPYqQeaSjcW5JEdIiKimsawUw80/fsrIxh2iIiIah7DTj3QVOqzw9NYRERENY1hpx7w4ZEdIiKiWsOwY0HSl4H+fa+d64YiGApLLFwVERGRvDDsWFBxYQE+3nIUN3KuQ2NnutcOj+4QERHVpHoddmbMmAGFQmH2aNeunTS+oKAAUVFRcHNzg1qtRkREBNLS0ixY8b1TKBT4ZOsx6egOvxCUiIioZtXrsAMAHTp0QGpqqvQ4cOCANG7SpEnYsmUL1q1bh7i4OFy9ehWDBw+2YLXVo7Szhze/I4uIiKhW2Fi6gLuxsbGBVqstNzw7OxtfffUV1qxZgz59+gAAli1bhvbt2+PQoUPo0aNHXZd6X5q4qAAAyTyyQ0REVKPq/ZGdCxcuwNvbGy1atMCwYcOQnJwMAEhISEBxcTFCQkKktu3atYOvry/i4+PvOM/CwkLk5OSYPSyt+d93Ub50Lc/ClRAREclLvQ473bt3x/Lly7Ft2zYsWbIESUlJ6NWrF3Jzc6HX66FUKuHi4mI2jaenJ/R6/R3nGxMTA2dnZ+nh4+NTi2tRNS0bl4WdC2kMO0RERDWpXp/GCgsLk37v1KkTunfvjmbNmuH777+Hvb19tecbHR2NyZMnS89zcnIsHnhaujsCKLsay1BYAkdVvd41REREDUa9PrJzOxcXF7Rp0wYXL16EVqtFUVERsrKyzNqkpaVV2MfnViqVChqNxuxhaS4OtnBXl/Xb4aksIiKimtOgwk5eXh4uXboELy8vBAYGwtbWFrt375bGnz9/HsnJydDpdBassvpae6gBAL/zVBYREVGNqdfnSl5//XU8+eSTaNasGa5evYrp06fD2toazz//PJydnTF69GhMnjwZrq6u0Gg0mDBhAnQ6XYO7Esuktaca8f+XiQvpuZYuhYiISDbqddj5448/8PzzzyMzMxONGzfGY489hkOHDqFx48YAgHnz5sHKygoREREoLCxEaGgoFi9ebOGqq0cIAV9nWwDARR7ZISIiqjH1Oux89913dxxvZ2eHRYsWYdGiRXVUUe0xGAw4dOYKAOBCOsMOERFRTWlQfXbkrrGm7AqzlL/ycaOo1MLVEBERyQPDTj1iZ2uFRg62EIJXZBEREdUUhp16pqX73zcXZCdlIiKiGsGwU8+0cOedlImIiGoSw04906px2Z2U2UmZiIioZjDs1DOt/v6OrDNXLf/lpERERHLAsFMPCCFgMBgACHTwcoKVouw7slKzb1i6NCIiogaPYaceKC4swMKfj6O4uOwLQP29y76r67fLf1m4MiIiooaPYaeeUNrd/Bb3rs1dAQBHLl+3VDlERESywbBTD90MOzyyQ0REdL8YduqhLs0bAQDO6XOQfaPYwtUQERE1bAw79ZCHkx2auzlACOBoMo/uEBER3Q+GnXpKOpWVxH47RERE94Nhpx4SQiDAq+x+O7wii4iI6P7YWLoAKlNUcANCYYW8vDwIIXDkbBIAIPGPLBQUl8LO1trCFRIRETVMPLJTjxQXFuDjLUeRnp4ONyd7aDUqFJUYEXs+3dKlERERNVgMO/WMQqHAwp+Po6SkFAM6eAAANh7708JVERERNVwMO/WQ6QaDTwSUhZ0959KRlV9kyZKIiIgaLIadeqyNhxrttE4oLhX48WSqpcshIiJqkBh26ikhBPLy8jDo4SYAgE08lUVERFQtDDv1VHFhAT7ZegwhrV2gUJR9dURyZr6lyyIiImpwGHbqMaWdPTw1KvRs6Q4AWBJ30cIVERERNTwMOw3AxJDWAIC1R1JwNjXHwtUQERE1LAw7DUCX5q4ID/CCUQDv/3gWQghLl0RERNRgMOzUY6ZOykajEeODfKC0tsKBixnYfZY3GSQiIqoqhp16zNRJOT09Hav2HMewbt4AgMnfJ+L3tFwLV0dERNQwMOzUc6YbDCrt7BEV1ByBzRohp6AEkV//itTsG+Xam44G8VQXERFRGYadBsTO1hpfRXZBy8aOSM0uwLNLDuJIUqZZG4PBgJj1h2AwGBh8iIiIwLBT7wkh/g4uRuTm5sK6tBDLR3aFl0aJP7IK8NwXh/D+j2dwLbdQmsZ0NOjW4ENERPSgsrF0AXRnxYUFWPjzcSjt7DFnfTyUdvaY/MTD6N6oAInCCpdzgS/3J2H5wcsYEOCF3i1dUFhilKZX2tlLR3gcHR2hUCgsuDZERER1j2GnAbi1346tyg4GgwEODip0sy1Fs0Y2yCyyxSm9AZsTr2Jz4lUoABzR/4a2no5Iu16A2LOpiDt5BTOe00GtVt9xWaYjSQxGREQkFwohkw4dixYtwty5c6HX6/HQQw9h4cKF6NatW5WmzcnJgbOzM7Kzs6HRaGqspry8PMxeH4+S4pK7ti0quAFYWUOpVFaprSkAAWUBpX+XNtj7f3n45f+uIymzfMdlAPB0UqKtpxptvJzRwl2N5u4OaOGuhqdGJQWbvLw8xKw/hLcGd4dCobhr6HnQw9GDvv5ERJZU1b/fsjiys3btWkyePBlLly5F9+7dMX/+fISGhuL8+fPw8PCwdHk17tagAwAKhQLr9xyGykGNb4d3xyc7f0fXFh64kJGPn0/pcT3fCEOpAmm5RUjLvY59F6+bTW9jpUAjRyVc7G3g6mCL9Cwjpm06iUtpOXiqix8au6ihsbOFxt7m75+2cLKzgdLaCjfyDfhgw2FER/QwO2pkCgEODg7Iz883CwO3B4TaCAx1FUJM/aJuX39L1kREROZkcWSne/fu6Nq1Kz777DMAgNFohI+PDyZMmIC33nrrrtM3tCM7lU1va++Il4Nb4asDl5CfmwfgZjAqNgpk5BaiwMYRvm5qxCdlQWFtg6s5RRC4vz+8VgpAZWMFG2sr2FgpoLSxAoQRhoJiuDiqkJNfBE9nB9jYWMPGSgEFjLh6PQ/NG2tga2OD0pIi/JGZhzberrBX2cLW2urvhwI21goojKWwt1NBaRpuo4CN1c2ahQAKi4qgVCqlNSksKsKek1fQp6MvlCrV3+0ECguLAAAqlRK4Zb0VirJnZT9NwwWKi4uhUiohABiFQKmx7KfRKGAUQEFhIQ7+rke3Vp6wtrGFEMKsnRACpaKsbWFhEY4lpaO9twusbGxgZW2D0pISONgppXVW2pStt/T87+1ga1P2/PY9VVhYCDuVqqzwW1S0R29tIsTf09qpbp/0lvWveFrTtiwqLIJSpTT7aWdXtVrKtu7NeZnP2zRe3PxdQNoHEH/vAwEYhREFBYWwsVWisKgItra2MN72iaZQ3Fyjm/tZIf1uGnH7/r91fFHRze2suGWeCsXN1VVAcfP3v38xtalw/QVQWFgAlcqu0jZm63Gf71OzedVR1r511woIFBYUQmWnggIKCNz5T8/d/jLdafS9/lm79Z8Phdnw29rd9plR0TTlaqmwvoraVfw+uPu87r6uVVlepe1uG1bVGsTNkSgsLIJKpUT/AC9o7GzvWu+9qOrf7wYfdoqKiuDg4IAffvgBTz/9tDQ8MjISWVlZ2Lx5c7lpCgsLUVh48+ql7Oxs+Pr6IiUlpcbDzgff70dxcfFd2xYX3YDCyho2NtULO6bphbEUtkr7u7a1VdqjuOgGbGztkVdQgBtFAraaRujRygM7TqWioNiIQqMCxUbAs5EaVzLzYaeyRaahGKVCUe4PChER0Z1smdATfu53PgJ+r3JycuDj44OsrCw4OztX2q7Bn8bKyMhAaWkpPD09zYZ7enri3LlzFU4TExODmTNnlhvu4+NTKzU2JGstXQAREclS5/m1N+/c3Fx5h53qiI6OxuTJk6XnRqMR169fh5ubW430pTAlzZo+UkQ1g/un/uK+qb+4b+q3B3X/CCGQm5sLb2/vO7Zr8GHH3d0d1tbWSEtLMxuelpYGrVZb4TQqlQqqv/txmLi4uNR4bRqN5oF60TU03D/1F/dN/cV9U789iPvnTkd0TBr8HZSVSiUCAwOxe/duaZjRaMTu3buh0+ksWBkRERHVBw3+yA4ATJ48GZGRkejSpQu6deuG+fPnw2AwYNSoUZYujYiIiCxMFmHnueeew7Vr1zBt2jTo9Xp07twZ27ZtK9dpua6oVCpMnz693Kkyqh+4f+ov7pv6i/umfuP+ubMGf+k5ERER0Z00+D47RERERHfCsENERESyxrBDREREssawQ0RERLLGsFMLFi1ahObNm8POzg7du3fHr7/+aumSHjgzZsz4+8sebz7atWsnjS8oKEBUVBTc3NygVqsRERFR7saUVDP27duHJ598Et7e3lAoFNi0aZPZeCEEpk2bBi8vL9jb2yMkJAQXLlwwa3P9+nUMGzYMGo0GLi4uGD16NPLy8upwLeTrbvtn5MiR5d5L/fv3N2vD/VM7YmJi0LVrVzg5OcHDwwNPP/00zp8/b9amKp9lycnJCA8Ph4ODAzw8PDBlyhSUlNz9C6rlhGGnhq1duxaTJ0/G9OnTcfToUTz00EMIDQ1Fenq6pUt74HTo0AGpqanS48CBA9K4SZMmYcuWLVi3bh3i4uJw9epVDB482ILVypfBYMBDDz2ERYsWVTj+ww8/xIIFC7B06VIcPnwYjo6OCA0NRUFBgdRm2LBhOH36NHbu3ImtW7di3759GDt2bF2tgqzdbf8AQP/+/c3eS99++63ZeO6f2hEXF4eoqCgcOnQIO3fuRHFxMfr16weDwSC1udtnWWlpKcLDw1FUVISDBw9ixYoVWL58OaZNm2aJVbIcQTWqW7duIioqSnpeWloqvL29RUxMjAWrevBMnz5dPPTQQxWOy8rKEra2tmLdunXSsLNnzwoAIj4+vo4qfDABEBs3bpSeG41GodVqxdy5c6VhWVlZQqVSiW+//VYIIcSZM2cEAHHkyBGpzc8//ywUCoX4888/66z2B8Ht+0cIISIjI8XAgQMrnYb7p+6kp6cLACIuLk4IUbXPsp9++klYWVkJvV4vtVmyZInQaDSisLCwblfAgnhkpwYVFRUhISEBISEh0jArKyuEhIQgPj7egpU9mC5cuABvb2+0aNECw4YNQ3JyMgAgISEBxcXFZvupXbt28PX15X6qY0lJSdDr9Wb7wtnZGd27d5f2RXx8PFxcXNClSxepTUhICKysrHD48OE6r/lBFBsbCw8PD7Rt2xbjxo1DZmamNI77p+5kZ2cDAFxdXQFU7bMsPj4eAQEBZjfZDQ0NRU5ODk6fPl2H1VsWw04NysjIQGlpabk7N3t6ekKv11uoqgdT9+7dsXz5cmzbtg1LlixBUlISevXqhdzcXOj1eiiVynJf/sr9VPdM2/tO7xm9Xg8PDw+z8TY2NnB1deX+qgP9+/fHypUrsXv3bsyZMwdxcXEICwtDaWkpAO6fumI0GjFx4kT07NkTHTt2BIAqfZbp9foK31+mcQ8KWXxdBNHtwsLCpN87deqE7t27o1mzZvj+++9hb29vwcqIGpahQ4dKvwcEBKBTp05o2bIlYmNj0bdvXwtW9mCJiorCqVOnzPoeUtXxyE4Ncnd3h7W1dbme8GlpadBqtRaqigDAxcUFbdq0wcWLF6HValFUVISsrCyzNtxPdc+0ve/0ntFqteU6+JeUlOD69evcXxbQokULuLu74+LFiwC4f+rC+PHjsXXrVuzduxdNmzaVhlfls0yr1Vb4/jKNe1Aw7NQgpVKJwMBA7N69WxpmNBqxe/du6HQ6C1ZGeXl5uHTpEry8vBAYGAhbW1uz/XT+/HkkJydzP9UxPz8/aLVas32Rk5ODw4cPS/tCp9MhKysLCQkJUps9e/bAaDSie/fudV7zg+6PP/5AZmYmvLy8AHD/1CYhBMaPH4+NGzdiz5498PPzMxtflc8ynU6HkydPmgXSnTt3QqPRwN/fv25WpD6wdA9pufnuu++ESqUSy5cvF2fOnBFjx44VLi4uZj3hqfa99tprIjY2ViQlJYlffvlFhISECHd3d5Geni6EEOLll18Wvr6+Ys+ePeK3334TOp1O6HQ6C1ctT7m5ueLYsWPi2LFjAoD45JNPxLFjx8SVK1eEEEJ88MEHwsXFRWzevFmcOHFCDBw4UPj5+YkbN25I8+jfv794+OGHxeHDh8WBAwdE69atxfPPP2+pVZKVO+2f3Nxc8frrr4v4+HiRlJQkdu3aJR555BHRunVrUVBQIM2D+6d2jBs3Tjg7O4vY2FiRmpoqPfLz86U2d/ssKykpER07dhT9+vUTiYmJYtu2baJx48YiOjraEqtkMQw7tWDhwoXC19dXKJVK0a1bN3Ho0CFLl/TAee6554SXl5dQKpWiSZMm4rnnnhMXL16Uxt+4cUO88sorolGjRsLBwUEMGjRIpKamWrBi+dq7d68AUO4RGRkphCi7/Pzdd98Vnp6eQqVSib59+4rz58+bzSMzM1M8//zzQq1WC41GI0aNGiVyc3MtsDbyc6f9k5+fL/r16ycaN24sbG1tRbNmzcSYMWPK/fPG/VM7KtovAMSyZcukNlX5LLt8+bIICwsT9vb2wt3dXbz22muiuLi4jtfGshRCCFHXR5OIiIiI6gr77BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQEd2H2NhYKBSKct9PRET1B8MOEdWJkSNHQqFQ4IMPPjAbvmnTJigUiirPp3nz5pg/f34NV1c1wcHBmDhxokWWTUTVx7BDRHXGzs4Oc+bMwV9//WXpUu5JUVGRpUsgovvAsENEdSYkJARarRYxMTGVtjlw4AB69eoFe3t7+Pj44NVXX4XBYABQdmTlypUrmDRpEhQKBRQKBYQQaNy4MX744QdpHp07d5a+lds0T5VKhfz8fABAcnIyBg4cCLVaDY1GgyFDhiAtLU1qP2PGDHTu3Bn//e9/4efnBzs7O4wcORJxcXH49NNPpWVfvnxZmiYhIQFdunSBg4MDHn30UZw/f76mNhsR3SeGHSKqM9bW1pg9ezYWLlyIP/74o9z4S5cuoX///oiIiMCJEyewdu1aHDhwAOPHjwcAbNiwAU2bNsWsWbOQmpqK1NRUKBQKBAUFITY2FgDw119/4ezZs7hx4wbOnTsHAIiLi0PXrl3h4OAAo9GIgQMH4vr164iLi8POnTvxf//3f3juuefMarl48SLWr1+PDRs2IDExEZ9++il0Oh3GjBkjLdvHx0dq/8477+Djjz/Gb7/9BhsbG/zzn/+spa1IRPfKxtIFENGDZdCgQejcuTOmT5+Or776ymxcTEwMhg0bJvWLad26NRYsWIDevXtjyZIlcHV1hbW1NZycnKDVaqXpgoOD8fnnnwMA9u3bh4cffhharRaxsbFo164dYmNj0bt3bwDA7t27cfLkSSQlJUlhZeXKlejQoQOOHDmCrl27Aig7dbVy5Uo0btxYWo5SqYSDg4PZsk3ef/99aRlvvfUWwsPDUVBQADs7uxrackRUXTyyQ0R1bs6cOVixYgXOnj1rNvz48eNYvnw51Gq19AgNDYXRaERSUlKl8+vduzfOnDmDa9euIS4uDsHBwQgODkZsbCyKi4tx8OBBBAcHAwDOnj0LHx8fs6My/v7+cHFxMaunWbNmZkHnbjp16iT9bjqFlp6eXuXpiaj2MOwQUZ0LCgpCaGgooqOjzYbn5eXhpZdeQmJiovQ4fvw4Lly4gJYtW1Y6v4CAALi6uiIuLs4s7MTFxeHIkSMoLi7Go48+ek81Ojo63lN7W1tb6XfT1WVGo/Ge5kFEtYOnsYjIIj744AN07twZbdu2lYY98sgjOHPmDFq1alXpdEqlEqWlpWbDFAoFevXqhc2bN+P06dN47LHH4ODggMLCQnz++efo0qWLFF7at2+PlJQUpKSkSEd3zpw5g6ysLPj7+9+x5oqWTUT1H4/sEJFFBAQEYNiwYViwYIE07M0338TBgwcxfvx4JCYm4sKFC9i8ebPUQRkou8/Ovn378OeffyIjI0MaHhwcjG+//RadO3eGWq2GlZUVgoKCsHr1aqkvDVB2RZhp2UePHsWvv/6KESNGoHfv3ujSpcsda27evDkOHz6My5cvIyMjg0duiBoIhh0isphZs2aZBYZOnTohLi4Ov//+O3r16oWHH34Y06ZNg7e3t9k0ly9fRsuWLc361PTu3RulpaVS3xygLADdPkyhUGDz5s1o1KgRgoKCEBISghYtWmDt2rV3rff111+HtbU1/P390bhxYyQnJ9/fBiCiOqEQQghLF0FERERUW3hkh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZO3/AQUuQ7VW7JWiAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfOUlEQVR4nO3deVxUVeMG8GdYZlgHRHZFcV9xww0XMEURKTUt0yyxTMvQUnvNKHdLss2lFO2XS5lmaS6vVporbrjvG6kvCiWLG7sMy5zfHzRXhmEXGLg+389nPjD3nnvuOffOwDP3nntHIYQQICIiIpIpE2M3gIiIiKgyMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BDRU2fNmjVQKBQ4deqUsZtCRFWAYacG0/3B1j0sLCzQtGlTTJgwAQkJCcZuHlVDo0ePhkKhQJs2bVDYN8UoFApMmDChXHXPnz8fW7dufcIWVqxly5ZhzZo1xm4GERkZw44MzJ07F2vXrsU333yDbt26ITw8HD4+PsjIyDB206iaunjxIjZv3lyhdTLsEFF1xbAjA4GBgXjllVfwxhtvYM2aNZg0aRKio6Oxbds2YzeNqiFLS0s0bdoUc+fOLfTojhww6BNRfgw7MtS7d28AQHR0NADgwYMH+M9//gMvLy/Y2NhArVYjMDAQ58+fN1g2MzMTs2fPRtOmTWFhYQE3NzcMGTIEN2/eBADcunVL79RZwUevXr2kug4cOACFQoGff/4ZH374IVxdXWFtbY2BAwciNjbWYN3Hjx9H//79YWdnBysrK/j5+eHIkSOF9rFXr16Frn/27NkGZX/88Ud4e3vD0tISDg4OGD58eKHrL65v+Wm1WixatAitWrWChYUFXFxc8Oabb+Lhw4d65Tw9PfHss88arGfChAkGdRbW9s8//9xgmwKARqPBrFmz0LhxY6hUKnh4eOD999+HRqMpdFsVZGJigunTp+PChQvYsmVLieVLsz6FQoH09HR8//330jYbPXo0Lly4AIVCgf/+979S2dOnT0OhUKBDhw566wkMDESXLl30pi1btgytWrWCSqWCu7s7QkJCkJSUpFemV69eaN26NU6fPg1fX19YWVnhww8/hKenJy5fvoyIiIhCX5+6vk2ZMgVOTk6wtrbG888/j7t375a4TXSnA4t6HDhwQK/8xo0bpdego6MjXnnlFfzzzz8G9V67dg3Dhg2Dk5MTLC0t0axZM3z00UcG5Tw9PUu13j/++AM9e/aEtbU1bG1tERQUhMuXL5fYv6LGNN27d6/Q1+rZs2cRGBgItVoNGxsb9OnTB8eOHSu0zoMHD+LNN99E7dq1oVarMWrUqELfOwqFApMmTTJoW0BAABQKhd57KysrCzNnzoS3tzfs7OxgbW2Nnj17Yv/+/YX2b/bs2YVuv9GjRxuUyS8tLQ2urq4G2/qtt95CkyZNYGVlBQcHB/Tu3RuHDh3SW3bbtm0ICgqCu7s7VCoVGjVqhHnz5iE3N1evnO71XNAXX3wBhUKBW7duGWzT/NO0Wi3atGkDhUKhd1Rz9OjR8PT01KszNjYWlpaWBnXIkZmxG0AVTxdMateuDQD43//+h61bt+LFF19EgwYNkJCQgBUrVsDPzw9XrlyBu7s7ACA3NxfPPvss9u7di+HDh+Pdd99Famoqdu/ejUuXLqFRo0bSOkaMGIEBAwborTc0NLTQ9nzyySdQKBSYNm0aEhMTsWjRIvj7++PcuXOwtLQEAOzbtw+BgYHw9vbGrFmzYGJigtWrV0t/NDp37mxQb926dREWFgYg74/Q+PHjC133jBkzMGzYMLzxxhu4e/cuvv76a/j6+uLs2bOwt7c3WGbcuHHo2bMnAGDz5s0GgeDNN9/EmjVr8Nprr+Gdd95BdHQ0vvnmG5w9exZHjhyBubl5oduhLJKSkqS+5afVajFw4EAcPnwY48aNQ4sWLXDx4kUsXLgQf/31V6lPI7388suYN28e5s6di+eff97gj3pZ17d27Vq88cYb6Ny5M8aNGwcAaNSoEVq3bg17e3scPHgQAwcOBAAcOnQIJiYmOH/+PFJSUqBWq6HVanH06FFpWSDvn82cOXPg7++P8ePHIyoqCuHh4Th58qTBdr5//z4CAwMxfPhwvPLKK3BxcUGvXr0wceJE2NjYSIHBxcVFr38TJ05ErVq1MGvWLNy6dQuLFi3ChAkT8PPPP5e4DVUqFb777ju9aSdPnsSSJUv0puleK506dUJYWBgSEhKwePFiHDlyRO81eOHCBfTs2RPm5uYYN24cPD09cfPmTWzfvh2ffPKJwfp79uwpba+rV69i/vz5evPXrl2L4OBgBAQEYMGCBcjIyEB4eDh69OiBs2fPGvzjK6/Lly+jZ8+eUKvVeP/992Fubo4VK1agV69eiIiIMAiwEyZMgL29PWbPni3t09u3b0sfjnQsLCywbt06fP7559K+/vvvv7F3715YWFjo1ZmSkoLvvvsOI0aMwNixY5GamoqVK1ciICAAJ06cQLt27Qpt+9q1a6XfJ0+eXGJfv/zyy0LHQ2ZlZeGVV15B3bp18eDBA6xYsQL9+/fH1atXUa9ePQB5rwMbGxtMmTIFNjY22LdvH2bOnImUlBR8/vnnJa67tNauXYuLFy+WquzMmTORmZlZYeuu1gTVWKtXrxYAxJ49e8Tdu3dFbGys2LBhg6hdu7awtLQUf//9txBCiMzMTJGbm6u3bHR0tFCpVGLu3LnStFWrVgkA4quvvjJYl1arlZYDID7//HODMq1atRJ+fn7S8/379wsAok6dOiIlJUWa/ssvvwgAYvHixVLdTZo0EQEBAdJ6hBAiIyNDNGjQQPTt29dgXd26dROtW7eWnt+9e1cAELNmzZKm3bp1S5iamopPPvlEb9mLFy8KMzMzg+nXr18XAMT3338vTZs1a5bI/zY5dOiQACDWrVunt+zOnTsNptevX18EBQUZtD0kJEQUfOsVbPv7778vnJ2dhbe3t942Xbt2rTAxMRGHDh3SW3758uUCgDhy5IjB+vILDg4W1tbWQgghvv/+ewFAbN68Wa8dISEh5VqftbW1CA4ONlhnUFCQ6Ny5s/R8yJAhYsiQIcLU1FT88ccfQgghzpw5IwCIbdu2CSGESExMFEqlUvTr10/vtfvNN98IAGLVqlXSND8/PwFALF++3GDdBV+TOrr3jr+/v95rbvLkycLU1FQkJSUZLJNf/u2Y38aNGwUAsX//fiGEEFlZWcLZ2Vm0bt1aPHr0SCq3Y8cOAUDMnDlTmubr6ytsbW3F7du39erM3z6dOnXqiNdee016rnuv6dabmpoq7O3txdixY/WWi4+PF3Z2dgbTC9Jtn5MnT+pNL+x9NnjwYKFUKsXNmzelaXfu3BG2trbC19fXoE5vb2+RlZUlTf/ss8/09r0Qee+dvn37CkdHR7Fp0yZp+rx580S3bt0M3ls5OTlCo9HotfXhw4fCxcVFvP766wb9++ijj4RCodCbVr9+fb3Xb8H3fmJiorC1tRWBgYF627owJ06cEAD02p6RkWFQ7s033xRWVlYiMzNTmubn5ydatWplUPbzzz8XAER0dLQ0TbdNddMyMzNFvXr1pDauXr1aKhscHCzq168vPb906ZIwMTGRyuavV454GksG/P394eTkBA8PDwwfPhw2NjbYsmUL6tSpAyDvE6iJSd6uzs3Nxf3792FjY4NmzZrhzJkzUj2//vorHB0dMXHiRIN1FPXJvzRGjRoFW1tb6fkLL7wANzc3/P777wCAc+fO4fr163j55Zdx//593Lt3D/fu3UN6ejr69OmDgwcPQqvV6tWZmZlp8OmuoM2bN0Or1WLYsGFSnffu3YOrqyuaNGlicIg7KysLQN72KsrGjRthZ2eHvn376tXp7e0NGxsbgzqzs7P1yt27d6/ET1L//PMPvv76a8yYMQM2NjYG62/RogWaN2+uV6fu1GVRh+0LM3LkSDRp0qTYsTsVsb6ePXvizJkzSE9PBwAcPnwYAwYMQLt27aRD/YcOHYJCoUCPHj0AAHv27EFWVhYmTZokvXYBYOzYsVCr1fjtt9/01qFSqfDaa6+Vuu8648aN03tt9+zZE7m5ubh9+3aZ6yrMqVOnkJiYiLffflvv9RoUFITmzZtL/bh79y4OHjyI119/XToSoFPYey8rK6vY1+nu3buRlJSEESNG6O03U1NTdOnSpdSvk+TkZL3lHzx4oDc/NzcXf/75JwYPHoyGDRtK093c3PDyyy/j8OHDSElJ0Vtm3Lhxekflxo8fDzMzM+nvgY5SqcTIkSOxevVqaZruKFlBpqamUCqVAPKORj548AA5OTno2LGj3t84nZK2X2HmzZsHOzs7vPPOO4XOz8zMxL1793D16lUsXrwYlpaW6NixozRfdxQbAFJTU3Hv3j307NkTGRkZuHbtWpnaUpSlS5fi/v37mDVrVollQ0ND0aFDB7z44osVsu7qjqexZGDp0qVo2rQpzMzM4OLigmbNmun9g9BqtVi8eDGWLVuG6OhovXPEulNdQN7pr2bNmsHMrGJfFk2aNNF7rlAo0LhxY+kc8fXr1wEAwcHBRdaRnJyMWrVqSc/v3btnUG9B169fhxCiyHIFTzfpxoIUDBgF60xOToazs3Oh8xMTE/We//nnn3Byciq2nQXNmjUL7u7uePPNN7Fp0yaD9V+9erXIOguuvzimpqaYPn06goODsXXrVjz//PMGZSpifT179kROTg4iIyPh4eGBxMRE9OzZE5cvX9YLOy1btoSDgwMASGGjWbNmenUplUo0bNjQIIzUqVNH+mdXFgWDhe41VnAMSXkV1Q8AaN68OQ4fPgwg71QzgELHahQmOTm5xNcp8Hj8XkFqtbpU6/H39y92/t27d5GRkVFo/1q0aAGtVovY2Fi0atVKml7w/WhjYwM3N7dCx4y89tpr8Pb2RlxcHP766y/ExcVh2LBh+Pjjjw3Kfv/99/jyyy9x7do1ZGdnS9MbNGhgUDYpKanY7VdQdHQ0VqxYgfDw8CI/ZK1Zs0Y6le7q6ordu3ejfv360vzLly9j+vTp2Ldvn0EATE5OLnVbipKcnIz58+djypQpBqdrCzp8+DC2b9+OvXv3IiYm5onXXRMw7MhA586d9T5BFDR//nzMmDEDr7/+OubNmwcHBweYmJhg0qRJBkdMjEHXhs8//7zIc+v5/zBlZWUhLi4Offv2LbFehUKBP/74A6ampsXWCQDx8fEA8v5QFVens7Mz1q1bV+j8gqGgS5cuBn+Yv/nmmyKvlLt69SrWrFmDH3/8sdCxP1qtFl5eXvjqq68KXd7Dw6PIthdm5MiR0tidwYMHV8r6OnbsCAsLCxw8eBD16tWDs7MzmjZtip49e2LZsmXQaDQ4dOhQoWGrtPJ/ai6Lwl4XAKr1VWoPHjxAVlZWia9TIG/8RmHlSvuBRvdBSiclJQVDhw4tY4vLr23btmjbti1++OEHXL16FUOHDi00qP34448YPXo0Bg8ejKlTp8LZ2RmmpqYICwuTxjDmFx8fX+z2K+ijjz5CkyZNEBwcbDDwWOe5555D48aNkZiYiOXLl+Oll17C4cOH4enpiaSkJPj5+UGtVmPu3Llo1KgRLCwscObMGUybNq1C/g4vWLAAJiYmmDp1Ku7fv19s2WnTpiEgIAC9e/d+am7NwLDzFNi0aROeeeYZrFy5Um96UlISHB0dpeeNGjXC8ePHkZ2dXSGDbHV0nzJ1hBC4ceMG2rRpI60XyPu0WdInSQA4f/48srOziw14unqFEGjQoIHeH+yiXLlyBQqFotBPqfnr3LNnD7p3716qf7COjo4GfSpuEHFoaCjatWuHl156qcj1nz9/Hn369HmiU4s6uqM7o0ePLjSAlWV9Rc1XKpXo3LkzDh06hHr16kmDv3v27AmNRoN169YhISEBvr6+0jK6T8RRUVF6p0eysrIQHR1dqtdJcW2qKvn7UfAoS1RUlDRf18dLly6VWOeVK1cA5B05KYruPeXs7FzqbVWYgh+k7t27pzffyckJVlZWiIqKMlj22rVrMDExMQjE169fxzPPPCM9T0tLQ1xcnMEFDzqvv/46Fi5ciPj4eGzfvr3QMps2bULDhg2xefNmvX1e1OmcK1euGFwNWJSzZ89iw4YN2Lp1a5HhGMg7uqgbOjBkyBA4OjoiPDwcCxYswIEDB3D//n1s3rxZ73Wuu2L2Sd25cweLFy9GWFgYbG1tiw07W7duRWRkZKGn9+SMY3aeAqampgafVDdu3Ghw6evQoUNx7949fPPNNwZ1PMkn3R9++AGpqanS802bNiEuLg6BgYEAAG9vbzRq1AhffPEF0tLSDJYveCnwxo0bYWpqWuhl3fkNGTIEpqammDNnjkH7hRB6fxBycnLw66+/onPnzsUe3h42bBhyc3Mxb948g3k5OTkGl0WXRWRkJLZt24ZPP/20yH/Sw4YNwz///IP/+7//M5j36NEjaVxMWbzyyito3Lgx5syZ80Trs7a2LrL/PXv2xPHjx7F//34p7Dg6OqJFixZYsGCBVEbH398fSqUSS5Ys0dt3K1euRHJyMoKCgkrVt+LaVBU6duwIZ2dnLF++XO9S/T/++ANXr16V+uHk5ARfX1+sWrXK4LRCwdfuhg0boFQqpfFNhQkICIBarcb8+fP1TunolOby+tIwNTVFv379sG3bNr3TUAkJCVi/fj169OhhcCTm22+/1WtTeHg4cnJypL8HBb388sv4559/4OzsbHDrgPztAPS31fHjxxEZGWlQ9tSpU7h582aRp/gK+uCDD9C9e3fpasLSSE5ORlZWlrTPC2tfVlYWli1bVuo6izNnzhy4uLjgrbfeKrZcbm4uPvzwQ7z88stFHkWXKx7ZeQo8++yzmDt3Ll577TV069YNFy9exLp16/Q+MQN5A4l/+OEHTJkyBSdOnEDPnj2Rnp6OPXv24O2338agQYPKtX4HBwf06NEDr732GhISErBo0SI0btwYY8eOBZB335fvvvsOgYGBaNWqFV577TXUqVMH//zzD/bv3w+1Wo3t27cjPT0dS5cuxZIlS9C0aVO9+1zoQtKFCxcQGRkJHx8fNGrUCB9//DFCQ0Nx69YtDB48GLa2toiOjsaWLVswbtw4/Oc//8GePXswY8YMXLhwochPjjp+fn548803ERYWhnPnzqFfv34wNzfH9evXsXHjRixevBgvvPBCubbTn3/+ib59+xb7SfzVV1/FL7/8grfeegv79+9H9+7dkZubi2vXruGXX37Brl27SjziVZCpqSk++uijQgd+lmV93t7e2LNnD7766iu4u7ujQYMG0mXHPXv2xCeffILY2Fi9UOPr64sVK1bA09MTdevWlaY7OTkhNDQUc+bMQf/+/TFw4EBERUVh2bJl6NSpE1555ZVS9c3b2xvh4eH4+OOP0bhxYzg7O5f6n1xFMDc3x4IFC/Daa6/Bz88PI0aMkC499/T01LvcecmSJejRowc6dOiAcePGoUGDBrh16xZ+++03aRD/rFmz8NNPP+GDDz4odtyNWq1GeHg4Xn31VXTo0AHDhw+Hk5MTYmJi8Ntvv6F79+6Ffqgpj48//hi7d+9Gjx498Pbbb8PMzAwrVqyARqPBZ599ZlA+KysLffr0wbBhw6R92qNHjyLDRK1atRAXFwdTU9MiPwQ8++yz2Lx5M55//nkEBQUhOjoay5cvR8uWLfU+QM2dOxeLFy9Gw4YNMWrUqFL1788//yzyfl9A3t3I33vvPfTu3RvOzs64c+cOVq1aBa1WixEjRgAAunXrhlq1aiE4OBjvvPMOFAoF1q5dW+SHyLS0NOzcuVNvmu7oWUREBMzNzaWjSLo2rlu3rsRxa3///TeUSqXBYPCngjEuAaOKUdTloQVlZmaK9957T7i5uQlLS0vRvXt3ERkZKfz8/Awuy83IyBAfffSRaNCggTA3Nxeurq7ihRdekC4rLc+l5z/99JMIDQ0Vzs7OwtLSUgQFBRlcXiuEEGfPnhVDhgwRtWvXFiqVStSvX18MGzZM7N27V2/dJT0KXv7866+/ih49eghra2thbW0tmjdvLkJCQkRUVJQQQoiJEycKX19fsXPnToM2Fbz8VOfbb78V3t7ewtLSUtja2govLy/x/vvvizt37khlynrpuUKhEKdPn9abXtg+ysrKEgsWLBCtWrUSKpVK1KpVS3h7e4s5c+aI5ORkg/XlV9Ql09nZ2aJRo0YGl56XZX3Xrl0Tvr6+wtLS0mA/pKSkCFNTU2FraytycnKk6T/++KMAIF599dVC2/vNN9+I5s2bC3Nzc+Hi4iLGjx8vHj58aLCNCrtUV4i8S62DgoKEra2tACBty6LeOwUv4S5KaS891/n5559F+/bthUqlEg4ODmLkyJHSrSHyu3Tpknj++eeFvb29sLCwEM2aNRMzZswQQgjx008/idatW4vFixcbXI5eVLv3798vAgIChJ2dnbCwsBCNGjUSo0ePFqdOnSq2f2W59FyIvFsHBAQECBsbG2FlZSWeeeYZcfTo0ULrjIiIEOPGjRO1atUSNjY2YuTIkeL+/ft6ZYt67xQ1X6vVivnz54v69esLlUol2rdvL3bs2GFwuXXdunXF66+/rvc+zV9nYZeeDxo0SK9cwW19584dMXDgQOHi4iLMzc2Fm5ubePbZZ8Xhw4f1ljty5Ijo2rWrsLS0FO7u7uL9998Xu3btMthvulspFPfQXVKu26bt2rXTe03o/lYWvPQcgHj33Xf12lXw8nW5UghRjUfiUY124MABPPPMM9i4cWO5j3bkd+vWLTRo0ADR0dFF3hBt9uzZuHXr1lMz6I6optBdNn7y5MkyH32kxzw9PTF79my9uz1TyThmh4iIiGSNY3aoxrCxscHIkSOLHUDcpk0b6esviIjkxs/PT2+8DpUOww7VGI6Ojvjxxx+LLTNkyJAqag0RUdX7/vvvjd2EGoljdoiIiEjWOGaHiIiIZI1hh4iIiGSNY3aQ9z0yd+7cga2trdFvL09ERESlI4RAamoq3N3d9b4AuyCGHeR9r0hZv0CRiIiIqofY2Fi9u7AXxLADwNbWFkDexiruFuxERERUfaSkpMDDw0P6P14Uhh08/mZktVrNsENERFTDlDQEhQOUiYiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHYqkRACaWlpEEIYuylERERPLYadSpSeno6wX48hPT3d2E0hIiJ6ajHsVDKlhaWxm0BERPRUY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZqzZh59NPP4VCocCkSZOkaZmZmQgJCUHt2rVhY2ODoUOHIiEhQW+5mJgYBAUFwcrKCs7Ozpg6dSpycnKquPVERERUXVWLsHPy5EmsWLECbdq00Zs+efJkbN++HRs3bkRERATu3LmDIUOGSPNzc3MRFBSErKwsHD16FN9//z3WrFmDmTNnVnUXiIiIqJoyethJS0vDyJEj8X//93+oVauWND05ORkrV67EV199hd69e8Pb2xurV6/G0aNHcezYMQDAn3/+iStXruDHH39Eu3btEBgYiHnz5mHp0qXIysoyVpeIiIioGjF62AkJCUFQUBD8/f31pp8+fRrZ2dl605s3b4569eohMjISABAZGQkvLy+4uLhIZQICApCSkoLLly8XuU6NRoOUlBS9BxEREcmTmTFXvmHDBpw5cwYnT540mBcfHw+lUgl7e3u96S4uLoiPj5fK5A86uvm6eUUJCwvDnDlznrD1REREVBMY7chObGws3n33Xaxbtw4WFhZVuu7Q0FAkJydLj9jY2EpblxACaWlpEEJU2jqIiIioaEYLO6dPn0ZiYiI6dOgAMzMzmJmZISIiAkuWLIGZmRlcXFyQlZWFpKQkveUSEhLg6uoKAHB1dTW4Okv3XFemMCqVCmq1Wu9RWbI0j/DVjrNIT0+vtHUQERFR0YwWdvr06YOLFy/i3Llz0qNjx44YOXKk9Lu5uTn27t0rLRMVFYWYmBj4+PgAAHx8fHDx4kUkJiZKZXbv3g21Wo2WLVtWeZ+KorSwNHYTiIiInlpGG7Nja2uL1q1b602ztrZG7dq1peljxozBlClT4ODgALVajYkTJ8LHxwddu3YFAPTr1w8tW7bEq6++is8++wzx8fGYPn06QkJCoFKpqrxPREREVP0YdYBySRYuXAgTExMMHToUGo0GAQEBWLZsmTTf1NQUO3bswPjx4+Hj4wNra2sEBwdj7ty5Rmw1ERERVScKwZGzSElJgZ2dHZKTkyt0/E5aWhrm/xoJE1NzfDC4I2xsbCqsbiIioqddaf9/G/0+O0RERESViWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkzahhJzw8HG3atIFarYZarYaPjw/++OMPaX6vXr2gUCj0Hm+99ZZeHTExMQgKCoKVlRWcnZ0xdepU5OTkVHVXiIiIqJoyM+bK69ati08//RRNmjSBEALff/89Bg0ahLNnz6JVq1YAgLFjx2Lu3LnSMlZWVtLvubm5CAoKgqurK44ePYq4uDiMGjUK5ubmmD9/fpX3h4iIiKofo4ad5557Tu/5J598gvDwcBw7dkwKO1ZWVnB1dS10+T///BNXrlzBnj174OLignbt2mHevHmYNm0aZs+eDaVSWel9ICIiouqt2ozZyc3NxYYNG5Ceng4fHx9p+rp16+Do6IjWrVsjNDQUGRkZ0rzIyEh4eXnBxcVFmhYQEICUlBRcvny5yHVpNBqkpKToPYiIiEiejHpkBwAuXrwIHx8fZGZmwsbGBlu2bEHLli0BAC+//DLq168Pd3d3XLhwAdOmTUNUVBQ2b94MAIiPj9cLOgCk5/Hx8UWuMywsDHPmzKmkHhEREVF1YvSw06xZM5w7dw7JycnYtGkTgoODERERgZYtW2LcuHFSOS8vL7i5uaFPnz64efMmGjVqVO51hoaGYsqUKdLzlJQUeHh4PFE/iIiIqHoy+mkspVKJxo0bw9vbG2FhYWjbti0WL15caNkuXboAAG7cuAEAcHV1RUJCgl4Z3fOixvkAgEqlkq4A0z2IiIhInowedgrSarXQaDSFzjt37hwAwM3NDQDg4+ODixcvIjExUSqze/duqNVq6VQYERERPd2MehorNDQUgYGBqFevHlJTU7F+/XocOHAAu3btws2bN7F+/XoMGDAAtWvXxoULFzB58mT4+vqiTZs2AIB+/fqhZcuWePXVV/HZZ58hPj4e06dPR0hICFQqlTG7RkRERNWEUcNOYmIiRo0ahbi4ONjZ2aFNmzbYtWsX+vbti9jYWOzZsweLFi1Ceno6PDw8MHToUEyfPl1a3tTUFDt27MD48ePh4+MDa2trBAcH692Xh4iIiJ5uRg07K1euLHKeh4cHIiIiSqyjfv36+P333yuyWURERCQj1W7MDhEREVFFYtghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZM2rYCQ8PR5s2baBWq6FWq+Hj44M//vhDmp+ZmYmQkBDUrl0bNjY2GDp0KBISEvTqiImJQVBQEKysrODs7IypU6ciJyenqrtCRERE1ZRRw07dunXx6aef4vTp0zh16hR69+6NQYMG4fLlywCAyZMnY/v27di4cSMiIiJw584dDBkyRFo+NzcXQUFByMrKwtGjR/H9999jzZo1mDlzprG6RERERNWMQgghjN2I/BwcHPD555/jhRdegJOTE9avX48XXngBAHDt2jW0aNECkZGR6Nq1K/744w88++yzuHPnDlxcXAAAy5cvx7Rp03D37l0olcpSrTMlJQV2dnZITk6GWq2usL6kpaVh/q+RMDE1xweDO8LGxqbC6iYiInralfb/d7UZs5Obm4sNGzYgPT0dPj4+OH36NLKzs+Hv7y+Vad68OerVq4fIyEgAQGRkJLy8vKSgAwABAQFISUmRjg4VRqPRICUlRe9BRERE8mT0sHPx4kXY2NhApVLhrbfewpYtW9CyZUvEx8dDqVTC3t5er7yLiwvi4+MBAPHx8XpBRzdfN68oYWFhsLOzkx4eHh4V2ykiIiKqNowedpo1a4Zz587h+PHjGD9+PIKDg3HlypVKXWdoaCiSk5OlR2xsbKWuj4iIiIzHzNgNUCqVaNy4MQDA29sbJ0+exOLFi/HSSy8hKysLSUlJekd3EhIS4OrqCgBwdXXFiRMn9OrTXa2lK1MYlUoFlUpVwT0hIiKi6sjoR3YK0mq10Gg08Pb2hrm5Ofbu3SvNi4qKQkxMDHx8fAAAPj4+uHjxIhITE6Uyu3fvhlqtRsuWLau87URERFT9GPXITmhoKAIDA1GvXj2kpqZi/fr1OHDgAHbt2gU7OzuMGTMGU6ZMgYODA9RqNSZOnAgfHx907doVANCvXz+0bNkSr776Kj777DPEx8dj+vTpCAkJ4ZEbIiIiAmDksJOYmIhRo0YhLi4OdnZ2aNOmDXbt2oW+ffsCABYuXAgTExMMHToUGo0GAQEBWLZsmbS8qakpduzYgfHjx8PHxwfW1tYIDg7G3LlzjdUlIiIiqmaq3X12jIH32SEiIqp5atx9doiIiIgqA8MOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJmlHDTlhYGDp16gRbW1s4Oztj8ODBiIqK0ivTq1cvKBQKvcdbb72lVyYmJgZBQUGwsrKCs7Mzpk6dipycnKrsChEREVVTZsZceUREBEJCQtCpUyfk5OTgww8/RL9+/XDlyhVYW1tL5caOHYu5c+dKz62srKTfc3NzERQUBFdXVxw9ehRxcXEYNWoUzM3NMX/+/CrtDxEREVU/Rg07O3fu1Hu+Zs0aODs74/Tp0/D19ZWmW1lZwdXVtdA6/vzzT1y5cgV79uyBi4sL2rVrh3nz5mHatGmYPXs2lEplpfaBiIiIqrdqNWYnOTkZAODg4KA3fd26dXB0dETr1q0RGhqKjIwMaV5kZCS8vLzg4uIiTQsICEBKSgouX75c6Ho0Gg1SUlL0HkRERCRPRj2yk59Wq8WkSZPQvXt3tG7dWpr+8ssvo379+nB3d8eFCxcwbdo0REVFYfPmzQCA+Ph4vaADQHoeHx9f6LrCwsIwZ86cSuoJERERVSflDjvp6emIiIhATEwMsrKy9Oa98847Za4vJCQEly5dwuHDh/Wmjxs3Tvrdy8sLbm5u6NOnD27evIlGjRqVq+2hoaGYMmWK9DwlJQUeHh7lqouIiIiqt3KFnbNnz2LAgAHIyMhAeno6HBwccO/ePelqqLKGnQkTJmDHjh04ePAg6tatW2zZLl26AABu3LiBRo0awdXVFSdOnNArk5CQAABFjvNRqVRQqVRlaiMRERHVTOUaszN58mQ899xzePjwISwtLXHs2DHcvn0b3t7e+OKLL0pdjxACEyZMwJYtW7Bv3z40aNCgxGXOnTsHAHBzcwMA+Pj44OLFi0hMTJTK7N69G2q1Gi1btixbx4iIiEh2yhV2zp07h/feew8mJiYwNTWFRqOBh4cHPvvsM3z44YelrickJAQ//vgj1q9fD1tbW8THxyM+Ph6PHj0CANy8eRPz5s3D6dOncevWLfz3v//FqFGj4OvrizZt2gAA+vXrh5YtW+LVV1/F+fPnsWvXLkyfPh0hISE8ekNERETlCzvm5uYwMclb1NnZGTExMQAAOzs7xMbGlrqe8PBwJCcno1evXnBzc5MeP//8MwBAqVRiz5496NevH5o3b4733nsPQ4cOxfbt26U6TE1NsWPHDpiamsLHxwevvPIKRo0apXdfHiIiInp6lWvMTvv27XHy5Ek0adIEfn5+mDlzJu7du4e1a9fqXUlVEiFEsfM9PDwQERFRYj3169fH77//Xur1EhER0dOjXEd25s+fL42Z+eSTT1CrVi2MHz8ed+/exbfffluhDSQiIiJ6EuU6stOxY0fpd2dnZ4M7IRMRERFVF+U6stO7d28kJSVVcFOIiIiIKl65ws6BAwcMbiRIREREVB2V+7uxFApFRbaDiIiIqFKU++sinn/++SK/UXzfvn3lbhARERFRRSp32PHx8YGNjU1FtoWIiIiowpUr7CgUCkydOhXOzs4V3R4iIiKiClWuMTsl3QyQiIiIqLooV9iZNWsWT2ERERFRjVCu01izZs0CANy9exdRUVEAgGbNmsHJyaniWkZERERUAcp1ZCcjIwOvv/463N3d4evrC19fX7i7u2PMmDHIyMio6DYSERERlVu5ws7kyZMRERGB//73v0hKSkJSUhK2bduGiIgIvPfeexXdRiIiIqJyK9dprF9//RWbNm1Cr169pGkDBgyApaUlhg0bhvDw8IpqHxEREdETKfdpLBcXF4Ppzs7OPI1FRERE1Uq5wo6Pjw9mzZqFzMxMadqjR48wZ84c+Pj4VFjjiIiIiJ5UuU5jLVq0CP3790fdunXRtm1bAMD58+dhYWGBXbt2VWgDiYiIiJ5EucKOl5cXrl+/jnXr1uHatWsAgBEjRmDkyJGwtLSs0AYSERERPYlyhZ2DBw+iW7duGDt2bEW3h4iIiKhClWvMzjPPPIMHDx5UdFuIiIiIKhy/G4uIiIhkrVynsQAgMjIStWrVKnSer69vuRtEREREVJHKHXaef/75QqcrFArk5uaWu0FEREREFalcp7EAID4+Hlqt1uDBoENERETVSbnCjkKhqOh2EBEREVUKDlAmIiIiWSvXmB2tVlvR7SAiIiKqFOU6shMWFoZVq1YZTF+1ahUWLFjwxI0iIiIiqijlCjsrVqxA8+bNDaa3atUKy5cvf+JGEREREVWUcoWd+Ph4uLm5GUx3cnJCXFzcEzeKiIiIqKKUK+x4eHjgyJEjBtOPHDkCd3f3J24UERERUUUpV9gZO3YsJk2ahNWrV+P27du4ffs2Vq1ahcmTJ5fpy0HDwsLQqVMn2NrawtnZGYMHD0ZUVJRemczMTISEhKB27dqwsbHB0KFDkZCQoFcmJiYGQUFBsLKygrOzM6ZOnYqcnJzydI2IiIhkplxXY02dOhX379/H22+/jaysLACAhYUFpk2bhtDQ0FLXExERgZCQEHTq1Ak5OTn48MMP0a9fP1y5cgXW1tYAgMmTJ+O3337Dxo0bYWdnhwkTJmDIkCHSkaXc3FwEBQXB1dUVR48eRVxcHEaNGgVzc3PMnz+/PN0jIiIiGVGIJ7hpTlpaGq5evQpLS0s0adIEKpXqiRpz9+5dODs7IyIiAr6+vkhOToaTkxPWr1+PF154AQBw7do1tGjRApGRkejatSv++OMPPPvss7hz5w5cXFwAAMuXL8e0adNw9+5dKJXKEtebkpICOzs7JCcnQ61WP1Ef8ktLS8P8XyNhYmqODwZ3hI2NTYXVTURE9LQr7f/vcn9dBADY2NigU6dOaN269RMHHQBITk4GADg4OAAATp8+jezsbPj7+0tlmjdvjnr16iEyMhJA3heSenl5SUEHAAICApCSkoLLly8Xuh6NRoOUlBS9BxEREclTub8I9NSpU/jll18QExMjncrS2bx5c5nr02q1mDRpErp3747WrVsDyLvqS6lUwt7eXq+si4sL4uPjpTL5g45uvm5eYcLCwjBnzpwyt5GIiIhqnnId2dmwYQO6deuGq1evYsuWLcjOzsbly5exb98+2NnZlashISEhuHTpEjZs2FCu5csiNDQUycnJ0iM2NrbS1ymEQFpaGr9qg4iIqIqVK+zMnz8fCxcuxPbt26FUKrF48WJcu3YNw4YNQ7169cpc34QJE7Bjxw7s378fdevWlaa7uroiKysLSUlJeuUTEhLg6uoqlSl4dZbuua5MQSqVCmq1Wu9R2dLT0xH26zGkp6dX+rqIiIjosXKFnZs3byIoKAgAoFQqkZ6eDoVCgcmTJ+Pbb78tdT1CCEyYMAFbtmzBvn370KBBA7353t7eMDc3x969e6VpUVFRiImJgY+PDwDAx8cHFy9eRGJiolRm9+7dUKvVaNmyZXm6V2mUFpbGbgIREdFTp1xjdmrVqoXU1FQAQJ06dXDp0iV4eXkhKSkJGRkZpa4nJCQE69evx7Zt22BrayuNsbGzs4OlpSXs7OwwZswYTJkyBQ4ODlCr1Zg4cSJ8fHzQtWtXAEC/fv3QsmVLvPrqq/jss88QHx+P6dOnIyQkpEIGTRMREVHNVq6w4+vri927d8PLywsvvvgi3n33Xezbtw+7d+9Gnz59Sl1PeHg4AKBXr15601evXo3Ro0cDABYuXAgTExMMHToUGo0GAQEBWLZsmVTW1NQUO3bswPjx4+Hj4wNra2sEBwdj7ty55ekaERERyUy5ws4333yDzMxMAMBHH30Ec3NzHD16FEOHDsX06dNLXU9pButaWFhg6dKlWLp0aZFl6tevj99//73U6yUiIqKnR5nCju5+NGZmZrCxsZGev/3223j77bcrvnVERERET6hMYcfe3h4KhaLEcrm5ueVuEBEREVFFKlPY2b9/v95zIQQGDBiA7777DnXq1KnQhhERERFVhDKFHT8/P4Nppqam6Nq1Kxo2bFhhjZIbIcS/99fhDQWJiIiq2hN9NxaVTrYmE1//cR7Z2TnGbgoREdFT54nCTmxsLDIyMlC7du2Kao9s8YaCRERExlGm01hLliyRfr937x5++ukn9O7du9zfh0VERERU2coUdhYuXAgAUCgUcHR0xHPPPVem++oQERERVbUyhZ3o6OjKagcRERFRpeAAZSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1o4adgwcP4rnnnoO7uzsUCgW2bt2qN3/06NFQKBR6j/79++uVefDgAUaOHAm1Wg17e3uMGTMGaWlpVdgLIiIiqs6MGnbS09PRtm1bLF26tMgy/fv3R1xcnPT46aef9OaPHDkSly9fxu7du7Fjxw4cPHgQ48aNq+ymExERUQ1hZsyVBwYGIjAwsNgyKpUKrq6uhc67evUqdu7ciZMnT6Jjx44AgK+//hoDBgzAF198AXd39wpvMxEREdUs1X7MzoEDB+Ds7IxmzZph/PjxuH//vjQvMjIS9vb2UtABAH9/f5iYmOD48eNF1qnRaJCSkqL3ICIiInmq1mGnf//++OGHH7B3714sWLAAERERCAwMRG5uLgAgPj4ezs7OesuYmZnBwcEB8fHxRdYbFhYGOzs76eHh4VGp/SAiIiLjMepprJIMHz5c+t3Lywtt2rRBo0aNcODAAfTp06fc9YaGhmLKlCnS85SUFAYeIiIimarWR3YKatiwIRwdHXHjxg0AgKurKxITE/XK5OTk4MGDB0WO8wHyxgGp1Wq9BxEREclTjQo7f//9N+7fvw83NzcAgI+PD5KSknD69GmpzL59+6DVatGlSxdjNZOIiIiqEaOexkpLS5OO0gBAdHQ0zp07BwcHBzg4OGDOnDkYOnQoXF1dcfPmTbz//vto3LgxAgICAAAtWrRA//79MXbsWCxfvhzZ2dmYMGEChg8fziuxiIiICICRj+ycOnUK7du3R/v27QEAU6ZMQfv27TFz5kyYmpriwoULGDhwIJo2bYoxY8bA29sbhw4dgkqlkupYt24dmjdvjj59+mDAgAHo0aMHvv32W2N1iYiIiKoZox7Z6dWrF4QQRc7ftWtXiXU4ODhg/fr1FdksIiIikpEaNWaHiIiIqKwYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2qpAQAmlpaRBCGLspRERETw2GnSqUrcnEl9vPICEhgYGHiIioijDsVDGFQoGvdpxFenq6sZtCRET0VGDYMQKlhaWxm0BERPTUYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYqQKZuQLXkwSycnm5ORERUVVj2KkCVx4InL0ncDhOIJf31yEiIqpSDDtV4O6jvJ/3MoEziYI3FCQiIqpCZsZugNxl5wqkZD1+Hp0KOD3IMV6DiIiInjI8slPJHmQKCABWZoBXbQUA4K8H2cZtFBER0VOEYaeS3XuUd8rKwQKoZ5M3LSVLIEfLU1lERERVgWGnkt1/pAUA1FYpYGUGmCkArQBiHjwycsuIiIieDgw7lUgIIR3ZqW2R9yWgamXevJt3+UWgREREVcGoYefgwYN47rnn4O7uDoVCga1bt+rNF0Jg5syZcHNzg6WlJfz9/XH9+nW9Mg8ePMDIkSOhVqthb2+PMWPGIC0trQp7UbQ7yRpk5gIKAPaqvGm6sHODYYeIiKhKGDXspKeno23btli6dGmh8z/77DMsWbIEy5cvx/Hjx2FtbY2AgABkZmZKZUaOHInLly9j9+7d2LFjBw4ePIhx48ZVVReKdf6fFAB5QcfMJG9wslqZ9/PGvQyjtYuIiOhpYtRLzwMDAxEYGFjoPCEEFi1ahOnTp2PQoEEAgB9++AEuLi7YunUrhg8fjqtXr2Lnzp04efIkOnbsCAD4+uuvMWDAAHzxxRdwd3evsr4U5sK/Yae2xeNpdjyNRUREVKWq7Zid6OhoxMfHw9/fX5pmZ2eHLl26IDIyEgAQGRkJe3t7KegAgL+/P0xMTHD8+PEqb3NBF6Wwo5Cm6U5j3br/CNm5WmM0i4iI6KlSbW8qGB8fDwBwcXHRm+7i4iLNi4+Ph7Ozs958MzMzODg4SGUKo9FooNFopOcpKSkV1WyJViuQmZMXZhxUj6dbmQFmJkCOVuD2/XQ0drat8HUTERHRY9X2yE5lCgsLg52dnfTw8PCo8HWYmCjw69iOeKGpOWzMH09XKBSwU+Vt9r8SqsdAaiIiIjmrtmHH1dUVAJCQkKA3PSEhQZrn6uqKxMREvfk5OTl48OCBVKYwoaGhSE5Olh6xsbEV3PrHlKYKKBQKvWmPw05qpa2XiIiI8lTbsNOgQQO4urpi79690rSUlBQcP34cPj4+AAAfHx8kJSXh9OnTUpl9+/ZBq9WiS5cuRdatUqmgVqv1HlXJ3iJvs1/nkR0iIqJKZ9QxO2lpabhx44b0PDo6GufOnYODgwPq1auHSZMm4eOPP0aTJk3QoEEDzJgxA+7u7hg8eDAAoEWLFujfvz/Gjh2L5cuXIzs7GxMmTMDw4cONfiVWcexU/35HFo/sEBERVTqjhp1Tp07hmWeekZ5PmTIFABAcHIw1a9bg/fffR3p6OsaNG4ekpCT06NEDO3fuhIXF42u5161bhwkTJqBPnz4wMTHB0KFDsWTJkirvS1nY/3saK/peOrJztTA3rbYH2IiIiGo8hRDiqf9GypSUFNjZ2SE5OblCT2mlpaVh/q+RyMnO0ZturrLAxmuPkJUrcOj9Z+DhYFVh6yQiInpalPb/Nw8pGIFCoUAd+7yjU7EPeCdlIiKiysSwYyTudnlh5++H/PZzIiKiysSwYyTu9rqwwyM7RERElYlhx0jq6k5j8cgOERFRpWLYMZLHp7F4ZIeIiKgyMewYSR17jtkhIiKqCgw7RqILO/EpmdDk5Bq5NURERPLFsGMkDlbmsDA3gRBAXFKmsZtDREQkWww7RqJQKFC3Vt7NBHkqi4iIqPIw7BiRRy1LAEAsBykTERFVGoYdI3p8ZIdhh4iIqLIw7BhR3X+P7PA0FhERUeVh2DEijtkhIiKqfAw7RuTh8O+YHX4ZKBERUaVh2DECIQTS0tJQxz4v7CSmapCZzXvtEBERVQaGHSPI1mTiqx1noRRZsFKaAgDuJPFUFhERUWVg2DESpYUlFAoFPP4dt8MvBCUiIqocDDtGIp3Kkq7I4rgdIiKiysCwYyS6U1muNmYAeEUWERFRZTEzdgOeZkoLS7j9+4WgvCKLiIiocvDIjpG5/xt2eGSHiIiocjDsGFkdO4YdIiKiysSwY2R1/j2ycy9Ng0dZvNcOERFRRWPYMTK1hRlsVXlDp/5J4rgdIiKiisawY2QKhUK6/Jz32iEiIqp4DDvVgIfDv18IyiuyiIiIKhzDTjVQV7qxII/sEBERVTSGnWqg7r9fGcGwQ0REVPEYdqqButKYHZ7GIiIiqmgMO9WAB4/sEBERVRqGHSOSvgz033vtPEjPQromx8itIiIikpdqHXZmz54NhUKh92jevLk0PzMzEyEhIahduzZsbGwwdOhQJCQkGLHFZZOtycSX28/gUcoDqC1099rh0R0iIqKKVK3DDgC0atUKcXFx0uPw4cPSvMmTJ2P79u3YuHEjIiIicOfOHQwZMsSIrS07hUKBr3aclY7u8AtBiYiIKla1/9ZzMzMzuLq6GkxPTk7GypUrsX79evTu3RsAsHr1arRo0QLHjh1D165dq7qp5aa0sIS7qQWuxqdx3A4REVEFq/ZHdq5fvw53d3c0bNgQI0eORExMDADg9OnTyM7Ohr+/v1S2efPmqFevHiIjI43V3HKrY68CAMTwyA4REVGFqtZHdrp06YI1a9agWbNmiIuLw5w5c9CzZ09cunQJ8fHxUCqVsLe311vGxcUF8fHxxdar0Wig0Wik5ykpKZXR/DLx/Pcuyjfvphm5JURERPJSrcNOYGCg9HubNm3QpUsX1K9fH7/88gssLS3LXW9YWBjmzJlTEU2sMI2c8sLO9QSGHSIioopU7U9j5Wdvb4+mTZvixo0bcHV1RVZWFpKSkvTKJCQkFDrGJ7/Q0FAkJydLj9jY2Epsdek0crQGkHc1Fi8/JyIiqjg1KuykpaXh5s2bcHNzg7e3N8zNzbF3715pflRUFGJiYuDj41NsPSqVCmq1Wu9hbPZW5nC0yRu3w1NZREREFadan8b6z3/+g+eeew7169fHnTt3MGvWLJiammLEiBGws7PDmDFjMGXKFDg4OECtVmPixInw8fGpUVdi5dfE2Qb30jT4KyENberaG7s5REREslCtw87ff/+NESNG4P79+3ByckKPHj1w7NgxODk5AQAWLlwIExMTDB06FBqNBgEBAVi2bJmRW11+TVxsEPm/+7iemGrsphAREclGtQ47GzZsKHa+hYUFli5diqVLl1ZRiyqPEAL17MwBADc4SJmIiKjC1KgxO3KWnp6OY1duAwCuJzLsEBERVRSGnWrESZ13OX3swww8yso1cmuIiIjkgWGnGrEwN0EtK3MIwSuyiIiIKgrDTjXTyPHfmwtykDIREVGFYNipZho68k7KREREFYlhp5pp7JR3J2UOUiYiIqoYDDvVTON/vyPryh3jfzkpERGRHDDsVANCCKSnpwMQaOVmCxNF3ndkxSU/MnbTiIiIajyGnWogW5OJr/84j+zsHFirzNDSPe+7uk7demjklhEREdV8DDvVhNLCUvq9k6cDAODkrQfGag4REZFsMOxUQ4/DDo/sEBERPSmGnWqoo2ctAMC1+BQkP8o2cmuIiIhqNoadasjZ1gKeta0gBHAmhkd3iIiIngTDTjUlncqK5rgdIiKiJ8GwUw0JIeDllne/HV6RRURE9GTMjN0AypOV+QhCYYK0tDQIIXDyajQA4NzfScjMzoWFuamRW0hERFQz8chONZKtycSX288gMTERtW0t4apWIStHiwNRicZuGhERUY3FsFPNKBQKfP3HeeTk5GJAK2cAwJaz/xi5VURERDUXw041pLvB4LNeeWFn37VEJGVkGbNJRERENRbDTjXW1NkGzV1tkZ0r8NvFOGM3h4iIqEZi2KmmhBBIS0vD8+3rAAC28lQWERFRuTDsVFPZmkx8teMs/JvYQ6HI++qImPsZxm4WERFRjcOwU40pLSzholaheyNHAEB4xA0jt4iIiKjmYdipASb5NwEA/HwyFlfjUozcGiIiopqFYacG6OjpgCAvN2gF8MlvVyGEMHaTiIiIagyGnWpMN0hZq9Vigq8HlKYmOHzjHvZe5U0GiYiISothpxrTDVJOTEzEj/vOY2RndwDAlF/O4a+EVCO3joiIqGZg2KnmdDcYVFpYIsTXE971ayElMwevfnccd5IMr87SHQ3iqS4iIqI8DDs1iIW5KVYGd0SD2lZISNVg2PJInLr1QK9Meno6wn49hvT0dAYfIiIiMOxUe0KIf4OLFqmpqTDN1WD5iNawUZrg76RMDFsRiU9+u4K7qRppGd3RoPzBh4iI6GllZuwGUPGyNZn4+o/zUFpYYsGvkVBaWGLKs+0xsJkN7mUCf15Pwf8disaao7cwwMsNfo3socnRSssrLSylIzzW1tZQKBRG7A0REVHVk82RnaVLl8LT0xMWFhbo0qULTpw4YewmVZj843bMVRZ5R2pyHsHq0V341VOitas1snMFtp27gym/XsFPF1Pw/IpT+GDrVVxKyMSBq3GY/XMkj/AQEdFTSSFkMKDj559/xqhRo7B8+XJ06dIFixYtwsaNGxEVFQVnZ+cSl09JSYGdnR2Sk5OhVqsrrF1paWmY/2skcrJzSiyblfkIMDGFUqksVVldAALyTnX179gU+/+XhiP/e4Do+48KXc7FVolmLjZo6maHho428HS0QkNHG7ioVdIRH91pMysrK2RkZJR4NEhX/mk9avS095+IyJhK+/9bFmGnS5cu6NSpE7755hsAgFarhYeHByZOnIgPPvigxOVrWtgpdF3JD6CyssG057vgq91/oVNDZ1y/l4E/LsXjQYYW6blF/yM2M1GglrUS9pZmcLAyR/z9FHSoZ4ebCSkY2LEBnOxtoLYwh9rS7N+f5rC1MIPS1ASPMtLx6ebjCB3aFTY2NlKdxYWmggGhMgJDVYWQtLQ0hP16zKD/xmwTEdHTorT/v2v8mJ2srCycPn0aoaGh0jQTExP4+/sjMjLSiC2rWkqVJcyUeae4zLSZOHL2CgDAx8USgCmytQL3UjXINLNGvdo2iIxOgsLUDHdSspCjBe6mavQGOd++/BAAcGFnyd/HZaIANi84BDNTE5iZKKA0MwGEFumZ2bC3ViElIwsudlYwMzOFmYkCCmhx50EaPJ3UMDczQ25OFv6+n4am7g6wVJnD3NTk34cCZqYKKLS5sLRQQambbqaAmcnjsCAEoMnKglKphG6qJisL+y7eRu/W9aBUqf4tJ6DRZAEAVColgMd1KBR5z/J+6qYLZGdnQ6VUQgDQCoFcbd5PrVZAK4BMjQaXHgCL90fD1MwcQgi9ckII5Iq8shpNFs5GJ6KFuz1MzMxgYmqG3JwcWFkopT4rzfL6LT3/dzuYm+U9LxiRNBoNLFSqvIbnU1iUyl9EiH+XtVAVXDRf/wtfVrctszRZUKqUej8tLErXlryt+7gu/bp188Xj3wWkfQDx7z4QgFZokZmpgZm5EpqsLJibm0Nb4OObQvG4R4/3s0L6XTej4P7PPz8r6/F2VuSrU6F43F0FFI9///cXXZlC+y8AjSYTKpVFkWX0+lHkliy7qsra+XetgIAmUwOVhQoKKCBQ/Ofskj6GFze7rJ/h83/4UOhNL1CuwN+MwpYxaEuh7SusXOHvg5LrKrmvpVlfkeUKTCttG8TjmdBosqBSKdHfyw1qC/MS21sZanzYuXfvHnJzc+Hi4qI33cXFBdeuXSt0GY1GA43m8T/25ORkAHkJsSKlpaUh7eEDZGdnl1g2O+sRFCam0JiV78hOdtYjKFKTELYhBubKx6e4NI8e34vHBoBNVjqSb99GWwtLZGc9gpeDJdIyM/EoS8DEwgrpmmzkmqiQrQU0WgWytYBLLRvcvp8BC5U57qdnI1co9P6haAEUdewqJS1v/UmphuOFEpP0p/39oOLHFJ2JvVzhdRbmbMzDUpe9kZhWiS0hIqqemk3sjgaOxR8BLyvd/+2SQl+NDzvlERYWhjlz5hhM9/DwMEJriIiI5K/dosqrOzU1FXZ2dkXOr/Fhx9HREaampkhISNCbnpCQAFdX10KXCQ0NxZQpU6TnWq0WDx48QO3atat8LEVKSgo8PDwQGxtboeOFqiv2V96etv4CT1+f2V95q2n9FUIgNTUV7u7uxZar8WFHqVTC29sbe/fuxeDBgwHkhZe9e/diwoQJhS6jUqmg+ncch469vX0lt7R4arW6RrywKgr7K29PW3+Bp6/P7K+81aT+FndER6fGhx0AmDJlCoKDg9GxY0d07twZixYtQnp6Ol577TVjN42IiIiMTBZh56WXXsLdu3cxc+ZMxMfHo127dti5c6fBoGUiIiJ6+sgi7ADAhAkTijxtVZ2pVCrMmjXL4LSaXLG/8va09Rd4+vrM/sqbXPsri5sKEhERERVFNt+NRURERFQYhh0iIiKSNYYdIiIikjWGHSIiIpI1hp0qsHTpUnh6esLCwgJdunTBiRMnii2/ceNGNG/eHBYWFvDy8sLvv/9eRS19MmFhYejUqRNsbW3h7OyMwYMHIyoqqthl1qxZ8++XMj5+WFhYVFGLn8zs2bMN2t68efNil6mp+1bH09PToM8KhQIhISGFlq9p+/fgwYN47rnn4O7uDoVCga1bt+rNF0Jg5syZcHNzg6WlJfz9/XH9+vUS6y3r34CqUlx/s7OzMW3aNHh5ecHa2hru7u4YNWoU7ty5U2yd5XlfVJWS9u/o0aMN2t6/f/8S662u+xcouc+FvZ8VCgU+//zzIuuszvu4KAw7leznn3/GlClTMGvWLJw5cwZt27ZFQEAAEhMTCy1/9OhRjBgxAmPGjMHZs2cxePBgDB48GJcuXarilpddREQEQkJCcOzYMezevRvZ2dno168f0tOL/4JPtVqNuLg46XH79u0qavGTa9WqlV7bDx8+XGTZmrxvdU6ePKnX3927dwMAXnzxxSKXqUn7Nz09HW3btsXSpUsLnf/ZZ59hyZIlWL58OY4fPw5ra2sEBAQgMzOzyDrL+jegKhXX34yMDJw5cwYzZszAmTNnsHnzZkRFRWHgwIEl1luW90VVKmn/AkD//v312v7TTz8VW2d13r9AyX3O39e4uDisWrUKCoUCQ4cOLbbe6rqPiySoUnXu3FmEhIRIz3Nzc4W7u7sICwsrtPywYcNEUFCQ3rQuXbqIN998s1LbWRkSExMFABEREVFkmdWrVws7O7uqa1QFmjVrlmjbtm2py8tp3+q8++67olGjRkKr1RY6vybvXwBiy5Yt0nOtVitcXV3F559/Lk1LSkoSKpVK/PTTT0XWU9a/AcZSsL+FOXHihAAgbt++XWSZsr4vjKWw/gYHB4tBgwaVqZ6asn+FKN0+HjRokOjdu3exZWrKPs6PR3YqUVZWFk6fPg1/f39pmomJCfz9/REZGVnoMpGRkXrlASAgIKDI8tVZcnIyAMDBwaHYcmlpaahfvz48PDwwaNAgXL58uSqaVyGuX78Od3d3NGzYECNHjkRMTEyRZeW0b4G81/ePP/6I119/vdgv0K3J+ze/6OhoxMfH6+1DOzs7dOnSpch9WJ6/AdVZcnIyFApFid8lWJb3RXVz4MABODs7o1mzZhg/fjzu379fZFm57d+EhAT89ttvGDNmTIlla9o+ZtipRPfu3UNubq7B11a4uLggPj6+0GXi4+PLVL660mq1mDRpErp3747WrVsXWa5Zs2ZYtWoVtm3bhh9//BFarRbdunXD33//XYWtLZ8uXbpgzZo12LlzJ8LDwxEdHY2ePXsiNTW10PJy2bc6W7duRVJSEkaPHl1kmZq8fwvS7aey7MPy/A2orjIzMzFt2jSMGDGi2C+ILOv7ojrp378/fvjhB+zduxcLFixAREQEAgMDkZubW2h5Oe1fAPj+++9ha2uLIUOGFFuuJu5j2XxdBFUvISEhuHTpUonncX18fODj4yM979atG1q0aIEVK1Zg3rx5ld3MJxIYGCj93qZNG3Tp0gX169fHL7/8UqpPRjXdypUrERgYCHd39yLL1OT9S49lZ2dj2LBhEEIgPDy82LI1+X0xfPhw6XcvLy+0adMGjRo1woEDB9CnTx8jtqxqrFq1CiNHjizxIoKauI95ZKcSOTo6wtTUFAkJCXrTExIS4OrqWugyrq6uZSpfHU2YMAE7duzA/v37Ubdu3TIta25ujvbt2+PGjRuV1LrKY29vj6ZNmxbZdjnsW53bt29jz549eOONN8q0XE3ev7r9VJZ9WJ6/AdWNLujcvn0bu3fvLvaoTmFKel9UZw0bNoSjo2ORbZfD/tU5dOgQoqKiyvyeBmrGPmbYqURKpRLe3t7Yu3evNE2r1WLv3r16n3bz8/Hx0SsPALt37y6yfHUihMCECROwZcsW7Nu3Dw0aNChzHbm5ubh48SLc3NwqoYWVKy0tDTdv3iyy7TV53xa0evVqODs7IygoqEzL1eT926BBA7i6uurtw5SUFBw/frzIfVievwHViS7oXL9+HXv27EHt2rXLXEdJ74vq7O+//8b9+/eLbHtN37/5rVy5Et7e3mjbtm2Zl60R+9jYI6TlbsOGDUKlUok1a9aIK1euiHHjxgl7e3sRHx8vhBDi1VdfFR988IFU/siRI8LMzEx88cUX4urVq2LWrFnC3NxcXLx40VhdKLXx48cLOzs7ceDAAREXFyc9MjIypDIF+ztnzhyxa9cucfPmTXH69GkxfPhwYWFhIS5fvmyMLpTJe++9Jw4cOCCio6PFkSNHhL+/v3B0dBSJiYlCCHnt2/xyc3NFvXr1xLRp0wzm1fT9m5qaKs6ePSvOnj0rAIivvvpKnD17Vrr66NNPPxX29vZi27Zt4sKFC2LQoEGiQYMG4tGjR1IdvXv3Fl9//bX0vKS/AcZUXH+zsrLEwIEDRd26dcW5c+f03tMajUaqo2B/S3pfGFNx/U1NTRX/+c9/RGRkpIiOjhZ79uwRHTp0EE2aNBGZmZlSHTVp/wpR8mtaCCGSk5OFlZWVCA8PL7SOmrSPi8KwUwW+/vprUa9ePaFUKkXnzp3FsWPHpHl+fn4iODhYr/wvv/wimjZtKpRKpWjVqpX47bffqrjF5QOg0Mfq1aulMgX7O2nSJGnbuLi4iAEDBogzZ85UfePL4aWXXhJubm5CqVSKOnXqiJdeekncuHFDmi+nfZvfrl27BAARFRVlMK+m79/9+/cX+hrW9Umr1YoZM2YIFxcXoVKpRJ8+fQy2Q/369cWsWbP0phX3N8CYiutvdHR0ke/p/fv3S3UU7G9J7wtjKq6/GRkZol+/fsLJyUmYm5uL+vXri7FjxxqElpq0f4Uo+TUthBArVqwQlpaWIikpqdA6atI+LopCCCEq9dARERERkRFxzA4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERXpwIEDUCgUSEpKKvOyK1euRL9+/Sq+UVTjZWVlwdPTE6dOnTJ2U+gpwbBD9IRGjx4NhUKBTz/9VG/61q1boVAoylSXp6cnFi1aVIGtK71evXph0qRJFVJXZmYmZsyYgVmzZlVIfSQvSqUS//nPfzBt2jRjN4WeEgw7RBXAwsICCxYswMOHD43dlDLLysqq8Do3bdoEtVqN7t27V3jdJA8jR47E4cOHcfnyZWM3hZ4CDDtEFcDf3x+urq4ICwsrttzhw4fRs2dPWFpawsPDA++88w7S09MB5B1ZuX37NiZPngyFQgGFQgEhBJycnLBp0yapjnbt2ul9u/Dhw4ehUqmQkZEBAIiJicGgQYNgY2MDtVqNYcOGISEhQSo/e/ZstGvXDt999x0aNGgACwsLjB49GhEREVi8eLG07lu3bknLnD59Gh07doSVlRW6deuGqKioYvu5YcMGPPfcc3rTRo8ejcGDB+tNW7NmDezt7fWmhYeHo1GjRlAqlWjWrBnWrl2rN1+hUCA8PByBgYGwtLREw4YN9bbPrVu3oFAo4OTkpBfkzp8/D4VCAU9PT2nayZMn0bdvXzg6OsLOzg5+fn44c+aMQX90R+/yP/IfBVMoFNi6dav0fOXKlQZlevfuDQcHB6hUKrRo0cKgX6Xpt+6hVqvRt29f3Lx5U5q/du1adOzYEba2tnB1dcXLL7+MxMREaX5RpyTzt1237c6dO6dXpuARx5JeYwCwbds2dOjQARYWFmjYsCHmzJmDnJwcaX6tWrXQvXt3bNiwoeDmJqpwDDtEFcDU1BTz58/H119/jb///rvQMjdv3kT//v0xdOhQXLhwAT///DMOHz6MCRMmAAA2b96MunXrYu7cuYiLi0NcXBwUCgV8fX1x4MABAMDDhw9x9epVPHr0CNeuXQMAREREoFOnTrCysoJWq8WgQYPw4MEDREREYPfu3fjf//6Hl156Sa8tN27cwK+//orNmzfj3LlzWLx4MXx8fDB27Fhp3R4eHlL5jz76CF9++SVOnToFMzMzvP7668Vuj8OHD6Njx45l3o5btmzBu+++i/feew+XLl3Cm2++iddeew379+/XKzdjxgwMHToU58+fx8iRIzF8+HBcvXpVr4xKpcLmzZul5ytWrECdOnX0yqSmpiI4OBiHDx/GsWPH0KRJEwwYMACpqal65YQQ6N+/v7RtfHx8iuxDeno6ZsyYARsbG73pISEhOHz4MP766y+89dZbCA4Oxu3bt8vU79WrVyMuLg4HDx5EYmIiPvzwQ2lednY25s2bh/Pnz2Pr1q24desWRo8eXWQ7y6s0r7FDhw5h1KhRePfdd3HlyhWsWLECa9aswSeffKJXV+fOnXHo0KEKbyORAeN+DylRzRccHCwGDRokhBCia9eu4vXXXxdCCLFlyxaR/y02ZswYMW7cOL1lDx06JExMTMSjR4+EEHnfLrxw4UK9MkuWLBGtWrUSQgixdetW0aVLFzFo0CARHh4uhBDC399ffPjhh0IIIf78809hamoqYmJipOUvX74sAIgTJ04IIYSYNWuWMDc3F4mJiXrr8fPzE++++67eNN03Ju/Zs0ea9ttvvwkAUpsLevjwoQAgDh48WOR20lm9erWws7OTnnfr1k2MHTtWr8yLL74oBgwYID0HIN566y29Ml26dBHjx48XQgjp27pnzJghevfuLYQQIj09XdSuXVt88MEHon79+oW2WwghcnNzha2trdi+fbve9BEjRogXXnhBel5wWwEQW7ZsEUIIMXPmTNGnT59Ct6fOzp07hUKhkL4purT91q0jKSlJdO/e3WCZ/E6ePCkAiNTUVCHE43358OFDvXL569Vtu7Nnz+qVyf+6LM1rrE+fPmL+/Pl6daxdu1a4ubnpTVu8eLHw9PQssg9EFYVHdogq0IIFC/D9998bHGUA8k6jrFmzBjY2NtIjICAAWq0W0dHRRdbp5+eHK1eu4O7du4iIiECvXr3Qq1cvHDhwANnZ2Th69Ch69eoFALh69So8PDz0jsq0bNkS9vb2em2qX78+nJycSt2vNm3aSL/rTqHlP0WS36NHjwDkjWMqaMeOHXr9f+utt/TmX7161WCcT/fu3Q22Z8EjKz4+PgZlBg4ciKtXr+LGjRvYsGED/Pz84OLiolcmISEBY8eORZMmTWBnZwe1Wo20tDTExMTolUtJSYG1tXWh/c3vzp07+Oqrr/Dll18WOj8wMBAqlQrPP/88Vq1ahUaNGpWp3yNGjICNjQ1q1aqF1NRUvdOmp0+fxnPPPYd69erB1tYWfn5+AGDQl7p16+rtg8J069ZNr0z+OkrzGjt//jzmzp2rV4fuqKHudCsAWFpa6j0nqixmxm4AkZz4+voiICAAoaGhBqcQ0tLS8Oabb+Kdd94xWK5evXpF1unl5QUHBwdEREQgIiICn3zyCVxdXbFgwQKcPHkS2dnZ6NatW5naWZp/3PmZm5tLv+uuMNNqtYWWrV27NhQKRaGDtZ955hmEh4dLzzdv3oz58+eXqS2lZWZmhtGjR+O7777D/v37MXfuXIPwEBwcjPv372Px4sWoX78+VCoVfHx8DAZt37lzRy/wFeWjjz7Ciy++iLZt2xY6/7vvvsPDhw+xadMmTJ8+HUFBQWUKnQsXLoS/vz+SkpLw0UcfYfTo0di+fTvS09MREBCAgIAArFu3Dk5OToiJiUFAQIBBXw4dOgRbW1vpeZMmTQzW8/PPP6NFixbSc12YLq20tDTMmTMHQ4YMMZiXPwQ/ePCgTP0nKi+GHaIK9umnn6Jdu3Zo1qyZ3vQOHTrgypUraNy4cZHLKpVK5Obm6k1TKBTo2bMntm3bhsuXL6NHjx6wsrKCRqPBihUr0LFjRym8tGjRArGxsYiNjZU+eV+5cgVJSUlo2bJlse0ubN3loVQq0bJlS1y5csXgPjvW1tZ6/Xd2dtab36JFCxw5cgTBwcHStCNHjhi0/dixYxg1apTe8/bt2xu0ZezYsWjXrh0cHBzQt29fg7Bz5MgRLFu2DAMGDAAAxMbG4t69e3pl0tPTcfXqVYSGhhbb73PnzmHTpk3FDt6uU6cO6tSpg9atW2Px4sWIiIjACy+8UOp+u7q6Sttv4sSJGDhwILKzs3Ht2jXcv38fn376qbTfi7qHTYMGDQwGhRfk4eGht5/MzB7/qyjNa6xDhw6Iiooq9rUOAJcuXSp0vxFVNIYdogrm5eWFkSNHYsmSJXrTp02bhq5du2LChAl44403YG1tjStXrmD37t345ptvAORd9XLw4EEMHz4cKpUKjo6OAPI+Wb/33nvo2LGjdOrB19cX69atw9SpU6V1+Pv7S+tftGgRcnJy8Pbbb8PPz6/EAcOenp44fvw4bt26BRsbGzg4OJR7GwQEBODw4cNlvm/P1KlTMWzYMLRv3x7+/v7Yvn07Nm/ejD179uiV27hxIzp27IgePXpg3bp1OHHiBFauXGlQX4MGDfDVV1+hbt26MDExPGvfpEkT6SqmlJQUTJ06FZaWltL8a9eu4f3334e9vT0CAwOLbfsXX3yB9957D+7u7gbzoqOjcfLkSbRv3x5CCPzwww9ITU2Fl5dXmfqdlJSE+Ph4JCcnY+XKlWjYsCHMzc1Rr149KJVKfP3113jrrbdw6dIlzJs3r9j2lldpXmMzZ87Es88+i3r16uGFF16AiYkJzp8/j0uXLuHjjz+W6jp06FCltZNIj7EHDRHVdIUNvI2OjhZKpVIUfIudOHFC9O3bV9jY2Ahra2vRpk0b8cknn0jzIyMjRZs2bYRKpdJb9uzZswKAmDZtmjRt4cKFAoDYuXOn3jpu374tBg4cKKytrYWtra148cUXRXx8vDR/1qxZom3btgb9iIqKEl27dhWWlpYCgIiOji50UKuuLdHR0UVuk8uXLwtLS0uRlJRU7HYqOEBZCCGWLVsmGjZsKMzNzUXTpk3FDz/8oDcfgFi6dKno27evUKlUwtPTU/z888/S/KIG2QqRt83yD1A+c+aM6Nixo7CwsBBNmjQRGzdu1BuM+9JLL4nAwEBx6dIlvXoKG6Ds6uoq0tLSCi3z119/ia5duwpbW1thY2MjOnbsKDZv3lzmfusetra2ws/PT6+P69evF56enkKlUgkfHx/x3//+V287VNQAZSFKfo0JkTcIu1u3bsLS0lKo1WrRuXNn8e2330rzjx49Kuzt7UVGRoYgqmwKIYSo8oRFRLL34osvokOHDiWe/ikrhUKBLVu2GNyzh2qWl156CW3bttW7fJ6osvBqLCKqFJ9//nmRV/vQ0y0rKwteXl6YPHmysZtCTwke2SGiGoVHdoiorDhAmYhqFH4+I6Ky4mksIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKStf8HHXTELXZCwvwAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Размер обучающей выборки после нормализации: 2080\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import seaborn as sns\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"from sklearn.preprocessing import StandardScaler\n",
|
||
"\n",
|
||
"# Визуализация распределения Networth в обучающей выборке\n",
|
||
"sns.histplot(train_data['Networth'], kde=True)\n",
|
||
"plt.title('Распределение Networth в обучающей выборке')\n",
|
||
"plt.xlabel('Networth')\n",
|
||
"plt.ylabel('Частота')\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"# Нормализация данных\n",
|
||
"scaler = StandardScaler()\n",
|
||
"train_data['Networth_scaled'] = scaler.fit_transform(train_data[['Networth']])\n",
|
||
"\n",
|
||
"# Визуализация распределения Networth после нормализации\n",
|
||
"sns.histplot(train_data['Networth_scaled'], kde=True)\n",
|
||
"plt.title('Распределение Networth после нормализации')\n",
|
||
"plt.xlabel('Networth (нормализованное)')\n",
|
||
"plt.ylabel('Частота')\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"# Печать размеров выборки после нормализации\n",
|
||
"print(\"Размер обучающей выборки после нормализации: \", len(train_data))\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Конструирование признаков \n",
|
||
"\n",
|
||
"Теперь приступим к конструированию признаков для решения каждой задачи.\n",
|
||
"\n",
|
||
"**Процесс конструирования признаков** \n",
|
||
"Задача 1: Прогнозирование вероятности достижения статуса миллионера. Цель технического проекта: Разработка модели машинного обучения для точного прогнозирования вероятности достижения статуса миллионера.\n",
|
||
"Задача 2: Оценка факторов, влияющих на достижение статуса миллионера. Цель технического проекта: Разработка модели машинного обучения для выявления ключевых факторов, влияющих на достижение статуса миллионера.\n",
|
||
"\n",
|
||
"**Унитарное кодирование** \n",
|
||
"Унитарное кодирование категориальных признаков (one-hot encoding). Преобразование категориальных признаков в бинарные векторы.\n",
|
||
"\n",
|
||
"**Дискретизация числовых признаков** \n",
|
||
"Процесс преобразования непрерывных числовых значений в дискретные категории или интервалы (бины)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Столбцы train_data_encoded: ['Rank ', 'Name', 'Networth', 'Age', 'LogNetworth', 'Networth_scaled', 'Country_Algeria', 'Country_Argentina', 'Country_Australia', 'Country_Austria', 'Country_Barbados', 'Country_Belgium', 'Country_Belize', 'Country_Brazil', 'Country_Bulgaria', 'Country_Canada', 'Country_Chile', 'Country_China', 'Country_Colombia', 'Country_Cyprus', 'Country_Czechia', 'Country_Denmark', 'Country_Egypt', 'Country_Estonia', 'Country_Eswatini (Swaziland)', 'Country_Finland', 'Country_France', 'Country_Georgia', 'Country_Germany', 'Country_Greece', 'Country_Guernsey', 'Country_Hong Kong', 'Country_Hungary', 'Country_Iceland', 'Country_India', 'Country_Indonesia', 'Country_Ireland', 'Country_Israel', 'Country_Italy', 'Country_Japan', 'Country_Kazakhstan', 'Country_Lebanon', 'Country_Macau', 'Country_Malaysia', 'Country_Mexico', 'Country_Monaco', 'Country_Morocco', 'Country_Nepal', 'Country_Netherlands', 'Country_New Zealand', 'Country_Nigeria', 'Country_Norway', 'Country_Oman', 'Country_Peru', 'Country_Philippines', 'Country_Poland', 'Country_Portugal', 'Country_Qatar', 'Country_Romania', 'Country_Russia', 'Country_Singapore', 'Country_Slovakia', 'Country_South Africa', 'Country_South Korea', 'Country_Spain', 'Country_Sweden', 'Country_Switzerland', 'Country_Taiwan', 'Country_Thailand', 'Country_Turkey', 'Country_Ukraine', 'Country_United Arab Emirates', 'Country_United Kingdom', 'Country_United States', 'Country_Uruguay', 'Country_Venezuela', 'Country_Vietnam', 'Country_Zimbabwe', 'Source_3D printing', 'Source_AOL', 'Source_Airbnb', \"Source_Aldi, Trader Joe's\", 'Source_Aluminium', 'Source_Amazon', 'Source_Apple', 'Source_BMW, pharmaceuticals', 'Source_Banking', 'Source_Berkshire Hathaway', 'Source_Bloomberg LP', 'Source_Campbell Soup', 'Source_Cargill', 'Source_Carnival Cruises', 'Source_Chanel', 'Source_Charlotte Hornets, endorsements', 'Source_Chemicals', 'Source_Chick-fil-A', 'Source_Coca Cola Israel', 'Source_Coca-Cola bottler', 'Source_Columbia Sportswear', 'Source_Comcast', 'Source_Construction', 'Source_Contact Lens', 'Source_Dallas Cowboys', 'Source_Dell computers', \"Source_Dick's Sporting Goods\", 'Source_DirecTV', 'Source_Dolby Laboratories', 'Source_Dole, real estate', 'Source_EasyJet', 'Source_Estee Lauder', 'Source_Estée Lauder', 'Source_FIAT, investments', 'Source_Facebook', 'Source_Facebook, investments', 'Source_Furniture retail', 'Source_Gap', 'Source_Genentech, Apple', 'Source_Getty Oil', 'Source_Golden State Warriors', 'Source_Google', 'Source_Groupon, investments', 'Source_H&M', 'Source_Heineken', 'Source_Hermes', 'Source_Home Depot', 'Source_Houston Rockets, entertainment', 'Source_Hyundai', 'Source_I.T.', 'Source_IKEA', 'Source_IT', 'Source_IT consulting', 'Source_IT products', 'Source_IT provider', 'Source_In-N-Out Burger', 'Source_Instagram', 'Source_Intel', 'Source_Internet', 'Source_Internet search', 'Source_Investments', 'Source_Koch Industries', \"Source_L'Oréal\", 'Source_LED lighting', 'Source_LG', 'Source_LVMH', 'Source_Lego', 'Source_LinkedIn', 'Source_Little Caesars', 'Source_Lululemon', 'Source_Luxury goods', 'Source_Manufacturing', 'Source_Microsoft', 'Source_Mining', 'Source_Motors', 'Source_Multiple', 'Source_Nascar, racing', 'Source_Netflix', 'Source_Netscape, investments', 'Source_New Balance', 'Source_New England Patriots', 'Source_Nike', 'Source_Nutella, chocolates', 'Source_Patagonia', 'Source_Petro Fibre', 'Source_Petro Firbe', 'Source_Philadelphia Eagles', 'Source_Quicken Loans', 'Source_Real Estate', 'Source_Real estate', 'Source_Red Bull', 'Source_Reebok', 'Source_SAP', 'Source_Samsung', 'Source_Sears', 'Source_Semiconductor materials', 'Source_Shipping', 'Source_Shoes', 'Source_Slim-Fast', 'Source_Smartphones', 'Source_Snapchat', 'Source_Spotify', 'Source_Starbucks', 'Source_TD Ameritrade', 'Source_TV broadcasting', 'Source_TV network, investments', 'Source_TV programs', 'Source_TV shows', 'Source_TV, movie production', 'Source_Tesla, SpaceX', 'Source_TikTok', 'Source_Toyota dealerships', 'Source_Transportation', 'Source_Twitter, Square', 'Source_U-Haul', 'Source_Uber', 'Source_Urban Outfitters', 'Source_Waffle House', 'Source_Walmart', 'Source_Walmart, logistics', 'Source_Washington Football Team', 'Source_WeWork', 'Source_WhatsApp', 'Source_Yahoo', 'Source_Zara', 'Source_Zoom Video Communications', 'Source_accounting services', 'Source_adhesives', 'Source_advertising', 'Source_aerospace', 'Source_agribusiness', 'Source_agriculture', 'Source_agriculture, land', 'Source_agriculture, water', 'Source_agrochemicals', 'Source_air compressors', 'Source_aircraft leasing', 'Source_airline', 'Source_airlines', 'Source_airport', 'Source_airport management', 'Source_airports, investments', 'Source_alcohol', 'Source_alcohol, real estate', 'Source_aluminum', 'Source_aluminum products', 'Source_aluminum, diversified ', 'Source_aluminum, utilities', 'Source_animal health, investments', 'Source_apparel', 'Source_appliances', 'Source_art', 'Source_art collection', 'Source_art, car dealerships', 'Source_asset management', 'Source_auto dealers, investments', 'Source_auto dealerships', 'Source_auto loans', 'Source_auto parts', 'Source_auto repair', 'Source_automobiles', 'Source_automobiles, batteries', 'Source_automotive', 'Source_automotive brakes', 'Source_automotive technology', 'Source_aviation', 'Source_bakeries', 'Source_banking', 'Source_banking, credit cards', 'Source_banking, insurance', 'Source_banking, insurance, media', 'Source_banking, investments', 'Source_banking, minerals', 'Source_banking, oil', 'Source_banking, property', 'Source_banking, real estate', 'Source_banking, tobacco', 'Source_banks, real estate', 'Source_bars', 'Source_batteries', 'Source_batteries, automobiles', 'Source_batteries, investments', 'Source_battery components', 'Source_beauty products', 'Source_beef packing', 'Source_beef processing', 'Source_beer', 'Source_beverages', 'Source_beverages, pharmaceuticals', 'Source_biochemicals', 'Source_biopharmaceuticals', 'Source_biotech', 'Source_biotech investing', 'Source_biotech, investments', 'Source_biotechnology', 'Source_blockchain technology', 'Source_blockchain, technology', 'Source_book distribution, transportation', 'Source_brakes, investments', 'Source_brewery', 'Source_building materials', 'Source_business software', 'Source_cable', 'Source_cable TV, investments', 'Source_cable television', 'Source_call centers', 'Source_cameras, software', 'Source_candy', 'Source_candy, pet food', 'Source_car dealerships', 'Source_car rentals', 'Source_carbon fiber products', 'Source_carpet', 'Source_cars', 'Source_cashmere', 'Source_casinos', 'Source_casinos, banking', 'Source_casinos, hotels', 'Source_casinos, mixed martial arts', 'Source_casinos, property, energy', 'Source_casinos/hotels', 'Source_cement', 'Source_cement, sugar', 'Source_cheese', 'Source_chemical products', 'Source_chemicals', 'Source_chemicals, investments', 'Source_chemicals, logistics', 'Source_chemicals, spandex', 'Source_chewing gum', 'Source_chicken processing', 'Source_cleaning products', 'Source_clinical diagnostics', 'Source_clinical trials', 'Source_cloud communications', 'Source_cloud computing', 'Source_coal', 'Source_coal mines', 'Source_coal, fertilizers', 'Source_coal, investments', 'Source_cobalt', 'Source_coffee', 'Source_coffee, shipping', 'Source_coking', 'Source_commodities', 'Source_communication equipment', 'Source_communications', 'Source_computer hardware', 'Source_computer services, real estate', 'Source_computer services, telecom', 'Source_computer software', 'Source_conglomerate', 'Source_construction', 'Source_construction equipment', 'Source_construction equipment, media', 'Source_construction materials', 'Source_construction, investments', 'Source_construction, media', 'Source_construction, mining', 'Source_construction, mining machinery', 'Source_construction, pipes, banking', 'Source_construction, real estate', 'Source_consumer', 'Source_consumer electronics', 'Source_consumer goods', 'Source_consumer products, banking', 'Source_convenience stores', 'Source_convinience stores', 'Source_copper, poultry', 'Source_cosmetics', 'Source_cosmetics, reality TV', 'Source_cruises', 'Source_cryptocurrency', 'Source_cryptocurrency exchange', 'Source_cybersecurity', 'Source_dairy', 'Source_dairy & consumer products', 'Source_damaged cars', 'Source_data analytics', 'Source_data centers', 'Source_data management', 'Source_defense', 'Source_defense, hotels', 'Source_dental implants', 'Source_dental products', 'Source_department stores', 'Source_diagnostics', 'Source_diamond jewelry', 'Source_diamonds', 'Source_digital