оценки
This commit is contained in:
parent
706cb45a72
commit
435d47d8d8
@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 106,
|
"execution_count": 10,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -15,7 +15,7 @@
|
|||||||
" dtype='object')"
|
" dtype='object')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 106,
|
"execution_count": 10,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -41,7 +41,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 107,
|
"execution_count": 11,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -99,7 +99,7 @@
|
|||||||
"dtype: bool"
|
"dtype: bool"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 107,
|
"execution_count": 11,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -131,7 +131,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 108,
|
"execution_count": 12,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -212,7 +212,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 109,
|
"execution_count": 13,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -247,7 +247,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 110,
|
"execution_count": 14,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -319,7 +319,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 111,
|
"execution_count": 15,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -366,7 +366,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 112,
|
"execution_count": 16,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -403,7 +403,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 113,
|
"execution_count": 17,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -776,7 +776,7 @@
|
|||||||
"[2000 rows x 26 columns]"
|
"[2000 rows x 26 columns]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 113,
|
"execution_count": 17,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -798,7 +798,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 114,
|
"execution_count": 18,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -820,14 +820,14 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 115,
|
"execution_count": 21,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"d:\\Study\\3 курс 5 семестр\\AIM\\AIM-PIbd-31-Yakovlev-M-G\\kernel\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n",
|
"d:\\Study\\AIM-PIbd-31-Yakovlev-M-G\\kernel\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n",
|
||||||
" warnings.warn(\n"
|
" warnings.warn(\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -1243,7 +1243,7 @@
|
|||||||
"[6362 rows x 28 columns]"
|
"[6362 rows x 28 columns]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 115,
|
"execution_count": 21,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -1265,6 +1265,77 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"feature_matrix"
|
"feature_matrix"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Оценка качества"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 32,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"Время обучения: 0.27 секунд\n",
|
||||||
|
"MSE: 2205809457.9675403\n",
|
||||||
|
"RMSE: 46966.04579872081\n",
|
||||||
|
"R²: 0.9623494755346685\n",
|
||||||
|
"MAE: 35440.813340503635 \n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"d:\\Study\\AIM-PIbd-31-Yakovlev-M-G\\kernel\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import time\n",
|
||||||
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
|
"from sklearn.linear_model import LinearRegression\n",
|
||||||
|
"from sklearn.metrics import mean_squared_error\n",
|
||||||
|
"from sklearn.metrics import r2_score, mean_absolute_error\n",
|
||||||
|
"from sklearn.model_selection import cross_val_score\n",
|
||||||
|
"\n",
|
||||||
|
"X = feature_matrix.drop('price', axis=1)\n",
|
||||||
|
"y = feature_matrix['price']\n",
|
||||||
|
"\n",
|
||||||
|
"#Делим на выборки\n",
|
||||||
|
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
||||||
|
"\n",
|
||||||
|
"#Начнем обучение\n",
|
||||||
|
"model = LinearRegression()\n",
|
||||||
|
"start_time = time.time()\n",
|
||||||
|
"model.fit(X_train, y_train)\n",
|
||||||
|
"\n",
|
||||||
|
"train_time = time.time() - start_time\n",
|
||||||
|
"\n",
|
||||||
|
"#Вычесляем показательную способность\n",
|
||||||
|
"y_pred = model.predict(X_test)\n",
|
||||||
|
"mse = mean_squared_error(y_test, y_pred)\n",
|
||||||
|
"rmse = mean_squared_error(y_test, y_pred, squared=False)\n",
|
||||||
|
"r2 = r2_score(y_test, y_pred)\n",
|
||||||
|
"mae = mean_absolute_error(y_test, y_pred)\n",
|
||||||
|
"\n",
|
||||||
|
"print()\n",
|
||||||
|
"print(f\"Время обучения: {train_time:.2f} секунд\")\n",
|
||||||
|
"print(\"Метрики:\")\n",
|
||||||
|
"print(f\"MSE: {mse}\")\n",
|
||||||
|
"print(f\"RMSE: {rmse}\")\n",
|
||||||
|
"print(f\"R²: {r2}\")\n",
|
||||||
|
"print(f\"MAE: {mae} \\n\")"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
Loading…
Reference in New Issue
Block a user