442 KiB
Начало лабораторной¶
Цены на кофе - https://www.kaggle.com/datasets/mayankanand2701/starbucks-stock-price-dataset
Атрибуты¶
Date — Дата
Open — Открытие
High — Макс. цена
Low — Мин. цена
Close — Закрытие
Adj Close — Скорректированная цена закрытия
Volume — Объем торгов
Бизнес-цели¶
1. Оценка волатильности акций:
Описание: Прогнозировать волатильность акций на основе изменений в ценах открытий, максимума, минимума и объема торгов. Целевая переменная: Разница между высокой и низкой ценой (High - Low). (среднее значение)
2. Прогнозирование цены закрытия акций:
Описание: Оценить, какая будет цена закрытия акций Starbucks на следующий день или через несколько дней на основе исторических данных. Целевая переменная: Цена закрытия (Close). (среднее значение)
Определение достижимого уровня качества модели для первой задачи¶
Подготовка данных
Загрузка данных и создание целевой переменной
import pandas as pd
from sklearn import set_config
# Установим параметры для вывода
set_config(transform_output="pandas")
# Загружаем набор данных
df = pd.read_csv(".//static//csv//Starbucks Dataset.csv")
# Устанавливаем случайное состояние
random_state = 42
# Рассчитываем среднее значение объема
average_volume = df['Volume'].mean()
print(f"Среднее значение поля 'Volume': {average_volume}")
# Создаем новую переменную, указывающую, превышает ли объем средний
df['above_average_volume'] = (df['Volume'] > average_volume).astype(int)
# Рассчитываем волатильность (разницу между высокими и низкими значениями)
df['volatility'] = df['High'] - df['Low']
# Выводим первые строки измененной таблицы для проверки
print(df.head())
Разделение набора данных на обучающую и тестовые выборки (80/20) для задачи классификации¶
Целевой признак -- above_average_close
from typing import Tuple
import pandas as pd
from pandas import DataFrame
from sklearn.model_selection import train_test_split
def split_stratified_into_train_val_test(
df_input,
stratify_colname="y",
frac_train=0.6,
frac_val=0.15,
frac_test=0.25,
random_state=None,
) -> Tuple[DataFrame, DataFrame, DataFrame, DataFrame, DataFrame, DataFrame]:
if frac_train + frac_val + frac_test != 1.0:
raise ValueError(
"fractions %f, %f, %f do not add up to 1.0"
% (frac_train, frac_val, frac_test)
)
if stratify_colname not in df_input.columns:
raise ValueError("%s is not a column in the dataframe" % (stratify_colname))
X = df_input # Contains all columns.
y = df_input[
[stratify_colname]
] # Dataframe of just the column on which to stratify.
# Split original dataframe into train and temp dataframes.
df_train, df_temp, y_train, y_temp = train_test_split(
X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state
)
if frac_val <= 0:
assert len(df_input) == len(df_train) + len(df_temp)
return df_train, pd.DataFrame(), df_temp, y_train, pd.DataFrame(), y_temp
# Split the temp dataframe into val and test dataframes.
relative_frac_test = frac_test / (frac_val + frac_test)
df_val, df_test, y_val, y_test = train_test_split(
df_temp,
y_temp,
stratify=y_temp,
test_size=relative_frac_test,
random_state=random_state,
)
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
return df_train, df_val, df_test, y_train, y_val, y_test
X_train, X_val, X_test, y_train, y_val, y_test = split_stratified_into_train_val_test(
df, stratify_colname="above_average_volume", frac_train=0.80, frac_val=0, frac_test=0.20, random_state=random_state
)
display("X_train", X_train)
display("y_train", y_train)
display("X_test", X_test)
display("y_test", y_test)
Формирование конвейера для классификации данных¶
preprocessing_num -- конвейер для обработки числовых данных: заполнение пропущенных значений и стандартизация
preprocessing_cat -- конвейер для обработки категориальных данных: заполнение пропущенных данных и унитарное кодирование
features_preprocessing -- трансформер для предобработки признаков
features_engineering -- трансформер для конструирования признаков
drop_columns -- трансформер для удаления колонок
pipeline_end -- основной конвейер предобработки данных и конструирования признаков
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.compose import ColumnTransformer
from sklearn.discriminant_analysis import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
class StarbucksFeatures(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X["Length_to_Width_Ratio"] = X["x"] / X["y"]
return X
def get_feature_names_out(self, features_in):
return np.append(features_in, ["Length_to_Width_Ratio"], axis=0)
columns_to_drop = ["Date"]
num_columns = ["Close", "Open", "Adj Close", "High", "Low", "Volume", "above_average_volume"]
cat_columns = []
num_imputer = SimpleImputer(strategy="median")
num_scaler = StandardScaler()
preprocessing_num = Pipeline(
[
("imputer", num_imputer),
("scaler", num_scaler),
]
)
cat_imputer = SimpleImputer(strategy="constant", fill_value="unknown")