advertising', 'Source_discount brokerage', 'Source_diversified ', 'Source_drilling, shipping', 'Source_drones', 'Source_drugs', 'Source_drugstores', 'Source_e-cigarettes', 'Source_e-commerce', 'Source_e-commerce software', 'Source_eBay', 'Source_eBay, PayPal', 'Source_education', 'Source_education technology', 'Source_electric bikes, scooters', 'Source_electric components', 'Source_electric equipment', 'Source_electric scooters', 'Source_electric vehicles', 'Source_electrical equipment', 'Source_electrodes', 'Source_electronic components', 'Source_electronic trading', 'Source_electronics', 'Source_electronics components', 'Source_elevators, escalators', 'Source_email marketing', 'Source_employment agency', 'Source_energy', 'Source_energy drink', 'Source_energy drinks', 'Source_energy drinks,investments', 'Source_energy services', 'Source_energy, banking, construction', 'Source_energy, chemicals', 'Source_energy, investments', 'Source_energy, real estate', 'Source_energy, sports', 'Source_engineering', 'Source_engineering, automotive', 'Source_engineering, construction', 'Source_entertainment', 'Source_executive search, investments', 'Source_express delivery', 'Source_fashion', 'Source_fashion investments', 'Source_fashion retail', 'Source_fashion retail, investments', 'Source_fashion retailer', 'Source_fast food', 'Source_fasteners', 'Source_feed', 'Source_fertilizer', 'Source_fertilizer, real estate', 'Source_fertilizers', 'Source_fiber optic cables', 'Source_finance', 'Source_finance and investments', 'Source_finance, real estate', 'Source_finance, telecommunications', 'Source_financial information', 'Source_financial services', 'Source_financial services, property', 'Source_financial services★', 'Source_financial technology', 'Source_fintech', 'Source_fitness equipment', 'Source_flavorings', 'Source_flavors and fragrances', 'Source_flipkart', 'Source_flooring', 'Source_food', 'Source_food & beverage retailing', 'Source_food delivery app', 'Source_food distribution', 'Source_food processing', 'Source_food service', 'Source_food services', 'Source_food, beverages', 'Source_foods', 'Source_footwear', 'Source_forestry, mining', 'Source_frozen foods', 'Source_furniture', 'Source_furniture retailing', 'Source_gambling', 'Source_gambling products', 'Source_gambling software', 'Source_game software', 'Source_gaming', 'Source_gas stations', 'Source_gas, chemicals', 'Source_generic drugs', 'Source_glass', 'Source_gold', 'Source_graphite electrodes', 'Source_grocery delivery service', 'Source_grocery stores', 'Source_hair care products', 'Source_hair dryers', 'Source_hair products, tequila', 'Source_hand tools', 'Source_hardware', 'Source_health IT', 'Source_health care', 'Source_health clinics', 'Source_health insurance', 'Source_healthcare', 'Source_healthcare services', 'Source_hearing aids', 'Source_heating and cooling equipment', 'Source_heating, cooling equipment', 'Source_hedge fund', 'Source_hedge funds', 'Source_herbal products', 'Source_high speed trading', 'Source_home appliances', 'Source_home building', 'Source_home building, banking', 'Source_home furnishings', 'Source_home improvement stores', 'Source_home sales', 'Source_home-cleaning robots', 'Source_homebuilder', 'Source_homebuilding', 'Source_homebuilding, insurance', 'Source_hospitals', 'Source_hospitals, health care', 'Source_hospitals, health insurance', 'Source_hotels', 'Source_hotels, diversified ', 'Source_hotels, energy', 'Source_hotels, investments', 'Source_hotels, motels', 'Source_household chemicals', 'Source_hydraulic machinery', 'Source_industrial equipment', 'Source_industrial explosives', 'Source_industrial lasers', 'Source_industrial machinery', 'Source_infant formula', 'Source_information technology', 'Source_infrastructure', 'Source_infrastructure, commodities', 'Source_insurance', 'Source_insurance, NFL team', 'Source_insurance, beverages', 'Source_insurance, investments', 'Source_internet', 'Source_internet media', 'Source_internet search', 'Source_internet service provider', 'Source_investing', 'Source_investment', 'Source_investments', 'Source_investments, art', 'Source_investments, energy', 'Source_investments, real estate', 'Source_jewellery', 'Source_jewelry', 'Source_kitchen appliances', 'Source_laboratory services', 'Source_leveraged buyouts', 'Source_lighting', 'Source_lighting installations', 'Source_liquefied natural gas', 'Source_liquor', 'Source_lithium', 'Source_lithium batteries', 'Source_lithium battery', 'Source_lithium-ion battery cap', 'Source_live entertainment', 'Source_live streaming service', 'Source_logistics', 'Source_low-cost airlines', 'Source_luxury goods', 'Source_machine tools', 'Source_machinery', 'Source_magazines, media', 'Source_magnetic switches', 'Source_manufacturing', 'Source_manufacturing, investment', 'Source_manufacturing, investments', 'Source_mapping software', 'Source_materials', 'Source_measuring instruments', 'Source_meat processing', 'Source_media', 'Source_media, automotive', 'Source_media, investments', 'Source_media, real estate', 'Source_medical devices', 'Source_medical diagnostic equipment', 'Source_medical diagnostics', 'Source_medical equipment', 'Source_medical packaging', 'Source_medical patents', 'Source_medical products', 'Source_medical technology', 'Source_medical testing', 'Source_messaging app', 'Source_metal processing', 'Source_metals', 'Source_metals, coal', 'Source_metals, energy', 'Source_metals, mining', 'Source_metalworking tools', 'Source_microbiology', 'Source_microchip testing', 'Source_mining', 'Source_mining, banking', 'Source_mining, banking, hotels', 'Source_mining, commodities', 'Source_mining, copper products', 'Source_mining, metals, machinery', 'Source_mobile games', 'Source_mobile gaming', 'Source_mobile payments', 'Source_mobile phone retailer', 'Source_mobile phones', 'Source_money management', 'Source_mortgage lender★', 'Source_motorcycle loans', 'Source_motorcycles', 'Source_motorhomes, RVs', 'Source_motors', 'Source_movie making', 'Source_movies, investments', 'Source_movies, record labels', 'Source_music, chemicals', 'Source_music, cosmetics', 'Source_music, sneakers', 'Source_mutual funds', 'Source_natural gas', 'Source_natural gas distribution', 'Source_natural gas, fertilizers', 'Source_navigation equipment', 'Source_newspapers, TV network', 'Source_nonferrous', 'Source_nutrition, wellness products', 'Source_office real estate', 'Source_oil', 'Source_oil & gas', 'Source_oil & gas, banking', 'Source_oil & gas, investments', 'Source_oil and gas', 'Source_oil and gas, IT, lotteries', 'Source_oil refinery', 'Source_oil, banking, telecom', 'Source_oil, gas', 'Source_oil, investments', 'Source_oil, real estate', 'Source_oilfield equipment', 'Source_online dating', 'Source_online gambling', 'Source_online games', 'Source_online games, investments', 'Source_online gaming', 'Source_online marketplace', 'Source_online media', 'Source_online media, Dallas Mavericks', 'Source_online payments', 'Source_online recruitment', 'Source_online retail', 'Source_online retailing', 'Source_online services', 'Source_optical components', 'Source_optometry', 'Source_orange juice', 'Source_package delivery', 'Source_packaged meats', 'Source_packaging', 'Source_paint', 'Source_paints', 'Source_palm oil', 'Source_palm oil, nickel mining', 'Source_palm oil, property', 'Source_palm oil, shipping, property', 'Source_paper', 'Source_paper & related products', 'Source_paper and pulp', 'Source_payment software', 'Source_payments software', 'Source_payments technology', 'Source_payments, banking', 'Source_payroll processing', 'Source_payroll software', 'Source_pearlescent pigments', 'Source_personal care goods', 'Source_pest control', 'Source_pet food', 'Source_petrochemicals', 'Source_petroleum, diversified ', 'Source_phamaceuticals', 'Source_pharmaceutical', 'Source_pharmaceutical services', 'Source_pharmaceuticals', 'Source_pharmaceuticals, diversified ', 'Source_pharmaceuticals, food', 'Source_pharmaceuticals, medical equipment', 'Source_pharmaceuticals, power', 'Source_pharmacies', 'Source_photovoltaic equipment', 'Source_photovoltaics', 'Source_pig breeding', 'Source_pipe manufacturing', 'Source_pipelines', 'Source_plastic', 'Source_plastics', 'Source_plumbing fixtures', 'Source_plush toys, real estate', 'Source_polyester', 'Source_ports', 'Source_poultry genetics', 'Source_poultry processing', 'Source_powdered metal', 'Source_power equipment', 'Source_power strip', 'Source_power supply equipment', 'Source_precision machinery', 'Source_price comparison website', 'Source_printed circuit boards', 'Source_printing', 'Source_private equity', 'Source_private equity★', 'Source_pro sports teams', 'Source_property, healthcare', 'Source_prosthetics', 'Source_publishing', 'Source_pulp and paper', 'Source_quartz products', 'Source_readymade garments', 'Source_real estate', 'Source_real estate developer', 'Source_real estate development', 'Source_real estate services', 'Source_real estate, airport', 'Source_real estate, construction', 'Source_real estate, diversified ', 'Source_real estate, electronics', 'Source_real estate, gambling', 'Source_real estate, investments', 'Source_real estate, manufacturing', 'Source_real estate, media', 'Source_real estate, oil, cars, sports', 'Source_real estate, private equity', 'Source_real estate, retail', 'Source_real estate, shipping', 'Source_refinery, chemicals', 'Source_renewable energy', 'Source_restaurant', 'Source_restaurants', 'Source_retail', 'Source_retail, investments', 'Source_retail, media', 'Source_retail, real estate', 'Source_retailing', 'Source_roofing', 'Source_salsa', 'Source_sandwich chain', 'Source_satellite TV', 'Source_scaffolding, cement mixers', 'Source_scientific equipment', 'Source_security', 'Source_security services', 'Source_security software', 'Source_seed production', 'Source_semiconductor', 'Source_semiconductor devices', 'Source_semiconductors', 'Source_sensor systems', 'Source_sensor technology', 'Source_sensors', 'Source_sensors★', 'Source_shipbuilding', 'Source_shipping', 'Source_shipping, airlines', 'Source_shipping, seafood', 'Source_shoes', 'Source_shopping centers', 'Source_shopping malls', 'Source_silicon', 'Source_smartphone components', 'Source_smartphone screens', 'Source_smartphones', 'Source_snack bars', 'Source_snacks, beverages', 'Source_sneakers, sportswear', 'Source_social media', 'Source_social network', 'Source_soft drinks, fast food', 'Source_software', 'Source_software firm', 'Source_software services', 'Source_software, investments', 'Source_solar energy', 'Source_solar energy equipment', 'Source_solar equipment', 'Source_solar inverters', 'Source_solar panel components', 'Source_solar panel materials', 'Source_solar wafers and modules', 'Source_soy sauce', 'Source_specialty chemicals', 'Source_spirits', 'Source_sporting goods retail', 'Source_sports apparel', 'Source_sports data', 'Source_sports drink', 'Source_sports retailing', 'Source_sports team', 'Source_sports teams', 'Source_sports, real estate', 'Source_staffing & recruiting', 'Source_stationery', 'Source_steel', 'Source_steel pipes, diversified ', 'Source_steel, coal', 'Source_steel, diversified ', 'Source_steel, investments', 'Source_steel, telecom, investments', 'Source_steel, transport', 'Source_stock brokerage', 'Source_stock exchange', 'Source_stock photos', 'Source_storage facilities', 'Source_sugar, ethanol', 'Source_sunglasses', 'Source_supermarkets', 'Source_tech investments', 'Source_technology', 'Source_telecom', 'Source_telecom services', 'Source_telecom, investments', 'Source_telecom, oil', 'Source_telecommunication', 'Source_telecommunications', 'Source_temp agency', 'Source_tequila', 'Source_textiles', 'Source_textiles, paper', 'Source_ticketing service', 'Source_tire', 'Source_tires', 'Source_tires, diversified ', 'Source_tobacco', 'Source_tobacco distribution, retail', 'Source_toll roads', 'Source_touch screens', 'Source_tourism, cultural industry', 'Source_toys', 'Source_tractors', 'Source_trading, investments', 'Source_train cars', 'Source_transportation', 'Source_travel', 'Source_trucking', 'Source_two-wheelers, finance', 'Source_used cars', 'Source_utilities, diversified ', 'Source_utilities, real estate', 'Source_vaccine & shoes', 'Source_vaccines', 'Source_valve manufacturing', 'Source_valves', 'Source_venture capital', 'Source_venture capital, Google', 'Source_video games', 'Source_video games, pachinko', 'Source_video streaming', 'Source_video streaming app', 'Source_video surveillance', 'Source_videogames', 'Source_vodka', 'Source_waste disposal', 'Source_web hosting', 'Source_wine', 'Source_wireless networking gear', 'Industry_Automotive ', 'Industry_Construction & Engineering ', 'Industry_Energy ', 'Industry_Fashion & Retail ', 'Industry_Finance & Investments ', 'Industry_Food & Beverage ', 'Industry_Gambling & Casinos ', 'Industry_Healthcare ', 'Industry_Logistics ', 'Industry_Manufacturing ', 'Industry_Media & Entertainment ', 'Industry_Metals & Mining ', 'Industry_Real Estate ', 'Industry_Service ', 'Industry_Sports ', 'Industry_Technology ', 'Industry_Telecom ', 'Industry_diversified ']\n",
|
||
"Столбцы val_data_encoded: ['Rank ', 'Name', 'Networth', 'Age', 'Country_Argentina', 'Country_Australia', 'Country_Belgium', 'Country_Brazil', 'Country_Canada', 'Country_Chile', 'Country_China', 'Country_Cyprus', 'Country_Denmark', 'Country_Egypt', 'Country_Finland', 'Country_France', 'Country_Germany', 'Country_Greece', 'Country_Hong Kong', 'Country_Hungary', 'Country_India', 'Country_Indonesia', 'Country_Ireland', 'Country_Israel', 'Country_Italy', 'Country_Japan', 'Country_Kazakhstan', 'Country_Lebanon', 'Country_Liechtenstein', 'Country_Malaysia', 'Country_Mexico', 'Country_Monaco', 'Country_New Zealand', 'Country_Norway', 'Country_Philippines', 'Country_Poland', 'Country_Romania', 'Country_Russia', 'Country_Singapore', 'Country_Slovakia', 'Country_South Africa', 'Country_South Korea', 'Country_Spain', 'Country_St. Kitts and Nevis', 'Country_Sweden', 'Country_Switzerland', 'Country_Taiwan', 'Country_Tanzania', 'Country_Thailand', 'Country_Turkey', 'Country_United Arab Emirates', 'Country_United Kingdom', 'Country_United States', 'Source_Airbnb', 'Source_Amazon', 'Source_Apple, Disney', 'Source_BMW', 'Source_Berkshire Hathaway', 'Source_Best Buy', 'Source_Cargill', 'Source_Chanel', 'Source_Cirque du Soleil', 'Source_Coca Cola Israel', 'Source_Electric power', 'Source_Estee Lauder', 'Source_Facebook', 'Source_FedEx', 'Source_Formula One', 'Source_Gap', 'Source_Google', 'Source_Hyundai', 'Source_IKEA', 'Source_Indianapolis Colts', 'Source_LG', 'Source_Manufacturing', 'Source_Marvel comics', 'Source_Microsoft', 'Source_Pinterest', 'Source_Real Estate', 'Source_Real estate', 'Source_Roku', 'Source_Samsung', 'Source_San Francisco 49ers', 'Source_Snapchat', 'Source_Spanx', 'Source_Spotify', 'Source_Star Wars', 'Source_TV broadcasting', 'Source_Twitter', 'Source_Uber', 'Source_Under Armour', 'Source_Virgin', 'Source_Walmart', 'Source_acoustic components', 'Source_adhesives', 'Source_aerospace', 'Source_agribusiness', 'Source_airports, real estate', 'Source_alcoholic beverages', 'Source_aluminum products', 'Source_amusement parks', 'Source_appliances', 'Source_art collection', 'Source_asset management', 'Source_auto loans', 'Source_auto parts', 'Source_bakery chain', 'Source_banking', 'Source_banking, minerals', 'Source_batteries', 'Source_beer', 'Source_beer distribution', 'Source_beer, investments', 'Source_beverages', 'Source_billboards, Los Angeles Angels', 'Source_biomedical products', 'Source_biopharmaceuticals', 'Source_biotech', 'Source_budget airline', 'Source_building materials', 'Source_business software', 'Source_call centers', 'Source_candy, pet food', 'Source_car dealerships', 'Source_casinos', 'Source_casinos, real estate', 'Source_cement', 'Source_cement, diversified ', 'Source_chemical', 'Source_chemicals', 'Source_cloud computing', 'Source_cloud storage service', 'Source_coal', 'Source_coffee', 'Source_coffee makers', 'Source_commodities', 'Source_commodities, investments', 'Source_computer games', 'Source_computer networking', 'Source_computer software', 'Source_construction', 'Source_consumer goods', 'Source_consumer products', 'Source_cooking appliances', 'Source_copper, education', 'Source_copy machines, software', 'Source_cosmetics', 'Source_cryptocurrency', 'Source_cryptocurrency exchange', 'Source_damaged cars', 'Source_data centers', 'Source_defense contractor', 'Source_dental materials', 'Source_diversified ', 'Source_drug distribution', 'Source_e-cigarettes', 'Source_e-commerce', 'Source_eBay', 'Source_ecommerce', 'Source_edible oil', 'Source_edtech', 'Source_education', 'Source_electrical equipment', 'Source_electronics', 'Source_electronics components', 'Source_elevators, escalators', 'Source_energy services', 'Source_entertainment', 'Source_eyeglasses', 'Source_fashion retail', 'Source_fast fashion', 'Source_finance', 'Source_finance services', 'Source_financial services', 'Source_fine jewelry', 'Source_fintech', 'Source_fish farming', 'Source_flavorings', 'Source_food', 'Source_food delivery service', 'Source_food manufacturing', 'Source_forestry, mining', 'Source_frozen foods', 'Source_furniture retailing', 'Source_garments', 'Source_gas stations, retail', 'Source_generic drugs', 'Source_glass', 'Source_greek yogurt', 'Source_gym equipment', 'Source_hardware stores', 'Source_health products', 'Source_healthcare IT', 'Source_hedge funds', 'Source_home appliances', 'Source_home furnishings', 'Source_homebuilding', 'Source_homebuilding, NFL team', 'Source_hospitals, health insurance', 'Source_hotels', 'Source_hotels, investments', 'Source_household chemicals', 'Source_hygiene products', 'Source_imaging systems', 'Source_insurance', 'Source_insurance, NFL team', 'Source_internet and software', 'Source_internet media', 'Source_internet, telecom', 'Source_investing', 'Source_investment banking', 'Source_investment research', 'Source_investments', 'Source_iron ore mining', 'Source_jewelry', 'Source_kitchen appliances', 'Source_laboratory services', 'Source_liquor', 'Source_lithium', 'Source_logistics', 'Source_logistics, baseball', 'Source_logistics, real estate', 'Source_luxury goods', 'Source_machine tools', 'Source_machinery', 'Source_manufacturing', 'Source_manufacturing, investments', 'Source_mattresses', 'Source_meat processing', 'Source_media', 'Source_media, automotive', 'Source_media, tech', 'Source_medical cosmetics', 'Source_medical devices', 'Source_medical equipment', 'Source_medical services', 'Source_messaging software', 'Source_metals', 'Source_metals, banking, fertilizers', 'Source_mining', 'Source_mining, commodities', 'Source_mining, metals', 'Source_mining, steel', 'Source_money management', 'Source_motorcycles', 'Source_movies', 'Source_movies, digital effects', 'Source_natural gas', 'Source_non-ferrous metals', 'Source_nutritional supplements', 'Source_oil', 'Source_oil & gas, investments', 'Source_oil refining', 'Source_oil trading', 'Source_oil, banking', 'Source_oil, gas', 'Source_oil, investments', 'Source_oil, real estate', 'Source_oil, semiconductor', 'Source_online gambling', 'Source_online games', 'Source_online media', 'Source_online retail', 'Source_package delivery', 'Source_packaging', 'Source_paper', 'Source_paper manufacturing', 'Source_payment processing', 'Source_payroll services', 'Source_pet food', 'Source_petrochemicals', 'Source_pharma retailing', 'Source_pharmaceutical', 'Source_pharmaceutical ingredients', 'Source_pharmaceuticals', 'Source_pipelines', 'Source_plastic pipes', 'Source_poultry', 'Source_poultry breeding', 'Source_power strips', 'Source_precious metals, real estate', 'Source_printed circuit boards', 'Source_private equity', 'Source_publishing', 'Source_pulp and paper', 'Source_real estate', 'Source_real estate finance', 'Source_real estate, hotels', 'Source_real estate, investments', 'Source_record label', 'Source_refinery, chemicals', 'Source_restaurants', 'Source_retail', 'Source_retail & gas stations', 'Source_retail chain', 'Source_retail stores', 'Source_retail, agribusiness', 'Source_retail, investments', 'Source_rubber gloves', 'Source_security software', 'Source_self storage', 'Source_semiconductor', 'Source_semiconductors', 'Source_sensor systems', 'Source_shipping', 'Source_shoes', 'Source_smartphone screens', 'Source_smartphones', 'Source_software', 'Source_solar panels', 'Source_soy sauce', 'Source_sporting goods', 'Source_sports', 'Source_sports apparel', 'Source_staffing, Baltimore Ravens', 'Source_stationery', 'Source_steel', 'Source_steel production', 'Source_steel, diversified ', 'Source_steel, mining', 'Source_supermarkets', 'Source_supermarkets, investments', 'Source_surveillance equipment', 'Source_technology', 'Source_telecom', 'Source_telecom, lotteries, insurance', 'Source_telecoms, media, oil-services', 'Source_testing equipment', 'Source_textile, chemicals', 'Source_textiles, apparel', 'Source_textiles, petrochemicals', 'Source_timberland, lumber mills', 'Source_titanium', 'Source_transport, logistics', 'Source_two-wheelers', 'Source_used cars', 'Source_vaccines', 'Source_vacuums', 'Source_venture capital', 'Source_venture capital investing', 'Source_video games', 'Source_wedding dresses', 'Source_wind turbines', 'Source_winter jackets', 'Source_wire & cables, paints', 'Industry_Automotive ', 'Industry_Construction & Engineering ', 'Industry_Energy ', 'Industry_Fashion & Retail ', 'Industry_Finance & Investments ', 'Industry_Food & Beverage ', 'Industry_Gambling & Casinos ', 'Industry_Healthcare ', 'Industry_Logistics ', 'Industry_Manufacturing ', 'Industry_Media & Entertainment ', 'Industry_Metals & Mining ', 'Industry_Real Estate ', 'Industry_Service ', 'Industry_Sports ', 'Industry_Technology ', 'Industry_Telecom ', 'Industry_diversified ']\n",
|
||
