оценки

This commit is contained in:
Максим Яковлев 2024-11-02 13:01:31 +04:00
parent 706cb45a72
commit 435d47d8d8

View File

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 106, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -15,7 +15,7 @@
" dtype='object')" " dtype='object')"
] ]
}, },
"execution_count": 106, "execution_count": 10,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -41,7 +41,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 107, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -99,7 +99,7 @@
"dtype: bool" "dtype: bool"
] ]
}, },
"execution_count": 107, "execution_count": 11,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -131,7 +131,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 108, "execution_count": 12,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -212,7 +212,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 109, "execution_count": 13,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -247,7 +247,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 110, "execution_count": 14,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -319,7 +319,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 111, "execution_count": 15,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -366,7 +366,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 112, "execution_count": 16,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -403,7 +403,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 113, "execution_count": 17,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -776,7 +776,7 @@
"[2000 rows x 26 columns]" "[2000 rows x 26 columns]"
] ]
}, },
"execution_count": 113, "execution_count": 17,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -798,7 +798,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 114, "execution_count": 18,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -820,14 +820,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 115, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"d:\\Study\\3 курс 5 семестр\\AIM\\AIM-PIbd-31-Yakovlev-M-G\\kernel\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", "d:\\Study\\AIM-PIbd-31-Yakovlev-M-G\\kernel\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n",
" warnings.warn(\n" " warnings.warn(\n"
] ]
}, },
@ -1243,7 +1243,7 @@
"[6362 rows x 28 columns]" "[6362 rows x 28 columns]"
] ]
}, },
"execution_count": 115, "execution_count": 21,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -1265,6 +1265,77 @@
"\n", "\n",
"feature_matrix" "feature_matrix"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Оценка качества"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Время обучения: 0.27 секунд\n",
"MSE: 2205809457.9675403\n",
"RMSE: 46966.04579872081\n",
"R²: 0.9623494755346685\n",
"MAE: 35440.813340503635 \n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"d:\\Study\\AIM-PIbd-31-Yakovlev-M-G\\kernel\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
}
],
"source": [
"import time\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.metrics import r2_score, mean_absolute_error\n",
"from sklearn.model_selection import cross_val_score\n",
"\n",
"X = feature_matrix.drop('price', axis=1)\n",
"y = feature_matrix['price']\n",
"\n",
"#Делим на выборки\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"#Начнем обучение\n",
"model = LinearRegression()\n",
"start_time = time.time()\n",
"model.fit(X_train, y_train)\n",
"\n",
"train_time = time.time() - start_time\n",
"\n",
"#Вычесляем показательную способность\n",
"y_pred = model.predict(X_test)\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"rmse = mean_squared_error(y_test, y_pred, squared=False)\n",
"r2 = r2_score(y_test, y_pred)\n",
"mae = mean_absolute_error(y_test, y_pred)\n",
"\n",
"print()\n",
"print(f\"Время обучения: {train_time:.2f} секунд\")\n",
"print(\"Метрики:\")\n",
"print(f\"MSE: {mse}\")\n",
"print(f\"RMSE: {rmse}\")\n",
"print(f\"R²: {r2}\")\n",
"print(f\"MAE: {mae} \\n\")"
]
} }
], ],
"metadata": { "metadata": {