2494 lines
475 KiB
Plaintext
2494 lines
475 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Датасет №1 (Использование мобильных устройств и поведение пользователей)\n",
|
||
"Ссылка: https://www.kaggle.com/datasets/valakhorasani/mobile-device-usage-and-user-behavior-dataset\n",
|
||
"\n",
|
||
"Проблемная область: прогнозирование пользовательского поведения и сегментация пользователей для улучшения работы приложений, оптимизации потребления энергии, анализа пользовательского опыта или рекламы.\n",
|
||
"\n",
|
||
"Объекты наблюдения: пользователи мобильных устройств, чьи данные об использовании собираются и анализируются."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 195,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['User ID', 'Device Model', 'Operating System',\n",
|
||
" 'App Usage Time (min/day)', 'Screen On Time (hours/day)',\n",
|
||
" 'Battery Drain (mAh/day)', 'Number of Apps Installed',\n",
|
||
" 'Data Usage (MB/day)', 'Age', 'Gender', 'User Behavior Class'],\n",
|
||
" dtype='object')\n",
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 700 entries, 0 to 699\n",
|
||
"Data columns (total 11 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 User ID 700 non-null int64 \n",
|
||
" 1 Device Model 700 non-null object \n",
|
||
" 2 Operating System 700 non-null object \n",
|
||
" 3 App Usage Time (min/day) 700 non-null int64 \n",
|
||
" 4 Screen On Time (hours/day) 700 non-null float64\n",
|
||
" 5 Battery Drain (mAh/day) 700 non-null int64 \n",
|
||
" 6 Number of Apps Installed 700 non-null int64 \n",
|
||
" 7 Data Usage (MB/day) 700 non-null int64 \n",
|
||
" 8 Age 700 non-null int64 \n",
|
||
" 9 Gender 700 non-null object \n",
|
||
" 10 User Behavior Class 700 non-null int64 \n",
|
||
"dtypes: float64(1), int64(7), object(3)\n",
|
||
"memory usage: 60.3+ KB\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>User ID</th>\n",
|
||
" <th>Device Model</th>\n",
|
||
" <th>Operating System</th>\n",
|
||
" <th>App Usage Time (min/day)</th>\n",
|
||
" <th>Screen On Time (hours/day)</th>\n",
|
||
" <th>Battery Drain (mAh/day)</th>\n",
|
||
" <th>Number of Apps Installed</th>\n",
|
||
" <th>Data Usage (MB/day)</th>\n",
|
||
" <th>Age</th>\n",
|
||
" <th>Gender</th>\n",
|
||
" <th>User Behavior Class</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>1</td>\n",
|
||
" <td>Google Pixel 5</td>\n",
|
||
" <td>Android</td>\n",
|
||
" <td>393</td>\n",
|
||
" <td>6.4</td>\n",
|
||
" <td>1872</td>\n",
|
||
" <td>67</td>\n",
|
||
" <td>1122</td>\n",
|
||
" <td>40</td>\n",
|
||
" <td>Male</td>\n",
|
||
" <td>4</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>2</td>\n",
|
||
" <td>OnePlus 9</td>\n",
|
||
" <td>Android</td>\n",
|
||
" <td>268</td>\n",
|
||
" <td>4.7</td>\n",
|
||
" <td>1331</td>\n",
|
||
" <td>42</td>\n",
|
||
" <td>944</td>\n",
|
||
" <td>47</td>\n",
|
||
" <td>Female</td>\n",
|
||
" <td>3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Xiaomi Mi 11</td>\n",
|
||
" <td>Android</td>\n",
|
||
" <td>154</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>761</td>\n",
|
||
" <td>32</td>\n",
|
||
" <td>322</td>\n",
|
||
" <td>42</td>\n",
|
||
" <td>Male</td>\n",
|
||
" <td>2</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4</td>\n",
|
||
" <td>Google Pixel 5</td>\n",
|
||
" <td>Android</td>\n",
|
||
" <td>239</td>\n",
|
||
" <td>4.8</td>\n",
|
||
" <td>1676</td>\n",
|
||
" <td>56</td>\n",
|
||
" <td>871</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>Male</td>\n",
|
||
" <td>3</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5</td>\n",
|
||
" <td>iPhone 12</td>\n",
|
||
" <td>iOS</td>\n",
|
||
" <td>187</td>\n",
|
||
" <td>4.3</td>\n",
|
||
" <td>1367</td>\n",
|
||
" <td>58</td>\n",
|
||
" <td>988</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>Female</td>\n",
|
||
" <td>3</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" User ID Device Model Operating System App Usage Time (min/day) \\\n",
|
||
"0 1 Google Pixel 5 Android 393 \n",
|
||
"1 2 OnePlus 9 Android 268 \n",
|
||
"2 3 Xiaomi Mi 11 Android 154 \n",
|
||
"3 4 Google Pixel 5 Android 239 \n",
|
||
"4 5 iPhone 12 iOS 187 \n",
|
||
"\n",
|
||
" Screen On Time (hours/day) Battery Drain (mAh/day) \\\n",
|
||
"0 6.4 1872 \n",
|
||
"1 4.7 1331 \n",
|
||
"2 4.0 761 \n",
|
||
"3 4.8 1676 \n",
|
||
"4 4.3 1367 \n",
|
||
"\n",
|
||
" Number of Apps Installed Data Usage (MB/day) Age Gender \\\n",
|
||
"0 67 1122 40 Male \n",
|
||
"1 42 944 47 Female \n",
|
||
"2 32 322 42 Male \n",
|
||
"3 56 871 20 Male \n",
|
||
"4 58 988 31 Female \n",
|
||
"\n",
|
||
" User Behavior Class \n",
|
||
"0 4 \n",
|
||
"1 3 \n",
|
||
"2 2 \n",
|
||
"3 3 \n",
|
||
"4 3 "
|
||
]
|
||
},
|
||
"execution_count": 195,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import seaborn as sns\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"\n",
|
||
"df_mobiles = pd.read_csv(\".//static//csv//user_behavior_dataset.csv\")\n",
|
||
"print(df_mobiles.columns)\n",
|
||
"df_mobiles.info()\n",
|
||
"df_mobiles.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Атрибуты объектов:\n",
|
||
"1. User ID — уникальный идентификатор пользователя.\n",
|
||
"2. Device Model — модель устройства.\n",
|
||
"3. Operating System — операционная система устройства.\n",
|
||
"4. App Usage Time (min/day) — время использования приложений в минутах в день.\n",
|
||
"5. Data Usage (MB/day) — время включенного экрана в часах в день.\n",
|
||
"6. Battery Drain (mAh/day) — потребление батареи в мАч в день.\n",
|
||
"7. Number of Apps Installed — количество установленных приложений.\n",
|
||
"8. Screen On Time (hours/day) — объем данных в мегабайтах в день.\n",
|
||
"9. Age — возраст пользователя.\n",
|
||
"10. Gender — пол пользователя.\n",
|
||
"11. User Behavior Class — класс поведения пользователя (категория для классификации).\n",
|
||
"\n",
|
||
"Связи между объектами:\n",
|
||
"Атрибуты, такие как модель устройства, ОС и время использования приложений, могут быть связаны с классом поведения, представляя зависимости между действиями пользователя и его характеристиками.\n",
|
||
"\n",
|
||
"Примеры бизнес-целей и эффекты для бизнеса:\n",
|
||
"1. Оптимизация энергопотребления устройств:\n",
|
||
" - Бизнес-цель: Оптимизировать работу приложений для снижения расхода батареи, что увеличит время работы устройства и улучшит пользовательский опыт.\n",
|
||
" - Эффект: Повышение удовлетворенности клиентов и снижение вероятности перехода на конкурентные приложения.\n",
|
||
"\n",
|
||
"2. Сегментация пользователей для рекламы:\n",
|
||
" - Бизнес-цель: Создание таргетированной рекламы на основе поведения пользователей (классы поведения).\n",
|
||
" - Эффект: Увеличение конверсий и доходов от рекламных кампаний за счет более точной сегментации.\n",
|
||
"\n",
|
||
"Примеры целей технического проекта:\n",
|
||
"1. Цель: Построение модели для прогнозирования расхода батареи.\n",
|
||
" - Вход: Модель устройства, ОС, время использования приложений, количество приложений, возраст.\n",
|
||
" - Целевой признак: Battery Drain (mAh/day).\n",
|
||
"\n",
|
||
"2. Цель: Сегментация пользователей для рекламных кампаний.\n",
|
||
" - Вход: Время использования приложений, возраст, пол, объем данных.\n",
|
||
" - Целевой признак: User Behavior Class."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Проверка на пустые значения и дубликаты"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 196,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Пустые значения по столбцам:\n",
|
||
"User ID 0\n",
|
||
"Device Model 0\n",
|
||
"Operating System 0\n",
|
||
"App Usage Time (min/day) 0\n",
|
||
"Screen On Time (hours/day) 0\n",
|
||
"Battery Drain (mAh/day) 0\n",
|
||
"Number of Apps Installed 0\n",
|
||
"Data Usage (MB/day) 0\n",
|
||
"Age 0\n",
|
||
"Gender 0\n",
|
||
"User Behavior Class 0\n",
|
||
"dtype: int64\n",
|
||
"\n",
|
||
"Количество дубликатов: 0\n",
|
||
"\n",
|
||
"Статистический обзор данных:\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>User ID</th>\n",
|
||
" <th>App Usage Time (min/day)</th>\n",
|
||
" <th>Screen On Time (hours/day)</th>\n",
|
||
" <th>Battery Drain (mAh/day)</th>\n",
|
||
" <th>Number of Apps Installed</th>\n",
|
||
" <th>Data Usage (MB/day)</th>\n",
|
||
" <th>Age</th>\n",
|
||
" <th>User Behavior Class</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>count</th>\n",
|
||
" <td>700.00000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" <td>700.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>mean</th>\n",
|
||
" <td>350.50000</td>\n",
|
||
" <td>271.128571</td>\n",
|
||
" <td>5.272714</td>\n",
|
||
" <td>1525.158571</td>\n",
|
||
" <td>50.681429</td>\n",
|
||
" <td>929.742857</td>\n",
|
||
" <td>38.482857</td>\n",
|
||
" <td>2.990000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>std</th>\n",
|
||
" <td>202.21688</td>\n",
|
||
" <td>177.199484</td>\n",
|
||
" <td>3.068584</td>\n",
|
||
" <td>819.136414</td>\n",
|
||
" <td>26.943324</td>\n",
|
||
" <td>640.451729</td>\n",
|
||
" <td>12.012916</td>\n",
|
||
" <td>1.401476</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>min</th>\n",
|
||
" <td>1.00000</td>\n",
|
||
" <td>30.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>302.000000</td>\n",
|
||
" <td>10.000000</td>\n",
|
||
" <td>102.000000</td>\n",
|
||
" <td>18.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>25%</th>\n",
|
||
" <td>175.75000</td>\n",
|
||
" <td>113.250000</td>\n",
|
||
" <td>2.500000</td>\n",
|
||
" <td>722.250000</td>\n",
|
||
" <td>26.000000</td>\n",
|
||
" <td>373.000000</td>\n",
|
||
" <td>28.000000</td>\n",
|
||
" <td>2.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>50%</th>\n",
|
||
" <td>350.50000</td>\n",
|
||
" <td>227.500000</td>\n",
|
||
" <td>4.900000</td>\n",
|
||
" <td>1502.500000</td>\n",
|
||
" <td>49.000000</td>\n",
|
||
" <td>823.500000</td>\n",
|
||
" <td>38.000000</td>\n",
|
||
" <td>3.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>75%</th>\n",
|
||
" <td>525.25000</td>\n",
|
||
" <td>434.250000</td>\n",
|
||
" <td>7.400000</td>\n",
|
||
" <td>2229.500000</td>\n",
|
||
" <td>74.000000</td>\n",
|
||
" <td>1341.000000</td>\n",
|
||
" <td>49.000000</td>\n",
|
||
" <td>4.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>max</th>\n",
|
||
" <td>700.00000</td>\n",
|
||
" <td>598.000000</td>\n",
|
||
" <td>12.000000</td>\n",
|
||
" <td>2993.000000</td>\n",
|
||
" <td>99.000000</td>\n",
|
||
" <td>2497.000000</td>\n",
|
||
" <td>59.000000</td>\n",
|
||
" <td>5.000000</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" User ID App Usage Time (min/day) Screen On Time (hours/day) \\\n",
|
||
"count 700.00000 700.000000 700.000000 \n",
|
||
"mean 350.50000 271.128571 5.272714 \n",
|
||
"std 202.21688 177.199484 3.068584 \n",
|
||
"min 1.00000 30.000000 1.000000 \n",
|
||
"25% 175.75000 113.250000 2.500000 \n",
|
||
"50% 350.50000 227.500000 4.900000 \n",
|
||
"75% 525.25000 434.250000 7.400000 \n",
|
||
"max 700.00000 598.000000 12.000000 \n",
|
||
"\n",
|
||
" Battery Drain (mAh/day) Number of Apps Installed Data Usage (MB/day) \\\n",
|
||
"count 700.000000 700.000000 700.000000 \n",
|
||
"mean 1525.158571 50.681429 929.742857 \n",
|
||
"std 819.136414 26.943324 640.451729 \n",
|
||
"min 302.000000 10.000000 102.000000 \n",
|
||
"25% 722.250000 26.000000 373.000000 \n",
|
||
"50% 1502.500000 49.000000 823.500000 \n",
|
||
"75% 2229.500000 74.000000 1341.000000 \n",
|
||
"max 2993.000000 99.000000 2497.000000 \n",
|
||
"\n",
|
||
" Age User Behavior Class \n",
|
||
"count 700.000000 700.000000 \n",
|
||
"mean 38.482857 2.990000 \n",
|
||
"std 12.012916 1.401476 \n",
|
||
"min 18.000000 1.000000 \n",
|
||
"25% 28.000000 2.000000 \n",
|
||
"50% 38.000000 3.000000 \n",
|
||
"75% 49.000000 4.000000 \n",
|
||
"max 59.000000 5.000000 "
|
||
]
|
||
},
|
||
"execution_count": 196,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"null_values = df_mobiles.isnull().sum()\n",
|
||
"print(\"Пустые значения по столбцам:\")\n",
|
||
"print(null_values)\n",
|
||
"\n",
|
||
"duplicates = df_mobiles.duplicated().sum()\n",
|
||
"print(f\"\\nКоличество дубликатов: {duplicates}\")\n",
|
||
"\n",
|
||
"print(\"\\nСтатистический обзор данных:\")\n",
|
||
"df_mobiles.describe()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Пустых значений и дубликатов нет, проверим на выбросы:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 197,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Количество выбросов в столбце 'App Usage Time (min/day)': 0\n",
|
||
"Количество выбросов в столбце 'Screen On Time (hours/day)': 0\n",
|
||
"Количество выбросов в столбце 'Battery Drain (mAh/day)': 0\n",
|
||
"Количество выбросов в столбце 'Number of Apps Installed': 0\n",
|
||
"Количество выбросов в столбце 'Data Usage (MB/day)': 0\n",
|
||
"Количество выбросов в столбце 'User Behavior Class': 0\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABc8AAAPeCAYAAADatOK+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADskUlEQVR4nOzdd3QU5dvG8SuFdBJCAqEndKQJ0lF6FxFUpIgQsDewU2yAiIAo2FERQTGKIl2KFEEUUYrSfiA1ICpF6b0k9/sHZ/dlZ5OQhIRQvp9zOLozszPPPLuZe+baKT5mZgIAAAAAAAAAAG6+Od0AAAAAAAAAAAAuN4TnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnyLDt27fLx8dH48aNy+mmeJgzZ46qVKmioKAg+fj46ODBgzndJGRSXFycunfvntPN8PLII4+oWbNmWTrPS7WuixYtko+PjxYtWpRty+jUqZM6dOiQbfMHcGHUaGS1AQMGyMfHJ6eb4WXZsmUKCAjQjh073MPi4uJ0yy235GCrLo3s/kzOnDmjokWL6v3338+2ZQC4eNR8XKyGDRuqYcOGWT7f1157TeXKlVNycnKWzzs9XHXyv//+y9L5jhs3Tj4+Ptq+fXuWzvd8tWvXVu/evbNt/sgcwvMc5PrDO/9f/vz51ahRI82ePfuSt8cVrrn+5cqVSyVKlFC3bt20bdu2LFnGzz//rAEDBmR5Ad23b586dOig4OBgvffeexo/frxCQ0Mv+L73339fPj4+qlWrVpa2JzPSOuBbsWLFZbljlF7O71Za/y5XiYmJ+vjjj/Xcc8/ldFO8zJgxQ76+vtq9e3eOtqNPnz6aNGmSVq9enaPtALICNTrrZLRGr127Vu3bt1dsbKyCgoJUuHBhNWvWTO+8806WtutydOzYMQ0aNEiVK1dWSEiIIiIiVK9ePX322WcysyxbTlxcXLpq8uW83/H888+rc+fOio2NzemmZKmnn35a5cuXz9E25MqVS0899ZQGDx6skydP5mhbgEuBmp91MlLzs6vfX331VU2dOtVreHatc1bo3r27Rz+EhYWpRIkSat++vSZNmpRjIXRmHD58WMOGDVOfPn3k65s9kWPNmjXl4+OjUaNGZdk833nnHUVEROjMmTNZNs/M6NOnj957770cP7aHJ/+cbgCkl19+WcWLF5eZac+ePRo3bpxuvvlmzZgxI0fOnunVq5dq1KihM2fO6LffftNHH32kmTNnau3atSpUqNBFzfvnn3/WwIED1b17d+XJkydrGixp+fLlOnLkiAYNGqSmTZum+30JCQmKi4vTsmXLtGXLFpUqVSrL2oT/d91112n8+PEew/r166ewsDA9//zzXtNv3Lgx2wptZr311lsqXry4GjVqlKXzzYp1nTlzpqpVq6YCBQpkUasyp2rVqqpevbreeOMNffbZZznaFiCrUKMvXkZq9M8//6xGjRqpWLFiuv/++1WgQAHt3LlTv/zyi9566y317Nkzy9p1udmzZ4+aNGmiDRs2qFOnTnrsscd08uRJTZo0SfHx8Zo1a5YSEhLk5+d30ct68803dfToUffrWbNm6csvv9TIkSMVHR3tHl63bl3dfffd6tu370UvMyutWrVK8+fP188//5zTTclyM2fOVJs2bXK6GerRo4f69u2rL774Qvfcc09ONwe4JKj5Fy8zx+VZ3e+vvvqq2rdvr3bt2nkMz651ziqBgYH6+OOPJUknTpzQjh07NGPGDLVv314NGzbUtGnTFB4enqXLnDt3bpbOT5I++eQTnT17Vp07d87yeUvS5s2btXz5csXFxSkhIUEPP/xwlsx35syZat68uXLlypUl88ustm3bKjw8XO+//75efvnlHG0L/h/h+WWgVatWql69uvv1vffeq5iYGH355Zc5UqTr1aun9u3bSzq341ymTBn16tVLn376qfr163fJ25Mee/fulaQMFcHExET9/PPPmjx5sh588EElJCSof//+2dTCa1tMTIzuvvtuj2FDhw5VdHS013Dp3I7D5eTMmTNKSEjQQw89lOXzzop1nTVr1mVzYNuhQwf1799f77//vsLCwnK6OcBFo0ZfvIzU6MGDBysiIkLLly/3mt41n4thZjp58qSCg4Mvel5ZLT4+Xhs2bNCUKVN06623uof36tVLzz77rF5//XVVrVpVffr0uehlOQOF3bt368svv1S7du0UFxfnNb2//+V1yDB27FgVK1ZMtWvXzummpOn48eMKCQlJ9/Tbtm3Txo0b9cEHH2Rjq9InT548at68ucaNG3fZ7GMA2Y2af/Eyc1x+ufV7RmV0W58af39/r2PjV155RUOHDlW/fv10//3366uvvkr1/ZnZxwkICMh0e1MzduxY3XrrrQoKCsryeUvS559/rvz58+uNN95Q+/bttX379hT3XTLi+PHj+uGHH7L0TPbM8vX1Vfv27fXZZ59p4MCBl/XV+deSy+vUTkg6V2iCg4O9DlSOHTump59+WkWLFlVgYKDKli2r119/3X0Z74kTJ1SuXDmVK1dOJ06ccL9v//79KliwoOrWraukpKQMt6dx48aSzoXNafn+++9Vr149hYaGKk+ePGrbtq02bNjgHj9gwAA9++yzkqTixYu7L0m60P2iJk6cqGrVqik4ONgdtv7999/u8Q0bNlR8fLwkqUaNGvLx8UnXPaQTEhIUGRmp1q1bq3379kpISPCaxnUfuddff10jR45UbGysgoOD1aBBA61bt85j2u7duyssLEzbtm1TixYtFBoaqkKFCunll1/O0kutXXbv3q0ePXqoSJEiCgwMVMGCBdW2bVuP/pw2bZpat26tQoUKKTAwUCVLltSgQYNS/B689957KlGihIKDg1WzZk39+OOPKd4D7dSpU+rfv79KlSqlwMBAFS1aVL1799apU6eybN2c9wF3XdL3008/qVevXsqXL5/y5MmjBx98UKdPn9bBgwfVrVs3RUZGKjIyUr179/bq8+TkZL355puqUKGCgoKCFBMTowcffFAHDhy4YHt++ukn/ffff15nT7guqfz66681cOBAFS5cWLlz51b79u116NAhnTp1Sk888YTy58+vsLAw9ejRw6ufUlvXJUuW6KmnnlK+fPkUGhqq2267Tf/++69X29auXaudO3eqdevW7mF//fWX2rVrp9DQUOXPn19PPvlkip/Pjz/+qDvvvFPFihVzf5ZPPvmkx/Zj7Nix8vHx0e+//+71/ldffVV+fn4ef4/NmjXTsWPHNG/evAv2K3AlokZ7yuoavXXrVlWoUCHFg+78+fN7Dfv8889Vs2ZNhYSEKDIyUvXr1/c4i8p1S7TvvvtO1atXV3BwsD788ENJ0sGDB/XEE0+4P7NSpUpp2LBhXpdGp7d+uJb1008/qWbNmgoKClKJEiXSdSXOL7/8ou+++07du3f3CM5dhgwZotKlS2vYsGHu78/5+ygfffSRSpYsqcDAQNWoUUPLly+/4DLTK6X7a/v4+Oixxx7TxIkTVb58eQUHB6tOnTpau3atJOnDDz9UqVKlFBQUpIYNG6b4Pfr111/VsmVLRUREKCQkRA0aNNCSJUvS1aapU6eqcePGqR5Qpucz2LZtm+68807lzZtXISEhql27tmbOnOkxTWr3Nk3pOSINGzZUxYoVtXLlStWvX18hISHuW72tWLFCLVq0UHR0tIKDg1W8ePEUA+mZM2cqIiJCN910k8e61KhRQ0FBQSpZsqT7++s0duxYNW7cWPnz51dgYKDKly/vFQLEx8crOjo6xUvSmzdvrrJly3oMa9asmX766Sft378/xWUCVztqvqfsOi53Sq3fX3/9ddWtW1dRUVEKDg5WtWrV9M0333hM4+Pjo2PHjunTTz91r1f37t3Ttc6ff/65e/3y5s2rTp06aefOnR7zT21bn9Hta0b07dtXzZs318SJE7Vp0yb38LT2cdJTE1zrc/7x/vnHt4MHD1aRIkUUFBSkJk2aaMuWLRdsa2JiotasWeN13Hz+PosrdwgJCVHz5s21c+dOmZkGDRqkIkWKKDg4WG3btk219nzxxRdq3769brnlFkVEROiLL75ItT0HDx50X2kQERGhHj166Pjx417TLViwQKdOnVKrVq3cw/73v/+pcePGCg4OVpEiRfTKK6+kePuc9GQu/fv3V65cuVI8nn/ggQeUJ08ej9ukNWvWTDt27NCqVatSXTdcYoYcM3bsWJNk8+fPt3///df27t1r69atswcffNB8fX1t7ty57mmTk5OtcePG5uPjY/fdd5+9++671qZNG5NkTzzxhHu6X375xfz8/OzJJ590D+vUqZMFBwfbxo0b02zPwoULTZJNnDjRY/i0adNMkvXt29fMzBITE02SjR071j3NvHnzzN/f38qUKWOvvfaaDRw40KKjoy0yMtISExPNzGz16tXWuXNnk2QjR4608ePH2/jx4+3o0aMX7KMaNWrYyJEjrW/fvhYcHGxxcXF24MABMzObO3euPfDAAybJXn75ZRs/frz9/PPPaa6rmVm5cuXs3nvvNTOzxYsXmyRbtmyZxzSuda1UqZLFxcXZsGHDbODAgZY3b17Lly+f7d692z1tfHy8BQUFWenSpa1r16727rvv2i233GKS7MUXX7xge2JjY61169Ypjlu+fLlXn9etW9ciIiLshRdesI8//theffVVa9Sokf3www/uadq1a2cdOnSw4cOH26hRo+zOO+80SfbMM894zP/99983SVavXj17++237amnnrK8efNayZIlrUGDBu7pkpKSrHnz5hYSEmJPPPGEffjhh/bYY4+Zv7+/tW3b9oLreL4KFSp4zNvZF/Hx8e7Xru9BlSpVrGXLlvbee+9Z165dTZL17t3bbrrpJrvrrrvs/fffd/f5p59+6jHP++67z/z9/e3++++3Dz74wPr06WOhoaFWo0YNO336dJptfeWVV8zHx8cOHTrkMdz1N1OlShWrU6eOvf3229arVy/z8fGxTp062V133WWtWrXyaO/AgQPTta5Vq1a1xo0b2zvvvGNPP/20+fn5WYcOHbzaNnToUMufP78lJyebmdnx48etTJkyFhQUZL1797Y333zTqlWrZpUrVzZJtnDhQvd7e/bsaTfffLO9+uqr9uGHH9q9995rfn5+1r59e/c0hw8ftuDgYHv66ae9ll2+fHlr3Lixx7AzZ86kOj1wJaFG50yNbt68ueXOndvWrl2bZn+YmQ0YMMAkWd26dW348OH21ltv2V133WV9+vRxTxMbG2ulSpWyyMhI69u3r33wwQe2cOFCO3bsmFWuXNmioqLsueeesw8++MC6detmPj4+9vjjj3ssJ731IzY21sqWLWsxMTH23HPP2bvvvms33HCD+fj42Lp169Jcl+eee84k2aJFi1Kdpn///ibJ5s2bZ2b//1lXrVrVSpUqZcOGDbPXXnvNoqOjrUiRIhesbecbPny4SXJ/H1Ja7vkkWeXKla1o0aI2dOhQGzp0qEVERFixYsXs3XfftfLly9sbb7xhL7zwggUEBFijRo083r9gwQILCAiwOnXq2BtvvGEjR460ypUrW0BAgP36669ptvWvv/4ySfb22297jUvvZ7B7926LiYmx3Llz2/PPP28jRoyw66+/3nx9fW3y5Mnu6VzfcWe/uP4ez6+pDRo0sAIFCli+fPmsZ8+e9uGHH9rUqVNtz549FhkZaWXKlLHhw4fb6NGj7fnnn7frrrvOq/0tW7b0qMFr1qyx4OBgK1asmA0ZMsQGDRpkMTEx7pp+vho1alj37t1t5MiR9s4771jz5s1Nkr377rvuaebNm2eSbMaMGR7v3bVrl/n5+dnLL7/sMfynn35KcXrgakPNz5man5F+NzMrUqSIPfLII/buu+/aiBEjrGbNmibJvv32W/c048ePt8DAQKtXr557vX7++ecLrrPreK9jx472/vvvu/vt/PUzS31bn9Htq1N8fLyFhoamOn78+PFe2/TU9nHM0lcTXOtz/jG567tXtWpVq1atmo0cOdIGDBhgISEhVrNmzTTXwczs888/N0m2Zs0aj+Gu72qVKlWsfPnyNmLECPc+Qu3ate25556zunXrehxP9+jRw2v+v/zyi0myH3/80czM7rnnHitfvrzXdK59l6pVq9rtt99u77//vt13333u/MDpoYcesurVq7tf79q1y/Lly2eRkZE2YMAAGz58uJUuXdpdf8/fL0hP5rJ582aTZO+8847Hck+dOmWRkZF2zz33eAx37es4p0fOITzPQa5i4fwXGBho48aN85h26tSpJsleeeUVj+Ht27c3Hx8f27Jli3tYv379zNfX1xYvXmwTJ040Sfbmm29esD2uDeUnn3xi//77r/3zzz82c+ZMi4uLMx8fH1u+fLmZpVykq1SpYvnz57d9+/a5h61evdp8fX2tW7du7mFpHZw5nT592vLnz28VK1a0EydOuId/++23Jsleeukl9zBXX7raeCErVqzwOABNTk62IkWKeB0wu9Y1ODjY/vrrL/fwX3/91SR57AzFx8ebJOvZs6d7WHJysrVu3doCAgLs33//TbNNGQnPDxw4YJJs+PDhac7z+PHjXsMefPBBCwkJsZMnT5rZuQ12VFSU1ahRw86cOeOebty4cSbJo5iOHz/efH193cXK5YMPPjBJtmTJkjTbc77MhOctWrRwh8RmZnXq1DEfHx976KGH3MPOnj1rRYoU8Zj3jz/+aJIsISHBYzlz5sxJcbjT3XffbVFRUV7DXX8zFStW9AgpOnfubD4+PtaqVSuP6evUqWOxsbHpWtemTZt6rOuTTz5pfn5+dvDgQY/316tXz+P9b775pkmyr7/+2j3s2LFjVqpUKa8D/ZS+H0OGDDEfHx/bsWOHx/oUKlTIkpKS3MN+++03r+2AS5kyZbzWHbjSUKPTll01eu7cuebn52d+fn5Wp04d6927t3333XdeQfDmzZvN19fXbrvtNo9tk5l5bDtjY2NNks2ZM8djmkGDBlloaKht2rTJY3jfvn3Nz8/P/vzzTzPLWP1wLWvx4sXuYXv37rXAwMAL/qDYrl07k+RxgO40efJkj9DY9VlHRUXZ/v373dO5wpWMBJ6ZCc8DAwM9pv/www9NkhUoUMAOHz7sHt6vXz+PeScnJ1vp0qW9avrx48etePHi1qxZszTbOn/+/FTXL72fwRNPPOFx8G1mduTIEStevLjFxcW5v1MZDc8l2QcffOAx7ZQpU9L1/T927JgFBQV5/O22a9fOgoKCPGry+vXrzc/Pz+szSammt2jRwkqUKOF+nZSUZEWKFLGOHTt6TDdixAjz8fGxbdu2eQz/559/TJINGzYszbYDVzpqftqyq+ZnpN/NvLdzp0+ftooVK3qdzBMaGupxfOSS2jpv377d/Pz8bPDgwR7D165da/7+/h7DU9vWZ3T76nSh8Pz333/3yh9S28cxS19NcK1PSuH5ddddZ6dOnXIPf+utt0zSBU9ueOGFF0ySHTlyxGO467uaL18+j+NZ1z7C9ddf75FFdO7c2QICAtyZhctjjz1mRYsWde8/zJ071yTZ77//7jGda9/FGUrfdtttKR7XFytWzPr37+9+7dpPOP8H/b1791pERITXdyg9mYvZuSygVq1aHtO59u3O359wCQgIsIcffthrOHIGt225DLz33nuaN2+e5s2bp88//1yNGjXSfffdp8mTJ7unmTVrlvz8/NSrVy+P9z799NMyM4+nUQ8YMEAVKlRQfHy8HnnkETVo0MDrfWm55557lC9fPhUqVEitW7d2X/Z0/n3Izrdr1y6tWrVK3bt3V968ed3DK1eurGbNmmnWrFnpXvb5VqxYob179+qRRx7xuF9W69atVa5cOa9LazMiISFBMTEx7oc/+vj4qGPHjpowYUKKl9C1a9dOhQsXdr+uWbOmatWqleK6PfbYY+7/d13WfPr0ac2fPz/T7XUKDg5WQECAFi1alOZtR86/39mRI0f033//qV69ejp+/Lj++OMPSef6ed++fbr//vs9Lo3r0qWLIiMjPeY3ceJEXXfddSpXrpz+++8/9z/XJYQLFy7MsnVMyb333utxiXatWrVkZrr33nvdw/z8/FS9enWPJ9FPnDhRERERatasmUe7q1WrprCwsAu2e9++fV59cb5u3bp5PFjE1S7nJdm1atXSzp07dfbs2Quu6wMPPOCxrvXq1VNSUpJ27NjhHnbw4EEtXbrU45Yts2bNUsGCBd33R5SkkJAQPfDAA17LOP/7cezYMf3333+qW7euzMzjNi3dunXTP//849FPCQkJCg4O1h133OE138jISP33338XXEfgSkCNTll21ehmzZpp6dKluvXWW7V69Wq99tpratGihQoXLqzp06e7p5s6daqSk5P10ksveT102Xkrj+LFi6tFixYewyZOnKh69eq5t1euf02bNlVSUpIWL17sni4j9aN8+fKqV6+e+3W+fPlUtmxZj5qUkiNHjkiScufOneo0rnGHDx/2GN6xY0ePGuVa/oWWebGaNGnicY/RWrVqSZLuuOMOj/VwDXe1Z9WqVdq8ebPuuusu7du3z92nx44dU5MmTbR48eIUL4t22bdvnySlWpfT8xnMmjVLNWvW9Lg9SlhYmB544AFt375d69evT283eAgMDFSPHj08hrluQfTtt9+meDm/y/fff+9xyXhSUpK+++47tWvXTsWKFXNPd91113l9nyXPmn7o0CH9999/atCggbZt26ZDhw5JOncf1S5dumj69Onu75x0rqbXrVtXxYsX95inq4+p6bhWUPNTlp3H5VL6+l3y3M4dOHBAhw4dUr169fTbb79d1PInT56s5ORkdejQwaPWFyhQQKVLl/aq9Slt6zO6fc0o17Okzp+3lPI+jpS+mpCWHj16eNwPPb37Fvv27ZO/v3+qz7668847FRER4X7t2ke4++67PbKIWrVq6fTp0x63BTp79qy++uordezY0b2v57o1TUq34JXk9cyyevXqad++fR77UuvWrdOff/7pdUxdu3Zt1axZ0z0sX7586tKli9cy0pO5SOeOqX/99Vdt3brVPSwhIUFFixZVgwYNvObLMfXlhfD8MlCzZk01bdpUTZs2VZcuXTRz5kyVL1/eHbpK0o4dO1SoUCGvg6rrrrvOPd4lICBAn3zyiRITE3XkyBH3PYvT66WXXtK8efP0/fffa82aNfrnn3/UtWvXVKd3LTul+3hdd9117gOijEprvuXKlfNY54xISkrShAkT1KhRIyUmJmrLli3asmWLatWqpT179mjBggVe7yldurTXsDJlynjdF87X11clSpTwmk7SBe8hlx6uzzEwMFDDhg3T7NmzFRMTo/r16+u1117T7t27Pab/3//+p9tuu00REREKDw9Xvnz53A8hcRVNVz+WKlXK473+/v5eD97YvHmz/ve//ylfvnwe/1zrmBUPc0vL+QePktyFt2jRol7Dz/9RYfPmzTp06JDy58/v1fajR4+mq92Wxn3rM9Ku5OTkdO2wOOfpOoA9f72+++47Sefuo+eyY8cOlSpVyutvPqW/oz///NO9cx0WFqZ8+fK5C/f5bWzWrJkKFizo3ilJTk7Wl19+qbZt26YY9JgZDzbBVYManfH5XkyNls7dJ3Xy5Mk6cOCAli1bpn79+unIkSNq3769O9TcunWrfH19Vb58+QvOL6UD1s2bN2vOnDleNcF1j05XXcho/XBuu6Vz2+8LPV/D9d1xHhSfL7WAPT31IjtkpPad357NmzdLOnf/bWeffvzxxzp16lS66mRqdTk9n8GOHTtS/Ztwjc+MwoULez18rUGDBrrjjjs0cOBARUdHq23btho7dqzXs0hmzpyp6tWrKyYmRpL077//6sSJEynug6bU9iVLlqhp06buexzny5fPfc/18/uzW7duOnHihKZMmSJJ2rhxo1auXJnidsTVx9R0XCuo+Rmf78XWfCl9/S6d+xGydu3aCgoKUt68eZUvXz6NGjUqXTUjLZs3b5aZqXTp0l51acOGDV61PqVtvZSx7WtGHT16VJL3PkBqoXx6a0JqsmvfIrP7DpI0d+5c/fvvv6pZs6Y7w0lMTFSjRo305ZdfpvjDe3rWY+bMmYqJifH4UWrHjh3prr/pyVykcyc7BAYGuo+pDx06pG+//VZdunRJcbvAMfXlxf/Ck+BS8/X1VaNGjfTWW29p8+bNqlChQobn4QrVTp48qc2bN2fol85KlSp5PeDhavL9999r165dmjBhgiZMmOA1PiEhwSOMvFSCgoI8HihzPtdDLc7/pf+JJ55QmzZtNHXqVH333Xd68cUXNWTIEH3//feqWrWqDh48qAYNGig8PFwvv/yySpYsqaCgIP3222/q06dPmmd1pSY5OVmVKlXSiBEjUhzvLHpZzc/PL93Dzz+oTk5OTvMX6Xz58qW53KioqDR3FDLSLmfbMjrP8987a9Ys3XjjjR6/3qdXUlKSmjVrpv3796tPnz4qV66cQkND9ffff6t79+4e3w8/Pz/dddddGj16tN5//30tWbJE//zzj9fT4F0OHDiQ4s4GcDWgRl86AQEBqlGjhmrUqKEyZcqoR48emjhxovr375+h+Zx/RpBLcnKymjVrpt69e6f4HtePwhmtH5nd7l933XWaOnWq1qxZo/r166c4zZo1ayTJ6weDi6k1FyOztc9VX4YPH64qVaqkOG1qZ6xJ52qylPoBfFb2R2oHrak96C+l75qPj4+++eYb/fLLL5oxY4a+++473XPPPXrjjTf0yy+/uNd11qxZXmcyptfWrVvVpEkTlStXTiNGjFDRokUVEBCgWbNmaeTIkR41vXz58qpWrZo+//xzdevWTZ9//rkCAgLUoUMHr/m6+jg6OjpT7QKudNT8nJFSv//444+69dZbVb9+fb3//vsqWLCgcuXKpbFjx6b5wMj0SE5Olo+Pj2bPnp1iDXHWpJS29VLGtq8ZtW7dOkneJ7yl1JaM1ITUZLaWRkVF6ezZszpy5EiKJ1ldzHGza18stf784Ycf3HcWyMh8Z82apZYtW2YqqM5I5hIZGalbbrlFCQkJeumll/TNN9/o1KlTqR5THzx4kPp7GSE8v0y5buvg+oUxNjZW8+fP99oIuS4DiY2NdQ9bs2aNXn75ZfXo0UOrVq3Sfffdp7Vr12YqYEsP17I3btzoNe6PP/5QdHS0QkNDJWXszJXz5+u6LYjLxo0bPdY5IxISEpQ/f3699957XuMmT56sKVOm6IMPPvAoRK6zpM63adMmrzOzk5OTtW3bNvdBt2s6SV7TOsXGxqZ6mbCrb53rXLJkST399NN6+umntXnzZlWpUkVvvPGGPv/8cy1atEj79u3T5MmTPQ7EnU9nd81zy5YtHsXm7Nmz2r59uypXruyxvNWrV6tJkyZX1K+gJUuW1Pz583XjjTemurOTlnLlyikhIUGHDh3Ktr+jjDIzzZkzR88884zH8NjYWK1bt87rl2rn3+fatWu1adMmffrpp+rWrZt7+Lx581JcXrdu3fTGG29oxowZmj17tvLly5fiJYJnz57Vzp07deutt17M6gGXNWp09tXo1LjOBtq1a5ekc9v15ORkrV+/PtUANi0lS5bU0aNHLxhKXGz9SK9bbrlFQ4YM0WeffZZieJ6UlKQvvvhCkZGRuvHGG7OtHZdCyZIlJUnh4eGZCoXKlSsnyXt/JiNiY2NT/ZtwjZf+/wy1gwcPekyXmbMsa9eurdq1a2vw4MH64osv1KVLF02YMEH33XdfipeM58uXT8HBwSnugzrbPmPGDJ06dUrTp0/3OMsutdvSdevWTU899ZR27dqlL774Qq1bt07xNjiuPnadUQtci6j5l77mS979PmnSJAUFBem7775TYGCge7qxY8d6vTe1dUtteMmSJWVmKl68uMdxfGakd/uaUePHj5ePj4+aNWt2wWkzWhOy0vk1+vwc4WIdO3ZM06ZNU8eOHT1uT+rSq1cvJSQkeIXnF3Lw4EH9/PPPHrfelc5959NTf9Obubh069ZNbdu21fLly5WQkKCqVaum+KPc33//rdOnT1N/LyPctuUydObMGc2dO1cBAQHuP5abb75ZSUlJevfddz2mHTlypHx8fNz3Rzxz5oy6d++uQoUK6a233tK4ceO0Z88ePfnkk9nW3oIFC6pKlSr69NNPPQ4u1q1bp7lz5+rmm292D3MVa+dBSEqqV6+u/Pnz64MPPvC4tHX27NnasGGDxwFGep04cUKTJ0/WLbfcovbt23v9e+yxx3TkyBGP+6pK5+6tev79tpYtW6Zff/3V3e/nO/8zMjO9++67ypUrl5o0aZJm226++Wb99ddfmjp1qsfwU6dO6eOPP1b+/Pl1ww03SDp3JvrJkyc9pitZsqRy587t7ivXr6zn/6p6+vRpvf/++x7vq169uqKiojR69GiPe3EnJCR4ndXVoUMH/f333xo9erRX+0+cOJGpywAvhQ4dOigpKUmDBg3yGnf27NkLfh/r1KkjM9PKlSuzqYUZt3z5cu3du9fr7+Dmm2/WP//8o2+++cY97Pjx4/roo488pkvp+2Fmeuutt1JcXuXKlVW5cmV9/PHHmjRpkjp16uRxXzqX9evX6+TJk6pbt26m1w24nFGjz8mOGi2dO7BL6awm131aXZfLtmvXTr6+vnr55Ze9zqBKzxnGHTp00NKlS91nBJ7v4MGD7np4sfUjverWraumTZtq7Nix+vbbb73GP//889q0aZN69+6drSH+pVCtWjWVLFlSr7/+ujsUOd+///6b5vsLFy6sokWLasWKFZluw80336xly5Zp6dKl7mHHjh3TRx99pLi4OPfZ/a6g33UPfOncDxnOmpqWAwcOeH0nXT/4uP52Zs2a5XXJuJ+fn1q0aKGpU6fqzz//dA/fsGGD1/c2pZp+6NChFEMlSercubN8fHz0+OOPa9u2bame9bZy5Ur5+PioTp066Vxb4OpCzT8nu2p+alLqdz8/P/n4+Hhc+bN9+3avY2fp3LqltF6prfPtt98uPz8/DRw40Gt7bWbuZ22kR3q3rxkxdOhQzZ07Vx07dkzX1b0ZrQlZyVUvLqZGp2TKlCk6duyYHn300RRznFtuuUWTJk3yuiXahcydO1eSvO48cPPNN+uXX37RsmXL3MP+/fdfrysR05u5uLRq1UrR0dEaNmyYfvjhhzTrrySOqS8jnHl+GZg9e7b7l+q9e/fqiy++0ObNm9W3b1+Fh4dLktq0aaNGjRrp+eef1/bt23X99ddr7ty5mjZtmp544gn3zv0rr7yiVatWacGCBcqdO7cqV66sl156SS+88ILat2/vUTCz0vDhw9WqVSvVqVNH9957r06cOKF33nlHERERGjBggHu6atWqSTp3ENipUyflypVLbdq0cRey8+XKlUvDhg1Tjx491KBBA3Xu3Fl79uzRW2+9pbi4uEzteLge4JHaWbG1a9dWvnz5lJCQoI4dO7qHlypVSjfddJMefvhhnTp1Sm+++aaioqK8LvcOCgrSnDlzFB8fr1q1amn27NmaOXOmnnvuuQveGuSBBx7QJ598ojvvvFP33HOPqlatqn379umrr77SunXr9Nlnn7nvrbZp0yY1adJEHTp0UPny5eXv768pU6Zoz5496tSpk6RzG9rIyEjFx8erV69e8vHx0fjx4712CAICAjRgwAD17NlTjRs3VocOHbR9+3aNGzdOJUuW9PiFvmvXrvr666/10EMPaeHChbrxxhuVlJSkP/74Q19//bW+++67VB9gk5MaNGigBx98UEOGDNGqVavUvHlz5cqVS5s3b9bEiRP11ltvpfgLtstNN92kqKgozZ8/3+tsi5wyc+ZMjwN8l/vvv1/vvvuuunXrppUrV6pgwYIaP368QkJCPKYrV66cSpYsqWeeeUZ///23wsPDNWnSpDRvT9OtWzf3me6pFfp58+YpJCQkXWdFAFcCavSlq9GS1LNnTx0/fly33XabypUrp9OnT+vnn3/WV199pbi4OPdtLUqVKqXnn39egwYNUr169XT77bcrMDBQy5cvV6FChTRkyJA0l/Pss89q+vTpuuWWW9S9e3dVq1ZNx44d09q1a/XNN99o+/btio6Ovuj6kRGfffaZmjRporZt2+quu+5SvXr1dOrUKU2ePFmLFi1Sx44d9eyzz2bJsnKSr6+vPv74Y7Vq1UoVKlRQjx49VLhwYf39999auHChwsPDNWPGjDTn0bZtW02ZMiXT9wPt27evvvzyS7Vq1Uq9evVS3rx59emnnyoxMVGTJk1yP4S2QoUKql27tvr166f9+/crb968mjBhQroe/O3y6aef6v3339dtt92mkiVL6siRIxo9erTCw8Pdf/MzZ85Uq1atvNZl4MCBmjNnjurVq6dHHnlEZ8+e1TvvvKMKFSq4b+MjnTvoDwgIUJs2bfTggw/q6NGjGj16tPLnz+++WuN8+fLlU8uWLTVx4kTlyZMn1eBr3rx5uvHGG923ygGudtT8S1vzXdLT761bt9aIESPUsmVL3XXXXdq7d6/ee+89lSpVymN76Fq3+fPna8SIESpUqJCKFy+uWrVqpbrOJUuW1CuvvKJ+/fpp+/btateunXLnzq3ExERNmTJFDzzwgNfVvqlJ7/Y1JWfPntXnn38u6dxtfnbs2KHp06drzZo1atSoUbp/uM1oTchKJUqUUMWKFTV//nzdc889WTbfhIQERUVFpRom33rrrRo9erRmzpyp22+/Pd3znTlzpm666Savq0F69+6t8ePHq2XLlnr88ccVGhqqjz76SLGxsR7ft/RmLi65cuVSp06d9O6778rPz0+dO3dOcbp58+apWLFiqlq1arrXBdnMkGPGjh1rkjz+BQUFWZUqVWzUqFGWnJzsMf2RI0fsySeftEKFClmuXLmsdOnSNnz4cPd0K1euNH9/f+vZs6fH+86ePWs1atSwQoUK2YEDB1Jtz8KFC02STZw4Mc12JyYmmiQbO3asx/D58+fbjTfeaMHBwRYeHm5t2rSx9evXe71/0KBBVrhwYfP19TVJlpiYmObyvvrqK6tataoFBgZa3rx5rUuXLvbXX395TOPqy+XLl6c5rzZt2lhQUJAdO3Ys1Wm6d+9uuXLlsv/++8+9rsOHD7c33njDihYtaoGBgVavXj1bvXq1x/vi4+MtNDTUtm7das2bN7eQkBCLiYmx/v37W1JSUprtcjlw4IA9+eSTVrx4ccuVK5eFh4dbo0aNbPbs2R7T/ffff/boo49auXLlLDQ01CIiIqxWrVr29ddfe0y3ZMkSq127tgUHB1uhQoWsd+/e9t1335kkW7hwoce0b7/9tsXGxlpgYKDVrFnTlixZYtWqVbOWLVt6THf69GkbNmyYVahQwQIDAy0yMtKqVatmAwcOtEOHDqVrPc3MKlSoYA0aNEhxXGxsrMXHx7tfp/b59u/f3yTZv//+6zHc9Vk4ffTRR1atWjULDg623LlzW6VKlax37972zz//XLC9vXr1slKlSnkMS+1vJiPtTe+6upbl+tyqV69ujzzySIpt3bFjh916660WEhJi0dHR9vjjj9ucOXO8Pvf169db06ZNLSwszKKjo+3++++31atXp/j3bWa2a9cu8/PzszJlyqTWTVarVi27++67Ux0PXCmo0Ze+RpuZzZ492+655x4rV66chYWFWUBAgJUqVcp69uxpe/bs8Zr+k08+cS8/MjLSGjRoYPPmzXOPj42NtdatW6e4rCNHjli/fv2sVKlSFhAQYNHR0Va3bl17/fXX7fTp0x7Tpqd+pLasBg0apFrvUmrTgAEDrEKFCu5l3XjjjTZu3Div79z5+yhOkqx///7pWqaZ2fDhw1P9vF21yzn/Rx99NF3tSe27+/vvv9vtt99uUVFRFhgYaLGxsdahQwdbsGDBBdv722+/mST78ccfPYZn5DPYunWrtW/f3vLkyWNBQUFWs2ZN+/bbb73eu3XrVmvatKkFBgZaTEyMPffcczZv3jyvmtqgQQOrUKFCim3t3LmzFStWzAIDAy1//vx2yy232IoVK8zM7ODBg+bv7++1D+fyww8/WLVq1SwgIMBKlChhH3zwQYqfyfTp061y5coWFBRkcXFxNmzYMPvkk09S/Vy//vprk2QPPPBAiss9ePCgBQQE2Mcff5zieOBqQs3PmZqf0X4fM2aMlS5d2gIDA61cuXI2duzYFLeHf/zxh9WvX9+Cg4NNksexVlrrPGnSJLvpppssNDTUQkNDrVy5cvboo4/axo0b3dOktq0/34W2rymJj4/36IeQkBCLi4uzO+64w7755psU84S09nHSWxOc9TG1715q37WUjBgxwsLCwuz48eNe70/vPsL536M9e/aYv7+/de3aNdVlHj9+3EJCQuy2224zs9RzAtd8ExMTLTk52fLnz2+vvfZaivNcs2aNNWjQwIKCgqxw4cI2aNAgGzNmjFcfZiRzMTNbtmyZSbLmzZunuNykpCQrWLCgvfDCC6muLy49H7NsfpoQcAXbvn27ihcvruHDh1/w1+bu3bvrm2++SfES5CtRcnKy8uXLp9tvvz3F27Rca7Zt26Zy5cpp9uzZF7wFT3bbs2ePChYsqG+//TbbzlpJyX///aeCBQvqpZde0osvvug1ftWqVbrhhhv022+/ZeoexAAApFeTJk1UqFAhjR8/PqebclG+/vprdenSRf/9998lfa7KtGnT1K5dOy1evFj16tXzGv/mm2/qtdde09atW6/4WwUBwKV0oe3r1e7QoUMqUaKEXnvtNd1777053ZxULVu2TLVq1dL//vc/r6u5s9Pq1atVpUoVffbZZ+ratavX+KlTp+quu+7S1q1bVbBgwUvWLqSNe54D0MmTJ70uLfrss8+0f/9+NWzYMGcadZkpUaKE7r33Xg0dOjSnm6JDhw7ppZdeyvADUS7WuHHjlJSUlGKRl87dj699+/YE5wCAbPfqq6/qq6++ytTDOy8nefLk0dtvv33JH0g+evRolShRQjfddJPXuDNnzmjEiBF64YUXCM4BIIPS2r5eCyIiItS7d28NHz7c67k0l5tXX331kgbn0rnvR1hYWKq3lxk2bJgee+wxgvPLDPc8B6BffvlFTz75pO68805FRUXpt99+05gxY1SxYkXdeeedOd28y8aoUaNyugmSpDJlynjcszC7ff/991q/fr0GDx6sdu3aKS4uLsXpJkyYcMnaBAC4ttWqVUunT5/O6WZcNOdDyrLbhAkTtGbNGs2cOVNvvfVWiveMz5Url8dDSgEAF5ae7eu1ok+fPurTp09ONyNNNWvWVM2aNS/Z8mbMmKH169fro48+0mOPPZbi8wUkeTzMHJcPwnMAiouLU9GiRfX222+7H4jVrVs3DR061P2QUly7Xn75Zf3888+68cYb9c477+R0cwAAQCZ17txZYWFhuvfee/XII4/kdHMA4KrB9hVp6dmzp/bs2aObb75ZAwcOzOnmIIO45zkAAAAAAAAAAA7c8xwAAAAAAAAAAAfCcwAAAAAAAAAAHDJ9z/Pk5GT9888/yp079zX9IAQAALKamenIkSMqVKiQfH2z7nduajcAAFkvu+q2RO0GACA7ZKR2Zzo8/+eff1S0aNHMvh0AAFzAzp07VaRIkSybH7UbAIDsk9V1W6J2AwCQndJTuzMdnufOndu9kPDw8MzOBgAAOBw+fFhFixZ119qsQu0GACDrZVfdlqjdAABkh4zU7kyH565LxsLDwyniAABkg6y+PJvaDQBA9smO26pQuwEAyD7pqd08MBQAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHPxzugH4f3v27NGhQ4dyuhkALlJERIRiYmJyuhkAsgG1GtcqahuAqxW1HbiysY+C7EZ4fpnYs2eP7u7aTWdOn8rppgC4SLkCAvX5+M8o4MBVhlqNaxm1DcDViNoOXPnYR0F2Izy/TBw6dEhnTp/SiRINlBwUkdPNuar4njio4MTFOlG8vpKD8+R0c3CV8z15SNr2gw4dOkTxBq4y1OqcQR3PedQ2AFcravu1h/2Kqwv7KLgUCM8vM8lBEUoOjc7pZlyVkoPz0LcAgItGrc4Z1HEAQHahtl972K8AkF48MBQAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHAjPAQAAAAAAAABwIDwHAAAAAAAAAMCB8BwAAAAAAAAAAAfCcwAAAAAAAAAAHC6r8PzkyZPatGmTTp48mdNNAQDggqhb9AEA4MpC3aIPAABXlpyuW5dVeP7nn3/qgQce0J9//pnTTQEA4IKoW/QBAODKQt2iDwAAV5acrluXVXgOAAAAAAAAAMDlgPAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcCA8BwAAAAAAAADAgfAcAAAAAAAAAAAHwnMAAAAAAAAAABwIzwEAAAAAAAAAcPBP74SnTp3SqVOn3K8PHz6cLQ2SpB07dmTbvC9X1+I6A1cz/qavDZf750ztzlrXwjoCaeFvAFeDy/17TO2+tOgD4OrA3/LVLac/33SH50OGDNHAgQOzsy1ugwcPviTLAYDswnYMlwNqN4CsxN85kP2o3QCQcWzPkJ3SHZ7369dPTz31lPv14cOHVbRo0Wxp1PPPP6/Y2NhsmfflaseOHfyxA1eRa3E7di263Lfd1O6sdbl/3kB2uxb+znH1u9y35dTuS+ty/z4ASB+2Z1e3nN5Wpzs8DwwMVGBgYHa2xS02NlZlypS5JMsCgOzAdgyXA2o3gKzE3zmQ/ajdAJBxbM+QnXhgKAAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADpdVeF6sWDF99NFHKlasWE43BQCAC6Ju0QcAgCsLdYs+AABcWXK6bvnnyFJTERQUpDJlyuR0MwAASBfqFn0AALiyULfoAwDAlSWn69ZldeY5AAAAAAAAAACXA8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAcCM8BAAAAAAAAAHAgPAcAAAAAAAAAwIHwHAAAAAAAAAAAB8JzAAAAAAAAAAAc/HO6AfDke/JQTjfhquN74qDHf4HsxN8wcPXj7/zSoo7nPL7zAK52bOeuHexXXF3428WlQHh+mYiIiFCugEBp2w853ZSrVnDi4pxuAq4RuQICFRERkdPNAJDFqNU5izqes6htAK5G1PZrF/sVVw/2UZDdCM8vEzExMfp8/Gc6dIhfzYArXUREhGJiYnK6GQCyGLUa1zJqG4CrEbUduPKxj4LsRnh+GYmJieEPHgCAyxi1GgCAqwu1HQCQFh4YCgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4DgAAAAAAAACAg39m32hmkqTDhw9nWWMAAMD/11ZXrc0q1G4AALJedtXt8+dJ7QYAIOtkpHZnOjw/cuSIJKlo0aKZnQUAAEjDkSNHFBERkaXzk6jdAABkh6yu2655StRuAACyQ3pqt49l8ufx5ORk/fPPP8qdO7d8fHwy1cBrweHDh1W0aFHt3LlT4eHhOd2cyx79lTH0V/rRVxlDf2VMVveXmenIkSMqVKiQfH2z7g5r11rt5nucOfRb5tF3mUO/ZQ79ljnZ0W/ZVbelq7N28929OPRf5tF3F4f+uzj038XJyWPuTJ957uvrqyJFimT27dec8PBw/jgygP7KGPor/eirjKG/MiYr+yurz1yTrt3azfc4c+i3zKPvMod+yxz6LXOyut+yo25LV3ft5rt7cei/zKPvLg79d3Hov4uTE8fcPDAUAAAAAAAAAAAHwnMAAAAAAAAAABwIz7NZYGCg+vfvr8DAwJxuyhWB/soY+iv96KuMob8yhv66PPG5ZA79lnn0XebQb5lDv2UO/Zbz+AwuDv2XefTdxaH/Lg79d3Fysv8y/cBQAAAAAAAAAACuVpx5DgAAAAAAAACAA+E5AAAAAAAAAAAOhOcAAAAAAAAAADgQngMAAAAAAAAA4EB4nkmLFy9WmzZtVKhQIfn4+Gjq1Kke481ML730kgoWLKjg4GA1bdpUmzdv9phm//796tKli8LDw5UnTx7de++9Onr06CVci0tjyJAhqlGjhnLnzq38+fOrXbt22rhxo8c0J0+e1KOPPqqoqCiFhYXpjjvu0J49ezym+fPPP9W6dWuFhIQof/78evbZZ3X27NlLuSqXxKhRo1S5cmWFh4crPDxcderU0ezZs93j6avUDR06VD4+PnriiSfcw+iv/zdgwAD5+Ph4/CtXrpx7PH3l6e+//9bdd9+tqKgoBQcHq1KlSlqxYoV7PNv5y1d66g4uLKVtKlJ2oe0FvCUlJenFF19U8eLFFRwcrJIlS2rQoEEys5xu2mUnK447rkVp9duZM2fUp08fVapUSaGhoSpUqJC6deumf/75J+cafIVjPzNjLlWesGbNGtWrV09BQUEqWrSoXnvttexetWx3ob7r3r2713exZcuWHtNcq30nXdp8ZtGiRbrhhhsUGBioUqVKady4cdm9etkuPf3XsGFDr+/gQw895DHNtdh/lyrrypZ+M2TKrFmz7Pnnn7fJkyebJJsyZYrH+KFDh1pERIRNnTrVVq9ebbfeeqsVL17cTpw44Z6mZcuWdv3119svv/xiP/74o5UqVco6d+58idck+7Vo0cLGjh1r69ats1WrVtnNN99sxYoVs6NHj7qneeihh6xo0aK2YMECW7FihdWuXdvq1q3rHn/27FmrWLGiNW3a1H7//XebNWuWRUdHW79+/XJilbLV9OnTbebMmbZp0ybbuHGjPffcc5YrVy5bt26dmdFXqVm2bJnFxcVZ5cqV7fHHH3cPp7/+X//+/a1ChQq2a9cu979///3XPZ6++n/79++32NhY6969u/3666+2bds2++6772zLli3uadjOX77SU3eQttS2qfCWnu0FvA0ePNiioqLs22+/tcTERJs4caKFhYXZW2+9ldNNu+xkxXHHtSitfjt48KA1bdrUvvrqK/vjjz9s6dKlVrNmTatWrVrONfgKx35mxlyKPOHQoUMWExNjXbp0sXXr1tmXX35pwcHB9uGHH16q1cwWF+q7+Ph4a9mypcd3cf/+/R7TXKt9Z3bp8plt27ZZSEiIPfXUU7Z+/Xp75513zM/Pz+bMmXNJ1zerpaf/GjRoYPfff7/Hd/DQoUPu8ddq/12KrCu7+o3wPAs4N9jJyclWoEABGz58uHvYwYMHLTAw0L788kszM1u/fr1JsuXLl7unmT17tvn4+Njff/99ydqeE/bu3WuS7IcffjCzc32TK1cumzhxonuaDRs2mCRbunSpmZ0rkL6+vrZ79273NKNGjbLw8HA7derUpV2BHBAZGWkff/wxfZWKI0eOWOnSpW3evHnWoEEDd9BDf3nq37+/XX/99SmOo6889enTx2666aZUx7Odv7I46w7Slto2FSm70PYCKWvdurXdc889HsNuv/1269KlSw616MqQmeMOePdbSpYtW2aSbMeOHZemUVcZ9jMzL7vyhPfff98iIyM9+q9Pnz5WtmzZbF6jSye18Lxt27apvoe+85Rd+Uzv3r2tQoUKHsvq2LGjtWjRIrtX6ZJK6TjjQvvP9N//y+qsK7v6jdu2ZIPExETt3r1bTZs2dQ+LiIhQrVq1tHTpUknS0qVLlSdPHlWvXt09TdOmTeXr66tff/31krf5Ujp06JAkKW/evJKklStX6syZMx79Va5cORUrVsyjvypVqqSYmBj3NC1atNDhw4f1v//97xK2/tJKSkrShAkTdOzYMdWpU4e+SsWjjz6q1q1be/SLxHcrJZs3b1ahQoVUokQJdenSRX/++ack+spp+vTpql69uu68807lz59fVatW1ejRo93j2c5fWZx1B2lLbZuKlF1oe4GU1a1bVwsWLNCmTZskSatXr9ZPP/2kVq1a5XDLrizpqUdIn0OHDsnHx0d58uTJ6aZcsdjPzBpZtZ+5dOlS1a9fXwEBAe5pWrRooY0bN+rAgQOXaG1yxqJFi5Q/f36VLVtWDz/8sPbt2+ceR995yq58ZunSpV77ki1atLjqalNqxxkJCQmKjo5WxYoV1a9fPx0/ftw9jv7Lvqwru/rN/6LejRTt3r1bkjw+UNdr17jdu3crf/78HuP9/f2VN29e9zRXo+TkZD3xxBO68cYbVbFiRUnn+iIgIMBrR9XZXyn1p2vc1Wbt2rWqU6eOTp48qbCwME2ZMkXly5fXqlWr6CuHCRMm6LffftPy5cu9xvHd8lSrVi2NGzdOZcuW1a5duzRw4EDVq1dP69ato68ctm3bplGjRumpp57Sc889p+XLl6tXr14KCAhQfHw82/krSEp1B6lLa5uKlF1oe4GU9e3bV4cPH1a5cuXk5+enpKQkDR48WF26dMnppl1R0lOPcGEnT55Unz591LlzZ4WHh+d0c65I7Gdmnazaz9y9e7eKFy/uNQ/XuMjIyGxpf05r2bKlbr/9dhUvXlxbt27Vc889p1atWmnp0qXy8/Oj786TnflMatMcPnxYJ06cUHBwcHas0iWV2nHGXXfdpdjYWBUqVEhr1qxRnz59tHHjRk2ePFnStd1/2Z11ZVe/EZ7jknr00Ue1bt06/fTTTzndlMta2bJltWrVKh06dEjffPON4uPj9cMPP+R0sy47O3fu1OOPP6558+YpKCgop5tz2Tv/bL7KlSurVq1aio2N1ddff33FFt/skpycrOrVq+vVV1+VJFWtWlXr1q3TBx98QBh2haHupB/b1Mxhe5E5X3/9tRISEvTFF1+oQoUKWrVqlZ544gkVKlSIfsMldebMGXXo0EFmplGjRuV0c65Y7GfictGpUyf3/1eqVEmVK1dWyZIltWjRIjVp0iQHW3b5YT/54qTWfw888ID7/ytVqqSCBQuqSZMm2rp1q0qWLHmpm3lZuVKzLm7bkg0KFCggSV5Phd2zZ497XIECBbR3716P8WfPntX+/fvd01xtHnvsMX377bdauHChihQp4h5eoEABnT59WgcPHvSY3tlfKfWna9zVJiAgQKVKlVK1atU0ZMgQXX/99XrrrbfoK4eVK1dq7969uuGGG+Tv7y9/f3/98MMPevvtt+Xv76+YmBj6Kw158uRRmTJltGXLFr5bDgULFlT58uU9hl133XXuy4/Zzl8ZUqs7SNmFtqlJSUk53cTL0oW2F0jZs88+q759+6pTp06qVKmSunbtqieffFJDhgzJ6aZdUdJTj5A6V3C+Y8cOzZs3j7POsxD7mZmXVfuZ9Ok5JUqUUHR0tLZs2SKJvnPJ7nwmtWnCw8Ovih/UMnKcUatWLUny+A5eq/2X3VlXdvUb4Xk2KF68uAoUKKAFCxa4hx0+fFi//vqr6tSpI0mqU6eODh48qJUrV7qn+f7775WcnOz+w7pamJkee+wxTZkyRd9//73X5U/VqlVTrly5PPpr48aN+vPPPz36a+3atR5FzrWD6zxgvRolJyfr1KlT9JVDkyZNtHbtWq1atcr9r3r16urSpYv7/+mv1B09elRbt25VwYIF+W453Hjjjdq4caPHsE2bNik2NlYS2/nL3YXqDlJ2oW2qn59fTjfxsnSh7QVSdvz4cfn6eh6K+Pn5KTk5OYdadGVKTz1CylzB+ebNmzV//nxFRUXldJOuKuxnZl5W7WfWqVNHixcv1pkzZ9zTzJs3T2XLlr1qbjuSHn/99Zf27dunggULSqLvLlU+U6dOHY95uKa50mtTZo4zVq1aJUke38Frtf+csjrryrZ+u6jHjV7Djhw5Yr///rv9/vvvJslGjBhhv//+u/vp7EOHDrU8efLYtGnTbM2aNda2bVsrXry4nThxwj2Pli1bWtWqVe3XX3+1n376yUqXLm2dO3fOqVXKNg8//LBFRETYokWLbNeuXe5/x48fd0/z0EMPWbFixez777+3FStWWJ06daxOnTru8WfPnrWKFSta8+bNbdWqVTZnzhzLly+f9evXLydWKVv17dvXfvjhB0tMTLQ1a9ZY3759zcfHx+bOnWtm9NWFOJ9sTX/9v6efftoWLVpkiYmJtmTJEmvatKlFR0fb3r17zYy+Ot+yZcvM39/fBg8ebJs3b7aEhAQLCQmxzz//3D0N2/nLV3rqDtLHuU2Ft/RsL+AtPj7eChcubN9++60lJiba5MmTLTo62nr37p3TTbvsZMVxx7UorX47ffq03XrrrVakSBFbtWqVR604depUTjf9isR+ZsZcijzh4MGDFhMTY127drV169bZhAkTLCQkxD788MNLvr5ZKa2+O3LkiD3zzDO2dOlSS0xMtPnz59sNN9xgpUuXtpMnT7rnca32ndmly2e2bdtmISEh9uyzz9qGDRvsvffeMz8/P5szZ84lXd+sdqH+27Jli7388su2YsUKS0xMtGnTplmJEiWsfv367nlcq/13KbKu7Oo3wvNMWrhwoUny+hcfH29mZsnJyfbiiy9aTEyMBQYGWpMmTWzjxo0e89i3b5917tzZwsLCLDw83Hr06GFHjhzJgbXJXin1kyQbO3ase5oTJ07YI488YpGRkRYSEmK33Xab7dq1y2M+27dvt1atWllwcLBFR0fb008/bWfOnLnEa5P97rnnHouNjbWAgADLly+fNWnSxL0xMaOvLsQZ9NBf/69jx45WsGBBCwgIsMKFC1vHjh1ty5Yt7vH0lacZM2ZYxYoVLTAw0MqVK2cfffSRx3i285ev9NQdpA/hefpcaHsBb4cPH7bHH3/cihUrZkFBQVaiRAl7/vnnCS5TkBXHHdeitPotMTEx1VqxcOHCnG76FYn9zIy5VHnC6tWr7aabbrLAwEArXLiwDR069FKtYrZJq++OHz9uzZs3t3z58lmuXLksNjbW7r//ftu9e7fHPK7VvjO7tPnMwoULrUqVKhYQEGAlSpS4KvbFL9R/f/75p9WvX9/y5s1rgYGBVqpUKXv22Wft0KFDHvO5FvvvUmVd2dFvPmZmF3fuOgAAAAAAAAAAVxfueQ4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA4AAAAAAAAAgAPhOQAAAAAAAAAADoTnAAAAAAAAAAA4EJ4DAAAAAAAAAOBAeA5cpcaNG6c8efLk2PLHjBmj5s2bX9Q8tm/fLh8fH61atSprGnWeuLg4vfnmm1k2v//++0/58+fXX3/9lWXzBABcXbp376527drl2PK7du2qV1991f06q2vhpZYd+zp9+/ZVz549s3SeAICr14ABA1SlSpUsmVf9+vX1xRdfZMm8LsTHx0dTp0696Plkx75N7dq1NWnSpCydJ3AxCM9xWVi6dKn8/PzUunXrS7bMtILZhg0b6oknnrhkbcmohg0bysfHJ9V/DRs2VMeOHbVp06Ycad/Jkyf14osvqn///hc1n6JFi2rXrl2qWLFiht/76aef6qabbrqo5WdEdHS0unXrdtHrDACXk3///VcPP/ywihUrpsDAQBUoUEAtWrTQkiVLcrppmbZz507dc889KlSokAICAhQbG6vHH39c+/btu6j5plWXfXx8NGDAAL311lsaN25c1qxIBq1evVqzZs1Sr169cmT5mVW8eHHNnz//ki3vmWee0aeffqpt27ZdsmUCQE7p3r27R62KiopSy5YttWbNmgzNJ7UAOasC2swaMGCAe938/f0VHR2t+vXr680339SpU6eyZBnPPPOMFixYcNHzmT59uvbs2aNOnTplQaukEydOKG/evIqOjr6odd2xY4eCg4N19OjRLGlXerzwwgvq27evkpOTL9kygbQQnuOyMGbMGPXs2VOLFy/WP//8k9PNuexNnjxZu3bt0q5du7Rs2TJJ0vz5893DJk+erODgYOXPnz9H2vfNN98oPDxcN95440XNx8/PTwUKFJC/v3+G3ztt2jTdeuutF7X8jOrRo4cSEhK0f//+S7pcAMgud9xxh37//Xd9+umn2rRpk6ZPn66GDRtmOmhOSkrK0QOhbdu2qXr16tq8ebO+/PJLbdmyRR988IEWLFigOnXqXNT221WDd+3apTfffFPh4eEew5555hlFRETk2FVh77zzju68806FhYXlyPLPd/r06XRNt2bNGh04cEANGjTI5hb9v+joaLVo0UKjRo26ZMsEgJzUsmVLd61asGCB/P39dcstt+R0szycOXMm0++tUKGCdu3apT///FMLFy7UnXfeqSFDhqhu3bo6cuRIqu9Lb60KCwtTVFRUptvn8vbbb6tHjx7y9c2amG7SpEmqUKGCypUrd1E/YEybNk2NGjW6pPsPrVq10pEjRzR79uxLtkwgLYTnyHFHjx7VV199pYcfflitW7f2OiNr0aJF8vHx0cyZM1W5cmUFBQWpdu3aWrdunXsa12W7U6dOVenSpRUUFKQWLVpo586dF90+M9OAAQPcZ90VKlTI46yt8ePHq3r16sqdO7cKFCigu+66S3v37vWYx/Tp093tatSokT799FP5+Pjo4MGD7ml++ukn1atXT8HBwSpatKh69eqlY8eOpdimvHnzqkCBAipQoIDy5csnSYqKinIPy5s3r9elzK6zAT755BMVK1ZMYWFheuSRR5SUlKTXXntNBQoUUP78+TV48GCPZR08eFD33Xef8uXLp/DwcDVu3FirV69Os88mTJigNm3aeAxzXc716quvKiYmRnny5NHLL7+ss2fP6tlnn1XevHlVpEgRjR071v0e59UBru/CggULVL16dYWEhKhu3brauHGjx7JOnjypuXPnusPzvXv3qk2bNgoODlbx4sWVkJDg1eYRI0aoUqVKCg0NVdGiRfXII4+4f10/duyYwsPD9c0333i8Z+rUqQoNDXXvdFWoUEGFChXSlClT0uwfALgSHDx4UD/++KOGDRumRo0aKTY2VjVr1lS/fv08fpw8ePCgHnzwQcXExCgoKEgVK1bUt99+K+n/6/P06dNVvnx5BQYG6s8//9SpU6f0zDPPqHDhwgoNDVWtWrW0aNEij+VfqC7GxcXp1Vdf1T333KPcuXOrWLFi+uijj9Jcp0cffVQBAQGaO3euGjRooGLFiqlVq1aaP3++/v77bz3//POZnr+rBhcoUEARERHy8fHxGBYWFuZ1aXPDhg3Vs2dPPfHEE4qMjFRMTIxGjx6tY8eOqUePHsqdO7dKlSrldfC4bt06tWrVSmFhYYqJiVHXrl3133//pdq2pKQkffPNN161WZKOHz+e5jquXbtWjRs3VnBwsKKiovTAAw94nH2W0tV67dq1U/fu3T36ctCgQerWrZvCw8P1wAMP6PTp03rsscdUsGBBBQUFKTY2VkOGDPGYz7Rp09SyZUvlypVL0rnvU7FixRQSEqLbbrvN60ecrVu3qm3btoqJiVFYWJhq1Kjhcdb6yy+/nOLVbFWqVNGLL77oft2mTRtNmDAhld4EgKuL68qyAgUKqEqVKurbt6927typf//91z1Nnz59VKZMGYWEhKhEiRJ68cUX3YH2uHHjNHDgQK1evdp9lve4ceMUFxcnSbrtttvk4+Pjfi2d277fcMMNCgoKUokSJTRw4ECdPXvWPd7Hx0ejRo3SrbfeqtDQUL3yyisqVaqUXn/9dY+2r1q1Sj4+PtqyZUuq6+fv768CBQqoUKFCqlSpknr27KkffvhB69at07Bhw9zTpVSrLrTukvdZ965a//rrr6tgwYKKiorSo48+muYPAP/++6++//57rzrt4+OjDz/8ULfccotCQkJ03XXXaenSpdqyZYsaNmyo0NBQ1a1bV1u3bvWa55gxY3T33Xfr7rvv1pgxY1Jc7n///afbbrtNISEhKl26tKZPn+41zfknpSUlJempp55Snjx5FBUVpd69e8vMPKafM2eObrrpJvc0t9xyi0f7GjdurMcee8xr/QMCAtxn8Pv5+enmm2+mFuPyYUAOGzNmjFWvXt3MzGbMmGElS5a05ORk9/iFCxeaJLvuuuts7ty5tmbNGrvlllssLi7OTp8+bWZmY8eOtVy5cln16tXt559/thUrVljNmjWtbt26qS43MTHRJNnvv//uNa5Bgwb2+OOPm5nZxIkTLTw83GbNmmU7duywX3/91T766COP9s+aNcu2bt1qS5cutTp16lirVq3c47dt22a5cuWyZ555xv744w/78ssvrXDhwibJDhw4YGZmW7ZssdDQUBs5cqRt2rTJlixZYlWrVrXu3btfsP9SW4+xY8daRESE+3X//v0tLCzM2rdvb//73/9s+vTpFhAQYC1atLCePXvaH3/8YZ988olJsl9++cX9vqZNm1qbNm1s+fLltmnTJnv66actKirK9u3bl2qbIiIibMKECR7D4uPjLXfu3Pboo4/aH3/8YWPGjDFJ1qJFCxs8eLBt2rTJBg0aZLly5bKdO3emuG6u70KtWrVs0aJF9r///c/q1avn9Tl/++23VqZMGffrVq1a2fXXX29Lly61FStWWN26dS04ONhGjhzpnmbkyJH2/fffW2Jioi1YsMDKli1rDz/8sHv8/fffbzfffLPHcm699Vbr1q2bx7COHTtafHx8qn0DAFeKM2fOWFhYmD3xxBN28uTJFKdJSkqy2rVrW4UKFWzu3Lm2detWmzFjhs2aNcvM/r8+161b15YsWWJ//PGHHTt2zO677z6rW7euLV682LZs2WLDhw+3wMBA27Rpk5mlry7GxsZa3rx57b333rPNmzfbkCFDzNfX1/74448U27pv3z7z8fGxV199NcXx999/v0VGRrr3QTI6//M5a7BLfHy8tW3b1v26QYMGljt3bhs0aJC7Dvr5+VmrVq3so48+sk2bNtnDDz9sUVFRduzYMTMzO3DggOXLl8/69etnGzZssN9++82aNWtmjRo1SrU9v/32m0my3bt3ewy/0DoePXrUChYsaLfffrutXbvWFixYYMWLF/eoc+fvM7m0bdvWY5rY2FgLDw+3119/3bZs2eL+zIsWLWqLFy+27du3248//mhffPGFx3yqV6/uHvbLL7+Yr6+vDRs2zDZu3GhvvfWW5cmTx6OfV61aZR988IGtXbvWNm3aZC+88IIFBQXZjh07zMxs586d5uvra8uWLfPoGx8fH9u6dat72IYNG0ySJSYmptqnAHA1cNalI0eO2IMPPmilSpWypKQk9/BBgwbZkiVLLDEx0aZPn24xMTE2bNgwMzM7fvy4Pf3001ahQgXbtWuX7dq1y44fP2579+41STZ27FjbtWuX7d2718zMFi9ebOHh4TZu3DjbunWrzZ071+Li4mzAgAHu5Umy/Pnz2yeffGJbt261HTt22ODBg618+fIe7e/Vq5fVr18/1fXr37+/XX/99SmOa9u2rV133XXu1ynVqgute0rLiI+Pt/DwcHvooYdsw4YNNmPGDAsJCfHIEJwmT55soaGhHn3u6ofChQvbV199ZRs3brR27dpZXFycNW7c2ObMmWPr16+32rVrW8uWLT3et2XLFgsMDLT9+/fbvn37LCgoyLZv3+417yJFitgXX3xhmzdvtl69ellYWJjHcf6BAwcsICDA/v77bzMzGzZsmEVGRtqkSZNs/fr1du+991ru3Lk9vkPffPONTZo0yTZv3my///67tWnTxipVquRet4SEBIuMjPTYtxwxYoTFxcV55ECjRo2y2NjYVPsMuJQIz5Hj6tata2+++aaZnTtQj46OtoULF7rHuwLT88PYffv2WXBwsH311Vdmdu4g1Rn6ug58fv311xSXm97w/I033rAyZcq4g/oLWb58uUmyI0eOmJlZnz59rGLFih7TPP/88x7h+b333msPPPCAxzQ//vij+fr62okTJ9JcXkbC85CQEDt8+LB7WIsWLSwuLs6jSJctW9aGDBnibkN4eLhXaFKyZEn78MMPU2zPgQMHTJItXrzYY3h8fLzFxsZ6LatevXru12fPnrXQ0FD78ssvU1w313dh/vz57vfMnDnTJHn00/3332/PPPOMmZlt3LjRJHkcKLu+G+eH504TJ060qKgo9+tff/3V/Pz87J9//jEzsz179pi/v78tWrTI431PPvmkNWzYMNX5AsCV5JtvvrHIyEgLCgqyunXrWr9+/Wz16tXu8d999535+vraxo0bU3y/qz6vWrXKPWzHjh3m5+fnPhBzadKkifXr18/M0lcXY2Nj7e6773aPT05Otvz589uoUaNSbMsvv/xikmzKlCkpjh8xYoRJsj179mRq/s71Tm94ftNNN7lfu+pg165d3cN27dplkmzp0qVmdu4gvnnz5h7z3blzp0lK9XOYMmWK+fn5eRyUpmcdP/roI4uMjLSjR4+6p5k5c6b5+vq6g/j0huft2rXzmKZnz57WuHFjrza5/PXXXxYQEODeV+rcubPXj9gdO3ZMsZ/PV6FCBXvnnXfcr1u1auXx43jPnj296vahQ4dMkleNB4CrTXx8vPn5+VloaKiFhoaaJCtYsKCtXLkyzfcNHz7cqlWr5n6dWkidUt1t0qSJ1w/Z48ePt4IFC3q874knnvCY5u+//zY/Pz/38f3p06ctOjraxo0bl2o70wrP+/TpY8HBwe7XKdWqlFxo3V3HvWfPnnUPu/POO61jx46pznPkyJFWokQJr+GS7IUXXnC/Xrp0qUmyMWPGuId9+eWXFhQU5PG+5557zmNd2rZta/37909z3kePHjVJNnv2bPewhIQE94mOZmYFCxa01157zf36zJkzVqRIEY99G6d///3XJNnatWvNzOzEiRMWGRnpznLMzCpXruzx44mZ2bRp08zX19frBwUgJ3DbFuSojRs3atmyZercubOkc5dUdezYMcXLiurUqeP+/7x586ps2bLasGGDe5i/v79q1Kjhfl2uXDnlyZPHY5rMuPPOO3XixAmVKFFC999/v6ZMmeJxSdnKlSvVpk0bFStWTLlz53bfl/PPP/90r+P57ZKkmjVrerxevXq1xo0bp7CwMPe/Fi1aKDk5WYmJiRfV/vPFxcUpd+7c7tcxMTEqX768x33VYmJi3LedWb16tY4ePaqoqCiPtiUmJqZ4aZh07sEkkhQUFOQ1rkKFCl7LqlSpkvu1n5+foqKivG5741S5cmX3/xcsWFCS3O8xM82YMcN9admGDRvk7++vatWqud/j+m6cb/78+WrSpIkKFy6s3Llzq2vXrtq3b5+OHz8u6dxnVqFCBX366aeSpM8//1yxsbGqX7++x3yCg4Pd7wGAK90dd9yhf/75R9OnT1fLli21aNEi3XDDDe5brK1atUpFihRRmTJlUp1HQECAx3Z77dq1SkpKUpkyZTxqyw8//OCuLemti+fP13WblAvVEHNcXpyWzMw/o85fhqsOnl8bY2JiJMmjNi9cuNCjb8qVKydJadbmwMBA+fj4pLl85zpu2LBB119/vUJDQ93T3HjjjUpOTva6ZdqFVK9e3eN19+7dtWrVKpUtW1a9evXS3LlzPcZPnz7dfdm3qy21atXymOb8fUPp3K0An3nmGV133XXKkyePwsLCtGHDBvc+mSTdf//9+vLLL3Xy5EmdPn1aX3zxhe655x6P+QQHB0sS9RzANaFRo0ZatWqVVq1apWXLlqlFixZq1aqVduzY4Z7mq6++0o033ui+DdkLL7zgsW3NiNWrV+vll1/2qGP333+/du3a5bHdddaNQoUKqXXr1vrkk08kSTNmzNCpU6d05513ZqodZuZVF53LlDK37hUqVJCfn5/7dcGCBdPcfzhx4kSKx8+SZ5127RM49xNOnjypw4cPSzp3a5VPP/1Ud999t3uau+++W+PGjfN67sz58w4NDVV4eLhHO8+/ZcuhQ4e0a9cuj1rs7+/v1WebN29W586dVaJECYWHh7tv1+Pqs6CgIHXt2tX9Of72229at26dx+3epHO1ODk5Ocse7ApcjIw/hQ/IQmPGjNHZs2dVqFAh9zAzU2BgoN59911FRERk27LDw8MlnSsCTgcPHnQvu2jRotq4caPmz5+vefPm6ZFHHtHw4cP1ww8/6PTp02rRooVatGihhIQE5cuXT3/++adatGiR7geMSOcO9h588EGPe6m7FCtWLJNr6M11z1AXHx+fFIe5iurRo0dVsGBBr/vQSkr1gWdRUVHy8fHRgQMHLnr56VkP1w6P6z3Lli3T2bNnVbdu3TTncb7t27frlltu0cMPP6zBgwcrb968+umnn3Tvvffq9OnTCgkJkSTdd999eu+999S3b1+NHTtWPXr08Nrh2r9/v/s+9ABwNQgKClKzZs3UrFkzvfjii7rvvvvUv39/de/e3R0ypiU4ONhjW3n06FH5+flp5cqVHgeWktwPo0pvXcxIDSlVqpR8fHy0YcMG3XbbbV7jN2zYoMjISI9teGZqVEZdqDY669zRo0fVpk0bj/u0urh+UHaKjo7W8ePHdfr0aQUEBFxw+RlZR19fX68fJFK6r+v5Abwk3XDDDUpMTNTs2bM1f/58dejQQU2bNnU/X2T69OkZfvD3M888o3nz5un1119XqVKlFBwcrPbt23vsk7Vp00aBgYGaMmWKAgICdObMGbVv395jPq4Hx1LPAVwLQkNDVapUKffrjz/+WBERERo9erReeeUVLV26VF26dNHAgQPVokULRUREaMKECXrjjTcytbyjR49q4MCBuv32273GnR8gO+uGdO54rGvXrho5cqTGjh2rjh07uo/VMmrDhg0qXry4xzDnMjO77hmtrdHR0SkePzvn5donSGs/4bvvvtPff/+tjh07eswnKSlJCxYsULNmzdLVztOnT2vOnDl67rnnUm13Stq0aaPY2FiNHj1ahQoVUnJysipWrOhRi++77z5VqVJFf/31l8aOHavGjRsrNjbWYz779+9XaGhouvY1gexGeI4cc/bsWX322Wd644031Lx5c49x7dq105dffqmHHnrIPeyXX35xHzAfOHBAmzZt0nXXXecxvxUrVrjP6t64caMOHjzoMc358ubNq+joaK1cudJ9trgkHT58WFu2bPE4iy44OFht2rRRmzZt9Oijj6pcuXJau3atzEz79u3T0KFDVbRoUUnSihUrPJZTtmxZzZo1y2PY8uXLPV7fcMMNWr9+vcdOy+Xghhtu0O7du+Xv7+/xgJe0BAQEqHz58lq/fr3X53opTJs2Ta1bt3YHMuXKldPZs2e1cuVK9xUAru+Gy8qVK5WcnKw33njDfWb8119/7TXvu+++W71799bbb7+t9evXKz4+3muadevWqWHDhlm/YgBwmShfvrymTp0q6dwZS3/99Zc2bdqU5tnn56tataqSkpK0d+9e1atXL8VpsqMuRkVFqVmzZnr//ff15JNPehyM7d69WwkJCerWrVuKZ2dfTm644QZNmjRJcXFx8vdP366860Fm69ev93io2YVcd911GjdunI4dO+YOFJYsWSJfX1+VLVtW0rmAedeuXe73JCUlad26dWrUqNEF5x8eHq6OHTuqY8eOat++vVq2bKn9+/crICBACxcu1KhRozza8uuvv3q8/5dffvF4vWTJEnXv3t3948jRo0e1fft2j2n8/f0VHx+vsWPHKiAgQJ06dfI6MF+3bp1y5cqlChUqXHAdAOBq4+PjI19fX/cVxT///LNiY2M9Hqp9/lnp0rljwKSkJK955cqVy2v4DTfcoI0bN2aqxt98880KDQ3VqFGjNGfOHC1evDjD85CkP/74Q3PmzFG/fv3SnC49654Vqlatqt27d+vAgQOKjIy8qHmNGTNGnTp18mizJA0ePFhjxozxCM/TsmjRIkVGRur666+XJEVERKhgwYL69ddf3Vdfu46zb7jhBknSvn37tHHjRo0ePdq9j/fTTz95zbtSpUqqXr26Ro8erS+++ELvvvuu1zTr1q1T1apV07/iQDbiti3IMd9++60OHDige++9VxUrVvT4d8cdd3jduuXll1/WggUL3Jf0REdHq127du7xuXLlUs+ePfXrr79q5cqV6t69u2rXru11i5TzPfXUU3r11VeVkJCgrVu3atmyZerSpYvy5cvn/iV83LhxGjNmjNatW6dt27bp888/V3BwsGJjY1WsWDEFBATonXfe0bZt2zR9+nQNGjTIYxkPPvig/vjjD/Xp00ebNm3S119/7b7c3XWA3qdPH/3888967LHHtGrVKm3evFnTpk3zegr1pda0aVPVqVNH7dq109y5c7V9+3b9/PPPev75571+JDhfixYtUiySl4LzTLWyZcuqZcuWevDBB93fjfvuu8/jQLlUqVI6c+aM+3McP368PvjgA695R0ZG6vbbb9ezzz6r5s2bq0iRIh7jjx8/rpUrV+bIjwYAkNX27dunxo0b6/PPP9eaNWuUmJioiRMn6rXXXlPbtm0lSQ0aNFD9+vV1xx13aN68ee4ziefMmZPqfMuUKaMuXbqoW7dumjx5shITE7Vs2TINGTJEM2fOlJR9dfHdd9/VqVOn1KJFCy1evFg7d+7UnDlz1KxZMxUuXFiDBw++qPlfCo8++qj279+vzp07a/ny5dq6dau+++479ejRI8XgQjoXcN9www0Zrs1dunRRUFCQ4uPjtW7dOi1cuFA9e/ZU165d3ZeON27cWDNnztTMmTP1xx9/6OGHH/b4gTo1I0aM0Jdffqk//vhDmzZt0sSJE1WgQAHlyZNHc+bMUZkyZTx+uO/Vq5fmzJmj119/XZs3b9a7777r9T0rXbq0Jk+erFWrVmn16tW66667UjzT77777tP333+vOXPmeN2yRZJ+/PFH1atXj7PdAFwTTp06pd27d2v37t3asGGDevbs6b7KSTq3bf3zzz81YcIEbd26VW+//bamTJniMY+4uDglJiZq1apV+u+//9y32oiLi9OCBQvcwbAkvfTSS/rss880cOBA/e9//9OGDRs0YcIEvfDCCxdsq5+fn7p3765+/fqpdOnSXrfvSsnZs2e1e/du/fPPP1q7dq3eeecdNWjQQFWqVNGzzz6b5nvTs+5ZoWrVqoqOjtaSJUsuaj7//vuvZsyYofj4eK+MpVu3bpo6dar76qoLSekKsMcff1xDhw7V1KlT9ccff+iRRx7xqPmRkZGKiorSRx99pC1btuj777/XU089leL877vvPg0dOlRmluIVgT/++CPH1bhsEJ4jx4wZM0ZNmzZN8dYsd9xxh1asWKE1a9a4hw0dOlSPP/64qlWrpt27d2vGjBkelx6HhISoT58+uuuuu3TjjTcqLCxMX331VZpt6N27t/r3769hw4apcuXKuuOOOxQaGqqFCxe6D5jy5Mmj0aNH68Ybb1TlypU1f/58zZgxQ1FRUcqXL5/GjRuniRMnqnz58ho6dKhef/11j2UUL15c33zzjSZPnqzKlStr1KhR7l+BAwMDJZ07c++HH37Qpk2bVK9ePVWtWlUvvfSSx+1scoKPj49mzZql+vXrq0ePHipTpow6deqkHTt2uA+aU3Lvvfdq1qxZKd4SJztt3bpVW7ZsUYsWLTyGjx07VoUKFVKDBg10++2364EHHlD+/Pnd46+//nqNGDFCw4YNU8WKFZWQkKAhQ4akuAzXrVxSOtieNm2aihUrluqZlABwJQkLC1OtWrU0cuRI1a9fXxUrVtSLL76o+++/3+MMoUmTJqlGjRrq3Lmzypcvr969e6ca4rqMHTtW3bp109NPP62yZcuqXbt2Wr58ufsKs+yqi6VLl9aKFStUokQJdejQQSVLltQDDzygRo0aaenSpcqbN+9Fzf9SKFSokJYsWaKkpCQ1b95clSpV0hNPPKE8efJ4PFfE6b777lNCQkKGlhUSEqLvvvtO+/fvV40aNdS+fXs1adLE4/O/5557FB8fr27duv1fe/cdHUX1sHH8SSGFhCT0hBZ6r9JBmiChg40qhGYDpKgIWGiKggqK/BREpUhVRESRLk0Bkd6lhqI06b2E3PcPzs7LTtompOL3cw5Hd2Z25t47m70zz87cUZ06dVSwYEGXrjrPlCmTPvjgA1WqVEmVK1fWkSNHtHDhQrm7uzuNsepQrVo1ffnllxo7dqzKlSunpUuXRgtaxowZo8yZM6tGjRpq3ry5wsLCrKvh7lekSBHVqFFDxYsXjzaOuiTNnj1bzz33nKvNBADp2uLFixUSEqKQkBBVrVpVGzdu1Jw5c6y7aVu0aKF+/fqpV69eKl++vNatW6e3337baR1PPfWUGjVqpHr16il79uyaNWuWJGn06NFatmyZ8ubNa11FHBYWpgULFmjp0qWqXLmyqlWrpo8//jjasB2xcZyPdenSxaXld+/erZCQEOXLl09169bVd999p0GDBum3336zhouLjSt1TwoeHh7q0qVLgvtpu2+++UZ+fn6qX79+tHn169eXr6+vpk+f7tK6YgrPX331VXXs2FHh4eGqXr26MmXK5BR8u7u7a/bs2dq8ebNKly6tfv366cMPP4xx/e3atZOnp6fatWsXbbz3f/75R+vWrXN5