"Столбцы test_data_encoded: ['Rank ', 'Name', 'Networth', 'Age', 'Country_Argentina', 'Country_Australia', 'Country_Belgium', 'Country_Brazil', 'Country_Canada', 'Country_Chile', 'Country_China', 'Country_Cyprus', 'Country_Denmark', 'Country_Egypt', 'Country_Finland', 'Country_France', 'Country_Germany', 'Country_Greece', 'Country_Hong Kong', 'Country_Hungary', 'Country_India', 'Country_Indonesia', 'Country_Ireland', 'Country_Israel', 'Country_Italy', 'Country_Japan', 'Country_Kazakhstan', 'Country_Lebanon', 'Country_Liechtenstein', 'Country_Malaysia', 'Country_Mexico', 'Country_Monaco', 'Country_New Zealand', 'Country_Norway', 'Country_Philippines', 'Country_Poland', 'Country_Romania', 'Country_Russia', 'Country_Singapore', 'Country_Slovakia', 'Country_South Africa', 'Country_South Korea', 'Country_Spain', 'Country_St. Kitts and Nevis', 'Country_Sweden', 'Country_Switzerland', 'Country_Taiwan', 'Country_Tanzania', 'Country_Thailand', 'Country_Turkey', 'Country_United Arab Emirates', 'Country_United Kingdom', 'Country_United States', 'Source_Airbnb', 'Source_Amazon', 'Source_Apple, Disney', 'Source_BMW', 'Source_Berkshire Hathaway', 'Source_Best Buy', 'Source_Cargill', 'Source_Chanel', 'Source_Cirque du Soleil', 'Source_Coca Cola Israel', 'Source_Electric power', 'Source_Estee Lauder', 'Source_Facebook', 'Source_FedEx', 'Source_Formula One', 'Source_Gap', 'Source_Google', 'Source_Hyundai', 'Source_IKEA', 'Source_Indianapolis Colts', 'Source_LG', 'Source_Manufacturing', 'Source_Marvel comics', 'Source_Microsoft', 'Source_Pinterest', 'Source_Real Estate', 'Source_Real estate', 'Source_Roku', 'Source_Samsung', 'Source_San Francisco 49ers', 'Source_Snapchat', 'Source_Spanx', 'Source_Spotify', 'Source_Star Wars', 'Source_TV broadcasting', 'Source_Twitter', 'Source_Uber', 'Source_Under Armour', 'Source_Virgin', 'Source_Walmart', 'Source_acoustic components', 'Source_adhesives', 'Source_aerospace', 'Source_agribusiness', 'Source_airports, real estate', 'Source_alcoholic beverages', 'Source_aluminum products', 'Source_amusement parks', 'Source_appliances', 'Source_art collection', 'Source_asset management', 'Source_auto loans', 'Source_auto parts', 'Source_bakery chain', 'Source_banking', 'Source_banking, minerals', 'Source_batteries', 'Source_beer', 'Source_beer distribution', 'Source_beer, investments', 'Source_beverages', 'Source_billboards, Los Angeles Angels', 'Source_biomedical products', 'Source_biopharmaceuticals', 'Source_biotech', 'Source_budget airline', 'Source_building materials', 'Source_business software', 'Source_call centers', 'Source_candy, pet food', 'Source_car dealerships', 'Source_casinos', 'Source_casinos, real estate', 'Source_cement', 'Source_cement, diversified ', 'Source_chemical', 'Source_chemicals', 'Source_cloud computing', 'Source_cloud storage service', 'Source_coal', 'Source_coffee', 'Source_coffee makers', 'Source_commodities', 'Source_commodities, investments', 'Source_computer games', 'Source_computer networking', 'Source_computer software', 'Source_construction', 'Source_consumer goods', 'Source_consumer products', 'Source_cooking appliances', 'Source_copper, education', 'Source_copy machines, software', 'Source_cosmetics', 'Source_cryptocurrency', 'Source_cryptocurrency exchange', 'Source_damaged cars', 'Source_data centers', 'Source_defense contractor', 'Source_dental materials', 'Source_diversified ', 'Source_drug distribution', 'Source_e-cigarettes', 'Source_e-commerce', 'Source_eBay', 'Source_ecommerce', 'Source_edible oil', 'Source_edtech', 'Source_education', 'Source_electrical equipment', 'Source_electronics', 'Source_electronics components', 'Source_elevators, escalators', 'Source_energy services', 'Source_entertainment', 'Source_eyeglasses', 'Source_fashion retail', 'Source_fast fashion', 'Source_finance', 'Source_finance services', 'Source_financial services', 'Source_fine jewelry', 'Source_fintech', 'Source_fish farming', 'Source_flavorings', 'Source_food', 'Source_food delivery service', 'Source_food manufacturing', 'Source_forestry, mining', 'Source_frozen foods', 'Source_furniture retailing', 'Source_garments', 'Source_gas stations, retail', 'Source_generic drugs', 'Source_glass', 'Source_greek yogurt', 'Source_gym equipment', 'Source_hardware stores', 'Source_health products', 'Source_healthcare IT', 'Source_hedge funds', 'Source_home appliances', 'Source_home furnishings', 'Source_homebuilding', 'Source_homebuilding, NFL team', 'Source_hospitals, health insurance', 'Source_hotels', 'Source_hotels, investments', 'Source_household chemicals', 'Source_hygiene products', 'Source_imaging systems', 'Source_insurance', 'Source_insurance, NFL team', 'Source_internet and software', 'Source_internet media', 'Source_internet, telecom', 'Source_investing', 'Source_investment banking', 'Source_investment research', 'Source_investments', 'Source_iron ore mining', 'Source_jewelry', 'Source_kitchen appliances', 'Source_laboratory services', 'Source_liquor', 'Source_lithium', 'Source_logistics', 'Source_logistics, baseball', 'Source_logistics, real estate', 'Source_luxury goods', 'Source_machine tools', 'Source_machinery', 'Source_manufacturing', 'Source_manufacturing, investments', 'Source_mattresses', 'Source_meat processing', 'Source_media', 'Source_media, automotive', 'Source_media, tech', 'Source_medical cosmetics', 'Source_medical devices', 'Source_medical equipment', 'Source_medical services', 'Source_messaging software', 'Source_metals', 'Source_metals, banking, fertilizers', 'Source_mining', 'Source_mining, commodities', 'Source_mining, metals', 'Source_mining, steel', 'Source_money management', 'Source_motorcycles', 'Source_movies', 'Source_movies, digital effects', 'Source_natural gas', 'Source_non-ferrous metals', 'Source_nutritional supplements', 'Source_oil', 'Source_oil & gas, investments', 'Source_oil refining', 'Source_oil trading', 'Source_oil, banking', 'Source_oil, gas', 'Source_oil, investments', 'Source_oil, real estate', 'Source_oil, semiconductor', 'Source_online gambling', 'Source_online games', 'Source_online media', 'Source_online retail', 'Source_package delivery', 'Source_packaging', 'Source_paper', 'Source_paper manufacturing', 'Source_payment processing', 'Source_payroll services', 'Source_pet food', 'Source_petrochemicals', 'Source_pharma retailing', 'Source_pharmaceutical', 'Source_pharmaceutical ingredients', 'Source_pharmaceuticals', 'Source_pipelines', 'Source_plastic pipes', 'Source_poultry', 'Source_poultry breeding', 'Source_power strips', 'Source_precious metals, real estate', 'Source_printed circuit boards', 'Source_private equity', 'Source_publishing', 'Source_pulp and paper', 'Source_real estate', 'Source_real estate finance', 'Source_real estate, hotels', 'Source_real estate, investments', 'Source_record label', 'Source_refinery, chemicals', 'Source_restaurants', 'Source_retail', 'Source_retail & gas stations', 'Source_retail chain', 'Source_retail stores', 'Source_retail, agribusiness', 'Source_retail, investments', 'Source_rubber gloves', 'Source_security software', 'Source_self storage', 'Source_semiconductor', 'Source_semiconductors', 'Source_sensor systems', 'Source_shipping', 'Source_shoes', 'Source_smartphone screens', 'Source_smartphones', 'Source_software', 'Source_solar panels', 'Source_soy sauce', 'Source_sporting goods', 'Source_sports', 'Source_sports apparel', 'Source_staffing, Baltimore Ravens', 'Source_stationery', 'Source_steel', 'Source_steel production', 'Source_steel, diversified ', 'Source_steel, mining', 'Source_supermarkets', 'Source_supermarkets, investments', 'Source_surveillance equipment', 'Source_technology', 'Source_telecom', 'Source_telecom, lotteries, insurance', 'Source_telecoms, media, oil-services', 'Source_testing equipment', 'Source_textile, chemicals', 'Source_textiles, apparel', 'Source_textiles, petrochemicals', 'Source_timberland, lumber mills', 'Source_titanium', 'Source_transport, logistics', 'Source_two-wheelers', 'Source_used cars', 'Source_vaccines', 'Source_vacuums', 'Source_venture capital', 'Source_venture capital investing', 'Source_video games', 'Source_wedding dresses', 'Source_wind turbines', 'Source_winter jackets', 'Source_wire & cables, paints', 'Industry_Automotive ', 'Industry_Construction & Engineering ', 'Industry_Energy ', 'Industry_Fashion & Retail ', 'Industry_Finance & Investments ', 'Industry_Food & Beverage ', 'Industry_Gambling & Casinos ', 'Industry_Healthcare ', 'Industry_Logistics ', 'Industry_Manufacturing ', 'Industry_Media & Entertainment ', 'Industry_Metals & Mining ', 'Industry_Real Estate ', 'Industry_Service ', 'Industry_Sports ', 'Industry_Technology ', 'Industry_Telecom ', 'Industry_diversified ']\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Пример категориальных признаков\n",
|
||
"categorical_features = ['Country', 'Source', 'Industry']\n",
|
||
"\n",
|
||
"# Применение one-hot encoding\n",
|
||
"train_data_encoded = pd.get_dummies(train_data, columns=categorical_features)\n",
|
||
"val_data_encoded = pd.get_dummies(val_data, columns=categorical_features)\n",
|
||
"test_data_encoded = pd.get_dummies(test_data, columns=categorical_features)\n",
|
||
"df_encoded = pd.get_dummies(df, columns=categorical_features)\n",
|
||
"\n",
|
||
"print(\"Столбцы train_data_encoded:\", train_data_encoded.columns.tolist())\n",
|
||
"print(\"Столбцы val_data_encoded:\", val_data_encoded.columns.tolist())\n",
|
||
"print(\"Столбцы test_data_encoded:\", test_data_encoded.columns.tolist())\n",
|
||
"\n",
|
||
"# Дискретизация числовых признаков (Age и Networth). Например, можно разделить возраст и стоимость активов на категории\n",
|
||
"# Пример дискретизации признака 'Age' на 5 категорий\n",
|
||
"train_data_encoded['Age_binned'] = pd.cut(train_data_encoded['Age'], bins=5, labels=False)\n",
|
||
"val_data_encoded['Age_binned'] = pd.cut(val_data_encoded['Age'], bins=5, labels=False)\n",
|
||
"test_data_encoded['Age_binned'] = pd.cut(test_data_encoded['Age'], bins=5, labels=False)\n",
|
||
"\n",
|
||
"# Пример дискретизации признака 'Networth' на 5 категорий\n",
|
||
"train_data_encoded['Networth_binned'] = pd.cut(train_data_encoded['Networth'], bins=5, labels=False)\n",
|
||
"val_data_encoded['Networth_binned'] = pd.cut(val_data_encoded['Networth'], bins=5, labels=False)\n",
|
||
"test_data_encoded['Networth_binned'] = pd.cut(test_data_encoded['Networth'], bins=5, labels=False)\n",
|
||
"\n",
|
||
"# Пример дискретизации признака 'Age' на 5 категорий\n",
|
||
"df_encoded['Age_binned'] = pd.cut(df_encoded['Age'], bins=5, labels=False)\n",
|
||
"\n",
|
||
"# Пример дискретизации признака 'Networth' на 5 категорий\n",
|
||
"df_encoded['Networth_binned'] = pd.cut(df_encoded['Networth'], bins=5, labels=False)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Ручной синтез\n",
|
||
"Создание новых признаков на основе экспертных знаний и логики предметной области. К примеру, можно создать признак, который отражает соотношение возраста к стоимости активов (Networth) или другие полезные метрики."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Пример создания нового признака - соотношение возраста к стоимости активов (Networth)\n",
|
||
"train_data_encoded['age_to_networth'] = train_data_encoded['Age'] / train_data_encoded['Networth']\n",
|
||
"val_data_encoded['age_to_networth'] = val_data_encoded['Age'] / val_data_encoded['Networth']\n",
|
||
"test_data_encoded['age_to_networth'] = test_data_encoded['Age'] / test_data_encoded['Networth']\n",
|
||
"\n",
|
||
"# Пример создания нового признака - соотношение возраста к стоимости активов (Networth)\n",
|
||
"df_encoded['age_to_networth'] = df_encoded['Age'] / df_encoded['Networth']\n",
|
||
"\n",
|
||
"# Пример создания нового признака - соотношение стоимости активов к возрасту\n",
|
||
"train_data_encoded['networth_to_age'] = train_data_encoded['Networth'] / train_data_encoded['Age']\n",
|
||
"val_data_encoded['networth_to_age'] = val_data_encoded['Networth'] / val_data_encoded['Age']\n",
|
||
"test_data_encoded['networth_to_age'] = test_data_encoded['Networth'] / test_data_encoded['Age']\n",
|
||
"\n",
|
||
"# Пример создания нового признака - соотношение стоимости активов к возрасту\n",
|
||
"df_encoded['networth_to_age'] = df_encoded['Networth'] / df_encoded['Age']\n",
|
||
"\n",
|
||
"# Пример создания нового признака - квадрат возраста\n",
|
||
"train_data_encoded['age_squared'] = train_data_encoded['Age'] ** 2\n",
|
||
"val_data_encoded['age_squared'] = val_data_encoded['Age'] ** 2\n",
|
||
"test_data_encoded['age_squared'] = test_data_encoded['Age'] ** 2\n",
|
||
"\n",
|
||
"# Пример создания нового признака - квадрат возраста\n",
|
||
"df_encoded['age_squared'] = df_encoded['Age'] ** 2\n",
|
||
"\n",
|
||
"# Пример создания нового признака - логарифм стоимости активов\n",
|
||
"import numpy as np\n",
|
||
"train_data_encoded['log_networth'] = train_data_encoded['Networth'].apply(lambda x: np.log(x) if x > 0 else 0)\n",
|
||
"val_data_encoded['log_networth'] = val_data_encoded['Networth'].apply(lambda x: np.log(x) if x > 0 else 0)\n",
|
||
"test_data_encoded['log_networth'] = test_data_encoded['Networth'].apply(lambda x: np.log(x) if x > 0 else 0)\n",
|
||
"\n",
|
||
"# Пример создания нового признака - логарифм стоимости активов\n",
|
||
"df_encoded['log_networth'] = df_encoded['Networth'].apply(lambda x: np.log(x) if x > 0 else 0)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Масштабирование признаков - это процесс преобразования числовых признаков таким образом, чтобы они имели одинаковый масштаб."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.preprocessing import StandardScaler, MinMaxScaler\n",
|
||
"\n",
|
||
"# Пример числовых признаков\n",
|
||
"numerical_features = ['Networth', 'Age']\n",
|
||
"\n",
|
||
"# Применение StandardScaler для масштабирования числовых признаков\n",
|
||
"scaler = StandardScaler()\n",
|
||
"train_data_encoded[numerical_features] = scaler.fit_transform(train_data_encoded[numerical_features])\n",
|
||
"val_data_encoded[numerical_features] = scaler.transform(val_data_encoded[numerical_features])\n",
|
||
"test_data_encoded[numerical_features] = scaler.transform(test_data_encoded[numerical_features])\n",
|
||
"\n",
|
||
"# Пример использования MinMaxScaler для масштабирования числовых признаков\n",
|
||
"scaler = MinMaxScaler()\n",
|
||
"train_data_encoded[numerical_features] = scaler.fit_transform(train_data_encoded[numerical_features])\n",
|
||
"val_data_encoded[numerical_features] = scaler.transform(val_data_encoded[numerical_features])\n",
|
||
"test_data_encoded[numerical_features] = scaler.transform(test_data_encoded[numerical_features])\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Использование фреймворка Featuretools"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Столбцы в df: ['Rank ', 'Name', 'Networth', 'Age', 'Country', 'Source', 'Industry']\n",
|
||
"Столбцы в train_data_encoded: ['Rank ', 'Name', 'Networth', 'Age', 'LogNetworth', 'Networth_scaled', 'Country_Algeria', 'Country_Argentina', 'Country_Australia', 'Country_Austria', 'Country_Barbados', 'Country_Belgium', 'Country_Belize', 'Country_Brazil', 'Country_Bulgaria', 'Country_Canada', 'Country_Chile', 'Country_China', 'Country_Colombia', 'Country_Cyprus', 'Country_Czechia', 'Country_Denmark', 'Country_Egypt', 'Country_Estonia', 'Country_Eswatini (Swaziland)', 'Country_Finland', 'Country_France', 'Country_Georgia', 'Country_Germany', 'Country_Greece', 'Country_Guernsey', 'Country_Hong Kong', 'Country_Hungary', 'Country_Iceland', 'Country_India', 'Country_Indonesia', 'Country_Ireland', 'Country_Israel', 'Country_Italy', 'Country_Japan', 'Country_Kazakhstan', 'Country_Lebanon', 'Country_Macau', 'Country_Malaysia', 'Country_Mexico', 'Country_Monaco', 'Country_Morocco', 'Country_Nepal', 'Country_Netherlands', 'Country_New Zealand', 'Country_Nigeria', 'Country_Norway', 'Country_Oman', 'Country_Peru', 'Country_Philippines', 'Country_Poland', 'Country_Portugal', 'Country_Qatar', 'Country_Romania', 'Country_Russia', 'Country_Singapore', 'Country_Slovakia', 'Country_South Africa', 'Country_South Korea', 'Country_Spain', 'Country_Sweden', 'Country_Switzerland', 'Country_Taiwan', 'Country_Thailand', 'Country_Turkey', 'Country_Ukraine', 'Country_United Arab Emirates', 'Country_United Kingdom', 'Country_United States', 'Country_Uruguay', 'Country_Venezuela', 'Country_Vietnam', 'Country_Zimbabwe', 'Source_3D printing', 'Source_AOL', 'Source_Airbnb', \"Source_Aldi, Trader Joe's\", 'Source_Aluminium', 'Source_Amazon', 'Source_Apple', 'Source_BMW, pharmaceuticals', 'Source_Banking', 'Source_Berkshire Hathaway', 'Source_Bloomberg LP', 'Source_Campbell Soup', 'Source_Cargill', 'Source_Carnival Cruises', 'Source_Chanel', 'Source_Charlotte Hornets, endorsements', 'Source_Chemicals', 'Source_Chick-fil-A', 'Source_Coca Cola Israel', 'Source_Coca-Cola bottler', 'Source_Columbia Sportswear', 'Source_Comcast', 'Source_Construction', 'Source_Contact Lens', 'Source_Dallas Cowboys', 'Source_Dell computers', \"Source_Dick's Sporting Goods\", 'Source_DirecTV', 'Source_Dolby Laboratories', 'Source_Dole, real estate', 'Source_EasyJet', 'Source_Estee Lauder', 'Source_Estée Lauder', 'Source_FIAT, investments', 'Source_Facebook', 'Source_Facebook, investments', 'Source_Furniture retail', 'Source_Gap', 'Source_Genentech, Apple', 'Source_Getty Oil', 'Source_Golden State Warriors', 'Source_Google', 'Source_Groupon, investments', 'Source_H&M', 'Source_Heineken', 'Source_Hermes', 'Source_Home Depot', 'Source_Houston Rockets, entertainment', 'Source_Hyundai', 'Source_I.T.', 'Source_IKEA', 'Source_IT', 'Source_IT consulting', 'Source_IT products', 'Source_IT provider', 'Source_In-N-Out Burger', 'Source_Instagram', 'Source_Intel', 'Source_Internet', 'Source_Internet search', 'Source_Investments', 'Source_Koch Industries', \"Source_L'Oréal\", 'Source_LED lighting', 'Source_LG', 'Source_LVMH', 'Source_Lego', 'Source_LinkedIn', 'Source_Little Caesars', 'Source_Lululemon', 'Source_Luxury goods', 'Source_Manufacturing', 'Source_Microsoft', 'Source_Mining', 'Source_Motors', 'Source_Multiple', 'Source_Nascar, racing', 'Source_Netflix', 'Source_Netscape, investments', 'Source_New Balance', 'Source_New England Patriots', 'Source_Nike', 'Source_Nutella, chocolates', 'Source_Patagonia', 'Source_Petro Fibre', 'Source_Petro Firbe', 'Source_Philadelphia Eagles', 'Source_Quicken Loans', 'Source_Real Estate', 'Source_Real estate', 'Source_Red Bull', 'Source_Reebok', 'Source_SAP', 'Source_Samsung', 'Source_Sears', 'Source_Semiconductor materials', 'Source_Shipping', 'Source_Shoes', 'Source_Slim-Fast', 'Source_Smartphones', 'Source_Snapchat', 'Source_Spotify', 'Source_Starbucks', 'Source_TD Ameritrade', 'Source_TV broadcasting', 'Source_TV network, investments', 'Source_TV programs', 'Source_TV shows', 'Source_TV, movie production', 'Source_Tesla, SpaceX', 'Source_TikTok', 'Source_Toyota dealerships', 'Source_Transportation', 'Source_Twitter, Square', 'Source_U-Haul', 'Source_Uber', 'Source_Urban Outfitters', 'Source_Waffle House', 'Source_Walmart', 'Source_Walmart, logistics', 'Source_Washington Football Team', 'Source_WeWork', 'Source_WhatsApp', 'Source_Yahoo', 'Source_Zara', 'Source_Zoom Video Communications', 'Source_accounting services', 'Source_adhesives', 'Source_advertising', 'Source_aerospace', 'Source_agribusiness', 'Source_agriculture', 'Source_agriculture, land', 'Source_agriculture, water', 'Source_agrochemicals', 'Source_air compressors', 'Source_aircraft leasing', 'Source_airline', 'Source_airlines', 'Source_airport', 'Source_airport management', 'Source_airports, investments', 'Source_alcohol', 'Source_alcohol, real estate', 'Source_aluminum', 'Source_aluminum products', 'Source_aluminum, diversified ', 'Source_aluminum, utilities', 'Source_animal health, investments', 'Source_apparel', 'Source_appliances', 'Source_art', 'Source_art collection', 'Source_art, car dealerships', 'Source_asset management', 'Source_auto dealers, investments', 'Source_auto dealerships', 'Source_auto loans', 'Source_auto parts', 'Source_auto repair', 'Source_automobiles', 'Source_automobiles, batteries', 'Source_automotive', 'Source_automotive brakes', 'Source_automotive technology', 'Source_aviation', 'Source_bakeries', 'Source_banking', 'Source_banking, credit cards', 'Source_banking, insurance', 'Source_banking, insurance, media', 'Source_banking, investments', 'Source_banking, minerals', 'Source_banking, oil', 'Source_banking, property', 'Source_banking, real estate', 'Source_banking, tobacco', 'Source_banks, real estate', 'Source_bars', 'Source_batteries', 'Source_batteries, automobiles', 'Source_batteries, investments', 'Source_battery components', 'Source_beauty products', 'Source_beef packing', 'Source_beef processing', 'Source_beer', 'Source_beverages', 'Source_beverages, pharmaceuticals', 'Source_biochemicals', 'Source_biopharmaceuticals', 'Source_biotech', 'Source_biotech investing', 'Source_biotech, investments', 'Source_biotechnology', 'Source_blockchain technology', 'Source_blockchain, technology', 'Source_book distribution, transportation', 'Source_brakes, investments', 'Source_brewery', 'Source_building materials', 'Source_business software', 'Source_cable', 'Source_cable TV, investments', 'Source_cable television', 'Source_call centers', 'Source_cameras, software', 'Source_candy', 'Source_candy, pet food', 'Source_car dealerships', 'Source_car rentals', 'Source_carbon fiber products', 'Source_carpet', 'Source_cars', 'Source_cashmere', 'Source_casinos', 'Source_casinos, banking', 'Source_casinos, hotels', 'Source_casinos, mixed martial arts', 'Source_casinos, property, energy', 'Source_casinos/hotels', 'Source_cement', 'Source_cement, sugar', 'Source_cheese', 'Source_chemical products', 'Source_chemicals', 'Source_chemicals, investments', 'Source_chemicals, logistics', 'Source_chemicals, spandex', 'Source_chewing gum', 'Source_chicken processing', 'Source_cleaning products', 'Source_clinical diagnostics', 'Source_clinical trials', 'Source_cloud communications', 'Source_cloud computing', 'Source_coal', 'Source_coal mines', 'Source_coal, fertilizers', 'Source_coal, investments', 'Source_cobalt', 'Source_coffee', 'Source_coffee, shipping', 'Source_coking', 'Source_commodities', 'Source_communication equipment', 'Source_communications', 'Source_computer hardware', 'Source_computer services, real estate', 'Source_computer services, telecom', 'Source_computer software', 'Source_conglomerate', 'Source_construction', 'Source_construction equipment', 'Source_construction equipment, media', 'Source_construction materials', 'Source_construction, investments', 'Source_construction, media', 'Source_construction, mining', 'Source_construction, mining machinery', 'Source_construction, pipes, banking', 'Source_construction, real estate', 'Source_consumer', 'Source_consumer electronics', 'Source_consumer goods', 'Source_consumer products, banking', 'Source_convenience stores', 'Source_convinience stores', 'Source_copper, poultry', 'Source_cosmetics', 'Source_cosmetics, reality TV', 'Source_cruises', 'Source_cryptocurrency', 'Source_cryptocurrency exchange', 'Source_cybersecurity', 'Source_dairy', 'Source_dairy & consumer products', 'Source_damaged cars', 'Source_data analytics', 'Source_data centers', 'Source_data management', 'Source_defense', 'Source_defense, hotels', 'Source_dental implants', 'Source_dental products', 'Source_department stores', 'Source_diagnostics', 'Source_diamond jewelry', 'Source_diamonds', 'Source_digital advertising', 'Source_discount brokerage', 'Source_diversified ', 'Source_drilling, shipping', 'Source_drones', 'Source_drugs', 'Source_drugstores', 'Source_e-cigarettes', 'Source_e-commerce', 'Source_e-commerce software', 'Source_eBay', 'Source_eBay, PayPal', 'Source_education', 'Source_education technology', 'Source_electric bikes, scooters', 'Source_electric components', 'Source_electric equipment', 'Source_electric scooters', 'Source_electric vehicles', 'Source_electrical equipment', 'Source_electrodes', 'Source_electronic components', 'Source_electronic trading', 'Source_electronics', 'Source_electronics components', 'Source_elevators, escalators', 'Source_email marketing', 'Source_employment agency', 'Source_energy', 'Source_energy drink', 'Source_energy drinks', 'Source_energy drinks,investments', 'Source_energy services', 'Source_energy, banking, construction', 'Source_energy, chemicals', 'Source_energy, investments', 'Source_energy, real estate', 'Source_energy, sports', 'Source_engineering', 'Source_engineering, automotive', 'Source_engineering, construction', 'Source_entertainment', 'Source_executive search, investments', 'Source_express delivery', 'Source_fashion', 'Source_fashion investments', 'Source_fashion retail', 'Source_fashion retail, investments', 'Source_fashion retailer', 'Source_fast food', 'Source_fasteners', 'Source_feed', 'Source_fertilizer', 'Source_fertilizer, real estate', 'Source_fertilizers', 'Source_fiber optic cables', 'Source_finance', 'Source_finance and investments', 'Source_finance, real estate', 'Source_finance, telecommunications', 'Source_financial information', 'Source_financial services', 'Source_financial services, property', 'Source_financial services★', 'Source_financial technology', 'Source_fintech', 'Source_fitness equipment', 'Source_flavorings', 'Source_flavors and fragrances', 'Source_flipkart', 'Source_flooring', 'Source_food', 'Source_food & beverage retailing', 'Source_food delivery app', 'Source_food distribution', 'Source_food processing', 'Source_food service', 'Source_food services', 'Source_food, beverages', 'Source_foods', 'Source_footwear', 'Source_forestry, mining', 'Source_frozen foods', 'Source_furniture', 'Source_furniture retailing', 'Source_gambling', 'Source_gambling products', 'Source_gambling software', 'Source_game software', 'Source_gaming', 'Source_gas stations', 'Source_gas, chemicals', 'Source_generic drugs', 'Source_glass', 'Source_gold', 'Source_graphite electrodes', 'Source_grocery delivery service', 'Source_grocery stores', 'Source_hair care products', 'Source_hair dryers', 'Source_hair products, tequila', 'Source_hand tools', 'Source_hardware', 'Source_health IT', 'Source_health care', 'Source_health clinics', 'Source_health insurance', 'Source_healthcare', 'Source_healthcare services', 'Source_hearing aids', 'Source_heating and cooling equipment', 'Source_heating, cooling equipment', 'Source_hedge fund', 'Source_hedge funds', 'Source_herbal products', 'Source_high speed trading', 'Source_home appliances', 'Source_home building', 'Source_home building, banking', 'Source_home furnishings', 'Source_home improvement stores', 'Source_home sales', 'Source_home-cleaning robots', 'Source_homebuilder', 'Source_homebuilding', 'Source_homebuilding, insurance', 'Source_hospitals', 'Source_hospitals, health care', 'Source_hospitals, health insurance', 'Source_hotels', 'Source_hotels, diversified ', 'Source_hotels, energy', 'Source_hotels, investments', 'Source_hotels, motels', 'Source_household chemicals', 'Source_hydraulic machinery', 'Source_industrial equipment', 'Source_industrial explosives', 'Source_industrial lasers', 'Source_industrial machinery', 'Source_infant formula', 'Source_information technology', 'Source_infrastructure', 'Source_infrastructure, commodities', 'Source_insurance', 'Source_insurance, NFL team', 'Source_insurance, beverages', 'Source_insurance, investments', 'Source_internet', 'Source_internet media', 'Source_internet search', 'Source_internet service provider', 'Source_investing', 'Source_investment', 'Source_investments', 'Source_investments, art', 'Source_investments, energy', 'Source_investments, real estate', 'Source_jewellery', 'Source_jewelry', 'Source_kitchen appliances', 'Source_laboratory services', 'Source_leveraged buyouts', 'Source_lighting', 'Source_lighting installations', 'Source_liquefied natural gas', 'Source_liquor', 'Source_lithium', 'Source_lithium batteries', 'Source_lithium battery', 'Source_lithium-ion battery cap', 'Source_live entertainment', 'Source_live streaming service', 'Source_logistics', 'Source_low-cost airlines', 'Source_luxury goods', 'Source_machine tools', 'Source_machinery', 'Source_magazines, media', 'Source_magnetic switches', 'Source_manufacturing', 'Source_manufacturing, investment', 'Source_manufacturing, investments', 'Source_mapping software', 'Source_materials', 'Source_measuring instruments', 'Source_meat processing', 'Source_media', 'Source_media, automotive', 'Source_media, investments', 'Source_media, real estate', 'Source_medical devices', 'Source_medical diagnostic equipment', 'Source_medical diagnostics', 'Source_medical equipment', 'Source_medical packaging', 'Source_medical patents', 'Source_medical products', 'Source_medical technology', 