cat_encoder = OneHotEncoder(handle_unknown="ignore", sparse_output=False, drop="first")
preprocessing_cat = Pipeline(
[
("imputer", cat_imputer),
("encoder", cat_encoder),
]
)
features_preprocessing = ColumnTransformer(
verbose_feature_names_out=False,
transformers=[
("prepocessing_num", preprocessing_num, num_columns),
("prepocessing_cat", preprocessing_cat, cat_columns),
],
remainder="passthrough"
)
drop_columns = ColumnTransformer(
verbose_feature_names_out=False,
transformers=[
("drop_columns", "drop", columns_to_drop),
],
remainder="passthrough",
)
features_postprocessing = ColumnTransformer(
verbose_feature_names_out=False,
transformers=[
("prepocessing_cat", preprocessing_cat, ["Cabin_type"]),
],
remainder="passthrough",
)
pipeline_end = Pipeline(
[
("features_preprocessing", features_preprocessing),
("drop_columns", drop_columns),
]
)
Демонстрация работы конвейера
preprocessing_result = pipeline_end.fit_transform(X_train)
preprocessed_df = pd.DataFrame(
preprocessing_result,
columns=pipeline_end.get_feature_names_out(),
)
preprocessed_df
Формирование набора моделей для классификации¶
logistic -- логистическая регрессия
ridge -- гребневая регрессия
decision_tree -- дерево решений
knn -- k-ближайших соседей
naive_bayes -- наивный Байесовский классификатор
gradient_boosting -- метод градиентного бустинга (набор деревьев решений)
random_forest -- метод случайного леса (набор деревьев решений)
mlp -- многослойный персептрон (нейронная сеть)
from sklearn import ensemble, linear_model, naive_bayes, neighbors, neural_network, tree
class_models = {
"logistic": {"model": linear_model.LogisticRegression()},
# "ridge": {"model": linear_model.RidgeClassifierCV(cv=5, class_weight="balanced")},
"ridge": {"model": linear_model.LogisticRegression(penalty="l2", class_weight="balanced")},
"decision_tree": {
"model": tree.DecisionTreeClassifier(max_depth=7, random_state=random_state)
},
"knn": {"model": neighbors.KNeighborsClassifier(n_neighbors=7)},
"naive_bayes": {"model": naive_bayes.GaussianNB()},
"gradient_boosting": {
"model": ensemble.GradientBoostingClassifier(n_estimators=210)
},
"random_forest": {
"model": ensemble.RandomForestClassifier(
max_depth=11, class_weight="balanced", random_state=random_state
)
},
"mlp": {
"model": neural_network.MLPClassifier(
hidden_layer_sizes=(7,),
max_iter=500,
early_stopping=True,
random_state=random_state,
)
},
}
Обучение моделей на обучающем наборе данных и оценка на тестовом¶
import numpy as np
from sklearn import metrics
for model_name in class_models.keys():
print(f"Model: {model_name}")
model = class_models[model_name]["model"]
model_pipeline = Pipeline([("pipeline", pipeline_end), ("model", model)])
model_pipeline = model_pipeline.fit(X_train, y_train.values.ravel())
y_train_predict = model_pipeline.predict(X_train)
y_test_probs = model_pipeline.predict_proba(X_test)[:, 1]
y_test_predict = np.where(y_test_probs > 0.5, 1, 0)
class_models[model_name]["pipeline"] = model_pipeline
class_models[model_name]["probs"] = y_test_probs
class_models[model_name]["preds"] = y_test_predict
class_models[model_name]["Precision_train"] = metrics.precision_score(
y_train, y_train_predict
)
class_models[model_name]["Precision_test"] = metrics.precision_score(
y_test, y_test_predict
)
class_models[model_name]["Recall_train"] = metrics.recall_score(
y_train, y_train_predict
)
class_models[model_name]["Recall_test"] = metrics.recall_score(
y_test, y_test_predict
)
class_models[model_name]["Accuracy_train"] = metrics.accuracy_score(
y_train, y_train_predict
)
class_models[model_name]["Accuracy_test"] = metrics.accuracy_score(
y_test, y_test_predict
)
class_models[model_name]["ROC_AUC_test"] = metrics.roc_auc_score(
y_test, y_test_probs
)
class_models[model_name]["F1_train"] = metrics.f1_score(y_train, y_train_predict)
class_models[model_name]["F1_test"] = metrics.f1_score(y_test, y_test_predict)
class_models[model_name]["MCC_test"] = metrics.matthews_corrcoef(
y_test, y_test_predict
)
class_models[model_name]["Cohen_kappa_test"] = metrics.cohen_kappa_score(
y_test, y_test_predict
)
class_models[model_name]["Confusion_matrix"] = metrics.confusion_matrix(
y_test, y_test_predict
)
Сводная таблица оценок качества для использованных моделей классификации¶
from sklearn.metrics import ConfusionMatrixDisplay
import matplotlib.pyplot as plt
_, ax = plt.subplots(int(len(class_models) / 2), 2, figsize=(12, 10), sharex=False, sharey=False)
for index, key in enumerate(class_models.keys()):
c_matrix = class_models[key]["Confusion_matrix"]
disp = ConfusionMatrixDisplay(
confusion_matrix=c_matrix, display_labels=["Less", "More"]
).plot(ax=ax.flat[index])
disp.ax_.set_title(key)
plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.1)
plt.show()
1045: Это количество истинных положительных диагнозов (True Positives), где модель правильно определила объекты как "More".