HwPJzc0k5KlJQCpYtWqV6tWrpwsXLsQ6zvaUKVPUt29fl650SgtGjBihCRMm6Pjx46ldlGTzzDPP6JFHHon3VrikNGbMGC1fvjzaMDlJadq0aerXr59OnDgRbdzYatWqqXfv3mrfvn2ybR8AgMS4ceOGihUrpm+//dalK/VSS2RkpHLmzKlFixbFeffggzDGqEiRIurRo0e0K+IWLVqkV199VTt27HB5WBwAQMr57bffVL9+fR0/fjzOC7rSm1OnTqlUqVLasmWLyz8kJJctW7boscce07///httXPSkcuTIERUqVEgbN26M9kP3gAEDdOHCBU2cODFZtg0kFFeeAyng888/18aNG60hQT788MMYx8t+mHz44Yfx/pKf1PLkyZNsYf3169d16NAhjRw5Ui+88EK04Pzs2bN68skn1a5du2TZPgAAD8LX11fffPONzp49m9pFidP58+fVr18/6zklSe3ff//V//73P506dSrGK9quXbumyZMnE5wDQBpz69Yt/f333xo6dKieeeaZhyo4l6Tg4GB9/fXXOnbsWGoXRZGRkRo3blyyBOd37tzRqVOn9NZbb6latWox3iGWI0eOaMPhAqmJK8+R5j0MV57369dP3377rc6fP698+fKpY8eOGjRoECdm6cjQoUM1YsQI1a5dW/Pnz0/xHwYAAMCDc3NzU7Zs2TR27FjuFAOAdGTKlCnq1q2bypcvr59++km5c+dO7SIhERz5TtGiRfX999+rTJkyqV0kIF6E5wAAAAAAAAAA2DBsCwAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnSBJHjhyRm5ubpkyZktpFcbJ48WKVL19ePj4+cnNz08WLF1O7SAm2atUqubm56fvvv0/torjk9OnTevrpp5U1a1a5ubnpk08+Se0i/Sflz59fnTt3tl47PkerVq1Ksm0MHTpUbm5uSbY+AOkP/T+S0wcffKDixYsrKioqtYsSp7p166pu3brJtv49e/bI09NTu3btSrZtAPhvoz9P/xznZmfPnk3xbdvPPdMKzleRVAjP05gpU6bIzc3N6V+OHDlUr149LVq0KMXL4wjcHP8yZMigggULqlOnTjp8+HCSbGPdunUaOnRokneE586dU+vWreXr66vPPvtM06ZNk5+fX4zLOtrdx8dH//zzT7T5devWVenSpZO0fA+rfv36acmSJRo0aJCmTZumRo0axfueixcvWgdEe/fuTYFSPpjOnTvL398/2da/cOFCDR06NNnWDyDtof9POonp/x3/fHx8lCtXLoWFhenTTz/VlStXEl2O5KpffH2Qv79/mjyBTajLly9r1KhRGjBggNzd//+UxbGvunfvHuP73nzzTWuZ+wOEzp07O+1rT09P5c2bV23bttWePXtiLUfFihXVo0ePpKtYIpQsWVJNmzbV4MGDU7UcAOJHf550EtKfxxccly5dOll/5Ewo+2fEz89PJUuW1Lvvvqvr16+ndvHSvJs3b+rjjz9W1apVFRgYKB8fHxUtWlS9evXS/v37U7t4eAh5pnYBELPhw4erQIECMsbo9OnTmjJlipo0aaKff/5ZzZo1S/Hy9O7dW5UrV9adO3e0ZcsWTZw4Ub/88ot27typXLlyPdC6161bp2HDhqlz584KCgpKmgJL2rhxo65cuaJ33nlHDRo0cOk9t27d0siRIzVu3LgkK8d/zYoVK9SyZUu99tprLr9nzpw5cnNzU3BwsGbMmKF33303GUuY9i1cuFCfffYZATrwH0T//+AS0/872v3OnTs6deqUVq1apb59+2rMmDH66aefVLZs2QSXI7nq918xadIkRUZGql27dtHm+fj4aO7cufr888/l5eXlNG/WrFny8fHRzZs3o73P29tbX331lSQpMjJShw4d0oQJE7R48WLt2bMn2mf65MmT2rp1q4YPH56ENUucF198UU2aNNGhQ4dUqFCh1C4OgHjQnz+4xPTn6cnjjz+uTp06SZKuXr2q3377TW+//ba2b9+uOXPmpHLpEmbfvn1OP3Qnp7Nnz6pRo0bavHmzmjVrpvbt28vf31/79u3T7NmzNXHiRN2+fTtFyoL/DsLzNKpx48aqVKmS9bpbt27KmTOnZs2alSqdba1atfT0009Lkrp06aKiRYuqd+/emjp1qgYNGpTi5XHFmTNnJClBHXj58uX15ZdfatCgQQ98EJHeXLt2LdZf8hPizJkzCT5omj59upo0aaLQ0FDNnDnzPx+eA/jvov9/cInp/+3tPmjQIK1YsULNmjVTixYttHfvXvn6+iZ1URGHyZMnq0WLFvLx8Yk2r1GjRvrpp5+0aNEitWzZ0pq+bt06RURE6KmnntLcuXOjvc/T01PPPvus07Rq1aqpWbNm+uWXX/Tcc885zVu0aJF8fHz02GOPJVGtEq9BgwbKnDmzpk6dmibCfABxoz9/cInpz9OKmzdvysvLK85AuWjRok590osvvqjbt2/rhx9+0M2bN2Ps/9Iqb2/vJFtXfG3XuXNnbd26Vd9//72eeuopp3nvvPOO3nzzzSQrC+DAsC3pRFBQkHx9feXp6fx7x7Vr1/Tqq68qb9688vb2VrFixfTRRx/JGCNJunHjhooXL67ixYvrxo0b1vvOnz+vkJAQ1ahRQ3fv3k1weRwnEREREXEut2LFCtWqVUt+fn4KCgpSy5YtnYblGDp0qPr37y9JKlCggHXb0pEjR+Jc75w5c1SxYkX5+voqW7ZsevbZZ52GW6lbt67Cw8MlSZUrV5abm5tLtzC/8cYbunv3rkaOHBnncnGNCefm5uZ0xbDjFrL9+/fr2WefVWBgoLJnz663335bxhgdP35cLVu2VEBAgIKDgzV69OgYt3n37l298cYbCg4Olp+fn1q0aKHjx49HW27Dhg1q1KiRAgMDlTFjRtWpU0dr1651WsZRpj179qh9+/bKnDmzHn300TjrfPjwYT3zzDPKkiWLMmbMqGrVqumXX36x5jtuUTTG6LPPPrP2ZXyOHTum3377TW3btlXbtm0VERGhdevWRVvOMXTO5s2bVaNGDfn6+qpAgQKaMGGC03KOWxO//fbbeNvrwIEDeuqppxQcHCwfHx/lyZNHbdu21aVLl+Itt13+/PnVrFkz/f7776pSpYp8fHxUsGBBffPNN07L3blzR8OGDVORIkXk4+OjrFmz6tFHH9WyZcsk3TsY+OyzzyQ5387n8NFHH6lGjRrKmjWrfH19VbFixQcaD9+Vz4sk/f7776pcubJ8fHxUqFAhffHFF4neJgDX0f87S67+PyaPPfaY3n77bR09elTTp0+3pu/YsUOdO3dWwYIF5ePjo+DgYHXt2lXnzp1zuX6TJ0/WY489phw5csjb21slS5bU+PHjE1XO+MTX77haJ4dVq1apUqVKTv1BbGOKTp8+3dpfWbJkUdu2bWM8drGLiIjQjh07Yr3SMHfu3Kpdu7ZmzpzpNH3GjBkqU6ZMgobaCw4OlqRof2OS9Msvv6hevXpOP5xMnDhRhQoVkq+vr6pUqaLffvst2vtu376twYMHq2LFigoMDJSfn59q1aqllStXWssYY5Q/f36n8N/h5s2bCgwM1AsvvGBNy5Ahg+rWrav58+e7XDcAaQf9ubOU7M9jM27cOJUqVUoZM2ZU5syZValSpWj9yj///KOuXbsqZ86c8vb2VqlSpTRp0iSnZRznn7Nnz9Zbb72l3LlzK2PGjLp8+XKCyxQcHGwNLXY/V8/ZpHtDojruAggMDFSXLl2iDQXjynFIs2bNVLBgwRi3Ub16dacfh2Ia8zy+/EBKeNtt2LBBv/zyi7p16xYtOJfuhfgfffRRjO9NSN0ladOmTQoLC1O2bNms7KFr165Oy8yePVsVK1ZUpkyZFBAQoDJlymjs2LFxbh/pE1eep1GXLl3S2bNnZYzRmTNnNG7cOF29etXpl0ljjFq0aKGVK1eqW7duKl++vJYsWaL+/fvrn3/+0ccffyxfX19NnTpVNWvW1JtvvqkxY8ZIknr27KlLly5pypQp8vDwSHD5Dh06JEnKmjVrrMssX75cjRs3VsGCBTV06FDduHFD48aNU82aNbVlyxblz59fTz75pPbv369Zs2bp448/VrZs2SRJ2bNnj3W9U6ZMUZcuXVS5cmW9//77On36tMaOHau1a9dq69atCgoK0ptvvqlixYpp4sSJ1i1zrtziWqBAAXXq1ElffvmlBg4cmKRXn7dp00YlSpTQyJEj9csvv+jdd99VlixZ9MUXX+ixxx7TqFGjNGPGDL322muqXLmyateu7fT+ESNGyM3NTQMGDNCZM2f0ySefqEGDBtq2bZt1UrdixQo1btxYFStW1JAhQ+Tu7m51Dr/99puqVKnitM5nnnlGRYoU0XvvvWcdoMXk9OnTqlGjhq5fv67evXsra9asmjp1qlq0aKHvv/9eTzzxhGrXrq1p06apY8eOTregxWfWrFny8/NTs2bN5Ovrq0KFCmnGjBmqUaNGtGUvXLigJk2aqHXr1mrXrp2+++47vfTSS/Ly8orWkcXXXrdv31ZYWJhu3bqll19+WcHBwfrnn3+0YMECXbx4UYGBgS6V/34HDx7U008/rW7duik8PFyTJk1S586dVbFiRZUqVUrSvQPM999/X927d1eVKlV0+fJlbdq0SVu2bNHjjz+uF154QSdOnNCyZcs0bdq0aNsYO3asWrRooQ4dOuj27duaPXu2nnnmGS1YsEBNmzZNUHld/bzs3LlTDRs2VPbs2TV06FBFRkZqyJAhypkzZ4LbCEDc6P9Tp/+PTceOHfXGG29o6dKl1lXJy5Yt0+HDh9WlSxcFBwdr9+7dmjhxonbv3q0//vhDbm5u8dZv/PjxKlWqlFq0aCFPT0/9/PPP6tGjh6KiotSzZ89Elzcm8fU7rtZJkrZu3apGjRopJCREw4YN0927dzV8+PAY99uIESP09ttvq3Xr1urevbv+/fdfjRs3TrVr17b2V2wcP6I/8sgjsS7Tvn179enTR1evXpW/v78iIyM1Z84cvfLKKzEO2eLgGA/37t27Onz4sAYMGKCsWbNGuxL0zp07Wr58ud577z1r2tdff60XXnhBNWrUUN++fXX48GG1aNFCWbJkUd68ea3lLl++rK+++krt2rXTc889pytXrujrr79WWFiY/vzzT5UvX15ubm569tln9cEHH+j8+fPKkiWL9f6ff/5Zly9fjnaVfMWKFTV//nxdvnxZAQEBsdYRQOqjP09b/bndl19+qd69e+vpp59Wnz59dPPmTe3YsUMbNmxQ+/btJd07B65WrZrc3NzUq1cvZc+eXYsWLVK3bt10+fJl9e3b12md77zzjry8vPTaa6/p1q1b0YYVs7t586bVJ127dk1r167V1KlT1b59e6fwPKHn+K1bt1aBAgX0/vvva8uWLfrqq6+UI0cOjRo1ylrGleOQNm3aqFOnTtq4caMqV65svffo0aP6448/9OGHH8ZaN1fyg8S03U8//STp3vFZYrlS9zNnzljnvwMHDlRQUJCOHDmiH374wVrPsmXL1K5dO9WvX99q271792rt2rXq06dPosuHNMogTZk8ebKRFO2ft7e3mTJlitOyP/74o5Fk3n33XafpTz/9tHFzczMHDx60pg0aNMi4u7ubNWvWmDlz5hhJ5pNPPom3PCtXrjSSzKRJk8y///5rTpw4YX755ReTP39+4+bmZjZu3GiMMSYiIsJIMpMnT7beW758eZMjRw5z7tw5a9r27duNu7u76dSpkzXtww8/NJJMREREvOW5ffu2yZEjhyldurS5ceOGNX3BggVGkhk8eLA1zdGWjjLG5f5lDx06ZDw9PU3v3r2t+XXq1DGlSpWyXsdUXwdJZsiQIdbrIUOGGEnm+eeft6ZFRkaaPHnyGDc3NzNy5Ehr+oULF4yvr68JDw+3pjn2Qe7cuc3ly5et6d99952RZMaOHWuMMSYqKsoUKVLEhIWFmaioKGu569evmwIFCpjHH388WpnatWsXb9sYY0zfvn2NJPPbb79Z065cuWIKFChg8ufPb+7evetU/549e7q0XmOMKVOmjOnQoYP1+o033jDZsmUzd+7ccVquTp06RpIZPXq0Ne3WrVvW5+z27dvGGNfba+vWrUaSmTNnjstldQgPDzd+fn5O00JDQ40ks2bNGmvamTNnjLe3t3n11VetaeXKlTNNmzaNc/09e/Y0sX09X79+3en17du3TenSpc1jjz0WrTwxfY5WrlxpjEnY56VVq1bGx8fHHD161Jq2Z88e4+HhEWs5ASQM/X/cUqL/j01gYKCpUKGC9dr+PWyMMbNmzYrWB8RVv5jWERYWZgoWLBhvmWPqg+7n5+fn9P3vSr/jap2aN29uMmbMaP755x9r2oEDB4ynp6dTf3DkyBHj4eFhRowY4bTOnTt3Gk9Pz2jT7d566y0jyVy5ciXaPMdxxvnz542Xl5eZNm2aMcaYX375xbi5uZkjR45Yxzn//vuv9b7w8PAY/8Zy585tNm/eHG07v/76q9P+c3wGy5cvb27dumUtN3HiRCPJ1KlTx5oWGRnptIwx947xcubMabp27WpN27dvn5Fkxo8f77RsixYtTP78+Z36Z2OMmTlzppFkNmzYEGf7AUg99OdxS67+PKbv/fuVKlXK6Xu6ZcuWTuf3MenWrZsJCQkxZ8+edZretm1bExgYaPWdjjYuWLBgjP1pTGL6jEgyrVq1Mjdv3rSWS8w5/v39jDHGPPHEEyZr1qxO01w5Drl06VK0c1ljjPnggw+Mm5ub07mh/dzT1fwgoW33xBNPGEnmwoUL8S5rzP+3yf1cqfu8efPi/ez16dPHBAQEmMjISJfKgvSNYVvSqM8++0zLli3TsmXLNH36dNWrV0/du3d3+qVr4cKF8vDwUO/evZ3e++qrr8oY4/Q076FDh6pUqVIKDw9Xjx49VKdOnWjvi0vXrl2VPXt25cqVS02bNtW1a9c0depUp1t17nfy5Elt27ZNnTt3drqSpmzZsnr88ce1cOFCl7d9v02bNunMmTPq0aOH0xhgTZs2VfHixaPdBpQYBQsWVMeOHTVx4kSdPHnygdfn0L17d+v/PTw8VKlSJRlj1K1bN2t6UFCQihUrFuOTzzt16qRMmTJZr59++mmFhIRYbblt2zYdOHBA7du317lz53T27FmdPXtW165dU/369bVmzRpFRUU5rfPFF190qewLFy5UlSpVnIZ28ff31/PPP68jR45oz549rjWCzY4dO7Rz506nh4G1a9dOZ8+e1ZIlS6It7+np6XQLs5eXl1544QWdOXNGmzdvdlo2vvZyXFm+ZMmSJHuiecmSJVWrVi3rdfbs2aPtz6CgIO3evVsHDhxI1Dbuv3X8woULunTpkmrVqqUtW7YkaD2ufl7u3r2rJUuWqFWrVsqXL5/1/hIlSigsLCxRdQAQO/r/mKVE/x8bf39/XblyxXp9//ew46qxatWqSZLL38X3r8NxdWKdOnV0+PDhRA0dFhdX+h1X6nT37l0tX75crVq1crozr3DhwmrcuLHT+n744QdFRUWpdevWVv9y9uxZBQcHq0iRIk7Dl8Tk3Llz8vT0lL+/f6zLZM6cWY0aNdKsWbMkSTNnzlSNGjUUGhoa63t8fHysv68lS5boiy++kL+/v5o0aaL9+/c7Lbtw4UKVLFlS+fPnl/T/n8EXX3zR6Yq4zp07R7tbzcPDw1omKipK58+fV2RkpCpVquT0GSlatKiqVq2qGTNmWNPOnz+vRYsWqUOHDtGGwsmcObOk/796HkDaRX8es9Tsz+8XFBSkv//+Wxs3boxxvjFGc+fOVfPmzWWMcerLwsLCdOnSpWh9fnh4eIKej9KyZUvrMzJ//nwNGjRIixcvVvv27a27wpPiHL9WrVo6d+6c01AorhyHBAQEqHHjxvruu++c7lL/9ttvVa1aNadzQ7uE5geutp2jDvef5yeUK3V33B23YMEC3blzJ8b1BAUF6dq1a07D4OHhxbAtaVSVKlWcOrJ27dqpQoUK6tWrl5o1ayYvLy8dPXpUuXLlivbFUaJECUn3bqdx8PLy0qRJk6wxiydPnuzSeNQOgwcPVq1ateTh4aFs2bKpRIkSMY4N6eDYdrFixaLNK1GihJYsWZKoB1TGtd7ixYvr999/T9D6YvPWW29p2rRpGjlyZJKNWWXvXAIDA+Xj42Pd2nb/9JjGGC1SpIjTazc3NxUuXNgaT85xUuwYGy4mly5dsk68pHvD1Lji6NGjqlq1arTp93/WEjK+qMP06dPl5+enggUL6uDBg5Lundjmz59fM2bMiDYMSa5cuaJ9ZooWLSrp3jj0jhN9Kf72KlCggF555RWNGTNGM2bMUK1atdSiRQtrXPrEiOkAInPmzLpw4YL1evjw4WrZsqWKFi2q0qVLq1GjRurYsaPKli3r0jYWLFigd999V9u2bdOtW7ec6pcQrn5ebt26pRs3bkRrT+ne32FiD5wBxIz+P+HrTcr+PyZXr15Vjhw5rNfnz5/XsGHDNHv2bOthZg6uBt9r167VkCFDtH79+mg/4F66dCnR/ZDD/fvYlX7HlTqdOXNGN27cUOHChaNtzz7twIEDMsbE2HdI98bvTgrt27dXx44ddezYMf3444/64IMP4lzew8Mj2jjqTZo0UZEiRTRo0CCnh4z+8ssvat68ufXa8Rm01ylDhgwxjgk7depUjR49Wn/99ZfTibf92KtTp07q1auXjh49qtDQUM2ZM0d37tyJ8ZZ0R3iR0D4fQMqjP0/4epO7P7+/vQYMGKDly5erSpUqKly4sBo2bKj27durZs2akqR///1XFy9e1MSJEzVx4sQY12fvL109t3bIkyePU5/UokULZc2aVa+99poWLFig5s2bJ+oc335O6ph34cIFa8gvV49D2rRpox9//FHr169XjRo1dOjQIW3evFmffPJJnHVLaH7gats5yn/lypVEP0jWlbrXqVNHTz31lIYNG6aPP/5YdevWVatWrdS+fXvr4ag9evTQd999p8aNGyt37txq2LChWrdurUaNGiWqXEjbCM/TCXd3d9WrV09jx47VgQMHrPGTE8JxJe/Nmzd14MCBBH25lylTJtaHNj2MChYsqGeffVYTJ07UwIEDo82P7UAlroe1xDQWXWzj093/y66rHL84f/jhhypfvnyMy9iv4ErIL+NJzRijWbNm6dq1aypZsmS0+WfOnLHGMU0uo0ePVufOnTV//nwtXbpUvXv31vvvv68//vhDefLkSfD6XNmftWvX1qFDh6xtfvXVV/r44481YcIEp7sTYvLbb7+pRYsWql27tj7//HOFhIQoQ4YMmjx5crSH28TH1c/L/QE9gJRH/5+6/v77b126dMkpHG7durXWrVun/v37q3z58vL391dUVJQaNWoU7eqvmBw6dEj169dX8eLFNWbMGOXNm1deXl5auHChPv7443jX4ePjo1u3bskYE+14xBijmzdvOl3N50q/86B1souKipKbm5sWLVoUY98YX9+eNWtWRUZG6sqVK3FeXdaiRQt5e3srPDxct27dUuvWrRNc1jx58qhYsWJas2aNNS0iIkJ//fVXoh/iOn36dHXu3FmtWrVS//79lSNHDnl4eOj999+3xhl2aNu2rfr166cZM2bojTfe0PTp01WpUqUYgyXHj/H2Cy8ApH3058nL0e/d/1DV+12/ft2pbyxRooT27dunBQsWaPHixZo7d64+//xzDR48WMOGDbP6vmeffTbW4Np+8VNSnFvXr19fkrRmzRo1b948Uef48Z2TJuQ4pHnz5sqYMaO+++471ahRQ999953c3d31zDPPPGhVnbjadsWLF5d075lc99/x7SpX6+7m5qbvv/9ef/zxh37++WctWbJEXbt21ejRo/XHH3/I399fOXLk0LZt27RkyRItWrRIixYt0uTJk9WpUydNnTo1wWVD2kZ4no5ERkZKuncFlCSFhoZq+fLl0U4s/vrrL2u+w44dOzR8+HB16dJF27ZtU/fu3bVz584HvrIpNo5t79u3L9q8v/76S9myZbN+pU7IL+b3r9fxhHCHffv2xXmrbkK99dZbmj59utODNRwcv95evHjRafr9VwckNfvt1sYYHTx40Oq0HQ9QCQgISPIDo9DQ0Fj3pWN+Qq1evVp///23hg8fbv0C7XDhwgU9//zz+vHHH50eqnPixIloVzg4brN23FbtEF97OZQpU0ZlypTRW2+9pXXr1qlmzZqaMGGC3n333QTXyVVZsmRRly5d1KVLF129elW1a9fW0KFDrRAjtr+JuXPnysfHR0uWLLF+8ZbuPTE8oVz9vGTPnl2+vr4x3u4f02cCQNKj/0/Z/v9+jgc3O4apunDhgn799VcNGzZMgwcPtpaL6Tsytvr9/PPPunXrln766Senq8PiG8rEITQ0VJGRkTp06FC0K74PHjyou3fvRmuPuPodV+uUI0cO+fj4WHeK2bd7v0KFCskYowIFClh3iCWE4+Q4IiIizjuzfH191apVK02fPl2NGzdOdKgcGRlp/X1J9646DwwMdLrd3NGmBw4ccPoM3rlzRxERESpXrpw17fvvv1fBggX1ww8/OH0OhgwZEm3bWbJkUdOmTTVjxgx16NBBa9eujfWKvoiICLm7uyeqTQGkPvrz5OvP71/v/Q9wlu4F58ePH1fDhg2dpvv5+alNmzZq06aNbt++rSeffFIjRozQoEGDlD17dmXKlEl3795N0R8d7J+R5DjHT8hxiJ+fn5o1a6Y5c+ZozJgx+vbbb1WrVi2n4dtikhz5gXQvzH///fc1ffr0RIXnCT0Gq1atmqpVq6YRI0Zo5syZ6tChg2bPnm2dt3t5eal58+bWDx09evTQF198obfffjvGO/WQfjHmeTpx584dLV26VF5eXlbQ2KRJE929e1f/+9//nJb9+OOP5ebmZo0/eefOHXXu3Fm5cuXS2LFjNWXKFJ0+fVr9+vVLtvKGhISofPnymjp1qlPAvGvXLi1dulRNmjSxpjk6XXsQHZNKlSopR44cmjBhgtMVsYsWLdLevXujDfPxIAoVKqRnn31WX3zxhU6dOuU0LyAgQNmyZXO6SkmSPv/88yTbvt0333zjNObq999/r5MnT1r7uWLFiipUqJA++ugjpxNAh3///TfR227SpIn+/PNPrV+/3pp27do1TZw4Ufnz54/xyvH4OIZs6d+/v55++mmnf88995yKFCniNAaodO9g4osvvrBe3759W1988YWyZ8+uihUrOi0bX3tdvnzZOjhxKFOmjNzd3ZP1amv7kDz+/v4qXLiw0zZj+5vw8PCQm5ub0x0OR44c0Y8//pjgcrj6efHw8FBYWJh+/PFHHTt2zJq/d+/eGMelB5C06P/vScn+32HFihV65513VKBAAXXo0EHS/1/NZb9DLKawM67vcvs6Ll265PIPoY79a9//0r0xdu9fRoq/33G1To4hT3788UedOHHCmn7w4EGncXkl6cknn5SHh4eGDRsWbb3GmBiHp7tf9erVJd0bGzc+r732moYMGaK333473mVjsn//fu3bt88p/F64cKEaNmzoNKRBpUqVlD17dk2YMEG3b9+2pk+ZMsWlfbxhwwan46j7dezYUXv27FH//v3l4eGhtm3bxrjc5s2bVapUqWQLywAkH/rze5KrP69fv768vLw0fvz4aHdMTZw4UZGRkXH2jV5eXipZsqSMMbpz5448PDz01FNPae7cudq1a1e07T3IuXVcfv75Z0my+qTkOMdP6HFImzZtdOLECX311Vfavn272rRpE+82kiM/kO4dHzRq1EhfffVVjOfAt2/f1muvvRbr+12t+4ULF6Idvziu/Hd8bu2fIXd3d+sHf+7efvhw5XkatWjRIutXuTNnzmjmzJk6cOCABg4caI3z1Lx5c9WrV09vvvmmjhw5onLlymnp0qWaP3+++vbta/1K6Rgf+ddff1WmTJlUtmxZDR48WG+99Zaefvppp44vKX344Ydq3Lixqlevrm7duunGjRsaN26cAgMDNXToUGs5R+j55ptvqm3btsqQIYOaN28e4/hpGTJk0KhRo9SlSxfVqVNH7dq10+nTpzV27Fjlz58/yQ8g3nzzTU2bNk379u2Ldmtd9+7dNXLkSHXv3l2VKlXSmjVroj1sKillyZJFjz76qLp06aLTp0/rk08+UeHChfXcc89Juvdl/dVXX6lx48YqVaqUunTpoty5c+uff/7RypUrFRAQYHXGCTVw4EDNmjVLjRs3Vu/evZUlSxZNnTpVERERmjt3rtzdE/Y73K1btzR37lw9/vjjTrfP3a9FixYaO3aszpw5Y401mytXLo0aNUpHjhxR0aJF9e2332rbtm2aOHFitPFT42uvFStWqFevXnrmmWdUtGhRRUZGatq0adaBUnIpWbKk6tatq4oVKypLlizatGmTvv/+e/Xq1ctaxvE30bt3b4WFhVkn0k2bNtWYMWPUqFEjtW/fXmfOnNFnn32mwoULa8eOHQkqR0I+L8OGDdPixYtVq1Yt9ejRQ5GRkRo3bpxKlSqV4O0CiBv9f+r0/452j4yM1OnTp7VixQotW7ZMoaGh+umnn6y+KiAgQLVr19YHH3ygO3fuKHfu3Fq6dKkiIiKirTO2+jVs2NC6UumFF17Q1atX9eWXXypHjhwuPai8fPny6t69u3Xr/+OPPy5JWrZsmRYuXKju3bs7BcHx9TsJqdPQoUO1dOlS1axZUy+99JIV+pQuXVrbtm2zlitUqJDeffddDRo0SEeOHFGrVq2UKVMmRUREaN68eXr++efjPLktWLCgSpcureXLl6tr165xtke5cuWc6huXyMhITZ8+XdK9oWWOHDmiCRMmKCoqyroq/MaNG1q5cqUmTJjg9N4MGTLo3Xff1QsvvKDHHntMbdq0UUREhCZPnhxtzPNmzZrphx9+0BNPPKGmTZsqIiJCEyZMUMmSJWMMP5o2baqsWbNqzpw5aty4sdMY+w537tzR6tWr1aNHD5fqCiB10Z+nbH+eI0cOq01q166tFi1aKGPGjFq3bp1mzZqlhg0bOj3HomHDhgoODlbNmjWVM2dO7d27V//73//UtGlT6y6AkSNHauXKlapataqee+45lSxZUufPn9eWLVu0fPlynT9/PlFlddi/f7/VJ12/fl1//PGHpk6dqsKFC1vPvUiOc/yEHoc0adJEmTJl0muvvebyuXJS5wf3++abb9SwYUM9+eSTat68uerXry8/Pz8dOHBAs2fP1smTJ/XRRx89UN2nTp2qzz//XE888YQKFSqkK1eu6Msvv1RAQID199a9e3edP39ejz32mPLkyaOjR49q3LhxKl++fLQ76/EQMEhTJk+ebCQ5/fPx8THly5c348ePN1FRUU7LX7lyxfTr18/kypXLZMiQwRQpUsR8+OGH1nKbN282np6e5uWXX3Z6X2RkpKlcubLJlSuXuXDhQqzlWblypZFk5syZE2e5IyIijCQzefJkp+nLly83NWvWNL6+viYgIMA0b97c7NmzJ9r733nnHZM7d27j7u5uJJmIiIg4t/ftt9+aChUqGG9vb5MlSxbToUMH8/fffzst42jLjRs3xrmu+JYNDw83kkypUqWcpl+/ft1069bNBAYGmkyZMpnWrVubM2fOGElmyJAh1nJDhgwxksy///4bbb1+fn7RtlenTh2nbTn2waxZs8ygQYNMjhw5jK+vr2natKk5evRotPdv3brVPPnkkyZr1qzG29vbhIaGmtatW5tff/013jLF5dChQ+bpp582QUFBxsfHx1SpUsUsWLAg2nKSTM+ePeNc19y5c40k8/XXX8e6zKpVq4wkM3bsWGPM/7fLpk2bTPXq1Y2Pj48JDQ01//vf/5ze52p7HT582HTt2tUUKlTI+Pj4mCxZsph69eqZ5cuXx9sWMe270NBQ07Rp02jL1qlTx9SpU8d6/e6775oqVaqYoKAg4+vra4oXL25GjBhhbt++bS0TGRlpXn75ZZM9e3bj5uZm7v+q/vrrr02RIkWMt7e3KV68uJk8ebK1P+3lCQ8Pj9YuK1eudFrOlc+LMcasXr3aVKxY0Xh5eZmCBQuaCRMmxLhdAIlD/5+6/b/jn5eXlwkODjaPP/64GTt2rLl8+XK09/z999/miSeeMEFBQSYwMNA888wz5sSJE9H6/7jq99NPP5myZcsaHx8fkz9/fjNq1CgzadIkl9rAGGPu3r1rxo4da8qVK2d8fHyMj4+PKVeunPn000/N3bt3nZZ1pd9JSJ1+/fVXU6FCBePl5WUKFSpkvvrqK/Pqq68aHx+faOWcO3euefTRR42fn5/x8/MzxYsXNz179jT79u2Lt45jxowx/v7+5vr1607TXTnOiOk4x3E8d/+/gIAAU79+fae+f8GCBcbNzc2cPn06xnV//vnnpkCBAsbb29tUqlTJrFmzJlpfHxUVZd577z0TGhpqvL29TYUKFcyCBQtMeHi4CQ0NjXG9PXr0MJLMzJkzY5y/aNEiI8kcOHAgzroDSF3056nTnztMnz7dVKtWzfj5+VnnS8OGDTM3b950Wu6LL74wtWvXts6BChUqZPr3728uXbrktNzp06dNz549Td68eU2GDBlMcHCwqV+/vpk4caK1jKttfD/7Z8TDw8PkyZPHPP/88zH2Pw9yju9ox/v3SUKPQzp06GAkmQYNGsRYH/u5pzGu5QeJaTtj7mUxH330kalcubLx9/c3Xl5epkiRIubll182Bw8ejNYm93Ol7lu2bDHt2rUz+fLlM97e3iZHjhymWbNmZtOmTdZ6vv/+e9OwYUOTI0cO4+XlZfLly2deeOEFc/LkyQTVBemDmzGJeDIhAKSwunXr6uzZszHeNne/VatWqV69epozZ46efvrpFCodAAD/Xa1atdLu3btjHPs9sS5duqSCBQvqgw8+ULdu3ZJsvfHp0aOHNm3apD///DPFtilJ/fr109dff61Tp04pY8aM0ea3atVKbm5umjdvXoqWCwAA4L+OMc8BAAAAuOTGjRtOrw8cOKCFCxeqbt26SbqdwMBAvf766/rwww+jjV+bnMqXL69hw4al2PYk6ebNm5o+fbqeeuqpGIPzvXv3asGCBXrnnXdStFwAAABgzHMAAAAALipYsKA6d+6sggUL6ujRoxo/fry8vLz0+uuvJ/m2BgwYoAEDBiT5euPy/PPPp9i2zpw5o+XLl+v777/XuXPn1KdPnxiXK1GiRLSHnAMAACBlEJ4DAAAAcEmjRo00a9YsnTp1St7e3qpevbree+89FSlSJLWLlu7s2bNHHTp0UI4cOfTpp5+qfPnyqV0kAAAA2DDmOQAAAAAAAAAANox5DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgk+oGhUVFROnHihDJlyiQ3N7ekLBMAAP9pxhhduXJFuXLlkrt70v3OTd8NAEDSS65+W6LvBgAgOSSk7050eH7ixAnlzZs3sW8HAADxOH78uPLkyZNk66PvBgAg+SR1vy3RdwMAkJxc6bsTHZ5nypTJ2khAQEBiVwMAAGwuX76svHnzWn1tUqHvBgAg6SVXvy3RdwMAkBwS0ncnOjx33DIWEBBAJw4AQDJI6tuz6bsBAEg+yTGsCn03AADJx5W+mweGAgAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABg45naBUDSOH36tC5dupTaxQBgExgYqJw5c6Z2MQDEg34U6Q39CwD8N3CMAiQPjqXgKsLzh8Dp06f1bMdOunP7VmoXBYBNBi9vTZ/2DZ0ykIbRjyI9on8BgIcfxyhA8uFYCq4iPH8IXLp0SXdu39KNgnUU5ROY2sVBArjfuCjfiDW6UaC2onyDUrs4SGLuNy9Jh1fr0qVLdMhAGkY/+uDoz1IW/QsA/DdwjJK+cDyUfnAshYQgPH+IRPkEKsovW2oXA4kQ5RvEvgOAVEY/+uDozwAASHoco6QvHA8BDxceGAoAAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANmkqPL9586b279+vmzdvpnZRAACIF/0WbQAASF/ot2gDAED6ktr9VpoKz48dO6bnn39ex44dS+2iAAAQL/ot2gAAkL7Qb9EGAID0JbX7rTQVngMAAAAAAAAAkBYQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANh4urrgrVu3dOvWLev15cuXk6VAknT06NFkW/fDiPYC0jb+Rh9eaX3f0ne7Jj2XHf9tfHaBhEvrfzf03bgf+whIXvyNpQ+pvZ9cDs/ff/99DRs2LDnLYhkxYkSKbAcAUgLfaUgt9N3Aw42/O+DhQ98NACmH70G4wuXwfNCgQXrllVes15cvX1bevHmTpVBvvvmmQkNDk2XdD6OjR4/yBw+kYXynPbzS+vcvfbdr0vp+BGKTnv/ugNSS1r/z6btxv7T+eQXSO74H04fU/i50OTz39vaWt7d3cpbFEhoaqqJFi6bItgAgufGdhtRC3w083Pi7Ax4+9N0AkHL4HoQreGAoAAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACADeE5AAAAAAAAAAA2hOcAAAAAAAAAANgQngMAAAAAAAAAYEN4DgAAAAAAAACATZoKz/Ply6eJEycqX758qV0UAADiRb9FGwAA0hf6LdoAAJC+pHa/5ZkqW42Fj4+PihYtmtrFAADAJfRbtAEAIH2h36INAADpS2r3W2nqynMAAAAAAAAAANICwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsPFM7QIg6bjfvJTaRUACud+46PRfPFz4mwTSF/5mE4/+LGXxWQWA/xa+99MHjofSD/6mkBCE5w+BwMBAZfDylg6vTu2iIJF8I9akdhGQTDJ4eSswMDC1iwEgDvSjSYf+LOXQvwDAw49jlPSJ46H0gWMpuIrw/CGQM2dOTZ/2jS5d4pczIK0JDAxUzpw5U7sYAOJAP4r0iP4FAB5+HKMAyYdjKbiK8PwhkTNnTv7oAQBIJPpRAACQFnGMAgCpiweGAgAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3gOAAAAAAAAAIAN4TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABg45nYNxpjJEmXL19OssIAAID/71sdfW1Soe8GACDpJVe/ff866bsBAEg6Cem7Ex2eX7lyRZKUN2/exK4CAADE4cqVKwoMDEzS9Un03QAAJIek7rcd65TouwEASA6u9N1uJpE/j0dFRenEiRPKlCmT3NzcElXAh9Hly5eVN29eHT9+XAEBAaldnP8c2j/1sQ9SF+2f+pJiHxhjdOXKFeXKlUvu7kk3wtr9ffeVK1f4rKQA/iaTH22cMmjnlEE7J7/kaOPk6rel5Dnvflg/Zw9jvR7GOknUK715GOv1MNZJol4JkZC+O9FXnru7uytPnjyJfftDLyAg4KH6oKY3tH/qYx+kLto/9T3oPkjqK9ck577bcQLOZyVl0M7JjzZOGbRzyqCdk19St3Fy9NtS8p53P6yfs4exXg9jnSTqld48jPV6GOskUS9Xudp388BQAAAAAAAAAABsCM8BAAAAAAAAALAhPE9i3t7eGjJkiLy9vVO7KP9JtH/qYx+kLto/9aWXfZBeypne0c7JjzZOGbRzyqCdkx9t/PC2wcNYr4exThL1Sm8exno9jHWSqFdySfQDQwEAAAAAAAAAeFhx5TkAAAAAAAAAADaE5wAAAAAAAAAA2BCeAwAAAAAAAABgQ3ieCO+//74qV66sTJkyKUeOHGrVqpX27dvntMzNmzfVs2dPZc2aVf7+/nrqqad0+vTpVCrxw23kyJFyc3NT3759rWm0f/L7559/9Oyzzypr1qzy9fVVmTJltGnTJmu+MUaDBw9WSEiIfH191aBBAx04cCAVS/zwuHv3rt5++20VKFBAvr6+KlSokN555x3d/wgL2j9prVmzRs2bN1euXLnk5uamH3/80Wm+K+19/vx5dejQQQEBAQoKClK3bt109erVFKzF//vss8+UP39++fj4qGrVqvrzzz9TpRzp1dChQ+Xm5ub0r3jx4tZ8V/qgY8eOqWnTpsqYMaNy5Mih/v37KzIyMqWrkmak1N/Yjh07VKtWLfn4+Chv3rz64IMPkrtqaUp87dy5c+don+1GjRo5LUM7xy2pzhNc+Y5YtWqVHnnkEXl7e6tw4cKaMmVKclcvzXClnevWrRvt8/ziiy86LfOwtnN8f+sxSev1TGidVq1aFW3/u7m56dSpUylTYBe58lmOyZw5c1S8eHH5+PioTJkyWrhwYQqU1jWJqdOUKVOi7SsfH58UKrFrxo8fr7JlyyogIEABAQGqXr26Fi1aFOd70vJ+ckhovdLDvrKLKTOKSXrYX/dzpV7pYX/Fd24Vk5TeV4TnibB69Wr17NlTf/zxh5YtW6Y7d+6oYcOGunbtmrVMv3799PPPP2vOnDlavXq1Tpw4oSeffDIVS/1w2rhxo7744guVLVvWaTrtn7wuXLigmjVrKkOGDFq0aJH27Nmj0aNHK3PmzNYyH3zwgT799FNNmDBBGzZskJ+fn8LCwnTz5s1ULPnDYdSoURo/frz+97//ae/evRo1apQ++OADjRs3zlqG9k9a165dU7ly5fTZZ5/FON+V9u7QoYN2796tZcuWacGCBVqzZo2ef/75lKqC5dtvv9Urr7yiIUOGaMuWLSpXrpzCwsJ05syZFC9LelaqVCmdPHnS+vf7779b8+Lrg+7evaumTZvq9u3bWrdunaZOnaopU6Zo8ODBqVGVNCEl/sYuX76shg0bKjQ0VJs3b9aHH36ooUOHauLEiclev7QivnaWpEaNGjl9tmfNmuU0n3aOW1KcJ7jyHREREaGmTZuqXr162rZtm/r27avu3btryZIlKVrf1OJKO0vSc8895/R5vv+HnIe5nV35W79feqhnQuvksG/fPqfPQI4cOZKphInj6mf5fuvWrVO7du3UrVs3bd26Va1atVKrVq20a9euFCx57BJTJ0kKCAhw2ldHjx5NoRK7Jk+ePBo5cqQ2b96sTZs26bHHHlPLli21e/fuGJdP6/vJIaH1ktL+vrpfbJmRXXrZXw6u1ktKH/srrnMru1TZVwYP7MyZM0aSWb16tTHGmIsXL5oMGTKYOXPmWMvs3bvXSDLr169PrWI+dK5cuWKKFClili1bZurUqWP69OljjKH9U8KAAQPMo48+Guv8qKgoExwcbD788ENr2sWLF423t7eZNWtWShTxoda0aVPTtWtXp2lPPvmk6dChgzGG9k9uksy8efOs16609549e4wks3HjRmuZRYsWGTc3N/PPP/+kWNmNMaZKlSqmZ8+e1uu7d++aXLlymffffz9Fy5GeDRkyxJQrVy7Gea70QQsXLjTu7u7m1KlT1jLjx483AQEB5tatW8la9vQguf7GPv/8c5M5c2anNh4wYIApVqxYMtcobbK3szHGhIeHm5YtW8b6Hto54RJznuDKd8Trr79uSpUq5bStNm3amLCwsOSuUppkb2djjNP5QUz+K+0c09+6XXqrpyt1WrlypZFkLly4kCJlSioxfZbtWrdubZo2beo0rWrVquaFF15I7uIliit1mjx5sgkMDEy5QiWRzJkzm6+++irGeeltP90vrnqlp30VW2YUk/S0vxJSr/Swv+I6t4pJauwrrjxPApcuXZIkZcmSRZK0efNm3blzRw0aNLCWKV68uPLly6f169enShkfRj179lTTpk2d2lmi/VPCTz/9pEqVKumZZ55Rjhw5VKFCBX355ZfW/IiICJ06dcppHwQGBqpq1arsgyRQo0YN/frrr9q/f78kafv27fr999/VuHFjSbR/SnOlvdevX6+goCBVqlTJWqZBgwZyd3fXhg0bUqyst2/f1ubNm53K6u7urgYNGvDZSKADBw4oV65cKliwoDp06KBjx45Jcq0PWr9+vcqUKaOcOXNay4SFheny5ctxXuXzX5VUf2Pr169X7dq15eXlZS0TFhamffv26cKFCylUm7Rv1apVypEjh4oVK6aXXnpJ586ds+bRzgmXmPMEV74j1q9fH+0YOCws7D/7XW5vZ4cZM2YoW7ZsKl26tAYNGqTr169b82jn//cw17N8+fIKCQnR448/rrVr16Z2ceIV22f5fultf7lSJ0m6evWqQkNDlTdv3nivfE5td+/e1ezZs3Xt2jVVr149xmXS236SXKuXlH72VWyZUUzS0/5KSL2k9LG/Yju3iklq7CvPZFvzf0RUVJT69u2rmjVrqnTp0pKkU6dOycvLS0FBQU7L5syZM82NsZZezZ49W1u2bNHGjRujzaP9k9/hw4c1fvx4vfLKK3rjjTe0ceNG9e7dW15eXgoPD7fa+f6TEcdr9sGDGzhwoC5fvqzixYvLw8NDd+/e1YgRI9ShQwdJov1TmCvtferUqWi3CXt6eipLliwpuk/Onj2ru3fvxljWv/76K8XKkd5VrVpVU6ZMUbFixXTy5EkNGzZMtWrV0q5du1zqg06dOhXjPnDMg7Ok+hs7deqUChQoEG0djnn3Dz32X9WoUSM9+eSTKlCggA4dOqQ33nhDjRs31vr16+Xh4UE7J1BizxNc+Y6IbZnLly/rxo0b8vX1TY4qpUkxtbMktW/fXqGhocqVK5d27NihAQMGaN++ffrhhx8k0c73exjrGRISogkTJqhSpUq6deuWvvrqK9WtW1cbNmzQI488ktrFi1Fsn2W72PZXWjyGcLVOxYoV06RJk1S2bFldunRJH330kWrUqKHdu3crT548KVjiuO3cuVPVq1fXzZs35e/vr3nz5qlkyZIxLpue9lNC6pVe9lVcmVFM0sv+Smi90sP+iuvcKlOmTNGWT419RXj+gHr27Kldu3bFOR4Pktbx48fVp08fLVu2LM096OC/IioqSpUqVdJ7770nSapQoYJ27dqlCRMmKDw8PJVL9/D77rvvNGPGDM2cOVOlSpWyxqbMlSsX7Q+kAMddHpJUtmxZVa1aVaGhofruu+/SZcAAOLRt29b6/zJlyqhs2bIqVKiQVq1apfr166diydInzhNSRmztfP9Y/GXKlFFISIjq16+vQ4cOqVChQildTKSwYsWKqVixYtbrGjVq6NChQ/r44481bdq0VCxZ7B7G7wxX61S9enWnK51r1KihEiVK6IsvvtA777yT3MV0WbFixbRt2zZdunRJ33//vcLDw7V69epYg+b0IiH1Sg/76mHNjBJTr/Swv+I6t+rWrVsqluz/MWzLA+jVq5cWLFiglStXOv1iExwcrNu3b+vixYtOy58+fVrBwcEpXMqHz+bNm3XmzBk98sgj8vT0lKenp1avXq1PP/1Unp6eypkzJ+2fzEJCQqJ1pCVKlLBurXG08+nTp52WYR8kjf79+2vgwIFq27atypQpo44dO6pfv356//33JdH+Kc2V9g4ODo72QM7IyEidP38+RfdJtmzZ5OHhwWcjiQUFBalo0aI6ePCgS8cAwcHBMe4Dxzw4S6q/Mdo94QoWLKhs2bLp4MGDkmjnhHiQ8wRX2jC2ZQICAv5TP+LF1s4xqVq1qiQ5fZ5p53v+K/WsUqWKtf/TmoR8lmPbX2ntOzYhdbLLkCGDKlSokOb2l5eXlwoXLqyKFSvq/fffV7ly5TR27NgYl00v+0lKWL3s0uK+ii8zunv3brT3pIf9lZh62aXF/WV3/7lVTFJjXxGeJ4IxRr169dK8efO0YsWKaLemVqxYURkyZNCvv/5qTdu3b5+OHTsW57hRcE39+vW1c+dObdu2zfpXqVIldejQwfp/2j951axZU/v27XOatn//foWGhkqSChQooODgYKd9cPnyZW3YsIF9kASuX78ud3fnr28PDw9FRUVJov1TmivtXb16dV28eFGbN2+2llmxYoWioqKsk/mU4OXlpYoVKzqVNSoqSr/++iufjQdw9epVHTp0SCEhIS4dA1SvXl07d+50CiGXLVumgICAdH/lUnJIqr+x6tWra82aNbpz5461zLJly1SsWLH/1FAiCfH333/r3LlzCgkJkUQ7uyIpzhNc+Y6oXr260zocy/xXvsvja+eYbNu2TZKcPs+08z3/lXpu27bN2v9pRWI+y2l9fyWmTnZ3797Vzp0709z+souKitKtW7dinJfW91Nc4qqXXVrcV/FlRh4eHtHekx72V2LqZZcW95fd/edWMUmVfZVsjyJ9iL300ksmMDDQrFq1ypw8edL6d/36dWuZF1980eTLl8+sWLHCbNq0yVSvXt1Ur149FUv9cLM/YZj2T15//vmn8fT0NCNGjDAHDhwwM2bMMBkzZjTTp0+3lhk5cqQJCgoy8+fPNzt27DAtW7Y0BQoUMDdu3EjFkj8cwsPDTe7cuc2CBQtMRESE+eGHH0y2bNnM66+/bi1D+yetK1eumK1bt5qtW7caSWbMmDFm69at5ujRo8YY19q7UaNGpkKFCmbDhg3m999/N0WKFDHt2rVL8brMnj3beHt7mylTppg9e/aY559/3gQFBZlTp06leFnSq1dffdWsWrXKREREmLVr15oGDRqYbNmymTNnzhhj4u+DIiMjTenSpU3Dhg3Ntm3bzOLFi0327NnNoEGDUqtKqS4l/sYuXrxocubMaTp27Gh27dplZs+ebTJmzGi++OKLFK9vaomrna9cuWJee+01s379ehMREWGWL19uHnnkEVOkSBFz8+ZNax20c9yS4jzBle+Iw4cPm4wZM5r+/fubvXv3ms8++8x4eHiYxYsXp2h9U0t87Xzw4EEzfPhws2nTJhMREWHmz59vChYsaGrXrm2t42Fu5/i+UwcOHGg6duxoLZ8e6pnQOn388cfmxx9/NAcOHDA7d+40ffr0Me7u7mb58uWpVYUYufKd0bFjRzNw4EDr9dq1a42np6f56KOPzN69e82QIUNMhgwZzM6dO1OjCtEkpk7Dhg0zS5YsMYcOHTKbN282bdu2NT4+Pmb37t2pUYUYDRw40KxevdpERESYHTt2mIEDBxo3NzezdOlSY0z6208OCa1XethXMbFnRul1f9nFV6/0sL/iO7dKC/uK8DwRJMX4b/LkydYyN27cMD169DCZM2c2GTNmNE888YQ5efJk6hX6IWf/wqD9k9/PP/9sSpcubby9vU3x4sXNxIkTneZHRUWZt99+2+TMmdN4e3ub+vXrm3379qVSaR8uly9fNn369DH58uUzPj4+pmDBgubNN980t27dspah/ZPWypUrY/zeDw8PN8a41t7nzp0z7dq1M/7+/iYgIMB06dLFXLlyJRVqY8y4ceNMvnz5jJeXl6lSpYr5448/UqUc6VWbNm1MSEiI8fLyMrlz5zZt2rQxBw8etOa70gcdOXLENG7c2Pj6+pps2bKZV1991dy5cyelq5JmpNTf2Pbt282jjz5qvL29Te7cuc3IkSNTqoppQlztfP36ddOwYUOTPXt2kyFDBhMaGmqee+65aD+s0c5xS6rzBFe+I1auXGnKly9vvLy8TMGCBZ228bCLr52PHTtmateubbJkyWK8vb1N4cKFTf/+/c2lS5ec1vOwtnN836nh4eGmTp060d6TluuZ0DqNGjXKFCpUyPj4+JgsWbKYunXrmhUrVqRO4ePgyndGnTp1rHo6fPfdd6Zo0aLGy8vLlCpVyvzyyy8pW/A4JKZOffv2tY5Nc+bMaZo0aWK2bNmS8oWPQ9euXU1oaKjx8vIy2bNnN/Xr17cCZmPS335ySGi90sO+iok9M0qv+8suvnqlh/0V37lVWthXbsYYkzTXsAMAAAAAAAAA8HBgzHMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnMAAAAAAAAAAGwIzwEAAAAAAAAAsCE8BwAAAAAAAADAhvAcAAAAAAAAAAAbwnPgPkeOHJGbm5u2bduW2kWx/PXXX6pWrZp8fHxUvnz51C5OuuXm5qYff/xRUtLt57p166pv374PXDYAAJLS22+/reeffz61iyFJGjp0aJIfv7Rt21ajR49O0nUCAHC/lDjXSwv5Q/78+fXJJ5+k2vaB9IDwHGlK586d5ebmppEjRzpN//HHH+Xm5pZKpUpdQ4YMkZ+fn/bt26dff/01zmXXr18vDw8PNW3aNIVKF7+k7IzTwsEFACBpOPp8Nzc3ZciQQTlz5tTjjz+uSZMmKSoqKkHrmjJlioKCgpKkXLH1W8kRAieHU6dOaezYsXrzzTetaY62fvHFF6Mt37NnT7m5ualz587Rlnf8y5o1qxo1aqQdO3ZEe/+NGzfk5+engwcPJkt9YvLWW29pxIgRunTpUoptEwAQs9hC5qTsmxNanvv7sJw5c+qZZ57R0aNHU7ws8cmbN69Onjyp0qVLJ8v6L1++rDfffFPFixeXj4+PgoOD1aBBA/3www8yxiTLNoGHEeE50hwfHx+NGjVKFy5cSO2iJJnbt28n+r2HDh3So48+qtDQUGXNmjXOZb/++mu9/PLLWrNmjU6cOJHobQIAkBIaNWqkkydP6siRI1q0aJHq1aunPn36qFmzZoqMjEzt4qVLX331lWrUqKHQ0FCn6Xnz5tXs2bN148YNa9rNmzc1c+ZM5cuXL9p6HPvm5MmT+vXXX+Xp6almzZpFW27ZsmUKDQ1V4cKFk74ysShdurQKFSqk6dOnp9g2AQBpy507d2Kd99xzz+nkyZM6ceKE5s+fr+PHj+vZZ59NwdK5xsPDQ8HBwfL09Ez0OmLLGi5evKgaNWrom2++0aBBg7RlyxatWbNGbdq00euvv84P0EACEJ4jzWnQoIGCg4P1/vvvx7pMTFd/ffLJJ8qfP7/1unPnzmrVqpXee+895cyZU0FBQRo+fLgiIyPVv39/ZcmSRXny5NHkyZOjrf+vv/5SjRo15OPjo9KlS2v16tVO83ft2qXGjRvL399fOXPmVMeOHXX27Flrft26ddWrVy/17dtX2bJlU1hYWIz1iIqK0vDhw5UnTx55e3urfPnyWrx4sTXfzc1Nmzdv1vDhw+Xm5qahQ4fG2iZXr17Vt99+q5deeklNmzbVlClTnOavWrVKbm5u+uWXX1S2bFn5+PioWrVq2rVrl7WM4+qAH3/8UUWKFJGPj4/CwsJ0/Phxa5nt27erXr16ypQpkwICAlSxYkVt2rQp1nLZubm56auvvtITTzyhjBkzqkiRIvrpp5+s+RcuXFCHDh2UPXt2+fr6qkiRItY+KlCggCSpQoUKcnNzU926dSVJGzdu1OOPP65s2bIpMDBQderU0ZYtW1wukxT/Pr127Zo6deokf39/hYSEcLs4ACQBb29vBQcHK3fu3HrkkUf0xhtvaP78+Vq0aJFTPzZmzBiVKVNGfn5+yps3r3r06KGrV69Kute/denSRZcuXbKuMnP0l9OmTVOlSpWUKVMmBQcHq3379jpz5kySlP37779XmTJl5Ovrq6xZs6pBgwa6du2aJNf6pb/++kuPPvqofHx8VLJkSS1fvtxpiDFJOn78uFq3bq2goCBlyZJFLVu21JEjR+Is1+zZs9W8efNo0x955BHlzZtXP/zwgzXthx9+UL58+VShQoVoyzv2TXBwsMqXL6+BAwfq+PHj+vfff52Wmz9/vlq0aGG9HjlypHLmzKlMmTKpW7duunnzptPy8bVN165do4X0d+7cUY4cOfT1119b05o3b67Zs2fH2RYAgLRj1apVqlKlivz8/BQUFKSaNWs6XQ0+f/58PfLII/Lx8VHBggU1bNgwpx/S3dzcNH78eLVo0UJ+fn4aMWJErNvKmDGjgoODFRISomrVqqlXr17R+uH4zv+ke+frr7/+urJkyaLg4OBo5+NxHZ9cvnxZvr6+WrRokdN75s2bp0yZMun69esx3lm9evVqValSRd7e3goJCdHAgQOd2sHVrOGNN97QkSNHtGHDBoWHh6tkyZIqWrSonnvuOW3btk3+/v4xvi+uOknS0aNH1bx5c2XOnFl+fn4qVaqUFi5cKCnuc3kgPSM8R5rj4eGh9957T+PGjdPff//9QOtasWKFTpw4oTVr1mjMmDEaMmSImjVrpsyZM2vDhg168cUX9cILL0TbTv/+/fXqq69q69atql69upo3b65z585JuvcL7mOPPaYKFSpo06ZNWrx4sU6fPq3WrVs7rWPq1Kny8vLS2rVrNWHChBjLN3bsWI0ePVofffSRduzYobCwMLVo0UIHDhyQJJ08eVKlSpXSq6++qpMnT+q1116Lta7fffedihcvrmLFiunZZ5/VpEmTYrwVq3///ho9erQ2btyo7Nmzq3nz5k6/2l+/fl0jRozQN998o7Vr1+rixYtq27atNb9Dhw7KkyePNm7cqM2bN2vgwIHKkCFDPHvC2bBhw9S6dWvt2LFDTZo0UYcOHXT+/HlJ98Zp3bNnjxYtWqS9e/dq/PjxypYtmyTpzz//lCQtX75cJ0+etAKAK1euKDw8XL///rv++OMPFSlSRE2aNNGVK1dcKo8r+7R///5avXq15s+fr6VLl2rVqlUJDugBAPF77LHHVK5cOaeQ193dXZ9++ql2796tqVOnasWKFXr99dclSTVq1NAnn3yigIAA60ppR395584dvfPOO9q+fbt+/PFHHTlyxGl4ksQ6efKk2rVrp65du2rv3r1atWqVnnzySavfja9funv3rlq1aqWMGTNqw4YNmjhxotMwK46yh4WFKVOmTPrtt9+0du1a+fv7q1GjRrFeZXb+/Hnt2bNHlSpVinF+165dnU5iJ02apC5dusRb36tXr2r69OkqXLiw011wUVFRWrBggVq2bCnp3rHI0KFD9d5772nTpk0KCQnR559/7rSu+Nqme/fuWrx4sU6ePGm9Z8GCBbp+/bratGljTatSpYr+/PNP3bp1K97yAwBSV2RkpFq1aqU6depox44dWr9+vZ5//nlraNbffvtNnTp1Up8+fbRnzx598cUXmjJlSrSAfOjQoXriiSe0c+dOde3a1aVtnz9/Xt99952qVq1qTUvIOb2fn582bNigDz74QMOHD9eyZcus+XEdnwQEBKhZs2aaOXOm0zpnzJhhHQPY/fPPP2rSpIkqV66s7du3a/z48fr666/17rvvRitXXFlDVFSUZs+erQ4dOihXrlzR5vv7+8d6tXtcdZLuDfd269YtrVmzRjt37tSoUaOsID6uc3kgXTNAGhIeHm5atmxpjDGmWrVqpmvXrsYYY+bNm2fu/7gOGTLElCtXzum9H3/8sQkNDXVaV2hoqLl79641rVixYqZWrVrW68jISOPn52dmzZpljDEmIiLCSDIjR460lrlz547JkyePGTVqlDHGmHfeecc0bNjQadvHjx83ksy+ffuMMcbUqVPHVKhQId765sqVy4wYMcJpWuXKlU2PHj2s1+XKlTNDhgyJd101atQwn3zyiVXmbNmymZUrV1rzV65caSSZ2bNnW9POnTtnfH19zbfffmuMMWby5MlGkvnjjz+sZfbu3WskmQ0bNhhjjMmUKZOZMmVKvOVxCA0NNR9//LH1WpJ56623rNdXr141ksyiRYuMMcY0b97cdOnSJcZ1OfbP1q1b49zm3bt3TaZMmczPP//stN158+bFuJ749umVK1eMl5eX+e6776z5jrbr06dPPC0AAIjJ/X2+XZs2bUyJEiVife+cOXNM1qxZrdeTJ082gYGB8W5z48aNRpK5cuVKrMvY+y2H+489Nm/ebCSZI0eOxLtNY6L3S4sWLTKenp7m5MmT1jLLli1z6qumTZtmihUrZqKioqxlbt26ZXx9fc2SJUti3M7WrVuNJHPs2DGn6Y62PnPmjPH29jZHjhwxR44cMT4+Pubff/81LVu2NOHh4U7Le3h4GD8/P+Pn52ckmZCQELN582an9a5du9bkyJHDOtaqXr260zGMMcZUrVo12jFbXG1jjDElS5a0jruMuXds0LlzZ6f3bd++PUH7AACQPOrUqRPjOdH9ffO5c+eMJLNq1aoY11G/fn3z3nvvOU2bNm2aCQkJsV5LMn379nWpPBkyZDB+fn4mY8aMRpIpWrSoiYiIsJZx9Zz+0UcfdVqmcuXKZsCAAbFu2358Mm/ePOPv72+uXbtmjDHm0qVLxsfHxzr3tZ+XvvHGG9H6/s8++8z4+/tbfa0rWcPp06eNJDNmzJg4lzMm9uOe2OpUpkwZM3To0BiXjetcHkjPuPIcadaoUaM0depU7d27N9HrKFWqlNzd//9jnjNnTpUpU8Z67eHhoaxZs0a7hbt69erW/3t6eqpSpUpWObZv366VK1fK39/f+le8eHFJ98Ynd6hYsWKcZbt8+bJOnDihmjVrOk2vWbNmguu8b98+/fnnn2rXrp1V5jZt2jjd3hxT3bJkyaJixYo5bc/T01OVK1e2XhcvXlxBQUHWMq+88oq6d++uBg0aaOTIkU51dlXZsmWt//fz81NAQIC1D1566SXNnj1b5cuX1+uvv65169bFu77Tp0/rueeeU5EiRRQYGKiAgABdvXpVx44dc6k88e3TQ4cO6fbt205XKzjaDgCQ9IwxTg8KX758uerXr6/cuXMrU6ZM6tixo86dO6fr16/HuZ7NmzerefPmypcvnzJlyqQ6depIksv9Q2zKlSun+vXrq0yZMnrmmWf05ZdfOj2rJb5+ad++fcqbN6+Cg4Ot91SpUsVpG9u3b9fBgweVKVMmq2/KkiWLbt68GWvf6xjP3MfHJ8b52bNnt4Z2mzx5spo2bRrrFWH16tXTtm3btG3bNv35558KCwtT48aNo91i36xZM+tYa+/evU59peR83OFK20j3rj53XCF/+vRpLVq0KNoVhr6+vpIU72cAAJD6smTJos6dOyssLEzNmzfX2LFjne4w2r59u4YPH+50PuYYt/z+7/nY7qyy69Chg7Zt26bt27fr999/V+HChdWwYUPrLidXz+nvP2+VpJCQEKfsIL7jkyZNmihDhgzWMKVz585VQECAGjRoEGO59+7dq+rVqzsdA9WsWVNXr151uls+vqzBPMDDQOOrU+/evfXuu++qZs2aGjJkiNPDxBNzLg+kB4TnSLNq166tsLAwDRo0KNo8d3f3aB1CTA8MsQ8n4ubmFuO0qKgol8t19epVNW/e3DqhdPw7cOCAateubS3n5+fn8jof1Ndff63IyEjlypVLnp6e8vT01Pjx4zV37twkfxDI0KFDtXv3bjVt2lQrVqxQyZIlNW/evAStI6594Dgx79evn06cOKH69evHOVyNJIWHh2vbtm0aO3as1q1bp23btilr1qwuP6jV1X0KAEgZe/futZ5zceTIETVr1kxly5bV3LlztXnzZn322WeS4n4g97Vr1xQWFqaAgADNmDFDGzdutPqruN4XEBAQY9958eJFBQYGSrr34/uyZcu0aNEilSxZUuPGjVOxYsUUEREh6cH7Jele31SxYsVofdP+/fvVvn37GN/jCMLjeuh6165dNWXKFE2dOjXOW979/PxUuHBhFS5cWJUrV9ZXX32la9eu6csvv7SW+emnn5zGO3eFK23TqVMnHT58WOvXr9f06dNVoEAB1apVy2k9juHesmfPnqDtAwCSliv9piRNnjxZ69evV40aNfTtt9+qaNGi+uOPPyTd6/OGDRvm1N/t3LlTBw4ccPpB2NVz7MDAQKsPq1mzpr7++msdOHBA3377rbU9V87/4jpvdeX4xMvLS08//bQ1dMvMmTPVpk2bB3pAqCvtkD17dgUFBemvv/5K0HpdqVP37t11+PBhdezYUTt37lSlSpU0btw4SYk7lwfSA8JzpGkjR47Uzz//rPXr1ztNz549u06dOuUUoN//kI0H5ejEpXvjs23evFklSpSQdO+BW7t371b+/PmtDtnxLyGBeUBAgHLlyqW1a9c6TV+7dq1Klizp8noiIyP1zTffaPTo0U4d//bt25UrVy7NmjUr1rpduHBB+/fvt+rmWN/9DwDdt2+fLl686LRM0aJF1a9fPy1dulRPPvlkkj8EJHv27AoPD9f06dP1ySefaOLEiZLuHXxI98aKvd/atWvVu3dvNWnSRKVKlZK3t3e0h73EJb59WqhQIWXIkEEbNmyw3uNoOwBA0lqxYoV27typp556StK9q8ejoqI0evRoVatWTUWLFtWJEyec3uPl5RWtb/jrr7907tw5jRw5UrVq1VLx4sVdelhosWLFtHnz5mjTt2zZoqJFi1qv3dzcVLNmTQ0bNkxbt26Vl5eXFc7H1y8VK1ZMx48f1+nTp61pGzdudNreI488ogMHDihHjhzR+qb7w4j7FSpUSAEBAdqzZ0+s9XOMme4YU91Vbm5ucnd3t65uP3DggI4eParHH3/cWqZEiRJOfaXkfNwhudZnZ82aVa1atdLkyZM1ZcqUGMdl37Vrl/LkycNYqgCQyooVKxbjs6Ds/aYkVahQQYMGDdK6detUunRpK1R+5JFHtG/fvmj9XeHChZ3uJE8sDw8PSf9/h1ZSnNO7cnwi3bsKfvHixdq9e7dWrFihDh06xLrOEiVKaP369U45x9q1a5UpUyblyZPH5fq6u7urbdu2mjFjRoxlunr1qtNDSBNap7x58+rFF1/UDz/8oFdffdXph/XYzuWB9IzwHGlamTJl1KFDB3366adO0+vWrat///1XH3zwgQ4dOqTPPvss2lOsH8Rnn32mefPm6a+//lLPnj114cIF6+qsnj176vz582rXrp02btyoQ4cOacmSJerSpUu0E/f49O/fX6NGjdK3336rffv2aeDAgdq2bZv69Onj8joWLFigCxcuqFu3bipdurTTv6eeeira0C3Dhw/Xr7/+ql27dqlz587Kli2bWrVqZc3PkCGDXn75ZW3YsEGbN29W586dVa1aNVWpUkU3btxQr169tGrVKh09elRr167Vxo0bnYL1BzV48GDNnz9fBw8e1O7du7VgwQJr/Tly5JCvr6/1QBfHFQ5FihTRtGnTtHfvXm3YsEEdOnSwbud2RXz71N/fX926dVP//v21YsUKq+2S4kAOAP7Lbt26pVOnTumff/7Rli1b9N5776lly5Zq1qyZOnXqJEkqXLiw7ty5o3Hjxunw4cOaNm1atIdj5c+fX1evXtWvv/6qs2fP6vr168qXL5+8vLys9/30009655134i1Tv3799Msvv2jEiBHau3evdu3apTfffFPr16+3+ucNGzZYD8U8duyYfvjhB/37779WfxVfv/T444+rUKFCCg8P144dO7R27Vq99dZbkmTdqt2hQwdly5ZNLVu21G+//aaIiAitWrVKvXv3jvWB6u7u7mrQoIF+//33WOvn4eGhvXv3as+ePVaYEBPHvjl16pT27t2rl19+2bpST7o3ZEuDBg2cHnjWp08fTZo0SZMnT9b+/fs1ZMgQ7d6922m9rvbZ3bt3t4bvCw8Pjzb/t99+U8OGDWMtPwAgZbz00kvav3+/evfurR07dmjfvn0aM2aMZs2apVdffVWSFBERoUGDBmn9+vU6evSoli5dqgMHDlj95uDBg/XNN99o2LBh2r17t/bu3avZs2dbfWNCXb9+3erDtm/frpdeekk+Pj5Wv5EU5/SuHJ9I9+6oDw4OVocOHVSgQIFow5vdr0ePHjp+/Lhefvll/fXXX5o/f76GDBmiV155JcHnniNGjFDevHlVtWpVffPNN9qzZ48OHDigSZMmqUKFCrp69Wqi6tS3b18tWbJEERER2rJli1auXOm0H2M7lwfStVQdcR2wienhYREREcbLy8vYP67jx483efPmNX5+fqZTp05mxIgR0R4Yal9XTA8zuf8BGY4HdsycOdNUqVLFeHl5mZIlS5oVK1Y4vWf//v3miSeeMEFBQcbX19cUL17c9O3b13qwR2wPTbG7e/euGTp0qMmdO7fJkCGDKVeunPXwEIf4HhjarFkz06RJkxjnbdiwwUgy27dvtx4Y+vPPP5tSpUoZLy8vU6VKFbN9+3ZrecdDXebOnWsKFixovL29TYMGDczRo0eNMfceVNa2bVuTN29e4+XlZXLlymV69eplbty4EWv5YnpgqONhaA6BgYFm8uTJxph7D28pUaKE8fX1NVmyZDEtW7Y0hw8ftpb98ssvTd68eY27u7upU6eOMcaYLVu2mEqVKhkfHx9TpEgRM2fOnDi3G9ODR+Pbp1euXDHPPvusyZgxo8mZM6f54IMPXN7PAIDowsPDjSQjyXh6eprs2bObBg0amEmTJjk97NsYY8aMGWNCQkKMr6+vCQsLM998842RZC5cuGAt8+KLL5qsWbMaSVa/OXPmTJM/f37j7e1tqlevbn766SeXHjy9ZMkSU7NmTZM5c2aTNWtWU7duXbN69Wpr/p49e0xYWJjJnj278fb2NkWLFjXjxo2z5rvSL+3du9fUrFnTeHl5meLFi5uff/7ZSDKLFy+2ljl58qTp1KmTyZYtm/H29jYFCxY0zz33nLl06VKsZV+4cKHJnTu3UxvG9XBWY0yMDwx17BtJJlOmTKZy5crm+++/t5Z59NFHzZdffhltXSNGjDDZsmUz/v7+Jjw83Lz++utODwx1pW2MMSYqKsqEhobGeIxz48YNExgYaNavXx9rnQAAKefPP/80jz/+uMmePbsJDAw0VatWdTrnO3XqlGnVqpUJCQkxXl5eJjQ01AwePNipr1q8eLGpUaOG8fX1NQEBAaZKlSpm4sSJ1vyYziNjUqdOHac+LHPmzKZOnTpJck5v7y9dOT4xxpjXX3/dSDKDBw92mh7TeemqVatM5cqVjZeXlwkODjYDBgwwd+7ccaqfq+egFy9eNAMHDjRFihQxXl5eJmfOnKZBgwZm3rx5Vj3tfXB8derVq5cpVKiQ8fb2NtmzZzcdO3Y0Z8+eNcbEfy4PpFduxjzAkwQApBurVq1SvXr1dOHCBQUFBcW4zJQpU9S3b19dvHgxRcsGAMB/3dq1a/Xoo4/q4MGDKlSoUKLXY4xR1apV1a9fP+tB4knt7NmzCgkJ0d9//62cOXMmyzauXr2q3Llza/LkyXryySed5o0fP17z5s3T0qVLk2XbAAAAgMODPaUAAAAAQILNmzdP/v7+KlKkiA4ePKg+ffqoZs2aDxScS/eGfZk4caJ27tyZRCWN7vz58xozZkyyBOdRUVE6e/asRo8eraCgoBgfSJohQwbr4WQAAABAciI8BwAAAFLYlStXNGDAAB07dkzZsmVTgwYNNHr06CRZd/ny5VW+fPkkWVdMihYtGu0hcEnl2LFjKlCggPLkyaMpU6bI0zP66Ur37t2TZdsAAACAHcO2AAAAAAAAAABgk7DH9QIAAAAAAAAA8B9AeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGBDeA4AAAAAAAAAgA3hOQAAAAAAAAAANoTnAAAAAAAAAADYEJ4DAAAAAAAAAGDzfw2xET6mQGqUAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 6 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Выбираем столбцы для анализа\n",
