Compare commits
No commits in common. "main" and "master" have entirely different histories.
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@ -0,0 +1 @@
|
||||
* text=crlf
|
146
.gitignore
vendored
146
.gitignore
vendored
@ -1,18 +1,103 @@
|
||||
# ---> VisualStudioCode
|
||||
.vscode/*
|
||||
!.vscode/settings.json
|
||||
!.vscode/tasks.json
|
||||
!.vscode/launch.json
|
||||
!.vscode/extensions.json
|
||||
!.vscode/*.code-snippets
|
||||
|
||||
# Local History for Visual Studio Code
|
||||
.history/
|
||||
# Created by https://www.toptal.com/developers/gitignore/api/python,pycharm+all
|
||||
# Edit at https://www.toptal.com/developers/gitignore?templates=python,pycharm+all
|
||||
|
||||
# Built Visual Studio Code Extensions
|
||||
*.vsix
|
||||
### PyCharm+all ###
|
||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
|
||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||
|
||||
# ---> Python
|
||||
# User-specific stuff
|
||||
.idea/**/workspace.xml
|
||||
.idea/**/tasks.xml
|
||||
.idea/**/usage.statistics.xml
|
||||
.idea/**/dictionaries
|
||||
.idea/**/shelf
|
||||
|
||||
# AWS User-specific
|
||||
.idea/**/aws.xml
|
||||
|
||||
# Generated files
|
||||
.idea/**/contentModel.xml
|
||||
|
||||
# Sensitive or high-churn files
|
||||
.idea/**/dataSources/
|
||||
.idea/**/dataSources.ids
|
||||
.idea/**/dataSources.local.xml
|
||||
.idea/**/sqlDataSources.xml
|
||||
.idea/**/dynamic.xml
|
||||
.idea/**/uiDesigner.xml
|
||||
.idea/**/dbnavigator.xml
|
||||
|
||||
# Gradle
|
||||
.idea/**/gradle.xml
|
||||
.idea/**/libraries
|
||||
|
||||
# Gradle and Maven with auto-import
|
||||
# When using Gradle or Maven with auto-import, you should exclude module files,
|
||||
# since they will be recreated, and may cause churn. Uncomment if using
|
||||
# auto-import.
|
||||
# .idea/artifacts
|
||||
# .idea/compiler.xml
|
||||
# .idea/jarRepositories.xml
|
||||
# .idea/modules.xml
|
||||
# .idea/*.iml
|
||||
# .idea/modules
|
||||
# *.iml
|
||||
# *.ipr
|
||||
|
||||
# CMake
|
||||
cmake-build-*/
|
||||
|
||||
# Mongo Explorer plugin
|
||||
.idea/**/mongoSettings.xml
|
||||
|
||||
# File-based project format
|
||||
*.iws
|
||||
|
||||
# IntelliJ
|
||||
out/
|
||||
|
||||
# mpeltonen/sbt-idea plugin
|
||||
.idea_modules/
|
||||
|
||||
# JIRA plugin
|
||||
atlassian-ide-plugin.xml
|
||||
|
||||
# Cursive Clojure plugin
|
||||
.idea/replstate.xml
|
||||
|
||||
# SonarLint plugin
|
||||
.idea/sonarlint/
|
||||
|
||||
# Crashlytics plugin (for Android Studio and IntelliJ)
|
||||
com_crashlytics_export_strings.xml
|
||||
crashlytics.properties
|
||||
crashlytics-build.properties
|
||||
fabric.properties
|
||||
|
||||
# Editor-based Rest Client
|
||||
.idea/httpRequests
|
||||
|
||||
# Android studio 3.1+ serialized cache file
|
||||
.idea/caches/build_file_checksums.ser
|
||||
|
||||
### PyCharm+all Patch ###
|
||||
# Ignores the whole .idea folder and all .iml files
|
||||
# See https://github.com/joeblau/gitignore.io/issues/186 and https://github.com/joeblau/gitignore.io/issues/360
|
||||
|
||||
.idea/*
|
||||
|
||||
# Reason: https://github.com/joeblau/gitignore.io/issues/186#issuecomment-249601023
|
||||
|
||||
*.iml
|
||||
modules.xml
|
||||
.idea/misc.xml
|
||||
*.ipr
|
||||
|
||||
# Sonarlint plugin
|
||||
.idea/sonarlint
|
||||
|
||||
### Python ###
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
@ -116,15 +201,7 @@ ipython_config.py
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
@ -168,9 +245,34 @@ dmypy.json
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
### VisualStudioCode ###
|
||||
.vscode/*
|
||||
!.vscode/settings.json
|
||||
!.vscode/tasks.json
|
||||
!.vscode/launch.json
|
||||
!.vscode/extensions.json
|
||||
!.vscode/*.code-snippets
|
||||
|
||||
# Local History for Visual Studio Code
|
||||
.history/
|
||||
|
||||
# Built Visual Studio Code Extensions
|
||||
*.vsix
|
||||
|
||||
### VisualStudioCode Patch ###
|
||||
# Ignore all local history of files
|
||||
.history
|
||||
.ionide
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/python,pycharm+all
|
||||
|
||||
# JS
|
||||
node_modules/
|
||||
|
||||
test.csv
|
13
.vscode/extensions.json
vendored
Normal file
13
.vscode/extensions.json
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
{
|
||||
"recommendations": [
|
||||
"ms-python.black-formatter",
|
||||
"ms-python.flake8",
|
||||
"ms-python.isort",
|
||||
"ms-toolsai.jupyter",
|
||||
"ms-toolsai.datawrangler",
|
||||
"ms-python.python",
|
||||
"donjayamanne.python-environment-manager",
|
||||
// optional
|
||||
"usernamehw.errorlens"
|
||||
]
|
||||
}
|
16
.vscode/launch.json
vendored
Normal file
16
.vscode/launch.json
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "mai-service",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "run.py",
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": true
|
||||
}
|
||||
]
|
||||
}
|
38
.vscode/settings.json
vendored
Normal file
38
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,38 @@
|
||||
{
|
||||
"files.autoSave": "onFocusChange",
|
||||
"files.exclude": {
|
||||
"**/__pycache__": true
|
||||
},
|
||||
"editor.detectIndentation": false,
|
||||
"editor.formatOnType": false,
|
||||
"editor.formatOnPaste": true,
|
||||
"editor.formatOnSave": true,
|
||||
"editor.tabSize": 4,
|
||||
"editor.insertSpaces": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.organizeImports": "explicit",
|
||||
"source.sortImports": "explicit"
|
||||
},
|
||||
"editor.stickyScroll.enabled": false,
|
||||
"diffEditor.ignoreTrimWhitespace": false,
|
||||
"debug.showVariableTypes": true,
|
||||
"workbench.editor.highlightModifiedTabs": true,
|
||||
"git.suggestSmartCommit": false,
|
||||
"git.autofetch": true,
|
||||
"git.openRepositoryInParentFolders": "always",
|
||||
"git.confirmSync": false,
|
||||
"errorLens.gutterIconsEnabled": true,
|
||||
"errorLens.messageEnabled": false,
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "ms-python.black-formatter",
|
||||
},
|
||||
"python.languageServer": "Pylance",
|
||||
"python.analysis.typeCheckingMode": "basic",
|
||||
"python.analysis.autoImportCompletions": true,
|
||||
"isort.args": [
|
||||
"--profile",
|
||||
"black"
|
||||
],
|
||||
"notebook.lineNumbers": "on",
|
||||
"notebook.output.minimalErrorRendering": true,
|
||||
}
|
BIN
assets/lec2-split.png
Normal file
BIN
assets/lec2-split.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 63 KiB |
BIN
assets/quantile.png
Normal file
BIN
assets/quantile.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 111 KiB |
52
backend/__init__.py
Normal file
52
backend/__init__.py
Normal file
@ -0,0 +1,52 @@
|
||||
import importlib
|
||||
import os
|
||||
import traceback
|
||||
|
||||
import matplotlib
|
||||
from apiflask import APIBlueprint, APIFlask
|
||||
from flask_cors import CORS
|
||||
|
||||
matplotlib.use("agg")
|
||||
|
||||
cors = CORS()
|
||||
api_bp = APIBlueprint("api", __name__, url_prefix="/api/v1")
|
||||
dataset_path: str | None = None
|
||||
|
||||
|
||||
class Config:
|
||||
SECRET_KEY = "secret!"
|
||||
SEND_FILE_MAX_AGE_DEFAULT = -1
|
||||
|
||||
|
||||
def create_app():
|
||||
global dataset_path
|
||||
|
||||
# Create and configure app
|
||||
app = APIFlask(
|
||||
"MAI Service",
|
||||
title="MAI Service API",
|
||||
docs_path="/",
|
||||
version="1.0",
|
||||
static_folder="",
|
||||
template_folder="",
|
||||
)
|
||||
app.config.from_object(Config)
|
||||
|
||||
dataset_path = os.path.join(app.instance_path, "dataset")
|
||||
os.makedirs(dataset_path, exist_ok=True)
|
||||
|
||||
@app.errorhandler(Exception)
|
||||
def my_error_processor(error):
|
||||
traceback.print_exception(error)
|
||||
return {"message": str(error), "detail": "No details"}, 500
|
||||
|
||||
# Import custom REST methods
|
||||
importlib.import_module("backend.api")
|
||||
|
||||
# Enable REST API
|
||||
app.register_blueprint(api_bp)
|
||||
|
||||
# Enable app extensions
|
||||
cors.init_app(app)
|
||||
|
||||
return app
|
57
backend/api.py
Normal file
57
backend/api.py
Normal file
@ -0,0 +1,57 @@
|
||||
from apiflask import FileSchema, Schema, fields
|
||||
from flask import send_file
|
||||
|
||||
from backend import api_bp, dataset_path
|
||||
from backend.service import Service
|
||||
|
||||
|
||||
class FileUpload(Schema):
|
||||
file = fields.File(required=True)
|
||||
|
||||
|
||||
class ColumnInfoDto(Schema):
|
||||
datatype = fields.String()
|
||||
items = fields.List(fields.String())
|
||||
|
||||
|
||||
class TableColumnDto(Schema):
|
||||
name = fields.String()
|
||||
datatype = fields.String()
|
||||
items = fields.List(fields.String())
|
||||
|
||||
|
||||
service = Service(dataset_path)
|
||||
|
||||
|
||||
@api_bp.post("/dataset")
|
||||
@api_bp.input(FileUpload, location="files")
|
||||
def upload_dataset(files_data):
|
||||
uploaded_file = files_data["file"]
|
||||
return service.upload_dataset(uploaded_file)
|
||||
|
||||
|
||||
@api_bp.get("/dataset")
|
||||
def get_all_datasets():
|
||||
return service.get_all_datasets()
|
||||
|
||||
|
||||
@api_bp.get("/dataset/<string:name>")
|
||||
@api_bp.output(TableColumnDto(many=True))
|
||||
def get_dataset_info(name: str):
|
||||
return service.get_dataset_info(name)
|
||||
|
||||
|
||||
@api_bp.get("/dataset/<string:name>/<string:column>")
|
||||
@api_bp.output(ColumnInfoDto)
|
||||
def get_column_info(name: str, column: str):
|
||||
return service.get_column_info(name, column)
|
||||
|
||||
|
||||
@api_bp.get("/dataset/draw/hist/<string:name>/<string:column>")
|
||||
@api_bp.output(
|
||||
FileSchema(type="string", format="binary"), content_type="image/png", example=""
|
||||
)
|
||||
def get_dataset_hist(name: str, column: str):
|
||||
data = service.get_hist(name, column)
|
||||
data.seek(0)
|
||||
return send_file(data, download_name=f"{name}.hist.png", mimetype="image/png")
|
59
backend/service.py
Normal file
59
backend/service.py
Normal file
@ -0,0 +1,59 @@
|
||||
import io
|
||||
import os
|
||||
import pathlib
|
||||
from typing import BinaryIO, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
from matplotlib.figure import Figure
|
||||
from werkzeug.datastructures import FileStorage
|
||||
from werkzeug.utils import secure_filename
|
||||
|
||||
|
||||
class Service:
|
||||
def __init__(self, dataset_path: str | None) -> None:
|
||||
if dataset_path is None:
|
||||
raise Exception("Dataset path is not defined")
|
||||
self.__path: str = dataset_path
|
||||
|
||||
def __get_dataset(self, filename: str) -> pd.DataFrame:
|
||||
full_file_name = os.path.join(self.__path, secure_filename(filename))
|
||||
return pd.read_csv(full_file_name)
|
||||
|
||||
def upload_dataset(self, file: FileStorage) -> str:
|
||||
if file.filename is None:
|
||||
raise Exception("Dataset upload error")
|
||||
file_name: str = file.filename
|
||||
full_file_name = os.path.join(self.__path, secure_filename(file_name))
|
||||
file.save(full_file_name)
|
||||
return file_name
|
||||
|
||||
def get_all_datasets(self) -> List[str]:
|
||||
return [file.name for file in pathlib.Path(self.__path).glob("*.csv")]
|
||||
|
||||
def get_dataset_info(self, filename) -> List[Dict]:
|
||||
dataset = self.__get_dataset(filename)
|
||||
dataset_info = []
|
||||
for column in dataset.columns:
|
||||
items = dataset[column].astype(str)
|
||||
column_info = {
|
||||
"name": column,
|
||||
"datatype": dataset.dtypes[column],
|
||||
"items": items,
|
||||
}
|
||||
dataset_info.append(column_info)
|
||||
return dataset_info
|
||||
|
||||
def get_column_info(self, filename, column) -> Dict:
|
||||
dataset = self.__get_dataset(filename)
|
||||
datatype = dataset.dtypes[column]
|
||||
items = sorted(dataset[column].astype(str).unique())
|
||||
return {"datatype": datatype, "items": items}
|
||||
|
||||
def get_hist(self, filename, column) -> BinaryIO:
|
||||
dataset = self.__get_dataset(filename)
|
||||
bytes = io.BytesIO()
|
||||
plot: Figure | None = dataset.plot.hist(column=[column], bins=80).get_figure()
|
||||
if plot is None:
|
||||
raise Exception("Can't create hist plot")
|
||||
plot.savefig(bytes, dpi=300, format="png")
|
||||
return bytes
|
19238
data/car_price_prediction.csv
Normal file
19238
data/car_price_prediction.csv
Normal file
File diff suppressed because it is too large
Load Diff
235
data/country.csv
Normal file
235
data/country.csv
Normal file
@ -0,0 +1,235 @@
|
||||
Country/Territory,Capital,Continent
|
||||
Afghanistan,Kabul,Asia
|
||||
Albania,Tirana,Europe
|
||||
Algeria,Algiers,Africa
|
||||
American Samoa,Pago Pago,Oceania
|
||||
Andorra,Andorra la Vella,Europe
|
||||
Angola,Luanda,Africa
|
||||
Anguilla,The Valley,North America
|
||||
Antigua and Barbuda,Saint Johns,North America
|
||||
Argentina,Buenos Aires,South America
|
||||
Armenia,Yerevan,Asia
|
||||
Aruba,Oranjestad,North America
|
||||
Australia,Canberra,Oceania
|
||||
Austria,Vienna,Europe
|
||||
Azerbaijan,Baku,Asia
|
||||
Bahamas,Nassau,North America
|
||||
Bahrain,Manama,Asia
|
||||
Bangladesh,Dhaka,Asia
|
||||
Barbados,Bridgetown,North America
|
||||
Belarus,Minsk,Europe
|
||||
Belgium,Brussels,Europe
|
||||
Belize,Belmopan,North America
|
||||
Benin,Porto-Novo,Africa
|
||||
Bermuda,Hamilton,North America
|
||||
Bhutan,Thimphu,Asia
|
||||
Bolivia,Sucre,South America
|
||||
Bosnia and Herzegovina,Sarajevo,Europe
|
||||
Botswana,Gaborone,Africa
|
||||
Brazil,Brasilia,South America
|
||||
British Virgin Islands,Road Town,North America
|
||||
Brunei,Bandar Seri Begawan,Asia
|
||||
Bulgaria,Sofia,Europe
|
||||
Burkina Faso,Ouagadougou,Africa
|
||||
Burundi,Bujumbura,Africa
|
||||
Cambodia,Phnom Penh,Asia
|
||||
Cameroon,Yaounde,Africa
|
||||
Canada,Ottawa,North America
|
||||
Cape Verde,Praia,Africa
|
||||
Cayman Islands,George Town,North America
|
||||
Central African Republic,Bangui,Africa
|
||||
Chad,N'Djamena,Africa
|
||||
Chile,Santiago,South America
|
||||
China,Beijing,Asia
|
||||
Colombia,Bogota,South America
|
||||
Comoros,Moroni,Africa
|
||||
Cook Islands,Avarua,Oceania
|
||||
Costa Rica,San Jos??,North America
|
||||
Croatia,Zagreb,Europe
|
||||
Cuba,Havana,North America
|
||||
Curacao,Willemstad,North America
|
||||
Cyprus,Nicosia,Europe
|
||||
Czech Republic,Prague,Europe
|
||||
Denmark,Copenhagen,Europe
|
||||
Djibouti,Djibouti,Africa
|
||||
Dominica,Roseau,North America
|
||||
Dominican Republic,Santo Domingo,North America
|
||||
DR Congo,Kinshasa,Africa
|
||||
Ecuador,Quito,South America
|
||||
Egypt,Cairo,Africa
|
||||
El Salvador,San Salvador,North America
|
||||
Equatorial Guinea,Malabo,Africa
|
||||
Eritrea,Asmara,Africa
|
||||
Estonia,Tallinn,Europe
|
||||
Eswatini,Mbabane,Africa
|
||||
Ethiopia,Addis Ababa,Africa
|
||||
Falkland Islands,Stanley,South America
|
||||
Faroe Islands,Trshavn,Europe
|
||||
Fiji,Suva,Oceania
|
||||
Finland,Helsinki,Europe
|
||||
France,Paris,Europe
|
||||
French Guiana,Cayenne,South America
|
||||
French Polynesia,Papeete,Oceania
|
||||
Gabon,Libreville,Africa
|
||||
Gambia,Banjul,Africa
|
||||
Georgia,Tbilisi,Asia
|
||||
Germany,Berlin,Europe
|
||||
Ghana,Accra,Africa
|
||||
Gibraltar,Gibraltar,Europe
|
||||
Greece,Athens,Europe
|
||||
Greenland,Nuuk,North America
|
||||
Grenada,Saint George's,North America
|
||||
Guadeloupe,Basse-Terre,North America
|
||||
Guam,Hagta,Oceania
|
||||
Guatemala,Guatemala City,North America
|
||||
Guernsey,Saint Peter Port,Europe
|
||||
Guinea,Conakry,Africa
|
||||
Guinea-Bissau,Bissau,Africa
|
||||
Guyana,Georgetown,South America
|
||||
Haiti,Port-au-Prince,North America
|
||||
Honduras,Tegucigalpa,North America
|
||||
Hong Kong,Hong Kong,Asia
|
||||
Hungary,Budapest,Europe
|
||||
Iceland,Reykjavk,Europe
|
||||
India,New Delhi,Asia
|
||||
Indonesia,Jakarta,Asia
|
||||
Iran,Tehran,Asia
|
||||
Iraq,Baghdad,Asia
|
||||
Ireland,Dublin,Europe
|
||||
Isle of Man,Douglas,Europe
|
||||
Israel,Jerusalem,Asia
|
||||
Italy,Rome,Europe
|
||||
Ivory Coast,Yamoussoukro,Africa
|
||||
Jamaica,Kingston,North America
|
||||
Japan,Tokyo,Asia
|
||||
Jersey,Saint Helier,Europe
|
||||
Jordan,Amman,Asia
|
||||
Kazakhstan,Nursultan,Asia
|
||||
Kenya,Nairobi,Africa
|
||||
Kiribati,Tarawa,Oceania
|
||||
Kuwait,Kuwait City,Asia
|
||||
Kyrgyzstan,Bishkek,Asia
|
||||
Laos,Vientiane,Asia
|
||||
Latvia,Riga,Europe
|
||||
Lebanon,Beirut,Asia
|
||||
Lesotho,Maseru,Africa
|
||||
Liberia,Monrovia,Africa
|
||||
Libya,Tripoli,Africa
|
||||
Liechtenstein,Vaduz,Europe
|
||||
Lithuania,Vilnius,Europe
|
||||
Luxembourg,Luxembourg,Europe
|
||||
Macau,Concelho de Macau,Asia
|
||||
Madagascar,Antananarivo,Africa
|
||||
Malawi,,Africa
|
||||
Malaysia,Kuala Lumpur,Asia
|
||||
Maldives,Mal??,Asia
|
||||
Mali,Bamako,Africa
|
||||
Malta,Valletta,Europe
|
||||
Marshall Islands,Majuro,Oceania
|
||||
Martinique,,North America
|
||||
Mauritania,Nouakchott,Africa
|
||||
Mauritius,Port Louis,Africa
|
||||
Mayotte,Mamoudzou,Africa
|
||||
Mexico,Mexico City,North America
|
||||
Micronesia,Palikir,Oceania
|
||||
Moldova,Chisinau,Europe
|
||||
Monaco,Monaco,Europe
|
||||
Mongolia,Ulaanbaatar,Asia
|
||||
Montenegro,Podgorica,Europe
|
||||
Montserrat,Brades,North America
|
||||
Morocco,Rabat,Africa
|
||||
Mozambique,Maputo,Africa
|
||||
Myanmar,Nay Pyi Taw,Asia
|
||||
Namibia,Windhoek,Africa
|
||||
Nauru,Yaren,Oceania
|
||||
Nepal,Kathmandu,Asia
|
||||
Netherlands,Amsterdam,Europe
|
||||
New Caledonia,Noum??a,Oceania
|
||||
New Zealand,Wellington,Oceania
|
||||
Nicaragua,Managua,North America
|
||||
Niger,Niamey,Africa
|
||||
Nigeria,Abuja,Africa
|
||||
Niue,Alofi,Oceania
|
||||
North Korea,Pyongyang,Asia
|
||||
North Macedonia,Skopje,Europe
|
||||
Northern Mariana Islands,Saipan,Oceania
|
||||
Norway,Oslo,Europe
|
||||
Oman,Muscat,Asia
|
||||
Pakistan,Islamabad,Asia
|
||||
Palau,Ngerulmud,Oceania
|
||||
Palestine,Ramallah,Asia
|
||||
Panama,Panama City,North America
|
||||
Papua New Guinea,Port Moresby,Oceania
|
||||
Paraguay,Asunci??n,South America
|
||||
Peru,Lima,South America
|
||||
Philippines,Manila,Asia
|
||||
Poland,Warsaw,Europe
|
||||
Portugal,Lisbon,Europe
|
||||
Puerto Rico,San Juan,North America
|
||||
Qatar,Doha,Asia
|
||||
Republic of the Congo,Brazzaville,Africa
|
||||
Reunion,Saint-Denis,Africa
|
||||
Romania,Bucharest,Europe
|
||||
Russia,Moscow,Europe
|
||||
Rwanda,Kigali,Africa
|
||||
Saint Barthelemy,Gustavia,North America
|
||||
Saint Kitts and Nevis,Basseterre,North America
|
||||
Saint Lucia,Castries,North America
|
||||
Saint Martin,Marigot,North America
|
||||
Saint Pierre and Miquelon,Saint-Pierre,North America
|
||||
Saint Vincent and the Grenadines,Kingstown,North America
|
||||
Samoa,Apia,Oceania
|
||||
San Marino,San Marino,Europe
|
||||
Sao Tome and Principe,So Tom,Africa
|
||||
Saudi Arabia,Riyadh,Asia
|
||||
Senegal,Dakar,Africa
|
||||
Serbia,Belgrade,Europe
|
||||
Seychelles,Victoria,Africa
|
||||
Sierra Leone,Freetown,Africa
|
||||
Singapore,Singapore,Asia
|
||||
Sint Maarten,Philipsburg,North America
|
||||
Slovakia,Bratislava,Europe
|
||||
Slovenia,Ljubljana,Europe
|
||||
Solomon Islands,Honiara,Oceania
|
||||
Somalia,Mogadishu,Africa
|
||||
South Africa,Pretoria,Africa
|
||||
South Korea,Seoul,Asia
|
||||
South Sudan,Juba,Africa
|
||||
Spain,Madrid,Europe
|
||||
Sri Lanka,Colombo,Asia
|
||||
Sudan,Khartoum,Africa
|
||||
Suriname,Paramaribo,South America
|
||||
Sweden,Stockholm,Europe
|
||||
Switzerland,Bern,Europe
|
||||
Syria,Damascus,Asia
|
||||
Taiwan,Taipei,Asia
|
||||
Tajikistan,Dushanbe,Asia
|
||||
Tanzania,Dodoma,Africa
|
||||
Thailand,Bangkok,Asia
|
||||
Timor-Leste,Dili,Asia
|
||||
Togo,Lom,Africa
|
||||
Tokelau,Nukunonu,Oceania
|
||||
Tonga,Nukualofa,Oceania
|
||||
Trinidad and Tobago,Port-of-Spain,North America
|
||||
Tunisia,Tunis,Africa
|
||||
Turkey,Ankara,Asia
|
||||
Turkmenistan,Ashgabat,Asia
|
||||
Turks and Caicos Islands,Cockburn Town,North America
|
||||
Tuvalu,Funafuti,Oceania
|
||||
Uganda,Kampala,Africa
|
||||
Ukraine,Kiev,Europe
|
||||
United Arab Emirates,Abu Dhabi,Asia
|
||||
United Kingdom,London,Europe
|
||||
United States,"Washington, D.C.",North America
|
||||
United States Virgin Islands,Charlotte Amalie,North America
|
||||
Uruguay,Montevideo,South America
|
||||
Uzbekistan,Tashkent,Asia
|
||||
Vanuatu,Port-Vila,Oceania
|
||||
Vatican City,Vatican City,Europe
|
||||
Venezuela,Caracas,South America
|
||||
Vietnam,Hanoi,Asia
|
||||
Wallis and Futuna,Mata-Utu,Oceania
|
||||
Western Sahara,El Aain,Africa
|
||||
Yemen,Sanaa,Asia
|
||||
Zambia,Lusaka,Africa
|
||||
Zimbabwe,Harare,Africa
|
|
244
data/dollar.csv
Normal file
244
data/dollar.csv
Normal file
@ -0,0 +1,244 @@
|
||||
"my_date","my_value","bullet","bulletClass","label"
|
||||
"28.03.2023","76.5662","","",""
|
||||
"31.03.2023","77.0863","","",""
|
||||
"01.04.2023","77.3233","","",""
|
||||
"04.04.2023","77.9510","","",""
|
||||
"05.04.2023","79.3563","","",""
|
||||
"06.04.2023","79.4961","","",""
|
||||
"07.04.2023","80.6713","","",""
|
||||
"08.04.2023","82.3988","","",""
|
||||
"11.04.2023","81.7441","","",""
|
||||
"12.04.2023","82.1799","","",""
|
||||
"13.04.2023","82.0934","","",""
|
||||
"14.04.2023","81.6758","","",""
|
||||
"15.04.2023","81.5045","","",""
|
||||
"18.04.2023","81.6279","","",""
|
||||
"19.04.2023","81.6028","","",""
|
||||
"20.04.2023","81.6549","","",""
|
||||
"21.04.2023","81.6188","","",""
|
||||
"22.04.2023","81.4863","","",""
|
||||
"25.04.2023","81.2745","","",""
|
||||
"26.04.2023","81.5499","","",""
|
||||
"27.04.2023","81.6274","","",""
|
||||
"28.04.2023","81.5601","","",""
|
||||
"29.04.2023","80.5093","","",""
|
||||
"03.05.2023","79.9609","","",""
|
||||
"04.05.2023","79.3071","","",""
|
||||
"05.05.2023","78.6139","","",""
|
||||
"06.05.2023","76.8207","","",""
|
||||
"11.05.2023","76.6929","","",""
|
||||
"12.05.2023","75.8846","round","min-pulsating-bullet","мин"
|
||||
"13.05.2023","77.2041","","",""
|
||||
"16.05.2023","79.1004","","",""
|
||||
"17.05.2023","79.9798","","",""
|
||||
"18.05.2023","80.7642","","",""
|
||||
"19.05.2023","80.0366","","",""
|
||||
"20.05.2023","79.9093","","",""
|
||||
"23.05.2023","79.9379","","",""
|
||||
"24.05.2023","80.1665","","",""
|
||||
"25.05.2023","79.9669","","",""
|
||||
"26.05.2023","79.9841","","",""
|
||||
"27.05.2023","79.9667","","",""
|
||||
"30.05.2023","80.0555","","",""
|
||||
"31.05.2023","80.6872","","",""
|
||||
"01.06.2023","80.9942","","",""
|
||||
"02.06.2023","80.9657","","",""
|
||||
"03.06.2023","80.8756","","",""
|
||||
"06.06.2023","81.3294","","",""
|
||||
"07.06.2023","81.2502","","",""
|
||||
"08.06.2023","81.4581","","",""
|
||||
"09.06.2023","82.0930","","",""
|
||||
"10.06.2023","82.6417","","",""
|
||||
"14.06.2023","83.6405","","",""
|
||||
"15.06.2023","84.3249","","",""
|
||||
"16.06.2023","83.9611","","",""
|
||||
"17.06.2023","83.6498","","",""
|
||||
"20.06.2023","83.9866","","",""
|
||||
"21.06.2023","84.2336","","",""
|
||||
"22.06.2023","84.2467","","",""
|
||||
"23.06.2023","83.6077","","",""
|
||||
"24.06.2023","84.0793","","",""
|
||||
"27.06.2023","84.6642","","",""
|
||||
"28.06.2023","85.0504","","",""
|
||||
"29.06.2023","85.6192","","",""
|
||||
"30.06.2023","87.0341","","",""
|
||||
"01.07.2023","88.3844","","",""
|
||||
"04.07.2023","89.3255","","",""
|
||||
"05.07.2023","89.5450","","",""
|
||||
"06.07.2023","90.3380","","",""
|
||||
"07.07.2023","92.5695","","",""
|
||||
"08.07.2023","91.6879","","",""
|
||||
"11.07.2023","91.4931","","",""
|
||||
"12.07.2023","90.5045","","",""
|
||||
"13.07.2023","90.6253","","",""
|
||||
"14.07.2023","90.1757","","",""
|
||||
"15.07.2023","90.1190","","",""
|
||||
"18.07.2023","90.4217","","",""
|
||||
"19.07.2023","90.6906","","",""
|
||||
"20.07.2023","91.2046","","",""
|
||||
"21.07.2023","90.8545","","",""
|
||||
"22.07.2023","90.3846","","",""
|
||||
"25.07.2023","90.4890","","",""
|
||||
"26.07.2023","90.0945","","",""
|
||||
"27.07.2023","90.0468","","",""
|
||||
"28.07.2023","90.0225","","",""
|
||||
"29.07.2023","90.9783","","",""
|
||||
"01.08.2023","91.5923","","",""
|
||||
"02.08.2023","91.7755","","",""
|
||||
"03.08.2023","92.8410","","",""
|
||||
"04.08.2023","93.7792","","",""
|
||||
"05.08.2023","94.8076","","",""
|
||||
"08.08.2023","96.5668","","",""
|
||||
"09.08.2023","96.0755","","",""
|
||||
"10.08.2023","97.3999","","",""
|
||||
"11.08.2023","97.2794","","",""
|
||||
"12.08.2023","98.2066","","",""
|
||||
"15.08.2023","101.0399","","",""
|
||||
"16.08.2023","97.4217","","",""
|
||||
"17.08.2023","96.7045","","",""
|
||||
"18.08.2023","93.7460","","",""
|
||||
"19.08.2023","93.4047","","",""
|
||||
"22.08.2023","94.1424","","",""
|
||||
"23.08.2023","94.1185","","",""
|
||||
"24.08.2023","94.4421","","",""
|
||||
"25.08.2023","94.4007","","",""
|
||||
"26.08.2023","94.7117","","",""
|
||||
"29.08.2023","95.4717","","",""
|
||||
"30.08.2023","95.7070","","",""
|
||||
"31.08.2023","95.9283","","",""
|
||||
"01.09.2023","96.3344","","",""
|
||||
"02.09.2023","96.3411","","",""
|
||||
"05.09.2023","96.6199","","",""
|
||||
"06.09.2023","97.5383","","",""
|
||||
"07.09.2023","97.8439","","",""
|
||||
"08.09.2023","98.1961","","",""
|
||||
"09.09.2023","97.9241","","",""
|
||||
"12.09.2023","96.5083","","",""
|
||||
"13.09.2023","94.7035","","",""
|
||||
"14.09.2023","95.9794","","",""
|
||||
"15.09.2023","96.1609","","",""
|
||||
"16.09.2023","96.6338","","",""
|
||||
"19.09.2023","96.6472","","",""
|
||||
"20.09.2023","96.2236","","",""
|
||||
"21.09.2023","96.6172","","",""
|
||||
"22.09.2023","96.0762","","",""
|
||||
"23.09.2023","96.0419","","",""
|
||||
"26.09.2023","96.1456","","",""
|
||||
"27.09.2023","96.2378","","",""
|
||||
"28.09.2023","96.5000","","",""
|
||||
"29.09.2023","97.0018","","",""
|
||||
"30.09.2023","97.4147","","",""
|
||||
"03.10.2023","98.4785","","",""
|
||||
"04.10.2023","99.2677","","",""
|
||||
"05.10.2023","99.4555","","",""
|
||||
"06.10.2023","99.6762","","",""
|
||||
"07.10.2023","100.4911","","",""
|
||||
"10.10.2023","101.3598","round","max-pulsating-bullet","макс"
|
||||
"11.10.2023","99.9349","","",""
|
||||
"12.10.2023","99.9808","","",""
|
||||
"13.10.2023","96.9948","","",""
|
||||
"14.10.2023","97.3075","","",""
|
||||
"17.10.2023","97.2865","","",""
|
||||
"18.10.2023","97.3458","","",""
|
||||
"19.10.2023","97.3724","","",""
|
||||
"20.10.2023","97.3074","","",""
|
||||
"21.10.2023","95.9053","","",""
|
||||
"24.10.2023","94.7081","","",""
|
||||
"25.10.2023","93.5224","","",""
|
||||
"26.10.2023","93.1507","","",""
|
||||
"27.10.2023","93.5616","","",""
|
||||
"28.10.2023","93.2174","","",""
|
||||
"31.10.2023","93.2435","","",""
|
||||
"01.11.2023","92.0226","","",""
|
||||
"02.11.2023","93.2801","","",""
|
||||
"03.11.2023","93.1730","","",""
|
||||
"04.11.2023","93.0351","","",""
|
||||
"08.11.2023","92.4151","","",""
|
||||
"09.11.2023","92.1973","","",""
|
||||
"10.11.2023","91.9266","","",""
|
||||
"11.11.2023","92.0535","","",""
|
||||
"14.11.2023","92.1185","","",""
|
||||
"15.11.2023","91.2570","","",""
|
||||
"16.11.2023","89.4565","","",""
|
||||
"17.11.2023","88.9466","","",""
|
||||
"18.11.2023","89.1237","","",""
|
||||
"21.11.2023","88.4954","","",""
|
||||
"22.11.2023","87.8701","","",""
|
||||
"23.11.2023","88.1648","","",""
|
||||
"24.11.2023","88.1206","","",""
|
||||
"25.11.2023","88.8133","","",""
|
||||
"28.11.2023","88.7045","","",""
|
||||
"29.11.2023","88.6102","","",""
|
||||
"30.11.2023","88.8841","","",""
|
||||
"01.12.2023","88.5819","","",""
|
||||
"02.12.2023","89.7619","","",""
|
||||
"05.12.2023","90.6728","","",""
|
||||
"06.12.2023","91.5823","","",""
|
||||
"07.12.2023","92.7826","","",""
|
||||
"08.12.2023","92.5654","","",""
|
||||
"09.12.2023","91.6402","","",""
|
||||
"12.12.2023","90.9846","","",""
|
||||
"13.12.2023","90.2158","","",""
|
||||
"14.12.2023","89.8926","","",""
|
||||
"15.12.2023","89.6741","","",""
|
||||
"16.12.2023","89.6966","","",""
|
||||
"19.12.2023","90.4162","","",""
|
||||
"20.12.2023","90.0870","","",""
|
||||
"21.12.2023","90.4056","","",""
|
||||
"22.12.2023","91.7062","","",""
|
||||
"23.12.2023","91.9389","","",""
|
||||
"26.12.2023","91.9690","","",""
|
||||
"27.12.2023","91.7069","","",""
|
||||
"28.12.2023","91.7051","","",""
|
||||
"29.12.2023","90.3041","","",""
|
||||
"30.12.2023","89.6883","","",""
|
||||
"10.01.2024","90.4040","","",""
|
||||
"11.01.2024","89.3939","","",""
|
||||
"12.01.2024","88.7818","","",""
|
||||
"13.01.2024","88.1324","","",""
|
||||
"16.01.2024","87.6772","","",""
|
||||
"17.01.2024","87.6457","","",""
|
||||
"18.01.2024","88.3540","","",""
|
||||
"19.01.2024","88.6610","","",""
|
||||
"20.01.2024","88.5896","","",""
|
||||
"23.01.2024","87.9724","","",""
|
||||
"24.01.2024","87.9199","","",""
|
||||
"25.01.2024","88.2829","","",""
|
||||
"26.01.2024","88.6562","","",""
|
||||
"27.01.2024","89.5159","","",""
|
||||
"30.01.2024","89.6090","","",""
|
||||
"31.01.2024","89.2887","","",""
|
||||
"01.02.2024","89.6678","","",""
|
||||
"02.02.2024","90.2299","","",""
|
||||
"03.02.2024","90.6626","","",""
|
||||
"06.02.2024","91.2434","","",""
|
||||
"07.02.2024","90.6842","","",""
|
||||
"08.02.2024","91.1514","","",""
|
||||
"09.02.2024","91.2561","","",""
|
||||
"10.02.2024","90.8901","","",""
|
||||
"13.02.2024","91.0758","","",""
|
||||
"14.02.2024","91.2057","","",""
|
||||
"15.02.2024","91.4316","","",""
|
||||
"16.02.2024","91.8237","","",""
|
||||
"17.02.2024","92.5492","","",""
|
||||
"20.02.2024","92.4102","","",""
|
||||
"21.02.2024","92.3490","","",""
|
||||
"22.02.2024","92.4387","","",""
|
||||
"23.02.2024","92.7519","","",""
|
||||
"27.02.2024","92.6321","","",""
|
||||
"28.02.2024","92.0425","","",""
|
||||
"29.02.2024","91.8692","","",""
|
||||
"01.03.2024","90.8423","","",""
|
||||
"02.03.2024","91.3336","","",""
|
||||
"05.03.2024","91.3534","","",""
|
||||
"06.03.2024","91.1604","","",""
|
||||
"07.03.2024","90.3412","","",""
|
||||
"08.03.2024","90.7493","","",""
|
||||
"12.03.2024","90.6252","","",""
|
||||
"13.03.2024","90.8818","","",""
|
||||
"19.03.2024","91.9829","","",""
|
||||
"20.03.2024","92.2243","","",""
|
||||
"21.03.2024","92.6861","","",""
|
||||
"22.03.2024","91.9499","","",""
|
||||
"23.03.2024","92.6118","","",""
|
||||
"26.03.2024","92.7761","","",""
|
|
4081
data/fish_data.csv
Normal file
4081
data/fish_data.csv
Normal file
File diff suppressed because it is too large
Load Diff
8
data/forcast.csv
Normal file
8
data/forcast.csv
Normal file
@ -0,0 +1,8 @@
|
||||
Year,Population,YearlyPer,Yearly,Median,Fertility,Density
|
||||
2020,"7,794,798,739",1.10%,"83,000,320",31,2.47,52
|
||||
2025,"8,184,437,460",0.98%,"77,927,744",32,2.54,55
|
||||
2030,"8,548,487,400",0.87%,"72,809,988",33,2.62,57
|
||||
2035,"8,887,524,213",0.78%,"67,807,363",34,2.7,60
|
||||
2040,"9,198,847,240",0.69%,"62,264,605",35,2.77,62
|
||||
2045,"9,481,803,274",0.61%,"56,591,207",35,2.85,64
|
||||
2050,"9,735,033,990",0.53%,"50,646,143",36,2.95,65
|
|
5111
data/healthcare.csv
Normal file
5111
data/healthcare.csv
Normal file
File diff suppressed because it is too large
Load Diff
21614
data/kc_house_data.csv
Normal file
21614
data/kc_house_data.csv
Normal file
File diff suppressed because it is too large
Load Diff
236
data/population.csv
Normal file
236
data/population.csv
Normal file