563: Это количество ложных отрицательных диагнозов (False Negatives), где модель неправильно определила объекты, которые на самом деле принадлежат к классу "More", отнесёнными к классу "Less".
Исходя из значений True Positives и False Negatives, можно сказать, что модель имеет высокую точность при предсказании класса "More". Однако, высокий уровень ложных отрицательных результатов (563) указывает на то, что существует значительное количество примеров, которые модель пропускает. Это может означать, что в некоторых случаях она не распознаёт объекты, которые должны быть классифицированы как "More".
Точность, полнота, верность (аккуратность), F-мера
class_metrics = pd.DataFrame.from_dict(class_models, "index")[
[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
"Accuracy_train",
"Accuracy_test",
"F1_train",
"F1_test",
]
]
class_metrics.sort_values(
by="Accuracy_test", ascending=False
).style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=["Accuracy_train", "Accuracy_test", "F1_train", "F1_test"],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
],
)
Все модели в данной выборке — логистическая регрессия, ридж-регрессия, дерево решений, KNN, наивный байесовский классификатор, градиентный бустинг, случайный лес и многослойный перцептрон (MLP) — демонстрируют идеальные значения по всем метрикам на обучающих и тестовых наборах данных. Это достигается, поскольку все модели показали значения, равные 1.0 для Precision, Recall, Accuracy и F1-меры, что указывает на то, что модель безошибочно классифицирует все примеры.
Модель MLP, хотя и имеет немного более низкие значения Recall (0.994) и F1-на тестовом наборе (0.997) по сравнению с другими, по-прежнему остается высокоэффективной. Тем не менее, она не снижает показатели классификации до такого уровня, что может вызвать обеспокоенность, и остается на уровне, близком к идеальному.
ROC-кривая, каппа Коэна, коэффициент корреляции Мэтьюса
class_metrics = pd.DataFrame.from_dict(class_models, "index")[
[
"Accuracy_test",
"F1_test",
"ROC_AUC_test",
"Cohen_kappa_test",
"MCC_test",
]
]
class_metrics.sort_values(by="ROC_AUC_test", ascending=False).style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=[
"ROC_AUC_test",
"MCC_test",
"Cohen_kappa_test",
],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Accuracy_test",
"F1_test",
],
)
Все модели, включая логистическую регрессию, ридж-регрессию, дерево решений, KNN, наивный байесовский классификатор, градиентный бустинг и случайный лес, продемонстрировали идеальные значения по всем метрикам: Accuracy, F1, ROC AUC, Cohen's Kappa и MCC, достигнув максимальных значений, равных 1. Это подчеркивает их эффективность в контексте анализа и классификации данных.
Модель MLP, хотя и показала очень высокие результаты, несколько уступает конкурентам по показателям Accuracy (0.998) и F1 (0.997). Несмотря на это, она достигает оптимального значения ROC AUC (1.000), что указывает на ее способность к выделению классов. Показатели Cohen's Kappa (0.996) и MCC (0.996) также находятся на высоком уровне, что говорит о хорошей согласованности и строгости классификации.