'Source_medical testing', 'Source_messaging app', 'Source_metal processing', 'Source_metals', 'Source_metals, coal', 'Source_metals, energy', 'Source_metals, mining', 'Source_metalworking tools', 'Source_microbiology', 'Source_microchip testing', 'Source_mining', 'Source_mining, banking', 'Source_mining, banking, hotels', 'Source_mining, commodities', 'Source_mining, copper products', 'Source_mining, metals, machinery', 'Source_mobile games', 'Source_mobile gaming', 'Source_mobile payments', 'Source_mobile phone retailer', 'Source_mobile phones', 'Source_money management', 'Source_mortgage lender★', 'Source_motorcycle loans', 'Source_motorcycles', 'Source_motorhomes, RVs', 'Source_motors', 'Source_movie making', 'Source_movies, investments', 'Source_movies, record labels', 'Source_music, chemicals', 'Source_music, cosmetics', 'Source_music, sneakers', 'Source_mutual funds', 'Source_natural gas', 'Source_natural gas distribution', 'Source_natural gas, fertilizers', 'Source_navigation equipment', 'Source_newspapers, TV network', 'Source_nonferrous', 'Source_nutrition, wellness products', 'Source_office real estate', 'Source_oil', 'Source_oil & gas', 'Source_oil & gas, banking', 'Source_oil & gas, investments', 'Source_oil and gas', 'Source_oil and gas, IT, lotteries', 'Source_oil refinery', 'Source_oil, banking, telecom', 'Source_oil, gas', 'Source_oil, investments', 'Source_oil, real estate', 'Source_oilfield equipment', 'Source_online dating', 'Source_online gambling', 'Source_online games', 'Source_online games, investments', 'Source_online gaming', 'Source_online marketplace', 'Source_online media', 'Source_online media, Dallas Mavericks', 'Source_online payments', 'Source_online recruitment', 'Source_online retail', 'Source_online retailing', 'Source_online services', 'Source_optical components', 'Source_optometry', 'Source_orange juice', 'Source_package delivery', 'Source_packaged meats', 'Source_packaging', 'Source_paint', 'Source_paints', 'Source_palm oil', 'Source_palm oil, nickel mining', 'Source_palm oil, property', 'Source_palm oil, shipping, property', 'Source_paper', 'Source_paper & related products', 'Source_paper and pulp', 'Source_payment software', 'Source_payments software', 'Source_payments technology', 'Source_payments, banking', 'Source_payroll processing', 'Source_payroll software', 'Source_pearlescent pigments', 'Source_personal care goods', 'Source_pest control', 'Source_pet food', 'Source_petrochemicals', 'Source_petroleum, diversified ', 'Source_phamaceuticals', 'Source_pharmaceutical', 'Source_pharmaceutical services', 'Source_pharmaceuticals', 'Source_pharmaceuticals, diversified ', 'Source_pharmaceuticals, food', 'Source_pharmaceuticals, medical equipment', 'Source_pharmaceuticals, power', 'Source_pharmacies', 'Source_photovoltaic equipment', 'Source_photovoltaics', 'Source_pig breeding', 'Source_pipe manufacturing', 'Source_pipelines', 'Source_plastic', 'Source_plastics', 'Source_plumbing fixtures', 'Source_plush toys, real estate', 'Source_polyester', 'Source_ports', 'Source_poultry genetics', 'Source_poultry processing', 'Source_powdered metal', 'Source_power equipment', 'Source_power strip', 'Source_power supply equipment', 'Source_precision machinery', 'Source_price comparison website', 'Source_printed circuit boards', 'Source_printing', 'Source_private equity', 'Source_private equity★', 'Source_pro sports teams', 'Source_property, healthcare', 'Source_prosthetics', 'Source_publishing', 'Source_pulp and paper', 'Source_quartz products', 'Source_readymade garments', 'Source_real estate', 'Source_real estate developer', 'Source_real estate development', 'Source_real estate services', 'Source_real estate, airport', 'Source_real estate, construction', 'Source_real estate, diversified ', 'Source_real estate, electronics', 'Source_real estate, gambling', 'Source_real estate, investments', 'Source_real estate, manufacturing', 'Source_real estate, media', 'Source_real estate, oil, cars, sports', 'Source_real estate, private equity', 'Source_real estate, retail', 'Source_real estate, shipping', 'Source_refinery, chemicals', 'Source_renewable energy', 'Source_restaurant', 'Source_restaurants', 'Source_retail', 'Source_retail, investments', 'Source_retail, media', 'Source_retail, real estate', 'Source_retailing', 'Source_roofing', 'Source_salsa', 'Source_sandwich chain', 'Source_satellite TV', 'Source_scaffolding, cement mixers', 'Source_scientific equipment', 'Source_security', 'Source_security services', 'Source_security software', 'Source_seed production', 'Source_semiconductor', 'Source_semiconductor devices', 'Source_semiconductors', 'Source_sensor systems', 'Source_sensor technology', 'Source_sensors', 'Source_sensors★', 'Source_shipbuilding', 'Source_shipping', 'Source_shipping, airlines', 'Source_shipping, seafood', 'Source_shoes', 'Source_shopping centers', 'Source_shopping malls', 'Source_silicon', 'Source_smartphone components', 'Source_smartphone screens', 'Source_smartphones', 'Source_snack bars', 'Source_snacks, beverages', 'Source_sneakers, sportswear', 'Source_social media', 'Source_social network', 'Source_soft drinks, fast food', 'Source_software', 'Source_software firm', 'Source_software services', 'Source_software, investments', 'Source_solar energy', 'Source_solar energy equipment', 'Source_solar equipment', 'Source_solar inverters', 'Source_solar panel components', 'Source_solar panel materials', 'Source_solar wafers and modules', 'Source_soy sauce', 'Source_specialty chemicals', 'Source_spirits', 'Source_sporting goods retail', 'Source_sports apparel', 'Source_sports data', 'Source_sports drink', 'Source_sports retailing', 'Source_sports team', 'Source_sports teams', 'Source_sports, real estate', 'Source_staffing & recruiting', 'Source_stationery', 'Source_steel', 'Source_steel pipes, diversified ', 'Source_steel, coal', 'Source_steel, diversified ', 'Source_steel, investments', 'Source_steel, telecom, investments', 'Source_steel, transport', 'Source_stock brokerage', 'Source_stock exchange', 'Source_stock photos', 'Source_storage facilities', 'Source_sugar, ethanol', 'Source_sunglasses', 'Source_supermarkets', 'Source_tech investments', 'Source_technology', 'Source_telecom', 'Source_telecom services', 'Source_telecom, investments', 'Source_telecom, oil', 'Source_telecommunication', 'Source_telecommunications', 'Source_temp agency', 'Source_tequila', 'Source_textiles', 'Source_textiles, paper', 'Source_ticketing service', 'Source_tire', 'Source_tires', 'Source_tires, diversified ', 'Source_tobacco', 'Source_tobacco distribution, retail', 'Source_toll roads', 'Source_touch screens', 'Source_tourism, cultural industry', 'Source_toys', 'Source_tractors', 'Source_trading, investments', 'Source_train cars', 'Source_transportation', 'Source_travel', 'Source_trucking', 'Source_two-wheelers, finance', 'Source_used cars', 'Source_utilities, diversified ', 'Source_utilities, real estate', 'Source_vaccine & shoes', 'Source_vaccines', 'Source_valve manufacturing', 'Source_valves', 'Source_venture capital', 'Source_venture capital, Google', 'Source_video games', 'Source_video games, pachinko', 'Source_video streaming', 'Source_video streaming app', 'Source_video surveillance', 'Source_videogames', 'Source_vodka', 'Source_waste disposal', 'Source_web hosting', 'Source_wine', 'Source_wireless networking gear', 'Industry_Automotive ', 'Industry_Construction & Engineering ', 'Industry_Energy ', 'Industry_Fashion & Retail ', 'Industry_Finance & Investments ', 'Industry_Food & Beverage ', 'Industry_Gambling & Casinos ', 'Industry_Healthcare ', 'Industry_Logistics ', 'Industry_Manufacturing ', 'Industry_Media & Entertainment ', 'Industry_Metals & Mining ', 'Industry_Real Estate ', 'Industry_Service ', 'Industry_Sports ', 'Industry_Technology ', 'Industry_Telecom ', 'Industry_diversified ', 'Age_binned', 'Networth_binned', 'age_to_networth', 'networth_to_age', 'age_squared', 'log_networth']\n",
|
||
"Столбцы в val_data_encoded: ['Rank ', 'Name', 'Networth', 'Age', 'Country_Argentina', 'Country_Australia', 'Country_Belgium', 'Country_Brazil', 'Country_Canada', 'Country_Chile', 'Country_China', 'Country_Cyprus', 'Country_Denmark', 'Country_Egypt', 'Country_Finland', 'Country_France', 'Country_Germany', 'Country_Greece', 'Country_Hong Kong', 'Country_Hungary', 'Country_India', 'Country_Indonesia', 'Country_Ireland', 'Country_Israel', 'Country_Italy', 'Country_Japan', 'Country_Kazakhstan', 'Country_Lebanon', 'Country_Liechtenstein', 'Country_Malaysia', 'Country_Mexico', 'Country_Monaco', 'Country_New Zealand', 'Country_Norway', 'Country_Philippines', 'Country_Poland', 'Country_Romania', 'Country_Russia', 'Country_Singapore', 'Country_Slovakia', 'Country_South Africa', 'Country_South Korea', 'Country_Spain', 'Country_St. Kitts and Nevis', 'Country_Sweden', 'Country_Switzerland', 'Country_Taiwan', 'Country_Tanzania', 'Country_Thailand', 'Country_Turkey', 'Country_United Arab Emirates', 'Country_United Kingdom', 'Country_United States', 'Source_Airbnb', 'Source_Amazon', 'Source_Apple, Disney', 'Source_BMW', 'Source_Berkshire Hathaway', 'Source_Best Buy', 'Source_Cargill', 'Source_Chanel', 'Source_Cirque du Soleil', 'Source_Coca Cola Israel', 'Source_Electric power', 'Source_Estee Lauder', 'Source_Facebook', 'Source_FedEx', 'Source_Formula One', 'Source_Gap', 'Source_Google', 'Source_Hyundai', 'Source_IKEA', 'Source_Indianapolis Colts', 'Source_LG', 'Source_Manufacturing', 'Source_Marvel comics', 'Source_Microsoft', 'Source_Pinterest', 'Source_Real Estate', 'Source_Real estate', 'Source_Roku', 'Source_Samsung', 'Source_San Francisco 49ers', 'Source_Snapchat', 'Source_Spanx', 'Source_Spotify', 'Source_Star Wars', 'Source_TV broadcasting', 'Source_Twitter', 'Source_Uber', 'Source_Under Armour', 'Source_Virgin', 'Source_Walmart', 'Source_acoustic components', 'Source_adhesives', 'Source_aerospace', 'Source_agribusiness', 'Source_airports, real estate', 'Source_alcoholic beverages', 'Source_aluminum products', 'Source_amusement parks', 'Source_appliances', 'Source_art collection', 'Source_asset management', 'Source_auto loans', 'Source_auto parts', 'Source_bakery chain', 'Source_banking', 'Source_banking, minerals', 'Source_batteries', 'Source_beer', 'Source_beer distribution', 'Source_beer, investments', 'Source_beverages', 'Source_billboards, Los Angeles Angels', 'Source_biomedical products', 'Source_biopharmaceuticals', 'Source_biotech', 'Source_budget airline', 'Source_building materials', 'Source_business software', 'Source_call centers', 'Source_candy, pet food', 'Source_car dealerships', 'Source_casinos', 'Source_casinos, real estate', 'Source_cement', 'Source_cement, diversified ', 'Source_chemical', 'Source_chemicals', 'Source_cloud computing', 'Source_cloud storage service', 'Source_coal', 'Source_coffee', 'Source_coffee makers', 'Source_commodities', 'Source_commodities, investments', 'Source_computer games', 'Source_computer networking', 'Source_computer software', 'Source_construction', 'Source_consumer goods', 'Source_consumer products', 'Source_cooking appliances', 'Source_copper, education', 'Source_copy machines, software', 'Source_cosmetics', 'Source_cryptocurrency', 'Source_cryptocurrency exchange', 'Source_damaged cars', 'Source_data centers', 'Source_defense contractor', 'Source_dental materials', 'Source_diversified ', 'Source_drug distribution', 'Source_e-cigarettes', 'Source_e-commerce', 'Source_eBay', 'Source_ecommerce', 'Source_edible oil', 'Source_edtech', 'Source_education', 'Source_electrical equipment', 'Source_electronics', 'Source_electronics components', 'Source_elevators, escalators', 'Source_energy services', 'Source_entertainment', 'Source_eyeglasses', 'Source_fashion retail', 'Source_fast fashion', 'Source_finance', 'Source_finance services', 'Source_financial services', 'Source_fine jewelry', 'Source_fintech', 'Source_fish farming', 'Source_flavorings', 'Source_food', 'Source_food delivery service', 'Source_food manufacturing', 'Source_forestry, mining', 'Source_frozen foods', 'Source_furniture retailing', 'Source_garments', 'Source_gas stations, retail', 'Source_generic drugs', 'Source_glass', 'Source_greek yogurt', 'Source_gym equipment', 'Source_hardware stores', 'Source_health products', 'Source_healthcare IT', 'Source_hedge funds', 'Source_home appliances', 'Source_home furnishings', 'Source_homebuilding', 'Source_homebuilding, NFL team', 'Source_hospitals, health insurance', 'Source_hotels', 'Source_hotels, investments', 'Source_household chemicals', 'Source_hygiene products', 'Source_imaging systems', 'Source_insurance', 'Source_insurance, NFL team', 'Source_internet and software', 'Source_internet media', 'Source_internet, telecom', 'Source_investing', 'Source_investment banking', 'Source_investment research', 'Source_investments', 'Source_iron ore mining', 'Source_jewelry', 'Source_kitchen appliances', 'Source_laboratory services', 'Source_liquor', 'Source_lithium', 'Source_logistics', 'Source_logistics, baseball', 'Source_logistics, real estate', 'Source_luxury goods', 'Source_machine tools', 'Source_machinery', 'Source_manufacturing', 'Source_manufacturing, investments', 'Source_mattresses', 'Source_meat processing', 'Source_media', 'Source_media, automotive', 'Source_media, tech', 'Source_medical cosmetics', 'Source_medical devices', 'Source_medical equipment', 'Source_medical services', 'Source_messaging software', 'Source_metals', 'Source_metals, banking, fertilizers', 'Source_mining', 'Source_mining, commodities', 'Source_mining, metals', 'Source_mining, steel', 'Source_money management', 'Source_motorcycles', 'Source_movies', 'Source_movies, digital effects', 'Source_natural gas', 'Source_non-ferrous metals', 'Source_nutritional supplements', 'Source_oil', 'Source_oil & gas, investments', 'Source_oil refining', 'Source_oil trading', 'Source_oil, banking', 'Source_oil, gas', 'Source_oil, investments', 'Source_oil, real estate', 'Source_oil, semiconductor', 'Source_online gambling', 'Source_online games', 'Source_online media', 'Source_online retail', 'Source_package delivery', 'Source_packaging', 'Source_paper', 'Source_paper manufacturing', 'Source_payment processing', 'Source_payroll services', 'Source_pet food', 'Source_petrochemicals', 'Source_pharma retailing', 'Source_pharmaceutical', 'Source_pharmaceutical ingredients', 'Source_pharmaceuticals', 'Source_pipelines', 'Source_plastic pipes', 'Source_poultry', 'Source_poultry breeding', 'Source_power strips', 'Source_precious metals, real estate', 'Source_printed circuit boards', 'Source_private equity', 'Source_publishing', 'Source_pulp and paper', 'Source_real estate', 'Source_real estate finance', 'Source_real estate, hotels', 'Source_real estate, investments', 'Source_record label', 'Source_refinery, chemicals', 'Source_restaurants', 'Source_retail', 'Source_retail & gas stations', 'Source_retail chain', 'Source_retail stores', 'Source_retail, agribusiness', 'Source_retail, investments', 'Source_rubber gloves', 'Source_security software', 'Source_self storage', 'Source_semiconductor', 'Source_semiconductors', 'Source_sensor systems', 'Source_shipping', 'Source_shoes', 'Source_smartphone screens', 'Source_smartphones', 'Source_software', 'Source_solar panels', 'Source_soy sauce', 'Source_sporting goods', 'Source_sports', 'Source_sports apparel', 'Source_staffing, Baltimore Ravens', 'Source_stationery', 'Source_steel', 'Source_steel production', 'Source_steel, diversified ', 'Source_steel, mining', 'Source_supermarkets', 'Source_supermarkets, investments', 'Source_surveillance equipment', 'Source_technology', 'Source_telecom', 'Source_telecom, lotteries, insurance', 'Source_telecoms, media, oil-services', 'Source_testing equipment', 'Source_textile, chemicals', 'Source_textiles, apparel', 'Source_textiles, petrochemicals', 'Source_timberland, lumber mills', 'Source_titanium', 'Source_transport, logistics', 'Source_two-wheelers', 'Source_used cars', 'Source_vaccines', 'Source_vacuums', 'Source_venture capital', 'Source_venture capital investing', 'Source_video games', 'Source_wedding dresses', 'Source_wind turbines', 'Source_winter jackets', 'Source_wire & cables, paints', 'Industry_Automotive ', 'Industry_Construction & Engineering ', 'Industry_Energy ', 'Industry_Fashion & Retail ', 'Industry_Finance & Investments ', 'Industry_Food & Beverage ', 'Industry_Gambling & Casinos ', 'Industry_Healthcare ', 'Industry_Logistics ', 'Industry_Manufacturing ', 'Industry_Media & Entertainment ', 'Industry_Metals & Mining ', 'Industry_Real Estate ', 'Industry_Service ', 'Industry_Sports ', 'Industry_Technology ', 'Industry_Telecom ', 'Industry_diversified ', 'Age_binned', 'Networth_binned', 'age_to_networth', 'networth_to_age', 'age_squared', 'log_networth']\n",
|
||
"Столбцы в test_data_encoded: ['Rank ', 'Name', 'Networth', 'Age', 'Country_Argentina', 'Country_Australia', 'Country_Belgium', 'Country_Brazil', 'Country_Canada', 'Country_Chile', 'Country_China', 'Country_Cyprus', 'Country_Denmark', 'Country_Egypt', 'Country_Finland', 'Country_France', 'Country_Germany', 'Country_Greece', 'Country_Hong Kong', 'Country_Hungary', 'Country_India', 'Country_Indonesia', 'Country_Ireland', 'Country_Israel', 'Country_Italy', 'Country_Japan', 'Country_Kazakhstan', 'Country_Lebanon', 'Country_Liechtenstein', 'Country_Malaysia', 'Country_Mexico', 'Country_Monaco', 'Country_New Zealand', 'Country_Norway', 'Country_Philippines', 'Country_Poland', 'Country_Romania', 'Country_Russia', 'Country_Singapore', 'Country_Slovakia', 'Country_South Africa', 'Country_South Korea', 'Country_Spain', 'Country_St. Kitts and Nevis', 'Country_Sweden', 'Country_Switzerland', 'Country_Taiwan', 'Country_Tanzania', 'Country_Thailand', 'Country_Turkey', 'Country_United Arab Emirates', 'Country_United Kingdom', 'Country_United States', 'Source_Airbnb', 'Source_Amazon', 'Source_Apple, Disney', 'Source_BMW', 'Source_Berkshire Hathaway', 'Source_Best Buy', 'Source_Cargill', 'Source_Chanel', 'Source_Cirque du Soleil', 'Source_Coca Cola Israel', 'Source_Electric power', 'Source_Estee Lauder', 'Source_Facebook', 'Source_FedEx', 'Source_Formula One', 'Source_Gap', 'Source_Google', 'Source_Hyundai', 'Source_IKEA', 'Source_Indianapolis Colts', 'Source_LG', 'Source_Manufacturing', 'Source_Marvel comics', 'Source_Microsoft', 'Source_Pinterest', 'Source_Real Estate', 'Source_Real estate', 'Source_Roku', 'Source_Samsung', 'Source_San Francisco 49ers', 'Source_Snapchat', 'Source_Spanx', 'Source_Spotify', 'Source_Star Wars', 'Source_TV broadcasting', 'Source_Twitter', 'Source_Uber', 'Source_Under Armour', 'Source_Virgin', 'Source_Walmart', 'Source_acoustic components', 'Source_adhesives', 'Source_aerospace', 'Source_agribusiness', 'Source_airports, real estate', 'Source_alcoholic beverages', 'Source_aluminum products', 'Source_amusement parks', 'Source_appliances', 'Source_art collection', 'Source_asset management', 'Source_auto loans', 'Source_auto parts', 'Source_bakery chain', 'Source_banking', 'Source_banking, minerals', 'Source_batteries', 'Source_beer', 'Source_beer distribution', 'Source_beer, investments', 'Source_beverages', 'Source_billboards, Los Angeles Angels', 'Source_biomedical products', 'Source_biopharmaceuticals', 'Source_biotech', 'Source_budget airline', 'Source_building materials', 'Source_business software', 'Source_call centers', 'Source_candy, pet food', 'Source_car dealerships', 'Source_casinos', 'Source_casinos, real estate', 'Source_cement', 'Source_cement, diversified ', 'Source_chemical', 'Source_chemicals', 'Source_cloud computing', 'Source_cloud storage service', 'Source_coal', 'Source_coffee', 'Source_coffee makers', 'Source_commodities', 'Source_commodities, investments', 'Source_computer games', 'Source_computer networking', 'Source_computer software', 'Source_construction', 'Source_consumer goods', 'Source_consumer products', 'Source_cooking appliances', 'Source_copper, education', 'Source_copy machines, software', 'Source_cosmetics', 'Source_cryptocurrency', 'Source_cryptocurrency exchange', 'Source_damaged cars', 'Source_data centers', 'Source_defense contractor', 'Source_dental materials', 'Source_diversified ', 'Source_drug distribution', 'Source_e-cigarettes', 'Source_e-commerce', 'Source_eBay', 'Source_ecommerce', 'Source_edible oil', 'Source_edtech', 'Source_education', 'Source_electrical equipment', 'Source_electronics', 'Source_electronics components', 'Source_elevators, escalators', 'Source_energy services', 'Source_entertainment', 'Source_eyeglasses', 'Source_fashion retail', 'Source_fast fashion', 'Source_finance', 'Source_finance services', 'Source_financial services', 'Source_fine jewelry', 'Source_fintech', 'Source_fish farming', 'Source_flavorings', 'Source_food', 'Source_food delivery service', 'Source_food manufacturing', 'Source_forestry, mining', 'Source_frozen foods', 'Source_furniture retailing', 'Source_garments', 'Source_gas stations, retail', 'Source_generic drugs', 'Source_glass', 'Source_greek yogurt', 'Source_gym equipment', 'Source_hardware stores', 'Source_health products', 'Source_healthcare IT', 'Source_hedge funds', 'Source_home appliances', 'Source_home furnishings', 'Source_homebuilding', 'Source_homebuilding, NFL team', 'Source_hospitals, health insurance', 'Source_hotels', 'Source_hotels, investments', 'Source_household chemicals', 'Source_hygiene products', 'Source_imaging systems', 'Source_insurance', 'Source_insurance, NFL team', 'Source_internet and software', 'Source_internet media', 'Source_internet, telecom', 'Source_investing', 'Source_investment banking', 'Source_investment research', 'Source_investments', 'Source_iron ore mining', 'Source_jewelry', 'Source_kitchen appliances', 'Source_laboratory services', 'Source_liquor', 'Source_lithium', 'Source_logistics', 'Source_logistics, baseball', 'Source_logistics, real estate', 'Source_luxury goods', 'Source_machine tools', 'Source_machinery', 'Source_manufacturing', 'Source_manufacturing, investments', 'Source_mattresses', 'Source_meat processing', 'Source_media', 'Source_media, automotive', 'Source_media, tech', 'Source_medical cosmetics', 'Source_medical devices', 'Source_medical equipment', 'Source_medical services', 'Source_messaging software', 'Source_metals', 'Source_metals, banking, fertilizers', 'Source_mining', 'Source_mining, commodities', 'Source_mining, metals', 'Source_mining, steel', 'Source_money management', 'Source_motorcycles', 'Source_movies', 'Source_movies, digital effects', 'Source_natural gas', 'Source_non-ferrous metals', 'Source_nutritional supplements', 'Source_oil', 'Source_oil & gas, investments', 'Source_oil refining', 'Source_oil trading', 'Source_oil, banking', 'Source_oil, gas', 'Source_oil, investments', 'Source_oil, real estate', 'Source_oil, semiconductor', 'Source_online gambling', 'Source_online games', 'Source_online media', 'Source_online retail', 'Source_package delivery', 'Source_packaging', 'Source_paper', 'Source_paper manufacturing', 'Source_payment processing', 'Source_payroll services', 'Source_pet food', 'Source_petrochemicals', 'Source_pharma retailing', 'Source_pharmaceutical', 'Source_pharmaceutical ingredients', 'Source_pharmaceuticals', 'Source_pipelines', 'Source_plastic pipes', 'Source_poultry', 'Source_poultry breeding', 'Source_power strips', 'Source_precious metals, real estate', 'Source_printed circuit boards', 'Source_private equity', 'Source_publishing', 'Source_pulp and paper', 'Source_real estate', 'Source_real estate finance', 'Source_real estate, hotels', 'Source_real estate, investments', 'Source_record label', 'Source_refinery, chemicals', 'Source_restaurants', 'Source_retail', 'Source_retail & gas stations', 'Source_retail chain', 'Source_retail stores', 'Source_retail, agribusiness', 'Source_retail, investments', 'Source_rubber gloves', 'Source_security software', 'Source_self storage', 'Source_semiconductor', 'Source_semiconductors', 'Source_sensor systems', 'Source_shipping', 'Source_shoes', 'Source_smartphone screens', 'Source_smartphones', 'Source_software', 'Source_solar panels', 'Source_soy sauce', 'Source_sporting goods', 'Source_sports', 'Source_sports apparel', 'Source_staffing, Baltimore Ravens', 'Source_stationery', 'Source_steel', 'Source_steel production', 'Source_steel, diversified ', 'Source_steel, mining', 'Source_supermarkets', 'Source_supermarkets, investments', 'Source_surveillance equipment', 'Source_technology', 'Source_telecom', 'Source_telecom, lotteries, insurance', 'Source_telecoms, media, oil-services', 'Source_testing equipment', 'Source_textile, chemicals', 'Source_textiles, apparel', 'Source_textiles, petrochemicals', 'Source_timberland, lumber mills', 'Source_titanium', 'Source_transport, logistics', 'Source_two-wheelers', 'Source_used cars', 'Source_vaccines', 'Source_vacuums', 'Source_venture capital', 'Source_venture capital investing', 'Source_video games', 'Source_wedding dresses', 'Source_wind turbines', 'Source_winter jackets', 'Source_wire & cables, paints', 'Industry_Automotive ', 'Industry_Construction & Engineering ', 'Industry_Energy ', 'Industry_Fashion & Retail ', 'Industry_Finance & Investments ', 'Industry_Food & Beverage ', 'Industry_Gambling & Casinos ', 'Industry_Healthcare ', 'Industry_Logistics ', 'Industry_Manufacturing ', 'Industry_Media & Entertainment ', 'Industry_Metals & Mining ', 'Industry_Real Estate ', 'Industry_Service ', 'Industry_Sports ', 'Industry_Technology ', 'Industry_Telecom ', 'Industry_diversified ', 'Age_binned', 'Networth_binned', 'age_to_networth', 'networth_to_age', 'age_squared', 'log_networth']\n",