@ -0,0 +1,236 @@
|
||||
no,Country (or dependency),Population 2020,Yearly Change,Net Change,Density(P/Km²),Land Area (Km²),Migrants (net),Fert. Rate,MedAge,Urban Pop %,World Share
|
||||
1,China,"1,439,323,776",0.39%,"5,540,090",153,"9,388,211","-348,399",1.7,38,61%,18.47%
|
||||
2,India,"1,380,004,385",0.99%,"13,586,631",464,"2,973,190","-532,687",2.2,28,35%,17.70%
|
||||
3,United States,"331,002,651",0.59%,"1,937,734",36,"9,147,420","954,806",1.8,38,83%,4.25%
|
||||
4,Indonesia,"273,523,615",1.07%,"2,898,047",151,"1,811,570","-98,955",2.3,30,56%,3.51%
|
||||
5,Pakistan,"220,892,340",2.00%,"4,327,022",287,"770,880","-233,379",3.6,23,35%,2.83%
|
||||
6,Brazil,"212,559,417",0.72%,"1,509,890",25,"8,358,140","21,200",1.7,33,88%,2.73%
|
||||
7,Nigeria,"206,139,589",2.58%,"5,175,990",226,"910,770","-60,000",5.4,18,52%,2.64%
|
||||
8,Bangladesh,"164,689,383",1.01%,"1,643,222","1,265","130,170","-369,501",2.1,28,39%,2.11%
|
||||
9,Russia,"145,934,462",0.04%,"62,206",9,"16,376,870","182,456",1.8,40,74%,1.87%
|
||||
10,Mexico,"128,932,753",1.06%,"1,357,224",66,"1,943,950","-60,000",2.1,29,84%,1.65%
|
||||
11,Japan,"126,476,461",-0.30%,"-383,840",347,"364,555","71,560",1.4,48,92%,1.62%
|
||||
12,Ethiopia,"114,963,588",2.57%,"2,884,858",115,"1,000,000","30,000",4.3,19,21%,1.47%
|
||||
13,Philippines,"109,581,078",1.35%,"1,464,463",368,"298,170","-67,152",2.6,26,47%,1.41%
|
||||
14,Egypt,"102,334,404",1.94%,"1,946,331",103,"995,450","-38,033",3.3,25,43%,1.31%
|
||||
15,Vietnam,"97,338,579",0.91%,"876,473",314,"310,070","-80,000",2.1,32,38%,1.25%
|
||||
16,DR Congo,"89,561,403",3.19%,"2,770,836",40,"2,267,050","23,861",6,17,46%,1.15%
|
||||
17,Turkey,"84,339,067",1.09%,"909,452",110,"769,630","283,922",2.1,32,76%,1.08%
|
||||
18,Iran,"83,992,949",1.30%,"1,079,043",52,"1,628,550","-55,000",2.2,32,76%,1.08%
|
||||
19,Germany,"83,783,942",0.32%,"266,897",240,"348,560","543,822",1.6,46,76%,1.07%
|
||||
20,Thailand,"69,799,978",0.25%,"174,396",137,"510,890","19,444",1.5,40,51%,0.90%
|
||||
21,United Kingdom,"67,886,011",0.53%,"355,839",281,"241,930","260,650",1.8,40,83%,0.87%
|
||||
22,France,"65,273,511",0.22%,"143,783",119,"547,557","36,527",1.9,42,82%,0.84%
|
||||
23,Italy,"60,461,826",-0.15%,"-88,249",206,"294,140","148,943",1.3,47,69%,0.78%
|
||||
24,Tanzania,"59,734,218",2.98%,"1,728,755",67,"885,800","-40,076",4.9,18,37%,0.77%
|
||||
25,South Africa,"59,308,690",1.28%,"750,420",49,"1,213,090","145,405",2.4,28,67%,0.76%
|
||||
26,Myanmar,"54,409,800",0.67%,"364,380",83,"653,290","-163,313",2.2,29,31%,0.70%
|
||||
27,Kenya,"53,771,296",2.28%,"1,197,323",94,"569,140","-10,000",3.5,20,28%,0.69%
|
||||
28,South Korea,"51,269,185",0.09%,"43,877",527,"97,230","11,731",1.1,44,82%,0.66%
|
||||
29,Colombia,"50,882,891",1.08%,"543,448",46,"1,109,500","204,796",1.8,31,80%,0.65%
|
||||
30,Spain,"46,754,778",0.04%,"18,002",94,"498,800","40,000",1.3,45,80%,0.60%
|
||||
31,Uganda,"45,741,007",3.32%,"1,471,413",229,"199,810","168,694",5,17,26%,0.59%
|
||||
32,Argentina,"45,195,774",0.93%,"415,097",17,"2,736,690","4,800",2.3,32,93%,0.58%
|
||||
33,Algeria,"43,851,044",1.85%,"797,990",18,"2,381,740","-10,000",3.1,29,73%,0.56%
|
||||
34,Sudan,"43,849,260",2.42%,"1,036,022",25,"1,765,048","-50,000",4.4,20,35%,0.56%
|
||||
35,Ukraine,"43,733,762",-0.59%,"-259,876",75,"579,320","10,000",1.4,41,69%,0.56%
|
||||
36,Iraq,"40,222,493",2.32%,"912,710",93,"434,320","7,834",3.7,21,73%,0.52%
|
||||
37,Afghanistan,"38,928,346",2.33%,"886,592",60,"652,860","-62,920",4.6,18,25%,0.50%
|
||||
38,Poland,"37,846,611",-0.11%,"-41,157",124,"306,230","-29,395",1.4,42,60%,0.49%
|
||||
39,Canada,"37,742,154",0.89%,"331,107",4,"9,093,510","242,032",1.5,41,81%,0.48%
|
||||
40,Morocco,"36,910,560",1.20%,"438,791",83,"446,300","-51,419",2.4,30,64%,0.47%
|
||||
41,Saudi Arabia,"34,813,871",1.59%,"545,343",16,"2,149,690","134,979",2.3,32,84%,0.45%
|
||||
42,Uzbekistan,"33,469,203",1.48%,"487,487",79,"425,400","-8,863",2.4,28,50%,0.43%
|
||||
43,Peru,"32,971,854",1.42%,"461,401",26,"1,280,000","99,069",2.3,31,79%,0.42%
|
||||
44,Angola,"32,866,272",3.27%,"1,040,977",26,"1,246,700","6,413",5.6,17,67%,0.42%
|
||||
45,Malaysia,"32,365,999",1.30%,"416,222",99,"328,550","50,000",2,30,78%,0.42%
|
||||
46,Mozambique,"31,255,435",2.93%,"889,399",40,"786,380","-5,000",4.9,18,38%,0.40%
|
||||
47,Ghana,"31,072,940",2.15%,"655,084",137,"227,540","-10,000",3.9,22,57%,0.40%
|
||||
48,Yemen,"29,825,964",2.28%,"664,042",56,"527,970","-30,000",3.8,20,38%,0.38%
|
||||
49,Nepal,"29,136,808",1.85%,"528,098",203,"143,350","41,710",1.9,25,21%,0.37%
|
||||
50,Venezuela,"28,435,940",-0.28%,"-79,889",32,"882,050","-653,249",2.3,30,N.A.,0.36%
|
||||
51,Madagascar,"27,691,018",2.68%,"721,711",48,"581,795","-1,500",4.1,20,39%,0.36%
|
||||
52,Cameroon,"26,545,863",2.59%,"669,483",56,"472,710","-4,800",4.6,19,56%,0.34%
|
||||
53,Côte d'Ivoire,"26,378,274",2.57%,"661,730",83,"318,000","-8,000",4.7,19,51%,0.34%
|
||||
54,North Korea,"25,778,816",0.44%,"112,655",214,"120,410","-5,403",1.9,35,63%,0.33%
|
||||
55,Australia,"25,499,884",1.18%,"296,686",3,"7,682,300","158,246",1.8,38,86%,0.33%
|
||||
56,Niger,"24,206,644",3.84%,"895,929",19,"1,266,700","4,000",7,15,17%,0.31%
|
||||
57,Taiwan,"23,816,775",0.18%,"42,899",673,"35,410","30,001",1.2,42,79%,0.31%
|
||||
58,Sri Lanka,"21,413,249",0.42%,"89,516",341,"62,710","-97,986",2.2,34,18%,0.27%
|
||||
59,Burkina Faso,"20,903,273",2.86%,"581,895",76,"273,600","-25,000",5.2,18,31%,0.27%
|
||||
60,Mali,"20,250,833",3.02%,"592,802",17,"1,220,190","-40,000",5.9,16,44%,0.26%
|
||||
61,Romania,"19,237,691",-0.66%,"-126,866",84,"230,170","-73,999",1.6,43,55%,0.25%
|
||||
62,Malawi,"19,129,952",2.69%,"501,205",203,"94,280","-16,053",4.3,18,18%,0.25%
|
||||
63,Chile,"19,116,201",0.87%,"164,163",26,"743,532","111,708",1.7,35,85%,0.25%
|
||||
64,Kazakhstan,"18,776,707",1.21%,"225,280",7,"2,699,700","-18,000",2.8,31,58%,0.24%
|
||||
65,Zambia,"18,383,955",2.93%,"522,925",25,"743,390","-8,000",4.7,18,45%,0.24%
|
||||
66,Guatemala,"17,915,568",1.90%,"334,096",167,"107,160","-9,215",2.9,23,52%,0.23%
|
||||
67,Ecuador,"17,643,054",1.55%,"269,392",71,"248,360","36,400",2.4,28,63%,0.23%
|
||||
68,Syria,"17,500,658",2.52%,"430,523",95,"183,630","-427,391",2.8,26,60%,0.22%
|
||||
69,Netherlands,"17,134,872",0.22%,"37,742",508,"33,720","16,000",1.7,43,92%,0.22%
|
||||
70,Senegal,"16,743,927",2.75%,"447,563",87,"192,530","-20,000",4.7,19,49%,0.21%
|
||||
71,Cambodia,"16,718,965",1.41%,"232,423",95,"176,520","-30,000",2.5,26,24%,0.21%
|
||||
72,Chad,"16,425,864",3.00%,"478,988",13,"1,259,200","2,000",5.8,17,23%,0.21%
|
||||
73,Somalia,"15,893,222",2.92%,"450,317",25,"627,340","-40,000",6.1,17,47%,0.20%
|
||||
74,Zimbabwe,"14,862,924",1.48%,"217,456",38,"386,850","-116,858",3.6,19,38%,0.19%
|
||||
75,Guinea,"13,132,795",2.83%,"361,549",53,"245,720","-4,000",4.7,18,39%,0.17%
|
||||
76,Rwanda,"12,952,218",2.58%,"325,268",525,"24,670","-9,000",4.1,20,18%,0.17%
|
||||
77,Benin,"12,123,200",2.73%,"322,049",108,"112,760","-2,000",4.9,19,48%,0.16%
|
||||
78,Burundi,"11,890,784",3.12%,"360,204",463,"25,680","2,001",5.5,17,14%,0.15%
|
||||
79,Tunisia,"11,818,619",1.06%,"123,900",76,"155,360","-4,000",2.2,33,70%,0.15%
|
||||
80,Bolivia,"11,673,021",1.39%,"159,921",11,"1,083,300","-9,504",2.8,26,69%,0.15%
|
||||
81,Belgium,"11,589,623",0.44%,"50,295",383,"30,280","48,000",1.7,42,98%,0.15%
|
||||
82,Haiti,"11,402,528",1.24%,"139,451",414,"27,560","-35,000",3,24,57%,0.15%
|
||||
83,Cuba,"11,326,616",-0.06%,"-6,867",106,"106,440","-14,400",1.6,42,78%,0.15%
|
||||
84,South Sudan,"11,193,725",1.19%,"131,612",18,"610,952","-174,200",4.7,19,25%,0.14%
|
||||
85,Dominican Republic,"10,847,910",1.01%,"108,952",225,"48,320","-30,000",2.4,28,85%,0.14%
|
||||
86,Czech Republic (Czechia),"10,708,981",0.18%,"19,772",139,"77,240","22,011",1.6,43,74%,0.14%
|
||||
87,Greece,"10,423,054",-0.48%,"-50,401",81,"128,900","-16,000",1.3,46,85%,0.13%
|
||||
88,Jordan,"10,203,134",1.00%,"101,440",115,"88,780","10,220",2.8,24,91%,0.13%
|
||||
89,Portugal,"10,196,709",-0.29%,"-29,478",111,"91,590","-6,000",1.3,46,66%,0.13%
|
||||
90,Azerbaijan,"10,139,177",0.91%,"91,459",123,"82,658","1,200",2.1,32,56%,0.13%
|
||||
91,Sweden,"10,099,265",0.63%,"62,886",25,"410,340","40,000",1.9,41,88%,0.13%
|
||||
92,Honduras,"9,904,607",1.63%,"158,490",89,"111,890","-6,800",2.5,24,57%,0.13%
|
||||
93,United Arab Emirates,"9,890,402",1.23%,"119,873",118,"83,600","40,000",1.4,33,86%,0.13%
|
||||
94,Hungary,"9,660,351",-0.25%,"-24,328",107,"90,530","6,000",1.5,43,72%,0.12%
|
||||
95,Tajikistan,"9,537,645",2.32%,"216,627",68,"139,960","-20,000",3.6,22,27%,0.12%
|
||||
96,Belarus,"9,449,323",-0.03%,"-3,088",47,"202,910","8,730",1.7,40,79%,0.12%
|
||||
97,Austria,"9,006,398",0.57%,"51,296",109,"82,409","65,000",1.5,43,57%,0.12%
|
||||
98,Papua New Guinea,"8,947,024",1.95%,"170,915",20,"452,860",-800,3.6,22,13%,0.11%
|
||||
99,Serbia,"8,737,371",-0.40%,"-34,864",100,"87,460","4,000",1.5,42,56%,0.11%
|
||||
100,Israel,"8,655,535",1.60%,"136,158",400,"21,640","10,000",3,30,93%,0.11%
|
||||
101,Switzerland,"8,654,622",0.74%,"63,257",219,"39,516","52,000",1.5,43,74%,0.11%
|
||||
102,Togo,"8,278,724",2.43%,"196,358",152,"54,390","-2,000",4.4,19,43%,0.11%
|
||||
103,Sierra Leone,"7,976,983",2.10%,"163,768",111,"72,180","-4,200",4.3,19,43%,0.10%
|
||||
104,Hong Kong,"7,496,981",0.82%,"60,827","7,140","1,050","29,308",1.3,45,N.A.,0.10%
|
||||
105,Laos,"7,275,560",1.48%,"106,105",32,"230,800","-14,704",2.7,24,36%,0.09%
|
||||
106,Paraguay,"7,132,538",1.25%,"87,902",18,"397,300","-16,556",2.4,26,62%,0.09%
|
||||
107,Bulgaria,"6,948,445",-0.74%,"-51,674",64,"108,560","-4,800",1.6,45,76%,0.09%
|
||||
108,Libya,"6,871,292",1.38%,"93,840",4,"1,759,540","-1,999",2.3,29,78%,0.09%
|
||||
109,Lebanon,"6,825,445",-0.44%,"-30,268",667,"10,230","-30,012",2.1,30,78%,0.09%
|
||||
110,Nicaragua,"6,624,554",1.21%,"79,052",55,"120,340","-21,272",2.4,26,57%,0.08%
|
||||
111,Kyrgyzstan,"6,524,195",1.69%,"108,345",34,"191,800","-4,000",3,26,36%,0.08%
|
||||
112,El Salvador,"6,486,205",0.51%,"32,652",313,"20,720","-40,539",2.1,28,73%,0.08%
|
||||
113,Turkmenistan,"6,031,200",1.50%,"89,111",13,"469,930","-5,000",2.8,27,53%,0.08%
|
||||
114,Singapore,"5,850,342",0.79%,"46,005","8,358",700,"27,028",1.2,42,N.A.,0.08%
|
||||
115,Denmark,"5,792,202",0.35%,"20,326",137,"42,430","15,200",1.8,42,88%,0.07%
|
||||
116,Finland,"5,540,720",0.15%,"8,564",18,"303,890","14,000",1.5,43,86%,0.07%
|
||||
117,Congo,"5,518,087",2.56%,"137,579",16,"341,500","-4,000",4.5,19,70%,0.07%
|
||||
118,Slovakia,"5,459,642",0.05%,"2,629",114,"48,088","1,485",1.5,41,54%,0.07%
|
||||
119,Norway,"5,421,241",0.79%,"42,384",15,"365,268","28,000",1.7,40,83%,0.07%
|
||||
120,Oman,"5,106,626",2.65%,"131,640",16,"309,500","87,400",2.9,31,87%,0.07%
|
||||
121,State of Palestine,"5,101,414",2.41%,"119,994",847,"6,020","-10,563",3.7,21,80%,0.07%
|
||||
122,Costa Rica,"5,094,118",0.92%,"46,557",100,"51,060","4,200",1.8,33,80%,0.07%
|
||||
123,Liberia,"5,057,681",2.44%,"120,307",53,"96,320","-5,000",4.4,19,53%,0.06%
|
||||
124,Ireland,"4,937,786",1.13%,"55,291",72,"68,890","23,604",1.8,38,63%,0.06%
|
||||
125,Central African Republic,"4,829,767",1.78%,"84,582",8,"622,980","-40,000",4.8,18,43%,0.06%
|
||||
126,New Zealand,"4,822,233",0.82%,"39,170",18,"263,310","14,881",1.9,38,87%,0.06%
|
||||
127,Mauritania,"4,649,658",2.74%,"123,962",5,"1,030,700","5,000",4.6,20,57%,0.06%
|
||||
128,Panama,"4,314,767",1.61%,"68,328",58,"74,340","11,200",2.5,30,68%,0.06%
|
||||
129,Kuwait,"4,270,571",1.51%,"63,488",240,"17,820","39,520",2.1,37,N.A.,0.05%
|
||||
130,Croatia,"4,105,267",-0.61%,"-25,037",73,"55,960","-8,001",1.4,44,58%,0.05%
|
||||
131,Moldova,"4,033,963",-0.23%,"-9,300",123,"32,850","-1,387",1.3,38,43%,0.05%
|
||||
132,Georgia,"3,989,167",-0.19%,"-7,598",57,"69,490","-10,000",2.1,38,58%,0.05%
|
||||
133,Eritrea,"3,546,421",1.41%,"49,304",35,"101,000","-39,858",4.1,19,63%,0.05%
|
||||
134,Uruguay,"3,473,730",0.35%,"11,996",20,"175,020","-3,000",2,36,96%,0.04%
|
||||
135,Bosnia and Herzegovina,"3,280,819",-0.61%,"-20,181",64,"51,000","-21,585",1.3,43,52%,0.04%
|
||||
136,Mongolia,"3,278,290",1.65%,"53,123",2,"1,553,560",-852,2.9,28,67%,0.04%
|
||||
137,Armenia,"2,963,243",0.19%,"5,512",104,"28,470","-4,998",1.8,35,63%,0.04%
|
||||
138,Jamaica,"2,961,167",0.44%,"12,888",273,"10,830","-11,332",2,31,55%,0.04%
|
||||
139,Qatar,"2,881,053",1.73%,"48,986",248,"11,610","40,000",1.9,32,96%,0.04%
|
||||
140,Albania,"2,877,797",-0.11%,"-3,120",105,"27,400","-14,000",1.6,36,63%,0.04%
|
||||
141,Puerto Rico,"2,860,853",-2.47%,"-72,555",323,"8,870","-97,986",1.2,44,N.A.,0.04%
|
||||
142,Lithuania,"2,722,289",-1.35%,"-37,338",43,"62,674","-32,780",1.7,45,71%,0.03%
|
||||
143,Namibia,"2,540,905",1.86%,"46,375",3,"823,290","-4,806",3.4,22,55%,0.03%
|
||||
144,Gambia,"2,416,668",2.94%,"68,962",239,"10,120","-3,087",5.3,18,59%,0.03%
|
||||
145,Botswana,"2,351,627",2.08%,"47,930",4,"566,730","3,000",2.9,24,73%,0.03%
|
||||
146,Gabon,"2,225,734",2.45%,"53,155",9,"257,670","3,260",4,23,87%,0.03%
|
||||
147,Lesotho,"2,142,249",0.80%,"16,981",71,"30,360","-10,047",3.2,24,31%,0.03%
|
||||
148,North Macedonia,"2,083,374",0.00%,-85,83,"25,220","-1,000",1.5,39,59%,0.03%
|
||||
149,Slovenia,"2,078,938",0.01%,284,103,"20,140","2,000",1.6,45,55%,0.03%
|
||||
150,Guinea-Bissau,"1,968,001",2.45%,"47,079",70,"28,120","-1,399",4.5,19,45%,0.03%
|
||||
151,Latvia,"1,886,198",-1.08%,"-20,545",30,"62,200","-14,837",1.7,44,69%,0.02%
|
||||
152,Bahrain,"1,701,575",3.68%,"60,403","2,239",760,"47,800",2,32,89%,0.02%
|
||||
153,Equatorial Guinea,"1,402,985",3.47%,"46,999",50,"28,050","16,000",4.6,22,73%,0.02%
|
||||
154,Trinidad and Tobago,"1,399,488",0.32%,"4,515",273,"5,130",-800,1.7,36,52%,0.02%
|
||||
155,Estonia,"1,326,535",0.07%,887,31,"42,390","3,911",1.6,42,68%,0.02%
|
||||
156,Timor-Leste,"1,318,445",1.96%,"25,326",89,"14,870","-5,385",4.1,21,33%,0.02%
|
||||
157,Mauritius,"1,271,768",0.17%,"2,100",626,"2,030",0,1.4,37,41%,0.02%
|
||||
158,Cyprus,"1,207,359",0.73%,"8,784",131,"9,240","5,000",1.3,37,67%,0.02%
|
||||
159,Eswatini,"1,160,164",1.05%,"12,034",67,"17,200","-8,353",3,21,30%,0.01%
|
||||
160,Djibouti,"988,000",1.48%,"14,440",43,"23,180",900,2.8,27,79%,0.01%
|
||||
161,Fiji,"896,445",0.73%,"6,492",49,"18,270","-6,202",2.8,28,59%,0.01%
|
||||
162,Réunion,"895,312",0.72%,"6,385",358,"2,500","-1,256",2.3,36,100%,0.01%
|
||||
163,Comoros,"869,601",2.20%,"18,715",467,"1,861","-2,000",4.2,20,29%,0.01%
|
||||
164,Guyana,"786,552",0.48%,"3,786",4,"196,850","-6,000",2.5,27,27%,0.01%
|
||||
165,Bhutan,"771,608",1.12%,"8,516",20,"38,117",320,2,28,46%,0.01%
|
||||
166,Solomon Islands,"686,884",2.55%,"17,061",25,"27,990","-1,600",4.4,20,23%,0.01%
|
||||
167,Macao,"649,335",1.39%,"8,890","21,645",30,"5,000",1.2,39,N.A.,0.01%
|
||||
168,Montenegro,"628,066",0.01%,79,47,"13,450",-480,1.8,39,68%,0.01%
|
||||
169,Luxembourg,"625,978",1.66%,"10,249",242,"2,590","9,741",1.5,40,88%,0.01%
|
||||
170,Western Sahara,"597,339",2.55%,"14,876",2,"266,000","5,582",2.4,28,87%,0.01%
|
||||
171,Suriname,"586,632",0.90%,"5,260",4,"156,000","-1,000",2.4,29,65%,0.01%
|
||||
172,Cabo Verde,"555,987",1.10%,"6,052",138,"4,030","-1,342",2.3,28,68%,0.01%
|
||||
173,Micronesia,"548,914",1.00%,"5,428",784,700,"-2,957",2.9,27,68%,0.01%
|
||||
174,Maldives,"540,544",1.81%,"9,591","1,802",300,"11,370",1.9,30,35%,0.01%
|
||||
175,Malta,"441,543",0.27%,"1,171","1,380",320,900,1.5,43,93%,0.01%
|
||||
176,Brunei,"437,479",0.97%,"4,194",83,"5,270",0,1.8,32,80%,0.01%
|
||||
177,Guadeloupe,"400,124",0.02%,68,237,"1,690","-1,440",2.2,44,N.A.,0.01%
|
||||
178,Belize,"397,628",1.86%,"7,275",17,"22,810","1,200",2.3,25,46%,0.01%
|
||||
179,Bahamas,"393,244",0.97%,"3,762",39,"10,010","1,000",1.8,32,86%,0.01%
|
||||
180,Martinique,"375,265",-0.08%,-289,354,"1,060",-960,1.9,47,92%,0.00%
|
||||
181,Iceland,"341,243",0.65%,"2,212",3,"100,250",380,1.8,37,94%,0.00%
|
||||
182,Vanuatu,"307,145",2.42%,"7,263",25,"12,190",120,3.8,21,24%,0.00%
|
||||
183,French Guiana,"298,682",2.70%,"7,850",4,"82,200","1,200",3.4,25,87%,0.00%
|
||||
184,Barbados,"287,375",0.12%,350,668,430,-79,1.6,40,31%,0.00%
|
||||
185,New Caledonia,"285,498",0.97%,"2,748",16,"18,280",502,2,34,72%,0.00%
|
||||
186,French Polynesia,"280,908",0.58%,"1,621",77,"3,660","-1,000",2,34,64%,0.00%
|
||||
187,Mayotte,"272,815",2.50%,"6,665",728,375,0,3.7,20,46%,0.00%
|
||||
188,Sao Tome & Principe,"219,159",1.91%,"4,103",228,960,"-1,680",4.4,19,74%,0.00%
|
||||
189,Samoa,"198,414",0.67%,"1,317",70,"2,830","-2,803",3.9,22,18%,0.00%
|
||||
190,Saint Lucia,"183,627",0.46%,837,301,610,0,1.4,34,19%,0.00%
|
||||
191,Channel Islands,"173,863",0.93%,"1,604",915,190,"1,351",1.5,43,30%,0.00%
|
||||
192,Guam,"168,775",0.89%,"1,481",313,540,-506,2.3,31,95%,0.00%
|
||||
193,Curaçao,"164,093",0.41%,669,370,444,515,1.8,42,89%,0.00%
|
||||
194,Kiribati,"119,449",1.57%,"1,843",147,810,-800,3.6,23,57%,0.00%
|
||||
195,Grenada,"112,523",0.46%,520,331,340,-200,2.1,32,35%,0.00%
|
||||
196,St. Vincent & Grenadines,"110,940",0.32%,351,284,390,-200,1.9,33,53%,0.00%
|
||||
197,Aruba,"106,766",0.43%,452,593,180,201,1.9,41,44%,0.00%
|
||||
198,Tonga,"105,695",1.15%,"1,201",147,720,-800,3.6,22,24%,0.00%
|
||||
199,U.S. Virgin Islands,"104,425",-0.15%,-153,298,350,-451,2,43,96%,0.00%
|
||||
200,Seychelles,"98,347",0.62%,608,214,460,-200,2.5,34,56%,0.00%
|
||||
201,Antigua and Barbuda,"97,929",0.84%,811,223,440,0,2,34,26%,0.00%
|
||||
202,Isle of Man,"85,033",0.53%,449,149,570,,N.A.,N.A.,53%,0.00%
|
||||
203,Andorra,"77,265",0.16%,123,164,470,,N.A.,N.A.,88%,0.00%
|
||||
204,Dominica,"71,986",0.25%,178,96,750,,N.A.,N.A.,74%,0.00%
|
||||
205,Cayman Islands,"65,722",1.19%,774,274,240,,N.A.,N.A.,97%,0.00%
|
||||
206,Bermuda,"62,278",-0.36%,-228,"1,246",50,,N.A.,N.A.,97%,0.00%
|
||||
207,Marshall Islands,"59,190",0.68%,399,329,180,,N.A.,N.A.,70%,0.00%
|
||||
208,Northern Mariana Islands,"57,559",0.60%,343,125,460,,N.A.,N.A.,88%,0.00%
|
||||
209,Greenland,"56,770",0.17%,98,0,"410,450",,N.A.,N.A.,87%,0.00%
|
||||
210,American Samoa,"55,191",-0.22%,-121,276,200,,N.A.,N.A.,88%,0.00%
|
||||
211,Saint Kitts & Nevis,"53,199",0.71%,376,205,260,,N.A.,N.A.,33%,0.00%
|
||||
212,Faeroe Islands,"48,863",0.38%,185,35,"1,396",,N.A.,N.A.,43%,0.00%
|
||||
213,Sint Maarten,"42,876",1.15%,488,"1,261",34,,N.A.,N.A.,96%,0.00%
|
||||
214,Monaco,"39,242",0.71%,278,"26,337",1,,N.A.,N.A.,N.A.,0.00%
|
||||
215,Turks and Caicos,"38,717",1.38%,526,41,950,,N.A.,N.A.,89%,0.00%
|
||||
216,Saint Martin,"38,666",1.75%,664,730,53,,N.A.,N.A.,0%,0.00%
|
||||
217,Liechtenstein,"38,128",0.29%,109,238,160,,N.A.,N.A.,15%,0.00%
|
||||
218,San Marino,"33,931",0.21%,71,566,60,,N.A.,N.A.,97%,0.00%
|
||||
219,Gibraltar,"33,691",-0.03%,-10,"3,369",10,,N.A.,N.A.,N.A.,0.00%
|
||||
220,British Virgin Islands,"30,231",0.67%,201,202,150,,N.A.,N.A.,52%,0.00%
|
||||
221,Caribbean Netherlands,"26,223",0.94%,244,80,328,,N.A.,N.A.,75%,0.00%
|
||||
222,Palau,"18,094",0.48%,86,39,460,,N.A.,N.A.,N.A.,0.00%
|
||||
223,Cook Islands,"17,564",0.09%,16,73,240,,N.A.,N.A.,75%,0.00%
|
||||
224,Anguilla,"15,003",0.90%,134,167,90,,N.A.,N.A.,N.A.,0.00%
|
||||
225,Tuvalu,"11,792",1.25%,146,393,30,,N.A.,N.A.,62%,0.00%
|
||||
226,Wallis & Futuna,"11,239",-1.69%,-193,80,140,,N.A.,N.A.,0%,0.00%
|
||||
227,Nauru,"10,824",0.63%,68,541,20,,N.A.,N.A.,N.A.,0.00%
|
||||
228,Saint Barthelemy,"9,877",0.30%,30,470,21,,N.A.,N.A.,0%,0.00%
|
||||
229,Saint Helena,"6,077",0.30%,18,16,390,,N.A.,N.A.,27%,0.00%
|
||||
230,Saint Pierre & Miquelon,"5,794",-0.48%,-28,25,230,,N.A.,N.A.,100%,0.00%
|
||||
231,Montserrat,"4,992",0.06%,3,50,100,,N.A.,N.A.,10%,0.00%
|
||||
232,Falkland Islands,"3,480",3.05%,103,0,"12,170",,N.A.,N.A.,66%,0.00%
|
||||
233,Niue,"1,626",0.68%,11,6,260,,N.A.,N.A.,46%,0.00%
|
||||
234,Tokelau,"1,357",1.27%,17,136,10,,N.A.,N.A.,0%,0.00%
|
||||
235,Holy See,801,0.25%,2,"2,003",0,,N.A.,N.A.,N.A.,0.00%
|
|
892
data/titanic.csv
Normal file
892
data/titanic.csv
Normal file
@ -0,0 +1,892 @@
|
||||
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
|
||||
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
|
||||
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
|
||||
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
|
||||
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
|
||||
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
|
||||
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
|
||||
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
|
||||
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
|
||||
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
|
||||
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
|
||||
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
|
||||
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
|
||||
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
|
||||
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
|
||||
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
|
||||
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
|
||||
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
|
||||
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
|
||||
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
|
||||
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
|
||||
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
|
||||
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
|
||||
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
|
||||
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
|
||||
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
|
||||
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
|
||||
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
|
||||
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
|
||||
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
|
||||
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
|
||||
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
|
||||
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
|
||||
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
|
||||
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
|
||||
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
|
||||
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
|
||||
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
|
||||
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
|
||||
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
|
||||
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
|
||||
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
|
||||
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
|
||||
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
|
||||
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
|
||||
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
|
||||
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
|
||||
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
|
||||
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
|
||||
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
|
||||
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
|
||||
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
|
||||
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
|
||||
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
|
||||
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
|
||||
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
|
||||
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
|
||||
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
|
||||
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
|
||||
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
|
||||
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
|
||||
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
|
||||
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
|
||||
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
|
||||
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
|
||||
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
|
||||
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
|
||||
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
|
||||
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
|
||||
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
|
||||
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
|
||||
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
|
||||
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
|
||||
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
|
||||
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
|
||||
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
|
||||
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
|
||||
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
|
||||
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
|
||||
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
|
||||
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
|
||||
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
|
||||
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
|
||||
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
|
||||
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
|
||||
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
|
||||
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
|
||||
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
|
||||
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
|
||||
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
|
||||
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
|
||||
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
|
||||
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
|
||||
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
|
||||
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
|
||||
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
|
||||
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
|
||||
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
|
||||
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
|
||||
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
|
||||
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
|
||||
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
|
||||
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
|
||||
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
|
||||
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
|
||||
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
|
||||
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
|
||||
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
|
||||
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
|
||||
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
|
||||
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
|
||||
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
|
||||
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
|
||||
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
|
||||
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
|
||||
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
|
||||
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
|
||||
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
|
||||
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
|
||||
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
|
||||
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
|
||||
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
|
||||
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
|
||||
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
|
||||
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
|
||||
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
|
||||
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
|
||||
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
|
||||
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
|
||||
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
|
||||
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
|
||||
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
|
||||
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
|
||||
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
|
||||
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
|
||||
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
|
||||
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
|
||||
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
|
||||
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
|
||||
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
|
||||
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
|
||||
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
|
||||
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
|
||||
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
|
||||
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
|
||||
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
|
||||
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
|
||||
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
|
||||
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
|
||||
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
|
||||
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
|
||||
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
|
||||
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
|
||||
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
|
||||
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
|
||||
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
|
||||
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
|
||||
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
|
||||
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
|
||||
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
|
||||
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
|
||||
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
|
||||
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
|
||||
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
|
||||
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
|
||||
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
|
||||
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
|
||||
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
|
||||
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
|
||||
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
|
||||
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
|
||||
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
|
||||
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
|
||||
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
|
||||
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
|
||||
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
|
||||
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
|
||||
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
|
||||
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
|
||||
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
|
||||
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
|
||||
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
|
||||
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
