6.0 KiB
6.0 KiB
In [ ]:
import numpy as np
import pandas as pd
from sklearn.feature_selection import mutual_info_regression
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import ADASYN
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
# Загрузка датасета с мобильными телефонами
df = pd.read_csv("data/mobile_prices.csv")
print(df.columns)
# Кодируем все строковые столбцы в числовые
label_encoders = {}
for col in df.select_dtypes(include=["object"]).columns:
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
label_encoders[col] = le
# Проверка на пропуски и "зашумленные" столбцы
noisy_features = []
for col in df.columns:
if df[col].isnull().sum() / len(df) > 0.1: # Если более 10% пропусков
noisy_features.append(col)
print(f"Зашумленные столбцы: {noisy_features}")
# Проверка на смещение
skewness = df.skew()
print(f"Смещение: {skewness}")
skewed_features = skewness[abs(skewness) > 1].index.tolist()
print(f"Сильно смещенные столбцы: {skewed_features}")
# Поиск выбросов
for col in df.select_dtypes(include=["number"]).columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = df[col][(df[col] < lower_bound) | (df[col] > upper_bound)]
print(f"Выбросы в столбце '{col}':\n{outliers}\n")
# Визуализация выбросов
numeric_cols = df.select_dtypes(include=["number"]).columns
plt.figure(figsize=(12, 8))
for i, col in enumerate(numeric_cols, 1):
plt.subplot(len(numeric_cols) // 3 + 1, 3, i)
sns.boxplot(data=df, x=col)
plt.title(f"Boxplot for {col}")
plt.tight_layout()
plt.show()
# Логарифмирование признака 'Battery'
df["log_Battery"] = np.log(df["Battery"] + 1)
# Заполнение пропусков
df["Battery"] = df["Battery"].fillna(df["Battery"].mean())
# Функция для разбиения на train/val/test
def split_stratified_into_train_val_test(
df_input,
stratify_colname="y",
frac_train=0.6,
frac_val=0.15,
frac_test=0.25,
random_state=None,
):
if frac_train + frac_val + frac_test != 1.0:
raise ValueError(
"fractions %f, %f, %f do not add up to 1.0"
% (frac_train, frac_val, frac_test)
)
if stratify_colname not in df_input.columns:
raise ValueError("%s is not a column in the dataframe" % (stratify_colname))
X = df_input
y = df_input[[stratify_colname]]
df_train, df_temp, y_train, y_temp = train_test_split(
X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state
)
relative_frac_test = frac_test / (frac_val + frac_test)
df_val, df_test, y_val, y_test = train_test_split(
df_temp,
y_temp,
stratify=y_temp,
test_size=relative_frac_test,
random_state=random_state,
)
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
return df_train, df_val, df_test
# Разбиение на train/val/test
data = df[["Ram", "Price", "company"]].copy()
print("@data", data)
data = data.groupby("company").filter(
lambda x: len(x) > 4
) # убираем классы с одним элементом
df_train, df_val, df_test = split_stratified_into_train_val_test(
data, stratify_colname="company", frac_train=0.60, frac_val=0.20, frac_test=0.20
)
print("Обучающая выборка: ", df_train.shape)
print(df_train["Ram"].value_counts())
print("Контрольная выборка: ", df_val.shape)
print(df_val["Ram"].value_counts())
print("Тестовая выборка: ", df_test.shape)
print(df_test["Ram"].value_counts())
# # Применение ADASYN для oversampling
# ada = ADASYN(n_neighbors=2)
# X_resampled, y_resampled = ada.fit_resample(df_train, df_train["company"])
# df_train_adasyn = pd.DataFrame(X_resampled)
# print("Обучающая выборка после oversampling: ", df_train_adasyn.shape)
# print(df_train_adasyn["Ram"].value_counts())