best_model = str(class_metrics.sort_values(by="MCC_test", ascending=False).iloc[0].name)
display(best_model)
Вывод данных с ошибкой предсказания для оценки¶
preprocessing_result = pipeline_end.transform(X_test)
preprocessed_df = pd.DataFrame(
preprocessing_result,
columns=pipeline_end.get_feature_names_out(),
)
y_pred = class_models[best_model]["preds"]
error_index = y_test[y_test["above_average_volume"] != y_pred].index.tolist()
display(f"Error items count: {len(error_index)}")
error_predicted = pd.Series(y_pred, index=y_test.index).loc[error_index]
error_df = X_test.loc[error_index].copy()
error_df.insert(loc=1, column="Predicted", value=error_predicted)
error_df.sort_index()
Пример использования обученной модели (конвейера) для предсказания¶
model = class_models[best_model]["pipeline"]
example_id = 6621
test = pd.DataFrame(X_test.loc[example_id, :]).T
test_preprocessed = pd.DataFrame(preprocessed_df.loc[example_id, :]).T
display(test)
display(test_preprocessed)
result_proba = model.predict_proba(test)[0]
result = model.predict(test)[0]
real = int(y_test.loc[example_id].values[0])
display(f"predicted: {result} (proba: {result_proba})")
display(f"real: {real}")
Подбор гиперпараметров методом поиска по сетке¶
from sklearn.model_selection import GridSearchCV
optimized_model_type = "random_forest"
random_forest_model = class_models[optimized_model_type]["pipeline"]
param_grid = {
"model__n_estimators": [10, 50, 100],
"model__max_features": ["sqrt", "log2"],
"model__max_depth": [5, 7, 10],
"model__criterion": ["gini", "entropy"],
}
gs_optomizer = GridSearchCV(
estimator=random_forest_model, param_grid=param_grid, n_jobs=-1
)
gs_optomizer.fit(X_train, y_train.values.ravel())
gs_optomizer.best_params_
Обучение модели с новыми гиперпараметрами
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
import numpy as np
from sklearn import metrics
# Определение трансформера (пример)
pipeline_end = ColumnTransformer([
('numeric', StandardScaler(), numeric_features), # numeric_features - это список числовых признаков
# Добавьте другие трансформеры, если требуется
])
# Объявление модели
optimized_model = RandomForestClassifier(
random_state=random_state,
criterion="gini",
max_depth=5,
max_features="sqrt",
n_estimators=10,
)
# Создание пайплайна с корректными шагами
result = {}
result["pipeline"] = Pipeline([
("pipeline", pipeline_end),
("model", optimized_model)
]).fit(X_train, y_train.values.ravel())
# Прогнозирование и расчет метрик
result["train_preds"] = result["pipeline"].predict(X_train)
result["probs"] = result["pipeline"].predict_proba(X_test)[:, 1]
result["preds"] = np.where(result["probs"] > 0.5, 1, 0)
# Метрики для оценки модели
result["Precision_train"] = metrics.precision_score(y_train, result["train_preds"])
result["Precision_test"] = metrics.precision_score(y_test, result["preds"])
result["Recall_train"] = metrics.recall_score(y_train, result["train_preds"])
result["Recall_test"] = metrics.recall_score(y_test, result["preds"])
result["Accuracy_train"] = metrics.accuracy_score(y_train, result["train_preds"])
result["Accuracy_test"] = metrics.accuracy_score(y_test, result["preds"])
result["ROC_AUC_test"] = metrics.roc_auc_score(y_test, result["probs"])
result["F1_train"] = metrics.f1_score(y_train, result["train_preds"])
result["F1_test"] = metrics.f1_score(y_test, result["preds"])
result["MCC_test"] = metrics.matthews_corrcoef(y_test, result["preds"])
result["Cohen_kappa_test"] = metrics.cohen_kappa_score(y_test, result["preds"])
result["Confusion_matrix"] = metrics.confusion_matrix(y_test, result["preds"])
Формирование данных для оценки старой и новой версии модели
optimized_metrics = pd.DataFrame(columns=list(result.keys()))
optimized_metrics.loc[len(optimized_metrics)] = pd.Series(
data=class_models[optimized_model_type]
)
optimized_metrics.loc[len(optimized_metrics)] = pd.Series(
data=result
)
optimized_metrics.insert(loc=0, column="Name", value=["Old", "New"])
optimized_metrics = optimized_metrics.set_index("Name")
Оценка параметров старой и новой модели
optimized_metrics[
[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
"Accuracy_train",
"Accuracy_test",
"F1_train",
"F1_test",
]
].style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=["Accuracy_train", "Accuracy_test", "F1_train", "F1_test"],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
],
)
Обе модели, как "Old", так и "New", демонстрируют идеальную производительность по всем ключевым метрикам: Precision, Recall, Accuracy и F1 как на обучающей (train), так и на тестовой (test) выборках. Все значения равны 1.000000, что указывает на отсутствие ошибок в классификации и максимальную точность.
optimized_metrics[
[
"Accuracy_test",
"F1_test",
"ROC_AUC_test",
"Cohen_kappa_test",
"MCC_test",
]
].style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=[
"ROC_AUC_test",
"MCC_test",
"Cohen_kappa_test",
],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Accuracy_test",
"F1_test",
],
)
Обе модели, как "Old", так и "New", показали идеальные результаты по всем выбранным метрикам: Accuracy, F1, ROC AUC, Cohen's kappa и MCC. Все метрики имеют значение 1.000000 как на тестовой выборке, что указывает на безошибочную классификацию и максимальную эффективность обеих моделей.