|
||||
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
|
||||
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
|
||||
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
|
||||
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
|
||||
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
|
||||
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
|
||||
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
|
||||
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
|
||||
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
|
||||
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
|
||||
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
|
||||
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
|
||||
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
|
||||
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
|
||||
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
|
||||
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
|
||||
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
|
||||
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
|
||||
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
|
||||
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
|
||||
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
|
||||
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
|
||||
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
|
||||
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
|
||||
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
|
||||
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
|
||||
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
|
||||
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
|
||||
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
|
||||
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
|
||||
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
|
||||
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
|
||||
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
|
||||
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
|
||||
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
|
||||
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
|
||||
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
|
||||
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
|
||||
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
|
||||
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
|
||||
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
|
||||
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
|
||||
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
|
||||
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
|
||||
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
|
||||
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
|
||||
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
|
||||
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
|
||||
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
|
||||
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
|
||||
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
|
||||
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
|
||||
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
|
||||
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
|
||||
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
|
||||
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
|
||||
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
|
||||
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
|
||||
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
|
||||
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
|
||||
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
|
||||
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
|
||||
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
|
||||
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
|
||||
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
|
||||
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
|
||||
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
|
||||
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
|
||||
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
|
||||
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
|
||||
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
|
||||
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
|
||||
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
|
||||
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
|
||||
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
|
||||
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
|
||||
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
|
||||
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
|
||||
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
|
||||
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
|
||||
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
|
||||
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
|
||||
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
|
||||
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
|
||||
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
|
||||
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
|
||||
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
|
||||
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
|
||||
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
|
||||
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
|
||||
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
|
||||
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
|
||||
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
|
||||
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
|
||||
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
|
||||
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
|
||||
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
|
||||
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
|
||||
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
|
||||
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
|
||||
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
|
||||
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
|
||||
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
|
||||
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
|
||||
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
|
||||
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
|
||||
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
|
||||
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
|
||||
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
|
||||
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
|
||||
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
|
||||
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
|
||||
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
|
||||
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
|
||||
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
|
||||
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
|
||||
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
|
||||
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
|
||||
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
|
||||
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
|
||||
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
|
||||
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
|
||||
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
|
||||
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
|
||||
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
|
||||
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
|
||||
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
|
||||
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
|
||||
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
|
||||
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
|
||||
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
|
||||
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
|
||||
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
|
||||
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
|
||||
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
|
||||
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
|
||||
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
|
||||
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
|
||||
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
|
||||
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
|
||||
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
|
||||
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
|
||||
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
|
||||
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
|
||||
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
|
||||
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
|
||||
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
|
||||
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
|
||||
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
|
||||
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
|
||||
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
|
||||
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
|
||||
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
|
||||
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
|
||||
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
|
||||
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
|
||||
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
|
||||
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
|
||||
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
|
||||
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
|
||||
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
|
||||
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
|
||||
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
|
||||
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
|
||||
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
|
||||
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
|
||||
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
|
||||
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
|
||||
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
|
||||
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
|
||||
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
|
||||
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
|
||||
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
|
||||
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
|
||||
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
|
||||
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
|
||||
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
|
||||
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
|
||||
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
|
||||
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
|
||||
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
|
||||
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
|
||||
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
|
||||
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
|
||||
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
|
||||
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
|
||||
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
|
||||
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
|
||||
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
|
||||
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
|
||||
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
|
||||
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
|
||||
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
|
||||
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
|
||||
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
|
||||
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
|
||||
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
|
||||
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
|
||||
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
|
||||
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
|
||||
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
|
||||
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
|
||||
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
|
||||
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
|
||||
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
|
||||
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
|
||||
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
|
||||
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
|
||||
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
|
||||
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
|
||||
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
|
||||
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
|
||||
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
|
||||
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
|
||||
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
|
||||
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
|
||||
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
|
||||
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
|
||||
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
|
||||
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
|
||||
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
|
||||
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
|
||||
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
|
||||
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
|
||||
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
|
||||
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
|
||||
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
|
||||
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
|
||||
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
|
||||
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
|
||||
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
|
||||
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
|
||||
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
|
||||
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
|
||||
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
|
||||
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
|
||||
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
|
||||
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
|
||||
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
|
||||
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
|
||||
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
|
||||
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
|
||||
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
|
||||
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
|
||||
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
|
||||
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
|
||||
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
|
||||
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
|
||||
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
|
||||
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
|
||||
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
|
||||
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
|
||||
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
|
||||
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
|
||||
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
|
||||
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
|
||||
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
|
||||
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
|
||||
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
|
||||
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
|
||||
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
|
||||
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
|
||||
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
|
||||
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
|
||||
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
|
||||
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
|
||||
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
|
||||
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
|
||||
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
|
||||
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
|
||||
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
|
||||
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
|
||||
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
|
||||
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
|
||||
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
|
||||
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
|
||||
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
|
||||
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
|
||||
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
|
||||
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
|
||||
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
|
||||
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
|
||||
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
|
||||
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
|
||||
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
|
||||
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
|
||||
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
|
||||
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
|
||||
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
|
||||
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
|
||||
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
|
||||
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
|
||||
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
|
||||
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
|
||||
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
|
||||
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
|
||||
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
|
||||
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
|
||||
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
|
||||
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
|
||||
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
|
||||
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
|
||||
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
|
||||
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
|
||||
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
|
||||
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
|
||||
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
|
||||
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
|
||||
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
|
||||
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
|
||||
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
|
||||
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
|
||||
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
|
||||
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
|
||||
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
|
||||
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
|
||||
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
|
||||
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
|
||||
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
|
||||
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
|
||||
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
|
||||
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
|
||||
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
|
||||
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
|
||||
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
|
||||
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
|
||||
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
|
||||
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
|
||||
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
|
||||
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
|
||||
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
|
||||
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
|
||||
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
|
||||
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
|
||||
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
|
||||
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
|
||||
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
|
||||
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
|
||||
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
|
||||
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
|
||||
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
|
||||
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
|
||||
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
|
||||
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
|
||||
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
|
||||
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
|
||||
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
|
||||
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
|
||||
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
|
||||
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
|
||||
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
|
||||
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
|
||||
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
|
||||
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
|
||||
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
|
||||
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
|
||||
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
|
||||
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
|
||||
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
|
||||
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
|
||||
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
|
||||
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
|
||||
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
|
||||
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
|
||||
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
|
||||
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
|
||||
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
|
||||
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
|
||||
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
|
||||
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
|
||||
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
|
||||
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
|
||||
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
|
||||
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
|
||||
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
|
||||
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
|
||||
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
|
||||
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
|
||||
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
|
||||
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
|
||||
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
|
||||
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
|
||||
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
|
||||
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
|
||||
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
|
||||
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
|
||||
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
|
||||
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
|
||||
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
|
||||
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
|
||||
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
|
||||
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
|
||||
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
|
||||
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
|
||||
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
|
||||
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
|
||||
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
|
||||
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
|
||||
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
|
||||
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
|
||||
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
|
||||
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
|
||||
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
|
||||
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
|
||||
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
|
||||
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
|
||||
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
|
||||
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
|
||||
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
|
||||
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
|
||||
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
|
||||
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
|
||||
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
|
||||
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
|
||||
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
|
||||
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
|
||||
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
|
||||
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
|
||||
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
|
||||
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
|
||||
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
|
||||
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
|
||||
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
|
||||
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
|
||||
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
|
||||
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
|
||||
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
|
||||
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
|
||||
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
|
||||
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
|
||||
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
|
||||
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
|
||||
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
|
||||
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
|
||||
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
|
||||
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
|
||||
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
|
||||
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
|
||||
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
|
||||
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
|
||||
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
|
||||
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
|
||||
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
|
||||
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
|
||||
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
|
||||
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
|
||||
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
|
||||
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
|
||||
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
|
||||
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
|
||||
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
|
||||
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
|
||||
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
|
||||
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
|
||||
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
|
||||
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
|
||||
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
|
||||
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
|
||||
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
|
||||
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
|
||||
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
|
||||
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
|
||||
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
|
||||
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
|
||||
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
|
||||
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
|
||||
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
|
||||
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
|
||||
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
|
||||
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
|
||||
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
|
||||
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
|
||||
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
|
||||
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
|
||||
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
|
||||
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
|
||||
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
|
||||
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
|
||||
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
|
||||
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
|
||||
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
|
||||
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
|
||||
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
|
||||
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
|
||||
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
|
||||
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
|
||||
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
|
||||
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
|
||||
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
|
||||
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
|
||||
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
|
||||
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
|
||||
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
|
||||
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
|
||||
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
|
||||
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
|
||||
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
|
||||
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
|
||||
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
|
||||
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
|
||||
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
|
||||
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
|
||||
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
|
||||
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
|
||||
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
|
||||
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
|
||||
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
|
||||
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
|
||||
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