|
||
"columns_to_check = ['App Usage Time (min/day)', 'Screen On Time (hours/day)', 'Battery Drain (mAh/day)', 'Number of Apps Installed', 'Data Usage (MB/day)', 'User Behavior Class']\n",
|
||
"\n",
|
||
"# Функция для подсчета выбросов\n",
|
||
"def count_outliers(data, columns):\n",
|
||
" outliers_count = {}\n",
|
||
" for col in columns:\n",
|
||
" Q1 = data[col].quantile(0.25)\n",
|
||
" Q3 = data[col].quantile(0.75)\n",
|
||
" IQR = Q3 - Q1\n",
|
||
" lower_bound = Q1 - 1.5 * IQR\n",
|
||
" upper_bound = Q3 + 1.5 * IQR\n",
|
||
" \n",
|
||
" # Считаем количество выбросов\n",
|
||
" outliers = data[(data[col] < lower_bound) | (data[col] > upper_bound)]\n",
|
||
" outliers_count[col] = len(outliers)\n",
|
||
" \n",
|
||
" return outliers_count\n",
|
||
"\n",
|
||
"# Подсчитываем выбросы\n",
|
||
"outliers_count = count_outliers(df_mobiles, columns_to_check)\n",
|
||
"\n",
|
||
"# Выводим количество выбросов для каждого столбца\n",
|
||
"for col, count in outliers_count.items():\n",
|
||
" print(f\"Количество выбросов в столбце '{col}': {count}\")\n",
|
||
"\n",
|
||
"# Создаем диаграммы размахов\n",
|
||
"plt.figure(figsize=(15, 10))\n",
|
||
"for i, col in enumerate(columns_to_check, 1):\n",
|
||
" plt.subplot(2, 3, i)\n",
|
||
" sns.boxplot(x=df_mobiles[col])\n",
|
||
" plt.title(f'Box Plot of {col}')\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Выбросов нет"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Разбиение набора данных на обучающую, контрольную и тестовую выборки"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 198,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Размер обучающей выборки: 420\n",
|
||
"Размер контрольной выборки: 140\n",
|
||
"Размер тестовой выборки: 140\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train_df, test_df = train_test_split(df_mobiles, test_size=0.2, random_state=42)\n",
|
||
"\n",
|
||
"train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n",
|
||
"\n",
|
||
"print(\"Размер обучающей выборки:\", len(train_df))\n",
|
||
"print(\"Размер контрольной выборки:\", len(val_df))\n",
|
||
"print(\"Размер тестовой выборки:\", len(test_df))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 199,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Распределение \"Класс поведения пользователя\" в обучающей выборке:\n",
|
||
"User Behavior Class\n",
|
||
"2 88\n",
|
||
"5 88\n",
|
||
"4 86\n",
|
||
"3 84\n",
|
||
"1 74\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Класс поведения пользователя\" в контрольной выборке:\n",
|
||
"User Behavior Class\n",
|
||
"1 35\n",
|
||
"2 29\n",
|
||
"4 26\n",
|
||
"5 25\n",
|
||
"3 25\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Класс поведения пользователя\" в тестовой выборке:\n",
|
||
"User Behavior Class\n",
|
||
"3 34\n",
|
||
"2 29\n",
|
||
"4 27\n",
|
||
"1 27\n",
|
||
"5 23\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def check_balance(df, name):\n",
|
||
" counts = df['User Behavior Class'].value_counts()\n",
|
||
" print(f\"Распределение \\\"Класс поведения пользователя\\\" в {name}:\")\n",
|
||
" print(counts)\n",
|
||
" print()\n",
|
||
"\n",
|
||
"check_balance(train_df, \"обучающей выборке\")\n",
|
||
"check_balance(val_df, \"контрольной выборке\")\n",
|
||
"check_balance(test_df, \"тестовой выборке\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Оверсемплинг и андерсемплинг"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 200,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Оверсэмплинг:\n",
|
||
"Распределение \"Класс поведения пользователя\" в обучающей выборке:\n",
|
||
"User Behavior Class\n",
|
||
"1 88\n",
|
||
"2 88\n",
|
||
"5 88\n",
|
||
"4 88\n",
|
||
"3 88\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Класс поведения пользователя\" в контрольной выборке:\n",
|
||
"User Behavior Class\n",
|
||
"5 35\n",
|
||
"3 35\n",
|
||
"1 35\n",
|
||
"2 35\n",
|
||
"4 35\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Класс поведения пользователя\" в тестовой выборке:\n",
|
||
"User Behavior Class\n",
|
||
"4 34\n",
|
||
"1 34\n",
|
||
"2 34\n",
|
||
"3 34\n",
|
||
"5 34\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Андерсэмплинг:\n",
|
||
"Распределение \"Класс поведения пользователя\" в обучающей выборке:\n",
|
||
"User Behavior Class\n",
|
||
"1 74\n",
|
||
"2 74\n",
|
||
"3 74\n",
|
||
"4 74\n",
|
||
"5 74\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Класс поведения пользователя\" в контрольной выборке:\n",
|
||
"User Behavior Class\n",
|
||
"1 25\n",
|
||
"2 25\n",
|
||
"3 25\n",
|
||
"4 25\n",
|
||
"5 25\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Класс поведения пользователя\" в тестовой выборке:\n",
|
||
"User Behavior Class\n",
|
||
"1 23\n",
|
||
"2 23\n",
|
||
"3 23\n",
|
||
"4 23\n",
|
||
"5 23\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from imblearn.over_sampling import RandomOverSampler\n",
|
||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||
"\n",
|
||
"def oversample(df, target_column):\n",
|
||
" X = df.drop(target_column, axis=1)\n",
|
||
" y = df[target_column]\n",
|
||
" \n",
|
||
" oversampler = RandomOverSampler(random_state=42)\n",
|
||
" x_resampled, y_resampled = oversampler.fit_resample(X, y) # type: ignore\n",
|
||
" \n",
|
||
" resampled_df = pd.concat([x_resampled, y_resampled], axis=1) \n",
|
||
" return resampled_df\n",
|
||
"\n",
|
||
"def undersample(df, target_column):\n",
|
||
" X = df.drop(target_column, axis=1)\n",
|
||
" y = df[target_column]\n",
|
||
" \n",
|
||
" undersampler = RandomUnderSampler(random_state=42)\n",
|
||
" x_resampled, y_resampled = undersampler.fit_resample(X, y) # type: ignore\n",
|
||
" \n",
|
||
" resampled_df = pd.concat([x_resampled, y_resampled], axis=1)\n",
|
||
" return resampled_df\n",
|
||
"\n",
|
||
"train_df_oversampled = oversample(train_df, 'User Behavior Class')\n",
|
||
"val_df_oversampled = oversample(val_df, 'User Behavior Class')\n",
|
||
"test_df_oversampled = oversample(test_df, 'User Behavior Class')\n",
|
||
"\n",
|
||
"train_df_undersampled = undersample(train_df, 'User Behavior Class')\n",
|
||
"val_df_undersampled = undersample(val_df, 'User Behavior Class')\n",
|
||
"test_df_undersampled = undersample(test_df, 'User Behavior Class')\n",
|
||
"\n",
|
||
"print(\"Оверсэмплинг:\")\n",
|
||
"check_balance(train_df_oversampled, \"обучающей выборке\")\n",
|
||
"check_balance(val_df_oversampled, \"контрольной выборке\")\n",
|
||
"check_balance(test_df_oversampled, \"тестовой выборке\")\n",
|
||
"\n",
|
||
"print(\"Андерсэмплинг:\")\n",
|
||
"check_balance(train_df_undersampled, \"обучающей выборке\")\n",
|
||
"check_balance(val_df_undersampled, \"контрольной выборке\")\n",
|
||
"check_balance(test_df_undersampled, \"тестовой выборке\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Датасет №2 (Характеристики автомобиля: данные об экономии топлива)\n",
|
||
"Ссылка: https://www.kaggle.com/datasets/arslaan5/explore-car-performance-fuel-efficiency-data\n",
|
||
"\n",
|
||
"Проблемная область: производительность и экономичность транспортных средств.\n",
|
||
"\n",
|
||
"Объекты наблюдения: автомобили, представленные набором характеристик."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 201,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['city_mpg', 'class', 'combination_mpg', 'cylinders', 'displacement',\n",
|
||
" 'drive', 'fuel_type', 'highway_mpg', 'make', 'model', 'transmission',\n",
|
||
" 'year'],\n",
|
||
" dtype='object')\n",
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 550 entries, 0 to 549\n",
|
||
"Data columns (total 12 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 city_mpg 550 non-null int64 \n",
|
||
" 1 class 550 non-null object \n",
|
||
" 2 combination_mpg 550 non-null int64 \n",
|
||
" 3 cylinders 548 non-null float64\n",
|
||
" 4 displacement 548 non-null float64\n",
|
||
" 5 drive 550 non-null object \n",
|
||
" 6 fuel_type 550 non-null object \n",
|
||
" 7 highway_mpg 550 non-null int64 \n",
|
||
" 8 make 550 non-null object \n",
|
||
" 9 model 550 non-null object \n",
|
||
" 10 transmission 550 non-null object \n",
|
||
" 11 year 550 non-null int64 \n",
|
||
"dtypes: float64(2), int64(4), object(6)\n",
|
||
"memory usage: 51.7+ KB\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>city_mpg</th>\n",
|
||
" <th>class</th>\n",
|
||
" <th>combination_mpg</th>\n",
|
||
" <th>cylinders</th>\n",
|
||
" <th>displacement</th>\n",
|
||
" <th>drive</th>\n",
|
||
" <th>fuel_type</th>\n",
|
||
" <th>highway_mpg</th>\n",
|
||
" <th>make</th>\n",
|
||
" <th>model</th>\n",
|
||
" <th>transmission</th>\n",
|
||
" <th>year</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>25</td>\n",
|
||
" <td>midsize car</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>2.5</td>\n",
|
||
" <td>fwd</td>\n",
|
||
" <td>gas</td>\n",
|
||
" <td>36</td>\n",
|
||
" <td>mazda</td>\n",
|
||
" <td>6</td>\n",
|
||
" <td>m</td>\n",
|
||
" <td>2014</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>26</td>\n",
|
||
" <td>midsize car</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>2.5</td>\n",
|
||
" <td>fwd</td>\n",
|
||
" <td>gas</td>\n",
|
||
" <td>37</td>\n",
|
||
" <td>mazda</td>\n",
|
||
" <td>6</td>\n",
|
||
" <td>a</td>\n",
|
||
" <td>2014</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>25</td>\n",
|
||
" <td>small sport utility vehicle</td>\n",
|
||
" <td>27</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>2.5</td>\n",
|
||
" <td>fwd</td>\n",
|
||
" <td>gas</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>mazda</td>\n",
|
||
" <td>cx-5 2wd</td>\n",
|
||
" <td>a</td>\n",
|
||
" <td>2014</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>26</td>\n",
|
||
" <td>small sport utility vehicle</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>fwd</td>\n",
|
||
" <td>gas</td>\n",
|
||
" <td>34</td>\n",
|
||
" <td>mazda</td>\n",
|
||
" <td>cx-5 2wd</td>\n",
|
||
" <td>m</td>\n",
|
||
" <td>2014</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>26</td>\n",
|
||
" <td>small sport utility vehicle</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>fwd</td>\n",
|
||
" <td>gas</td>\n",
|
||
" <td>32</td>\n",
|
||
" <td>mazda</td>\n",
|
||
" <td>cx-5 2wd</td>\n",
|
||
" <td>a</td>\n",
|
||
" <td>2014</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" city_mpg class combination_mpg cylinders \\\n",
|
||
"0 25 midsize car 29 4.0 \n",
|
||
"1 26 midsize car 30 4.0 \n",
|
||
"2 25 small sport utility vehicle 27 4.0 \n",
|
||
"3 26 small sport utility vehicle 29 4.0 \n",
|
||
"4 26 small sport utility vehicle 28 4.0 \n",
|
||
"\n",
|
||
" displacement drive fuel_type highway_mpg make model transmission \\\n",
|
||
"0 2.5 fwd gas 36 mazda 6 m \n",
|
||
"1 2.5 fwd gas 37 mazda 6 a \n",
|
||
"2 2.5 fwd gas 31 mazda cx-5 2wd a \n",
|
||
"3 2.0 fwd gas 34 mazda cx-5 2wd m \n",
|
||
"4 2.0 fwd gas 32 mazda cx-5 2wd a \n",
|
||
"\n",
|
||
" year \n",
|
||
"0 2014 \n",
|
||
"1 2014 \n",
|
||
"2 2014 \n",
|
||
"3 2014 \n",
|
||
"4 2014 "
|
||
]
|
||
},
|
||
"execution_count": 201,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_cars = pd.read_csv(\".//static//csv//car_data.csv\")\n",
|
||
"print(df_cars.columns)\n",
|
||
"df_cars.info()\n",
|
||
"df_cars.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Атрибуты объектов:\n",
|
||
"\n",
|
||
"1. city_mpg — расход топлива в городе (миль на галлон).\n",
|
||
"2. class — класс автомобиля (например, седан среднего размера, малый внедорожник).\n",
|
||
"3. combination_mpg — комбинированный расход топлива (миль на галлон).\n",
|
||
"4. cylinders — количество цилиндров.\n",
|
||
"5. displacement — объем двигателя (в литрах).\n",
|
||
"6. drive — тип привода (например, передний, полный).\n",
|
||
"7. fuel_type — тип топлива (бензин, дизель и др.).\n",
|
||
"8. highway_mpg — расход топлива на шоссе (миль на галлон).\n",
|
||
"9. make — марка автомобиля.\n",
|
||
"10. model — модель автомобиля.\n",
|
||
"11. transmission — тип трансмиссии (автоматическая, механическая).\n",
|
||
"12. year — год выпуска автомобиля.\n",
|
||
"\n",
|
||
"Связи между объектами:\n",
|
||
"Атрибуты, такие как объем двигателя, тип топлива, количество цилиндров и класс автомобиля, могут быть связаны с комбинированным расходом топлива (combination_mpg). Это позволяет выявлять зависимости между характеристиками автомобиля и его экономичностью.\n",
|
||
"\n",
|
||
"Примеры бизнес-целей и эффекты для бизнеса:\n",
|
||
"\n",
|
||
"1. Оптимизация ассортимента автомобилей:\n",
|
||
" - Бизнес-цель: Анализировать топливную экономичность различных моделей для оптимизации ассортимента, предлагать более популярные и экономичные модели.\n",
|
||
" - Эффект: Снижение затрат на производство низкоэффективных моделей и увеличение продаж популярных, экономичных автомобилей.\n",
|
||
"\n",
|
||
"2. Снижение углеродного следа:\n",
|
||
" - Бизнес-цель: Определение моделей с высоким расходом топлива для улучшения их эффективности и снижения выбросов.\n",
|
||
" - Эффект: Соответствие экологическим стандартам, улучшение репутации компании и соблюдение требований законодательства.\n",
|
||
"\n",
|
||
"Примеры целей технического проекта:\n",
|
||
"\n",
|
||
"1. Цель: Создание модели для прогнозирования топливной эффективности.\n",
|
||
" - Вход: Объем двигателя, тип топлива, количество цилиндров, класс, тип трансмиссии.\n",
|
||
" - Целевой признак: combination_mpg.\n",
|
||
"\n",
|
||
"2. Цель: Модель для предсказания углеродного следа автомобиля.\n",
|
||
" - Вход: Тип топлива, объем двигателя, класс автомобиля, тип привода.\n",
|
||
" - Целевой признак: combination_mpg."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Проверка на пустые значения и дубликаты"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 202,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Пустые значения по столбцам:\n",
|
||
"city_mpg 0\n",
|
||
"class 0\n",
|
||
"combination_mpg 0\n",
|
||
"cylinders 2\n",
|
||
"displacement 2\n",
|
||
"drive 0\n",
|
||
"fuel_type 0\n",
|
||
"highway_mpg 0\n",
|
||
"make 0\n",
|
||
"model 0\n",
|
||
"transmission 0\n",
|
||
"year 0\n",
|
||
"dtype: int64\n",
|
||
"\n",
|
||
"Количество дубликатов: 2\n",
|
||
"\n",
|
||
"Статистический обзор данных:\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>city_mpg</th>\n",
|
||
" <th>combination_mpg</th>\n",
|
||
" <th>cylinders</th>\n",
|
||
" <th>displacement</th>\n",
|
||
" <th>highway_mpg</th>\n",
|
||
" <th>year</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>count</th>\n",
|
||
" <td>550.000000</td>\n",
|
||
" <td>550.000000</td>\n",
|
||
" <td>548.000000</td>\n",
|
||
" <td>548.000000</td>\n",
|
||
" <td>550.000000</td>\n",
|
||
" <td>550.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>mean</th>\n",
|
||
" <td>21.460000</td>\n",
|
||
" <td>24.069091</td>\n",
|
||
" <td>5.315693</td>\n",
|
||
" <td>2.931752</td>\n",
|
||
" <td>28.609091</td>\n",
|
||
" <td>2019.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>std</th>\n",
|
||
" <td>8.147392</td>\n",
|
||
" <td>7.478369</td>\n",
|
||
" <td>1.759999</td>\n",
|
||
" <td>1.248419</td>\n",
|
||
" <td>6.832228</td>\n",
|
||
" <td>3.165156</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>min</th>\n",
|
||
" <td>11.000000</td>\n",
|
||
" <td>14.000000</td>\n",
|
||
" <td>3.000000</td>\n",
|
||
" <td>1.200000</td>\n",
|
||
" <td>18.000000</td>\n",
|
||
" <td>2014.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>25%</th>\n",
|
||
" <td>17.000000</td>\n",
|
||
" <td>20.000000</td>\n",
|
||
" <td>4.000000</td>\n",
|
||
" <td>2.000000</td>\n",
|
||
" <td>24.000000</td>\n",