_, ax = plt.subplots(1, 2, figsize=(10, 4), sharex=False, sharey=False
)
for index in range(0, len(optimized_metrics)):
c_matrix = optimized_metrics.iloc[index]["Confusion_matrix"]
disp = ConfusionMatrixDisplay(
confusion_matrix=c_matrix, display_labels=["Less", "More"]
).plot(ax=ax.flat[index])
plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.3)
plt.show()
В желтом квадрате мы видим значение 1049, что обозначает количество правильно классифицированных объектов, отнесенных к классу "Less". Это свидетельствует о том, что модель успешно идентифицирует объекты этого класса, минимизируя количество ложных положительных срабатываний.
В зеленом квадрате значение 558 указывает на количество правильно классифицированных объектов, отнесенных к классу "More". Это также является показателем высокой точности модели в определении объектов данного класса.
Определение достижимого уровня качества модели для второй задачи¶
Подготовка данных
Загрузка данных и создание целевой переменной
import pandas as pd
from sklearn import set_config
set_config(transform_output="pandas")
# Загрузка данных о ценах акций Starbucks из CSV файла
df = pd.read_csv(".//static//csv//Starbucks Dataset.csv")
# Опция для настройки генерации случайных чисел (если это нужно для других частей кода)
random_state = 42
# Вычисление среднего значения поля "Close"
average_close = df['Close'].mean()
print(f"Среднее значение поля 'Close': {average_close}")
# Создание новой колонки, указывающей, выше или ниже среднего значение цена закрытия
df['above_average_close'] = (df['Close'] > average_close).astype(int)
# Создание целевой переменной для прогнозирования (цена закрытия на следующий день)
df['Close_Next_Day'] = df['Close'].shift(-1)
# Удаление последней строки, где нет значения для следующего дня
df.dropna(inplace=True)
# Вывод DataFrame с новой колонкой
print(df.head())
# Примерный анализ данных
print("Статистическое описание DataFrame:")
print(df.describe())
Разделение набора данных на обучающую и тестовые выборки (80/20) для задачи классификации¶
Целевой признак -- above_average_close
from typing import Tuple
import pandas as pd
from pandas import DataFrame
from sklearn.model_selection import train_test_split
def split_stratified_into_train_val_test(
df_input: DataFrame,
stratify_colname: str = "y",
frac_train: float = 0.6,
frac_val: float = 0.15,
frac_test: float = 0.25,
random_state: int = None,
) -> Tuple[DataFrame, DataFrame, DataFrame, DataFrame, DataFrame, DataFrame]:
if not (0 < frac_train < 1) or not (0 <= frac_val <= 1) or not (0 <= frac_test <= 1):
raise ValueError("Fractions must be between 0 and 1 and the sum must equal 1.")
if not (frac_train + frac_val + frac_test == 1.0):
raise ValueError("fractions %f, %f, %f do not add up to 1.0" %
(frac_train, frac_val, frac_test))
if stratify_colname not in df_input.columns:
raise ValueError(f"{stratify_colname} is not a column in the DataFrame.")
X = df_input
y = df_input[[stratify_colname]]
df_train, df_temp, y_train, y_temp = train_test_split(
X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state
)
if frac_val == 0:
return df_train, pd.DataFrame(), df_temp, y_train, pd.DataFrame(), y_temp
relative_frac_test = frac_test / (frac_val + frac_test)
df_val, df_test, y_val, y_test = train_test_split(
df_temp,
y_temp,
stratify=y_temp,
test_size=relative_frac_test,
random_state=random_state,
)
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
return df_train, df_val, df_test, y_train, y_val, y_test
X_train, X_val, X_test, y_train, y_val, y_test = split_stratified_into_train_val_test(
df, stratify_colname="above_average_close", frac_train=0.80, frac_val=0.0, frac_test=0.20, random_state=random_state
)
display("X_train", X_train)
display("y_train", y_train)
display("X_test", X_test)
display("y_test", y_test)
Формирование конвейера для классификации данных¶
preprocessing_num -- конвейер для обработки числовых данных: заполнение пропущенных значений и стандартизация
preprocessing_cat -- конвейер для обработки категориальных данных: заполнение пропущенных данных и унитарное кодирование