|
||||
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
|
||||
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
|
||||
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
|
||||
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
|
||||
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
|
||||
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
|
||||
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
|
||||
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
|
||||
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
|
||||
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
|
||||
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
|
||||
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
|
||||
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
|
||||
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
|
||||
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
|
||||
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
|
||||
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
|
||||
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
|
||||
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
|
||||
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
|
||||
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
|
||||
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
|
||||
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
|
||||
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
|
||||
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
|
||||
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
|
||||
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
|
||||
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
|
||||
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
|
||||
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
|
||||
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
|
||||
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
|
||||
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
|
||||
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
|
||||
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
|
||||
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
|
||||
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
|
||||
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
|
||||
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
|
||||
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
|
||||
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
|
||||
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
|
||||
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
|
||||
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
|
||||
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
|
||||
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
|
||||
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
|
||||
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
|
||||
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
|
||||
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
|
||||
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
|
||||
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
|
||||
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
|
||||
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
|
||||
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
|
||||
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
|
||||
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
|
||||
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
|
||||
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
|
||||
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
|
||||
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
|
||||
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
|
||||
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
|
||||
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
|
||||
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
|
||||
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
|
||||
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
|
||||
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
|
||||
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
|
||||
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
|
||||
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
|
||||
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
|
||||
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
|
||||
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
|
||||
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
|
||||
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
|
||||
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
|
||||
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
|
||||
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
|
||||
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
|
||||
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
|
||||
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
|
||||
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
|
||||
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
|
||||
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
|
||||
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
|
||||
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
|
||||
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
|
||||
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
|
||||
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
|
||||
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
|
||||
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
|
||||
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
|
||||
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
|
||||
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
|
||||
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
|
||||
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
|
||||
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
|
||||
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
|
||||
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
|
||||
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
|
||||
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
|
||||
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
|
||||
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
|
||||
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
|
||||
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
|
||||
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
|
||||
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
|
||||
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
|
||||
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
|
||||
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
|
||||
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
|
||||
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
|
||||
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
|
||||
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
|
||||
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
|
||||
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
|
||||
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
|
||||
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
|
||||
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
|
||||
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
|
||||
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
|
||||
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
|
||||
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
|
||||
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
|
||||
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
|
||||
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
|
||||
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
|
||||
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
|
||||
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
|
||||
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
|
||||
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
|
||||
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
|
||||
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
|
||||
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
|
||||
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
|
||||
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
|
||||
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
|
||||
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
|
||||
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
|
||||
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
|
||||
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
|
||||
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
|
||||
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
|
||||
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
|
||||
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
|
||||
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
|
||||
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
|
||||
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
|
||||
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
|
||||
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
|
||||
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
|
||||
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
|
||||
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
|
||||
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
|
||||
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
|
||||
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
|
||||
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
|
||||
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
|
||||
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
|
||||
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
|
||||
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
|
||||
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
|
||||
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
|
||||
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
|
||||
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
|
||||
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
|
||||
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
|
||||
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
|
||||
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
|
||||
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
|
||||
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
|
||||
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
|
||||
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
|
||||
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
|
||||
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
|
||||
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
|
||||
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
|
||||
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
|
||||
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
|
||||
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
|
||||
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
|
||||
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
|
||||
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
|
||||
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
|
||||
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
|
||||
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
|
||||
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
|
||||
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
|
||||
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
|
||||
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
|
||||
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
|
||||
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
|
||||
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
|
||||
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
|
||||
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
|
||||
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
|
||||
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
|
|
BIN
docs/path1.png
Normal file
BIN
docs/path1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 22 KiB |
BIN
docs/path2.png
Normal file
BIN
docs/path2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 74 KiB |
BIN
docs/path3.png
Normal file
BIN
docs/path3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 129 KiB |
BIN
docs/path4.png
Normal file
BIN
docs/path4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
513
lab1.ipynb
Normal file
513
lab1.ipynb
Normal file
File diff suppressed because one or more lines are too long
0
lab2.ipynb
Normal file
0
lab2.ipynb
Normal file
447
lec1.ipynb
Normal file
447
lec1.ipynb
Normal file
File diff suppressed because one or more lines are too long
838
lec2.ipynb
Normal file
838
lec2.ipynb
Normal file
@ -0,0 +1,838 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Загрузка данных в DataFrame"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||||
"Index: 235 entries, 1 to 235\n",
|
||||
"Data columns (total 11 columns):\n",
|
||||
" # Column Non-Null Count Dtype \n",
|
||||
"--- ------ -------------- ----- \n",
|
||||
" 0 Country (or dependency) 235 non-null object\n",
|
||||
" 1 Population 2020 235 non-null object\n",
|
||||
" 2 Yearly Change 235 non-null object\n",
|
||||
" 3 Net Change 235 non-null object\n",
|
||||
" 4 Density(P/Km²) 235 non-null object\n",
|
||||
" 5 Land Area (Km²) 235 non-null object\n",
|
||||
" 6 Migrants (net) 201 non-null object\n",
|
||||
" 7 Fert. Rate 235 non-null object\n",
|
||||
" 8 MedAge 235 non-null object\n",
|
||||
" 9 Urban Pop % 235 non-null object\n",
|
||||
" 10 World Share 235 non-null object\n",
|
||||
"dtypes: object(11)\n",
|
||||
"memory usage: 22.0+ KB\n",
|
||||
"(235, 11)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Country (or dependency)</th>\n",
|
||||
" <th>Population 2020</th>\n",
|
||||
" <th>Yearly Change</th>\n",
|
||||
" <th>Net Change</th>\n",
|
||||
" <th>Density(P/Km²)</th>\n",
|
||||
" <th>Land Area (Km²)</th>\n",
|
||||
" <th>Migrants (net)</th>\n",
|
||||
" <th>Fert. Rate</th>\n",
|
||||
" <th>MedAge</th>\n",
|
||||
" <th>Urban Pop %</th>\n",
|
||||
" <th>World Share</th>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>no</th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>China</td>\n",
|
||||
" <td>1,439,323,776</td>\n",
|
||||
" <td>0.39%</td>\n",
|
||||
" <td>5,540,090</td>\n",
|
||||
" <td>153</td>\n",
|
||||
" <td>9,388,211</td>\n",
|
||||
" <td>-348,399</td>\n",
|
||||
" <td>1.7</td>\n",
|
||||
" <td>38</td>\n",
|
||||
" <td>61%</td>\n",
|
||||
" <td>18.47%</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>India</td>\n",
|
||||
" <td>1,380,004,385</td>\n",
|
||||
" <td>0.99%</td>\n",
|
||||
" <td>13,586,631</td>\n",
|
||||
" <td>464</td>\n",
|
||||
" <td>2,973,190</td>\n",
|
||||
" <td>-532,687</td>\n",
|
||||
" <td>2.2</td>\n",
|
||||
" <td>28</td>\n",
|
||||
" <td>35%</td>\n",
|
||||
" <td>17.70%</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>United States</td>\n",
|
||||
" <td>331,002,651</td>\n",
|
||||
" <td>0.59%</td>\n",
|
||||
" <td>1,937,734</td>\n",
|
||||
" <td>36</td>\n",
|
||||
" <td>9,147,420</td>\n",
|
||||
" <td>954,806</td>\n",
|
||||
" <td>1.8</td>\n",
|
||||
" <td>38</td>\n",
|
||||
" <td>83%</td>\n",
|
||||
" <td>4.25%</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>Indonesia</td>\n",
|
||||
" <td>273,523,615</td>\n",
|
||||
" <td>1.07%</td>\n",
|
||||
" <td>2,898,047</td>\n",
|
||||
" <td>151</td>\n",
|
||||
" <td>1,811,570</td>\n",
|
||||
" <td>-98,955</td>\n",
|
||||
" <td>2.3</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>56%</td>\n",
|
||||
" <td>3.51%</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>Pakistan</td>\n",
|
||||
" <td>220,892,340</td>\n",
|
||||
" <td>2.00%</td>\n",
|
||||
" <td>4,327,022</td>\n",
|
||||
" <td>287</td>\n",
|
||||
" <td>770,880</td>\n",
|
||||
" <td>-233,379</td>\n",
|
||||
" <td>3.6</td>\n",
|
||||
" <td>23</td>\n",
|
||||
" <td>35%</td>\n",
|
||||
" <td>2.83%</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Country (or dependency) Population 2020 Yearly Change Net Change \\\n",
|
||||
"no \n",
|
||||
"1 China 1,439,323,776 0.39% 5,540,090 \n",
|
||||
"2 India 1,380,004,385 0.99% 13,586,631 \n",
|
||||
"3 United States 331,002,651 0.59% 1,937,734 \n",
|
||||
"4 Indonesia 273,523,615 1.07% 2,898,047 \n",
|
||||
"5 Pakistan 220,892,340 2.00% 4,327,022 \n",
|
||||
"\n",
|
||||
" Density(P/Km²) Land Area (Km²) Migrants (net) Fert. Rate MedAge \\\n",
|
||||
"no \n",
|
||||
"1 153 9,388,211 -348,399 1.7 38 \n",
|
||||
"2 464 2,973,190 -532,687 2.2 28 \n",
|
||||
"3 36 9,147,420 954,806 1.8 38 \n",
|
||||
"4 151 1,811,570 -98,955 2.3 30 \n",
|
||||
"5 287 770,880 -233,379 3.6 23 \n",
|
||||
"\n",
|
||||
" Urban Pop % World Share \n",
|
||||
"no \n",
|
||||
"1 61% 18.47% \n",
|
||||
"2 35% 17.70% \n",
|
||||
"3 83% 4.25% \n",
|
||||
"4 56% 3.51% \n",
|
||||
"5 35% 2.83% "
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"df = pd.read_csv(\"data/population.csv\", index_col=\"no\")\n",
|
||||
"\n",
|
||||
"df.info()\n",
|
||||
"\n",
|
||||
"print(df.shape)\n",
|
||||
"\n",
|
||||
"df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Получение сведений о пропущенных данных"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Типы пропущенных данных:\n",
|
||||
"- None - представление пустых данных в Python\n",
|
||||
"- NaN - представление пустых данных в Pandas\n",
|
||||
"- '' - пустая строка"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Country (or dependency) 0\n",
|
||||
"Population 2020 0\n",
|
||||
"Yearly Change 0\n",
|
||||
"Net Change 0\n",
|
||||
"Density (P/Km²) 0\n",
|
||||
"Land Area (Km²) 0\n",
|
||||
"Migrants (net) 34\n",
|
||||
"Fert. Rate 0\n",
|
||||
"Med. Age 0\n",
|
||||
"Urban Pop % 0\n",
|
||||
"World Share 0\n",
|
||||
"dtype: int64\n",
|
||||
"\n",
|
||||
"Country (or dependency) False\n",
|
||||
"Population 2020 False\n",
|
||||
"Yearly Change False\n",
|
||||
"Net Change False\n",
|
||||
"Density (P/Km²) False\n",
|
||||
"Land Area (Km²) False\n",
|
||||
"Migrants (net) True\n",
|
||||
"Fert. Rate False\n",
|
||||
"Med. Age False\n",
|
||||
"Urban Pop % False\n",
|
||||
"World Share False\n",
|
||||
"dtype: bool\n",
|
||||
"\n",
|
||||
"Migrants (net) процент пустых значений: %14.47\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
"# Количество пустых значений признаков\n",
|
||||
"print(df.isnull().sum())\n",
|
||||
"\n",
|
||||
"print()\n",
|
||||
"\n",
|
||||
"# Есть ли пустые значения признаков\n",
|
||||
"print(df.isnull().any())\n",
|
||||
"\n",
|
||||
"print()\n",
|
||||
"\n",
|
||||
"# Процент пустых значений признаков\n",
|
||||
"for i in df.columns:\n",
|
||||
" null_rate = df[i].isnull().sum() / len(df) * 100\n",
|
||||
" if null_rate > 0:\n",
|
||||
" print(f\"{i} процент пустых значений: %{null_rate:.2f}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Заполнение пропущенных данных\n",
|
||||
"\n",
|
||||
"https://pythonmldaily.com/posts/pandas-dataframes-search-drop-empty-values\n",
|
||||
"\n",
|
||||
"https://scales.arabpsychology.com/stats/how-to-fill-nan-values-with-median-in-pandas/"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(235, 12)\n",
|
||||
"Country (or dependency) False\n",
|
||||
"Population 2020 False\n",
|
||||
"Yearly Change False\n",
|
||||
"Net Change False\n",
|
||||
"Density (P/Km²) False\n",
|
||||
"Land Area (Km²) False\n",
|
||||
"Migrants (net) False\n",
|
||||
"Fert. Rate False\n",
|
||||
"Med. Age False\n",
|
||||
"Urban Pop % False\n",
|
||||
"World Share False\n",
|
||||
"MigrantsFill False\n",
|
||||
"dtype: bool\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "TypeError",
|
||||
"evalue": "Cannot convert ['-348,399' '-532,687' '954,806' '-98,955' '-233,379' '21,200' '-60,000'\n '-369,501' '182,456' '-60,000' '71,560' '30,000' '-67,152' '-38,033'\n '-80,000' '23,861' '283,922' '-55,000' '543,822' '19,444' '260,650'\n '36,527' '148,943' '-40,076' '145,405' '-163,313' '-10,000' '11,731'\n '204,796' '40,000' '168,694' '4,800' '-10,000' '-50,000' '10,000' '7,834'\n '-62,920' '-29,395' '242,032' '-51,419' '134,979' '-8,863' '99,069'\n '6,413' '50,000' '-5,000' '-10,000' '-30,000' '41,710' '-653,249'\n '-1,500' '-4,800' '-8,000' '-5,403' '158,246' '4,000' '30,001' '-97,986'\n '-25,000' '-40,000' '-73,999' '-16,053' '111,708' '-18,000' '-8,000'\n '-9,215' '36,400' '-427,391' '16,000' '-20,000' '-30,000' '2,000'\n '-40,000' '-116,858' '-4,000' '-9,000' '-2,000' '2,001' '-4,000' '-9,504'\n '48,000' '-35,000' '-14,400' '-174,200' '-30,000' '22,011' '-16,000'\n '10,220' '-6,000' '1,200' '40,000' '-6,800' '40,000' '6,000' '-20,000'\n '8,730' '65,000' '-800' '4,000' '10,000' '52,000' '-2,000' '-4,200'\n '29,308' '-14,704' '-16,556' '-4,800' '-1,999' '-30,012' '-21,272'\n '-4,000' '-40,539' '-5,000' '27,028' '15,200' '14,000' '-4,000' '1,485'\n '28,000' '87,400' '-10,563' '4,200' '-5,000' '23,604' '-40,000' '14,881'\n '5,000' '11,200' '39,520' '-8,001' '-1,387' '-10,000' '-39,858' '-3,000'\n '-21,585' '-852' '-4,998' '-11,332' '40,000' '-14,000' '-97,986'\n '-32,780' '-4,806' '-3,087' '3,000' '3,260' '-10,047' '-1,000' '2,000'\n '-1,399' '-14,837' '47,800' '16,000' '-800' '3,911' '-5,385' '0' '5,000'\n '-8,353' '900' '-6,202' '-1,256' '-2,000' '-6,000' '320' '-1,600' '5,000'\n '-480' '9,741' '5,582' '-1,000' '-1,342' '-2,957' '11,370' '900' '0'\n '-1,440' '1,200' '1,000' '-960' '380' '120' '1,200' '-79' '502' '-1,000'\n '0' '-1,680' '-2,803' '0' '1,351' '-506' '515' '-800' '-200' '-200' '201'\n '-800' '-451' '-200' '0' nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan] to numeric",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[1;32mIn[11], line 11\u001b[0m\n\u001b[0;32m 8\u001b[0m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMigrantsFill\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMigrants (net)\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mfillna(\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m 10\u001b[0m \u001b[38;5;66;03m# Замена пустых данных на медиану\u001b[39;00m\n\u001b[1;32m---> 11\u001b[0m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMigrantsMedian\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMigrants (net)\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mfillna(\u001b[43mdf\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mMigrants (net)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmedian\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 13\u001b[0m df\u001b[38;5;241m.\u001b[39mtail()\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\pandas\\core\\series.py:6559\u001b[0m, in \u001b[0;36mSeries.median\u001b[1;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 6551\u001b[0m \u001b[38;5;129m@doc\u001b[39m(make_doc(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmedian\u001b[39m\u001b[38;5;124m\"\u001b[39m, ndim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m))\n\u001b[0;32m 6552\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmedian\u001b[39m(\n\u001b[0;32m 6553\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 6557\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 6558\u001b[0m ):\n\u001b[1;32m-> 6559\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mNDFrame\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmedian\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\pandas\\core\\generic.py:12431\u001b[0m, in \u001b[0;36mNDFrame.median\u001b[1;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 12424\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmedian\u001b[39m(\n\u001b[0;32m 12425\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 12426\u001b[0m axis: Axis \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 12429\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 12430\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Series \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mfloat\u001b[39m:\n\u001b[1;32m> 12431\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_stat_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 12432\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmedian\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnanops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnanmedian\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[0;32m 12433\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\pandas\\core\\generic.py:12377\u001b[0m, in \u001b[0;36mNDFrame._stat_function\u001b[1;34m(self, name, func, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 12373\u001b[0m nv\u001b[38;5;241m.\u001b[39mvalidate_func(name, (), kwargs)\n\u001b[0;32m 12375\u001b[0m validate_bool_kwarg(skipna, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskipna\u001b[39m\u001b[38;5;124m\"\u001b[39m, none_allowed\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m> 12377\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reduce\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 12378\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnumeric_only\u001b[49m\n\u001b[0;32m 12379\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\pandas\\core\\series.py:6457\u001b[0m, in \u001b[0;36mSeries._reduce\u001b[1;34m(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)\u001b[0m\n\u001b[0;32m 6452\u001b[0m \u001b[38;5;66;03m# GH#47500 - change to TypeError to match other methods\u001b[39;00m\n\u001b[0;32m 6453\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[0;32m 6454\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSeries.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m does not allow \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkwd_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnumeric_only\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 6455\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwith non-numeric dtypes.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 6456\u001b[0m )\n\u001b[1;32m-> 6457\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mop\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdelegate\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\pandas\\core\\nanops.py:147\u001b[0m, in \u001b[0;36mbottleneck_switch.__call__.<locals>.f\u001b[1;34m(values, axis, skipna, **kwds)\u001b[0m\n\u001b[0;32m 145\u001b[0m result \u001b[38;5;241m=\u001b[39m alt(values, axis\u001b[38;5;241m=\u001b[39maxis, skipna\u001b[38;5;241m=\u001b[39mskipna, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 146\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 147\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43malt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\pandas\\core\\nanops.py:787\u001b[0m, in \u001b[0;36mnanmedian\u001b[1;34m(values, axis, skipna, mask)\u001b[0m\n\u001b[0;32m 785\u001b[0m inferred \u001b[38;5;241m=\u001b[39m lib\u001b[38;5;241m.\u001b[39minfer_dtype(values)\n\u001b[0;32m 786\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inferred \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstring\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmixed\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[1;32m--> 787\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot convert \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvalues\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m to numeric\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 788\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 789\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf8\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||||
"\u001b[1;31mTypeError\u001b[0m: Cannot convert ['-348,399' '-532,687' '954,806' '-98,955' '-233,379' '21,200' '-60,000'\n '-369,501' '182,456' '-60,000' '71,560' '30,000' '-67,152' '-38,033'\n '-80,000' '23,861' '283,922' '-55,000' '543,822' '19,444' '260,650'\n '36,527' '148,943' '-40,076' '145,405' '-163,313' '-10,000' '11,731'\n '204,796' '40,000' '168,694' '4,800' '-10,000' '-50,000' '10,000' '7,834'\n '-62,920' '-29,395' '242,032' '-51,419' '134,979' '-8,863' '99,069'\n '6,413' '50,000' '-5,000' '-10,000' '-30,000' '41,710' '-653,249'\n '-1,500' '-4,800' '-8,000' '-5,403' '158,246' '4,000' '30,001' '-97,986'\n '-25,000' '-40,000' '-73,999' '-16,053' '111,708' '-18,000' '-8,000'\n '-9,215' '36,400' '-427,391' '16,000' '-20,000' '-30,000' '2,000'\n '-40,000' '-116,858' '-4,000' '-9,000' '-2,000' '2,001' '-4,000' '-9,504'\n '48,000' '-35,000' '-14,400' '-174,200' '-30,000' '22,011' '-16,000'\n '10,220' '-6,000' '1,200' '40,000' '-6,800' '40,000' '6,000' '-20,000'\n '8,730' '65,000' '-800' '4,000' '10,000' '52,000' '-2,000' '-4,200'\n '29,308' '-14,704' '-16,556' '-4,800' '-1,999' '-30,012' '-21,272'\n '-4,000' '-40,539' '-5,000' '27,028' '15,200' '14,000' '-4,000' '1,485'\n '28,000' '87,400' '-10,563' '4,200' '-5,000' '23,604' '-40,000' '14,881'\n '5,000' '11,200' '39,520' '-8,001' '-1,387' '-10,000' '-39,858' '-3,000'\n '-21,585' '-852' '-4,998' '-11,332' '40,000' '-14,000' '-97,986'\n '-32,780' '-4,806' '-3,087' '3,000' '3,260' '-10,047' '-1,000' '2,000'\n '-1,399' '-14,837' '47,800' '16,000' '-800' '3,911' '-5,385' '0' '5,000'\n '-8,353' '900' '-6,202' '-1,256' '-2,000' '-6,000' '320' '-1,600' '5,000'\n '-480' '9,741' '5,582' '-1,000' '-1,342' '-2,957' '11,370' '900' '0'\n '-1,440' '1,200' '1,000' '-960' '380' '120' '1,200' '-79' '502' '-1,000'\n '0' '-1,680' '-2,803' '0' '1,351' '-506' '515' '-800' '-200' '-200' '201'\n '-800' '-451' '-200' '0' nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan] to numeric"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"fillna_df = df.fillna(0)\n",
|
||||
"\n",
|
||||
"print(fillna_df.shape) # размеры\n",
|
||||
"\n",
|
||||
"print(fillna_df.isnull().any())\n",
|
||||
"\n",
|
||||
"# Замена пустых данных на 0\n",
|
||||
"df[\"MigrantsFill\"] = df[\"Migrants (net)\"].fillna(0)\n",
|
||||
"\n",
|
||||
"# Замена пустых данных на медиану\n",
|
||||
"df[\"MigrantsMedian\"] = df[\"Migrants (net)\"].fillna(df[\"Migrants (net)\"].median())\n",
|
||||
"\n",
|
||||
"df.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Country (or dependency)</th>\n",
|
||||
" <th>Population 2020</th>\n",
|
||||
" <th>Yearly Change</th>\n",
|
||||
" <th>Net Change</th>\n",
|
||||
" <th>Density (P/Km²)</th>\n",
|
||||
" <th>Land Area (Km²)</th>\n",
|
||||
" <th>Migrants (net)</th>\n",
|
||||
" <th>Fert. Rate</th>\n",
|
||||
" <th>Med. Age</th>\n",
|
||||
" <th>Urban Pop %</th>\n",
|
||||
" <th>World Share</th>\n",
|
||||
" <th>MigrantsFill</th>\n",
|
||||
" <th>MigrantsCopy</th>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>no</th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" <th></th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>231</th>\n",
|
||||
" <td>Montserrat</td>\n",
|
||||
" <td>4,992</td>\n",
|
||||
" <td>0.06%</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>50</td>\n",
|
||||
" <td>100</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>10%</td>\n",
|
||||
" <td>0.00%</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>232</th>\n",
|
||||