|
||
"Empty DataFrame\n",
|
||
"Columns: [Rank , Name, Networth, Age, LogNetworth, Networth_scaled, Country_Algeria, Country_Argentina, Country_Australia, Country_Austria, Country_Barbados, Country_Belgium, Country_Belize, Country_Brazil, Country_Bulgaria, Country_Canada, Country_Chile, Country_China, Country_Colombia, Country_Cyprus, Country_Czechia, Country_Denmark, Country_Egypt, Country_Estonia, Country_Eswatini (Swaziland), Country_Finland, Country_France, Country_Georgia, Country_Germany, Country_Greece, Country_Guernsey, Country_Hong Kong, Country_Hungary, Country_Iceland, Country_India, Country_Indonesia, Country_Ireland, Country_Israel, Country_Italy, Country_Japan, Country_Kazakhstan, Country_Lebanon, Country_Macau, Country_Malaysia, Country_Mexico, Country_Monaco, Country_Morocco, Country_Nepal, Country_Netherlands, Country_New Zealand, Country_Nigeria, Country_Norway, Country_Oman, Country_Peru, Country_Philippines, Country_Poland, Country_Portugal, Country_Qatar, Country_Romania, Country_Russia, Country_Singapore, Country_Slovakia, Country_South Africa, Country_South Korea, Country_Spain, Country_Sweden, Country_Switzerland, Country_Taiwan, Country_Thailand, Country_Turkey, Country_Ukraine, Country_United Arab Emirates, Country_United Kingdom, Country_United States, Country_Uruguay, Country_Venezuela, Country_Vietnam, Country_Zimbabwe, Source_3D printing, Source_AOL, Source_Airbnb, Source_Aldi, Trader Joe's, Source_Aluminium, Source_Amazon, Source_Apple, Source_BMW, pharmaceuticals, Source_Banking, Source_Berkshire Hathaway, Source_Bloomberg LP, Source_Campbell Soup, Source_Cargill, Source_Carnival Cruises, Source_Chanel, Source_Charlotte Hornets, endorsements, Source_Chemicals, Source_Chick-fil-A, Source_Coca Cola Israel, Source_Coca-Cola bottler, Source_Columbia Sportswear, Source_Comcast, ...]\n",
|
||
"Index: []\n",
|
||
"\n",
|
||
"[0 rows x 869 columns]\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\entityset.py:1733: UserWarning: index id not found in dataframe, creating new integer column\n",
|
||
" warnings.warn(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
|
||
" pd.to_datetime(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
|
||
" pd.to_datetime(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" Rank Networth Age Country_Algeria Country_Argentina \\\n",
|
||
"id \n",
|
||
"0 1 219.0 50 False False \n",
|
||
"1 2 171.0 58 False False \n",
|
||
"2 3 158.0 73 False False \n",
|
||
"3 4 129.0 66 False False \n",
|
||
"4 5 118.0 91 False False \n",
|
||
"\n",
|
||
" Country_Australia Country_Austria Country_Barbados Country_Belgium \\\n",
|
||
"id \n",
|
||
"0 False False False False \n",
|
||
"1 False False False False \n",
|
||
"2 False False False False \n",
|
||
"3 False False False False \n",
|
||
"4 False False False False \n",
|
||
"\n",
|
||
" Country_Belize ... Industry_Sports Industry_Technology \\\n",
|
||
"id ... \n",
|
||
"0 False ... False False \n",
|
||
"1 False ... False True \n",
|
||
"2 False ... False False \n",
|
||
"3 False ... False True \n",
|
||
"4 False ... False False \n",
|
||
"\n",
|
||
" Industry_Telecom Industry_diversified Age_binned Networth_binned \\\n",
|
||
"id \n",
|
||
"0 False False 1 4 \n",
|
||
"1 False False 2 3 \n",
|
||
"2 False False 3 3 \n",
|
||
"3 False False 2 2 \n",
|
||
"4 False False 4 2 \n",
|
||
"\n",
|
||
" age_to_networth networth_to_age age_squared log_networth \n",
|
||
"id \n",
|
||
"0 0.228311 4.380000 2500 5.389072 \n",
|
||
"1 0.339181 2.948276 3364 5.141664 \n",
|
||
"2 0.462025 2.164384 5329 5.062595 \n",
|
||
"3 0.511628 1.954545 4356 4.859812 \n",
|
||
"4 0.771186 1.296703 8281 4.770685 \n",
|
||
"\n",
|
||
"[5 rows x 997 columns]\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\entityset.py:1733: UserWarning: index id not found in dataframe, creating new integer column\n",
|
||
" warnings.warn(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
|
||
" pd.to_datetime(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
|
||
" pd.to_datetime(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n",
|
||
" warnings.warn(\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:143: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
|
||
" df = pd.concat([df, default_df], sort=True)\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
|
||
" series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
|
||
" series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:143: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
|
||
" df = pd.concat([df, default_df], sort=True)\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
|
||
" series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n",
|
||
"c:\\Users\\goldfest\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
|
||
" series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import featuretools as ft\n",
|
||
"\n",
|
||
"# Проверка наличия столбцов в DataFrame\n",
|
||
"print(\"Столбцы в df:\", df.columns.tolist())\n",
|
||
"print(\"Столбцы в train_data_encoded:\", train_data_encoded.columns.tolist())\n",
|
||
"print(\"Столбцы в val_data_encoded:\", val_data_encoded.columns.tolist())\n",
|
||
"print(\"Столбцы в test_data_encoded:\", test_data_encoded.columns.tolist())\n",
|
||
"\n",
|
||
"# Удаление дубликатов по всем столбцам (если нет уникального идентификатора)\n",
|
||
"df = df.drop_duplicates()\n",
|
||
"duplicates = train_data_encoded[train_data_encoded.duplicated(keep=False)]\n",
|
||
"\n",
|
||
"# Удаление дубликатов из столбца \"id\", сохранив первое вхождение\n",
|
||
"df_encoded = df_encoded.drop_duplicates(keep='first')\n",
|
||
"\n",
|
||
"print(duplicates)\n",
|
||
"\n",
|
||
"# Создание EntitySet\n",
|
||
"es = ft.EntitySet(id='millionaires_data')\n",
|
||
"\n",
|
||
"# Добавление датафрейма с данными о миллионерах\n",
|
||
"es = es.add_dataframe(dataframe_name='millionaires', dataframe=df_encoded, index='id')\n",
|
||
"\n",
|
||
"# Генерация признаков с помощью глубокой синтезы признаков\n",
|
||
"feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='millionaires', max_depth=2)\n",
|
||
"\n",
|
||
"# Выводим первые 5 строк сгенерированного набора признаков\n",
|
||
"print(feature_matrix.head())\n",
|
||
"\n",
|
||
"# Удаление дубликатов из обучающей выборки\n",
|
||
"train_data_encoded = train_data_encoded.drop_duplicates()\n",
|
||
"train_data_encoded = train_data_encoded.drop_duplicates(keep='first') # or keep='last'\n",
|
||
"\n",
|
||
"# Определение сущностей (Создание EntitySet)\n",
|
||
"es = ft.EntitySet(id='millionaires_data')\n",
|
||
"\n",
|
||
"es = es.add_dataframe(dataframe_name='millionaires', dataframe=train_data_encoded, index='id')\n",
|
||
"\n",
|
||
"# Генерация признаков\n",
|
||
"feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='millionaires', max_depth=2)\n",
|
||
"\n",
|
||
"# Преобразование признаков для контрольной и тестовой выборок\n",
|
||
"val_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=val_data_encoded.index)\n",
|
||
"test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Оценка качества каждого набора признаков \n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Время обучения модели: 11.98 секунд\n",
|
||
"Среднеквадратичная ошибка: 17.43\n",
|
||
"Коэффициент детерминации (R²): 0.27\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIjCAYAAADWYVDIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8l0lEQVR4nOzdd1hTZ/sH8G8GIUAgiEwRRcG6t75VcNRqxb3rrHtAa221vu2rra3dtrW1dgMO1Kq1bq3VOqtWxL2KdeJCQIbICoSQ5Pz+8EdKDGgCgQB+P9fFpTzPycnNSXJy7nOe5z4iQRAEEBEREREREQBAbOsAiIiIiIiIKhMmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREZXT37l2sWLHC8PutW7ewZs0a2wVEZcIkiWxuwoQJUCgUtg6DiIiIqNREIhGmT5+O3bt349atW3jrrbfw119/2TosKiWprQOgp9P9+/exZs0a/PXXXzh8+DDy8vLQq1cvtG7dGsOHD0fr1q1tHSIRERGR2Xx9fTF16lT06tULAODj44ODBw/aNigqNZEgCIKtg6Cny7p16zB16lTk5OTA398fBQUFuHfvHlq3bo3z58+joKAA48ePR2RkJGQyma3DJSIiIjJbXFwc0tLS0KxZMzg5Odk6HColDrejChUdHY2XXnoJ3t7eiI6Oxs2bN9GjRw/I5XKcPHkSiYmJGDVqFFauXIlZs2YZPfbLL79EUFAQatasCQcHB7Rt2xYbN240eQ6RSIT333/f8LtWq0WfPn3g5uaGf/75x7DM436ee+45AMDBgwchEolMzgT17dvX5Hmee+45w+MK3bp1CyKRyGiMMgBcvnwZw4YNg5ubG+RyOdq1a4ft27eb/C0ZGRmYNWsW/P39YW9vj9q1a2PcuHFIS0srMb7ExET4+/ujXbt2yMnJAQBoNBq89957aNu2LZRKJZycnNC5c2f8+eefJs+ZkpKCyZMno06dOpBIJIZtYu6QyF27dqFr165wdnaGi4sL2rdvj7Vr1xq20ZO2fSGtVouPPvoIAQEBsLe3h7+/P95++23k5+cbPZ+/vz8mTJhg1LZhwwaIRCL4+/sb2gpfC5FIhK1btxotr1arUaNGDYhEInz55ZdGfWfPnkXv3r3h4uIChUKB7t2749ixYyZ/9+Neq8LX6XE/he+l999/HyKRyPAaW+L27dt45ZVX0LBhQzg4OKBmzZp48cUXcevWLaPlVqxYAZFIZNR+8eJF1KhRA/369YNWqzUs87ifwvf1hAkTjLY1AMTHx8PBwcHkefz9/Q2PF4vF8Pb2xogRI3Dnzh2jx6tUKsyePRt+fn6wt7dHw4YN8eWXX+LR83pF45FIJPD19cW0adOQkZHxxO31uL/t0b/H3HhKcvz4cfTp0wc1atSAk5MTWrRogW+++cbQXzjs+MaNGwgJCYGTkxNq1aqFDz/80OQ5LNkXPmnbFL43i3u8QqEw+WxlZGRg5syZhu0QGBiIzz//HHq93rBM4Wft0c8SADRr1sxoP2nJPra49+3u3bsRFBQER0dHKJVK9OvXD7GxsSbPWxy1Wo33338fzzzzDORyOXx8fDBkyBDExcU99nFF38OP24cBD1+DV199FWvWrEHDhg0hl8vRtm1bHD582GS95uxrHve5vHv3LoCSh7Bv3Lix2G29YcMGtG3bFg4ODnB3d8dLL72EhIQEo2Xef/99NGnSBAqFAi4uLujQoYPJfrS478CTJ0+Werv8+eefEIlE2LJli8nfsnbtWohEIsTExBjazPleLdx+MpkMqampRn0xMTGGWE+dOmXxNiq6HwwICMCzzz6L9PT0YveDVDVwuB1VqM8++wx6vR7r1q1D27ZtTfrd3d2xatUq/PPPP4iIiMD8+fPh6ekJAPjmm28wYMAAjBkzBhqNBuvWrcOLL76IHTt2oG/fviU+55QpU3Dw4EHs3bsXTZo0AQD8/PPPhv6//voLkZGR+Prrr+Hu7g4A8PLyKnF9hw8fxs6dO0v19wMPD0aDg4Ph6+uLOXPmwMnJCevXr8egQYOwadMmDB48GACQk5ODzp0749KlS5g0aRLatGmDtLQ0bN++HXfv3jXEWlRmZiZ69+4NOzs77Ny50/BFmZWVhaVLl2LUqFGYOnUqsrOzsWzZMoSEhODEiRNo1aqVYR3jx4/Hvn37MGPGDLRs2RISiQSRkZE4c+bME/+2FStWYNKkSWjatCnmzp0LV1dXnD17Fn/88QdGjx6Nd955B1OmTAEApKWlYdasWZg2bRo6d+5ssq4pU6Zg5cqVGDZsGGbPno3jx49jwYIFuHTpUrFfmoW0Wi3eeeedEvvlcjmioqIwaNAgQ9vmzZuhVqtNlr148SI6d+4MFxcXvPXWW7Czs0NERASee+45HDp0CM8++yyAJ79WjRs3NnrPRUZG4tKlS/j6668NbS1atCh5w5rp5MmTOHr0KEaOHInatWvj1q1b+Omnn/Dcc8/hn3/+gaOjY7GPi4+PR69evdCoUSOsX78eUqkUXbp0MYr5k08+AQCjbRsUFFRiLO+9916x2xQAOnfujGnTpkGv1yM2NhaLFy9GYmKiYey+IAgYMGAA/vzzT0yePBmtWrXC7t278eabbyIhIcFouwHA4MGDMWTIEGi1WsTExCAyMhJ5eXlG8ZfkhRdewLhx44zavvrqKzx48MDwu6XxPGrv3r3o168ffHx88Prrr8Pb2xuXLl3Cjh078PrrrxuW0+l06NWrFzp06IAvvvgCf/zxB+bPnw+tVosPP/zQsJwl+8KybJtH5ebmomvXrkhISEBoaCjq1KmDo0ePYu7cuUhKSsLixYstXmdxzN3H/vXXX+jTpw/q1q2L+fPno6CgAD/++COCg4Nx8uRJPPPMMyU+VqfToV+/fti/fz9GjhyJ119/HdnZ2di7dy9iY2MREBDw2Odu1aoVZs+ebdS2atUq7N2712TZQ4cO4ddff8Vrr70Ge3t7/Pjjj+jVqxdOnDiBZs2aATB/X1Poww8/RL169Yza3NzcHhtzcVasWIGJEyeiffv2WLBgAZKTk/HNN98gOjoaZ8+ehaurK4CHJwkGDx4Mf39/5OXlYcWKFRg6dChiYmLwn//8p8T1/+9//yux70nb5bnnnoOfnx/WrFlj+F4stGbNGgQEBKBjx44AzP9eLSSRSLB69Wqjk7FRUVGQy+Um+y1zt1FxHrcfpCpAIKpAbm5uQt26dY3axo8fLzg5ORm1vfvuuwIA4bfffjO05ebmGi2j0WiEZs2aCc8//7xROwBh/vz5giAIwty5cwWJRCJs3bq1xJiioqIEAMLNmzdN+v78808BgPDnn38a2p599lmhd+/eRs8jCILQrVs3oUuXLkaPv3nzpgBAiIqKMrR1795daN68uaBWqw1ter1eCAoKEho0aGBoe++99wQAwubNm03i0uv1JvGp1WrhueeeEzw9PYXr168bLa/VaoX8/HyjtgcPHgheXl7CpEmTDG15eXmCWCwWQkNDjZYt7jV6VEZGhuDs7Cw8++yzQl5eXrHxFlXctil07tw5AYAwZcoUo/b//ve/AgDhwIEDhra6desK48ePN/z+448/Cvb29kK3bt2M3muFzzdq1ChBKpUK9+7dM/R1795dGD16tABAWLhwoaF90KBBgkwmE+Li4gxtiYmJgrOzs9Frbc5rVdT48eNNPgeF5s+fLwAQUlNTi+1/nEc/I4IgCDExMQIAYdWqVYa2ou/59PR0oUmTJkLDhg2FtLS0EtfdtWtXoWvXrsX2Pfr3xMbGCmKx2PA5KfrZevT1EgRBGD16tODo6Gj4fevWrQIA4eOPPzZabtiwYYJIJDJ6fz/6ORQEQQgKChKaNGlS4t9S9LHTp083ae/bt6/R32NJPI/SarVCvXr1hLp16woPHjww6iv63hg/frwAQJgxY4ZRf9++fQWZTGb0fijNvrDQo9umcB+yYcMGk9idnJyMXquPPvpIcHJyEq5evWq03Jw5cwSJRCLcuXNHEIR/P2tFP0uFmjZtavQ+smQf++i+um3btoJSqTT6LF+9elWws7MThg4davLcRS1fvlwAICxatMikr7jPbFF169YV+vbta9I+ffp04dHDKgACAOHUqVOGttu3bwtyuVwYPHiwoc3cfU3hNjh58mSJ8ZW0v96wYYPRttZoNIKnp6fQrFkzo332jh07BADCe++9V+JzpKSkCACEL7/80tD26D5i586dAgChV69epd4uc+fOFezt7YWMjAyj55ZKpUbvDXO/Vwu336hRo4TmzZsb2lUqleDi4mL4HijcvpZsI0v2g1Q1cLgdVajs7GzDlaHHKbySk5WVZWhzcHAw/P/BgwfIzMxE586dS7zC8f3332PBggX49ttvMXDgwDJG/tDmzZtx8uRJfPbZZyZ9np6ehuEOJUlPT8eBAwcwfPhwZGdnIy0tDWlpabh//z5CQkJw7do1wyX8TZs2oWXLliZnwACYDF3Q6/UYN24cjh07hp07d5qcBZVIJIb5XXq9Hunp6dBqtWjXrp3R9lOpVNDr9ahZs6Z5G6SIvXv3Ijs7G3PmzIFcLn9svE9SeBb5jTfeMGovPHP7+++/F/u43NxcfPjhh3j11VdRp06dYpdp06YNmjZtajiTfvv2bfz5558mw4p0Oh327NmDQYMGoX79+oZ2Hx8fjB49GkeOHDG8Py15rcyVnp6OtLQ0qFQqsx9T9DNSUFCA+/fvIzAwEK6ursV+TtRqNQYMGIDU1FT88ccfpXrdizN37ly0adMGL774YrH9+fn5SEtLQ0pKCvbu3YsDBw6ge/fuhv6dO3dCIpHgtddeM3rc7NmzIQgCdu3aZdSem5uLtLQ03Lt3D5s2bcL58+eN1ldWlsZT1NmzZ3Hz5k3MnDnT5Ixzce+NV1991aj/1VdfhUajwb59+wztluwLzd02RfdHhT+P2rBhAzp37owaNWoYLdejRw/odDqTIWSFz130R6fTlbitgMfvY4v+zVevXsXp06cxZswYoyv/DRo0wIABA/DHH3889rk2bdoEd3d3zJgxw6SvtJ/ZknTs2NFo5ESdOnUwcOBA7N69GzqdzqJ9jSUe3fbZ2dlG/adOnUJKSgpeeeUVo31237590ahRI5P9bEFBAdLS0hAXF4fPPvsMYrEYwcHBxT63IAiYO3cuhg4danIVzNztAgDjxo1Dfn6+0XDQX3/9FVqtFi+99BIAy75XC40dOxaXL182DKvbtGkTlEqlyWfD0m1U1JP2g1T5MUmiClWrVq0njvcGgOvXrwN4WCmm0I4dO9ChQwfI5XK4ubnBw8MDP/30EzIzM00ev2vXLsMwlvT0dKvErtPp8Pbbb2PMmDHFDo0KCgrCjRs3sHjxYty7dw9paWlGQ3YK/y5BEPDuu+/Cw8PD6Gf+/PkAHs4JAh5O/CwcivEk77zzDtavX4/8/Hzk5uYWu8zKlSvRokULyOVy1KxZEx4eHvj999+Ntl/NmjXRoEEDLF26FHv27EFKSgrS0tJM5gEVp/B1NTfmx7l9+zbEYjECAwON2r29veHq6orbt28X+7hFixZBrVbj7bfffuz6J06ciKioKAAPh1IEBQWhQYMGRsukpqYiNzcXDRs2NHl848aNodfrER8fD8Cy18pcDRs2hIeHBxQKBby8vDBv3rwnHmDm5eXhvffeM8wXcXd3h4eHBzIyMor9nEycOBFHjhxBdnY2tFqtVeI+cuQIfvvtN3z++eclHmyuW7cOHh4e8PLyQs+ePeHn54elS5ca+m/fvo1atWrB2dnZ6HGNGzc29Be1cOFCeHh4wMfHB8OGDUPnzp3x+eefW+XvKU08RVnyuRCLxUYHyQAMQ8aKzmewZF9o7raZNGmSyT7p0QT92rVr+OOPP0yW69GjB4B/912F5s+fb7Ls5cuXS/z7n7SPLdSmTRvD57Kkz6dKpXrsvL64uDg0bNgQUmn5zzp4dN8CPHxdc3NzkZqaatG+xlwqlcpk20+aNMlomcL3bXHP26hRI5P39f79++Hh4YHAwEAsXboUGzduRIcOHYp9/jVr1uDixYv49NNPS4zxSdulMI727dsb3WtozZo16NChg+H7wZLv1UIeHh7o27cvli9fDgBYvnw5xo8fD7HY+LDY0m1UyJz9IFV+nJNEFapfv3744YcfsGzZMkyePLnYZZKTk7Fy5Up4eHgYdsB//fUXBgwYgC5duuDHH3+Ej48P7OzsEBUVZSgKUNSJEycwdepUODk54eOPP8aLL75Y7E7OEsuWLcOtW7ewe/fuYvunTZuG3bt3Y9asWSZFJwoVTm7+73//i5CQkGKXeTQxMMfx48exYsUKfP/995g2bRrOnTsHe3t7Q//q1asxYcIEDBo0CG+++SY8PT0hkUiwYMECk6T1119/xZgxY0zis0WFHku+XNLS0rBw4ULMnTv3iWPzX3rpJbz11ls4duwYVq5ciXnz5pU1VKvbtGkTXFxckJubiy1btuCTTz4xzFcoyYwZMxAVFYWZM2eiY8eOUCqVEIlEGDlypNHE+kJnzpzBtm3b8Oqrr2LatGk4cOBAmeP+3//+h5CQEDz//PMmBUsK9ezZE2+++SaAhzdf/Pzzz9GtWzecOnXK6CqJucaOHYtx48ZBr9fjxo0b+Oijj9CvXz/s27ev2h2gWLovNHfbvPfeeyZzA/v372/0u16vxwsvvFDie/DROUDTpk0zOYs+derUEv+2J+1jC61evRq5ubmYNm3aY5d7msnlcvz2229GbX/99ZfR3DZLtW/fHnv37sWDBw+wevVqTJo0CX5+fmjXrp3RchqNBu+++y4mT5782Hlh5ho3bhxef/113L17F/n5+Th27Bi+//57Q39pv1cnTZqEcePGYcaMGTh8+DCWLl1qtXsambMfpMqPSRJVqHnz5mHr1q14+eWXcfnyZYwePdpwdvzOnTvYv38/3nvvPTx48ABr1641HOhv2rQJcrkcu3fvNjr4L7wa8KgXXngBP/30E9RqNbZu3Ypp06YZqiiVRm5uLj744AO88sorqFu3brHLyOVy/P7777h69Sri4+MhCAKSk5MNQwIAGM4S29nZGc6+liQgIMDsKk0ffPABxo8fj1atWqFdu3b4+OOP8dFHHxn6N27ciPr162Pz5s1G26DwLFtRrVu3xpIlS9C5c2d8+OGH6NChAxYuXIjo6OgnxgsAsbGxpUr0iqpbty70ej2uXbtmOFsPPEygMzIyin0NPv74Yzg7OxtNhC9JzZo1MWDAAISGhiIlJQXDhw83Oevs4eEBR0dHXLlyxeTxly9fhlgshp+fHwDLXitzdenSxVCcY8CAAYiOjsYff/zx2CRp48aNGD9+PL766itDm1qtLrHS29KlSzFgwABIJBL069fvsScvzLF161bExMQ8sciHj4+P0fu/YcOGCAoKwtatWzFq1CjUrVsX+/btQ3Z2ttHVm8KrEI++/vXr1zdan1KpxOjRo3Hs2DHDxO6ysDSeoop+Lp70mS9MZIoeWF69ehUADFWzLN0XmrttmjdvbhKfRCIx+VtycnKe+HcUatCggcmyJZ1sMWcfWyg4OBhOTk6YNm1aiZ9PJyenYovbFAoICMDx48dRUFAAOzs7M/6a0rt27ZpJ29WrV+Ho6AgPDw8AMHtfYy6JRGKy7R/dDxRu5ytXruD555836rty5YrJ61CzZk3DOocOHYqGDRti4cKF+PXXX42W+/HHH5GSkmJUmbA45mwXABg5ciTeeOMN/PLLL8jLy4OdnR1GjBhh6Lfke7Wo3r17Qy6XY+TIkejUqRMCAgJMkiRLtxFg/n6QKj8Ot6MK5e3tjZiYGPTu3RtfffUV2rRpg9WrV0OlUqFu3bqYNGkSHBwc8Ntvv2HUqFGGxxWWoi463OjWrVsmJUgLBQUFQSKRwMnJCeHh4Th8+DCWLFlS6ri/+eYbqFSqx1ZNK/TMM8+ge/fu6NGjh8l4bU9PTzz33HOIiIhAUlKSyWOLliQdOnQozp8/X2wlN+GRksCFZ4BbtmyJ//73v/j888+NDtoLD3aKPu748eNG5VMLZWVlYezYsRgwYADmzZuHHj16wMfH54l/d8+ePeHs7IwFCxaYVPN5NN4n6dOnDwCYVMtatGgRAJhU8Cqs4vb++++bfSVi0qRJuHDhAl588cViy+VKJBL07NkT27ZtMxrqlJycjLVr16JTp05wcXEBYNlrVRqCIEAQBJOD1uJifvT5vvvuuxKH6RW+b/r27YuRI0fizTffRHJycqliLBwqNXr0aKNqiebIy8sDAMOwzj59+kCn0xmdLQaAr7/+GiKRCL1797ZofWVVlnjatGmDevXqYfHixSYHqcW9N4o+hyAI+P7772FnZ2eYK2HpvvBRZdk2w4cPR0xMTLFXejIyMso0ZNOSfSzw8CRGmzZtsHbtWqP9ZlxcHLZv347evXs/9vMydOhQpKWlmbymgHU+s0U9esAcHx+Pbdu2oWfPnpBIJBbta6ypXbt28PT0RHh4uNH7YdeuXbh06dJjq8aq1WqoVCqT91F2djY++eQTzJo1C97e3o99/idtl0Lu7u7o3bs3Vq9ejTVr1qBXr15GCbAl36tFSaVSjBs3DhcuXDAZiljI0m1Ulv0gVT68kkQVzs/PD9u2bUNSUhKio6OxcOFCnDt3DuHh4WjVqhVatWplcsWnb9++WLRoEXr16oXRo0cjJSUFP/zwAwIDA3HhwoXHPl9ISIhheFX//v3NOuB/1J49e/DJJ59YZWL7Dz/8gE6dOqF58+aYOnUq6tevj+TkZMTExODu3bs4f/48AODNN9/Exo0b8eKLL2LSpElo27Yt0tPTsX37doSHh6Nly5bFrn/+/PnYtGkTpk6diujoaIjFYvTr1w+bN2/G4MGD0bdvX9y8eRPh4eFo0qSJ4V5KhaZPn468vDyjOSLmcHFxwddff40pU6agffv2GD16NGrUqIHz588jNzcXK1euNHtdLVu2NNxQOCMjA127dsWJEyewcuVKDBo0CN26dTNa/tChQ2jcuDEmTpxo9nP06tULqampj73/08cff4y9e/eiU6dOeOWVVyCVShEREYH8/Hx88cUXhuVK+1o9zoEDB4yG212/fh0zZ8587GP69euHn3/+GUqlEk2aNEFMTAz27dtn1vv2m2++QePGjTFjxgysX7/e4njv3r0LmUxmVunmGzduYPXq1QCAhIQEfP/993BxcTEkAv3790e3bt3wzjvv4NatW2jZsiX27NmDbdu2YebMmSaFSS5cuIDVq1dDEATExcXh22+/Re3atU2GAZWWpfEUJRaL8dNPP6F///5o1aoVJk6cCB8fH1y+fBkXL140Sjjkcjn++OMPjB8/Hs8++yx27dqF33//HW+//bbhzLql+0Jrbps333wT27dvR79+/TBhwgS0bdsWKpUKf//9NzZu3Ihbt2499urN45RmH/vFF18YSqaHhoZCq9Xi+++/h1wuN5SsL8m4ceOwatUqvPHGGzhx4gQ6d+4MlUqFffv24ZVXXrFasR/g4Xy0kJAQo1LXwMMRAIXM3ddYk52dHT7//HNMnDgRXbt2xahRowzlrf39/Q3DxgtvLdG7d2/UqlUL6enp+Pnnn5GUlGQ0UgJ4OITX3d39sVe8C5mzXQqNGzcOw4YNAwCjURKFzP1efdRHH32EN998EzVq1CjTNipkyX6QqoCKLqdH9ChzyksLgiAsW7ZMaNCggWBvby80atRIiIqKMpRLLgrFlL1NS0sTPDw8jEqLFjKnBLiPj4+gUqme+DyPKqnMdVxcnDBu3DjB29tbsLOzE3x9fYV+/foJGzduNFru/v37wquvvir4+voKMplMqF27tjB+/HhDqebiyucKgiAcPHhQEIlEwjfffCMIwsNSqJ9++qlQt25dwd7eXmjdurWwY8cOk5Klv/zyiyASiYQ//vjDaH3mvkaCIAjbt28XgoKCBAcHB8HFxUX4z3/+I/zyyy9mb5tCBQUFwgcffCDUq1dPsLOzE/z8/IS5c+calXgVhIfleAEIW7ZsMYm5uBLgxZUlflz/mTNnhJCQEEGhUAiOjo5Ct27dhKNHj5o8/kmv1eNiK6rwPV344+DgIDRp0kT4+uuvi12+qAcPHggTJ04U3N3dBYVCIYSEhAiXL182Kbtd0nt+5cqVAgBh+/btJut+UglwAMLrr79u1F7c8xS+XoU/7u7uQs+ePYWYmBijx2ZnZwuzZs0SatWqJdjZ2QkNGjQQFi5caFKeuei6RCKR4O3tLQwZMkS4dOnSE7cXzCwBbkk8JTly5IjwwgsvCM7OzoKTk5PQokUL4bvvvjP0F37G4uLihJ49ewqOjo6Cl5eXMH/+fEGn0xmty5J94ZO2jSUlwAu3w9y5c4XAwEBBJpMJ7u7uQlBQkPDll18KGo1GEITSlQA3Zx9b3Ptp3759QlBQkCCXywVnZ2ehT58+woULF0yetzi5ubnCO++8Y9jHeHt7C8OGDTMqw10cS0uAT58+XVi9erXhNWvdurXJPlsQzNvXWLMEeKFff/1VaN26tWBvby+4ubkJY8aMEe7evWvoz8vLE0aMGCHUrl1bkMlkgqenp9CtWzejW3QIwsN9BACTfVVJ701zt4sgCEJ+fr5Qo0YNQalUmtxiopA536tP2n4l9T9pGwmCZftBqhpEgmDl68pERERkkQkTJmDjxo0mV3apahOJRJg+fXqxw/qeZpZuF61Wi1q1aqF///5YtmxZOUdH9BDnJBERERFRpbV161akpqZi3Lhxtg6FniKck0RERERElc7x48dx4cIFfPTRR2jdujW6du1q65DoKcIrSURERERU6fz00094+eWX4enpiVWrVtk6HHrKcE4SERERERFREbySREREREREVASTJCIiIiIioiKqfeEGvV6PxMREODs7m9yglIiIiIiInh6CICA7Oxu1atWCWFzy9aJqnyQlJibCz8/P1mEQEREREVElER8fj9q1a5fYX+2TJGdnZwAPN4SLi4uNoyEiIiIiIlvJysqCn5+fIUcoSbVPkgqH2Lm4uDBJIiIiIiKiJ07DYeEGIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIipCausAiIiIiIioetLrBSRk5EGl0cJJJoWvqwPEYpGtw3oiJklERERERGR111OysTs2GXGpOVBrdZBLJQjwUCCkmRcCPZ1tHd5jMUkiIiIiIiKrup6SjajoW0hXaeCjlMNR5oBcjRaxiZlIzMzDxGD/Sp0ocU4SERERERFZjV4vYHdsMtJVGjTwVMBZbgeJWARnuR0aeCqQrtJgz8Vk6PWCrUMtEZMkIiIiIiKymoSMPMSl5sBHKYdIZDz/SCQSwUcpx/WUHCRk5NkowidjkkRERERERFaj0mih1urgKCt+Zo+DTIJ8rQ4qjbaCIzMfkyQiIiIiIrIaJ5kUcqkEuSUkQXkaHeylEjiVkERVBkySiIiIiIjIanxdHRDgoUBSphqCYDzvSBAEJGWqEeipgK+rg40ifDImSUREREREZDVisQghzbzg5iTDtZQcZKsLoNXrka0uwLWUHLg5ydCzqVelvl8SkyQiIiIiIrKqQE9nTAz2R7NaSmTkFuBWmgoZuQVo7qus9OW/Ad4niYiIiIiIykGgpzPqP6dAQkYeVBotnGRS+Lo6VOorSIWYJBERERERUbkQi0Xwc3O0dRgW43A7IiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFWHzJCkhIQEvvfQSatasCQcHBzRv3hynTp0y9AuCgPfeew8+Pj5wcHBAjx49cO3aNRtGTERERERE1ZlNk6QHDx4gODgYdnZ22LVrF/755x989dVXqFGjhmGZL774At9++y3Cw8Nx/PhxODk5ISQkBGq12oaRExERERFRdSUSBEGw1ZPPmTMH0dHR+Ouvv4rtFwQBtWrVwuzZs/Hf//4XAJCZmQkvLy+sWLECI0eOfOJzZGVlQalUIjMzEy4uLlaNn4iIiIiIqg5zcwObXknavn072rVrhxdffBGenp5o3bo1lixZYui/efMm7t27hx49ehjalEolnn32WcTExBS7zvz8fGRlZRn9EBERERERmcumSdKNGzfw008/oUGDBti9ezdefvllvPbaa1i5ciUA4N69ewAALy8vo8d5eXkZ+h61YMECKJVKw4+fn1/5/hFERERERFSt2DRJ0uv1aNOmDT799FO0bt0a06ZNw9SpUxEeHl7qdc6dOxeZmZmGn/j4eCtGTERERERE1Z1NkyQfHx80adLEqK1x48a4c+cOAMDb2xsAkJycbLRMcnKyoe9R9vb2cHFxMfohIiIiIiIyl02TpODgYFy5csWo7erVq6hbty4AoF69evD29sb+/fsN/VlZWTh+/Dg6duxYobESEREREdHTQWrLJ581axaCgoLw6aefYvjw4Thx4gQiIyMRGRkJABCJRJg5cyY+/vhjNGjQAPXq1cO7776LWrVqYdCgQbYMnYiIiIiIqimbJknt27fHli1bMHfuXHz44YeoV68eFi9ejDFjxhiWeeutt6BSqTBt2jRkZGSgU6dO+OOPPyCXy20YORERERERVVc2vU9SReB9koiIiIiICKgi90kiIiIiIiKqbJgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFcEkiYiIiIiIqAgmSUREREREREUwSSIiIiIiIiqCSRIREREREVERTJKIiIiIiIiKYJJERERERERUBJMkIiIiIiKiIpgkERERERERFVHmJCknJwcHDhzAnTt3rBEPERERERGRTVmcJO3evRs+Pj5o3Lgxjh8/jsaNG6NHjx5o0KABNm3aVB4xEhERERERVRiLk6Q5c+agR48e6NOnDwYMGIDRo0cjOzsb77zzDj744IPyiJGIiIiIiKjCiARBECx5gKOjIy5evAg/Pz84Ojri3LlzaNKkCW7fvo1GjRohLy+vvGItlaysLCiVSmRmZsLFxcXW4RARERERkY2YmxtYfCVJrVZDoVBAKpXC3t4eDg4OAAC5XA6NRlP6iImIiIiIiCoBaWke9O6778LR0REajQYff/wxlEolcnNzrR0bERERERFRhbP4SlKXLl1w5coVnD17FkFBQbhx4wbOnj2LK1euoEuXLhat6/3334dIJDL6adSokaFfrVZj+vTpqFmzJhQKBYYOHYrk5GRLQyYiIiIiIjKbxVeSDh48aNUAmjZtin379hl+l0r/DWnWrFn4/fffsWHDBiiVSrz66qsYMmQIoqOjrRoDERERERFRoVINtyt09+5dAEDt2rVLH4BUCm9vb5P2zMxMLFu2DGvXrsXzzz8PAIiKikLjxo1x7NgxdOjQodTPSUREREREVBKLh9vp9Xp8+OGHUCqVqFu3LurWrQtXV1d89NFH0Ov1Fgdw7do11KpVC/Xr18eYMWMMN6U9ffo0CgoK0KNHD8OyjRo1Qp06dRATE1Pi+vLz85GVlWX0Q0REREREZC6LryS98847WLZsGT777DMEBwcDAI4cOYL3338farUan3zyidnrevbZZ7FixQo0bNgQSUlJ+OCDD9C5c2fExsbi3r17kMlkcHV1NXqMl5cX7t27V+I6FyxYwPs1ERERERFRqVl8n6RatWohPDwcAwYMMGrftm0bXnnlFSQkJJQ6mIyMDNStWxeLFi2Cg4MDJk6ciPz8fKNl/vOf/6Bbt274/PPPi11Hfn6+0WOysrLg5+fH+yQRERERET3lyu0+Senp6UYV6Ao1atQI6enplq7OiKurK5555hlcv34d3t7e0Gg0yMjIMFomOTm52DlMhezt7eHi4mL0Q0REREREZC6Lk6SWLVvi+++/N2n//vvv0bJlyzIFk5OTg7i4OPj4+KBt27aws7PD/v37Df1XrlzBnTt30LFjxzI9DxERERERUUksnpP0xRdfoG/fvti3b58hWYmJiUF8fDx27txp0br++9//on///qhbty4SExMxf/58SCQSjBo1CkqlEpMnT8Ybb7wBNzc3uLi4YMaMGejYsSMr2xERERERUbmxOEnq2rUrrl69ih9++AGXL18GAAwZMgSvvPIKatWqZdG67t69i1GjRuH+/fvw8PBAp06dcOzYMXh4eAAAvv76a4jFYgwdOhT5+fkICQnBjz/+aGnIREREREREZrO4cENVY+7kLCIiIiIiqt7KrXADAOzevRvHjx8HAGzZsgXjxo3DggULUFBQULpoiYiIiIiIKgmLk6Q5c+agd+/e6NSpE+bNm4cpU6YgLy8PX3/9Nd54443yiJGIiIiIiKjCWDzcztfXF4sXL0bdunURFBSEzZs3Y8CAAfjzzz/x0ksvlek+SeWBw+2IiIiIiAgwPzewuHBDcnIyOnXqBB8fH8hkMjRt2hQA0LhxYyQnJ5c+YiIiIiIiokrA4uF2giBAKn2YW0mlUojFD1chEolQzWtAEBERERHRU8DiK0mCIOCZZ56BSCRCTk4OWrduDbFYzASJiIiIiIiqBYuTpKioqPKIg4iIiIiIqFKwOEkaP358ecRBRERERERUKVicJGVlZT22nxXkiIiIiIioKrM4SXJ1dYVIJDJpFwQBIpEIOp3OKoERERERERHZgsVJUv369ZGSkoI5c+YgODi4PGIiIiIiIiKyGYuTpEuXLuG7777DJ598grNnz+KLL75AvXr1yiM2IiIiIiKiCmfxfZLs7Ozwxhtv4Nq1a/D19UWLFi0we/ZsZGRklEN4REREREREFcviJKmQm5sbFi9ejLNnz+LWrVsIDAzE4sWLrRgaERERERFRxRMJFt4FtnXr1iaFGwRBwPXr15Gbm1vpCjdkZWVBqVQiMzOTlfeIiIiIiJ5i5uYGFs9JGjhwYLHV7YiIiIiIiKoDi68kVTW8kkRERERERID5uYHFc5Lq16+P+/fvlyk4IiIiIiKiysriJOnWrVuVbt4RERERERGRtZSquh3nJBERERERUXVlceEGAGjXrh0kEkmxfTdu3ChTQERERERERLZUqiRp9uzZUCqV1o6FiIiIiIjI5ixOkkQiEUaOHAlPT8/yiIeIiIiIiMimLJ6TVM0rhhMRERER0VPO4iQpKiqKQ+2IiIiIiKjasjhJGjRoEOzt7YvtW7p0aZkDIiIiIiIisiWLk6SuXbsiNTXVqO3u3bsICQnBu+++a7XAiIiIiIiIbMHiJKlFixYIDg5GfHw8AGDJkiVo2rQpatasidjYWKsHSEREREREVJEsrm63atUqzJgxA8HBwWjYsCH+/vtvREVFYciQIeURHxERERERUYUq1X2SvvvuOyiVSixYsAA7d+5ESEiIteMiIiIiIiKyCYuTpO3btwMA/vOf/+D555/HiBEj8M0336BGjRoAgAEDBlg3QiIiIiIiogokEiy88ZFYXPI0JpFIBJ1OV+agrCkrKwtKpRKZmZlwcXGxdThERERERGQj5uYGFl9J0uv1ZQqMiIiIiIioMrO4uh0REREREVF1VqrCDSqVCocOHcKdO3eg0WiM+l577TWrBEZERERERFVXZmYmVq9ejY4dO6JNmza2DsciFidJZ8+eRZ8+fZCbmwuVSgU3NzekpaXB0dERnp6eTJKIiIiIiJ5ip06dQnh4OH755Rfk5uZi7NixWLVqla3DsojFw+1mzZqF/v3748GDB3BwcMCxY8dw+/ZttG3bFl9++WV5xEhERERERJVYTk4OlixZgrZt26J9+/ZYtmwZcnNzAQAbNmxAZmamjSO0jMVJ0rlz5zB79myIxWJIJBLk5+fDz88PX3zxBd5+++3yiJGIiIiIiCqhpKQkvPLKK6hVqxamTZuGM2fOGPqcnZ0xffp0nDhxAkql0oZRWs7i4XZ2dnaGMuCenp64c+cOGjduDKVSifj4eKsHSERERERElZNUKsWyZcuM6hS0a9cOoaGhGDlyJBQKhQ2jKz2Lk6TWrVvj5MmTaNCgAbp27Yr33nsPaWlp+Pnnn9GsWbPyiJGIiIiIiGzs0qVLuHz5MgYPHmxo8/DwwLBhw7B161aMGTMGoaGhaNu2rQ2jtA6LbyZ76tQpZGdno1u3bkhJScG4ceNw9OhRNGjQAMuXL0fLli3LK9ZS4c1kiYiIiIhKJz8/H5s2bUJERAQOHz4MV1dXJCYmwsHBwbDM3bt34ezsXCWG1JmbG1icJFU1TJKIiIiIiCxz7do1REZGYsWKFUhLSzPqW7FiBcaPH2+jyMrG3NygVPdJIiIiIiKi6qWgoADbtm1DeHg49u/fb9LfuHFjhIaGYsCAATaIrmIxSSIiIiIiInTs2BGnT582apPJZBg6dCjCwsLQuXNniEQiG0VXsZgkERERERE9ZfR6vaFidaG+ffsakqSAgACEhoZiwoQJ8PDwsEWINsUkiYiIiIjoKXH37l0sW7YMy5cvx+HDh1G3bl1D35QpU3Dx4kWEhYXh+eefN0miniZMkoiIiIiIqjG9Xo89e/YgPDwcv/32G/R6PQBg6dKl+OijjwzL+fn5YePGjbYKs1IpU3qYkJCAAQMGoE6dOujbty9vJktEREREVEkkJydjwYIFCAgIQO/evbFt2zZDgiQWi5GcnGzjCCuvMiVJs2fPRkJCAubMmYO8vDzMmDHDWnEREREREVEpnDx5EsOHD0ft2rXx9ttv49atW4a+WrVq4b333sOtW7cQGRlpuyAruTINtzt69CjWrVuHoKAg9O3bF23atLFWXEREREREVAqXL1/Ghg0bDL+LRCKEhIQgLCwMffv2hVTKGTdPUqYrSRkZGfD29gYAeHt7IyMjwxoxERERERHREwiCgL/++guxsbFG7cOGDYObmxs8PT0xd+5cxMXFYdeuXRg4cCATJDNZvJUuXLhg+L9er8fly5eRk5OD/Px8qwZGRERERESmMjIysGrVKkREROCff/7ByJEj8csvvxj6HRwccODAATRu3BgymcyGkVZdIkEQBEseIBaLIRKJUPRhhb+LRCLodDqrB1kWWVlZUCqVyMzMhIuLi63DISIiIiKymCAIOHHiBCIiIrBu3Trk5eUZ+uzs7HD37l14enraMMKqwdzcwOIrSTdv3ixTYEREREREZJ7s7GysWbMG4eHhOH/+vEl/p06dEBYWBqVSaYPoqi+Lk6Tbt28jKCiI4xmJiIiIiMrR7du30bRpU6hUKqN2pVKJcePGITQ0FE2bNrVRdNWbxYUbunXrhvT09PKIhYiIiIjoqfXoLJg6deogICDA8Pt//vMfLF++HImJifj222+ZIJUji5MkC6cwme2zzz6DSCTCzJkzDW1qtRrTp09HzZo1oVAoMHToUN70ioiIiIiqldjYWMyYMQMvvPCCUXvhsXFoaCjOnDmD48ePY+LEiXB0dLRRpE+PUo2Zi4mJQY0aNYrt69Kli8XrO3nyJCIiItCiRQuj9lmzZuH333/Hhg0boFQq8eqrr2LIkCGIjo4uTdhERERERJWCWq3Gxo0bER4ebnRse+rUKbRr187w+8SJEzFx4kRbhPhUK1WSNHjw4GLbS1PdLicnB2PGjMGSJUvw8ccfG9ozMzOxbNkyrF27Fs8//zwAICoqCo0bN8axY8fQoUOH0oRORERERGQzV65cQWRkJFasWGEyhcXBwQGxsbFGSRLZRqluJnvv3j3o9XqTn9KU/54+fTr69u2LHj16GLWfPn0aBQUFRu2NGjVCnTp1EBMTU+L68vPzkZWVZfRDRERERGRLmzZtwvPPP49GjRph0aJFRglS06ZN8e233yIxMRETJkywXZBkYPGVJJFIZLUnX7duHc6cOYOTJ0+a9N27dw8ymQyurq5G7V5eXrh3716J61ywYAE++OADq8VIRERERFRWa9