|
||
" <td>2016.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>50%</th>\n",
|
||
" <td>20.000000</td>\n",
|
||
" <td>23.000000</td>\n",
|
||
" <td>4.000000</td>\n",
|
||
" <td>2.500000</td>\n",
|
||
" <td>28.000000</td>\n",
|
||
" <td>2019.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>75%</th>\n",
|
||
" <td>24.000000</td>\n",
|
||
" <td>27.000000</td>\n",
|
||
" <td>6.000000</td>\n",
|
||
" <td>3.500000</td>\n",
|
||
" <td>32.000000</td>\n",
|
||
" <td>2022.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>max</th>\n",
|
||
" <td>126.000000</td>\n",
|
||
" <td>112.000000</td>\n",
|
||
" <td>12.000000</td>\n",
|
||
" <td>6.800000</td>\n",
|
||
" <td>102.000000</td>\n",
|
||
" <td>2024.000000</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" city_mpg combination_mpg cylinders displacement highway_mpg \\\n",
|
||
"count 550.000000 550.000000 548.000000 548.000000 550.000000 \n",
|
||
"mean 21.460000 24.069091 5.315693 2.931752 28.609091 \n",
|
||
"std 8.147392 7.478369 1.759999 1.248419 6.832228 \n",
|
||
"min 11.000000 14.000000 3.000000 1.200000 18.000000 \n",
|
||
"25% 17.000000 20.000000 4.000000 2.000000 24.000000 \n",
|
||
"50% 20.000000 23.000000 4.000000 2.500000 28.000000 \n",
|
||
"75% 24.000000 27.000000 6.000000 3.500000 32.000000 \n",
|
||
"max 126.000000 112.000000 12.000000 6.800000 102.000000 \n",
|
||
"\n",
|
||
" year \n",
|
||
"count 550.000000 \n",
|
||
"mean 2019.000000 \n",
|
||
"std 3.165156 \n",
|
||
"min 2014.000000 \n",
|
||
"25% 2016.000000 \n",
|
||
"50% 2019.000000 \n",
|
||
"75% 2022.000000 \n",
|
||
"max 2024.000000 "
|
||
]
|
||
},
|
||
"execution_count": 202,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"null_values = df_cars.isnull().sum()\n",
|
||
"print(\"Пустые значения по столбцам:\")\n",
|
||
"print(null_values)\n",
|
||
"\n",
|
||
"duplicates = df_cars.duplicated().sum()\n",
|
||
"print(f\"\\nКоличество дубликатов: {duplicates}\")\n",
|
||
"\n",
|
||
"print(\"\\nСтатистический обзор данных:\")\n",
|
||
"df_cars.describe()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Видим, что есть пустые данные, и дубликаты, удаляем их:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 203,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"В наборе данных 'Cars' было удалено 2 строк с пустыми значениями.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"df_cars = df_cars.drop_duplicates()\n",
|
||
"\n",
|
||
"def drop_missing_values(dataframe, name):\n",
|
||
" before_shape = dataframe.shape \n",
|
||
" cleaned_dataframe = dataframe.dropna() \n",
|
||
" after_shape = cleaned_dataframe.shape \n",
|
||
" print(f\"В наборе данных '{name}' было удалено {before_shape[0] - after_shape[0]} строк с пустыми значениями.\")\n",
|
||
" return cleaned_dataframe\n",
|
||
"\n",
|
||
"df_cars = drop_missing_values(df_cars, \"Cars\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Проверка на выбросы:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 204,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Количество выбросов в столбце 'combination_mpg': 8\n",
|
||
"Количество выбросов в столбце 'cylinders': 10\n",
|
||
"Количество выбросов в столбце 'displacement': 21\n",
|
||
"Количество выбросов в столбце 'highway_mpg': 3\n",
|
||
"Количество выбросов в столбце 'city_mpg': 9\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPeCAYAAAAI5OjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeg0lEQVR4nOzdd1xW9f//8ecFsgQRwYkD3Lg110dNcWauTFPLLHBlpuZoWOYnV45PmZnZcJVYrtJKUzNXrszKUlNzG2qpae694P37wx/n6yVwAAUuwMf9dvNW1/us1znngvd5PznXuRzGGCMAAAAAAAAAAJAgN1cXAAAAAAAAAABARkaQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkI4s4eDBg3I4HIqKinJ1KU6+++47Va5cWd7e3nI4HDp79qyrS0oWh8OhPn36JDlfVFSUHA6HDh48mPZFJaBz584KDQ11ybYBAFkP1xP/J6E+vn79+qpfv36qbict1gkAyNiyan87bNgwORwOp7bQ0FB17tw59Yq8g8Ph0LBhw9Js/QCcEaTDSdyg6fZ/efPmVYMGDbR06dJ0r2fNmjVOtXh4eKhYsWKKiIjQn3/+mSrb+PHHHzVs2LBUH5SeOnVKHTp0kI+Pjz744AN99tln8vX1TdVt3A+OHj2qYcOGaevWra4uBQCQTFxPpB6uJwAAiaG/TT30t1nP6NGjtWDBAleXgSwmm6sLQMY0YsQIFS1aVMYYHT9+XFFRUWrevLkWLVqkli1bpns9ffv2VfXq1XXjxg1t3rxZU6ZM0ZIlS7R9+3YFBwff07p//PFHDR8+XJ07d1ZAQEDqFCxp06ZNunDhgt544w01btw41dabkTz99NN64okn5OXllWbbOHr0qIYPH67Q0FBVrlzZadrUqVMVGxubZtsGANwbrifuXUa6nli+fLlLtw8ASBj97b1Lq/52z549cnPjHlZXGD16tNq1a6dHH33U1aUgCyFIR4KaNWumatWqWa+7deumfPnyac6cOS7piOvWrat27dpJkrp06aJSpUqpb9++mjFjhgYNGpTu9STHiRMnJClVO/eMxt3dXe7u7i7bvoeHh8u2DQBIGtcT9y4jXU94enq6ugRbsbGxun79ury9vV1dCgCkK/rbe5dW/W1a3nQGIP3xZzEkS0BAgHx8fJQtm/PfXi5duqQXX3xRhQsXlpeXl0qXLq23335bxhhJ0pUrVxQWFqawsDBduXLFWu706dMqUKCAateurZiYmBTX07BhQ0lSdHS07Xzff/+96tatK19fXwUEBKh169batWuXNX3YsGF6+eWXJUlFixa1PoKW1DO/582bp6pVq8rHx0e5c+fWU089pSNHjljT69evr8jISElS9erV5XA4knwu2pEjR9StWzcFBwfLy8tLRYsW1XPPPafr169b8/z5559q3769AgMDlT17dv3nP//RkiVLnNYT93G6L774QsOHD1fBggWVI0cOtWvXTufOndO1a9fUv39/5c2bV35+furSpYuuXbuWYE2zZs1S6dKl5e3trapVq2rdunVO0xN6fmpoaKhatmypH374QTVq1JC3t7eKFSumTz/91GnZ06dP66WXXlKFChXk5+cnf39/NWvWTL///rvTvlSvXl3SrQuwuPMT9yy9hJ6RntR7Mk7cc+AXLFig8uXLy8vLS+XKldN3332X+ElKQNzz/d5++2198MEHKlasmLJnz66HHnpIf/31l4wxeuONN1SoUCH5+PiodevWOn36tNM64o7Z8uXLrWfylS1bVl999VW87W3btk3h4eHy8fFRoUKFNHLkSE2fPt2lz6oHgOTiesJZel9P/Pnnn3I4HBo/fny85X788Uc5HA7NmTMn0XXf+Tzz2685Ro0apUKFCsnb21uNGjXS/v374y0/ZcoUFS9eXD4+PqpRo4bWr1+f4HauXbumoUOHqkSJEvLy8lLhwoU1cODAeNcrcX35rFmzVK5cOXl5eVn9+Ny5c1W1alXlyJFD/v7+qlChgiZMmGB77AAgq6C/dZYW/e0PP/yg6tWry9vbW8WLF9fkyZMTnO/OZ6TfuHFDw4cPV8mSJeXt7a2goCA9+OCDWrFihTVP586d5efnpz///FNNmzaVr6+vgoODNWLEiHjj2jsdOnRIvXr1UunSpeXj46OgoCC1b98+wWN09uxZDRgwQKGhofLy8lKhQoUUERGhkydPWvOktE+eN2+eypYtKx8fH9WqVUvbt2+XJE2ePFklSpSQt7e36tevn2A9P//8sx5++GHlzJlT2bNnV3h4uDZs2OA0T9xz6Pfv3299KiFnzpzq0qWLLl++7FTPpUuXNGPGDOt9kpbPqsf9gzvSkaBz587p5MmTMsboxIkTmjhxoi5evKinnnrKmscYo0ceeUSrV69Wt27dVLlyZS1btkwvv/yyjhw5ovHjx8vHx0czZsxQnTp1NHjwYL3zzjuSpN69e+vcuXOKioq6qzuaDxw4IEkKCgpKdJ6VK1eqWbNmKlasmIYNG6YrV65o4sSJqlOnjjZv3qzQ0FC1bdtWe/fu1Zw5czR+/Hjlzp1bkpQnT55E1xsVFaUuXbqoevXqGjNmjI4fP64JEyZow4YN2rJliwICAjR48GCVLl1aU6ZMsT5mV7x48UTXefToUdWoUUNnz55Vjx49FBYWpiNHjmj+/Pm6fPmyPD09dfz4cdWuXVuXL19W3759FRQUpBkzZuiRRx7R/Pnz1aZNG6d1jhkzRj4+Pnr11Ve1f/9+TZw4UR4eHnJzc9OZM2c0bNgw/fTTT4qKilLRokU1ZMgQp+XXrl2rzz//XH379pWXl5c+/PBDPfzww/rll19Uvnx52/Ozf/9+tWvXTt26dVNkZKQ++eQTde7cWVWrVlW5cuUk3fqjwIIFC9S+fXsVLVpUx48f1+TJkxUeHq6dO3cqODhYZcqU0YgRIzRkyBD16NFDdevWlSTVrl07we0m5z15ux9++EFfffWVevXqpRw5cui9997TY489psOHD9u+txIya9YsXb9+Xc8//7xOnz6tt956Sx06dFDDhg21Zs0avfLKK9Z5eOmll/TJJ584Lb9v3z49/vjj6tmzpyIjIzV9+nS1b99e3333nZo0aSLpVjjSoEEDORwODRo0SL6+vpo2bRp3OQDIsLieyFjXE8WKFVOdOnU0a9YsDRgwwGnZWbNmKUeOHGrdunVKDqEk6X//+5/c3Nz00ksv6dy5c3rrrbfUqVMn/fzzz9Y8H3/8sZ599lnVrl1b/fv3159//qlHHnlEgYGBKly4sDVfbGysHnnkEf3www/q0aOHypQpo+3bt2v8+PHau3dvvGedfv/99/riiy/Up08f5c6dW6GhoVqxYoU6duyoRo0a6c0335Qk7dq1Sxs2bFC/fv1SvH8AkNHR36Zvf7t9+3Y99NBDypMnj4YNG6abN29q6NChypcvX5LHYtiwYRozZoy6d++uGjVq6Pz58/r111+1efNma9wnSTExMXr44Yf1n//8R2+99Za+++47DR06VDdv3tSIESMSXf+mTZv0448/6oknnlChQoV08OBBffTRR6pfv7527typ7NmzS5IuXryounXrateuXerataseeOABnTx5Ut98843+/vtv5c6dO8V98vr16/XNN9+od+/ekm5lEi1bttTAgQP14YcfqlevXjpz5ozeeustde3aVd9//7217Pfff69mzZqpatWqGjp0qNzc3DR9+nQ1bNhQ69evV40aNZy21aFDBxUtWlRjxozR5s2bNW3aNOXNm9fq9z/77DPrGPfo0UOSbM8pkGwGuM306dONpHj/vLy8TFRUlNO8CxYsMJLMyJEjndrbtWtnHA6H2b9/v9U2aNAg4+bmZtatW2fmzZtnJJl33303yXpWr15tJJlPPvnE/Pvvv+bo0aNmyZIlJjQ01DgcDrNp0yZjjDHR0dFGkpk+fbq1bOXKlU3evHnNqVOnrLbff//duLm5mYiICKtt7NixRpKJjo5Osp7r16+bvHnzmvLly5srV65Y7YsXLzaSzJAhQ6y2uGMZV6OdiIgI4+bmluC8sbGxxhhj+vfvbySZ9evXW9MuXLhgihYtakJDQ01MTIwx5v+OWfny5c3169eteTt27GgcDodp1qyZ0/pr1aplQkJCnNrizvuvv/5qtR06dMh4e3ubNm3axNvH249dSEiIkWTWrVtntZ04ccJ4eXmZF1980Wq7evWqVXOc6Oho4+XlZUaMGGG1bdq0Kd65jRMZGelUe0rek5KMp6enU9vvv/9uJJmJEyfG21Zi4t57efLkMWfPnrXaBw0aZCSZSpUqmRs3bljtHTt2NJ6enubq1atWW9wx+/LLL622c+fOmQIFCpgqVapYbc8//7xxOBxmy5YtVtupU6dMYGBgst/DAJAeuJ6w58rricmTJxtJZteuXU715M6d20RGRsbb7u37Ex4ebsLDw63Xcce1TJky5tq1a1b7hAkTjCSzfft2p/2tXLmy03xTpkwxkpzW+dlnnxk3Nzen6x1jjJk0aZKRZDZs2GC1STJubm7mjz/+cJq3X79+xt/f39y8edPmaAFA5kd/ay+t+ttHH33UeHt7m0OHDlltO3fuNO7u7ubOmC0kJMSpf61UqZJp0aKF7fojIyONJPP8889bbbGxsaZFixbG09PT/Pvvv1a7JDN06FDr9eXLl+Otb+PGjUaS+fTTT622IUOGGEnmq6++ijd/3DVDSvtkLy8vp/MSd82RP39+c/78eas9bqwcN29sbKwpWbKkadq0qbXtuH0pWrSoadKkidU2dOhQI8l07drVqaY2bdqYoKAgpzZfX1+nYw+kBh7tggR98MEHWrFihVasWKGZM2eqQYMG6t69u9OjJr799lu5u7urb9++Tsu++OKLMsY4fUv4sGHDVK5cOUVGRqpXr14KDw+Pt5ydrl27Kk+ePAoODlaLFi2sj+jc/hy42x07dkxbt25V586dFRgYaLVXrFhRTZo00bfffpvsbd/u119/1YkTJ9SrVy+n52+2aNFCYWFh8R6zkhyxsbFasGCBWrVqleD+OBwOSbeOd40aNfTggw9a0/z8/NSjRw8dPHhQO3fudFouIiLC6RniNWvWlDFGXbt2dZqvZs2a+uuvv3Tz5k2n9lq1aqlq1arW6yJFiqh169ZatmxZkh/nK1u2rHX3uHTrDoHSpUs7fVO7l5eX9aUrMTExOnXqlPz8/FS6dGlt3rzZdv2JScl7UpIaN27s9FfpihUryt/f/66+Ub59+/bKmTOn9bpmzZqSpKeeesrpI5U1a9bU9evXnT5KKEnBwcFOnyrw9/dXRESEtmzZon/++UeS9N1336lWrVpOX7oaGBioTp06pbheAEgPXE8kzJXXEx06dJC3t7dmzZplTVu2bJlOnjzpdOdiSnTp0sXp+elx1wBx/Wnc/vbs2dNpvs6dOzv1ndKtj9+XKVNGYWFhOnnypPUv7rEAq1evdpo/PDxcZcuWdWoLCAjQpUuXnD4mDwBZGf1twtKiv42JidGyZcv06KOPqkiRIlZ7mTJl1LRp0ySXDwgI0B9//KF9+/YlOW+fPn2s/497dMr169e1cuXKRJfx8fGx/v/GjRs6deqUSpQooYCAAKdx9pdffqlKlSrF+2R73LaklPfJjRo1cnr0atyY+LHHHlOOHDnitcddJ2zdulX79u3Tk08+qVOnTlnbuXTpkho1aqR169YpNjbWaVs9e/Z0el23bl2dOnVK58+fT/TYAKmBR7sgQTVq1HDq5Dp27KgqVaqoT58+atmypTw9PXXo0CEFBwc7/UKUbnUg0q1nc8Xx9PTUJ598Yj1DLO6Zzsk1ZMgQ1a1bV+7u7sqdO7fKlCkT73lvt4vbdunSpeNNK1OmjJYtW6ZLly7J19c32TUktd6wsDD98MMPKVqfJP377786f/58ko9LOXTokNXh3O724337Om7v1CVZA9XbPz4d1x4bG6tz5845fdSuZMmS8bZVqlQpXb58Wf/++6/y58+faK13bluScuXKpTNnzlivY2NjNWHCBH344YeKjo52CudT+liVOCl5Tya3zuRKyfGWFG8bJUqUiPczUapUKUm3nsOeP39+HTp0SLVq1Yq37RIlSqS4XgBID1xPpHy9aX09ERAQoFatWmn27Nl64403JN16rEvBggWtgXFK3dkH5sqVS9L/9XVx+3vntYWHh4eKFSvm1LZv3z7t2rUr0Y/px30ZXJyiRYvGm6dXr1764osv1KxZMxUsWFAPPfSQOnTooIcffjgFewUAmQf9bcrXey/97ZUrVxIcL5cuXTrJ0H/EiBFq3bq1SpUqpfLly+vhhx/W008/rYoVKzrN5+bmFq+PvH18mJgrV65ozJgxmj59uo4cOeL0TPVz585Z/3/gwAE99thjtrWmtE++2zFx3B8V4p5Tn5Bz585Z1xcJbev2aw9/f/9E1wPcK4J0JIubm5saNGigCRMmaN++fdZzrlNi2bJlkqSrV69q3759CQ58ElOhQgU1btw4xdu8nyX27LrE2m/vYNNq27dvY/To0Xr99dfVtWtXvfHGGwoMDJSbm5v69+8f76/NaSU1j4UrjzcAZBZcT2QMERERmjdvnn788UdVqFBB33zzjXr16mV9UiylUrOvi42NVYUKFazn8t7pzsH47XfexcmbN6+2bt2qZcuWaenSpVq6dKmmT5+uiIgIzZgxI8U1AUBmQ3+bcdWrV08HDhzQwoULtXz5ck2bNk3jx4/XpEmT1L1793te//PPP6/p06erf//+qlWrlnLmzCmHw6EnnngixePslPbJdzsmjqtr7NixTp++vp2fn1+K1gmkFYJ0JFvcoz8uXrwoSQoJCdHKlSt14cIFp79q796925oeZ9u2bRoxYoS6dOmirVu3qnv37tq+fXu8j/Omlrht79mzJ9603bt3K3fu3NZfs1Pyl/Xb13vnXVt79uxx2ufkypMnj/z9/bVjx44kt53Y/txeW2pJ6KNme/fuVfbs2W2/zCW55s+frwYNGujjjz92aj979qz1pTFSys9Pct+TGc3+/ftljHHa371790qS9fG4kJAQ7d+/P8FlASCz4HrCtdcTkvTwww8rT548mjVrlmrWrKnLly/r6aefTvE2kytuf/bt2+e0vzdu3FB0dLQqVapktRUvXly///67GjVqlKJjeidPT0+1atVKrVq1UmxsrHr16qXJkyfr9ddf55NcAO4L9Ldp19/6+PgkOF5OqP6EBAYGqkuXLurSpYsuXryoevXqadiwYU5BemxsrP7880/rLnQp/vgwIfPnz1dkZKTGjRtntV29elVnz551mq948eJJXjOkVp+clLjHrfr7+6fqH2DSsmbcv3hGOpLlxo0bWr58uTw9Pa2PfjVv3lwxMTF6//33neYdP368HA6HmjVrZi3buXNnBQcHa8KECYqKitLx48c1YMCANKu3QIECqly5smbMmOHUYezYsUPLly9X8+bNrba4DvnOjiUh1apVU968eTVp0iRdu3bNal+6dKl27dqlFi1apLhWNzc3Pfroo1q0aJF+/fXXeNPj/qLavHlz/fLLL9q4caM17dKlS5oyZYpCQ0PjPR/0Xm3cuNHpGWp//fWXFi5cqIceeuiuvqn9Tu7u7vH+Wjxv3rx4zw5PyflJ7nsyIzp69Ki+/vpr6/X58+f16aefqnLlytZjdJo2baqNGzdq69at1nynT592es4tAGRkXE/c4srrCUnKli2bOnbsqC+++EJRUVGqUKFCvI+Up6Zq1aopT548mjRpkq5fv261R0VFxTteHTp00JEjRzR16tR467ly5YouXbqU5PZOnTrl9NrNzc3av9uPNwBkVfS3t6RFf+vu7q6mTZtqwYIFOnz4sNW+a9cu6y5+O3f2UX5+fipRokSC/dPt58oYo/fff18eHh5q1KiRbX13jrMnTpwY73vOHnvsMf3+++9OY9DbtyWlTp+cHFWrVlXx4sX19ttvW3/4ud2///57V+v19fVN1vsESAnuSEeCli5dav1l+sSJE5o9e7b27dunV1991XreVKtWrdSgQQMNHjxYBw8eVKVKlbR8+XItXLhQ/fv3t/6qOHLkSG3dulWrVq1Sjhw5VLFiRQ0ZMkT//e9/1a5dO6dOMTWNHTtWzZo1U61atdStWzdduXJFEydOVM6cOTVs2DBrvrgv1Bw8eLCeeOIJeXh4qFWrVgk+f83Dw0NvvvmmunTpovDwcHXs2FHHjx/XhAkTFBoaetcXF6NHj9by5csVHh6uHj16qEyZMjp27JjmzZunH374QQEBAXr11Vc1Z84cNWvWTH379lVgYKBmzJih6Ohoffnll3f9cezElC9fXk2bNlXfvn3l5eWlDz/8UJI0fPjwVFl/y5Ytrbscateure3bt2vWrFnxngNXvHhxBQQEaNKkScqRI4d8fX1Vs2bNBD9amNz3ZEZUqlQpdevWTZs2bVK+fPn0ySef6Pjx45o+fbo1z8CBAzVz5kw1adJEzz//vHx9fTVt2jQVKVJEp0+f5i/uADIcricy3vVEnIiICL333ntavXq13nzzzbvaXnJ5eHho5MiRevbZZ9WwYUM9/vjjio6O1vTp0+P1+08//bS++OIL9ezZU6tXr1adOnUUExOj3bt364svvtCyZcsS/bK6ON27d9fp06fVsGFDFSpUSIcOHdLEiRNVuXJlK1ACgKyE/jZ9+9vhw4fru+++U926ddWrVy/dvHlTEydOVLly5bRt2zbbZcuWLav69euratWqCgwM1K+//qr58+c7fbGoJHl7e+u7775TZGSkatasqaVLl2rJkiV67bXXbD8h3rJlS3322WfKmTOnypYtq40bN2rlypXxvofs5Zdf1vz589W+fXt17dpVVatW1enTp/XNN99o0qRJqlSpUqr0ycnh5uamadOmqVmzZipXrpy6dOmiggUL6siRI1q9erX8/f21aNGiFK+3atWqWrlypd555x0FBweraNGiCX7vHJAiBrjN9OnTjSSnf97e3qZy5crmo48+MrGxsU7zX7hwwQwYMMAEBwcbDw8PU7JkSTN27Fhrvt9++81ky5bNPP/8807L3bx501SvXt0EBwebM2fOJFrP6tWrjSQzb94827qjo6ONJDN9+nSn9pUrV5o6deoYHx8f4+/vb1q1amV27twZb/k33njDFCxY0Li5uRlJJjo62nZ7n3/+ualSpYrx8vIygYGBplOnTubvv/92mifuWG7atMl2XXEOHTpkIiIiTJ48eYyXl5cpVqyY6d27t7l27Zo1z4EDB0y7du1MQECA8fb2NjVq1DCLFy92Wk9ixyyxeoYOHWokmX///ddqk2R69+5tZs6caUqWLGm8vLxMlSpVzOrVqxNc5+3HKyQkxLRo0SLe/oWHh5vw8HDr9dWrV82LL75oChQoYHx8fEydOnXMxo0b481njDELFy40ZcuWNdmyZXM6z5GRkSYkJMRp3qTek3fu451CQkJMZGRkvPbExL33xo4d69SekvMQd8yWLVtmKlasaLy8vExYWFiC7/stW7aYunXrGi8vL1OoUCEzZswY89577xlJ5p9//kl23QCQlrieyNjXE3HKlStn3Nzc4m3z9u3evg939tGJHdfEjuOHH35oihYtary8vEy1atXMunXrEuz3r1+/bt58801Trlw54+XlZXLlymWqVq1qhg8fbs6dO2fNl1hfPn/+fPPQQw+ZvHnzGk9PT1OkSBHz7LPPmmPHjtkcOQDIfOhvXdffrl271lStWtV4enqaYsWKmUmTJllj69vdOb4cOXKkqVGjhgkICDA+Pj4mLCzMjBo1yly/ft2aJzIy0vj6+poDBw6Yhx56yGTPnt3ky5fPDB061MTExDitX5IZOnSo9frMmTOmS5cuJnfu3MbPz880bdrU7N69O8Fx7qlTp0yfPn1MwYIFjaenpylUqJCJjIw0J0+etOa5lz45pWPlLVu2mLZt25qgoCDj5eVlQkJCTIcOHcyqVauseRLKL4xJ+Lpl9+7dpl69esbHx8dIStE4H0iMwxiexA8ArhQaGqry5ctr8eLFd7V8//79NXnyZF28eDFVHrsDALg/VKlSRYGBgVq1apWrSwEAAP9f586dNX/+/AQfcwLAtXhGOgBkIleuXHF6ferUKX322Wd68MEHCdEBAMn266+/auvWrYqIiHB1KQAAAECmwDPSASABMTExSX6piZ+fn/z8/NKpoltq1aql+vXrq0yZMjp+/Lg+/vhjnT9/Xq+//nq61gEAyJx27Nih3377TePGjVOBAgX0+OOPu7okAAAAIFMgSAeABPz1118JfqHp7YYOHer0xTfpoXnz5po/f76mTJkih8OhBx54QB9//LHq1auXrnUAADKn+fPna8SIESpdurTmzJkjb29vV5cEAAAAZAo8Ix0AEnD16lX98MMPtvMUK1ZMxYoVS6eKAAAAAAAA4CoE6QAAAAAAAAAA2ODLRgEAAAAAAAAAsHHXz0iPjY3V0aNHlSNHDjkcjtSsCQAASDLG6MKFCwoODpab273/7Zu+GwCAtEXfDQBA5pKSvvuug/SjR4+qcOHCd7s4AABIpr/++kuFChW65/XQdwMAkD7ouwEAyFyS03ffdZCeI0cOayP+/v53uxoAAJCI8+fPq3Dhwlafe6/ouwEASFv03QAAZC4p6bvvOkiP+1iZv78/HToAAGkotT7KTd8NAED6oO8GACBzSU7fzZeNAgAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsJHN1QUgacePH9e5c+dcXUamlDNnTuXLl8/VZQAAMjD6WdeirwYApBf6/KyFawgA6Y0gPYM7fvy4nno6QjeuX3N1KZmSh6eXZn72KZ0rACBBu3fvVq9evRUbG+PqUu5b9NUAgPTA2Drr4RoCQHojSM/gzp07pxvXr+lKsXDFeud0WR1uV87KJ3qdrhStp1ifAJfVkRJuV89Jf67VuXPn6FgBAAn666+/FBsbo6sFH1BMzkKuLue+Q18NAEgvGWVsnZDMON52Na4hALgCQXomEeudU7G+uV1dhmJ9AjJEHQAApCbj6Uf/BgDAfSCjjK0TwngbADI2vmwUAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAICNDBWkX716VXv37tXVq1ddXQqADILfC0DGxs8okHnx8wvcn/jZB4D0we/brCdDBemHDx9Wjx49dPjwYVeXAiCD4PcCkLHxMwpkXvz8AvcnfvYBIH3w+zbryVBBOgAAAAAAAAAAGQ1BOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAICNbK4uAABSw/Xr17Vw4UIdPXpUwcHBat26tTw9PROdPyYmRtu2bdPp06cVGBioihUryt3dPR0rTnkdGaXmtJQZ9zGl7z0AAE6fPq0XXnhBp06dUlBQkN555x0FBga6uqz7xsWLFzVmzBir7x40aJD8/PxcXRYA4D6R1Lj3ypUrmjx5sv7++28VKlRIzz77rHx8fJK9vJ39+/frmWeekTFGDodDU6dOVYkSJVKt9rSSUbICgnQAmd6kSZM0b948xcTEOLW1b99ePXv2jDf/unXr9OGHH+qff/6x2vLnz69evXqpXr166VJzSuvIKDWnpcy4jyl97wEA0LZtW50+fdp6feHCBbVt21aBgYH66quvXFjZ/aFnz57avXu39To6OlotW7ZUWFiYJk2a5MLKAAD3g6TGvYMHD9aGDRusab/++qsWLFigOnXqaNSoUfc0bq5fv77Ta2OMunfvLklas2bNPdeeVjJSVsCjXQBkapMmTdLcuXPl7++vl156SV9++aVeeukl+fv7a+7cufEGROvWrdPQoUNVrFgxffDBB/r222/1wQcfqFixYho6dKjWrVuXLnWnpI6MUnNayoz7mNL3HgAAt4foZcuW1bhx41S2bFlJt+5Sb9u2rSvLy/LiQnSHw6GHHnpI06ZN00MPPSSHw6Hdu3fzR3AAQJpKatzbs2dPbdiwQR4eHnryySc1c+ZMPfnkk/Lw8NCGDRvUs2fPux433x6iu7u76+mnn3a6o/vOkD2ltafVmD2jZQUE6QAyrevXr2vevHnKlSuX5s2bp5YtWyooKEgtW7Z0ar9+/bqkWx8F+vDDD1WrVi2NHDlS5cqVU/bs2VWuXDmNHDlStWrV0kcffeR0d3FaSEkdGaXmtJQZ9zGl7z0AAE6fPm2F6IsXL9aHH36oqlWr6sMPP9TixYvjzYPUdfHiRStEX7p0qV577TWVKFFCr732mpYuXWqF6RcvXnR1qQCALCipcW+NGjW0e/dueXh4aMmSJerRo4cKFSqkHj16aMmSJcqWLZt2796tGjVqpHjcvH//fuv/Z86cqVWrVqlbt25atWqVZs6cmeB8Kak9rcbsGTErSPajXa5du6Zr165Zr8+fP58mBUnSoUOH0mzdmQ3H4t5xDDM3u/O3cOFCxcTEqFu3bsqWzfnXWbZs2dS1a1eNGzdOCxcuVPv27bVt2zb9888/ev311+Xm5vx3RDc3N3Xq1Em9e/fWtm3bVKVKlTTZH0kpqkNShqg5LWWU85ISKX3vuQp9d9KOHTvm6hKgzPv+yew47unrhRdekHTrTvQ7n8ft5+enMmXKaNeuXXrhhRcUFRXlggqztjFjxkiSmjRpIm9vb6dp3t7eaty4sVasWKExY8Zo1KhRrihREn13Wrrf9vd+wXlFRnb7+zOpca+Xl5ckqV69evG+c8vT01P16tXT999/Ly8vrxSPm5955hlJt+5EL1SokNO0QoUKyd3dXTExMXrmmWe0evXqePvhqjF7RswKkh2kjxkzRsOHD0/LWiyuvHBB1sP7Kes6evSoJKlWrVoJTo9rj5sv7g6vokWLJjh/XHta3wl2N3W4uua0lFHOS0qk9L3nKvTdyCx4/+B+cOrUKUlSt27dEpzepUsXDRw40JoPqSuuT+7QoUOC09u3b68VK1bQdwOZDO9jZBZJjXsvXLggSQoLC0twelhYmL7//ntrvjvZjZuNMZKkJ598MsFl27dvr7lz51rzpbT2tBqzZ8SsINlB+qBBg6y7KKRbfxkvXLhwmhQ1ePBghYSEpMm6M5tDhw7RMdwj3k+Zm