" <td>Falkland Islands</td>\n",
|
||||
" <td>3,480</td>\n",
|
||||
" <td>3.05%</td>\n",
|
||||
" <td>103</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>12,170</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>66%</td>\n",
|
||||
" <td>0.00%</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>233</th>\n",
|
||||
" <td>Niue</td>\n",
|
||||
" <td>1,626</td>\n",
|
||||
" <td>0.68%</td>\n",
|
||||
" <td>11</td>\n",
|
||||
" <td>6</td>\n",
|
||||
" <td>260</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>46%</td>\n",
|
||||
" <td>0.00%</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>234</th>\n",
|
||||
" <td>Tokelau</td>\n",
|
||||
" <td>1,357</td>\n",
|
||||
" <td>1.27%</td>\n",
|
||||
" <td>17</td>\n",
|
||||
" <td>136</td>\n",
|
||||
" <td>10</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>0%</td>\n",
|
||||
" <td>0.00%</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>235</th>\n",
|
||||
" <td>Holy See</td>\n",
|
||||
" <td>801</td>\n",
|
||||
" <td>0.25%</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>2,003</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>N.A.</td>\n",
|
||||
" <td>0.00%</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Country (or dependency) Population 2020 Yearly Change Net Change \\\n",
|
||||
"no \n",
|
||||
"231 Montserrat 4,992 0.06% 3 \n",
|
||||
"232 Falkland Islands 3,480 3.05% 103 \n",
|
||||
"233 Niue 1,626 0.68% 11 \n",
|
||||
"234 Tokelau 1,357 1.27% 17 \n",
|
||||
"235 Holy See 801 0.25% 2 \n",
|
||||
"\n",
|
||||
" Density (P/Km²) Land Area (Km²) Migrants (net) Fert. Rate Med. Age \\\n",
|
||||
"no \n",
|
||||
"231 50 100 NaN N.A. N.A. \n",
|
||||
"232 0 12,170 NaN N.A. N.A. \n",
|
||||
"233 6 260 NaN N.A. N.A. \n",
|
||||
"234 136 10 NaN N.A. N.A. \n",
|
||||
"235 2,003 0 NaN N.A. N.A. \n",
|
||||
"\n",
|
||||
" Urban Pop % World Share MigrantsFill MigrantsCopy \n",
|
||||
"no \n",
|
||||
"231 10% 0.00% 0 0 \n",
|
||||
"232 66% 0.00% 0 0 \n",
|
||||
"233 46% 0.00% 0 0 \n",
|
||||
"234 0% 0.00% 0 0 \n",
|
||||
"235 N.A. 0.00% 0 0 "
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df[\"MigrantsCopy\"] = df[\"Migrants (net)\"]\n",
|
||||
"\n",
|
||||
"# Замена данных сразу в DataFrame без копирования\n",
|
||||
"df.fillna({\"MigrantsCopy\": 0}, inplace=True)\n",
|
||||
"\n",
|
||||
"df.tail()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Удаление наблюдений с пропусками"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(201, 13)\n",
|
||||
"Country (or dependency) False\n",
|
||||
"Population 2020 False\n",
|
||||
"Yearly Change False\n",
|
||||
"Net Change False\n",
|
||||
"Density (P/Km²) False\n",
|
||||
"Land Area (Km²) False\n",
|
||||
"Migrants (net) False\n",
|
||||
"Fert. Rate False\n",
|
||||
"Med. Age False\n",
|
||||
"Urban Pop % False\n",
|
||||
"World Share False\n",
|
||||
"MigrantsFill False\n",
|
||||
"dtype: bool\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dropna_df = df.dropna()\n",
|
||||
"\n",
|
||||
"print(dropna_df.shape)\n",
|
||||
"\n",
|
||||
"print(fillna_df.isnull().any())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Создание выборок данных\n",
|
||||
"\n",
|
||||
"Библиотека scikit-learn\n",
|
||||
"\n",
|
||||
"https://scikit-learn.org/stable/index.html"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<img src=\"assets/lec2-split.png\" width=\"600\" style=\"background-color: white\">"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Функция для создания выборок\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def split_stratified_into_train_val_test(\n",
|
||||
" df_input,\n",
|
||||
" stratify_colname=\"y\",\n",
|
||||
" frac_train=0.6,\n",
|
||||
" frac_val=0.15,\n",
|
||||
" frac_test=0.25,\n",
|
||||
" random_state=None,\n",
|
||||
"):\n",
|
||||
" \"\"\"\n",
|
||||
" Splits a Pandas dataframe into three subsets (train, val, and test)\n",
|
||||
" following fractional ratios provided by the user, where each subset is\n",
|
||||
" stratified by the values in a specific column (that is, each subset has\n",
|
||||
" the same relative frequency of the values in the column). It performs this\n",
|
||||
" splitting by running train_test_split() twice.\n",
|
||||
"\n",
|
||||
" Parameters\n",
|
||||
" ----------\n",
|
||||
" df_input : Pandas dataframe\n",
|
||||
" Input dataframe to be split.\n",
|
||||
" stratify_colname : str\n",
|
||||
" The name of the column that will be used for stratification. Usually\n",
|
||||
" this column would be for the label.\n",
|
||||
" frac_train : float\n",
|
||||
" frac_val : float\n",
|
||||
" frac_test : float\n",
|
||||
" The ratios with which the dataframe will be split into train, val, and\n",
|
||||
" test data. The values should be expressed as float fractions and should\n",
|
||||
" sum to 1.0.\n",
|
||||
" random_state : int, None, or RandomStateInstance\n",
|
||||
" Value to be passed to train_test_split().\n",
|
||||
"\n",
|
||||
" Returns\n",
|
||||
" -------\n",
|
||||
" df_train, df_val, df_test :\n",
|
||||
" Dataframes containing the three splits.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" if frac_train + frac_val + frac_test != 1.0:\n",
|
||||
" raise ValueError(\n",
|
||||
" \"fractions %f, %f, %f do not add up to 1.0\"\n",
|
||||
" % (frac_train, frac_val, frac_test)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" if stratify_colname not in df_input.columns:\n",
|
||||
" raise ValueError(\"%s is not a column in the dataframe\" % (stratify_colname))\n",
|
||||
"\n",
|
||||
" X = df_input # Contains all columns.\n",
|
||||
" y = df_input[\n",
|
||||
" [stratify_colname]\n",
|
||||
" ] # Dataframe of just the column on which to stratify.\n",
|
||||
"\n",
|
||||
" # Split original dataframe into train and temp dataframes.\n",
|
||||
" df_train, df_temp, y_train, y_temp = train_test_split(\n",
|
||||
" X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # Split the temp dataframe into val and test dataframes.\n",
|
||||
" relative_frac_test = frac_test / (frac_val + frac_test)\n",
|
||||
" df_val, df_test, y_val, y_test = train_test_split(\n",
|
||||
" df_temp,\n",
|
||||
" y_temp,\n",
|
||||
" stratify=y_temp,\n",
|
||||
" test_size=relative_frac_test,\n",
|
||||
" random_state=random_state,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" assert len(df_input) == len(df_train) + len(df_val) + len(df_test)\n",
|
||||
"\n",
|
||||
" return df_train, df_val, df_test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"MedAge\n",
|
||||
"N.A. 34\n",
|
||||
"19 14\n",
|
||||
"28 12\n",
|
||||
"43 11\n",
|
||||
"32 11\n",
|
||||
"42 10\n",
|
||||
"18 10\n",
|
||||
"20 9\n",
|
||||
"30 8\n",
|
||||
"38 7\n",
|
||||
"26 7\n",
|
||||
"40 7\n",
|
||||
"22 7\n",
|
||||
"31 6\n",
|
||||
"34 6\n",
|
||||
"24 6\n",
|
||||
"17 6\n",
|
||||
"44 5\n",
|
||||
"29 5\n",
|
||||
"41 5\n",
|
||||
"33 5\n",
|
||||
"21 5\n",
|
||||
"45 5\n",
|
||||
"23 4\n",
|
||||
"37 4\n",
|
||||
"36 4\n",
|
||||
"25 4\n",
|
||||
"27 4\n",
|
||||
"39 3\n",
|
||||
"46 3\n",
|
||||
"35 3\n",
|
||||
"47 2\n",
|
||||
"48 1\n",
|
||||
"15 1\n",
|
||||
"16 1\n",
|
||||
"Name: count, dtype: int64\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "ValueError",
|
||||
"evalue": "The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[1;32mIn[17], line 6\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(df\u001b[38;5;241m.\u001b[39mMedAge\u001b[38;5;241m.\u001b[39mvalue_counts())\n\u001b[0;32m 4\u001b[0m data \u001b[38;5;241m=\u001b[39m df[[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMedAge\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFert. Rate\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDensity(P/Km²)\u001b[39m\u001b[38;5;124m\"\u001b[39m]]\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[1;32m----> 6\u001b[0m df_train, df_val, df_test \u001b[38;5;241m=\u001b[39m \u001b[43msplit_stratified_into_train_val_test\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mstratify_colname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mMedAge\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mfrac_train\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.60\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mfrac_val\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.20\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 11\u001b[0m \u001b[43m \u001b[49m\u001b[43mfrac_test\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.20\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 12\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 14\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mОбучающая выборка: \u001b[39m\u001b[38;5;124m\"\u001b[39m, df_train\u001b[38;5;241m.\u001b[39mshape)\n\u001b[0;32m 15\u001b[0m \u001b[38;5;28mprint\u001b[39m(df_train\u001b[38;5;241m.\u001b[39mMedAge\u001b[38;5;241m.\u001b[39mvalue_counts())\n",
|
||||
"Cell \u001b[1;32mIn[16], line 57\u001b[0m, in \u001b[0;36msplit_stratified_into_train_val_test\u001b[1;34m(df_input, stratify_colname, frac_train, frac_val, frac_test, random_state)\u001b[0m\n\u001b[0;32m 52\u001b[0m y \u001b[38;5;241m=\u001b[39m df_input[\n\u001b[0;32m 53\u001b[0m [stratify_colname]\n\u001b[0;32m 54\u001b[0m ] \u001b[38;5;66;03m# Dataframe of just the column on which to stratify.\u001b[39;00m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;66;03m# Split original dataframe into train and temp dataframes.\u001b[39;00m\n\u001b[1;32m---> 57\u001b[0m df_train, df_temp, y_train, y_temp \u001b[38;5;241m=\u001b[39m \u001b[43mtrain_test_split\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstratify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1.0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mfrac_train\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrandom_state\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 61\u001b[0m \u001b[38;5;66;03m# Split the temp dataframe into val and test dataframes.\u001b[39;00m\n\u001b[0;32m 62\u001b[0m relative_frac_test \u001b[38;5;241m=\u001b[39m frac_test \u001b[38;5;241m/\u001b[39m (frac_val \u001b[38;5;241m+\u001b[39m frac_test)\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\sklearn\\utils\\_param_validation.py:213\u001b[0m, in \u001b[0;36mvalidate_params.<locals>.decorator.<locals>.wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 207\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 208\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m config_context(\n\u001b[0;32m 209\u001b[0m skip_parameter_validation\u001b[38;5;241m=\u001b[39m(\n\u001b[0;32m 210\u001b[0m prefer_skip_nested_validation \u001b[38;5;129;01mor\u001b[39;00m global_skip_validation\n\u001b[0;32m 211\u001b[0m )\n\u001b[0;32m 212\u001b[0m ):\n\u001b[1;32m--> 213\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 214\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m InvalidParameterError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 215\u001b[0m \u001b[38;5;66;03m# When the function is just a wrapper around an estimator, we allow\u001b[39;00m\n\u001b[0;32m 216\u001b[0m \u001b[38;5;66;03m# the function to delegate validation to the estimator, but we replace\u001b[39;00m\n\u001b[0;32m 217\u001b[0m \u001b[38;5;66;03m# the name of the estimator by the name of the function in the error\u001b[39;00m\n\u001b[0;32m 218\u001b[0m \u001b[38;5;66;03m# message to avoid confusion.\u001b[39;00m\n\u001b[0;32m 219\u001b[0m msg \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msub(\n\u001b[0;32m 220\u001b[0m \u001b[38;5;124mr\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparameter of \u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mw+ must be\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 221\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparameter of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__qualname__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m must be\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 222\u001b[0m \u001b[38;5;28mstr\u001b[39m(e),\n\u001b[0;32m 223\u001b[0m )\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_split.py:2806\u001b[0m, in \u001b[0;36mtrain_test_split\u001b[1;34m(test_size, train_size, random_state, shuffle, stratify, *arrays)\u001b[0m\n\u001b[0;32m 2802\u001b[0m CVClass \u001b[38;5;241m=\u001b[39m ShuffleSplit\n\u001b[0;32m 2804\u001b[0m cv \u001b[38;5;241m=\u001b[39m CVClass(test_size\u001b[38;5;241m=\u001b[39mn_test, train_size\u001b[38;5;241m=\u001b[39mn_train, random_state\u001b[38;5;241m=\u001b[39mrandom_state)\n\u001b[1;32m-> 2806\u001b[0m train, test \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mcv\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msplit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43marrays\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstratify\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2808\u001b[0m train, test \u001b[38;5;241m=\u001b[39m ensure_common_namespace_device(arrays[\u001b[38;5;241m0\u001b[39m], train, test)\n\u001b[0;32m 2810\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(\n\u001b[0;32m 2811\u001b[0m chain\u001b[38;5;241m.\u001b[39mfrom_iterable(\n\u001b[0;32m 2812\u001b[0m (_safe_indexing(a, train), _safe_indexing(a, test)) \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m arrays\n\u001b[0;32m 2813\u001b[0m )\n\u001b[0;32m 2814\u001b[0m )\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_split.py:1843\u001b[0m, in \u001b[0;36mBaseShuffleSplit.split\u001b[1;34m(self, X, y, groups)\u001b[0m\n\u001b[0;32m 1813\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Generate indices to split data into training and test set.\u001b[39;00m\n\u001b[0;32m 1814\u001b[0m \n\u001b[0;32m 1815\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1840\u001b[0m \u001b[38;5;124;03mto an integer.\u001b[39;00m\n\u001b[0;32m 1841\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1842\u001b[0m X, y, groups \u001b[38;5;241m=\u001b[39m indexable(X, y, groups)\n\u001b[1;32m-> 1843\u001b[0m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_indices\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroups\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[0;32m 1844\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01myield\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\n",
|
||||
"File \u001b[1;32mc:\\Users\\1\\Desktop\\улгту\\3 курс\\МИИ\\mai\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_split.py:2252\u001b[0m, in \u001b[0;36mStratifiedShuffleSplit._iter_indices\u001b[1;34m(self, X, y, groups)\u001b[0m\n\u001b[0;32m 2250\u001b[0m class_counts \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mbincount(y_indices)\n\u001b[0;32m 2251\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m np\u001b[38;5;241m.\u001b[39mmin(class_counts) \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[1;32m-> 2252\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 2253\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe least populated class in y has only 1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 2254\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m member, which is too few. The minimum\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 2255\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m number of groups for any class cannot\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 2256\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m be less than 2.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 2257\u001b[0m )\n\u001b[0;32m 2259\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m n_train \u001b[38;5;241m<\u001b[39m n_classes:\n\u001b[0;32m 2260\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 2261\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe train_size = \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m should be greater or \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 2262\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mequal to the number of classes = \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m (n_train, n_classes)\n\u001b[0;32m 2263\u001b[0m )\n",
|
||||
"\u001b[1;31mValueError\u001b[0m: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Вывод распределения количества наблюдений по меткам (классам)\n",
|
||||
"print(df.MedAge.value_counts())\n",
|
||||
"\n",
|
||||
"data = df[[\"MedAge\", \"Fert. Rate\", \"Density(P/Km²)\"]].copy()\n",
|
||||
"\n",
|
||||
"df_train, df_val, df_test = split_stratified_into_train_val_test(\n",
|
||||
" data,\n",
|
||||
" stratify_colname=\"MedAge\",\n",
|
||||
" frac_train=0.60,\n",
|
||||
" frac_val=0.20,\n",
|
||||
" frac_test=0.20,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Обучающая выборка: \", df_train.shape)\n",
|
||||
"print(df_train.MedAge.value_counts())\n",
|
||||
"\n",
|
||||
"print(\"Контрольная выборка: \", df_val.shape)\n",
|
||||
"print(df_val.MedAge.value_counts())\n",
|
||||
"\n",
|
||||
"print(\"Тестовая выборка: \", df_test.shape)\n",
|
||||
"print(df_test.MedAge.value_counts())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Выборка с избытком (oversampling)\n",
|
||||
"\n",
|
||||
"https://www.blog.trainindata.com/oversampling-techniques-for-imbalanced-data/\n",
|
||||
"\n",
|
||||
"https://datacrayon.com/machine-learning/class-imbalance-and-oversampling/\n",
|
||||
"\n",
|
||||
"Выборка с недостатком (undersampling)\n",
|
||||
"\n",
|
||||
"https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/\n",
|
||||
"\n",
|
||||
"Библиотека imbalanced-learn\n",
|
||||
"\n",
|
||||
"https://imbalanced-learn.org/stable/"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "ModuleNotFoundError",
|
||||
"evalue": "No module named 'imblearn'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mimblearn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mover_sampling\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ADASYN\n\u001b[0;32m 3\u001b[0m ada \u001b[38;5;241m=\u001b[39m ADASYN()\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mОбучающая выборка: \u001b[39m\u001b[38;5;124m\"\u001b[39m, df_train\u001b[38;5;241m.\u001b[39mshape)\n",
|
||||
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'imblearn'"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from imblearn.over_sampling import ADASYN\n",
|
||||
"\n",
|
||||
"ada = ADASYN()\n",
|
||||
"\n",
|
||||
"print(\"Обучающая выборка: \", df_train.shape)\n",
|
||||
"print(df_train.Pclass.value_counts())\n",
|
||||
"\n",
|
||||
"X_resampled, y_resampled = ada.fit_resample(df_train, df_train[\"Pclass\"])\n",
|
||||
"df_train_adasyn = pd.DataFrame(X_resampled)\n",
|
||||
"\n",
|
||||
"print(\"Обучающая выборка после oversampling: \", df_train_adasyn.shape)\n",
|
||||
"print(df_train_adasyn.Pclass.value_counts())\n",
|
||||
"\n",
|
||||
"df_train_adasyn"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
1262
lec2_car.ipynb
Normal file
1262
lec2_car.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
1323
lec2e.ipynb
Normal file
1323
lec2e.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
3627
lec3.ipynb
Normal file
3627
lec3.ipynb
Normal file
File diff suppressed because one or more lines are too long
2488
lec4.ipynb
Normal file
2488
lec4.ipynb
Normal file
File diff suppressed because one or more lines are too long
2490
lec4_1.ipynb
Normal file
2490
lec4_1.ipynb
Normal file
File diff suppressed because one or more lines are too long
3719
lec4_reg.ipynb
Normal file
3719
lec4_reg.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
1339
lec5.ipynb
Normal file
1339
lec5.ipynb
Normal file
File diff suppressed because one or more lines are too long
3288
poetry.lock
generated
Normal file
3288
poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
2
poetry.toml
Normal file
2
poetry.toml
Normal file
@ -0,0 +1,2 @@
|
||||
[virtualenvs]
|
||||
in-project = true
|
29
pyproject.toml
Normal file
29
pyproject.toml
Normal file
@ -0,0 +1,29 @@
|
||||
[tool.poetry]
|
||||
name = "mai"
|
||||
version = "1.0.0"
|
||||
description = "MAI Examples"
|
||||
authors = ["Aleksey Filippov <al.filippov@ulstu.ru>"]
|
||||
readme = "readme.md"
|
||||
package-mode = false
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.12"
|
||||
jupyter = "^1.1.1"
|
||||
numpy = "^2.1.0"
|
||||
pandas = "^2.2.2"
|
||||
matplotlib = "^3.9.2"
|
||||
flask = "^3.0.3"
|
||||
apiflask = "^2.2.0"
|
||||
flask-cors = "^5.0.0"
|
||||
scikit-learn = "^1.5.2"
|
||||
imbalanced-learn = "^0.12.3"
|
||||
featuretools = "^1.31.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
ipykernel = "^6.29.5"
|
||||
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
55
readme.md
Normal file
55
readme.md
Normal file
@ -0,0 +1,55 @@
|
||||
## Окружение и примеры для выполнения лабораторных работ по дисциплине "Методы ИИ"
|
||||
|
||||
### Python
|
||||
|
||||
Используется Python версии 3.12
|
||||
|
||||
Установщик https://www.python.org/ftp/python/3.12.5/python-3.12.5-amd64.exe
|
||||
|
||||
### Poetry
|
||||
|
||||
Для создания и настройки окружения проекта необходимо установить poetry
|
||||
|
||||
**Для Windows (Powershell)**
|
||||
|
||||
```
|
||||
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
|
||||
```
|
||||
|
||||
**Linux, macOS, Windows (WSL)**
|
||||
|
||||
```
|
||||
curl -sSL https://install.python-poetry.org | python3 -
|
||||
```
|
||||
|
||||
**Добавление poetry в PATH**
|
||||
|
||||
1. Открыть настройки переменных среды \
|
||||
\
|
||||
<img src="docs/path1.png" width="300"> \
|
||||
\
|
||||
<img src="docs/path2.png" width="400"> \
|
||||
2. Изменить переменную Path текущего пользователя \
|
||||
\
|
||||
<img src="docs/path3.png" width="500"> \
|
||||
3. Добавление пути `%APPDATA%\Python\Scripts` до исполняемого файла poetry \
|
||||
\
|
||||
<img src="docs/path4.png" width="400">
|
||||
|
||||
### Создание окружения
|
||||
|
||||
```
|
||||
poetry install
|
||||
```
|
||||
|
||||
### Запуск тестового сервиса
|
||||
|
||||
Запустить тестовый сервис можно с помощью VSCode (см. launch.json в каталоге .vscode).
|
||||
|
||||
Также запустить тестовый сервис можно с помощью командной строки:
|
||||
|
||||
1. Активация виртуального окружения -- `poetry shell`
|
||||
|
||||
2. Запуск сервиса -- `python run.py`
|
||||
|
||||
Для выходы из виртуального окружения используется команду `exit`
|
16
run.py
Normal file
16
run.py
Normal file
@ -0,0 +1,16 @@
|
||||
from backend import create_app
|
||||
|
||||
app = create_app()
|
||||
|
||||
|
||||
def __main():
|
||||
app.run(
|
||||
host="127.0.0.1",
|
||||
port=8080,
|
||||
debug=True,
|
||||
use_reloader=False,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
__main()
|
502
sklearn-env/Scripts/Activate.ps1
Normal file
502
sklearn-env/Scripts/Activate.ps1
Normal file
@ -0,0 +1,502 @@
|
||||
<#
|
||||
.Synopsis
|
||||
Activate a Python virtual environment for the current PowerShell session.
|
||||
|
||||
.Description
|
||||
Pushes the python executable for a virtual environment to the front of the
|
||||
$Env:PATH environment variable and sets the prompt to signify that you are
|
||||
in a Python virtual environment. Makes use of the command line switches as
|
||||
well as the `pyvenv.cfg` file values present in the virtual environment.
|
||||
|
||||
.Parameter VenvDir
|
||||
Path to the directory that contains the virtual environment to activate. The
|
||||
default value for this is the parent of the directory that the Activate.ps1
|
||||
script is located within.
|
||||
|
||||
.Parameter Prompt
|
||||
The prompt prefix to display when this virtual environment is activated. By
|
||||
default, this prompt is the name of the virtual environment folder (VenvDir)
|
||||
surrounded by parentheses and followed by a single space (ie. '(.venv) ').
|
||||
|
||||
.Example
|
||||
Activate.ps1
|
||||
Activates the Python virtual environment that contains the Activate.ps1 script.
|
||||
|
||||
.Example
|
||||
Activate.ps1 -Verbose
|
||||
Activates the Python virtual environment that contains the Activate.ps1 script,
|
||||
and shows extra information about the activation as it executes.
|
||||
|
||||
.Example
|
||||
Activate.ps1 -VenvDir C:\Users\MyUser\Common\.venv
|
||||
Activates the Python virtual environment located in the specified location.
|
||||
|
||||
.Example
|
||||
Activate.ps1 -Prompt "MyPython"
|
||||
Activates the Python virtual environment that contains the Activate.ps1 script,
|
||||
and prefixes the current prompt with the specified string (surrounded in
|
||||
parentheses) while the virtual environment is active.
|
||||
|
||||
.Notes
|
||||
On Windows, it may be required to enable this Activate.ps1 script by setting the
|
||||
execution policy for the user. You can do this by issuing the following PowerShell
|
||||
command:
|
||||
|
||||
PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
|
||||
|
||||
For more information on Execution Policies:
|
||||
https://go.microsoft.com/fwlink/?LinkID=135170
|
||||
|
||||
#>
|
||||
Param(
|
||||
[Parameter(Mandatory = $false)]
|
||||
[String]
|
||||
$VenvDir,
|
||||
[Parameter(Mandatory = $false)]
|
||||
[String]
|
||||
$Prompt
|
||||
)
|
||||
|
||||
<# Function declarations --------------------------------------------------- #>
|
||||
|
||||
<#
|
||||
.Synopsis
|
||||
Remove all shell session elements added by the Activate script, including the
|
||||
addition of the virtual environment's Python executable from the beginning of
|
||||
the PATH variable.
|
||||
|
||||
.Parameter NonDestructive
|
||||
If present, do not remove this function from the global namespace for the
|
||||
session.
|
||||
|
||||
#>
|
||||
function global:deactivate ([switch]$NonDestructive) {
|
||||
# Revert to original values
|
||||
|
||||
# The prior prompt:
|
||||
if (Test-Path -Path Function:_OLD_VIRTUAL_PROMPT) {
|
||||
Copy-Item -Path Function:_OLD_VIRTUAL_PROMPT -Destination Function:prompt
|
||||
Remove-Item -Path Function:_OLD_VIRTUAL_PROMPT
|
||||
}
|
||||
|
||||
# The prior PYTHONHOME:
|
||||
if (Test-Path -Path Env:_OLD_VIRTUAL_PYTHONHOME) {
|
||||
Copy-Item -Path Env:_OLD_VIRTUAL_PYTHONHOME -Destination Env:PYTHONHOME
|
||||
Remove-Item -Path Env:_OLD_VIRTUAL_PYTHONHOME
|
||||
}
|
||||
|
||||
# The prior PATH:
|
||||
if (Test-Path -Path Env:_OLD_VIRTUAL_PATH) {
|
||||
Copy-Item -Path Env:_OLD_VIRTUAL_PATH -Destination Env:PATH
|
||||
Remove-Item -Path Env:_OLD_VIRTUAL_PATH
|
||||
}
|
||||
|
||||
# Just remove the VIRTUAL_ENV altogether:
|
||||
if (Test-Path -Path Env:VIRTUAL_ENV) {
|
||||
Remove-Item -Path env:VIRTUAL_ENV
|
||||
}
|
||||
|
||||
# Just remove VIRTUAL_ENV_PROMPT altogether.
|
||||
if (Test-Path -Path Env:VIRTUAL_ENV_PROMPT) {
|
||||
Remove-Item -Path env:VIRTUAL_ENV_PROMPT
|
||||
}
|
||||
|
||||
# Just remove the _PYTHON_VENV_PROMPT_PREFIX altogether:
|
||||
if (Get-Variable -Name "_PYTHON_VENV_PROMPT_PREFIX" -ErrorAction SilentlyContinue) {
|
||||
Remove-Variable -Name _PYTHON_VENV_PROMPT_PREFIX -Scope Global -Force
|
||||
}
|
||||
|
||||
# Leave deactivate function in the global namespace if requested:
|
||||
if (-not $NonDestructive) {
|
||||
Remove-Item -Path function:deactivate
|
||||
}
|
||||
}
|
||||
|
||||
<#
|
||||
.Description
|
||||
Get-PyVenvConfig parses the values from the pyvenv.cfg file located in the
|
||||
given folder, and returns them in a map.
|
||||
|
||||
For each line in the pyvenv.cfg file, if that line can be parsed into exactly
|
||||
two strings separated by `=` (with any amount of whitespace surrounding the =)
|
||||
then it is considered a `key = value` line. The left hand string is the key,
|
||||
the right hand is the value.
|
||||
|
||||
If the value starts with a `'` or a `"` then the first and last character is
|
||||
stripped from the value before being captured.
|
||||
|
||||
.Parameter ConfigDir
|
||||
Path to the directory that contains the `pyvenv.cfg` file.
|
||||
#>
|
||||
function Get-PyVenvConfig(
|
||||
[String]
|
||||
$ConfigDir
|
||||
) {
|
||||
Write-Verbose "Given ConfigDir=$ConfigDir, obtain values in pyvenv.cfg"
|
||||
|
||||
# Ensure the file exists, and issue a warning if it doesn't (but still allow the function to continue).
|
||||
$pyvenvConfigPath = Join-Path -Resolve -Path $ConfigDir -ChildPath 'pyvenv.cfg' -ErrorAction Continue
|
||||
|
||||
# An empty map will be returned if no config file is found.
|
||||
$pyvenvConfig = @{ }
|
||||
|
||||
if ($pyvenvConfigPath) {
|
||||
|
||||
Write-Verbose "File exists, parse `key = value` lines"
|
||||
$pyvenvConfigContent = Get-Content -Path $pyvenvConfigPath
|
||||
|
||||
$pyvenvConfigContent | ForEach-Object {
|
||||
$keyval = $PSItem -split "\s*=\s*", 2
|
||||
if ($keyval[0] -and $keyval[1]) {
|
||||
$val = $keyval[1]
|
||||
|
||||
# Remove extraneous quotations around a string value.
|
||||
if ("'""".Contains($val.Substring(0, 1))) {
|
||||
$val = $val.Substring(1, $val.Length - 2)
|
||||
}
|
||||
|
||||
$pyvenvConfig[$keyval[0]] = $val
|
||||
Write-Verbose "Adding Key: '$($keyval[0])'='$val'"
|
||||
}
|
||||
}
|
||||
}
|
||||
return $pyvenvConfig
|
||||
}
|
||||
|
||||
|
||||
<# Begin Activate script --------------------------------------------------- #>
|
||||
|
||||
# Determine the containing directory of this script
|
||||
$VenvExecPath = Split-Path -Parent $MyInvocation.MyCommand.Definition
|
||||
$VenvExecDir = Get-Item -Path $VenvExecPath
|
||||
|
||||
Write-Verbose "Activation script is located in path: '$VenvExecPath'"
|
||||
Write-Verbose "VenvExecDir Fullname: '$($VenvExecDir.FullName)"
|
||||
Write-Verbose "VenvExecDir Name: '$($VenvExecDir.Name)"
|
||||
|
||||
# Set values required in priority: CmdLine, ConfigFile, Default
|
||||
# First, get the location of the virtual environment, it might not be
|
||||
# VenvExecDir if specified on the command line.
|
||||
if ($VenvDir) {
|
||||
Write-Verbose "VenvDir given as parameter, using '$VenvDir' to determine values"
|
||||
}
|
||||
else {
|
||||
Write-Verbose "VenvDir not given as a parameter, using parent directory name as VenvDir."
|
||||
$VenvDir = $VenvExecDir.Parent.FullName.TrimEnd("\\/")
|
||||
Write-Verbose "VenvDir=$VenvDir"
|
||||
}
|
||||
|
||||
# Next, read the `pyvenv.cfg` file to determine any required value such
|
||||
# as `prompt`.
|
||||
$pyvenvCfg = Get-PyVenvConfig -ConfigDir $VenvDir
|
||||
|
||||
# Next, set the prompt from the command line, or the config file, or
|
||||
# just use the name of the virtual environment folder.
|
||||
if ($Prompt) {
|
||||
Write-Verbose "Prompt specified as argument, using '$Prompt'"
|
||||
}
|
||||
else {
|
||||
Write-Verbose "Prompt not specified as argument to script, checking pyvenv.cfg value"
|
||||
if ($pyvenvCfg -and $pyvenvCfg['prompt']) {
|
||||
Write-Verbose " Setting based on value in pyvenv.cfg='$($pyvenvCfg['prompt'])'"
|
||||
$Prompt = $pyvenvCfg['prompt'];
|
||||
}
|
||||
else {
|
||||
Write-Verbose " Setting prompt based on parent's directory's name. (Is the directory name passed to venv module when creating the virtual environment)"
|
||||
Write-Verbose " Got leaf-name of $VenvDir='$(Split-Path -Path $venvDir -Leaf)'"
|
||||
$Prompt = Split-Path -Path $venvDir -Leaf
|
||||
}
|
||||
}
|
||||
|
||||
Write-Verbose "Prompt = '$Prompt'"
|
||||
Write-Verbose "VenvDir='$VenvDir'"