features_preprocessing -- трансформер для предобработки признаков
features_engineering -- трансформер для конструирования признаков
drop_columns -- трансформер для удаления колонок
pipeline_end -- основной конвейер предобработки данных и конструирования признаков
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.compose import ColumnTransformer
from sklearn.discriminant_analysis import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
class StarbucksFeatures(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X["Length_to_Width_Ratio"] = X["x"] / X["y"]
return X
def get_feature_names_out(self, features_in):
return np.append(features_in, ["Length_to_Width_Ratio"], axis=0)
columns_to_drop = ["Date"]
num_columns = ["Close", "Open", "Adj Close", "High", "Low", "Volume", "above_average_close"]
cat_columns = []
num_imputer = SimpleImputer(strategy="median")
num_scaler = StandardScaler()
preprocessing_num = Pipeline(
[
("imputer", num_imputer),
("scaler", num_scaler),
]
)
cat_imputer = SimpleImputer(strategy="constant", fill_value="unknown")
cat_encoder = OneHotEncoder(handle_unknown="ignore", sparse_output=False, drop="first")
preprocessing_cat = Pipeline(
[
("imputer", cat_imputer),
("encoder", cat_encoder),
]
)
features_preprocessing = ColumnTransformer(
verbose_feature_names_out=False,
transformers=[
("prepocessing_num", preprocessing_num, num_columns),
("prepocessing_cat", preprocessing_cat, cat_columns),
],
remainder="passthrough"
)
drop_columns = ColumnTransformer(
verbose_feature_names_out=False,
transformers=[
("drop_columns", "drop", columns_to_drop),
],
remainder="passthrough",
)
features_postprocessing = ColumnTransformer(
verbose_feature_names_out=False,
transformers=[
("prepocessing_cat", preprocessing_cat, ["Cabin_type"]),
],
remainder="passthrough",
)
pipeline_end = Pipeline(
[
("features_preprocessing", features_preprocessing),
("drop_columns", drop_columns),
]
)
Демонстрация работы конвейера
preprocessing_result = pipeline_end.fit_transform(X_train)
preprocessed_df = pd.DataFrame(
preprocessing_result,
columns=pipeline_end.get_feature_names_out(),
)
preprocessed_df
Формирование набора моделей для классификации¶
logistic -- логистическая регрессия
ridge -- гребневая регрессия
decision_tree -- дерево решений
knn -- k-ближайших соседей
naive_bayes -- наивный Байесовский классификатор
gradient_boosting -- метод градиентного бустинга (набор деревьев решений)
random_forest -- метод случайного леса (набор деревьев решений)
mlp -- многослойный персептрон (нейронная сеть)
from sklearn import ensemble, linear_model, naive_bayes, neighbors, neural_network, tree
class_models = {
"logistic": {"model": linear_model.LogisticRegression()},
"ridge": {"model": linear_model.RidgeClassifierCV(cv=5, class_weight="balanced")},
"ridge": {"model": linear_model.LogisticRegression(penalty="l2", class_weight="balanced")},
"decision_tree": {
"model": tree.DecisionTreeClassifier(max_depth=7, random_state=random_state)
},
"knn": {"model": neighbors.KNeighborsClassifier(n_neighbors=7)},
"naive_bayes": {"model": naive_bayes.GaussianNB()},
"gradient_boosting": {
"model": ensemble.GradientBoostingClassifier(n_estimators=210)
},
"random_forest": {
"model": ensemble.RandomForestClassifier(
max_depth=11, class_weight="balanced", random_state=random_state
)
},
"mlp": {
"model": neural_network.MLPClassifier(
hidden_layer_sizes=(7,),
max_iter=500,
early_stopping=True,
random_state=random_state,
)
},
}
Обучение моделей на обучающем наборе данных и оценка на тестовом¶
import numpy as np
from sklearn import metrics
for model_name in class_models.keys():
print(f"Model: {model_name}")
model = class_models[model_name]["model"]
model_pipeline = Pipeline([("pipeline", pipeline_end), ("model", model)])
model_pipeline = model_pipeline.fit(X_train, y_train.values.ravel())
y_train_predict = model_pipeline.predict(X_train)
y_test_probs = model_pipeline.predict_proba(X_test)[:, 1]
y_test_predict = np.where(y_test_probs > 0.5, 1, 0)