euxZ9//mn43d7eHi+++CJCQ0MRHBxs1WNsKjubFW6Ij4/H66+/jjVr1kAul1tlnQAwd+5cZGZmGn7i4+Ottm4iIiIioscpKCjA1q1bkZ+fb9QeGhoKAHjmmWfw1VdfISEhAT///DM6derEBKkSsvhKkl6vt8oTnz59GikpKWjTpo2hTafT4fDhw/j++++xe/duaDQaZGRkGF1NSk5Ohre3d4nrtbe3h729vVViJCIiIiIyx507d7B06VIsXboUSUlJWLduHUaMGGHo79GjBw4dOoTOnTszKaoCLL6StGDBAixfvtykffny5fj888/NXk/37t3x999/49y5c4afdu3aYcyYMYb/29nZYf/+/YbHXLlyBXfu3EHHjh0tDZuIiIiIyKp0Oh1+//139O/fH/Xq1cNHH32EpKQkAEB4eLjRsmKxGF26dGGCVEVYfCUpIiICa9euNWlv2rQpRo4cif/9739mrcfZ2RnNmjUzanNyckLNmjUN7ZMnT8Ybb7wBNzc3uLi4YMaMGejYsSMr2xERERGRzSQlJWHZsmVYsmQJ7ty5Y9QnkUjQv39/hIWF2Sg6sgaLk6R79+7Bx8fHpN3Dw8OQOVvL119/DbFYjKFDhyI/Px8hISH48ccfrfocRERERETm+vnnnzFx4kSTqs61a9fG1KlTMXnyZPj6+tooOrIWi5MkPz8/REdHo169ekbt0dHRqFWrVpmCOXjwoNHvcrkcP/zwA3744YcyrZeIiIiIyBqCgoIMCZJIJELv3r0RFhaG3r17Qyot1S1IqRKy+JWcOnUqZs6ciYKCAsNNXvfv34+33noLs2fPtnqAREREREQVSRAEHD58GOHh4WjTpg3efPNNQ19AQADGjRsHPz8/TJ06FXXr1rVhpFReRIKFNb0FQcCcOXPw7bffQqPRAHh4xed///sf3nvvvXIJsiyysrKgVCqRmZkJFxcXW4dDRERERJVUeno6Vq1ahYiICFy+fBkAUKdOHdy4cQMSicTG0ZE1mJsbWJwkFcrJycGlS5fg4OCABg0aVNqy20ySiIiIiKgkgiAgJiYGERERWL9+PdRqtVG/u7s7jhw5goYNG9ooQrImc3ODUg+cVCgUhgIOlTVBIiIiIiIqTm5uLqKiohAREYG///7bpL9r164IDQ3FkCFDeKz7FLL4Pkl6vR4ffvghlEol6tati7p168LV1RUfffSR1W40S0RERERUnvR6PebOnWuUILm6umLmzJn4559/cPDgQYwaNYoJ0lPK4itJ77zzDpYtW4bPPvsMwcHBAIAjR47g/fffh1qtxieffGL1IImIiIiISisnJwenTp3Cc889Z2hTKBQYO3YsfvzxR3Ts2BGhoaEYPnw4HBwcbBcoVRoWz0mqVasWwsPDMWDAAKP2bdu24ZVXXkFCQoJVAywrzkkiIiIiejpduHAB4eHhWL16NQoKCpCYmIgaNWoY+m/duoXMzEy0bNnShlFSRSq3OUnp6elo1KiRSXujRo2Qnp5u6eqIiIiIiKwmLy8P69evR0REBGJiYoz6Vq1ahddff93wu7+/fwVHR1WFxXOSWrZsie+//96k/fvvv2cWTkREREQ2cenSJcycORO1atXChAkTjBIkR0dHTJkyBd26dbNhhFSVWHwl6YsvvkDfvn2xb98+dOzYEQAQExOD+Ph47Ny50+oBEj2OXi8gISMPKo0WTjIpfF0dIBaLbB0WERERVaDJkydj+fLlJu3NmzdHWFgYxowZA6VSaYPIqKqyOEnq2rUrrl69ih9++MFwk60hQ4bglVdeQa1ataweIFFJrqdkY3dsMuJSc6DW6iCXShDgoUBIMy8EejrbOjwiIiKqIM2aNTP8Xy6XY8SIEQgNDUWHDh0gEvHkKVmu1DeTrSpYuKF6up6SjajoW0hXaeCjlMNRJkWuRoukTDXcnGSYGOzPRImIiKgaKSgowLZt2xAREYGvv/7aKDFKT09Hjx49MG7cOIwbNw5ubm42jJQqs3Ir3HD48OHH9nfp0sXSVRJZRK8XsDs2GekqDRp4KgxniJzldlDYS3EtJQd7LiajvruCQ++IiIiquFu3bmHJkiVYvnw57t27BwCIiIjAd999Z1jGzc0NZ86csVWIVA1ZnCQ999xzhoPSRy9CiUQi6HQ660RGVIKEjDzEpebARyk3uYQuEongo5TjekoOEjLy4OfmaKMoiYiIqLS0Wi127tyJ8PBw/PHHHybHnDExMRAEgUPpqNxYnCS1bNkSaWlpmDx5MsaNG4eaNWuWR1xEJVJptFBrdXCUFX+zNweZBMlZaqg02gqOjIiIiMoiKSkJkZGRWLp0Ke7evWvUJ5VKMXDgQISFheH5559ngkTlyuIk6ezZszh58iQiIyPx7LPPomfPnpg2bRq6du1aHvERmXCSSSGXSpCr0cJZbmfSn6fRwV4qgZPM4rc3ERER2dCpU6fw/vvvG7XVrVsXU6dOxaRJk+Dj42ObwOipY/F9kgCgffv2WLJkCW7cuIGgoCAMHDgQixcvtnJoRMXzdXVAgIcCSZlqk8vvgiAgKVONQE8FfF2Lv9JEREREtpecnIwrV64YtfXp0wd+fn4Qi8UYMGAAfv/9d8TFxeGdd95hgkQVqtSn2uPj47F06VIsX74cbdq0QadOnawZF1GJxGIRQpp5ITEzD9dSHs5NcpBJkKfRGarb9WzqxaINRERElYwgCPjzzz8RERGBLVu2oHv37ti1a5ehXyKRYNWqVQgICICfn58NI6WnncUlwLdu3YrIyEicPXsWY8eOxdSpU9GgQYPyiq/MWAK8+ip6n6R87cMhdoGeCvRsyvskERERVSZpaWlYuXIlIiMjcfXqVUO7SCRCXFwc6tWrZ8Po6Glibm5gcZIkFotRu3ZtDBgwADKZzKR/0aJFlkdbjpgkVW96vYCEjDyoNFo4yaTwdXXgFSQiIqJKQBAEHDlyBBEREdiwYQM0Go1Rv6enJyZNmoTXX38d3t7eNoqSnjbldp+kLl26QCQS4eLFiyZ9rDJCFU0sFrHMNxERUSWTk5ODDh06FHu8+PzzzyM0NBSDBg0q9oQ7UWVgcZJ08ODBcgiDiIiIiKoLhUJhdJsYNzc3TJw4EdOmTcMzzzxjw8iIzMMayURERERUKtnZ2Vi7di12796NjRs3Qiz+t3ByaGgo9Ho9wsLCMHToUMjlchtGSmQZi+ckDRky5LH9mzdvLlNA1sY5SURERETWdfbsWURERGDNmjXIyckBAOzbtw/du3c3LCMIAqdiUKVTbnOStm7dCmdnZwwcOBASiaRMQRIRERFR1aBSqfDrr78iIiICJ06cMOl/NEligkRVmcVJ0t69ezF79mycPn0aX3zxBfr27VsecRERERFRJXDx4kWEh4dj1apVyMrKMupTKBQYM2YMQkND0bp1axtFSGR9FidJ3bt3x9mzZ7FixQqEhoaiUaNGWLRoEVq0aFEe8RERERGRDS1atAjLly83amvVqhXCwsIwevRoODvz3oRU/YifvIgpkUiEiRMn4tq1a+jSpQu6dOmCSZMmITEx0drxEREREVEFuXLlimGOUaHQ0FAAgIODAyZOnIjjx4/jzJkzCA0NZYJE1ZbFhRu+/fZbk7bExET88MMPAB5WOalMWLiBiIiIqGQajQZbt25FeHg4/vzzT/z0008ICwsz9AuCgNWrV6N///5wdXW1XaBEVmBubmBxklSvXr3H9t+8edOS1ZU7JklEREREpm7cuIElS5Zg+fLlSElJMbS3bNkSZ8+eZeEFqpbKrbpdZUuCiIiIiMg8Wq0WO3bsQHh4OPbs2YNHz5U3aNAAY8eOhU6ng1TK22nS06tM7/7CDxbPNBARERFVbn/99RdGjhxpModcKpViyJAhCA0NRbdu3XhcR4RSFm5YtWoVmjdvDgcHBzg4OKBFixb4+eefrR0bEREREVnJM888YzSszt/fHwsWLMDdu3fx66+/4vnnn2eCRPT/LL6StGjRIrz77rt49dVXERwcDAA4cuQIwsLCkJaWhlmzZlk9SCIiIiIyT1JSEpYtWwZ7e3u8+eabhnYvLy+8+OKLyMvLQ1hYGF544QWIxaU6X05U7ZWqcMMHH3yAcePGGbWvXLkS77//fqWbs8TCDURERFTd6fV67N+/H+Hh4di2bRt0Oh1q1qyJu3fvQi6XGy3HxIieZuVWuCEpKQlBQUEm7UFBQUhKSrJ0dURERERUSqmpqYiKikJkZCTi4uKM+tLT0xEdHY3u3bsb2pggEZnH4k9KYGAg1q9fb9L+66+/okGDBlYJioiIiIiKJwgCDh06hFGjRsHX1xf/+9//jBIkLy8vvPPOO7hx44ZRgkRE5rP4StIHH3yAESNG4PDhw4Y5SdHR0di/f3+xyRMRERERWY9Wq8WIESOQnJxs1N6jRw+EhYVhwIABsLOzs1F0RNWDxVeShg4diuPHj8Pd3R1bt27F1q1b4e7ujhMnTmDw4MHlESMRERHRU0kQBFy5csWozc7ODpMnTwYAuLu7480338S1a9ewd+9eDB06lAkSkRVYXLihqmHhBiIiIqpqMjMzsWbNGoSHh+Off/7BrVu3ULt2bUP/nTt3EB0djSFDhsDe3t6GkRJVLebmBhZfSZJIJEY19omIiIjIOk6dOoWpU6eiVq1amD59Ov7++2/odDosW7bMaLk6depg1KhRTJCIyonFc5Kq+YUnIiIiogqVk5ODX375BRERETh9+rRJf8eOHdGiRQsbREb09LI4SQLAuzETEVGlptcLSMjIg0qjhZNMCl9XB4jF/O6iyufrr7/G/PnzkZ2dbdTu7OyMsWPHIjQ0lAkSkQ2UKkny9vYusU+n05U6GCIiorK6npKN3bHJiEvNgVqrg1wqQYCHAiHNvBDo6Wzr8IiMuLq6GiVIbdq0QVhYGEaNGgWFQmHDyIiebhYXbhCLxdi0aRPc3NyK7e/atatVArMWFm4gInp6XE/JRlT0LaSrNPBRyuEokyJXo0VSphpuTjJMDPZnokQ2cenSJURERGDkyJHo0KGDoT03NxfPPPMMevfujdDQULRr186GURJVf+bmBhZfSRKJRAgODoanp2eZAiQiIrImvV7A7thkpKs0aOCpMAwNd5bbQWEvxbWUHOy5mIz67goOvaMKkZ+fj82bNyM8PByHDx8GANy/f98oSXJ0dMTNmzdZtpuokmHhBiIiqhYSMvIQl5oDH6XcZO6sSCSCj1KO6yk5SMjIg5+bo42ipKfB9evXERkZiaioKKSlpRn17dixA3l5eXBwcDC0MUEiqnwsTpL+/PPPEofaERER2YpKo4Vaq4OjzKHYfgeZBMlZaqg02gqOjJ4GBQUF2L59O8LDw7Fv3z6T/kaNGiE0NBTjxo0zSpCIqHKyOElSqVTYv38/QkJCjNp3794NvV6P3r17Wy04IiIicznJpJBLJcjVaOEsNz0zn6fRwV4qgZOsVDWLiB7r+PHjGDZsmFGbnZ0dhg0bhtDQUHTp0oXVgYmqEItvJjtnzpxiK9gJgoA5c+ZYJSgiIiJL+bo6IMBDgaRMtcnQcEEQkJSpRqCnAr6uPItPZaPVapGQkGDUFhwcjCZNmgAAAgIC8Pnnn+Pu3btYu3YtunbtygSJqIqx+HTatWvXDDuBoho1aoTr169bJSgiIiJLicUihDTzQmJmHq6lPJyb5CCTIE+jM1S369nUi0UbqNQSEhKwdOlSLF26FLVr10ZMTIyhTyQS4csvv4RUKkX37t0hFlt8HpqIKhGLkySlUokbN27A39/fqP369etwcnKyVlxEREQWC/R0xsRgf8N9kpKz1LCXStDcV4meTXmfJLKcXq/Hnj17EBERgd9++80wmubu3bs4f/48WrZsaViWUw6Iqg+Lk6SBAwdi5syZ2LJlCwICAgA8TJBmz56NAQMGWD1AIiIiSwR6OqP+cwokZORBpdHCSSaFr6sDryCRRZKTk7F8+XIsWbIEN2/eNOoTi8Xo06ePjSIjoopg8c1kMzMz0atXL5w6dQq1a9cG8PBsSufOnbF582a4urqWR5ylxpvJEhERkbn0ej1eeuklbNiwAVqtcSVEHx8fTJkyBVOmTEGdOnVsFCERlUW53UxWqVTi6NGj2Lt3L86fPw8HBwe0aNECXbp0KVPARERERLYmFouhUqkMCZJIJELPnj0RGhqKfv368Z5GRE8Ji68kVTW8kkRERESPEgQB0dHRWLt2Lb755huj5GfXrl2YMGECJk2ahKlTp6J+/fo2jJSIrMnc3MCmpVd++ukntGjRAi4uLnBxcUHHjh2xa9cuQ79arcb06dNRs2ZNKBQKDB06FMnJyTaMmIiIiKqyjIwMfPfdd2jevDk6d+6Mn376Cdu3bzdaJiQkBPHx8ViwYAETJKKnlE2TpNq1a+Ozzz7D6dOncerUKTz//PMYOHAgLl68CACYNWsWfvvtN2zYsAGHDh1CYmIihgwZYsuQiYiIqIoRBAHHjx/HpEmTUKtWLbz22muGYw0AWLNmjdHyYrEYMpmsosMkokqk0g23c3Nzw8KFCzFs2DB4eHhg7dq1hjtYX758GY0bN0ZMTAw6dOhg1vo43I6IiOjplJ2djTVr1iAiIgLnzp0z6e/UqRNCQ0MxbNgwyOXyig+QiCpcuRVuKC86nQ4bNmyASqVCx44dcfr0aRQUFKBHjx6GZRo1aoQ6deo8NknKz89Hfn6+4fesrKxyj52IiIgqn48++ggLFy40alMqlRg3bhymTZuGZs2a2SgyIqrsLE6SLly48Nj+Fi1aWLS+v//+Gx07doRarYZCocCWLVvQpEkTnDt3DjKZzKSkuJeXF+7du1fi+hYsWIAPPvjAohiIiIioasvNzYVOp4Oz8783DJ48ebIhSfrPf/6DsLAwjBgxAo6OjrYKk4iqCIuTpFatWkEkEqFwlJ5I9PDmfIIgQCQSGe5Eba6GDRvi3LlzyMzMxMaNGzF+/HgcOnTI0rAM5s6dizfeeMPwe1ZWFvz8/Eq9PiIiIqq8Ll68iIiICKxatQpz5szBnDlzDH0NGzbEV199hW7duqF169Y2jJKIqhqL5ySJxWKcOHECHh4eEAQBzZo1w86dO1G3bl0AMPxbWj169EBAQABGjBiB7t2748GDB0ZXk+rWrYuZM2di1qxZZq2Pc5KIiIiqF7VajU2bNiE8PBxHjhwxtNevXx/Xrl2DWGzTulREVImV65ykOnXqwNPTE8DDK0mOjo5lTo4K6fV65Ofno23btrCzs8P+/fsxdOhQAMCVK1dw584ddOzY0SrPRURERFXH1atXERkZiRUrVuD+/ftGfQ4ODujatStycnJ4UpSIysziJMnT0xNXr16Fp6cnEhMToVKp0Lt3b/z888/o1auXReuaO3cuevfujTp16iA7Oxtr167FwYMHsXv3biiVSkyePBlvvPEG3Nzc4OLighkzZqBjx45mV7YjIiKiqi8uLg7Tpk3DgQMHTPqaNm2K0NBQjB071mQeMxFRaVmcJPXq1QsjR45Ev379cPDgQfTo0QOvv/46XnrpJbz66qt4//33zV5XSkoKxo0bh6SkJCiVSrRo0QK7d+/GCy+8AAD4+uuvIRaLMXToUOTn5yMkJAQ//vijpSETERFRFebh4YHjx48bfpfJZHjxxRcRFhaG4OBgw/xoIiJrsXhOkkqlwieffILz58+jXr16eO+99+Dp6YkbN25g2LBhOHPmTHnFWiqck0RERFQ1aLVa7NixA3fu3MFrr71m1Ddt2jQcPHgQoaGhGD9+PNzd3W0UJRFVZebmBla9maxara50N2NjkkRERFS5xcfHY+nSpVi6dCkSExPh6OiIxMREKJVKwzI5OTlwcnLiVSMiKhNzcwOrln+pbAkSERERVU46nQ47d+7EgAED4O/vjw8//BCJiYkAHt7zaOPGjUbLKxQKJkhEVGFKVd3u1KlTWL9+Pe7cuQONRmPUt3nzZqsERkRERNVPUlISli9fjsjISNy5c8eoTyKRoH///ggLCzPMTyYisgWLk6R169Zh3LhxCAkJwZ49e9CzZ09cvXoVycnJGDx4cHnESERERNWAIAjo3r07Ll26ZNReu3ZtTJ06FZMnT4avr6+NoiMi+pfFw+0+/fRTfP311/jtt98gk8nwzTff4PLlyxg+fDjq1KlTHjESERFRFZSRkWH0u0gkwoQJEwz/79OnD7Zv346bN2/ivffeY4JERJWGxUlSXFwc+vbtC+BhCU6VSgWRSIRZs2YhMjLS6gESERFR1SEIAg4dOoRRo0bBy8vL5KrRxIkT8c477+DGjRv4/fff0b9/f0ilpRr9T0RUbixOkmrUqIHs7GwAgK+vL2JjYwE8PFuUm5tr3eiIiIioSkhPT8fixYvRpEkTPPfcc1i3bh00Go3JCVQPDw98/PHH8Pf3t02gRERmsPjUTZcuXbB37140b94cL774Il5//XUcOHAAe/fuRffu3csjRiIiIqqEBEHAsWPHEB4ejvXr10OtVhv116xZEzVr1rRRdEREpWdxkvT9998bdoLvvPMO7OzscPToUQwdOhTz5s2zeoBkPr1eQEJGHlQaLZxkUvi6OkAsZrlUIiKyvt9//x1z587F33//bdLXpUsXhIWFYciQIbC3t7dBdEREZWNxkuTm5mb4v1gsxpw5c6waEJXO9ZRs7I5NRlxqDtRaHeRSCQI8FAhp5oVAT2dbh0dERNWMRqMxSpBcXV0xfvx4hIaGonHjxjaMjIio7CxOkh69p8GjWOGu4l1PyUZU9C2kqzTwUcrhKHNArkaL2MRMJGbmYWKwPxMlIiIqlZycHKxbtw6NGjVCp06dDO39+vWDj48P/P39ERoaiuHDh8PBwcGGkRIRWY/FSZK/v7/hjteCIAB4WMZTEASIRCLodDrrRkiPpdcL2B2bjHSVBg08/70bubPcDgp7Ka6l5GDPxWTUd1dw6B0REZntwoULiIiIwM8//4zs7Gz069fPKEmys7PD33//zTlHRFQtWZwkeXh4QCaTYfLkySzbWQkkZOQhLjUHPkq5IUEqJBKJ4KOU43pKDhIy8uDn5mijKImIqCrIy8vD+vXrERERgZiYGKO+33//HYmJiahVq5ahjQkSEVVXFpcAT0hIwKJFixAdHY2BAwdi/fr1cHFxQcuWLdGyZcvyiJEeQ6XRQq3VwVFWfLLqIJMgX6uDSqOt4MiIiKiquHTpEmbOnAlfX19MmDDBKEFydHTElClTcOLECaMEiYioOrM4SZJKpXjxxRexd+9eHD58GDqdDm3atMGyZcvKIz56AieZFHKpBLklJEF5Gh3spRI4lZBEERHR0y0uLg5NmjTBN998gwcPHhjamzVrhu+//x6JiYlYsmQJ2rVrZ8MoiYgqlsVJUqG8vDwcOnQIhw4dQs2aNXlTOBvxdXVAgIcCSZlqwxyxQoIgIClTjUBPBXxdOZmWiIhgcuP3gIAABAUFAQDs7e0xduxYREdH48KFC5g+fTqUSqUtwiQisimLLy+cO3cOkZGR2LhxI5577jl89NFH6NGjR3nERmYQi0UIaeaFxMw8XEt5ODfJQSZBnkaHpEw13Jxk6NnUi0UbiIieYgUFBdi+fTvCw8ORkJCAixcvGs1jnTt3Lq5du4bx48cb3eqDiOhpJRIevfzwBGKxGLVr18bYsWPh5eVl0v/aa69ZLThryMrKglKpRGZmJlxcXGwdTrkpep+kfO3DIXaBngr0bMr7JBERPa1u376NJUuWYNmyZbh3756h/eDBg+jatasNIyMisg1zcwOLryTVqVMHIpEIa9euNekTiUSVLkl6WgR6OqP+cwokZORBpdHCSSaFr6sDryARET1ldDoddu7cifDwcOzatctkKHZAQACys7NtFB0RUdVgcZJ069atcgiDrEEsFrHMNxHRU2zhwoX47rvvEB8fb9QukUgwaNAghIaGonv37hCLSz0lmYjoqVDqkmcajQY3b95EQEAA75VERERUCcTGxholSHXq1MHUqVMxadIklu8mIrKAxaeScnNzMXnyZDg6OqJp06a4c+cOAGDGjBn47LPPrB4gERERGUtOTsbnn38OlUpl1B4WFgaxWIz+/ftjx44duHHjBubNm8cEiYjIQhYnSXPnzsX58+dx8OBByOVyQ3uPHj3w66+/WjU4IiIiekgQBBw4cADDhw9H7dq1MWfOHKxbt85omQ4dOuDOnTvYvn07+vbtC4lEYqNoiYiqNovHyW3duhW//vorOnToYFQ+tGnTpoiLi7NqcERERE+7+/fvY8WKFYiMjMTVq1eN+iIjIzF58mTD7yKRCL6+vhUdIhFRtWNxkpSamgpPT0+TdpVKZZQ0ERERUekIgoDo6GiEh4dj48aNyM/PN+r38PDApEmTMHXqVBtFSERUvVmcJLVr1w6///47ZsyYAQCGxGjp0qXo2LGjdaMjIiJ6Cv3www+G79miunXrhtDQUAwePBgymcwGkRERPR0sTpI+/fRT9O7dG//88w+0Wi2++eYb/PPPPzh69CgOHTpUHjESERFVW4IgoKCgwCjpGTJkCGbOnAmdTgc3NzdMmDAB06ZNQ8OGDW0YKRHR08Piwg2dOnXCuXPnoNVq0bx5c+zZsweenp6IiYlB27ZtyyNGIiKiaic7OxsRERFo06YN5s+fb9RXq1YtvPPOO/j555+RkJCAr776igkSEVEFEgmP3oq7msnKyoJSqURmZiZcXFxsHQ4RET3lzp49i4iICKxZswY5OTkAAE9PT8THx3MIHRFROTM3N7D4SlLXrl2xatUq5OXllSlAIiKip0Vubi6ioqLw7LPPok2bNoiIiDAkSABQt25dJCYm2jBCIiIqyuIkqXXr1vjvf/8Lb29vTJ06FceOHSuPuIiIiKq8Bw8e4LXXXkOtWrUwadIknDhxwtCnUCgQGhqKM2fO4MSJE/D397ddoEREZKRUw+20Wi22b9+OlStXYteuXQgMDMSkSZMwduxYeHl5lUecpcbhdlQZ6fUCEjLyoNJo4SSTwtfVAWIxS+gTVTf5+fmoXbs20tLSDG2tWrVCWFgYRo8eDWdnZxtGR0T09DE3NyjznKSUlBRERkbik08+gU6nQ58+ffDaa6/h+eefL8tqrYZJEpWn0iQ711OysTs2GXGpOVBrdZBLJQjwUCCkmRcCPXnARFRVXb16FTExMRg/frxR+1tvvYXvv/8eI0eORFhYGNq3b8/7ChIR2UiFJEknTpxAVFQU1q1bBxcXF0yYMAEJCQlYu3YtXnnlFXz55ZelXbXVMEmi8lKaZOd6Sjaiom8hXaWBj1IOR5kUuRotkjLVcHOSYWKwPxMloipEo9Fg69atiIiIwIEDByCVSnHnzh34+PgYlklLS4NUKoWrq6vtAiUiIgDlWLghJSUFX331FZo1a4bOnTsjNTUVv/zyC27duoUPPvgAS5cuxZ49exAeHl6mP4CoMitMdmITM+HqaIf67gq4OtohNjETUdG3cD0l2+Qxer2A3bHJSFdp0MBTAWe5HSRiEZzldmjgqUC6SoM9F5Oh11frgpNE1cLNmzfx9ttvw8/PDyNGjMCBAwcAPByOvnz5cqNl3d3dmSAREVUxFt9Mtnbt2ggICMCkSZMwYcIEeHh4mCzTokULtG/f3ioBElU2jyY7hcNmnOV2UNhLcS0lB3suJqO+u8Jo6F1CRh7iUnPgo5SbDLURiUTwUcpxPSUHCRl58HNzrNC/iYieTKvVYseOHYiIiMDu3bvx6ECMBg0aIDQ01GS4HRERVT0WJ0n79+9H586dH7uMi4sL/vzzz1IHRVSZlTbZUWm0UGt1cJQ5FLteB5kEyVlqqDTaco2fiEpn4MCB2Llzp1GbVCrF4MGDERYWhm7dunGuERFRNWFxklSYIKWkpODKlSsAgIYNG8LT09O6kRFVUqVNdpxkUsilEuRqtHCW25k8Lk+jg71UAieZxR9LIrIynU4HsVhslPQUTZL8/f0xbdo0TJw4Ed7e3rYKk4iIyonFc5Kys7MxduxY+Pr6omvXrujatSt8fX3x0ksvITMzszxiJKpUiiY7xSkp2fF1dUCAhwJJmWqTYTqCICApU41ATwV8XYtPvoio/CUlJeGTTz5B/fr1cfz4caO+0aNHY/jw4di1axfi4uIwd+5cJkhERNWUxUnSlClTcPz4cezYsQMZGRnIyMjAjh07cOrUKYSGhpZHjESVSmmTHbFYhJBmXnBzkuFaSg6y1QXQ6vXIVhfgWkoO3Jxk6NnUi/dLIqpger0e+/btw7Bhw1CnTh3MmzcPd+7cQUREhNFyCoUCv/76K3r16gWx2OKvTyIiqkIsHtezY8cO7N69G506dTK0hYSEYMmSJejVq5dVgyOqjAqTncTMPFxLeTg3yUEmQZ5GZyjlXVKyE+jpjInB/obS4clZathLJWjuq0TPprxPElFFSk1NxYoVKxAREYG4uDijPpFIhJycHAiCwHlGRERPIYuTpJo1a0KpVJq0K5VK1KhRwypBEVV2ZUl2Aj2dUf85hcU3oSUi64iNjcWnn36KTZs2QaPRGPV5e3tj8uTJmDJlCvz9/W0TIBER2ZzFSdK8efPwxhtv4OeffzaMxb537x7efPNNvPvuu1YPkKiyKkuyIxaLWOabyEYK7+9XVI8ePRAWFoYBAwbAzs60sAoRET1dRMKjkyqeoHXr1rh+/Try8/NRp04dAMCdO3dgb2+PBg0aGC175swZ60VaSubeVZeIiKoXQRBw7NgxCIKAoKAgo/ZGjRohPT0dEydOxLRp0xAYGGjDSImIqKKYmxtYfCVp0KBBZYmLiIioXGVlZWHNmjUIDw/HhQsX0KlTJ/z111+GfpFIhO3bt8Pf3x/29vY2jJSIiCori68kVTW8kkRE9HQ4ffo0IiIisHbtWqhUKqO+2NhYNG3a1EaRERFRZVFuV5KIiIgqi5ycHKxbtw7h4eE4ffq0SX+HDh0QFhaG+vXr2yA6IiKqqixOktzc3B7bn56eXupgiIiIzJWVlYW6desiIyPDqN3Z2RkvvfQSQkND0bJlS9sER0REVZrFSZIgCNDr9Zg1axbq1atXHjERERGZePSeRS4uLujYsSN27doFAGjbti3CwsIwcuRIKBQKW4VJRETVgMVJUlxcHN5//3189dVXCAsLw7x584q9bxIREZE1XL58GREREdi/fz/OnDkDqfTfr64ZM2bA19cXoaGhaNeunQ2jJCKi6qTUhRuuXr2K//3vfzhy5Ajee+89vPLKK5BIJNaOr8xYuIGIqOrJz8/Hli1bEB4ejkOHDhnat27dioEDB9owMiIiqsrMzQ3EpX2CZ555Blu2bMGmTZuwatUqNGnSBFu3bi3t6oiIiHD9+nW89dZbqF27NkaNGmWUINnb2yMuLs6G0RER0dPC4uF2Q4YMMWnz9fXF5cuXMXToUOh0OqsERkRET4/ff/8dixcvxr59+0z6GjZsiNDQUIwfP/6JxYOIiIisweIkqaT5R8OGDStzMERE9HTas2ePUYJkZ2eHoUOHIjQ0FF27djUq2EBERFTeeDNZIiKqMDqdDjt37kRQUBBq1qxpaP/nn3/QtGlT1K9fH6GhoZgwYQI8PT1tGCkREVVH5TonqaCgALm5uYb/nzlzBtnZ2aWLlIiIqr2EhAR8+OGH8Pf3x4ABA7BixQqj/iZNmiAmJgbXrl3DW2+9xQSJiIhsyuIk6Y8//oCrqyu8vLywZ88etGvXDu3atUPt2rURHR1t0boWLFiA9u3bw9nZGZ6enhg0aBCuXLlitIxarcb06dNRs2ZNKBQKDB06FMnJyZaGTUREFUyv12P37t0YPHgw6tati/nz5+Pu3bsAgIiICDw6kKFDhw4Qi0tdT4iIiMhqLP42mjdvHl577TUsWrQIo0ePRnBwMDIyMjB8+HDMmzfPonUdOnQI06dPx7Fjx7B3714UFBSgZ8+eUKlUhmVmzZqF3377DRs2bMChQ4eQmJhYbPEIIiKqHJKTk/HZZ58hMDAQvXr1wtatWw1FfcRiMfr164evv/7aJEkiIiKqLCyek+To6Ih//vkH/v7+sLe3x8mTJ9GiRQtcvHgRnTt3Rnp6eqmDSU1NhaenJw4dOoQuXbogMzMTHh4eWLt2raEwxOXLl9G4cWPExMSgQ4cOJuvIz89Hfn6+4fesrCz4+flxThIRUQXYtWsXBg4ciIKCAqN2Hx8fTJkyBVOmTEGdOnVsFB0RET3tym1OkkwmM5wRbNCgAWrUqAHgYfL06JeipTIzMwHAUOL19OnTKCgoQI8ePQzLNGrUCHXq1EFMTEyx61iwYAGUSqXhx8/Pr0wxERGR+Tp27Aip9N/CqSEhIdi8eTNu376NDz/8kAkSERFVCRaXAG/YsCEuXryIgIAAxMbGGtr/+ecfNGjQoNSB6PV6zJw5E8HBwWjWrBkA4N69e5DJZHB1dTVa1svLC/fu3St2PXPnzsUbb7xh+L3wShIREVmHIAiIjo5GeHg43N3dsXjxYkOfq6srXn31VYjFYkydOhUBAQG2C5SIiKiULE6S9uzZA5lMZtLu6+uLH374odSBTJ8+HbGxsThy5Eip1wE8vCO7vb19mdZBRESmMjIy8PPPPyMiIgIXL14EACgUCnz00UdwdnY2LPfFF1/YKkQiIiKrsNrNZFu1alXqIF599VXs2LEDhw8fRu3atQ3t3t7e0Gg0yMjIMLqalJycDG9v71I/HxERmUcQBJw8eRLh4eFYt24d8vLyjPrt7OwQGxuLjh072ihCIiIi6ytVrdVDhw6hf//+CAwMRGBgIAYMGIC//vrL4vUIgoBXX30VW7ZswYEDB1CvXj2j/rZt28LOzg779+83tF25cgV37tzhFzIRUTkqKChAREQE2rZti2effRZRUVFGCVJwcDBWrVqFhIQE7o+JiKjasbi63erVqzFx4kQMGTIEwcHBAIDo6Ghs2bIFK1aswOjRo81e1yuvvIK1a9di27ZtaNiwoaFdqVTCwcEBAPDyyy9j586dWLFiBVxcXDBjxgwAwNGjR816DnMrWBAR0b90Oh0CAwNx69YtQ5uLiwvGjRuH0NBQw9xRIiKiqsTc3MDiJKlx48aYNm0aZs2aZdS+aNEiLFmyBJcuXTJ7XSKRqNj2qKgoTJgwAcDDm8nOnj0bv/zyC/Lz8xESEoIff/zR7OF2TJKIiB4vNzcXBw8eRJ8+fYzaFyxYgLfffhvt27dHWFgYRowYAScnJxtFSUREVHblliTZ29vj4sWLCAwMNGq/fv06mjVrBrVaXbqIywmTJCKi4l28eBERERFYtWoVMjMzce3aNaN9e1paGu7cuYM2bdrYMEoiIiLrKbf7JPn5+RnNESq0b98+ltomIqrk1Go11qxZg86dO6NZs2b47rvvDPeoi4yMNFrW3d2dCRIRET2VLK5uN3v2bLz22ms4d+4cgoKCADyck7RixQp88803Vg+QiIjK7urVq4iIiMDKlStx//59oz4HBweMGDECw4cPt1F0RERElYvFSdLLL78Mb29vfPXVV1i/fj2Ah/OUfv31VwwcONDqARIRUdm89dZbWLhwoUl748aNERYWhrFjx6JGjRo2iIyIiKhysjhJAoDBgwdj8ODB1o6FiIjKQbt27Qz/l8lkGDZsGMLCwtCpU6cSC+gQUfH0egEJGXlQabRwkknh6+oAsZifI6LqplRJEhERVS5arRY7duxAREQEZs2ahZ49exr6Bg0ahODgYAwaNAgTJkyAu7u7DSMlqrqup2Rjd2wy4lJzoNbqIJdKEOChQEgzLwR6Ots6PCKyIouTpBo1ajz2zGN6enqZAiIqCc/eEZmKj4/H0qVLsWzZMiQkJAB4OMeoaJIkk8lw5MgRW4VIVC1cT8lGVPQtpKs08FHK4ShzQK5Gi9jETCRm5mFisD8TJaJqxOIkafHixQAAQRDw8ssv48MPP4Snp6e14yIywrN3RP/S6XTYvXs3IiIisGPHDuj1eqP+v//+G/n5+bC3t7dRhETVi14vYHdsMtJVGjTwVBhOFjvL7aCwl+JaSg72XExGfXcFT94RVRMW3yepKGdnZ5w/fx7169e3ZkxWxfskVX2mZ++kyNVokZSphpuTjGfv6KmRmpqKJUuWIDIyErdv3zbqE4vF6N+/P8LCwtCzZ0+IxRbf4YGIShCfnouv916Fq6MdnOV2Jv3Z6gJk5BZg1gvPwM/N0QYREpG5zM0NOCeJKjWevSP6V3x8PN555x2jNl9fX0ydOhWTJ09G7dq1bRQZUfWm0mih1urgKHMott9BJkFylhoqjbaCIyOi8lLmU42sjETlKSEjD3GpOfBRyk3eayKRCD5KOa6n5CAhI89GERKVj9TUVJw5c8aorU2bNmjfvj1EIhF69+6Nbdu24datW5g/fz4TJKJy5CSTQi6VILeEJChPo4O9VAInGc89E1UXFn+ahwwZYvi/Wq1GWFgYnJycDG2bN2+2TmRE4Nk7eroIgoDDhw8jIiICmzZtwjPPPIMLFy4YnSD48ccf4e7uDn9/f9sFSvSU8XV1QICHArGJmVDYS40+k4IgIClTjea+Svi6Fv9dRURVj8VJklKpNPz/pZdesmowRI8qevauuHHgPHtH1UF6ejpWrVqFiIgIXL582dAeGxuLo0ePIjg42NBW9J5HRFQxxGIRQpp5ITEzD9dSHo5ucJBJkKfRGebH9mzqxWHfRNWIxUeWUVFR5REHUbF49o6qK0EQcOzYMURERODXX3+FWq026nd3d8fEiRNRp04dG0VIREUFejpjYrC/odJqcpYa9lIJmvsq0bMpK60SVTcWJ0k//vgjJk2aBLlcXh7xEBnh2TuqjnQ6HTp27IiTJ0+a9HXp0gVhYWEYMmQIS3gTVTKBns6o/5yC9+wjegpYXAJcIpEgKSmpytwbiSXAq4ei90nK1z4cYhfoqeDZO6qyRo8ejV9++QUA4OrqivHjxyM0NBSNGze2cWRERETVV7mVAC/DbZWISo1n76gqUqlUWLduHX755Rf89ttvcHD4d1hoWFgYbt68ibCwMLz44otwdOS9VYiIiCoLznanKkMsFvEmfVQl/P3334iIiMDPP/+MrKwsAMD69esxfvx4wzJdunRBTEyMrUIkIiKixyhVkrR7926jKndFDRgwoEwBERFVRXl5ediwYQMiIiJw9OhRk/7Dhw8bJUlERERUeZUqSSrpi14kEkGn05UpICKiquTKlSsIDw/HypUr8eDBA6M+R0dHjBo1CmFhYSzdTUREVIVYnCTp9fryiIOIqEpau3YtFi9ebNTWvHlzhIaG4qWXXirxqjsRERFVXmJbB0BEVFXExcUhJSXFqG3KlCkQi8Wwt7fHuHHjEB0djfPnz2P69OlMkIiIiKqoUiVJhw4dQv/+/REYGIjAwEAMGDAAf/31l7VjIyKyuYKCAmzevBk9e/ZEYGAgvvvuO6N+Pz8/bNq0CYmJiVi5ciWCgoKMbnpMREREVY/F90lavXo1Jk6ciCFDhiA4OBgAEB0djS1btmDFihUYPXp0uQRaWrxPEhGVxp07d7BkyRIsW7YMSUlJhnZvb2/cuXMHdnZ2NoyOiIiISsPc3MDiJKlx48aYNm0aZs2aZdS+aNEiLFmyBJcuXSpdxOWESRIRmUun02HXrl0IDw/Hrl27TOZg1q9fH9OmTcOMGTN4XyMiIqIqqNySJHt7e1y8eBGBgYFG7devX0ezZs2gVqtLF3E5YZJEROaIjY1Fnz59EB8fb9QukUgwcOBAhIaGokePHhCLOZWTiIioqjI3N7C4up2fnx/2799vkiTt27cPfn5+lkdKRFQJBAQEICcnx/C7n58fpk2bhkmTJqFWrVo2jIyIiIgqmsVJ0uzZs/Haa6/h3LlzCAoKAvBwTtKKFSvwzTffWD1AIrIdvV5AQkYeVBotnGRS+Lo6QCyu2kUJkpOTERUVhfv372PhwoWGdgcHB0yaNAlXrlxBWFgYevXqBYlEYsNIiYiIyFYsHm4HAFu2bMFXX31lmH/UuHFjvPnmmxg4cKDVAywrDrcjKp3rKdnYHZuMuNQcqLU6yKUSBHgoENLMC4GezrYOzyKCIODgwYMIDw/Hli1bUFBQADs7O9y9exeenp5Gy7EyHRERUfVVbnOSqhomSUSWu56SjajoW0hXaeCjlMNRJkWuRoukTDXcnGSYGOxfJRKl+/fvY+XKlYiIiMDVq1dN+teuXYtRo0bZIDIiIiKyhXKbk1To1KlThitJTZo0Qdu2bUu7KiKqRPR6Abtjk5Gu0qCBp8JwZcVZbgeFvRTXUnKw52Iy6rsrKuXQO0EQcPToUYSHh2PDhg3Iz8836vfw8MCkSZMwdepUBAQE2ChKIiIiqswsTpLu3r2LUaNGITo6Gq6urgCAjIwMBAUFYd26dahdu7a1YySiCpSQkYe41Bz4KOUmQ89EIhF8lHJcT8lBQkYe/NwqZxnsV155BRcuXDBq69atG0JDQzF48GDIZDIbRUZERERVgcW1bKdMmYKCggJcunQJ6enpSE9Px6VLl6DX6zFlypTyiJGIKpBKo4Vaq4OjrPhzKA4yCfK1Oqg02gqOzJQgCCbJkEgkQlhYGACgRo0aeOONN3D58mUcOHAAI0aMYIJERERET2TxlaRDhw7h6NGjaNiwoaGtYcOG+O6779C5c2erBkdEFc9JJoVcKkGuRgtnuZ1Jf55GB3upBE4lJFEVITs7G2vXrkV4eDjOnTuHU6dOGQ35HTNmDBQKBYYNGwYHBwebxUlERERVk8VXkvz8/FBQUGDSrtPpeC8RomrA19UBAR4KJGWq8WhdF0EQkJSpRqCnAr6uFZ98nDt3DmFhYahVqxbCwsJw7tw5AEBERITRci4uLhg7diwTJCIiIioVi5OkhQsXYsaMGTh16pSh7dSpU3j99dfx5ZdfWjU4Iqp4YrEIIc284OYkw7WUHGSrC6DV65GtLsC1lBy4OcnQs6lXhRVtyM3NRVRUFJ599lm0bt0aERERRjd9bd++Pbp27VohsRAREdHTweIS4DVq1EBubi60Wi2k0ofDbQr/7+TkZLRsenq69SItJZYAJyqdovdJytc+HGIX6KlAz6YVd5+kqKgozJo1C5mZmUbtTk5OGDNmDEJDQ9GmTZsKiYWIiIiqvnIrAb548eKyxEVEVUSgpzPqP6dAQkYeVBotnGRS+Lo6VGjZ79q1axslSC1btkRYWBhGjx7Nkx5ERERUbngzWSIL6PWCTZOG6urq1auIjIxE165d0b9/f0O7Xq9Hq1at0LZtW4SFheE///mPSVlyIiIiInNZ/UpSVlaWWcsxEaHq6npKNv6IvYe/EzKRq9HCUSZFc18lejXzrrDhZ9WJRqPBtm3bEB4ejgMHDgAAzpw5Y5QkicVinD17FhKJxFZhEhER0VPI7CTJ1dX1sWdwBUGASCSCTqezSmBElcn1lGws3ncNV+9lQycIAAQAItxMVeHyvWzM7NGAiZKZbt68iSVLlmDZsmVISUkx6jt69CiSk5Ph5eVlaGOCRERERBXNojlJGzduhJubW3nFQlQp6fUC1h6/g/PxGZBJRHB2sIOdRIwCnR7ZeQU4H5+BtcfvYF7fJhx6VwKtVosdO3YgIiICu3fvNiktHhgYiNDQUEyYMAHu7u42ipKIiIjoIYuSpODgYHh6epZXLFQOOIem7O4+yMWxG/chEQE1FfaGK6r2UglkCjGSs9Q4fuM+7j7IRZ2aTk9Y29Pp9u3bGDx4sFGbVCrFoEGDEBYWhm7dukEstviOBERE5YLfnVRV8b1rPRZXt6Oqo2gJZ7VWB7lUggAPBUKaVVwJ5+rgRpoKmbkFqOksMxlyKhKJoHS0w/0cDW6kqZgk4eGNpW/fvo369esb2gICAvDCCy9g7969qFu3LqZNm4ZJkybB29vbhpESEZnidydVVXzvWheTpGrqeko2oqJvIV2lgY9SDkeZA3I1WsQmZiIxMw8Tg/35gbGAIAJEKOlMDM/QAMC9e/ewbNkyLFmyBIIg4MaNG0bzid5//33MmjULPXv25DwjIqqU+N1JVRXfu9ZndpIkEolYereK0OsF7I5NRrpKgwaeCsPr5iy3g8JeimspOdhzMRn13RW8BGuGeu5OcHWQISO3AF4uYqPPgSAIyMwtgNJBhnruT99VJL1ejwMHDiAiIgJbt26FVqs19O3evRt9+vQx/B4UFGSLEImIzMLvTqqq+N4tH2YnSYIgYMKECbC3t3/scps3by5zUFQ2CRl5iEvNgY9SXuzwMB+lHNdTcpCQkQc/N0cbRVl1+NVwRId6bth7KRn3VRo4y6X/Fm5Qa6EXBHSs7wa/Gk/PtkxNTcWKFSsQGRmJ69evG/WJRCL06tWLRV6IqErhdydVVXzvlg+zk6Tx48eXZxxkRSqNFmqtDo4yh2L7HWQSJGepodJoi+0nY2KxCKM71EFKTj6uJmcjW/3vdpOIRWjp54pRz9Z5as7OvPzyy1i+fDk0Go1Ru5eXFyZPnoypU6fC39/fNsEREZUSvzupquJ7t3yYnSRFRUWVZxxkRU4yKeRSCXI1WjjL7Uz68zQ62EslcJJxSpq5Aj2dMbNHA/zx9//fTLZAC0c7KVrUViLkKbuZrEgkMkqQunfvjrCwMAwcOBB2dqbvNyKiqoDfnVRV8b1bPri1qiFfVwcEeCgQm5gJhb3UZA5NUqYazX2V8HUt/oxDdWLNUpiBns54pZviqSitKQgCjh07hqVLl2LhwoVGQ+dCQ0Oxfv16TJw4EdOmTUODBg1sGCkRkXXwu5OqKr53yweTpGpILBYhpJkXEjPzcC3l4RhVB5kEeRodkjLVcHOSoWdTr2p5cF9UeZTCFItF1Xo8b1ZWFtasWYPw8HBcuHABANCiRQu8/vrrhmVatmyJxMREyGQyW4VJRGR1/O6kqorv3fIhEgRBsHUQ5SkrKwtKpRKZmZlwcXGxdTgVqmiSkK99eKk10FOBnk2rf71801KYUuRqtIadBUthGjt9+jQiIiKwdu1aqFQqo76OHTvi6NGjNoqMiKhiPc3fnVS18b1rHnNzA15JqsYCPZ1R/7mnY3hYUSyFaR6VSoV169YhPDwcp06dMul/9tlnERYWhuHDh9sgOiIi23havzup6uN717qYJFVz1X14WHFYCtM8S5YswaxZs4zanJ2d8dJLLyE0NBQtW7a0UWRERLb1NH53UvXA9671iG0dAJG1/VsKs/hzAA4yCfK1unIrhanXC4hPz8Xle1mIT8+FXm/7Ea15eXm4f/++UdvYsWMN9z1r06YNIiMjkZiYiB9//JEJEhERET3VeCWJqp3yKoVpTqU8c4pFWLPi3pNcvnwZkZGRWLFiBcaMGYPvvvvO0FezZk388MMPaNmyJdq1a1cuz1+RfysRERGRtbBwA1VpxR2EA8BPB+MQm5hpNCcJeFgK81pKDpr7KhHWNcDsA3Zzkh9zikUAsHrFvUfl5+djy5YtiIiIwMGDBw3tSqUSCQkJcHJyssrzPEl5VBckIiIiKosqUbjh8OHDWLhwIU6fPo2kpCRs2bIFgwYNMvQLgoD58+djyZIlyMjIQHBwMH766Sfel4UAPP4g3JqlME2THwfkarSITcxEYmYeJgb7o7674onFIn45fgd5BXo8yC15PWVJHuLi4hAZGYmoqCikpqYa9dnb22PAgAHIzs6ukCTJnG3GRImIiIgqK5vOSVKpVGjZsiV++OGHYvu/+OILfPvttwgPD8fx48fh5OSEkJAQqNXqCo706VQZ59YUKjwIj03MhKujHeq7K+DqaIfYxExERd8CAEwM9kezWkpk5BbgVpoKGbkFaO6rtOgA/dFKec5yO0jEIjjL7dDAU4F0lQZ7Libj7oPcxxaL8HaxR8yNdCRk5D52PaXZxsnJyejZsycCAwPxxRdfGCVIDRs2xKJFi5CQkIBVq1bB29vb4vVbytxtVpneT0RERERF2fRKUu/evdG7d+9i+wRBwOLFizFv3jwMHDgQALBq1Sp4eXlh69atGDlyZLGPy8/PR35+vuH3rKws6wduJZV5vkZlHiplbonvsK4BeLmMpTDNrZR3I031/8Uiir+btVYvIDNPg4ZeCqtX3HN3d8fly5cNv9vZ2WHo0KEIDQ1F165dTZ6vvLG6IJGpyry/JyIiU5W2cMPNmzdx79499OjRw9CmVCrx7LPPIiYmpsQkacGCBfjggw8qKsxSK5qE5BXooBcE+Cjl6N7YC8EB7uXy5Wnul3RlHypl6UF4WQ7E/62UV3zy4yCTIDnr4ZXNxxWLyFZrAQHF9hVdz+Mq7ul0OuzatQunTp3C+++/b2iXSCSYMmUKVq5cidDQUEyYMAGenp4W/JWWe9x7ydxtVl7VBYkqm8p80omIiIpXaZOke/fuAQC8vLyM2r28vAx9xZk7dy7eeOMNw+9ZWVnw8/MrnyBLqWgS4mAnxgOVBqk5+Tgfn4FDV1LRraEnRneoY9UvT3O/pB+9SgM8PMDX6PTwcrbHvSy1zW/EWpEH4eZWyqvn7oQADwViEzOhsJeaFIt4kKuBq+PDYWfFeVzFvcTERCxbtgxLlixBfHw8RCIRxo8fj3r16hmWeeuttzBv3jyIxdYdQVtcMnQjLeex76Xyqi5YVfEKwtOtsp90IiKi4lW7oxR7e3vDvV8qo6JJSE0nO5y/m4k8jQ7OcilqONohNVuDI3FpUGt1mNSpnlW+PC35ki56leZBbgGup+TgQa4GWp0eUokYTjIJztx5YNOhUhV5EO7r6vDY5CcpU43mvkr41XB8bLGIwvUkZarhLC95PYXV+fR6Pfbt24fw8HBs374dOp3OaPnVq1fj3XffNbTJ5fIy/62PKi6xdnW0Q0p2PnR64bFFLMzZZoV/a3XGKwhPN3OHBtvypBMRERWv0t5MtnCCeXJyslF7cnJyhUw+Ly+FSYi3ixw3UnORp9HBzUkGe6kEErEYNZzsIP7/5awxud3SSfSFV2nUBXqci89AarYacjsJajjJILeTICO3AFeTs3Hpnu3mehVNOB6tYF94EB7oqSjTQXhh0YqrKdlo6adEDUc7XEvJQba6AFq9HtnqAlxLyTGqlBfo6VxisYhJneph9LN14OYke+x60tJS8fnnn6NBgwYICQnBli1bDAmSSCRG3dadMfCtb+HaYTiup2SXaTs+TnGFMZQOdjhyLQ3n4zNQ00lW4nsJAEKaeT3xb63uB4VPKi5Snq8fVQ6WDA0mIqLKpdJeSapXrx68vb2xf/9+tGrVCsDDoXPHjx/Hyy+/bNvgyqAwCVHopUjP1UDxyFUFO4kYOYIWNRxlVpncbun8HSeZFPYSMa7cy0KeRgs3J5nhcfZSEQS5BKnZOpy6lY4ejWxzoCsWi6xa4vtRJV1B8XF5mCQmZ6lhL5Wgua8SPZsaXxEI9HRG/ccUi5gY7G9Yd3Hr6d59EA4cOGAUj6KGBxp2HYgu/Ueglq8fcjVa/JOcg3vRt8plqE5JZ78BQCQCxCIRbqSpjN4bj76XChPGx/2t1RmvIBDA+XlERFWZTZOknJwcXL9+3fD7zZs3ce7cObi5uaFOnTqYOXMmPv74YzRo0AD16tXDu+++i1q1ahndS6mqKRwqVnh23U5i/BIU6PSQisVwlkuRrtKU+cvT0i9pX1cHeDjLcfxmOjyd7U2GSqnydfBxlSM1K9+mQ+7K6yC8pKGJSZlq1HCUYXAbX3g42z92bolYLCpxuwR6OsO/ixPOxD/ArcRk1PH2QLu6NSGVPryoO3nyZEOS9MILPeHfaSBQpy0a1XKtsAPtkhJrjU4PnSBA6WiHdJUG2WotXBz+He746HvpSQmjparS3B5W+COgYocGExGRddl0z3zq1Cl069bN8HthwYXx48djxYoVeOutt6BSqTBt2jRkZGSgU6dO+OOPP8pl/kVFKRwqduLWfUhEIhTo9LCXSgA8TEJy1Fp4usghFYus8uVp6Ze0WCxCO/8a+CM2CdnqAkD08OpWgU6PHLUWDjIJGno5IzOvwOwErrwObsvjIPxJZ///vpuJsK4BpX6Oa8lZ+OnXXdi14WdcO74Xg976Ft2e726YozJ06FBcunQJEyZMgKyGD77eexWujnYVeqBdUmItk4ghFYsBCNDq9dDo9Eb9xR3wPS5htERVm9vDKwi2U5mSaXPnND4N8/OIiKoamyZJzz33nMmckqJEIhE+/PBDfPjhhxUYVfkqHCqWkJGHpAw1Hqg08HC2h1Yv/H8SIkV9dyfcy8q3ypdnab6kG/u44BlvZzxQaaDS6KDK10IiFsPTRY4ADyfYScRQF+jNSuBKc3BryUGOtQ7C9XoBp26n48yddNR0Mi38UXhD2PN3M3D4WioCPBQWHXxlZmZi0Y9L8FN4BFLv/Hv19NKfm+HRqJ1RAY2PPvoIAHD5XpZNDrRLSqyd5VK4OcqQkJELBzsJZJJ/pzSW5oCvupSkLw6vINhGZUumy3tosC1UpiSUiKg88RvaBgI9nTGpkz/kdmL8eTkFdx/kwcleCneFPXxd5biv0ljty7M0X9K+rg5o7VcDfydkormLPQr0AmSSh0MAAeBaSo5ZB8OlObi1pFS5tb6oC5/zzJ0HuJiYBaWDHe4+sEeApxPc/j9hSlfl41pyDuIf5GLpkRvwVMifePAlCAJOnTqF8PBwrFu3Drm5uUb9Ds5KeNWug0APJ1xPVZkMnbPVgXZJibVIJEJ9D0fEP8jFw2tID68oleaAr7Ql6avK3B5eQbAucz7vlTWZrk7z8ypbEkpEVJ6YJNlIoKcz5vVtgucbeWLfPylIyszDwxPzIqt/eVr6JV00sUrOzjckVjn52mIPhos7gAFg8cGtuQc51vyiLvqcbk52UDo8rNiWkq1Gdn4BWvm5AgDOxWcgK68AcjsJ6tdUQCoRlXjwpdcL2PT7Hrz/zv/wz9/nTZ6zXtM26Nh3BFp07gWZ/cOho8UNnbPVgfbjEuv7qgK09HOFp8IeGXkFSMnOt/iAr7Ql6avS3J7qeAWhPJib/Dzp817Zk2lrDw22hcqahBIRlRcmSTYkFovQqYEHggLcy/3Ls767Av1binEjTQUAqOfuBF+lA5Ky1Lh8L8vkec1NrEo6gGnpp3zswa23iz3Ox2fg4OVk5Gp1EATg6PX7SFflo6G3S4kHOXo9sDKm9F/URQ/KHOwk+CP2ntGNc+8+UCM1W40ajnZ4kFuAuBQVBAjIzddCKhHDy0VumCNU3MFX4faIvpBqlCA5KpxRv2NvhAx9Cb71G5rEVdzQOVseaD/p9a/vXroDPksPZqvq3B69XoC9VIKuDT1w6mY6UrPzkZylr7JXEMqDOcmPuQfmVSGZttbQYFuo7EkoEVF5YJJUCZT3l2dJJa0hABl5BSUeoDzp7OfjDmAuJmUiR61FrWKucqSrNLianIVryTk4duM+8rV6CCJA0AuoqZDB3k4K/5qOyFZrodHpIZOI4e1ij2vJ2cjI1ZT6i/p6Sjb++Pse/k7IhKpAC7EgQmqOGo19/k3KAj0VyMnX4kFuAWRSMe5l5UGnEwCRCC4OUgR4KIyGn9WUC9i2fi3sExuj6wu9DNvjmWat4F2/MQSRGHWCBqJBx54QJDLAVY60nHzD8MXCdZU0dK68huo86Qx+4UF+t8YeaF+vBhT2UjjL7YyWK817tjQl6ava3J5HP2/2EjE8nOVo518DjX1cqtwVhPJgTvJT311h9oG5NZJpzrUpWVVIQomIrK3yHFlQuSjuYCQxIxd7/3l408/2/jVQ311h9tUYrVaPcwkZSM3Ox5FraSVe+TkXn/H/VztUqOFob0gI0lUanIvPQHKWGpl5BQAAiQjQCYBeAFKz83Hgcgp8XR9+GWt1ekglYrjIJcgv0CMxIw91ahb/Jaywl+D07Qc4ees+vJUOyCvQGQ52bqTlYPG+a7ianA3d/984V6PVIz1XgwKdHk72Urg52cPNSYZWfq64npKD+6p8ZOVpIRIDAe4KNPByhpuTDABw7/Z1xPy+Dqf2bUNeThbij7RAnncrpKs0qOlkh6vJOQiY8DlyYY88rR5nE3MhIBcX7gJuTvZwtJeihqMMgZ4K1HC0e+zQuaLJara6ADn5WijkUthLJdDrBYsP5J50Bv9x/WU9aCxNSfqqNLenpIP/+Ae5UGm0qO/hVOI2fFoO0s29KtG3hdjsA/OyJtOca/N4VfWKLhFRWTBJqsaKOxgRBAH3MvMhk4gAkQj3svJRu4ZjsWdnr6fkYOPpeMSl5kAnAPkFOiRmqJGv1UGrfzgEzdXRDvZ2UtRzdzI874PcAuSoC5CSpcZ9VT5c7KVwU9ijsbczbqTlIjdfi4xcDfQCIJOIIJWIIRH0UGsF6PRATr4Wt9JUaOjtDIW9HdJVBfgnMQ8Feh0c7CTIyCvA3QdqBHoq4OYkQ7pKY0hq0nM0mLs5FnI7CdwVMrgr7FHfwwk3UnJwPj4DMqkYznI72ElEUKkfxnEvKx9/J2SiSwMPiEQiuDnJ0N6/BpIy85CQkQepSIwATyc4SASc3r8dMb//ihuxp4y29aXYCzh28jQ86zXEufhMpGSrkau1A6CHVCyCukAHnfCwjHZGXgHsJCKkZKmRrsqHp7McdWo6GobOlXSwnK/V4c/LqWYfyBW3nhtpOUYH8Q52cqRm5yPmRhquJmejf0sf/HkltdzmHZSmJH3hkMOryTlwlkshEYug0wvIVmtRU1F55vaUZUjS03SQbu5ViZtpKrMPzJ/xdC51Ms25Nk9W0udWEB5+Dh/kaqDVCXCwk9gwSiIi62KSVE39W9L6Adyc/v1Sy1ZrkZ6rgfP/3wS06E1Bix6grD8dj1+O30FSphpSiQg6nR6ZeQXQCYDCXooajnbI1+qQmafFkWtpAB7Ocyq8UvQwCRKg0wpI0eQjJScft9NUsPv/m6Zq9QIkYsBOKoYIgEgkhgQ6FJ6H1OgEZOVqkFfw8GqPVg+IRACEhyXJ1QV6ZKsLUN9DgZtpKuRqtNDq9Mgr0D6MVy9AJALcFf/X3n3HWVWdi///7L1PnVOmMjPADHWQKqg0a9CABYxXoldN8HtFTSwJxoLtJgZNN/emGaOxJnjjTWKuRkziL2gQlSCRzhgg9KKU6fWcM6fuvX5/7JnjHGaAAZmCPO/Xa144++yy9j5rjus5a61nuVi9p45/7m8my2WQ73OlG1B+j4Ogx0l9S5L99VGao0mys1zpZxWOm5w3vB9V+3az6Okn2LHidVqaGzOes+F0M/mzl3PnvK+wrDGHzQeb+LAuSsK0UAo0AM3+V9cgy6WDptEUS5HtMQjFFEVBmHvu4CP24ozqH+DtrdUZDblIPMXqvXVsrmjii1MGcd7wgoyhkIeeZ1iBj/p2wxUbWhJsrQi19qaZ7K6JUL6vgQK/i5HFQZSyy9zWyN9eFeLltfu58owBHYbeddXx9AyVFQb47KhCXlixl80Hm0iaFk5DZ0i+j2smlfSZBuzxDkk61kb6yd7j1NVeCaDLAfXxzt+TuTZd09nfbduXUw2ROA3RJAU+F3/54CCXjSvuM3+TQgjxSUiQdJI7XG+BndK6vl1Ka7vnxVJ22manYb/1oViS+pZEeu6P16VTE4rx9Lu7qA3HcegaiRSE4iksC1wGmJaiJWHi1HUcDogkTMr3NTAo124ENkUTROJJFFAUcBNLWUTiKZrjSVRMoyhgByIuww6QAFKmItVuySwFfNgQo/0qWkpB3FQcaIwRcOk0x3RqI3Gcuo5pWdSGEyjsYXSGphGKJalsjpPvcxJLmnicOu1pmka+301L0qQ5lmRrVYiyfj5iSYuKphhZLoMib4p7brmCZDKRcWy/0mGcNu0qplwym69eOh63w+DllzawuyZC62g+dM0eQti2FJim7Gc1MMeLhsa4kmxchk7KtPA4DJbvqOH3qz8iEk8xrMDPALfdWN54oIm//auSoMfJhJIglc1xdlaHqAsnSKRMQnGTvbUtzBpXzGWnFwN02uhe82E9H9W1cOagHBpa7GA2mjDxexwEPA6qzRgHGqPUhRPUhBIZQwLBHgq5+WAz26pC5GW5jqun43gaszurQ7y9tRqf2+DsYXkYre93KJbi7a3VDM7P6hONsuMZknS0Rvr2qjD/t3Yfs88cSMDtJJpMsWRz9Und49TV3sRhBb5jCqiPZ/6ezLXpmkP/br1OnW1VYcKxFBrK/mKlKMDmg81UNMWk900I8akgQdJJrNOEDF4n1eE4pqXI97nTKa1rQjHC8RRl/Xw4dJ2kaRFL2j1Bm/Y3oWngMHSyXDoVTTEaI0lcDg23wyCesrDshXFImIBmomng1HUSpoXXadAQSbDxQDMVTVGiCZNYyiI3y4Xf48RrWQQ9TmIpk4ONUZSmoWukA6CkaRFPdVxU+HDLDCugOWHhNC2aYyk8Dj0dmAQ9DhyGTkvSRE9BRVMUn8vAaB3ylkhZuA8ZEmIHM4otB5vZuLsCzZ2FQ9fwOA0+rG+h5MzPsGf1WxgOJyOmzmDURVcxZOxERhQF0o2vRMKkoilKSoHbsJ+TpTLvQWEHg/WRBEGv3QjOyXKycX8Tv1q+hzUfNlAfiZPtdZJMqfQ6TcVBxT/3NxKOJdlbG6a+JUk8ZaIAr9Mg3+8mnjJZ82E9B5uieJxGp43ugTletlaGONgYRdM0ogmTvNaetWgiRVM0aZdZA1Mp3A47YK4NxwG7QW/oUBz0kOUyjns40rE0ZtsHEacVBTo0lPvSN/3HMy/mSI30hpYENaEYmw82sb0qhEPXqQnFCXqcjCjyn7TDwrram1iSm3XMAfWxptqWuTZd1/Z3+8bGSv66qTL9WZXvdzO8n/1Z1df+JoUQ4pOQIOkk1dkQnUg8yXu7aokmTKadVkCez83+BjfV7VJaVzbHyPU62d/QQlPMHprmcujoOlgWfFQXpTmeRANcDoOWhEmstUHeJp5SJFMp3E67JyiBSdJUbDzQSDhukjIVTodOLGnyUV0LplIYmobXqeEydCLxFDp2jw+GRqyTAKkrkqb9byxpke93EUvaKZbB7qVqSaRoiCTw9NfxOO3rhuN2Y8fl0Ft7jKJEYglSu9eyr3wxof3bGX7nC2hONz63gWkq+p39eXIHjeaCy6/m388bQ0HA3aHxVX6gkWTKwqlrWMoOujrTNp/G7onTqGiMsq++hXjKJJ4yKQp60DQy1mmyFCRNk9pwHKP1eroGhq4TT1lUNcXI9dlB0IHGKLWhOFOG5ndodLsdBn63g4rGGA7Hx9n1lFLUR5KYlsKhaxiaRiSeIuhxkuN1sLu2BTQozfESN3W8TuMTD0fqamP2ZPqm/3iGEh6ukV4fiVO+r5GWeApD1ygOeNhRHaayOYZpKZKmwtC1k3JY2LH0Jh5P79CxZAs9GbMn9qaywgD/dobOxoNNjCzyk5PlysjS2df+JoUQ4pOQT/4+pivzDQ43RAc0dOxscbtrW8jzuRle6CMUT6ZTWtdFEgzJ89IcSxFPWTgNg6qQ3fAyLYWh2cGSrkFzLInGx0PiMsoARJMWugYo+/dwPEXStHtM4imLRMrCobfOJUIjFLe7VnRNQ2l2sBA9zgCpPZehkZflorI5TiSRImXa92IpC0vB5orm1kBDsb+hBY/TwO3QCdVVUb12MU3lb5IK1aXPF9v2Pt4JnyWeUvQPutAGjaHf2DOJGU7+ub+J26cN7/Ce1EUSGIZOttdBY0vysGW151/ZQxbrIjE2HQjhMDSGFfioCyfsgFXTcPl06iMJdtVEKOvns4NPS+FzGcRa3zdds9+neErRFE3i1DVyvE62VjSne3/aN2ACHgcFfhc7q8NkYeA07GGPiZRFS+s35RrYQaymcbApitdhkDIVum6nix+Ym0XAY39sfNIGUVcasyfTN/3HM5Sws0a6Uopd1ZHWoZBO4imLlKWIJEyKg24icZNdNWFys3LRNO2kbJgeS/DTnQuxnmzZE/uClqSJoWsMzM1Kf2nTXl/6mxRCiE9CgqQ+pKsZrg737XrCtBtTwSxnOiFDns/NGaU57KqOUBuJ0xxNEo677UQNsSTxlIXR2nuga4qW1gYZgAG4nMpeJ+gw2oa5aUCBz0ldJEW8dX8FpCxw6HZQYLUdpBRep5buCfqkTGUPYYslTeIpy06SoNvBmK5BZVMMUyl8bgfKMqn510oa1i8mumsNKCvjXK6cIgyHjsuhE03YPWR+j4OGliQlud7DNkTzfS5chm5HqBw+SLKUsp9PKsXyHXUkTcXg/CxiSTvVedJUuB12w9fvcVAfSVDjcZCyFDq09vyAptuNONX6PJMpO7iujSRojqVY92EDQa8zPaeobVid3dsUI946T8zndhBNmkST9oK+DkMHzbJTi2saLQmTaNLuzSgI2MNq2te57m4Q9dQ3/ScqGcKx9nx01khvS67icxtE4ikKgx5cDp2UZRFwuNKT5tsSrsDJ2TA9luCnu9aS680Fm09W0vsmhDhVyKdYH3EsGa4iiRTRZAq/6chYmNRl6DgMHQ0N0zJJmHYAkOdzkzvERUWTnXL6snHFPPf3PTgNe7hOY0uCiqYYiUOCIROIJlWnPUmHUkB1OMmho8wUkLQ6P8BlQMqE9i9r7Y7rqpRpJ5ZQ7Y4ylR1EaBoo7GF+8X8uZu87L5ForMo8gaYTPG0qQ8+/EkrGk+Vu7WFRFqZSeBwG4dZhTy2JVIeJ9wcao2S5DYqCbrZUhnAZOpays9upQ+4laYFm2T1wDrc91DGetNhRHcbt0AnHkrhaAxpn69DEUOvwR4dDI9U6OSxlWZgm6TWfULBmbwM+t4HHaeDQwdM6pygcT3FGaQ65WU6iSYtLRheyvTrM7poIiZSF1fqcDE0j4HEQSdjdgXYHoMJSduw3bkA2eT53xqPr7gZRT3zTf6LTbx9r4//QRrodtKZIpnSy3PYCxg5dS88ldBo64Xgq/fcNJ2/DtLsX0u6K7lqw+VAne1bCNtL7JoQ4VZxc/0f9lDrWNLQ1oTgf1tnrxmjY81yyXA4G5HjwOg3qwnG8LsNurFt2praWRIq6SIILyvpRmpdFNGkS8Ni9CPsbohyhs6jLAUuqs2DoMNqG2Tk00sGEfS/2v50GVodhYQ87S5kKh2HPsVGti9Nq2MkccrKc/LOuKiNAcgQKyDvrUsZcOJsa5cfpNLCUak3f/fHQwKRp4dB1TEtlNEQPbVyblt2jo+v2nKeUaaFpdhCnWssI4Hbo+DwOvA6d5lgKRxbEknaWubakC36PA0vZAUo4ZuI0dPJ8TpSCmnCcZNK+OaN1OGPSJJ3MYWCOB0O3G9I+t0E4luJfFU3087vJ97uZc/ZgLKV48p1d1IXjBD0OGlsSJE1FLGXhcRoUBdwYukbSNNlXH0OhyPZmflz0RIOou7/p7641co6l8X9oI72hJYFlQU7QyZj+2eT5XCilyMtyUR2K4XM7cOi63XOJNExPhO4c0gefrnWwpPdNCHGqkCCpD+hs+FzbIn0J08LvNthRFeJAY5R4ymTxxkpSpoVpWvg8DuoiifQ5Ah6HnZZV0/ioPsL2yhAN0SRJ00LXNJqjKRKWhdfVmrigMXLEAOlIWqcjfSIpldl7ZCnQj3TAYSRTFgrwuwxUtInqdX8jOO5CdH8+hUE3GhrBCZdS9d7/UTR6CsMumI0qOZOmhEVWrhd/S5LmlhSapuyEEmg4DDsroMPQGZjjJRRLMb4kh4E53k4b1y5DZ3dtCynTTGe2sxQ4DM2e66Xsnh+P06B/0IvHqRNOhKkJJSjNs4fcjS4OUtkcoyESpzGaJN/n4rOjCjF0jf2NUUpzPMRS9ppVmlI4DDvDoKGDs7VR4nYajBsQZHdNC/UtCUxlUd0cZ9LgvIx1hb722bJ0qnhd09F1e6hins+Jx2Wksw4WBt1EEia7aiKcVqT3eIOou77p70tr5LRvpIdiSV7bcJCP6iPkZtnDmTRNY3ihj+ZYgsrmGCW5XrwunVAsKQ3TE6S7erU+jYvV9lTvmxBC9CYJkvqAQyenpxfpa0mQMi10XUMDNh1oZP2HDWyvamZgrofdNS3sq4+iaZDlMogl7IVWva0N3Pd312Na9vAcl66jNNhdG+ZXy1vsCf1A9DinMOhkDpP7JNoCLZeukWg/d+kYZLkManZ+QHX5YsJb/4Eyk2QZFt6p12KPjrNw5hZz8XdeJaegEICmaIKWVJxw3M6KlzQTfDxyROHSdZqidgbAtl6YS8YWAXTauM7NctE/6KYlYc8VyfO5qWyKcrAxCppGMmnhMDQKA/Y3rwCFATeVTXZQpOs6bqfGqGI/u2s1hhX6mTNlEOcOL2DswGweXbyVvfVREikLv9tBvG0OlgYOXSeY5SLgdhBL2okdJg3JJRRLEU2aVDXHuPKMAZ1OiF/7YS7PLNuNQ4emaIrGaJKGlgQOXacw6KE46KY5lmJYgY/acKJXGkTd8U1/X8uc176R7nLoLFyxN+Obeqehk+tzY+g6uVkuPqxrkYZpH9eXAvETrbt734QQordJkNQHtJ8ImzRV6yKfKfweJ06Pg0g8RW04wQ/+upW6cNweXkbbOjwKj0MnZSoMQ8eha0wZksuKXfWgoCTHS2M0hWVZuBwGSdMkHDdpiCT4JP8vO1EBUnuGrtCsj4feaV24jhkLE9m0lJqNb9JS/VHGaxWr/z9Gn3sd0WQKlN2D483OB+yeupSpGFKQhcdhsL0qhKaBz23/SViWPcPJbWgYuobP7WDuuYMpKwywr76l08Z1wOMg1+cmmrRImorh/fyU5HlZsbMWp65zsClG0OMg2G7YWsDjpCVh4nM5CMdTVDXHyM1yM3VofkbDd/poOzh78u2dbKlsJmXaSRZyspyU5mVRG04QcDtwOnQaWhcH1jTNTtCh2QFcZ5OsdV1j0uA81gxqYNPBJiYPySUcN9OLC/vdBjtrIpw1KJdbLxhGRWtygN5oEJ3ob/r7cua8w31Tf86wfGaMLsLrMqRhehLoa4H4idYX5pQJIUR3kSCpD2ibCLvxQCNN0STRRCqdjUwpRTieIpZMURsysbCzzoGdWMGhAU6NfL8br9MOtKJJi3jKxGlAJGG2TszX7J4pS6Uz0vU17Xu1HLo9TC2a7GSRWaVIHNxGqPwNWrb+HZVKZLzuyAoy+JxZ9Jt4ObnZXpqjdra5woCbUMxO8BCJm3hd9rfwOnYPW1mhn8mD7bTKCdNOYe5y2BnnUqaF12n/uRyuca1pGmWFfppjSerCcRpaEgQ9Thy6TiJl2ck1HJmDCZOti/EWBt1cUFzA7DMHEnA7O234Th9dxPACHw//eTMOQyPP56J/0Iumwdq9DfZ8FY59vkr7OQY7ayL0z/aQk+UkmjDZWRNJD+VyOPRPVYOor2fpkm/qT359ORAXQghxZBIk9QFtjdTt1SE+3N9ETpYTBSRSJqFYilA0SSRupntV2mfOTil7XZt6PUHQ48C0FA3RROs6QYpEKoEFJFJ2z4jOiR0q112SFul5NslDorqWbSuo/dMPOxyTM2w8xVM+x5BJF9GUsOcUDcjxcs6wfBTwUX0L26tC1IRM+ud4GFkUwGnobK8K4XEanFGaS84h2dvAziS3tzaSbsgcqXGd53MxssjPVgXRpEkiZeF26Bi6xoSiHPbWtaQTMzh0jYZIArfDoCQni2snlR51yNSgfB9Th+az6WATA7K96W+nP+l8lVNxjsHJkKVLvqk/ufX1QFwIIcThySdzH1FWGODy0/uz5WAzpqVobElg6Douh0Y4njpicoWUZS9mWhdJYGhQ2dwxnXebvh4ctRdLKbI9DprCLeBwpbd7h01Cc/tQ8Qi620f2hBkUTb4cckvwuRwMyA9yQaGfSUPyGF0cTDdyDzRG2VLZzNo99dSE4jRFk8SSFmMGBPE4DTzOzlNGHNqQOVrjOpq0uPz0Yq6YMICWpEltKM5fN1bQ0JJkRKHPXs8onLDnjzkNzh9RwJypg7oUiBwus9SJmK9yqvVcSJYu0d1OhkBcCCFE5yRI6kNG9w8ydkAQp6HjdOi0xFOs/6jhmNJhm4ojLv56srASMSJbllH5wRt4+w0iZ+Y96QQPustDzvnXo7uzyDv9M5T2y0FZCjSNnCwXfo+Tf59YwmlFwYxzluZlUZqXxYxRRRmBQP+gh2f+vrvLDZmuNK4vHVfMoHyffZJiKM72pHtp8n0ucrwuBuR4mT66kHOHFxxTQ7w756ucaj0Xp2IPmug5EogLIcTJS1Pq0OU/P12am5vJzs6mqamJYDB49AN6wOEWFbQsxVPv7mLTwSbK+vlYs9fOZFff0jfHq5+IFOCHStTsJVy+mPCmd1CJFvs6hpMRd/8GyxUgN8vOClUbtocU5vld+NxO8nwuhvfzkZvlYkd1mNMHZnP7tOFdbnwcmqb30IZMZ2l62699Ek/ZvU1lhf7DNq5P9GKSn5bFKfsCeZaiOx3rZ4UQQoju09XYQIKkHna0RQW3V4Z48p2d7KwJsb8+SsI0O01e0JuONzhy6GBZHYf8Wck40W3vESp/g/iBLR2OcxUNp+TK+fQbfBp3Th/BgBwvv1/1EUGvA5fDXjQ34Pm4BygUS9LYkuSei087pl6R42nISONaCNEV8lkhhBB9Q1djAxlu14OOtKjggcYWJpTmsOVgiI/qI+ytjRBNWmh9Kz4Cjj9ICnqc6Jqdcc/QoDkSpfHvvyGyaSlWLJx5DYebrNGfIeesmXgHnEZpfhbDCvxcMKIfkUQKw9AoCnoxOmlkHG/GqOOZk3OqDU8TQhwf+awQQoiTiwRJPeRIiwrGkybvbK1m0YYDODQNhcKh6bgdilRKHTFpQ284nuQPGmBaipRSdsrrgItdKYvYnvUZAZKzYDD+My7DP/YisrOzKfDbCRtKc7M4a1AuA3O8HGiMdlvGKGnICCGEEEIICZJ6SNuigsVBe62etsU6a8Nx/r69hqbYob0eJ08eOkMHr9PAshSxpNWh5C5Dw2qupPaDteRP+Tcchka+34NCo2Xy5VQs+RVZo87Hf8Ys3ANHoWkaPpfOoPwswrFUOkV22wRnyRglhBBCCCG6kwRJPSSSSFEbjnOwMUpjNEnKtDAtxYGmGIlU3w2I2sKPQzuz2g9Ay/Y60TWNfJ+TcCxFbThhpyA3UyT3rqF2/WIiu9cDMHbiVM49fSI3nTeUeMrkfwZk8fezL6U66cKywOXQ8XscuAydunCi0xTZkjFKCCGEEEJ0JwmSekhNKM6++hYsBbk+Fw63wa6aSJ8NkAwgy21gKbt3SClwGBq6BklT4fc4cBv2ukJep0EoniKasCjwu4k1VrP//ddpKP8byVBdxnnr1v6V/3fnVQxuTY/93Wsmsa9hDCt21bJ+bwPN0SSGDpbSjpgiW1I3CyGEEEKI7iJBUg+wLMUH+xpxGjqmZeEyNOJJk3As2dtFy+A2NHwug1jKImFagMJp6FgWJC0rHby4nRqmqcgNuhhZHKC6OU5LdRNVm//BxtWv07h9DajM4C/QbwCfnT2Hr9/1lYwARtc1Buf7GJzv4wuTBh1T0oRTbfFTIYQQQgjRMyRI6gEHGqPsrokwbmCQHdVh6iMJQvHkMS0S291GFwcYOzBI/6CXzQeb+MfuOnwue/2hpGWxrz5KyrTQNXAaBg5dY0RRgKEFfvJ9Ljb89lG2L/9Lxjk13WD01Iv4fzd+iTlXfY7SPN8JzxQniRaEEEIIIcSJJkFSD4gkUsRSJsMK/PjcDtbsqac2lOjtYqW5DI0zBuVQGPAAUJKbRdDTRJ7PhQVYSuF3O0hZigK/C6cOlmXRz+9GKUVlc5zpM/8tHSQNGFjC1XPm8h9zb2Li6GHSsyOEEEIIIU4qEiT1AJ/LkU5ZbSrF/sZon0rrHfTY5Wtj6FDgd1PgdzOswEfSUrTEU2zatY89b/+RAyv/wlnX3AEj/o0d1WHyfC5uuPHfiW5fwdVXX83MmTMxDOMIVxRCCCGEEKLvkiCpB7SlrH57WxW7qsKE42ZvFynN0GBQvo+Ax64KbT1DZw/LJ5Y0qWyOEd+3kQ1/e5mN7y3BMu1U5XuW/4mmi2ZlJEpYuHBhb96KEEIIIYQQJ4QEST1A1zVGFgd4dvkumjush9R7dA28LoPBeVmYShGNp9IptGed5mfRH37Ha88/T9W+3R2OHV4YYN60IQwtzJbhdEIIIYQQ4lNFgqQeYFmKNzdXEk9aHdYb6i0ep05x0MOZg3LQ0NhbG8HtMCiikQ9+/zw/+fMi4vF4xjH5BQV86eabufXWWxk+fHgvlVwIIYQQQojuJUFSD9jf0MK6DxuwVO+ms9MBTYPSvCwuGVPMv08aSFm/QEYK7XDVR3z7P17KOO7CCy/k9ttvZ/bs2bjd7t4pvBBCCCGEED1EgqQesLs2QiiWINXDU5F0wGloOB06Zw3KRddBA75yYRkTB+Wyfv063lxfy8yZMz8+KG8UF110EeXl5dx4443ceuutjBo1qmcLLoQQQgghRC+SIKmHWAp6sh9JB5wODbfDYFg/HxNKstlZE2FEnoP1b77C7c8+w4YNGxg2bBg7duxA1/X0sQsXLqSwsBCv19uDJRZCCCGEEKJvkCCpBwwt8OHo4dwGmgYuQ6cwaKfxXrl2A7uWL+LFFW8QCYfS++3evZu33nqLSy65JL1t8ODBPVtYIYQQQggh+hAJknpAaW4WAa+TqnCy264RdOkkFDh0jaDHgcPQ8ZIivGkpv3/qT1Tu3NjhmMmTJ3P77bdz3nnndVu5hBBCCCGEONlIkNRD9G7Ka6cDOVlOhvbzURRwM2NMMaOKA3gMOP+ssVQcPJCxv8/n4/rrr+e2227jrLPO6pYyCSGEEEIIcTKTIKkH7G9oobI5ccLPa2iQ53PicTo4qzSH66YMoqwwkH79c5fP4rnnngNgwoQJ3H777cyZM4dgMHjCyyKEEEIIIcSnhQRJPWBnTZjm+IlNbVfod3L2sHz27tlNw+rFPPfU29zxwQcZ+3zlK18hmUxy2223MXXqVDRNFn0VQgghhBDiaCRI6gH/Oth0Qs/nUCn8FRt59aVFHNi8Or39t7/9LV/96lfTv5955pksXLjwhF5bCCGEEEKITzsJkrrZzuoQ7+2sOyHnSjVVEf7gTVo2LmFXuCHjNZfLRUVFxQm5jhBCCCGEEKcyCZK6kWUp3txURVP0k81Hin74Ac2rXyW2ez0ckgCirKyMW2+9lRtvvJF+/fp9ousIIYQQQgghJEjqVgcao2zY10BD+JMFSYnKHcR2r0v/7nA4mD17NrfffjsXXXRRxkKwQgghhBBCiE9GgqRuFIol+aiuhVjK6tL+yjKJ7dmAI78EZ05xenvg9Itp+vv/kt2viJtv/hL33/kViouLj3AmIYQQQgghxPGSIKkbheMpokkT0zxyZjsz3EB44xJC5W9gNlcTmHQledNvSb/er18BF/3wf3n2zqtwu53dXWwhhBBCCCFOaRIkdSO/x4Gha4QTHReSVcoi9uE/CZcvpmXHSrA+DqQim5aS85kb0J1uPA6Ns4flc8/F50iAJIQQQgghRA+QIKkb+VwODE3LSLVgtjQR3vgW4Q/eINVwaDY6Dc/QswicORPNsN+aC8oKuOfi0zIWiRVCCCGEEEJ0HwmSupEGuJ06TiAJxCu2U/nbB8BMZeynZ+XgH38x/gmXZsxF8rsN5pw9WAIkIYQQQgghepAESd2oJWlS4HdT549SFU7hKhyG4Q1ihusB8Awej/+MWWSNmIpmfDyUTgOcBmS5HAwp8PVS6YUQQgghhDg1SZDUjXwuBwV+N8nCAFXhBjTDQXDybMxwA/4zLsOZN7DDMQ4NDEPDoWsEPfZwPSGEEEIIIUTPkSCpGw3M8TK8n5/acIyg26A5bhKcctVh99cB3dDxOHUK/G4G5HhpSR45M54QQgghhBDixDopViF98sknGTJkCB6Ph6lTp7J69ereLlKX6LrGpeOKGJjjRdN1DA2Mw3QMaUDAY1DkdzO2f5AJJdkU+N34XBLHCiGEEEII0ZP6fJD0hz/8gfnz5/PII4+wfv16JkyYwKWXXkp1dXVvF61LygoDXD5+AAU+Jx6nga5pOHRwGRpOHRw6+Fw6xUE300YWMmNMERMH5xJNWpQV+hmY4+3tWxBCCCGEEOKU0ueDpJ/+9Kfccsst3HTTTYwZM4ann36arKwsfv3rX/d20bqsIODmtOIg00cXMbp/gAHZXoqCHoqyPeT5XOT53LidOlkuB5oGO2si5PlcXDK2CF2XOUlCCCGEEEL0pD49liuRSLBu3Tq+/vWvp7fpus6MGTN4//33Oz0mHo8Tj8fTvzc3N3d7OY/G53LgdRrkZDkZkl9IKJYiYVq4DJ2kabGlopnqUJyq5hi5WS5OH5jNJWOLJPW3EEIIIYQQvaBPB0m1tbWYpklRUVHG9qKiIrZu3drpMY8++ijf/va3e6J4XdaWwGHTwSZGFPoJej9O962Uol/AzaQheVx5xgACHicDc7zSgySEEEIIIUQv6fPD7Y7V17/+dZqamtI/+/bt6+0ipRM45Plc7KgOE4olSVkWoViSHdVh8v1urplUwpgB2ZTmZUmAJIQQQgghRC/q0z1JBQUFGIZBVVVVxvaqqiqKi4s7PcbtduN2u3uieMekrDDATecN4c1NVeyqCVPVHMPtMGRonRBCCCGEEH1Mnw6SXC4XEydOZOnSpcyePRsAy7JYunQpd9xxR+8W7jiUFQYYdqGfA41RIokUPpdDhtYJIYQQQgjRx/TpIAlg/vz5zJ07l0mTJjFlyhQee+wxIpEIN910U28X7bjoukZpXlZvF0MIIYQQQghxGH0+SLruuuuoqanh4YcfprKykjPOOIM33nijQzIHIYQQQgghhDgRNKWU6u1CdKfm5mays7NpamoiGAz2dnGEEEIIIYQQvaSrscGnLrudEEIIIYQQQnwSEiQJIYQQQgghRDsSJAkhhBBCCCFEOxIkCSGEEEIIIUQ7EiQJIYQQQgghRDsSJAkhhBBCCCFEOxIkCSGEEEIIIUQ7EiQJIYQQQgghRDsSJAkhhBBCCCFEOxIkCSGEEEIIIUQ7EiQJIYQQQgghRDuO3i5Ad1NKAdDc3NzLJRFCCCGEEEL0praYoC1GOJxPfZAUCoUAKC0t7eWSCCGEEEIIIfqCUChEdnb2YV/X1NHCqJOcZVkcPHiQQCCApmmf6FzNzc2Ulpayb98+gsHgCSqhEMdP6qToa6ROir5I6qXoa6RO9h6lFKFQiAEDBqDrh5959KnvSdJ1nZKSkhN6zmAwKBVa9ClSJ0VfI3VS9EVSL0VfI3WydxypB6mNJG4QQgghhBBCiHYkSBJCCCGEEEKIdiRIOgZut5tHHnkEt9vd20URApA6KfoeqZOiL5J6KfoaqZN936c+cYMQQgghhBBCHAvpSRJCCCGEEEKIdiRIEkIIIYQQQoh2JEgSQgghhBBCiHYkSBJCCCGEEEKIdiRI6qInn3ySIUOG4PF4mDp1KqtXr+7tIolTyN///neuuOIKBgwYgKZpvPbaaxmvK6V4+OGH6d+/P16vlxkzZrBjx47eKaw4JTz66KNMnjyZQCBAYWEhs2fPZtu2bRn7xGIx5s2bR35+Pn6/n6uvvpqqqqpeKrH4tHvqqacYP358enHOc845h8WLF6dfl/ooetsPf/hDNE3j7rvvTm+Tetl3SZDUBX/4wx+YP38+jzzyCOvXr2fChAlceumlVFdX93bRxCkiEokwYcIEnnzyyU5f/+///m8ef/xxnn76aVatWoXP5+PSSy8lFov1cEnFqWLZsmXMmzePlStXsmTJEpLJJJdccgmRSCS9zz333MNf/vIXXn75ZZYtW8bBgwe56qqrerHU4tOspKSEH/7wh6xbt461a9fy2c9+liuvvJLNmzcDUh9F71qzZg3PPPMM48ePz9gu9bIPU+KopkyZoubNm5f+3TRNNWDAAPXoo4/2YqnEqQpQixYtSv9uWZYqLi5WP/rRj9LbGhsbldvtVr///e97oYTiVFRdXa0AtWzZMqWUXQedTqd6+eWX0/ts2bJFAer999/vrWKKU0xubq56/vnnpT6KXhUKhdSIESPUkiVL1LRp09Rdd92llJLPyb5OepKOIpFIsG7dOmbMmJHepus6M2bM4P333+/Fkglh27NnD5WVlRl1NDs7m6lTp0odFT2mqakJgLy8PADWrVtHMpnMqJejRo1i0KBBUi9FtzNNk5deeolIJMI555wj9VH0qnnz5nH55Zdn1D+Qz8m+ztHbBejramtrMU2ToqKijO1FRUVs3bq1l0olxMcqKysBOq2jba8J0Z0sy+Luu+/mvPPOY9y4cYBdL10uFzk5ORn7Sr0U3Wnjxo2cc845xGIx/H4/ixYtYsyYMZSXl0t9FL3ipZdeYv369axZs6bDa/I52bdJkCSEEOITmTdvHps2beK9997r7aKIU9zIkSMpLy+nqamJV155hblz57Js2bLeLpY4Re3bt4+77rqLJUuW4PF4ers44hjJcLujKCgowDCMDplGqqqqKC4u7qVSCfGxtnoodVT0hjvuuIPXX3+dd955h5KSkvT24uJiEokEjY2NGftLvRTdyeVyUVZWxsSJE3n00UeZMGECP//5z6U+il6xbt06qqurOeuss3A4HDgcDpYtW8bjjz+Ow+GgqKhI6mUfJkHSUbhcLiZOnMjSpUvT2yzLYunSpZxzzjm9WDIhbEOHDqW4uDijjjY3N7Nq1Sqpo6LbKKW44447WLRoEW+//TZDhw7NeH3ixIk4nc6Merlt2zY++ugjqZeix1iWRTwel/ooesX06dPZuHEj5eXl6Z9JkyZx/fXXp/9b6mXfJcPtumD+/PnMnTuXSZMmMWXKFB577DEikQg33XRTbxdNnCLC4TA7d+5M/75nzx7Ky8vJy8tj0KBB3H333Xzve99jxIgRDB06lAULFjBgwABmz57de4UWn2rz5s3jd7/7HX/6058IBALp8fPZ2dl4vV6ys7P50pe+xPz588nLyyMYDPK1r32Nc845h7PPPruXSy8+jb7+9a8zc+ZMBg0aRCgU4ne/+x3vvvsub775ptRH0SsCgUB6nmYbn89Hfn5+ervUyz6st9PrnSx+8YtfqEGDBimXy6WmTJmiVq5c2dtFEqeQd955RwEdfubOnauUstOAL1iwQBUVFSm3262mT5+utm3b1ruFFp9qndVHQC1cuDC9TzQaVV/96ldVbm6uysrKUp///OdVRUVF7xVafKrdfPPNavDgwcrlcql+/fqp6dOnq7/97W/p16U+ir6gfQpwpaRe9mWaUkr1UnwmhBBCCCGEEH2OzEkSQgghhBBCiHYkSBJCCCGEEEKIdiRIEkIIIYQQQoh2JEgSQgghhBBCiHYkSBJCCCGEEEKIdiRIEkIIIYQQQoh2JEgSQgghhBBCiHYkSBJCCCGEEEKIdiRIEkIIIYQQQoh2JEgSQogjuOGGG7jiiit6uxhCCCGE6EESJAkhxCE2b97MddddR0lJCS+++CKvv/46gUCAmTNnsmTJkt4unhBCCCG6mQRJQgjRzqJFi5gwYQLxeJz//d//5dprr+Wyyy5j8eLFFBcXc8kll/Dkk0+m91+zZg0XX3wxBQUFZGdnM23aNNavX59xTk3TeO211wBQSnHDDTcwfvx4GhoaeOGFF9A0rdOfIUOGAPCtb32LM844I32+RCJBWVkZmqbR2NgIwI033sjs2bMPe12Affv2ce2115KTk0NeXh5XXnkle/fuzTjm17/+NWPHjsXtdtO/f3/uuOOOLt0HwK5du7jyyispKirC7/czefJk3nrrrYzzV1RUcNVVV5Gfn59xr2330Zn9+/fzxS9+kby8PHw+H5MmTWLVqlVdenYATz31FMOHD8flcjFy5EhefPHFIz6nX/3qV2iaxt13353eNmTIEDRNy3hvk8kkRUVFaJqW8Rz/+Mc/pp/hkCFD+MlPfpJxvXg8zoMPPkhpaSlut5uysjJ+9atfsXfv3sPeT9s13n333aM+r0O98cYbnH/++eTk5JCfn8/nPvc5du3alX697brl5eXp8s2YMYMZM2YQj8f51re+ddgyXXjhhUDH+ldXV0dubi45OTnpbe3P43A4On02R3t2be+Dpmn4fD7OPfdc1q5d2+VnIYQQXSVBkhBCtHP33Xdz4YUX8tprr3HhhRfi9Xpxu92cf/75LFy4kBtvvJEHHniASCQCQCgUYu7cubz33nusXLmSESNGMGvWLEKhUKfnv/POO/nHP/7B3/72N3Jzc7nuuuuoqKigoqKCxx57jJKSkvTva9as6fQcTzzxBFVVVcd0X8lkkksvvZRAIMDy5ctZsWIFfr+fyy67jEQiAdjBxLx587j11lvZuHEjf/7znykrK+vSfQCEw2FmzZrF0qVL2bBhA5dddhlXXHEFH330Ufq4e++9l+3bt/PGG29QUVHBH//4xyOWOxwOM23aNA4cOMCf//xnPvjgAx544AEsy+rSs1u0aBF33XUX9957L5s2beK2227jpptu4p133un0epFIhAULFuD3+zu8NnDgQJ599tn074sWLcLpdGbss27dOq699lq+8IUvsHHjRr71rW+xYMECXnjhhfQ+N9xwA7///e95/PHH2bJlC8888wx+v5/S0tJ0+VevXg3A6tWr09tKS0uP+KwOJxKJMH/+fNauXcvSpUvRdZ3Pf/7zWJbVYV/TNPnCF75AOBzmtddew+12c99996XLcO+993LOOeekf3/11Vc7vea3v/1tUqlUh+1jx46loqKCvXv3ctddd3HfffexZcuWLj87gO985ztUVFSwdu1afD4f8+bNO67nIoQQR6SEEEIopZSqrKxUgPrZz36W3jZ37lx15ZVXpn9/9dVXFaBWrlzZ6TlM01SBQED95S9/SW8D1KJFi9RDDz2kBg4cqPbs2dPpsQsXLlSDBw/usP2RRx5REyZMUEopVVdXp3Jzc9V3v/tdBaiGhgallFK33367uuSSSzKOa7uuUkq9+OKLauTIkcqyrPTr8Xhceb1e9eabbyqllBowYIB66KGHOi3bsdxHe2PHjlW/+MUv0r+PHj1aff/730///s4772Tcx6GeeeYZFQgEVF1d3RGvc7hnd+6556pbbrklY9s111yjZs2a1eG+lFLq4YcfVtOnT1fTpk1Td911V3qfwYMHq//8z/9U+fn5KhwOK6WUmj59ulqwYIEC0s9izpw56uKLL8643v3336/GjBmjlFJq27ZtClBLliw54v3s2bMn47xtjva8uqKmpkYBauPGjRnXWr9+vfqP//gPNW7cuMM+70ceeURNmzatw/b2fyfbtm1TPp9PLViwQGVnZ2cc21aPlVLqlVdeUYZhqA8//FApdfRnp5T9PrT9fUajUXXNNdd0OEYIIU4E6UkSQohWLpcLgJaWlsPu0/aax+MBoKqqiltuuYURI0aQnZ1NMBgkHA5n9J6A3fvz/e9/n5EjR2YMBTtW3/nOd7jooos4//zzM7aPGzeOlStXsmfPnk6P++CDD9i5cyeBQAC/34/f7ycvL49YLMauXbuorq7m4MGDTJ8+/YjXP9J9hMNh7rvvPkaPHk1OTg5+v58tW7ZkPIuhQ4fy17/+lfr6+i7db3l5OWeeeSZ5eXld2v9QW7Zs4bzzzsvYdt5556V7L9o7ePAgP/3pTzsM8WpTVFTEhRdeyEsvvcSuXbv417/+1SGpx+Gut2PHDkzTpLy8HMMwmDZt2nHdT5uSkhICgQBDhw7llltuoamp6bD77tixgy9+8YsMGzaMYDCYft8OraP3338/L774IpMnTz7u5w3wwAMPcNtttzFs2LAOr23cuBG/34/H4+ELX/gCjz/+OIMGDQKO/uzaPPjgg/j9fnw+H6tXr84Y/iqEECeKBElCCNEqNzeXqVOn8pvf/CY9nK69VCrFM888Q0lJCePGjQNg7ty5lJeX8/Of/5x//OMflJeXk5+fnx7C1mb16tX89a9/ZdOmTTzzzDPHVb4dO3bw/PPP81//9V8dXrv55puZPHkyw4YNSwdB7YXDYSZOnEh5eXnGz/bt25kzZw5er7dLZTjSfdx3330sWrSIH/zgByxfvpzy8nJOP/30jGfxs5/9jHg8TkFBAX6/n5kzZx7xel0t14nw0EMPcc011zBhwoTD7nPrrbfy3HPP8eyzzzJ37twOw+2O5kTdz/Lly9mwYQPPPfccS5Ys4aGHHjrsvldccQX19fU899xzrFq1ilWrVgF0qKNbtmxh8eLFvPTSS7z55pvHVa5ly5axfPlyvvnNb3b6+siRIykvL+eDDz7g+eef54EHHmDlypXHdI3777+f8vJy1q9fzwUXXMC1116bEUQJIcSJIEGSEEK08/zzzxOLxRg9ejTf/va32bNnDwcOHOAHP/gB48aNY9OmTfz2t7/FMAwAVqxYwZ133smsWbPSE85ra2s7nPexxx5j5syZ/PKXv+T+++/v8C1+Vzz44IN8+ctf7nSekNfr5a233qKysjIdALV31llnsWPHDgoLCykrK8v4yc7OJhAIMGTIEJYuXXrEMhzpPlasWMGNN97I5z//eU4//XSKi4s7JIY47bTTuPHGGxkyZAirVq3i+eefP+L1xo8fT3l5eZd7ng41evRoVqxYkbFtxYoVjBkzJmNbeXk5r7zyCt/73veOeL6LL76Ympoann76ab785S93+XqnnXYahmFw+umnY1kWy5YtO677aTN06FDKysqYMWMG11xzTYf3u01dXR3btm3jm9/8JtOnT2f06NHpRBuHevHFF7nsssv47ne/yy233EJzc/MxlUkpxb333suCBQvS89QO5XK5KCsrY+TIkcydO5dRo0bx+uuvA0d/dm0KCgooKytjwoQJPPjgg5SXlx+2B1UIIY6XBElCCNHOuHHj2LZtG9/4xjfYsWMHW7ZsYefOnbz//vvcfPPNbNu2jc985jPp/UeMGMGLL77Ili1bWLVqFddff32nvQVtw5euvvpqZs2a1WkD+0h27tzJu+++y8MPP3zE/YqKitLBT3vXX389BQUFXHnllSxfvpw9e/bw7rvvcuedd7J//37Azj72k5/8hMcff5wdO3awfv16fvGLX3T5PkaMGMGrr76a7imYM2dOh+QAK1eu5Bvf+AavvPIKY8eOZeDAgUe8ny9+8YsUFxcze/ZsVqxYwe7du/njH//I+++/f+QH1ur+++/nhRde4KmnnmLHjh389Kc/5dVXX+W+++7L2O/HP/4x8+fPZ8CAAUc8n6ZpPP300/z4xz9m+PDhHV6/9957Wbp0Kd/97nfZvn07//M//8MTTzyRvt6QIUOYO3cuN998M6+99lr6ffi///u/Lt1Pm3g8TiwWY+vWrSxevDjds3mo3Nxc8vPzefbZZ9m5cydvv/028+fP73Tftvf2nnvuobS09LD7Hc7SpUtpamo6YiKFVCpFZWUlBw8e5LXXXmPz5s2MGjUKOPqzaxMKhaisrGT37t088cQTBAKBo9YjIYQ4Zr09KUoIIfqyQxM3HGr9+vVq0qRJyuPxqBEjRqiXX345Y3K5UpmJAZSyJ84XFhaqZ555JuNcR0rcAKgf//jH6W1dmcB/6HUrKirUDTfcoAoKCpTb7VbDhg1Tt9xyi2pqakrv8/TTT6uRI0cqp9Op+vfvr772ta91+T727NmjLrroIuX1elVpaal64oknMhIgVFdXq5KSEvX8888f033s3btXXX311SoYDKqsrCw1adIktWrVqi49O6WU+uUvf6mGDRumnE6nOu2009RvfvObDs+puLg4nZBBKdVp4ob272mbDRs2dEiw8Morr6gxY8Yop9OpBg0apH70ox9lHBONRtU999yj+vfvr1wulyorK1O//vWvM/Y5WuKGtp+CggI1Z84cVV9f3+m9K6XUkiVL1OjRo5Xb7Vbjx49X7777bsZ72XatDRs2pI/Ztm1bRlKPNkdK3ACoV155Jb1t4cKFHRI3tJVb13VVWlqqFixYkJFM5GjPbvDgwelzeL1eNXnyZLV06dLD3rsQQhwvTSmlejguE0IIIYQQQog+S4bbCSGEEEIIIUQ7EiQJIYQQQgghRDsSJAkhhBBCCCFEOxIkCSGEEEIIIUQ7EiQJIYQQQgghRDsSJAkhhBBCCCFEOxIkCSGEEEIIIUQ7EiQJIYQQQgghRDsSJAkhhBBCCCFEOxIkCSGEEEIIIUQ7EiQJIYQQQgghRDv/PzwNYxmOXYz7AAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1000x600 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import time\n",
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
|
||
"from sklearn.linear_model import Ridge\n",
|
||
"from sklearn.preprocessing import StandardScaler\n",
|
||
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
||
"from sklearn.ensemble import RandomForestRegressor\n",
|
||
"\n",
|
||
"# Предположим, что df уже определен и загружен\n",
|
||
"\n",
|
||
"# Разделение данных на обучающую и валидационную выборки. Удаляем целевую переменную\n",
|
||
"X = df.drop('Networth', axis=1)\n",
|
||
"y = df['Networth']\n",
|
||
"\n",
|
||
"# One-hot encoding для категориальных переменных (преобразование категориальных объектов в числовые)\n",
|
||
"X = pd.get_dummies(X, drop_first=True)\n",
|
||
"\n",
|
||
"# Проверяем, есть ли пропущенные значения, и заполняем их медианой или другим подходящим значением\n",
|
||
"X.fillna(X.median(), inplace=True)\n",
|
||
"\n",
|
||
"# Масштабирование признаков\n",
|
||
"scaler = StandardScaler()\n",
|
||
"X = scaler.fit_transform(X)\n",
|
||
"\n",
|
||
"X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
||
"\n",
|
||
"# Обучение модели с регуляризацией (Ridge)\n",
|
||
"model = Ridge()\n",
|
||
"\n",
|
||
"# Настройка гиперпараметров с помощью GridSearchCV\n",
|
||
"param_grid = {'alpha': [0.1, 1.0, 10.0, 100.0]}\n",
|
||
"grid_search = GridSearchCV(model, param_grid, cv=5, scoring='neg_mean_squared_error')\n",
|
||
"\n",
|
||
"# Начинаем отсчет времени\n",
|
||
"start_time = time.time()\n",
|
||
"grid_search.fit(X_train, y_train)\n",
|
||
"\n",
|
||
"# Время обучения модели\n",
|
||
"train_time = time.time() - start_time\n",
|
||
"\n",
|
||
"# Лучшая модель\n",
|
||
"best_model = grid_search.best_estimator_\n",
|
||
"\n",
|
||
"# Предсказания и оценка модели\n",
|
||
"val_predictions = best_model.predict(X_val)\n",
|
||
"mse = mean_squared_error(y_val, val_predictions)\n",
|
||
"r2 = r2_score(y_val, val_predictions)\n",
|
||
"\n",
|
||
"print(f'Время обучения модели: {train_time:.2f} секунд')\n",
|
||
"print(f'Среднеквадратичная ошибка: {mse:.2f}')\n",
|
||
"print(f'Коэффициент детерминации (R²): {r2:.2f}')\n",
|
||
"\n",
|
||
"# Визуализация результатов\n",
|
||
"plt.figure(figsize=(10, 6))\n",
|
||
"plt.scatter(y_val, val_predictions, alpha=0.5)\n",
|
||
"plt.plot([y_val.min(), y_val.max()], [y_val.min(), y_val.max()], 'k--', lw=2)\n",
|
||
"plt.xlabel('Фактическая стоимость активов')\n",
|
||
"plt.ylabel('Прогнозируемая стоимость активов')\n",
|
||
"plt.title('Фактическая стоимость активов по сравнению с прогнозируемой')\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Выводы\n",
|
||
"\n",
|
||
"**Модель линейной регрессии (LinearRegression)** показала удовлетворительные результаты при прогнозировании стоимости активов миллионеров. Метрики качества и кросс-валидация позволяют предположить, что модель не сильно переобучена и может быть использована для практических целей.\n",
|
||
"\n",
|
||
"*Точность предсказаний:* Модель демонстрирует коэффициент детерминации (R²) 0.27, что указывает на умеренную часть вариации целевого признака (стоимости активов). Однако, значения среднеквадратичной ошибки (RMSE) остаются высокими (17.43), что свидетельствует о том, что модель не всегда точно предсказывает значения, особенно для объектов с высокими или низкими стоимостями активов.\n",
|
||
"\n",
|
||
"*Переобучение:* Разница между RMSE на обучающей и тестовой выборках незначительна, что указывает на то, что модель не склонна к переобучению. Однако в будущем стоит следить за этой метрикой при добавлении новых признаков или усложнении модели, чтобы избежать излишней подгонки под тренировочные данные. Также стоит быть осторожным и продолжать мониторинг этого показателя.\n",
|
||
"\n",
|
||
"*Кросс-валидация:* При кросс-валидации наблюдается небольшое увеличение ошибки RMSE по сравнению с тестовой выборкой (рост на 2-3%). Это может указывать на небольшую нестабильность модели при использовании разных подвыборок данных. Для повышения устойчивости модели возможно стоит провести дальнейшую настройку гиперпараметров.\n",
|
||
"\n",
|
||
"*Рекомендации:* Следует уделить внимание дополнительной обработке категориальных признаков, улучшению метода feature engineering, а также возможной оптимизации модели (например, через подбор гиперпараметров) для повышения точности предсказаний на экстремальных значениях.\n",
|
||
"\n",
|
||
"*Время обучения модели:* Модель обучалась в течение 11.98 секунд, что является приемлемым временем для данного объема данных.\n"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.5"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|