|
||||
|
||||
# Deactivate any currently active virtual environment, but leave the
|
||||
# deactivate function in place.
|
||||
deactivate -nondestructive
|
||||
|
||||
# Now set the environment variable VIRTUAL_ENV, used by many tools to determine
|
||||
# that there is an activated venv.
|
||||
$env:VIRTUAL_ENV = $VenvDir
|
||||
|
||||
if (-not $Env:VIRTUAL_ENV_DISABLE_PROMPT) {
|
||||
|
||||
Write-Verbose "Setting prompt to '$Prompt'"
|
||||
|
||||
# Set the prompt to include the env name
|
||||
# Make sure _OLD_VIRTUAL_PROMPT is global
|
||||
function global:_OLD_VIRTUAL_PROMPT { "" }
|
||||
Copy-Item -Path function:prompt -Destination function:_OLD_VIRTUAL_PROMPT
|
||||
New-Variable -Name _PYTHON_VENV_PROMPT_PREFIX -Description "Python virtual environment prompt prefix" -Scope Global -Option ReadOnly -Visibility Public -Value $Prompt
|
||||
|
||||
function global:prompt {
|
||||
Write-Host -NoNewline -ForegroundColor Green "($_PYTHON_VENV_PROMPT_PREFIX) "
|
||||
_OLD_VIRTUAL_PROMPT
|
||||
}
|
||||
$env:VIRTUAL_ENV_PROMPT = $Prompt
|
||||
}
|
||||
|
||||
# Clear PYTHONHOME
|
||||
if (Test-Path -Path Env:PYTHONHOME) {
|
||||
Copy-Item -Path Env:PYTHONHOME -Destination Env:_OLD_VIRTUAL_PYTHONHOME
|
||||
Remove-Item -Path Env:PYTHONHOME
|
||||
}
|
||||
|
||||
# Add the venv to the PATH
|
||||
Copy-Item -Path Env:PATH -Destination Env:_OLD_VIRTUAL_PATH
|
||||
$Env:PATH = "$VenvExecDir$([System.IO.Path]::PathSeparator)$Env:PATH"
|
||||
|
||||
# SIG # Begin signature block
|
||||
# MIIvIwYJKoZIhvcNAQcCoIIvFDCCLxACAQExDzANBglghkgBZQMEAgEFADB5Bgor
|
||||
# BgEEAYI3AgEEoGswaTA0BgorBgEEAYI3AgEeMCYCAwEAAAQQH8w7YFlLCE63JNLG
|
||||
# KX7zUQIBAAIBAAIBAAIBAAIBADAxMA0GCWCGSAFlAwQCAQUABCBnL745ElCYk8vk
|
||||
# dBtMuQhLeWJ3ZGfzKW4DHCYzAn+QB6CCE8MwggWQMIIDeKADAgECAhAFmxtXno4h
|
||||
# MuI5B72nd3VcMA0GCSqGSIb3DQEBDAUAMGIxCzAJBgNVBAYTAlVTMRUwEwYDVQQK
|
||||
# EwxEaWdpQ2VydCBJbmMxGTAXBgNVBAsTEHd3dy5kaWdpY2VydC5jb20xITAfBgNV
|
||||
# BAMTGERpZ2lDZXJ0IFRydXN0ZWQgUm9vdCBHNDAeFw0xMzA4MDExMjAwMDBaFw0z
|
||||
# ODAxMTUxMjAwMDBaMGIxCzAJBgNVBAYTAlVTMRUwEwYDVQQKEwxEaWdpQ2VydCBJ
|
||||
# bmMxGTAXBgNVBAsTEHd3dy5kaWdpY2VydC5jb20xITAfBgNVBAMTGERpZ2lDZXJ0
|
||||
# IFRydXN0ZWQgUm9vdCBHNDCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIB
|
||||
# AL/mkHNo3rvkXUo8MCIwaTPswqclLskhPfKK2FnC4SmnPVirdprNrnsbhA3EMB/z
|
||||
# G6Q4FutWxpdtHauyefLKEdLkX9YFPFIPUh/GnhWlfr6fqVcWWVVyr2iTcMKyunWZ
|
||||
# anMylNEQRBAu34LzB4TmdDttceItDBvuINXJIB1jKS3O7F5OyJP4IWGbNOsFxl7s
|
||||
# Wxq868nPzaw0QF+xembud8hIqGZXV59UWI4MK7dPpzDZVu7Ke13jrclPXuU15zHL
|
||||
# 2pNe3I6PgNq2kZhAkHnDeMe2scS1ahg4AxCN2NQ3pC4FfYj1gj4QkXCrVYJBMtfb
|
||||
# BHMqbpEBfCFM1LyuGwN1XXhm2ToxRJozQL8I11pJpMLmqaBn3aQnvKFPObURWBf3
|
||||
# JFxGj2T3wWmIdph2PVldQnaHiZdpekjw4KISG2aadMreSx7nDmOu5tTvkpI6nj3c
|
||||
# AORFJYm2mkQZK37AlLTSYW3rM9nF30sEAMx9HJXDj/chsrIRt7t/8tWMcCxBYKqx
|
||||
# YxhElRp2Yn72gLD76GSmM9GJB+G9t+ZDpBi4pncB4Q+UDCEdslQpJYls5Q5SUUd0
|
||||
# viastkF13nqsX40/ybzTQRESW+UQUOsxxcpyFiIJ33xMdT9j7CFfxCBRa2+xq4aL
|
||||
# T8LWRV+dIPyhHsXAj6KxfgommfXkaS+YHS312amyHeUbAgMBAAGjQjBAMA8GA1Ud
|
||||
# EwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgGGMB0GA1UdDgQWBBTs1+OC0nFdZEzf
|
||||
# Lmc/57qYrhwPTzANBgkqhkiG9w0BAQwFAAOCAgEAu2HZfalsvhfEkRvDoaIAjeNk
|
||||
# aA9Wz3eucPn9mkqZucl4XAwMX+TmFClWCzZJXURj4K2clhhmGyMNPXnpbWvWVPjS
|
||||
# PMFDQK4dUPVS/JA7u5iZaWvHwaeoaKQn3J35J64whbn2Z006Po9ZOSJTROvIXQPK
|
||||
# 7VB6fWIhCoDIc2bRoAVgX+iltKevqPdtNZx8WorWojiZ83iL9E3SIAveBO6Mm0eB
|
||||
# cg3AFDLvMFkuruBx8lbkapdvklBtlo1oepqyNhR6BvIkuQkRUNcIsbiJeoQjYUIp
|
||||
# 5aPNoiBB19GcZNnqJqGLFNdMGbJQQXE9P01wI4YMStyB0swylIQNCAmXHE/A7msg
|
||||
# dDDS4Dk0EIUhFQEI6FUy3nFJ2SgXUE3mvk3RdazQyvtBuEOlqtPDBURPLDab4vri
|
||||
# RbgjU2wGb2dVf0a1TD9uKFp5JtKkqGKX0h7i7UqLvBv9R0oN32dmfrJbQdA75PQ7
|
||||
# 9ARj6e/CVABRoIoqyc54zNXqhwQYs86vSYiv85KZtrPmYQ/ShQDnUBrkG5WdGaG5
|
||||
# nLGbsQAe79APT0JsyQq87kP6OnGlyE0mpTX9iV28hWIdMtKgK1TtmlfB2/oQzxm3
|
||||
# i0objwG2J5VT6LaJbVu8aNQj6ItRolb58KaAoNYes7wPD1N1KarqE3fk3oyBIa0H
|
||||
# EEcRrYc9B9F1vM/zZn4wggawMIIEmKADAgECAhAIrUCyYNKcTJ9ezam9k67ZMA0G
|
||||
# CSqGSIb3DQEBDAUAMGIxCzAJBgNVBAYTAlVTMRUwEwYDVQQKEwxEaWdpQ2VydCBJ
|
||||
# bmMxGTAXBgNVBAsTEHd3dy5kaWdpY2VydC5jb20xITAfBgNVBAMTGERpZ2lDZXJ0
|
||||
# IFRydXN0ZWQgUm9vdCBHNDAeFw0yMTA0MjkwMDAwMDBaFw0zNjA0MjgyMzU5NTla
|
||||
# MGkxCzAJBgNVBAYTAlVTMRcwFQYDVQQKEw5EaWdpQ2VydCwgSW5jLjFBMD8GA1UE
|
||||
# AxM4RGlnaUNlcnQgVHJ1c3RlZCBHNCBDb2RlIFNpZ25pbmcgUlNBNDA5NiBTSEEz
|
||||
# ODQgMjAyMSBDQTEwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQDVtC9C
|
||||
# 0CiteLdd1TlZG7GIQvUzjOs9gZdwxbvEhSYwn6SOaNhc9es0JAfhS0/TeEP0F9ce
|
||||
# 2vnS1WcaUk8OoVf8iJnBkcyBAz5NcCRks43iCH00fUyAVxJrQ5qZ8sU7H/Lvy0da
|
||||
# E6ZMswEgJfMQ04uy+wjwiuCdCcBlp/qYgEk1hz1RGeiQIXhFLqGfLOEYwhrMxe6T
|
||||
# SXBCMo/7xuoc82VokaJNTIIRSFJo3hC9FFdd6BgTZcV/sk+FLEikVoQ11vkunKoA
|
||||
# FdE3/hoGlMJ8yOobMubKwvSnowMOdKWvObarYBLj6Na59zHh3K3kGKDYwSNHR7Oh
|
||||
# D26jq22YBoMbt2pnLdK9RBqSEIGPsDsJ18ebMlrC/2pgVItJwZPt4bRc4G/rJvmM
|
||||
# 1bL5OBDm6s6R9b7T+2+TYTRcvJNFKIM2KmYoX7BzzosmJQayg9Rc9hUZTO1i4F4z
|
||||
# 8ujo7AqnsAMrkbI2eb73rQgedaZlzLvjSFDzd5Ea/ttQokbIYViY9XwCFjyDKK05
|
||||
# huzUtw1T0PhH5nUwjewwk3YUpltLXXRhTT8SkXbev1jLchApQfDVxW0mdmgRQRNY
|
||||
# mtwmKwH0iU1Z23jPgUo+QEdfyYFQc4UQIyFZYIpkVMHMIRroOBl8ZhzNeDhFMJlP
|
||||
# /2NPTLuqDQhTQXxYPUez+rbsjDIJAsxsPAxWEQIDAQABo4IBWTCCAVUwEgYDVR0T
|
||||
# AQH/BAgwBgEB/wIBADAdBgNVHQ4EFgQUaDfg67Y7+F8Rhvv+YXsIiGX0TkIwHwYD
|
||||
# VR0jBBgwFoAU7NfjgtJxXWRM3y5nP+e6mK4cD08wDgYDVR0PAQH/BAQDAgGGMBMG
|
||||
# A1UdJQQMMAoGCCsGAQUFBwMDMHcGCCsGAQUFBwEBBGswaTAkBggrBgEFBQcwAYYY
|
||||
# aHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEEGCCsGAQUFBzAChjVodHRwOi8vY2Fj
|
||||
# ZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRUcnVzdGVkUm9vdEc0LmNydDBDBgNV
|
||||
# HR8EPDA6MDigNqA0hjJodHRwOi8vY3JsMy5kaWdpY2VydC5jb20vRGlnaUNlcnRU
|
||||
# cnVzdGVkUm9vdEc0LmNybDAcBgNVHSAEFTATMAcGBWeBDAEDMAgGBmeBDAEEATAN
|
||||
# BgkqhkiG9w0BAQwFAAOCAgEAOiNEPY0Idu6PvDqZ01bgAhql+Eg08yy25nRm95Ry
|
||||
# sQDKr2wwJxMSnpBEn0v9nqN8JtU3vDpdSG2V1T9J9Ce7FoFFUP2cvbaF4HZ+N3HL
|
||||
# IvdaqpDP9ZNq4+sg0dVQeYiaiorBtr2hSBh+3NiAGhEZGM1hmYFW9snjdufE5Btf
|
||||
# Q/g+lP92OT2e1JnPSt0o618moZVYSNUa/tcnP/2Q0XaG3RywYFzzDaju4ImhvTnh
|
||||
# OE7abrs2nfvlIVNaw8rpavGiPttDuDPITzgUkpn13c5UbdldAhQfQDN8A+KVssIh
|
||||
# dXNSy0bYxDQcoqVLjc1vdjcshT8azibpGL6QB7BDf5WIIIJw8MzK7/0pNVwfiThV
|
||||
# 9zeKiwmhywvpMRr/LhlcOXHhvpynCgbWJme3kuZOX956rEnPLqR0kq3bPKSchh/j
|
||||
# wVYbKyP/j7XqiHtwa+aguv06P0WmxOgWkVKLQcBIhEuWTatEQOON8BUozu3xGFYH
|
||||
# Ki8QxAwIZDwzj64ojDzLj4gLDb879M4ee47vtevLt/B3E+bnKD+sEq6lLyJsQfmC
|
||||
# XBVmzGwOysWGw/YmMwwHS6DTBwJqakAwSEs0qFEgu60bhQjiWQ1tygVQK+pKHJ6l
|
||||
# /aCnHwZ05/LWUpD9r4VIIflXO7ScA+2GRfS0YW6/aOImYIbqyK+p/pQd52MbOoZW
|
||||
# eE4wggd3MIIFX6ADAgECAhAHHxQbizANJfMU6yMM0NHdMA0GCSqGSIb3DQEBCwUA
|
||||
# MGkxCzAJBgNVBAYTAlVTMRcwFQYDVQQKEw5EaWdpQ2VydCwgSW5jLjFBMD8GA1UE
|
||||
# AxM4RGlnaUNlcnQgVHJ1c3RlZCBHNCBDb2RlIFNpZ25pbmcgUlNBNDA5NiBTSEEz
|
||||
# ODQgMjAyMSBDQTEwHhcNMjIwMTE3MDAwMDAwWhcNMjUwMTE1MjM1OTU5WjB8MQsw
|
||||
# CQYDVQQGEwJVUzEPMA0GA1UECBMGT3JlZ29uMRIwEAYDVQQHEwlCZWF2ZXJ0b24x
|
||||
# IzAhBgNVBAoTGlB5dGhvbiBTb2Z0d2FyZSBGb3VuZGF0aW9uMSMwIQYDVQQDExpQ
|
||||
# eXRob24gU29mdHdhcmUgRm91bmRhdGlvbjCCAiIwDQYJKoZIhvcNAQEBBQADggIP
|
||||
# ADCCAgoCggIBAKgc0BTT+iKbtK6f2mr9pNMUTcAJxKdsuOiSYgDFfwhjQy89koM7
|
||||
# uP+QV/gwx8MzEt3c9tLJvDccVWQ8H7mVsk/K+X+IufBLCgUi0GGAZUegEAeRlSXx
|
||||
# xhYScr818ma8EvGIZdiSOhqjYc4KnfgfIS4RLtZSrDFG2tN16yS8skFa3IHyvWdb
|
||||
# D9PvZ4iYNAS4pjYDRjT/9uzPZ4Pan+53xZIcDgjiTwOh8VGuppxcia6a7xCyKoOA
|
||||
# GjvCyQsj5223v1/Ig7Dp9mGI+nh1E3IwmyTIIuVHyK6Lqu352diDY+iCMpk9Zanm
|
||||
# SjmB+GMVs+H/gOiofjjtf6oz0ki3rb7sQ8fTnonIL9dyGTJ0ZFYKeb6BLA66d2GA
|
||||
# LwxZhLe5WH4Np9HcyXHACkppsE6ynYjTOd7+jN1PRJahN1oERzTzEiV6nCO1M3U1
|
||||
# HbPTGyq52IMFSBM2/07WTJSbOeXjvYR7aUxK9/ZkJiacl2iZI7IWe7JKhHohqKuc
|
||||
# eQNyOzxTakLcRkzynvIrk33R9YVqtB4L6wtFxhUjvDnQg16xot2KVPdfyPAWd81w
|
||||
# tZADmrUtsZ9qG79x1hBdyOl4vUtVPECuyhCxaw+faVjumapPUnwo8ygflJJ74J+B
|
||||
# Yxf6UuD7m8yzsfXWkdv52DjL74TxzuFTLHPyARWCSCAbzn3ZIly+qIqDAgMBAAGj
|
||||
# ggIGMIICAjAfBgNVHSMEGDAWgBRoN+Drtjv4XxGG+/5hewiIZfROQjAdBgNVHQ4E
|
||||
# FgQUt/1Teh2XDuUj2WW3siYWJgkZHA8wDgYDVR0PAQH/BAQDAgeAMBMGA1UdJQQM
|
||||
# MAoGCCsGAQUFBwMDMIG1BgNVHR8Ega0wgaowU6BRoE+GTWh0dHA6Ly9jcmwzLmRp
|
||||
# Z2ljZXJ0LmNvbS9EaWdpQ2VydFRydXN0ZWRHNENvZGVTaWduaW5nUlNBNDA5NlNI
|
||||
# QTM4NDIwMjFDQTEuY3JsMFOgUaBPhk1odHRwOi8vY3JsNC5kaWdpY2VydC5jb20v
|
||||
# RGlnaUNlcnRUcnVzdGVkRzRDb2RlU2lnbmluZ1JTQTQwOTZTSEEzODQyMDIxQ0Ex
|
||||
# LmNybDA+BgNVHSAENzA1MDMGBmeBDAEEATApMCcGCCsGAQUFBwIBFhtodHRwOi8v
|
||||
# d3d3LmRpZ2ljZXJ0LmNvbS9DUFMwgZQGCCsGAQUFBwEBBIGHMIGEMCQGCCsGAQUF
|
||||
# BzABhhhodHRwOi8vb2NzcC5kaWdpY2VydC5jb20wXAYIKwYBBQUHMAKGUGh0dHA6
|
||||
# Ly9jYWNlcnRzLmRpZ2ljZXJ0LmNvbS9EaWdpQ2VydFRydXN0ZWRHNENvZGVTaWdu
|
||||
# aW5nUlNBNDA5NlNIQTM4NDIwMjFDQTEuY3J0MAwGA1UdEwEB/wQCMAAwDQYJKoZI
|
||||
# hvcNAQELBQADggIBABxv4AeV/5ltkELHSC63fXAFYS5tadcWTiNc2rskrNLrfH1N
|
||||
# s0vgSZFoQxYBFKI159E8oQQ1SKbTEubZ/B9kmHPhprHya08+VVzxC88pOEvz68nA
|
||||
# 82oEM09584aILqYmj8Pj7h/kmZNzuEL7WiwFa/U1hX+XiWfLIJQsAHBla0i7QRF2
|
||||
# de8/VSF0XXFa2kBQ6aiTsiLyKPNbaNtbcucaUdn6vVUS5izWOXM95BSkFSKdE45O
|
||||
# q3FForNJXjBvSCpwcP36WklaHL+aHu1upIhCTUkzTHMh8b86WmjRUqbrnvdyR2yd
|
||||
# I5l1OqcMBjkpPpIV6wcc+KY/RH2xvVuuoHjlUjwq2bHiNoX+W1scCpnA8YTs2d50
|
||||
# jDHUgwUo+ciwpffH0Riq132NFmrH3r67VaN3TuBxjI8SIZM58WEDkbeoriDk3hxU
|
||||
# 8ZWV7b8AW6oyVBGfM06UgkfMb58h+tJPrFx8VI/WLq1dTqMfZOm5cuclMnUHs2uq
|
||||
# rRNtnV8UfidPBL4ZHkTcClQbCoz0UbLhkiDvIS00Dn+BBcxw/TKqVL4Oaz3bkMSs
|
||||
# M46LciTeucHY9ExRVt3zy7i149sd+F4QozPqn7FrSVHXmem3r7bjyHTxOgqxRCVa
|
||||
# 18Vtx7P/8bYSBeS+WHCKcliFCecspusCDSlnRUjZwyPdP0VHxaZg2unjHY3rMYIa
|
||||
# tjCCGrICAQEwfTBpMQswCQYDVQQGEwJVUzEXMBUGA1UEChMORGlnaUNlcnQsIElu
|
||||
# Yy4xQTA/BgNVBAMTOERpZ2lDZXJ0IFRydXN0ZWQgRzQgQ29kZSBTaWduaW5nIFJT
|
||||
# QTQwOTYgU0hBMzg0IDIwMjEgQ0ExAhAHHxQbizANJfMU6yMM0NHdMA0GCWCGSAFl
|
||||
# AwQCAQUAoIHIMBkGCSqGSIb3DQEJAzEMBgorBgEEAYI3AgEEMBwGCisGAQQBgjcC
|
||||
# AQsxDjAMBgorBgEEAYI3AgEVMC8GCSqGSIb3DQEJBDEiBCBnAZ6P7YvTwq0fbF62
|
||||
# o7E75R0LxsW5OtyYiFESQckLhjBcBgorBgEEAYI3AgEMMU4wTKBGgEQAQgB1AGkA
|
||||
# bAB0ADoAIABSAGUAbABlAGEAcwBlAF8AdgAzAC4AMQAyAC4ANQBfADIAMAAyADQA
|
||||
# MAA4ADAANgAuADAAMaECgAAwDQYJKoZIhvcNAQEBBQAEggIAoXbLeBCFQhwr4rTK
|
||||
# R0WSySG7AtpuY1n5vhwkJPE0JgQ11PFJYphroU2ouWWM8ifejqa6m21JEWGjC9En
|
||||
# Rpzpe1+eps7ClsdO+y5NxZc/3vD1j7IddJdzZh77QqDFMqJEeDNY+00OxxnnhbN1
|
||||
# wJk29w8qRyIJ7HpCM0E5b8R8Atooip5ihAgrdrIsyyA3Mnl5Y+YMdqtQYe4QtOhE
|
||||
# QcEoxAMoI5nLSGsbLhEM8CArl36EmX31eHTVMRJMaM98p0DkURHL030ALmW2V70h
|
||||
# M7ovmhOezFyndR1d3HtcfwRB3nr5vHWZe6ythZ3wVgpsN++RdDOvHjb9LC9lkth/
|
||||
# BGbcmVqsA9ZHnub1iPt89GsQBSiXjaOnWUxgJi0Qd3s2pwswLxHp05QDUE/d8EF7
|
||||
# Wy6aNPI43+G2BjPLVeM3iVbMWd/yxhH6pddaVPAMKVvxJoJ7PfDLihMNyonHt0on
|
||||
# xuaM5r2KaVMWpHIkgLiB9tyvdIQb0IW+YU05VAnOqh7CDaEtP7jM6P0usxY9ufEC
|
||||
# BFZnOGb3M/c4KbcOuHOIkY3jGqw+DLZFrcWiIe2wbi2TsXDixs+pz8vm/KQczrQ2
|
||||
# RJ1R8jrbK7IIRyZmTYf+dStZG3NhNQn1xcPYraHKNOm9CzNmeXJTdfAe0BEApqUN
|
||||
# 9AiLj6uvSEp278ysr/EE3ayw2Qmhghc/MIIXOwYKKwYBBAGCNwMDATGCFyswghcn
|
||||
# BgkqhkiG9w0BBwKgghcYMIIXFAIBAzEPMA0GCWCGSAFlAwQCAQUAMHcGCyqGSIb3
|
||||
# DQEJEAEEoGgEZjBkAgEBBglghkgBhv1sBwEwMTANBglghkgBZQMEAgEFAAQgpuSq
|
||||
# fyINa45wSs5Sa6msoQk+zCLDcSK24OqaBM/0/2cCEFtb0VJATq3jxU9l7ewmqjcY
|
||||
# DzIwMjQwODA2MjEwMDM5WqCCEwkwggbCMIIEqqADAgECAhAFRK/zlJ0IOaa/2z9f
|
||||
# 5WEWMA0GCSqGSIb3DQEBCwUAMGMxCzAJBgNVBAYTAlVTMRcwFQYDVQQKEw5EaWdp
|
||||
# Q2VydCwgSW5jLjE7MDkGA1UEAxMyRGlnaUNlcnQgVHJ1c3RlZCBHNCBSU0E0MDk2
|
||||
# IFNIQTI1NiBUaW1lU3RhbXBpbmcgQ0EwHhcNMjMwNzE0MDAwMDAwWhcNMzQxMDEz
|
||||
# MjM1OTU5WjBIMQswCQYDVQQGEwJVUzEXMBUGA1UEChMORGlnaUNlcnQsIEluYy4x
|
||||
# IDAeBgNVBAMTF0RpZ2lDZXJ0IFRpbWVzdGFtcCAyMDIzMIICIjANBgkqhkiG9w0B
|
||||
# AQEFAAOCAg8AMIICCgKCAgEAo1NFhx2DjlusPlSzI+DPn9fl0uddoQ4J3C9Io5d6
|
||||
# OyqcZ9xiFVjBqZMRp82qsmrdECmKHmJjadNYnDVxvzqX65RQjxwg6seaOy+WZuNp
|
||||
# 52n+W8PWKyAcwZeUtKVQgfLPywemMGjKg0La/H8JJJSkghraarrYO8pd3hkYhftF
|
||||
# 6g1hbJ3+cV7EBpo88MUueQ8bZlLjyNY+X9pD04T10Mf2SC1eRXWWdf7dEKEbg8G4
|
||||
# 5lKVtUfXeCk5a+B4WZfjRCtK1ZXO7wgX6oJkTf8j48qG7rSkIWRw69XloNpjsy7p
|
||||
# Be6q9iT1HbybHLK3X9/w7nZ9MZllR1WdSiQvrCuXvp/k/XtzPjLuUjT71Lvr1KAs
|
||||
# NJvj3m5kGQc3AZEPHLVRzapMZoOIaGK7vEEbeBlt5NkP4FhB+9ixLOFRr7StFQYU
|
||||
# 6mIIE9NpHnxkTZ0P387RXoyqq1AVybPKvNfEO2hEo6U7Qv1zfe7dCv95NBB+plwK
|
||||
# WEwAPoVpdceDZNZ1zY8SdlalJPrXxGshuugfNJgvOuprAbD3+yqG7HtSOKmYCaFx
|
||||
# smxxrz64b5bV4RAT/mFHCoz+8LbH1cfebCTwv0KCyqBxPZySkwS0aXAnDU+3tTbR
|
||||
# yV8IpHCj7ArxES5k4MsiK8rxKBMhSVF+BmbTO77665E42FEHypS34lCh8zrTioPL
|
||||
# QHsCAwEAAaOCAYswggGHMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMBYG
|
||||
# A1UdJQEB/wQMMAoGCCsGAQUFBwMIMCAGA1UdIAQZMBcwCAYGZ4EMAQQCMAsGCWCG
|
||||
# SAGG/WwHATAfBgNVHSMEGDAWgBS6FtltTYUvcyl2mi91jGogj57IbzAdBgNVHQ4E
|
||||
# FgQUpbbvE+fvzdBkodVWqWUxo97V40kwWgYDVR0fBFMwUTBPoE2gS4ZJaHR0cDov
|
||||
# L2NybDMuZGlnaWNlcnQuY29tL0RpZ2lDZXJ0VHJ1c3RlZEc0UlNBNDA5NlNIQTI1
|
||||
# NlRpbWVTdGFtcGluZ0NBLmNybDCBkAYIKwYBBQUHAQEEgYMwgYAwJAYIKwYBBQUH
|
||||
# MAGGGGh0dHA6Ly9vY3NwLmRpZ2ljZXJ0LmNvbTBYBggrBgEFBQcwAoZMaHR0cDov
|
||||
# L2NhY2VydHMuZGlnaWNlcnQuY29tL0RpZ2lDZXJ0VHJ1c3RlZEc0UlNBNDA5NlNI
|
||||
# QTI1NlRpbWVTdGFtcGluZ0NBLmNydDANBgkqhkiG9w0BAQsFAAOCAgEAgRrW3qCp
|
||||
# tZgXvHCNT4o8aJzYJf/LLOTN6l0ikuyMIgKpuM+AqNnn48XtJoKKcS8Y3U623mzX
|
||||
# 4WCcK+3tPUiOuGu6fF29wmE3aEl3o+uQqhLXJ4Xzjh6S2sJAOJ9dyKAuJXglnSoF
|
||||
# eoQpmLZXeY/bJlYrsPOnvTcM2Jh2T1a5UsK2nTipgedtQVyMadG5K8TGe8+c+nji
|
||||
# kxp2oml101DkRBK+IA2eqUTQ+OVJdwhaIcW0z5iVGlS6ubzBaRm6zxbygzc0brBB
|
||||
# Jt3eWpdPM43UjXd9dUWhpVgmagNF3tlQtVCMr1a9TMXhRsUo063nQwBw3syYnhmJ
|
||||
# A+rUkTfvTVLzyWAhxFZH7doRS4wyw4jmWOK22z75X7BC1o/jF5HRqsBV44a/rCcs
|
||||
# QdCaM0qoNtS5cpZ+l3k4SF/Kwtw9Mt911jZnWon49qfH5U81PAC9vpwqbHkB3NpE
|
||||
# 5jreODsHXjlY9HxzMVWggBHLFAx+rrz+pOt5Zapo1iLKO+uagjVXKBbLafIymrLS
|
||||
# 2Dq4sUaGa7oX/cR3bBVsrquvczroSUa31X/MtjjA2Owc9bahuEMs305MfR5ocMB3
|
||||
# CtQC4Fxguyj/OOVSWtasFyIjTvTs0xf7UGv/B3cfcZdEQcm4RtNsMnxYL2dHZeUb
|
||||
# c7aZ+WssBkbvQR7w8F/g29mtkIBEr4AQQYowggauMIIElqADAgECAhAHNje3JFR8
|
||||
# 2Ees/ShmKl5bMA0GCSqGSIb3DQEBCwUAMGIxCzAJBgNVBAYTAlVTMRUwEwYDVQQK
|
||||
# EwxEaWdpQ2VydCBJbmMxGTAXBgNVBAsTEHd3dy5kaWdpY2VydC5jb20xITAfBgNV
|
||||
# BAMTGERpZ2lDZXJ0IFRydXN0ZWQgUm9vdCBHNDAeFw0yMjAzMjMwMDAwMDBaFw0z
|
||||
# NzAzMjIyMzU5NTlaMGMxCzAJBgNVBAYTAlVTMRcwFQYDVQQKEw5EaWdpQ2VydCwg
|
||||
# SW5jLjE7MDkGA1UEAxMyRGlnaUNlcnQgVHJ1c3RlZCBHNCBSU0E0MDk2IFNIQTI1
|
||||
# NiBUaW1lU3RhbXBpbmcgQ0EwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoIC
|
||||
# AQDGhjUGSbPBPXJJUVXHJQPE8pE3qZdRodbSg9GeTKJtoLDMg/la9hGhRBVCX6SI
|
||||
# 82j6ffOciQt/nR+eDzMfUBMLJnOWbfhXqAJ9/UO0hNoR8XOxs+4rgISKIhjf69o9
|
||||
# xBd/qxkrPkLcZ47qUT3w1lbU5ygt69OxtXXnHwZljZQp09nsad/ZkIdGAHvbREGJ
|
||||
# 3HxqV3rwN3mfXazL6IRktFLydkf3YYMZ3V+0VAshaG43IbtArF+y3kp9zvU5Emfv
|
||||
# DqVjbOSmxR3NNg1c1eYbqMFkdECnwHLFuk4fsbVYTXn+149zk6wsOeKlSNbwsDET
|
||||
# qVcplicu9Yemj052FVUmcJgmf6AaRyBD40NjgHt1biclkJg6OBGz9vae5jtb7IHe
|
||||
# IhTZgirHkr+g3uM+onP65x9abJTyUpURK1h0QCirc0PO30qhHGs4xSnzyqqWc0Jo
|
||||
# n7ZGs506o9UD4L/wojzKQtwYSH8UNM/STKvvmz3+DrhkKvp1KCRB7UK/BZxmSVJQ
|
||||
# 9FHzNklNiyDSLFc1eSuo80VgvCONWPfcYd6T/jnA+bIwpUzX6ZhKWD7TA4j+s4/T
|
||||
# Xkt2ElGTyYwMO1uKIqjBJgj5FBASA31fI7tk42PgpuE+9sJ0sj8eCXbsq11GdeJg
|
||||
# o1gJASgADoRU7s7pXcheMBK9Rp6103a50g5rmQzSM7TNsQIDAQABo4IBXTCCAVkw
|
||||
# EgYDVR0TAQH/BAgwBgEB/wIBADAdBgNVHQ4EFgQUuhbZbU2FL3MpdpovdYxqII+e
|
||||
# yG8wHwYDVR0jBBgwFoAU7NfjgtJxXWRM3y5nP+e6mK4cD08wDgYDVR0PAQH/BAQD
|
||||
# AgGGMBMGA1UdJQQMMAoGCCsGAQUFBwMIMHcGCCsGAQUFBwEBBGswaTAkBggrBgEF
|
||||
# BQcwAYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEEGCCsGAQUFBzAChjVodHRw
|
||||
# Oi8vY2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRUcnVzdGVkUm9vdEc0LmNy
|
||||
# dDBDBgNVHR8EPDA6MDigNqA0hjJodHRwOi8vY3JsMy5kaWdpY2VydC5jb20vRGln
|
||||
# aUNlcnRUcnVzdGVkUm9vdEc0LmNybDAgBgNVHSAEGTAXMAgGBmeBDAEEAjALBglg
|
||||
# hkgBhv1sBwEwDQYJKoZIhvcNAQELBQADggIBAH1ZjsCTtm+YqUQiAX5m1tghQuGw
|
||||
# GC4QTRPPMFPOvxj7x1Bd4ksp+3CKDaopafxpwc8dB+k+YMjYC+VcW9dth/qEICU0
|
||||
# MWfNthKWb8RQTGIdDAiCqBa9qVbPFXONASIlzpVpP0d3+3J0FNf/q0+KLHqrhc1D
|
||||
# X+1gtqpPkWaeLJ7giqzl/Yy8ZCaHbJK9nXzQcAp876i8dU+6WvepELJd6f8oVInw
|
||||
# 1YpxdmXazPByoyP6wCeCRK6ZJxurJB4mwbfeKuv2nrF5mYGjVoarCkXJ38SNoOeY
|
||||
# +/umnXKvxMfBwWpx2cYTgAnEtp/Nh4cku0+jSbl3ZpHxcpzpSwJSpzd+k1OsOx0I
|
||||
# SQ+UzTl63f8lY5knLD0/a6fxZsNBzU+2QJshIUDQtxMkzdwdeDrknq3lNHGS1yZr
|
||||
# 5Dhzq6YBT70/O3itTK37xJV77QpfMzmHQXh6OOmc4d0j/R0o08f56PGYX/sr2H7y
|
||||
# Rp11LB4nLCbbbxV7HhmLNriT1ObyF5lZynDwN7+YAN8gFk8n+2BnFqFmut1VwDop
|
||||
# hrCYoCvtlUG3OtUVmDG0YgkPCr2B2RP+v6TR81fZvAT6gt4y3wSJ8ADNXcL50CN/
|
||||
# AAvkdgIm2fBldkKmKYcJRyvmfxqkhQ/8mJb2VVQrH4D6wPIOK+XW+6kvRBVK5xMO
|
||||
# Hds3OBqhK/bt1nz8MIIFjTCCBHWgAwIBAgIQDpsYjvnQLefv21DiCEAYWjANBgkq
|
||||
# hkiG9w0BAQwFADBlMQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5j
|
||||
# MRkwFwYDVQQLExB3d3cuZGlnaWNlcnQuY29tMSQwIgYDVQQDExtEaWdpQ2VydCBB
|
||||
# c3N1cmVkIElEIFJvb3QgQ0EwHhcNMjIwODAxMDAwMDAwWhcNMzExMTA5MjM1OTU5
|
||||
# WjBiMQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQL
|
||||
# ExB3d3cuZGlnaWNlcnQuY29tMSEwHwYDVQQDExhEaWdpQ2VydCBUcnVzdGVkIFJv
|
||||
# b3QgRzQwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQC/5pBzaN675F1K
|
||||
# PDAiMGkz7MKnJS7JIT3yithZwuEppz1Yq3aaza57G4QNxDAf8xukOBbrVsaXbR2r
|
||||
# snnyyhHS5F/WBTxSD1Ifxp4VpX6+n6lXFllVcq9ok3DCsrp1mWpzMpTREEQQLt+C
|
||||
# 8weE5nQ7bXHiLQwb7iDVySAdYyktzuxeTsiT+CFhmzTrBcZe7FsavOvJz82sNEBf
|
||||
# sXpm7nfISKhmV1efVFiODCu3T6cw2Vbuyntd463JT17lNecxy9qTXtyOj4DatpGY
|
||||
# QJB5w3jHtrHEtWoYOAMQjdjUN6QuBX2I9YI+EJFwq1WCQTLX2wRzKm6RAXwhTNS8
|
||||
# rhsDdV14Ztk6MUSaM0C/CNdaSaTC5qmgZ92kJ7yhTzm1EVgX9yRcRo9k98FpiHaY
|
||||
# dj1ZXUJ2h4mXaXpI8OCiEhtmmnTK3kse5w5jrubU75KSOp493ADkRSWJtppEGSt+
|
||||
# wJS00mFt6zPZxd9LBADMfRyVw4/3IbKyEbe7f/LVjHAsQWCqsWMYRJUadmJ+9oCw
|
||||
# ++hkpjPRiQfhvbfmQ6QYuKZ3AeEPlAwhHbJUKSWJbOUOUlFHdL4mrLZBdd56rF+N
|
||||
# P8m800ERElvlEFDrMcXKchYiCd98THU/Y+whX8QgUWtvsauGi0/C1kVfnSD8oR7F
|
||||
# wI+isX4KJpn15GkvmB0t9dmpsh3lGwIDAQABo4IBOjCCATYwDwYDVR0TAQH/BAUw
|
||||
# AwEB/zAdBgNVHQ4EFgQU7NfjgtJxXWRM3y5nP+e6mK4cD08wHwYDVR0jBBgwFoAU
|
||||
# Reuir/SSy4IxLVGLp6chnfNtyA8wDgYDVR0PAQH/BAQDAgGGMHkGCCsGAQUFBwEB
|
||||
# BG0wazAkBggrBgEFBQcwAYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEMGCCsG
|
||||
# AQUFBzAChjdodHRwOi8vY2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRBc3N1
|
||||
# cmVkSURSb290Q0EuY3J0MEUGA1UdHwQ+MDwwOqA4oDaGNGh0dHA6Ly9jcmwzLmRp
|
||||
# Z2ljZXJ0LmNvbS9EaWdpQ2VydEFzc3VyZWRJRFJvb3RDQS5jcmwwEQYDVR0gBAow
|
||||
# CDAGBgRVHSAAMA0GCSqGSIb3DQEBDAUAA4IBAQBwoL9DXFXnOF+go3QbPbYW1/e/
|
||||
# Vwe9mqyhhyzshV6pGrsi+IcaaVQi7aSId229GhT0E0p6Ly23OO/0/4C5+KH38nLe
|
||||
# JLxSA8hO0Cre+i1Wz/n096wwepqLsl7Uz9FDRJtDIeuWcqFItJnLnU+nBgMTdydE
|
||||
# 1Od/6Fmo8L8vC6bp8jQ87PcDx4eo0kxAGTVGamlUsLihVo7spNU96LHc/RzY9Hda
|
||||
# XFSMb++hUD38dglohJ9vytsgjTVgHAIDyyCwrFigDkBjxZgiwbJZ9VVrzyerbHbO
|
||||
# byMt9H5xaiNrIv8SuFQtJ37YOtnwtoeW/VvRXKwYw02fc7cBqZ9Xql4o4rmUMYID
|
||||
# djCCA3ICAQEwdzBjMQswCQYDVQQGEwJVUzEXMBUGA1UEChMORGlnaUNlcnQsIElu
|
||||
# Yy4xOzA5BgNVBAMTMkRpZ2lDZXJ0IFRydXN0ZWQgRzQgUlNBNDA5NiBTSEEyNTYg
|
||||
# VGltZVN0YW1waW5nIENBAhAFRK/zlJ0IOaa/2z9f5WEWMA0GCWCGSAFlAwQCAQUA
|
||||
# oIHRMBoGCSqGSIb3DQEJAzENBgsqhkiG9w0BCRABBDAcBgkqhkiG9w0BCQUxDxcN
|
||||
# MjQwODA2MjEwMDM5WjArBgsqhkiG9w0BCRACDDEcMBowGDAWBBRm8CsywsLJD4Jd
|