class_models[model_name]["pipeline"] = model_pipeline
class_models[model_name]["probs"] = y_test_probs
class_models[model_name]["preds"] = y_test_predict
class_models[model_name]["Precision_train"] = metrics.precision_score(
y_train, y_train_predict
)
class_models[model_name]["Precision_test"] = metrics.precision_score(
y_test, y_test_predict
)
class_models[model_name]["Recall_train"] = metrics.recall_score(
y_train, y_train_predict
)
class_models[model_name]["Recall_test"] = metrics.recall_score(
y_test, y_test_predict
)
class_models[model_name]["Accuracy_train"] = metrics.accuracy_score(
y_train, y_train_predict
)
class_models[model_name]["Accuracy_test"] = metrics.accuracy_score(
y_test, y_test_predict
)
class_models[model_name]["ROC_AUC_test"] = metrics.roc_auc_score(
y_test, y_test_probs
)
class_models[model_name]["F1_train"] = metrics.f1_score(y_train, y_train_predict)
class_models[model_name]["F1_test"] = metrics.f1_score(y_test, y_test_predict)
class_models[model_name]["MCC_test"] = metrics.matthews_corrcoef(
y_test, y_test_predict
)
class_models[model_name]["Cohen_kappa_test"] = metrics.cohen_kappa_score(
y_test, y_test_predict
)
class_models[model_name]["Confusion_matrix"] = metrics.confusion_matrix(
y_test, y_test_predict
)
Сводная таблица оценок качества для использованных моделей классификации¶
Матрица неточностей
from sklearn.metrics import ConfusionMatrixDisplay
import matplotlib.pyplot as plt
_, ax = plt.subplots(int(len(class_models) / 2), 2, figsize=(12, 10), sharex=False, sharey=False)
for index, key in enumerate(class_models.keys()):
c_matrix = class_models[key]["Confusion_matrix"]
disp = ConfusionMatrixDisplay(
confusion_matrix=c_matrix, display_labels=["Less", "More"]
).plot(ax=ax.flat[index])
disp.ax_.set_title(key)
plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.1)
plt.show()
Значение 1049 в желтом квадрате представляет собой количество объектов, относимых к классу "Less", которые модель правильно классифицировала. Это свидетельствует о высоком уровне точности в идентификации этого класса. Значение 558 в зеленом квадрате указывает на количество правильно классифицированных объектов класса "More". Хотя это также является положительным результатом, мы можем заметить, что он ниже, чем для класса "Less".
Точность, полнота, верность (аккуратность), F-мера
class_metrics = pd.DataFrame.from_dict(class_models, "index")[
[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
"Accuracy_train",
"Accuracy_test",
"F1_train",
"F1_test",
]
]
class_metrics.sort_values(
by="Accuracy_test", ascending=False
).style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=["Accuracy_train", "Accuracy_test", "F1_train", "F1_test"],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
],
)
Все модели, включая логистическую регрессию, ридж-регрессию, KNN, наивный байесовский классификатор, многослойную перцептронную сеть, случайный лес, дерево решений и градиентный бустинг, демонстрируют 100% точность (1.000000) на обучающей выборке. Это указывает на то, что модели смогли полностью подстроиться под обучающие данные, что может стремительно указывать на возможное переобучение.
ROC-кривая, каппа Коэна, коэффициент корреляции Мэтьюса
class_metrics = pd.DataFrame.from_dict(class_models, "index")[
[
"Accuracy_test",
"F1_test",
"ROC_AUC_test",
"Cohen_kappa_test",
"MCC_test",
]
]
class_metrics.sort_values(by="ROC_AUC_test", ascending=False).style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=[
"ROC_AUC_test",
"MCC_test",
"Cohen_kappa_test",
],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Accuracy_test",
"F1_test",
],
)
Почти все модели, включая логистическую регрессию, ридж-регрессию, KNN, наивный байесовский классификатор, случайный лес и многослойную перцептронную сеть, достигли показателя ROC AUC равного 1.000000. Это говорит о том, что они идеально разделяют классы. Градиентный бустинг и дерево решений немного уступили в значениях ROC AUC, составив 0.999378, что говорит о высокой, но не идеальной способности к классификации.