||||
# zqqKycZPGZzPQDAvBgkqhkiG9w0BCQQxIgQglCIBxGudJQwqEBh+XAoT3nqSoAuS
|
||||
# uMjmJTX95zFjdk0wNwYLKoZIhvcNAQkQAi8xKDAmMCQwIgQg0vbkbe10IszR1EBX
|
||||
# aEE2b4KK2lWarjMWr00amtQMeCgwDQYJKoZIhvcNAQEBBQAEggIAOkILAZviyFOU
|
||||
# Qzt10RYNFHl0zO4rgXcR5oCeJlU1n9y+DwjCTvcrax9qdkEuiEJWDewXbak3TPQK
|
||||
# 0ts7jhUIFMDTEn8GZXysruzDlYNLstKM4RbYIK+f2772phehvABS5mn70+L63GXe
|
||||
# A5UFYM5M7BAvEY+3DKEwUnN9lAl8YKi1xS545MXYm1B96gI/7oEBDkNV2DoNIZAw
|
||||
# R2B4wPTcpI2aG5zZ0jFgVtq8bOXLZ9b9pBrhKbf4PZWxPqAFwUtZryQKdt770u3Y
|
||||
# l0WR2SgemKq4aOEvajD1J4fC56lnUoekXt4yH8/fBueCXYx+ADoEkU4/ota7C1oL
|
||||
# aCZE4G0iQOH9XFtMUjA87oEPisJG63onir6tsurTjjm/wK8VnFQBSii4ILtfSOfR
|
||||
# kDMsu7kS0H5SWliY3sPlDTn4Kwl14EThMmyXUr7SFFHnsibHtfLATTmV6XyeJ03l
|
||||
# BmwDl8hdzt5G0pjH/u3bTFcdJu7J0RQuGYgpmNsVYjHCQnZDrJjzIE2os/QYgL6D
|
||||
# B/ZYSv96jnYs6cFd93R0ixZMsQPQKcs2gbVYz3nymJL7t605LzW86tENmORsUdgm
|
||||
# qh0ky+qe/+D/f88WLLjdHi/xfskiFKEL66Y4EWkECoUUMBRcJlIg1GszTCVmwD1N
|
||||
# foIJo8CaFGMoR+QHwDeamNbOOlrCFMQ=
|
||||
# SIG # End signature block
|
70
sklearn-env/Scripts/activate
Normal file
70
sklearn-env/Scripts/activate
Normal file
@ -0,0 +1,70 @@
|
||||
# This file must be used with "source bin/activate" *from bash*
|
||||
# You cannot run it directly
|
||||
|
||||
deactivate () {
|
||||
# reset old environment variables
|
||||
if [ -n "${_OLD_VIRTUAL_PATH:-}" ] ; then
|
||||
PATH="${_OLD_VIRTUAL_PATH:-}"
|
||||
export PATH
|
||||
unset _OLD_VIRTUAL_PATH
|
||||
fi
|
||||
if [ -n "${_OLD_VIRTUAL_PYTHONHOME:-}" ] ; then
|
||||
PYTHONHOME="${_OLD_VIRTUAL_PYTHONHOME:-}"
|
||||
export PYTHONHOME
|
||||
unset _OLD_VIRTUAL_PYTHONHOME
|
||||
fi
|
||||
|
||||
# Call hash to forget past commands. Without forgetting
|
||||
# past commands the $PATH changes we made may not be respected
|
||||
hash -r 2> /dev/null
|
||||
|
||||
if [ -n "${_OLD_VIRTUAL_PS1:-}" ] ; then
|
||||
PS1="${_OLD_VIRTUAL_PS1:-}"
|
||||
export PS1
|
||||
unset _OLD_VIRTUAL_PS1
|
||||
fi
|
||||
|
||||
unset VIRTUAL_ENV
|
||||
unset VIRTUAL_ENV_PROMPT
|
||||
if [ ! "${1:-}" = "nondestructive" ] ; then
|
||||
# Self destruct!
|
||||
unset -f deactivate
|
||||
fi
|
||||
}
|
||||
|
||||
# unset irrelevant variables
|
||||
deactivate nondestructive
|
||||
|
||||
# on Windows, a path can contain colons and backslashes and has to be converted:
|
||||
if [ "${OSTYPE:-}" = "cygwin" ] || [ "${OSTYPE:-}" = "msys" ] ; then
|
||||
# transform D:\path\to\venv to /d/path/to/venv on MSYS
|
||||
# and to /cygdrive/d/path/to/venv on Cygwin
|
||||
export VIRTUAL_ENV=$(cygpath "C:\Users\1\Desktop\улгту\3 курс\МИИ\mai\sklearn-env")
|
||||
else
|
||||
# use the path as-is
|
||||
export VIRTUAL_ENV="C:\Users\1\Desktop\улгту\3 курс\МИИ\mai\sklearn-env"
|
||||
fi
|
||||
|
||||
_OLD_VIRTUAL_PATH="$PATH"
|
||||
PATH="$VIRTUAL_ENV/Scripts:$PATH"
|
||||
export PATH
|
||||
|
||||
# unset PYTHONHOME if set
|
||||
# this will fail if PYTHONHOME is set to the empty string (which is bad anyway)
|
||||
# could use `if (set -u; : $PYTHONHOME) ;` in bash
|
||||
if [ -n "${PYTHONHOME:-}" ] ; then
|
||||
_OLD_VIRTUAL_PYTHONHOME="${PYTHONHOME:-}"
|
||||
unset PYTHONHOME
|
||||
fi
|
||||
|
||||
if [ -z "${VIRTUAL_ENV_DISABLE_PROMPT:-}" ] ; then
|
||||
_OLD_VIRTUAL_PS1="${PS1:-}"
|
||||
PS1="(sklearn-env) ${PS1:-}"
|
||||
export PS1
|
||||
VIRTUAL_ENV_PROMPT="(sklearn-env) "
|
||||
export VIRTUAL_ENV_PROMPT
|
||||
fi
|
||||
|
||||
# Call hash to forget past commands. Without forgetting
|
||||
# past commands the $PATH changes we made may not be respected
|
||||
hash -r 2> /dev/null
|
34
sklearn-env/Scripts/activate.bat
Normal file
34
sklearn-env/Scripts/activate.bat
Normal file
@ -0,0 +1,34 @@
|
||||
@echo off
|
||||
|
||||
rem This file is UTF-8 encoded, so we need to update the current code page while executing it
|
||||
for /f "tokens=2 delims=:." %%a in ('"%SystemRoot%\System32\chcp.com"') do (
|
||||
set _OLD_CODEPAGE=%%a
|
||||
)
|
||||
if defined _OLD_CODEPAGE (
|
||||
"%SystemRoot%\System32\chcp.com" 65001 > nul
|
||||
)
|
||||
|
||||
set VIRTUAL_ENV=C:\Users\1\Desktop\улгту\3 курс\МИИ\mai\sklearn-env
|
||||
|
||||
if not defined PROMPT set PROMPT=$P$G
|
||||
|
||||
if defined _OLD_VIRTUAL_PROMPT set PROMPT=%_OLD_VIRTUAL_PROMPT%
|
||||
if defined _OLD_VIRTUAL_PYTHONHOME set PYTHONHOME=%_OLD_VIRTUAL_PYTHONHOME%
|
||||
|
||||
set _OLD_VIRTUAL_PROMPT=%PROMPT%
|
||||
set PROMPT=(sklearn-env) %PROMPT%
|
||||
|
||||
if defined PYTHONHOME set _OLD_VIRTUAL_PYTHONHOME=%PYTHONHOME%
|
||||
set PYTHONHOME=
|
||||
|
||||
if defined _OLD_VIRTUAL_PATH set PATH=%_OLD_VIRTUAL_PATH%
|
||||
if not defined _OLD_VIRTUAL_PATH set _OLD_VIRTUAL_PATH=%PATH%
|
||||
|
||||
set PATH=%VIRTUAL_ENV%\Scripts;%PATH%
|
||||
set VIRTUAL_ENV_PROMPT=(sklearn-env)
|
||||
|
||||
:END
|
||||
if defined _OLD_CODEPAGE (
|
||||
"%SystemRoot%\System32\chcp.com" %_OLD_CODEPAGE% > nul
|
||||
set _OLD_CODEPAGE=
|
||||
)
|
22
sklearn-env/Scripts/deactivate.bat
Normal file
22
sklearn-env/Scripts/deactivate.bat
Normal file
@ -0,0 +1,22 @@
|
||||
@echo off
|
||||
|
||||
if defined _OLD_VIRTUAL_PROMPT (
|
||||
set "PROMPT=%_OLD_VIRTUAL_PROMPT%"
|
||||
)
|
||||
set _OLD_VIRTUAL_PROMPT=
|
||||
|
||||
if defined _OLD_VIRTUAL_PYTHONHOME (
|
||||
set "PYTHONHOME=%_OLD_VIRTUAL_PYTHONHOME%"
|
||||
set _OLD_VIRTUAL_PYTHONHOME=
|
||||
)
|
||||
|
||||
if defined _OLD_VIRTUAL_PATH (
|
||||
set "PATH=%_OLD_VIRTUAL_PATH%"
|
||||
)
|
||||
|
||||
set _OLD_VIRTUAL_PATH=
|
||||
|
||||
set VIRTUAL_ENV=
|
||||
set VIRTUAL_ENV_PROMPT=
|
||||
|
||||
:END
|
BIN
sklearn-env/Scripts/pip.exe
Normal file
BIN
sklearn-env/Scripts/pip.exe
Normal file
Binary file not shown.
BIN
sklearn-env/Scripts/pip3.12.exe
Normal file
BIN
sklearn-env/Scripts/pip3.12.exe
Normal file
Binary file not shown.
BIN
sklearn-env/Scripts/pip3.exe
Normal file
BIN
sklearn-env/Scripts/pip3.exe
Normal file
Binary file not shown.
BIN
sklearn-env/Scripts/python.exe
Normal file
BIN
sklearn-env/Scripts/python.exe
Normal file
Binary file not shown.
BIN
sklearn-env/Scripts/pythonw.exe
Normal file
BIN
sklearn-env/Scripts/pythonw.exe
Normal file
Binary file not shown.
5
sklearn-env/pyvenv.cfg
Normal file
5
sklearn-env/pyvenv.cfg
Normal file
@ -0,0 +1,5 @@
|
||||
home = C:\Python312
|
||||
include-system-site-packages = false
|
||||
version = 3.12.5
|
||||
executable = C:\Python312\python.exe
|
||||
command = C:\Python312\python.exe -m venv C:\Users\1\Desktop\улгту\3 курс\МИИ\mai\sklearn-env
|
235
test1.csv
Normal file
235
test1.csv
Normal file
@ -0,0 +1,235 @@
|
||||
,Country/Territory,Capital,Continent
|
||||
0,Afghanistan,Kabul,Asia
|
||||
1,Albania,Tirana,Europe
|
||||
2,Algeria,Algiers,Africa
|
||||
3,American Samoa,Pago Pago,Oceania
|
||||
4,Andorra,Andorra la Vella,Europe
|
||||
5,Angola,Luanda,Africa
|
||||
6,Anguilla,The Valley,North America
|
||||
7,Antigua and Barbuda,Saint Johns,North America
|
||||
8,Argentina,Buenos Aires,South America
|
||||
9,Armenia,Yerevan,Asia
|
||||
10,Aruba,Oranjestad,North America
|
||||
11,Australia,Canberra,Oceania
|
||||
12,Austria,Vienna,Europe
|
||||
13,Azerbaijan,Baku,Asia
|
||||
14,Bahamas,Nassau,North America
|
||||
15,Bahrain,Manama,Asia
|
||||
16,Bangladesh,Dhaka,Asia
|
||||
17,Barbados,Bridgetown,North America
|
||||
18,Belarus,Minsk,Europe
|
||||
19,Belgium,Brussels,Europe
|
||||
20,Belize,Belmopan,North America
|
||||
21,Benin,Porto-Novo,Africa
|
||||
22,Bermuda,Hamilton,North America
|
||||
23,Bhutan,Thimphu,Asia
|
||||
24,Bolivia,Sucre,South America
|
||||
25,Bosnia and Herzegovina,Sarajevo,Europe
|
||||
26,Botswana,Gaborone,Africa
|
||||
27,Brazil,Brasilia,South America
|
||||
28,British Virgin Islands,Road Town,North America
|
||||
29,Brunei,Bandar Seri Begawan,Asia
|
||||
30,Bulgaria,Sofia,Europe
|
||||
31,Burkina Faso,Ouagadougou,Africa
|
||||
32,Burundi,Bujumbura,Africa
|
||||
33,Cambodia,Phnom Penh,Asia
|
||||
34,Cameroon,Yaounde,Africa
|
||||
35,Canada,Ottawa,North America
|
||||
36,Cape Verde,Praia,Africa
|
||||
37,Cayman Islands,George Town,North America
|
||||
38,Central African Republic,Bangui,Africa
|
||||
39,Chad,N'Djamena,Africa
|
||||
40,Chile,Santiago,South America
|
||||
41,China,Beijing,Asia
|
||||
42,Colombia,Bogota,South America
|
||||
43,Comoros,Moroni,Africa
|
||||
44,Cook Islands,Avarua,Oceania
|
||||
45,Costa Rica,San Jos??,North America
|
||||
46,Croatia,Zagreb,Europe
|
||||
47,Cuba,Havana,North America
|
||||
48,Curacao,Willemstad,North America
|
||||
49,Cyprus,Nicosia,Europe
|
||||
50,Czech Republic,Prague,Europe
|
||||
51,Denmark,Copenhagen,Europe
|
||||
52,Djibouti,Djibouti,Africa
|
||||
53,Dominica,Roseau,North America
|
||||
54,Dominican Republic,Santo Domingo,North America
|
||||
55,DR Congo,Kinshasa,Africa
|
||||
56,Ecuador,Quito,South America
|
||||
57,Egypt,Cairo,Africa
|
||||
58,El Salvador,San Salvador,North America
|
||||
59,Equatorial Guinea,Malabo,Africa
|
||||
60,Eritrea,Asmara,Africa
|
||||
61,Estonia,Tallinn,Europe
|
||||
62,Eswatini,Mbabane,Africa
|
||||
63,Ethiopia,Addis Ababa,Africa
|
||||
64,Falkland Islands,Stanley,South America
|
||||
65,Faroe Islands,Trshavn,Europe
|
||||
66,Fiji,Suva,Oceania
|
||||
67,Finland,Helsinki,Europe
|
||||
68,France,Paris,Europe
|
||||
69,French Guiana,Cayenne,South America
|
||||
70,French Polynesia,Papeete,Oceania
|
||||
71,Gabon,Libreville,Africa
|
||||
72,Gambia,Banjul,Africa
|
||||
73,Georgia,Tbilisi,Asia
|
||||
74,Germany,Berlin,Europe
|
||||
75,Ghana,Accra,Africa
|
||||
76,Gibraltar,Gibraltar,Europe
|
||||
77,Greece,Athens,Europe
|
||||
78,Greenland,Nuuk,North America
|
||||
79,Grenada,Saint George's,North America
|
||||
80,Guadeloupe,Basse-Terre,North America
|
||||
81,Guam,Hagta,Oceania
|
||||
82,Guatemala,Guatemala City,North America
|
||||
83,Guernsey,Saint Peter Port,Europe
|
||||
84,Guinea,Conakry,Africa
|
||||
85,Guinea-Bissau,Bissau,Africa
|
||||
86,Guyana,Georgetown,South America
|
||||
87,Haiti,Port-au-Prince,North America
|
||||
88,Honduras,Tegucigalpa,North America
|
||||
89,Hong Kong,Hong Kong,Asia
|
||||
90,Hungary,Budapest,Europe
|
||||
91,Iceland,Reykjavk,Europe
|
||||
92,India,New Delhi,Asia
|
||||
93,Indonesia,Jakarta,Asia
|
||||
94,Iran,Tehran,Asia
|
||||
95,Iraq,Baghdad,Asia
|
||||
96,Ireland,Dublin,Europe
|
||||
97,Isle of Man,Douglas,Europe
|
||||
98,Israel,Jerusalem,Asia
|
||||
99,Italy,Rome,Europe
|
||||
100,Ivory Coast,Yamoussoukro,Africa
|
||||
101,Jamaica,Kingston,North America
|
||||
102,Japan,Tokyo,Asia
|
||||
103,Jersey,Saint Helier,Europe
|
||||
104,Jordan,Amman,Asia
|
||||
105,Kazakhstan,Nursultan,Asia
|
||||
106,Kenya,Nairobi,Africa
|
||||
107,Kiribati,Tarawa,Oceania
|
||||
108,Kuwait,Kuwait City,Asia
|
||||
109,Kyrgyzstan,Bishkek,Asia
|
||||
110,Laos,Vientiane,Asia
|
||||
111,Latvia,Riga,Europe
|
||||
112,Lebanon,Beirut,Asia
|
||||
113,Lesotho,Maseru,Africa
|
||||
114,Liberia,Monrovia,Africa
|
||||
115,Libya,Tripoli,Africa
|
||||
116,Liechtenstein,Vaduz,Europe
|
||||
117,Lithuania,Vilnius,Europe
|
||||
118,Luxembourg,Luxembourg,Europe
|
||||
119,Macau,Concelho de Macau,Asia
|
||||
120,Madagascar,Antananarivo,Africa
|
||||
121,Malawi,,Africa
|
||||
122,Malaysia,Kuala Lumpur,Asia
|
||||
123,Maldives,Mal??,Asia
|
||||
124,Mali,Bamako,Africa
|
||||
125,Malta,Valletta,Europe
|
||||
126,Marshall Islands,Majuro,Oceania
|
||||
127,Martinique,,North America
|
||||
128,Mauritania,Nouakchott,Africa
|
||||
129,Mauritius,Port Louis,Africa
|
||||
130,Mayotte,Mamoudzou,Africa
|
||||
131,Mexico,Mexico City,North America
|
||||
132,Micronesia,Palikir,Oceania
|
||||
133,Moldova,Chisinau,Europe
|
||||
134,Monaco,Monaco,Europe
|
||||
135,Mongolia,Ulaanbaatar,Asia
|
||||
136,Montenegro,Podgorica,Europe
|
||||
137,Montserrat,Brades,North America
|
||||
138,Morocco,Rabat,Africa
|
||||
139,Mozambique,Maputo,Africa
|
||||
140,Myanmar,Nay Pyi Taw,Asia
|
||||
141,Namibia,Windhoek,Africa
|
||||
142,Nauru,Yaren,Oceania
|
||||
143,Nepal,Kathmandu,Asia
|
||||
144,Netherlands,Amsterdam,Europe
|
||||
145,New Caledonia,Noum??a,Oceania
|
||||
146,New Zealand,Wellington,Oceania
|
||||
147,Nicaragua,Managua,North America
|
||||
148,Niger,Niamey,Africa
|
||||
149,Nigeria,Abuja,Africa
|
||||
150,Niue,Alofi,Oceania
|
||||
151,North Korea,Pyongyang,Asia
|
||||
152,North Macedonia,Skopje,Europe
|
||||
153,Northern Mariana Islands,Saipan,Oceania
|
||||
154,Norway,Oslo,Europe
|
||||
155,Oman,Muscat,Asia
|
||||
156,Pakistan,Islamabad,Asia
|
||||
157,Palau,Ngerulmud,Oceania
|
||||
158,Palestine,Ramallah,Asia
|
||||
159,Panama,Panama City,North America
|
||||
160,Papua New Guinea,Port Moresby,Oceania
|
||||
161,Paraguay,Asunci??n,South America
|
||||
162,Peru,Lima,South America
|
||||
163,Philippines,Manila,Asia
|
||||
164,Poland,Warsaw,Europe
|
||||
165,Portugal,Lisbon,Europe
|
||||
166,Puerto Rico,San Juan,North America
|
||||
167,Qatar,Doha,Asia
|
||||
168,Republic of the Congo,Brazzaville,Africa
|
||||
169,Reunion,Saint-Denis,Africa
|
||||
170,Romania,Bucharest,Europe
|
||||
171,Russia,Moscow,Europe
|
||||
172,Rwanda,Kigali,Africa
|
||||
173,Saint Barthelemy,Gustavia,North America
|
||||
174,Saint Kitts and Nevis,Basseterre,North America
|
||||
175,Saint Lucia,Castries,North America
|
||||
176,Saint Martin,Marigot,North America
|
||||
177,Saint Pierre and Miquelon,Saint-Pierre,North America
|
||||
178,Saint Vincent and the Grenadines,Kingstown,North America
|
||||
179,Samoa,Apia,Oceania
|
||||
180,San Marino,San Marino,Europe
|
||||
181,Sao Tome and Principe,So Tom,Africa
|
||||
182,Saudi Arabia,Riyadh,Asia
|
||||
183,Senegal,Dakar,Africa
|
||||
184,Serbia,Belgrade,Europe
|
||||
185,Seychelles,Victoria,Africa
|
||||
186,Sierra Leone,Freetown,Africa
|
||||
187,Singapore,Singapore,Asia
|
||||
188,Sint Maarten,Philipsburg,North America
|
||||
189,Slovakia,Bratislava,Europe
|
||||
190,Slovenia,Ljubljana,Europe
|
||||
191,Solomon Islands,Honiara,Oceania
|
||||
192,Somalia,Mogadishu,Africa
|
||||
193,South Africa,Pretoria,Africa
|
||||
194,South Korea,Seoul,Asia
|
||||
195,South Sudan,Juba,Africa
|
||||
196,Spain,Madrid,Europe
|
||||
197,Sri Lanka,Colombo,Asia
|
||||
198,Sudan,Khartoum,Africa
|
||||
199,Suriname,Paramaribo,South America
|
||||
200,Sweden,Stockholm,Europe
|
||||
201,Switzerland,Bern,Europe
|
||||
202,Syria,Damascus,Asia
|
||||
203,Taiwan,Taipei,Asia
|
||||
204,Tajikistan,Dushanbe,Asia
|
||||
205,Tanzania,Dodoma,Africa
|
||||
206,Thailand,Bangkok,Asia
|
||||
207,Timor-Leste,Dili,Asia
|
||||
208,Togo,Lom,Africa
|
||||
209,Tokelau,Nukunonu,Oceania
|
||||
210,Tonga,Nukualofa,Oceania
|
||||
211,Trinidad and Tobago,Port-of-Spain,North America
|
||||
212,Tunisia,Tunis,Africa
|
||||
213,Turkey,Ankara,Asia
|
||||
214,Turkmenistan,Ashgabat,Asia
|
||||
215,Turks and Caicos Islands,Cockburn Town,North America
|
||||
216,Tuvalu,Funafuti,Oceania
|
||||
217,Uganda,Kampala,Africa
|
||||
218,Ukraine,Kiev,Europe
|
||||
219,United Arab Emirates,Abu Dhabi,Asia
|
||||
220,United Kingdom,London,Europe
|
||||
221,United States,"Washington, D.C.",North America
|
||||
222,United States Virgin Islands,Charlotte Amalie,North America
|
||||
223,Uruguay,Montevideo,South America
|
||||
224,Uzbekistan,Tashkent,Asia
|
||||
225,Vanuatu,Port-Vila,Oceania
|
||||
226,Vatican City,Vatican City,Europe
|
||||
227,Venezuela,Caracas,South America
|
||||
228,Vietnam,Hanoi,Asia
|
||||
229,Wallis and Futuna,Mata-Utu,Oceania
|
||||
230,Western Sahara,El Aain,Africa
|
||||
231,Yemen,Sanaa,Asia
|
||||
232,Zambia,Lusaka,Africa
|
||||
233,Zimbabwe,Harare,Africa
|
|
233
test2.csv
Normal file
233
test2.csv
Normal file
@ -0,0 +1,233 @@
|
||||
,Country/Territory,Capital,Continent
|
||||
0,Afghanistan,Kabul,Asia
|
||||
1,Albania,Tirana,Europe
|
||||
2,Algeria,Algiers,Africa
|
||||
3,American Samoa,Pago Pago,Oceania
|
||||
4,Andorra,Andorra la Vella,Europe
|
||||
5,Angola,Luanda,Africa
|
||||
6,Anguilla,The Valley,North America
|
||||
7,Antigua and Barbuda,Saint Johns,North America
|
||||
8,Argentina,Buenos Aires,South America
|
||||
9,Armenia,Yerevan,Asia
|
||||
10,Aruba,Oranjestad,North America
|
||||
11,Australia,Canberra,Oceania
|
||||
12,Austria,Vienna,Europe
|
||||
13,Azerbaijan,Baku,Asia
|
||||
14,Bahamas,Nassau,North America
|
||||
15,Bahrain,Manama,Asia
|
||||
16,Bangladesh,Dhaka,Asia
|
||||
17,Barbados,Bridgetown,North America
|
||||
18,Belarus,Minsk,Europe
|
||||
19,Belgium,Brussels,Europe
|
||||
20,Belize,Belmopan,North America
|
||||
21,Benin,Porto-Novo,Africa
|
||||
22,Bermuda,Hamilton,North America
|
||||
23,Bhutan,Thimphu,Asia
|
||||
24,Bolivia,Sucre,South America
|
||||
25,Bosnia and Herzegovina,Sarajevo,Europe
|
||||
26,Botswana,Gaborone,Africa
|
||||
27,Brazil,Brasilia,South America
|
||||
28,British Virgin Islands,Road Town,North America
|
||||
29,Brunei,Bandar Seri Begawan,Asia
|
||||
30,Bulgaria,Sofia,Europe
|
||||
31,Burkina Faso,Ouagadougou,Africa
|
||||
32,Burundi,Bujumbura,Africa
|
||||
33,Cambodia,Phnom Penh,Asia
|
||||
34,Cameroon,Yaounde,Africa
|
||||
35,Canada,Ottawa,North America
|
||||
36,Cape Verde,Praia,Africa
|
||||
37,Cayman Islands,George Town,North America
|
||||
38,Central African Republic,Bangui,Africa
|
||||
39,Chad,N'Djamena,Africa
|
||||
40,Chile,Santiago,South America
|
||||
41,China,Beijing,Asia
|
||||
42,Colombia,Bogota,South America
|
||||
43,Comoros,Moroni,Africa
|
||||
44,Cook Islands,Avarua,Oceania
|
||||
45,Costa Rica,San Jos??,North America
|
||||
46,Croatia,Zagreb,Europe
|
||||
47,Cuba,Havana,North America
|
||||
48,Curacao,Willemstad,North America
|
||||
49,Cyprus,Nicosia,Europe
|
||||
50,Czech Republic,Prague,Europe
|
||||
51,Denmark,Copenhagen,Europe
|
||||
52,Djibouti,Djibouti,Africa
|
||||
53,Dominica,Roseau,North America
|
||||
54,Dominican Republic,Santo Domingo,North America
|
||||
55,DR Congo,Kinshasa,Africa
|
||||
56,Ecuador,Quito,South America
|
||||
57,Egypt,Cairo,Africa
|
||||
58,El Salvador,San Salvador,North America
|
||||
59,Equatorial Guinea,Malabo,Africa
|
||||
60,Eritrea,Asmara,Africa
|
||||
61,Estonia,Tallinn,Europe
|
||||
62,Eswatini,Mbabane,Africa
|
||||
63,Ethiopia,Addis Ababa,Africa
|
||||
64,Falkland Islands,Stanley,South America
|
||||
65,Faroe Islands,Trshavn,Europe
|
||||
66,Fiji,Suva,Oceania
|
||||
67,Finland,Helsinki,Europe
|
||||
68,France,Paris,Europe
|
||||
69,French Guiana,Cayenne,South America
|
||||
70,French Polynesia,Papeete,Oceania
|
||||
71,Gabon,Libreville,Africa
|
||||
72,Gambia,Banjul,Africa
|
||||
73,Georgia,Tbilisi,Asia
|
||||
74,Germany,Berlin,Europe
|
||||
75,Ghana,Accra,Africa
|
||||
76,Gibraltar,Gibraltar,Europe
|
||||
77,Greece,Athens,Europe
|
||||
78,Greenland,Nuuk,North America
|
||||
79,Grenada,Saint George's,North America
|
||||
80,Guadeloupe,Basse-Terre,North America
|
||||
81,Guam,Hagta,Oceania
|
||||
82,Guatemala,Guatemala City,North America
|
||||
83,Guernsey,Saint Peter Port,Europe
|
||||
84,Guinea,Conakry,Africa
|
||||
85,Guinea-Bissau,Bissau,Africa
|
||||
86,Guyana,Georgetown,South America
|
||||
87,Haiti,Port-au-Prince,North America
|
||||
88,Honduras,Tegucigalpa,North America
|
||||
89,Hong Kong,Hong Kong,Asia
|
||||
90,Hungary,Budapest,Europe
|
||||
91,Iceland,Reykjavk,Europe
|
||||
92,India,New Delhi,Asia
|
||||
93,Indonesia,Jakarta,Asia
|
||||
94,Iran,Tehran,Asia
|
||||
95,Iraq,Baghdad,Asia
|
||||
96,Ireland,Dublin,Europe
|
||||
97,Isle of Man,Douglas,Europe
|
||||
98,Israel,Jerusalem,Asia
|
||||
99,Italy,Rome,Europe
|
||||
100,Ivory Coast,Yamoussoukro,Africa
|
||||
101,Jamaica,Kingston,North America
|
||||
102,Japan,Tokyo,Asia
|
||||
103,Jersey,Saint Helier,Europe
|
||||
104,Jordan,Amman,Asia
|
||||
105,Kazakhstan,Nursultan,Asia
|
||||
106,Kenya,Nairobi,Africa
|
||||
107,Kiribati,Tarawa,Oceania
|
||||
108,Kuwait,Kuwait City,Asia
|
||||
109,Kyrgyzstan,Bishkek,Asia
|
||||
110,Laos,Vientiane,Asia
|
||||
111,Latvia,Riga,Europe
|
||||
112,Lebanon,Beirut,Asia
|
||||
113,Lesotho,Maseru,Africa
|
||||
114,Liberia,Monrovia,Africa
|
||||
115,Libya,Tripoli,Africa
|
||||
116,Liechtenstein,Vaduz,Europe
|
||||
117,Lithuania,Vilnius,Europe
|
||||
118,Luxembourg,Luxembourg,Europe
|
||||
119,Macau,Concelho de Macau,Asia
|
||||
120,Madagascar,Antananarivo,Africa
|
||||
122,Malaysia,Kuala Lumpur,Asia
|
||||
123,Maldives,Mal??,Asia
|
||||
124,Mali,Bamako,Africa
|
||||
125,Malta,Valletta,Europe
|
||||
126,Marshall Islands,Majuro,Oceania
|
||||
128,Mauritania,Nouakchott,Africa
|
||||
129,Mauritius,Port Louis,Africa
|
||||
130,Mayotte,Mamoudzou,Africa
|
||||
131,Mexico,Mexico City,North America
|
||||
132,Micronesia,Palikir,Oceania
|
||||
133,Moldova,Chisinau,Europe
|
||||
134,Monaco,Monaco,Europe
|
||||
135,Mongolia,Ulaanbaatar,Asia
|
||||
136,Montenegro,Podgorica,Europe
|
||||
137,Montserrat,Brades,North America
|
||||
138,Morocco,Rabat,Africa
|
||||
139,Mozambique,Maputo,Africa
|
||||
140,Myanmar,Nay Pyi Taw,Asia
|
||||
141,Namibia,Windhoek,Africa
|
||||
142,Nauru,Yaren,Oceania
|
||||
143,Nepal,Kathmandu,Asia
|
||||
144,Netherlands,Amsterdam,Europe
|
||||
145,New Caledonia,Noum??a,Oceania
|
||||
146,New Zealand,Wellington,Oceania
|
||||
147,Nicaragua,Managua,North America
|
||||
148,Niger,Niamey,Africa
|
||||
149,Nigeria,Abuja,Africa
|
||||
150,Niue,Alofi,Oceania
|
||||
151,North Korea,Pyongyang,Asia
|
||||
152,North Macedonia,Skopje,Europe
|
||||
153,Northern Mariana Islands,Saipan,Oceania
|
||||
154,Norway,Oslo,Europe
|
||||
155,Oman,Muscat,Asia
|
||||
156,Pakistan,Islamabad,Asia
|
||||
157,Palau,Ngerulmud,Oceania
|
||||
158,Palestine,Ramallah,Asia
|
||||
159,Panama,Panama City,North America
|
||||
160,Papua New Guinea,Port Moresby,Oceania
|
||||
161,Paraguay,Asunci??n,South America
|
||||
162,Peru,Lima,South America
|
||||
163,Philippines,Manila,Asia
|
||||
164,Poland,Warsaw,Europe
|
||||
165,Portugal,Lisbon,Europe
|
||||
166,Puerto Rico,San Juan,North America
|
||||
167,Qatar,Doha,Asia
|
||||
168,Republic of the Congo,Brazzaville,Africa
|
||||
169,Reunion,Saint-Denis,Africa
|
||||
170,Romania,Bucharest,Europe
|
||||
171,Russia,Moscow,Europe
|
||||
172,Rwanda,Kigali,Africa
|
||||
173,Saint Barthelemy,Gustavia,North America
|
||||
174,Saint Kitts and Nevis,Basseterre,North America
|
||||
175,Saint Lucia,Castries,North America
|
||||
176,Saint Martin,Marigot,North America
|
||||
177,Saint Pierre and Miquelon,Saint-Pierre,North America
|
||||
178,Saint Vincent and the Grenadines,Kingstown,North America
|
||||
179,Samoa,Apia,Oceania
|
||||
180,San Marino,San Marino,Europe
|
||||
181,Sao Tome and Principe,So Tom,Africa
|
||||
182,Saudi Arabia,Riyadh,Asia
|
||||
183,Senegal,Dakar,Africa
|
||||
184,Serbia,Belgrade,Europe
|
||||
185,Seychelles,Victoria,Africa
|
||||
186,Sierra Leone,Freetown,Africa
|
||||
187,Singapore,Singapore,Asia
|
||||
188,Sint Maarten,Philipsburg,North America
|
||||
189,Slovakia,Bratislava,Europe
|
||||
190,Slovenia,Ljubljana,Europe
|
||||
191,Solomon Islands,Honiara,Oceania
|
||||
192,Somalia,Mogadishu,Africa
|
||||
193,South Africa,Pretoria,Africa
|
||||
194,South Korea,Seoul,Asia
|
||||
195,South Sudan,Juba,Africa
|
||||
196,Spain,Madrid,Europe
|
||||
197,Sri Lanka,Colombo,Asia
|
||||
198,Sudan,Khartoum,Africa
|
||||
199,Suriname,Paramaribo,South America
|
||||
200,Sweden,Stockholm,Europe
|
||||
201,Switzerland,Bern,Europe
|
||||
202,Syria,Damascus,Asia
|
||||
203,Taiwan,Taipei,Asia
|
||||
204,Tajikistan,Dushanbe,Asia
|
||||
205,Tanzania,Dodoma,Africa
|
||||
206,Thailand,Bangkok,Asia
|
||||
207,Timor-Leste,Dili,Asia
|
||||
208,Togo,Lom,Africa
|
||||
209,Tokelau,Nukunonu,Oceania
|
||||
210,Tonga,Nukualofa,Oceania
|
||||
211,Trinidad and Tobago,Port-of-Spain,North America
|
||||
212,Tunisia,Tunis,Africa
|
||||
213,Turkey,Ankara,Asia
|
||||
214,Turkmenistan,Ashgabat,Asia
|
||||
215,Turks and Caicos Islands,Cockburn Town,North America
|
||||
216,Tuvalu,Funafuti,Oceania
|
||||
217,Uganda,Kampala,Africa
|
||||
218,Ukraine,Kiev,Europe
|
||||
219,United Arab Emirates,Abu Dhabi,Asia
|
||||
220,United Kingdom,London,Europe
|
||||
221,United States,"Washington, D.C.",North America
|
||||
222,United States Virgin Islands,Charlotte Amalie,North America
|
||||
223,Uruguay,Montevideo,South America
|
||||
224,Uzbekistan,Tashkent,Asia
|
||||
225,Vanuatu,Port-Vila,Oceania
|
||||
226,Vatican City,Vatican City,Europe
|
||||
227,Venezuela,Caracas,South America
|
||||
228,Vietnam,Hanoi,Asia
|
||||
229,Wallis and Futuna,Mata-Utu,Oceania
|
||||
230,Western Sahara,El Aain,Africa
|
||||
231,Yemen,Sanaa,Asia
|
||||
232,Zambia,Lusaka,Africa
|
||||
233,Zimbabwe,Harare,Africa
|
|
27
transformers.py
Normal file
27
transformers.py
Normal file
@ -0,0 +1,27 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
|
||||
|
||||
class TitanicFeatures(BaseEstimator, TransformerMixin):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def fit(self, X, y=None):
|
||||
return self
|
||||
|
||||
def transform(self, X, y=None):
|
||||
def get_title(name) -> str:
|
||||
return name.split(",")[1].split(".")[0].strip()
|
||||
|
||||
def get_cabin_type(cabin) -> str:
|
||||
if pd.isna(cabin):
|
||||
return "unknown"
|
||||
return cabin[0]
|
||||
|
||||
X["Is_married"] = [1 if get_title(name) == "Mrs" else 0 for name in X["Name"]]
|
||||
X["Cabin_type"] = [get_cabin_type(cabin) for cabin in X["Cabin"]]
|
||||
return X
|
||||
|
||||
def get_feature_names_out(self, features_in):
|
||||
return np.append(features_in, ["Is_married", "Cabin_type"], axis=0)
|
82
utils.py
Normal file
82
utils.py
Normal file
@ -0,0 +1,82 @@
|
||||
from typing import Tuple
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def split_stratified_into_train_val_test(
|
||||
df_input,
|
||||
target_colname="z",
|
||||
stratify_colname="y",
|
||||
frac_train=0.6,
|
||||
frac_val=0.15,
|
||||
frac_test=0.25,
|
||||
random_state=None,
|
||||
) -> Tuple[DataFrame, DataFrame, DataFrame, DataFrame, DataFrame, DataFrame]:
|
||||
"""
|
||||
Splits a Pandas dataframe into three subsets (train, val, and test)
|
||||
following fractional ratios provided by the user, where each subset is
|
||||
stratified by the values in a specific column (that is, each subset has
|
||||
the same relative frequency of the values in the column). It performs this
|
||||
splitting by running train_test_split() twice.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_input : Pandas dataframe
|
||||
Input dataframe to be split.
|
||||
stratify_colname : str
|
||||
The name of the column that will be used for stratification. Usually
|
||||
this column would be for the label.
|
||||
frac_train : float
|
||||
frac_val : float
|
||||
frac_test : float
|
||||
The ratios with which the dataframe will be split into train, val, and
|
||||
test data. The values should be expressed as float fractions and should
|
||||
sum to 1.0.
|
||||
random_state : int, None, or RandomStateInstance
|
||||
Value to be passed to train_test_split().
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_train, df_val, df_test :
|
||||
Dataframes containing the three splits.
|
||||
"""
|
||||
|
||||
if frac_train + frac_val + frac_test != 1.0:
|
||||
raise ValueError(
|
||||
"fractions %f, %f, %f do not add up to 1.0"
|
||||
% (frac_train, frac_val, frac_test)
|
||||
)
|
||||
|
||||
if stratify_colname not in df_input.columns:
|
||||
raise ValueError("%s is not a column in the dataframe" % (stratify_colname))
|
||||
|
||||
if target_colname not in df_input.columns:
|
||||
raise ValueError("%s is not a column in the dataframe" % (target_colname))
|
||||
|
||||
X = df_input # Contains all columns.
|
||||
y = df_input[[target_colname]] # Dataframe of just the column on which to stratify.
|
||||
z = df_input[[stratify_colname]]
|
||||
|
||||
# Split original dataframe into train and temp dataframes.
|
||||
df_train, df_temp, y_train, y_temp = train_test_split(
|
||||
X, y, stratify=z, test_size=(1.0 - frac_train), random_state=random_state
|
||||
)
|
||||
|
||||
if frac_val <= 0:
|
||||
assert len(df_input) == len(df_train) + len(df_temp)
|
||||
return df_train, pd.DataFrame(), df_temp, y_train, pd.DataFrame(), y_temp
|
||||
|
||||
# Split the temp dataframe into val and test dataframes.
|
||||
relative_frac_test = frac_test / (frac_val + frac_test)
|
||||
df_val, df_test, y_val, y_test = train_test_split(
|
||||
df_temp,
|
||||
y_temp,
|
||||
stratify=df_temp[[stratify_colname]],
|
||||
test_size=relative_frac_test,
|
||||
random_state=random_state,
|
||||
)
|
||||
|
||||
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
|
||||
return df_train, df_val, df_test, y_train, y_val, y_test
|
100
utils_clusters.py
Normal file
100
utils_clusters.py
Normal file
@ -0,0 +1,100 @@
|
||||
import math
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame
|
||||
from sklearn import cluster
|
||||
from sklearn.metrics import silhouette_samples, silhouette_score
|
||||
|
||||
|
||||
def run_agglomerative(
|
||||
df: DataFrame, num_clusters: int | None = 2
|
||||
) -> cluster.AgglomerativeClustering:
|
||||
agglomerative = cluster.AgglomerativeClustering(
|
||||
n_clusters=num_clusters,
|
||||
compute_distances=True,
|
||||
)
|
||||
return agglomerative.fit(df)
|
||||
|
||||
|
||||
def get_linkage_matrix(model: cluster.AgglomerativeClustering) -> np.ndarray:
|
||||
counts = np.zeros(model.children_.shape[0]) # type: ignore
|
||||
n_samples = len(model.labels_)
|
||||
for i, merge in enumerate(model.children_): # type: ignore
|
||||
current_count = 0
|
||||
for child_idx in merge:
|
||||
if child_idx < n_samples:
|
||||
current_count += 1
|
||||
else:
|
||||
current_count += counts[child_idx - n_samples]
|
||||
counts[i] = current_count
|
||||
|
||||
return np.column_stack([model.children_, model.distances_, counts]).astype(float)
|
||||
|
||||
|
||||
def print_cluster_result(
|
||||
df: DataFrame, clusters_num: int, labels: np.ndarray, separator: str = ", "
|
||||
):
|
||||
for cluster_id in range(clusters_num):
|
||||
cluster_indices = np.where(labels == cluster_id)[0]
|
||||
print(f"Cluster {cluster_id + 1} ({len(cluster_indices)}):")
|
||||
rules = [str(df.index[idx]) for idx in cluster_indices]
|
||||
print(separator.join(rules))
|
||||
print("")
|
||||
print("--------")
|
||||
|
||||
|
||||
def run_kmeans(
|
||||
df: DataFrame, num_clusters: int, random_state: int
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
kmeans = cluster.KMeans(n_clusters=num_clusters, random_state=random_state)
|
||||
labels = kmeans.fit_predict(df)
|
||||
return labels, kmeans.cluster_centers_
|
||||
|
||||
|
||||
def fit_kmeans(
|
||||
reduced_data: np.ndarray, num_clusters: int, random_state: int
|
||||
) -> cluster.KMeans:
|
||||
kmeans = cluster.KMeans(n_clusters=num_clusters, random_state=random_state)
|
||||
kmeans.fit(reduced_data)
|
||||
return kmeans
|
||||
|
||||
|
||||
def _get_kmeans_range(
|
||||
df: DataFrame | np.ndarray, random_state: int
|
||||
) -> Tuple[List, range]:
|
||||
max_clusters = int(math.sqrt(len(df)))
|
||||
clusters_range = range(2, max_clusters + 1)
|
||||
kmeans_per_k = [
|
||||
cluster.KMeans(n_clusters=k, random_state=random_state).fit(df)
|
||||
for k in clusters_range
|
||||
]
|
||||
return kmeans_per_k, clusters_range
|
||||
|
||||
|
||||
def get_clusters_inertia(df: DataFrame, random_state: int) -> Tuple[List, range]:
|
||||
kmeans_per_k, clusters_range = _get_kmeans_range(df, random_state)
|
||||
return [model.inertia_ for model in kmeans_per_k], clusters_range
|
||||
|
||||
|
||||
def get_clusters_silhouette_scores(
|
||||
df: DataFrame, random_state: int
|
||||
) -> Tuple[List, range]:
|
||||
kmeans_per_k, clusters_range = _get_kmeans_range(df, random_state)
|
||||
return [
|
||||
float(silhouette_score(df, model.labels_)) for model in kmeans_per_k
|
||||
], clusters_range
|
||||
|
||||
|
||||
def get_clusters_silhouettes(df: np.ndarray, random_state: int) -> Dict:
|
||||
kmeans_per_k, _ = _get_kmeans_range(df, random_state)
|
||||
clusters_silhouettes: Dict = {}
|
||||
for model in kmeans_per_k:
|
||||
silhouette_value = silhouette_score(df, model.labels_)
|
||||
sample_silhouette_values = silhouette_samples(df, model.labels_)
|
||||
clusters_silhouettes[model.n_clusters] = (
|
||||
silhouette_value,
|
||||
sample_silhouette_values,
|
||||
model,
|
||||
)
|
||||
return clusters_silhouettes
|
242
visual.py
Normal file
242
visual.py
Normal file
@ -0,0 +1,242 @@
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import matplotlib.cm as cm
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pandas import DataFrame
|
||||
from scipy.cluster import hierarchy
|
||||
from sklearn.cluster import KMeans
|
||||
|
||||
|
||||
def draw_data_2d(
|
||||
df: DataFrame,
|
||||
col1: int,
|
||||
col2: int,
|
||||
y: List | None = None,
|
||||
classes: List | None = None,
|
||||
subplot: Any | None = None,
|
||||
):
|
||||
ax = None
|
||||
if subplot is None:
|
||||
_, ax = plt.subplots()
|
||||
else:
|
||||
ax = subplot
|
||||
scatter = ax.scatter(df[df.columns[col1]], df[df.columns[col2]], c=y)
|
||||
ax.set(xlabel=df.columns[col1], ylabel=df.columns[col2])
|
||||
if classes is not None:
|
||||
ax.legend(
|
||||
scatter.legend_elements()[0], classes, loc="lower right", title="Classes"
|
||||
)
|
||||
|
||||
|
||||
def draw_dendrogram(linkage_matrix: np.ndarray):
|
||||
hierarchy.dendrogram(linkage_matrix, truncate_mode="level", p=3)
|
||||
|
||||
|
||||
def draw_cluster_results(
|
||||
df: DataFrame,
|
||||
col1: int,
|
||||
col2: int,
|
||||
labels: np.ndarray,
|
||||
cluster_centers: np.ndarray,
|
||||
subplot: Any | None = None,
|
||||
):
|
||||
ax = None
|
||||
if subplot is None:
|
||||
ax = plt
|
||||
else:
|
||||
ax = subplot
|
||||
|
||||
centroids = cluster_centers
|
||||
u_labels = np.unique(labels)
|
||||
|
||||
for i in u_labels:
|
||||
ax.scatter(
|
||||
df[labels == i][df.columns[col1]],
|
||||
df[labels == i][df.columns[col2]],
|
||||
label=i,
|
||||
)
|
||||
|
||||
ax.scatter(centroids[:, col1], centroids[:, col2], s=80, color="k")
|
||||
|
||||
|
||||
def draw_clusters(reduced_data: np.ndarray, kmeans: KMeans):
|
||||
h = 0.02
|
||||
|
||||
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
|
||||
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
||||
|
||||
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
|
||||
|
||||
Z = Z.reshape(xx.shape)
|
||||
plt.figure(1)
|
||||
plt.clf()
|
||||
plt.imshow(
|
||||
Z,
|
||||
interpolation="nearest",
|
||||
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
|
||||
cmap=plt.cm.Paired, # type: ignore
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
)
|
||||
|
||||
plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
|
||||
centroids = kmeans.cluster_centers_
|
||||
plt.scatter(
|
||||
centroids[:, 0],
|
||||
centroids[:, 1],
|
||||
marker="x",
|
||||
s=169,
|
||||
linewidths=3,
|
||||
color="w",
|
||||
zorder=10,
|
||||
)
|
||||
plt.title(
|
||||
"K-means clustering (PCA-reduced data)\n"
|
||||
"Centroids are marked with white cross"
|
||||
)
|
||||
plt.xlim(x_min, x_max)
|
||||
plt.ylim(y_min, y_max)
|
||||
plt.xticks(())
|
||||
plt.yticks(())
|
||||
|
||||
|
||||
def _draw_cluster_scores(
|
||||
data: List,
|
||||
clusters_range: range,
|
||||
score_name: str,
|
||||
title: str,
|
||||
):
|
||||
plt.figure(figsize=(8, 5))
|
||||
plt.plot(clusters_range, data, "bo-")
|
||||
plt.xlabel("$k$", fontsize=8)
|
||||
plt.ylabel(score_name, fontsize=8)
|
||||
plt.title(title)
|
||||
|
||||
|
||||
def draw_elbow_diagram(inertias: List, clusters_range: range):
|
||||
_draw_cluster_scores(inertias, clusters_range, "Inertia", "The Elbow Diagram")
|
||||
|
||||
|
||||
def draw_silhouettes_diagram(silhouette: List, clusters_range: range):
|
||||
_draw_cluster_scores(
|
||||
silhouette, clusters_range, "Silhouette score", "The Silhouette score"
|
||||
)
|
||||
|
||||
|
||||
def _draw_silhouette(
|
||||
ax: Any,
|
||||
reduced_data: np.ndarray,
|
||||
n_clusters: int,
|
||||
silhouette_avg: float,
|
||||
sample_silhouette_values: List,
|
||||
cluster_labels: List,
|
||||
):
|
||||
ax.set_xlim([-0.1, 1])
|
||||
ax.set_ylim([0, len(reduced_data) + (n_clusters + 1) * 10])
|
||||
|
||||
y_lower = 10
|
||||
for i in range(n_clusters):
|
||||
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
|
||||
|
||||
ith_cluster_silhouette_values.sort()
|
||||
|
||||
size_cluster_i = ith_cluster_silhouette_values.shape[0]
|
||||
y_upper = y_lower + size_cluster_i
|
||||
|
||||
color = cm.nipy_spectral(float(i) / n_clusters) # type: ignore
|
||||
ax.fill_betweenx(
|
||||
np.arange(y_lower, y_upper),
|
||||
0,
|
||||
ith_cluster_silhouette_values,
|
||||
facecolor=color,
|
||||
edgecolor=color,
|
||||
alpha=0.7,
|
||||
)
|
||||
|
||||
ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
|
||||
|
||||
y_lower = y_upper + 10 # 10 for the 0 samples
|
||||
|
||||
ax.set_title("The silhouette plot for the various clusters.")
|
||||
ax.set_xlabel("The silhouette coefficient values")
|
||||
ax.set_ylabel("Cluster label")
|
||||
|
||||
ax.axvline(x=silhouette_avg, color="red", linestyle="--")
|
||||
|
||||
ax.set_yticks([])
|
||||
ax.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
|
||||
|
||||
|
||||
def _draw_cluster_data(
|
||||
ax: Any,
|
||||
reduced_data: np.ndarray,
|
||||
n_clusters: int,
|
||||
cluster_labels: np.ndarray,
|
||||
cluster_centers: np.ndarray,
|
||||
):
|
||||
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) # type: ignore
|
||||
ax.scatter(
|
||||
reduced_data[:, 0],
|
||||
reduced_data[:, 1],
|
||||
marker=".",
|
||||
s=30,
|
||||
lw=0,
|
||||
alpha=0.7,
|
||||
c=colors,
|
||||
edgecolor="k",
|
||||
)
|
||||
|
||||
ax.scatter(
|
||||
cluster_centers[:, 0],
|
||||
cluster_centers[:, 1],
|
||||
marker="o",
|
||||
c="white",
|
||||
alpha=1,
|
||||
s=200,
|
||||
edgecolor="k",
|
||||
)
|
||||
|
||||
for i, c in enumerate(cluster_centers):
|
||||
ax.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
|
||||
|
||||
ax.set_title("The visualization of the clustered data.")
|
||||
ax.set_xlabel("Feature space for the 1st feature")
|
||||
ax.set_ylabel("Feature space for the 2nd feature")
|
||||
|
||||
|
||||
def draw_silhouettes(reduced_data: np.ndarray, silhouettes: Dict):
|
||||
for key, value in silhouettes.items():
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
fig.set_size_inches(18, 7)
|
||||
|
||||
n_clusters = key
|
||||
silhouette_avg = value[0]
|
||||
sample_silhouette_values = value[1]
|
||||
cluster_labels = value[2].labels_
|
||||
cluster_centers = value[2].cluster_centers_
|
||||
|
||||
_draw_silhouette(
|
||||
ax1,
|
||||
reduced_data,
|
||||
n_clusters,
|
||||
silhouette_avg,
|
||||
sample_silhouette_values,
|
||||
cluster_labels,
|
||||
)
|
||||
|
||||
_draw_cluster_data(
|
||||
ax2,
|
||||
reduced_data,
|
||||
n_clusters,
|
||||
cluster_labels,
|
||||
cluster_centers,
|
||||
)
|
||||
|
||||
plt.suptitle(
|
||||
"Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
|
||||
% n_clusters,
|
||||
fontsize=14,
|
||||
fontweight="bold",
|
||||
)
|
Loading…
Reference in New Issue
Block a user