best_model = str(class_metrics.sort_values(by="MCC_test", ascending=False).iloc[0].name)
display(best_model)
Вывод данных с ошибкой предсказания для оценки¶
preprocessing_result = pipeline_end.transform(X_test)
preprocessed_df = pd.DataFrame(
preprocessing_result,
columns=pipeline_end.get_feature_names_out(),
)
y_pred = class_models[best_model]["preds"]
error_index = y_test[y_test["above_average_close"] != y_pred].index.tolist()
display(f"Error items count: {len(error_index)}")
error_predicted = pd.Series(y_pred, index=y_test.index).loc[error_index]
error_df = X_test.loc[error_index].copy()
error_df.insert(loc=1, column="Predicted", value=error_predicted)
error_df.sort_index()
Пример использования обученной модели (конвейера) для предсказания¶
model = class_models[best_model]["pipeline"]
example_id = 6863
test = pd.DataFrame(X_test.loc[example_id, :]).T
test_preprocessed = pd.DataFrame(preprocessed_df.loc[example_id, :]).T
display(test)
display(test_preprocessed)
result_proba = model.predict_proba(test)[0]
result = model.predict(test)[0]
real = int(y_test.loc[example_id].values[0])
display(f"predicted: {result} (proba: {result_proba})")
display(f"real: {real}")
Подбор гиперпараметров методом поиска по сетке¶
from sklearn.model_selection import GridSearchCV
optimized_model_type = "random_forest"
random_forest_model = class_models[optimized_model_type]["pipeline"]
param_grid = {
"model__n_estimators": [10, 50, 100],
"model__max_features": ["sqrt", "log2"],
"model__max_depth": [5, 7, 10],
"model__criterion": ["gini", "entropy"],
}
gs_optomizer = GridSearchCV(
estimator=random_forest_model, param_grid=param_grid, n_jobs=-1
)
gs_optomizer.fit(X_train, y_train.values.ravel())
gs_optomizer.best_params_
Обучение модели с новыми гиперпараметрами
optimized_model = ensemble.RandomForestClassifier(
random_state=random_state,
criterion="gini",
max_depth=5,
max_features="log2",
n_estimators=10,
)
result = {}
result["pipeline"] = Pipeline([("pipeline", pipeline_end), ("model", optimized_model)]).fit(X_train, y_train.values.ravel())
result["train_preds"] = result["pipeline"].predict(X_train)
result["probs"] = result["pipeline"].predict_proba(X_test)[:, 1]
result["preds"] = np.where(result["probs"] > 0.5, 1, 0)
result["Precision_train"] = metrics.precision_score(y_train, result["train_preds"])
result["Precision_test"] = metrics.precision_score(y_test, result["preds"])
result["Recall_train"] = metrics.recall_score(y_train, result["train_preds"])
result["Recall_test"] = metrics.recall_score(y_test, result["preds"])
result["Accuracy_train"] = metrics.accuracy_score(y_train, result["train_preds"])
result["Accuracy_test"] = metrics.accuracy_score(y_test, result["preds"])
result["ROC_AUC_test"] = metrics.roc_auc_score(y_test, result["probs"])
result["F1_train"] = metrics.f1_score(y_train, result["train_preds"])
result["F1_test"] = metrics.f1_score(y_test, result["preds"])
result["MCC_test"] = metrics.matthews_corrcoef(y_test, result["preds"])
result["Cohen_kappa_test"] = metrics.cohen_kappa_score(y_test, result["preds"])
result["Confusion_matrix"] = metrics.confusion_matrix(y_test, result["preds"])
Формирование данных для оценки старой и новой версии модели
optimized_metrics = pd.DataFrame(columns=list(result.keys()))
optimized_metrics.loc[len(optimized_metrics)] = pd.Series(
data=class_models[optimized_model_type]
)
optimized_metrics.loc[len(optimized_metrics)] = pd.Series(
data=result
)
optimized_metrics.insert(loc=0, column="Name", value=["Old", "New"])
optimized_metrics = optimized_metrics.set_index("Name")
Оценка параметров старой и новой модели
optimized_metrics[
[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
"Accuracy_train",
"Accuracy_test",
"F1_train",
"F1_test",
]
].style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=["Accuracy_train", "Accuracy_test", "F1_train", "F1_test"],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Precision_train",
"Precision_test",
"Recall_train",
"Recall_test",
],
)
Как для обучающей (Precision_train), так и для тестовой (Precision_test) выборки обе модели достигли идеальных значений 1.000000. Это указывает на то, что модели очень точно классифицируют положительные образцы, не пропуская их.
optimized_metrics[
[
"Accuracy_test",
"F1_test",
"ROC_AUC_test",
"Cohen_kappa_test",
"MCC_test",
]
].style.background_gradient(
cmap="plasma",
low=0.3,
high=1,
subset=[
"ROC_AUC_test",
"MCC_test",
"Cohen_kappa_test",
],
).background_gradient(
cmap="viridis",
low=1,
high=0.3,
subset=[
"Accuracy_test",
"F1_test",
],
)
Оба варианта модели продемонстрировали безупречную точность классификации, достигнув значения 1.000000. Это свидетельствует о том, что модели точно классифицировали все тестовые примеры, не допустив никаких ошибок в предсказаниях.
_, ax = plt.subplots(1, 2, figsize=(10, 4), sharex=False, sharey=False
)
for index in range(0, len(optimized_metrics)):
c_matrix = optimized_metrics.iloc[index]["Confusion_matrix"]
disp = ConfusionMatrixDisplay(
confusion_matrix=c_matrix, display_labels=["Less", "More"]
).plot(ax=ax.flat[index])
plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.3)
plt.show()
В желтом квадрате мы видим значение 1049, что обозначает количество правильно классифицированных объектов, отнесенных к классу "Less". Это свидетельствует о том, что модель успешно идентифицирует объекты этого класса, минимизируя количество ложных положительных срабатываний.
В зеленом квадрате значение 558 указывает на количество правильно классифицированных объектов, отнесенных к классу "More". Это также является показателем высокой точности модели в определении объектов данного класса.