93PQHBwsCRp48aNatmyZbzpGzdudJovMDBQ0q0vlSpXrly8+aOjo53mSyt3U4era05LGeW8pERK33uuQt+dtJ9++kmffPKJq8u472XW909mx3Vm+goKCtKFCxf08ccfq2rVqvGmT58+3ZoPqS84OFjR0dH64osv9Nprr8WbPm/ePGs+V6LvTjv8zsua7rf3MTKX23/vJDXuzZEjhyQ5fSH27eLa4+a7k9242eFwyBij2bNnJ/gH/bg+0OFwJLhuV43ZM2JWkOwg3cvLy/qYQVoLCQlRqVKl0mVbyPp4P2VdrVu31qRJk/Txxx/r4YcfdnrExs2bN/XJJ5/I3d1drVu3liRVrFhR+fPn16xZszRy5EinjwbFxsZq1qxZKlCggCpWrJimdae0joxQc1rKKOclJVL63nMV+u6k8XHgjCGzvn+AlHjnnXfUtm1b7dy5UxcvXnR6vMvFixe1a9cuaz6kvkGDBqlly5ZasWKFXnjhBafHu1y9elUrV6605nMl+m4gZXgfI7NIatwb91ivdevW6fr1606Pd7l+/br1pZrXrl1TbGxsisbNU6dOVffu3RUTE6O///7b6fEuf//9t/WM8alTp95V7Wk1Zs+IWQFfNgog0/L09FT79u115swZtW/fXosWLdLJkye1aNEip/a4Dsjd3V29evXSxo0b9d///ld//PGHLl++rD/++EP//e9/tXHjRj333HNO31ydFlJSR0apOS1lxn1M6XsPAIDAwEDrjqmWLVvqueee0y+//KLnnnvO+nTT7fMgdfn5+SksLEzGGDVr1kyjRo3S3r17NWrUKDVr1kzGGIWFhcV7fj0AAKkhqXHvL7/8orCwMN24cUMtWrTQ5MmT9ddff2ny5Mlq0aKFbt68qbCwMP3yyy8pHjeXKFHC+v+nnnpKjRo10qRJk9SoUSM99dRTCc6XktrTasyeEbOCZN+RDgAZUc+ePSXd+ijSuHHjrHZ3d3c98cQT1vQ49erV0/Dhw/Xhhx+qd+/eVnuBAgU0fPhw1atXL13qTkkdGaXmtJQZ9zGl7z0AAL766iu1bdtWp0+f1q5duzRw4EBrWmBgoL766isXVpf1TZo0ST179tTu3bu1YsUKrVixwpoWFhamSZMmubA6AEBWl5xx7+DBg7VhwwbNmTNHc+bMseapU6eORo0apXXr1t3VuHnNmjWqX7++JCkmJkZz586NN/1ea08LGS0rIEgHkOn17NlTXbt21cKFC3X06FEFBwerdevWid4NXK9ePdWpU0fbtm3T6dOnFRgYqIoVK6b7Hc8pqSOj1JyWMuM+pvS9BwDAV199pdOnT+uFF17QqVOnFBQUpHfeeYc70dPJpEmTdPHiRY0ZM8bquwcNGsSd6ACAdJHUuHfUqFG6cuWKJk+ebD2G5dlnn5WPj0+ylrezZs0a7d+/X88884yMMXI4HJo6dWqid6KntPa0kpGyAoJ0AFlC3KM2ksvd3V1VqlRJw4pSv46MUnNayoz7mNL3HgAAgYGBioqKcnUZ9y0/Pz++dBIA4DJJjXt9fHzUv3//u17eTokSJbR69eq7WvZet30vMkpWwDPSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGxkqSC9SpIimTJmiIkWKuLoUABkEvxeAjI2fUSDz4ucXuD/xsw8A6YPft1lPNlcXcDtvb2+VKlXK1WUAyED4vQBkbPyMApkXP7/A/YmffQBIH/y+zXoy1B3pAAAAAAAAAABkNATpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACAjWyuLgDJ43b1nGu3f+Ws038zA1cfMwBA5uG4flFul066uoz7Dn01ACC9ZcS+JzOOt10tI55HAFkfQXoGlzNnTnl4ekl/rnV1KZIkn+h1ri4hRTw8vZQzZ05XlwEAyKAKFy4sNzd3eR/ZLB3Z7Opy7kv01QCA9JDRxtYJyWzjbVfjGgJAeiNIz+Dy5cunmZ99qnPn+Gvr3ciZM6fy5cvn6jIAABlUWFiY5syZTT/rQvTVAID0wNg66+EaAkB6I0jPBPLly0fnAABAGqGfBQDg/kCfDwC4F3zZKAAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGCDIB0AAAAAAAAAABsE6QAAAAAAAAAA2CBIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYI0gEAAAAAAAAAsEGQDgAAAAAAAACADYJ0AAAAAAAAAABsEKQDAAAAAAAAAGAj290uaIyRJJ0/fz7VigEAAP8nro+N63PvFX03AABpi74bAIDMJSV9910H6RcuXJAkFS5c+G5XAQAAkuHChQvKmTNnqqxHou8GACCt0XcDAJC5JKfvdpi7/FN5bGysjh49qhw5csjhcNxVgffq/PnzKly4sP766y/5+/u7pIa0ltX3Mavvn8Q+ZhXsY9aQ2fbRGKMLFy4oODhYbm73/jS2jNB3ZzSZ7T2R1XD8XYvj71ocf9dKq+OfXn0375+U45ilHMcs5Thmd4fjlnIcs5RL7JilpO++6zvS3dzcVKhQobtdPFX5+/tn+TdNVt/HrL5/EvuYVbCPWUNm2sfUuJstTkbquzOazPSeyIo4/q7F8Xctjr9rpcXxT8++m/dPynHMUo5jlnIcs7vDcUs5jlnKJXTMktt382WjAAAAAAAAAADYIEgHAAAAAAAAAMBGpg7Svby8NHToUHl5ebm6lDST1fcxq++fxD5mFexj1nA/7CNShveEa3H8XYvj71ocf9fK7Mc/s9fvChyzlOOYpRzH7O5w3FKOY5ZyqXHM7vrLRgEAAAAAAAAAuB9k6jvSAQAAAAAAAABIawTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQToAAAAAAAAAADYyRZC+bt06tWrVSsHBwXI4HFqwYIHT9M6dO8vhcDj9e/jhh11T7F0YM2aMqlevrhw5cihv3rx69NFHtWfPHqd5rl69qt69eysoKEh+fn567LHHdPz4cRdVnHLJ2cf69evHO489e/Z0UcUp99FHH6lixYry9/eXv7+/atWqpaVLl1rTM/s5TGr/Mvv5S8j//vc/ORwO9e/f32rL7OfxTgntY2Y/l8OGDYtXf1hYmDU9q51DpI6EfhaQto4cOaKnnnpKQUFB8vHxUYUKFfTrr7+6uqz7QkxMjF5//XUVLVpUPj4+Kl68uN544w0ZY1xdWpaU1FjGGKMhQ4aoQIEC8vHxUePGjbVv3z7XFJsF2R3/Gzdu6JVXXlGFChXk6+ur4OBgRURE6OjRo64rOAlJvZ8QX3LGonCW1NgPSePaMmlJjduQMK6hUy40NDTee83hcKh3794pXlemCNIvXbqkSpUq6YMPPkh0nocffljHjh2z/s2ZMycdK7w3a9euVe/evfXTTz9pxYoVunHjhh566CFdunTJmmfAgAFatGiR5s2bp7Vr1+ro0aNq27atC6tOmeTsoyQ988wzTufxrbfeclHFKVeoUCH973//02+//aZff/1VDRs2VOvWrfXHH39IyvznMKn9kzL3+bvTpk2bNHnyZFWsWNGpPbOfx9slto9S5j+X5cqVc6r/hx9+sKZlpXOI1GH3s4C0cebMGdWpU0ceHh5aunSpdu7cqXHjxilXrlyuLu2+8Oabb+qjjz7S+++/r127dunNN9/UW2+9pYkTJ7q6tCwpqbHMW2+9pffee0+TJk3Szz//LF9fXzVt2lRXr15N50qzJrvjf/nyZW3evFmvv/66Nm/erK+++kp79uzRI4884oJKkyc5Y2M4S+5YFP8nOWM/JI5ry+SzG7chPq6h786mTZuc3mcrVqyQJLVv3z7lKzOZjCTz9ddfO7VFRkaa1q1bu6SetHDixAkjyaxdu9YYY8zZs2eNh4eHmTdvnjXPrl27jCSzceNGV5V5T+7cR2OMCQ8PN/369XNdUWkgV65cZtq0aVnyHBrzf/tnTNY6fxcuXDAlS5Y0K1ascNqvrHQeE9tHYzL/uRw6dKipVKlSgtOy0jlE6rD7WUDaeeWVV8yDDz7o6jLuWy1atDBdu3Z1amvbtq3p1KmTiyq6f9w5lomNjTX58+c3Y8eOtdrOnj1rvLy8zJw5c1xQYdaW0FjyTr/88ouRZA4dOpQ+Rd2D5OwP4ktoLIqk3T72Q+K4tkw+u3EbEsY1dOro16+fKV68uImNjU3xspnijvTkWLNmjfLmzavSpUvrueee06lTp1xd0l07d+6cJCkwMFCS9Ntvv+nGjRtq3LixNU9YWJiKFCmijRs3uqTGe3XnPsaZNWuWcufOrfLly2vQoEG6fPmyK8q7ZzExMZo7d64uXbqkWrVqZblzeOf+xckq5693795q0aKF0/mSstbPYmL7GCezn8t9+/YpODhYxYoVU6dOnXT48GFJWescInUk9bOAtPHNN9+oWrVqat++vfLmzasqVapo6tSpri7rvlG7dm2tWrVKe/fulST9/vvv+uGHH9SsWTMXV3b/iY6O1j///OP0OyhnzpyqWbMm/ZKLnDt3Tg6HQwEBAa4uBWkksbEoEpbY2A8J49oyZRIbtyFhXEPfu+vXr2vmzJnq2rWrHA5HipfPlgY1pbuHH35Ybdu2VdGiRXXgwAG99tpratasmTZu3Ch3d3dXl5cisbGx6t+/v+rUqaPy5ctLkv755x95enrGu5jLly+f/vnnHxdUeW8S2kdJevLJJxUSEqLg4GBt27ZNr7zyivbs2aOvvvrKhdWmzPbt21WrVi1dvXpVfn5++vrrr1W2bFlt3bo1S5zDxPZPyhrnT5Lmzp2rzZs3a9OmTfGmZZWfRbt9lDL/uaxZs6aioqJUunRpHTt2TMOHD1fdunW1Y8eOLHMOkTqS+llA2vnzzz/10Ucf6YUXXtBrr72mTZs2qW/fvvL09FRkZKSry8vyXn31VZ0/f15hYWFyd3dXTEyMRo0apU6dOrm6tPtOXN+TL18+p3b6Jde4evWqXnnlFXXs2FH+/v6uLgdpILGxKOKzG/shYVxbpozduC1HjhyuLi9D4hr63i1YsEBnz55V586d72r5LBGkP/HEE9b/V6hQQRUrVlTx4sW1Zs0aNWrUyIWVpVzv3r21Y8eOLP1cqMT2sUePHtb/V6hQQQUKFFCjRo104MABFS9ePL3LvCulS5fW1q1bde7cOc2fP1+RkZFau3atq8tKNYntX9myZbPE+fvrr7/Ur18/rVixQt7e3q4uJ00kZx8z+7m8/Y7KihUrqmbNmgoJCdEXX3whHx8fF1aGjOR++HnPyGJjY1WtWjWNHj1aklSlShXt2LFDkyZNYhCQDr744gvNmjVLs2fPVrly5bR161b1799fwcHBHH/ct27cuKEOHTrIGKOPPvrI1eUgjdwP4+3UYjf2Q3xcW6ac3bitW7duLqws4+Ia+t59/PHHatasmYKDg+9q+SzzaJfbFStWTLlz59b+/ftdXUqK9OnTR4sXL9bq1atVqFAhqz1//vy6fv26zp496zT/8ePHlT9//nSu8t4kto8JqVmzpiRlqvPo6empEiVKqGrVqhozZowqVaqkCRMmZJlzmNj+JSQznr/ffvtNJ06c0AMPPKBs2bIpW7ZsWrt2rd577z1ly5ZN+fLly/TnMal9jImJibdMZjyXtwsICFCpUqW0f//+LPOziHt3Nz8LSD0FChSINxAvU6YMH+dNJy+//LJeffVVPfHEE6pQoYKefvppDRgwQGPGjHF1afeduL7n+PHjTu30S+krLkQ/dOiQVqxYwd3oWVRKxqJI2dgPXFumhtvHbUgY19D35tChQ1q5cqW6d+9+1+vIkkH633//rVOnTqlAgQKuLiVZjDHq06ePvv76a33//fcqWrSo0/SqVavKw8NDq1atstr27Nmjw4cPZ5pnlCW1jwnZunWrJGWa85iQ2NhYXbt2LUucw4TE7V9CMuP5a9SokbZv366tW7da/6pVq6ZOnTpZ/5/Zz2NS+5jQ47Ay47m83cWLF3XgwAEVKFAgy/4sIuXu5mcBqadOnTras2ePU9vevXsVEhLiooruL5cvX5abm/MwwN3dXbGxsS6q6P5VtGhR5c+f36lfOn/+vH7++Wf6pXQSF6Lv27dPK1euVFBQkKtLQiq7m7Eo4rMb+4Fry9Rw+7gNCeMa+t5Mnz5defPmVYsWLe56HZni0S4XL150+otUdHS0tm7dqsDAQAUGBmr48OF67LHHlD9/fh04cEADBw5UiRIl1LRpUxdWnXy9e/fW7NmztXDhQuXIkcN6HmLOnDnl4+OjnDlzqlu3bnrhhRcUGBgof39/Pf/886pVq5b+85//uLj65ElqHw8cOKDZs2erefPmCgoK0rZt2zRgwADVq1dPFStWdHH1yTNo0CA1a9ZMRYoU0YULFzR79mytWbNGy5YtyxLn0G7/ssL5k6QcOXLEe1air6+vgoKCrPbMfh6T2sescC5feukltWrVSiEhITp69KiGDh0qd3d3dezYMUv8LCJ1JOfnHWlnwIABql27tkaPHq0OHTrol19+0ZQpUzRlyhRXl3ZfaNWqlUaNGqUiRYqoXLly2rJli9555x117drV1aVlSXZjmSJFiqh///4aOXKkSpYsqaJFi+r1119XcHCwHn30UdcVnYXYHf8CBQqoXbt22rx5sxYvXqyYmBhrnBIYGChPT09XlZ2opN5PiC+psSjisxv7IWFcW6ac3bgNCeMa+u7FxsZq+vTpioyMVLZs9xCHm0xg9erVRlK8f5GRkeby5cvmoYceMnny5DEeHh4mJCTEPPPMM+aff/5xddnJltC+STLTp0+35rly5Yrp1auXyZUrl8mePbtp06aNOXbsmOuKTqGk9vHw4cOmXr16JjAw0Hh5eZkSJUqYl19+2Zw7d861hadA165dTUhIiPH09DR58uQxjRo1MsuXL7emZ/ZzaLd/WeH8JSY8PNz069fPep3Zz2NCbt/HrHAuH3/8cVOgQAHj6elpChYsaB5//HGzf/9+a3pWPIdIHXf+vCNtLVq0yJQvX954eXmZsLAwM2XKFFeXdN84f/686devnylSpIjx9vY2xYoVM4MHDzbXrl1zdWlZkt1YxhhjYmNjzeuvv27y5ctnvLy8TKNGjcyePXtcW3QWYnf8o6OjEx2nrF692tWlJyip9xPiS854G86SGtsiebi2tJfUuA0J4xr67ixbtsxIuudrLIcxxtx9DA8AAAAAAAAAQNaWJZ+RDgAAAAAAAABAaiFIBwAAAAAAAADABkE6AAAAAAAAAAA2CNIBAAAAAAAAALBBkA4AAAAAAAAAgA2CdAAAAAAAAAAAbBCkAwAAAAAAAABggyAdAAAASGOhoaF69913rdcOh0MLFiy4p3VGRUUpICDgntYBAEBmU79+ffXv319S/P71XqVG/wwg6yJIB9LRwYMH5XA4tHXr1kTnWbNmjRwOh86ePZvm9QwbNkyVK1dO8+0AAABnx44dU7NmzVxdBgAAmdqmTZvUo0cPV5eRKXXu3FmPPvqoq8sAMhWCdCCDqV27to4dO6acOXOm6noT+sv6Sy+9pFWrVqXqdgAAQNLy588vLy8vV5ehGzduuLoEAADuWp48eZQ9e3ZXlwHgPkGQDmQwnp6eyp8/vxwOR5pvy8/PT0FBQWm+HQAAsoLY2Fi99dZbKlGihLy8vFSkSBGNGjVKDRs2VJ8+fZzm/ffff+Xp6ZnoH6xv/wN33CfWvvrqKzVo0EDZs2dXpUqVtHHjRqdloqKiVKRIEWXPnl1t2rTRqVOn4q134cKFeuCBB+Tt7a1ixYpp+PDhunnzptN2P/roIz3yyCPy9fXVqFGjdObMGXXq1El58uSRj4+PSpYsqenTp9/j0QIA4N5dunRJERER8vPzU4ECBTRu3Din6bc/2sUYo2HDhqlIkSLy8vJScHCw+vbt6zTvG2+8oY4dO8rX11cFCxbUBx98YLv9V155RaVKlVL27NlVrFgxvf766/H+CL1o0SJVr15d3t7eyp07t9q0aWNNu3btml566SUVLFhQvr6+qlmzptasWWNNj3tM2+LFi1W6dGllz55d7dq10+XLlzVjxgyFhoYqV65c6tu3r2JiYlK83mXLlqlMmTLy8/PTww8/rGPHjkm69en0GTNmaOHChXI4HHI4HE7LA0gYQTrua4kNiCVp+/btatiwoXx8fBQUFKQePXro4sWL1rJxH4MaPXq08uXLp4CAAI0YMUI3b97Uyy+/rMDAQBUqVCjBgeju3btVu3ZteXt7q3z58lq7dq017c5HuyTVAUq3Ps7WpEkT5c6dWzlz5lR4eLg2b95sTQ8NDZUktWnTRg6Hw3p956NdYmNjNWLECBUqVEheXl6qXLmyvvvuO2t6cgf6ibnbi4TkXPDs3r1bDz74oLy9vVW2bFmtXLmS59sBAFLVoEGD9L///U+vv/66du7cqdmzZytfvnzq3r27Zs+erWvXrlnzzpw5UwULFlTDhg2Tvf7BgwfrpZde0tatW1WqVCl17NjRCsF//vlndevWTX369NHWrVvVoEEDjRw50mn59evXKyIiQv369dPOnTs1efJkRUVFWdc2cYYNG6Y2bdpo+/bt6tq1q7U/S5cu1a5du/TRRx8pd+7c93CkAABIHS+//LLWrl2rhQsXavny5VqzZo3TWPd2X375pcaPH6/Jkydr3759WrBggSpUqOA0z9ixY1WpUiVt2bJFr776qvr166cVK1Ykuv0cOXIoKipKO3fu1IQJEzR16lSNHz/emr5kyRK1adNGzZs315YtW7Rq1SrVqFHDmt6nTx9t3LhRc+fO1bZt29S+fXs9/PDD2rdvnzXP5cuX9d5772nu3Ln67rvvtGbNGrVp00bffvutvv32W3322WeaPHmy5s+fn+L1vv322/rss8+0bt06HT58WC+99JKkW59O79Chg5UtHDt2TLVr107mWQHuYwa4jw0cONDkypXLREVFmf3795v169ebqVOnmosXL5oCBQqYtm3bmu3bt5tVq1aZokWLmsjISGvZyMhIkyNHDtO7d2+ze/du8/HHHxtJpmnTpmbUqFFm79695o033jAeHh7mr7/+MsYYEx0dbSSZQoUKmfnz55udO3ea7t27mxw5cpiTJ08aY4xZvXq1kWTOnDljjDFm+vTpxsPDwzRu3Nhs2rTJ/Pbbb6ZMmTLmySeftGpZtWqV+eyzz8yuXbvMzp07Tbdu3Uy+fPnM+fPnjTHGnDhxwkgy06dPN8eOHTMnTpwwxhgzdOhQU6lSJWs977zzjvH39zdz5swxu3fvNgMHDjQeHh5m7969TvWHhYWZxYsXmz179ph27dqZkJAQc+PGjSSPd9y+NGnSxGzevNmsXbvWBAUFmYceesh06NDB/PHHH2bRokXG09PTzJ0711ouJCTE5MiRw4wZM8bs2bPHvPfee8bd3d0sX77cGGPMzZs3TenSpU2TJk3M1q1bzfr1602NGjWMJPP111+n7E0BAEACzp8/b7y8vMzUqVPjTbty5YrJlSuX+fzzz622ihUrmmHDhlmvQ0JCzPjx463Xt/dRcf3rtGnTrOl//PGHkWR27dpljDGmY8eOpnnz5k7bffzxx03OnDmt140aNTKjR492muezzz4zBQoUcNpu//79neZp1aqV6dKlSxJHAACA9HXhwgXj6elpvvjiC6vt1KlTxsfHx/Tr188Y49y/jhs3zpQqVcpcv349wfWFhISYhx9+2Knt8ccfN82aNbNeJzWGHDt2rKlatar1ulatWqZTp04Jznvo0CHj7u5ujhw54tTeqFEjM2jQIGPMrTGyJLN//35r+rPPPmuyZ89uLly4YLU1bdrUPPvss/e03g8++MDky5fPeh0ZGWlat26d6L4CiI8gHfctuwHxlClTTK5cuczFixettiVLlhg3Nzfzzz//GGNudTohISEmJibGmqd06dKmbt261uubN28aX19fM2fOHGPM/w2U//e//1nz3LhxwxQqVMi8+eabxpiEg/SkOsA7xcTEmBw5cphFixZZbQldENwZpAcHB5tRo0Y5zVO9enXTq1cvp/rtBvp27uYiwZikL3iWLl1qsmXLZo4dO2ZNX7FiBUE6ACDV/Pzzz0aS+fPPPxOc3rdvX9O0aVNjjDG//fabcXNzMwcPHrSmJydI/+WXX6zpp0+fNpLM2rVrjTHGVK5c2QwfPtxpm++++65TkJ47d27j7e1tfH19rX/e3t5Gkrl06ZK13ZkzZzqt59tvvzU+Pj6mUqVK5uWXXzYbNmxI2cEBACANbN261Ugyhw4dcmqvXLlygkH64cOHTeHChU2hQoVM9+7dzVdffeV0w1dISEiCfWloaKj1+s4x5Ny5c03t2rVNvnz5jK+vr/Hy8jJ58uSxpvv4+JhPPvkkwfoXL15sJDn1y76+viZbtmymQ4cOxphbY+Ts2bM7LTdkyBBTtmxZp7aIiAjTpk2be1rvV199ZRwOh/WaIB1IuWzpcNM7kCHt2rVL165dU6NGjRKcVqlSJfn6+lptderUUWxsrPbs2aN8+fJJksqVKyc3t/97QlK+fPlUvnx567W7u7uCgoJ04sQJp/XXqlXL+v9s2bKpWrVq2rVrV6K1Zs+eXcWLF7deFyhQwGmdx48f13//+1+tWbNGJ06cUExMjC5fvqzDhw8n51BIks6fP6+jR4+qTp06Tu116tTR77//7tRWsWJFp1ok6cSJEwoLC0tyO3fuS758+RQaGio/Pz+nNrtjFvc67ll4e/bsUeHChZU/f35r+u0fpwMA4F75+PjYTu/evbsqV66sv//+W9OnT1fDhg0VEhKSom14eHhY/x/3XSmxsbHJXv7ixYsaPny42rZtG2+at7e39f+3X99IUrNmzXTo0CF9++23WrFihRo1aqTevXvr7bffTlH9AAC4UuHChbVnzx6tXLlSK1asUK9evTR27FitXbvWqY9Nro0bN6pTp04aPny4mjZtqpw5c2ru3LlOz2m3uz64ePGi3N3d9dtvv8nd3d1p2u3j3ztrczgcCbbFXRPcy3qNMXa7DCAJBOm4byU1IE6OlHZ4qbmd2zvAyMhInTp1ShMmTFBISIi8vLxUq1YtXb9+/Z62m5x6UjrQT69jBgBAaipZsqR8fHy0atUqde/ePd70ChUqqFq1apo6dapmz56t999/P1W3X6ZMGf38889ObT/99JPT6wceeEB79uxRiRIlUrz+PHnyKDIyUpGRkapbt65efvllgnQAgEsVL15cHh4e+vnnn1WkSBFJ0pkzZ7R3716Fh4cnuIyPj49atWqlVq1aqXfv3goLC9P27dv1wAMPSIrfd/70008qU6ZMguv68ccfFRISosGDB1tthw4dcpqnYsWKWrVqlbp06RJv+SpVqigmJkYnTpxQ3bp1k7/jSUit9Xp6ejp9NxmApBGk475lNyAuU6aMoqKidOnSJeuurQ0bNsjNzU2lS5e+523/9NNPqlevniTp5s2b+u2339SnT5+7Xt+GDRv04Ycfqnnz5pKkv/76SydPnnSax8PDw7aT9Pf3V3BwsDZs2OB0UbJhw4YMcXe33QVP6dKl9ddff+n48ePWpwU2bdqU7jUCALIub29vvfLKKxo4cKA8PT1Vp04d/fvvv/rjjz/UrVs3SbfuSu/Tp498fX3Vpk2bVN1+3759VadOHb399ttq3bq1li1b5vSF4JI0ZMgQtWzZUkWKFFG7du3k5uam33//XTt27Ij3xaR3Lle1alWVK1dO165d0+LFixMNFQAASC9+fn7q1q2bXn75ZQUFBSlv3rwaPHiw06fCbxcVFaWYmBjVrFlT2bNn18yZM+Xj4+P0CbENGzborbfe0qOPPqoVK1Zo3rx5WrJkSYLrK1mypA4fPqy5c+eqevXqWrJkib7++muneYYOHapGjRqpePHieuKJJ3Tz5k19++23euWVV1SqVCl16tRJERERGjdunKpUqaJ///1Xq1atUsWKFdWiRYu7Oi6ptd7Q0FAtW7ZMe/bsUVBQkHLmzHlXd+4D95OEf/sA94HbB8SffvqpDhw4oJ9++kkff/yxOnXqJG9vb0VGRmrHjh1avXq1nn/+eT399NNWUHsvPvjgA3399dfavXu3evfurTNnzqhr1653vb6SJUvqs88+065du/Tzzz+rU6dO8e64Dw0N1apVq/TPP//ozJkzCa7n5Zdf1ptvvqnPP/9ce/bs0auvvqqtW7eqX79+d11baom74Nm7d68++OADzZs3z6qrSZMmKl68uCIjI7Vt2zZt2LBB//3vfyX93x3zAADcq9dff10vvviihgwZojJlyujxxx93ehRZx44dlS1bNnXs2NHpUSqp4T//+Y+mTp2qCRMmqFKlSlq+fLnV18Vp2rSpFi9erOXLl6t69er6z3/+o/Hjxyf5iBlPT08NGjRIFStWVL169eTu7q65c+emav0AANyNsWPHqm7dumrVqpUaN26sBx98UFWrVk1w3oCAAE2dOlV16tRRxYoVtXLlSi1atEhBQUHWPC+++KJ+/fVXValSRSNHjtQ777yjpk2bJri+Rx55RAMGDFCfPn1UuXJl/fjjj3r99ded5qlfv77mzZunb775RpUrV1bDhg31yy+/WNOnT5+uiIgIvfjiiypdurQeffRRbdq0ybrD/m6lxnqfeeYZlS5dWtWqVVOePHm0YcOGe6oJuC+4+iHtgCvFxMSYkSNHmpCQEOPh4WGKFCliRo8ebYwxZtu2baZBgwbG29vbBAYGmmeeecbpCzET+mKO8PBw60tP4tz+5SdxXyY2e/ZsU6NGDePp6WnKli1rvv/+e2v+hL5s9PYvEjPGmK+//trc/uO7efNmU61aNePt7W1Klixp5s2bF+9Lzb755htTokQJky1bNhMSEmKMif9lozExMWbYsGGmYMGCxsPDw1SqVMksXbrUmh5X/5YtW6y2M2fOGElm9erViR/o/y+hfbmzBmPiH9u4L4Vp3769yZ49u8mfP7+ZMGGC0zK7du0yderUMZ6eniYsLMwsWrTISDLfffddknUBAJAaoqOjjZubm/ntt99cXQoAALjDnWNkAEgphzF80wCAjC00NFT9+/dX//79k73Mhg0b9OCDD2r//v1OX24KAEBqu3Hjhk6dOqWXXnpJ0dHR3NEFAEAGdDfjSgC4Hc9IB5AlfP311/Lz81PJkiW1f/9+9evXT3Xq1CFEBwCkuQ0bNqhBgwYqVaqU5s+f7+pyAAAAAKQBgnQAqaZZs2Zav359gtNee+01vfbaa2m27QsXLuiVV17R4cOHlTt3bjVu3Fjjxo1Ls+0BABCnfv364kOeAABkbAcPHnR1CQAyOR7tAiDVHDlyRFeuXElwWmBgoAIDA9O5IgAAAAAAAODeEaQDAAAAAAAAAGDDzdUFAAAAAAAAAACQkRGkAwAAAAAAAABggyAdAAAAAAAAAAAbBOkAAAAAAAAAANggSAcAAAAAAAAAwAZBOgAAAAAAAAAANgjSAQAAAAAAAACwQZAOAAAAAAAAAIANgnQAAAAAAAAAAGwQpAMAAAAAAAAAYIMgHQAAAAAAAAAAGwTpAAAAAAAAAADYIEgHAAAAAAAAAMAGQTrw/x08eFAOh0NRUVGuLsXJd999p8qVK8vb21sOh0Nnz55NcL5hw4bJ4XDo5MmTSa4zNDRUnTt3vqt6QkND1bJly7taFgCAjCyzXwskx5o1a+RwOLRmzZpUqw8AAAC4HxCkI9VFRUXJ4XA4/cubN68aNGigpUuXpns9cQPGuH8eHh4qVqyYIiIi9Oeff6bKNn788UcNGzbsnga2CTl16pQ6dOggHx8fffDBB/rss8/k6+ubqtsAACC1cS2QetLjWmD27Nl69913U3WdAAAAQFaTzdUFIOsaMWKEihYtKmOMjh8/rqioKDVv3lyLFi1yyR3Nffv2VfXq1XXjxg1t3rxZU6ZM0ZIlS7R9+3YFBwff07p//PFHDR8+XJ07d1ZAQEDqFCxp06ZNunDhgt544w01btw41da7Z88eubnxdzQAQNriWuDepfa1QL169XTlyhV5enpabbNnz9aOHTvUv3//e14/AAAAkFURpCPNNGvWTNWqVbNed+vWTfny5dOcOXNcMniuW7eu2rVrJ0nq0qWLSpUqpb59+2rGjBkaNGhQuteTHCdOnJCkVB2QS5KXl1eqrg8AgIRwLXDvUvtawM3NTd7e3qmyLgAAAOB+wi2pSDcBAQHy8fFRtmzOf7+5dOmSXnzxRRUuXFheXl4qXbq03n77bRljJElXrlxRWFiYwsLCdOXKFWu506dPq0CBAqpdu7ZiYmJSXE/Dhg0lSdHR0bbzff/996pbt658fX0VEBCg1q1ba9euXdb0YcOG6eWXX5YkFS1a1PrY+MGDB23XO2/ePFWtWlU+Pj7KnTu3nnrqKR05csSaXr9+fUVGRkqSqlevLofDkaznmp89e9a6Gy5nzpzq0qWLLl++7DRPQs9I37Ztm8LDw+Xj46NChQpp5MiRmj59eqL78sMPP6hGjRry9vZWsWLF9OmnnzrV4O7urvfee89qO3nypNzc3BQUFGSdW0l67rnnlD9/fuv1+vXr1b59exUpUkReXl4qXLiwBgwY4HTu4+rasmVLvLpGjx4td3d3p2NpJ+7xAz/88IP69u2rPHnyKCAgQM8++6yuX7+us2fPKiIiQrly5VKuXLk0cOBAp/rjnqf79ttva/z48QoJCZGPj4/Cw8O1Y8eOeNubN2+eypYtK29vb5UvX15ff/21OnfurNDQ0GTVCwCZGdcCztLiWuDIkSPq1q2bgoOD5eXlpaJFi+q5557T9evXJcV/Rnr9+vW1ZMkSHTp0yKo7NDRUFy9elK+vr/r16xdvG3///bfc3d01ZswY21pu53A41KdPH6sf9PHxUa1atbR9+3ZJ0uTJk1WiRAl5e3urfv368Y5d/fr1Vb58ef3222+qXbu2fHx8VLRoUU2aNCnetg4dOqRHHnlEvr6+yps3rwYMGKBly5bxbHgAAADcE+5IR5o5d+6cTp48KWOMTpw4oYkTJ+rixYt66qmnrHmMMXrkkUe0evVqdevWTZUrV9ayZcv08ssv68iRIxo/frx8fHw0Y8YM1alTR4MHD9Y777wjSerdu7fOnTunqKgoubu7p7i+AwcOSJKCgoISnWflypVq1qyZihUrpmHDhunKlSuaOHGi6tSpo82bNys0NFRt27bV3r17NWfOHI0fP165c+eWJOXJkyfR9UZFRalLly6qXr26xowZo+PHj2vChAnasGGDtmzZooCAAA0ePFilS5fWlClTrI/GFy9ePMn96tChg4oWLaoxY8Zo8+bNmjZtmvLmzas333wz0WWOHDmiBg0ayOFwaNCgQfL19dW0adMSvXN9//79ateunbp166bIyEh98skn6ty5s6pWrapy5copICBA5cuX17p169S3b19Jt4J3h8Oh06dPa+fOnSpXrpykW8F53bp1rXXPmzdPly9f1nPPPaegoCD98ssvmjhxov7++2/NmzdPktSuXTv17t1bs2bNUpUqVZxqmzVrlurXr6+CBQsmeaxu9/zzzyt//vwaPny4fvrpJ02ZMkUBAQH68ccfVaRIEY0ePVrffvutxo4dq/LlyysiIsJp+U8//VQXLlxQ7969dfXqVU2YMEENGzbU9u3blS9fPknSkiVL9Pjjj6tChQoaM2aMzpw5o27duqW4VgDILLgWSN9rgaNHj6pGjRo6e/asevToobCwMB05ckTz58/X5cuXnR7nEmfw4ME6d+6c/v77b40fP16S5OfnJz8/P7Vp00aff/653nnnHafjO2fOHBlj1KlTJ/sDfIf169frm2++Ue/evSVJY8aMUcuWLTVw4EB9+OGH6tWrl86cOaO33npLXbt21ffff++0/JkzZ9S8eXN16NBBHTt21BdffKHnnntOnp6e6tq1q6Rbf5Rp2LChjh07pn79+il//vyaPXu2Vq9enaJaAQAAgHgMkMqmT59uJMX75+XlZaKiopzmXbBggZFkRo4c6dTerl0743A4zP79+622QYMGGTc3N7Nu3Tozb948I8m8++67SdazevVqI8l88skn5t9//zVHjx41S5YsMaGhocbhcJhNmzYZY4yJjo42ksz06dOtZStXrmzy5s1rTp06ZbX9/vvvxs3NzURERFhtY8eONZJMdHR0kvVcv37d5M2b15QvX95cuXLFal+8eLGRZIYMGWK1xR3LuBrtDB061EgyXbt2dWpv06aNCQoKcmoLCQkxkZGR1uvnn3/eOBwOs2XLFqvt1KlTJjAwMN5+hYSEGElm3bp1VtuJEyeMl5eXefHFF6223r17m3z58lmvX3jhBVOvXj2TN29e89FHH1nbcDgcZsKECdZ8ly9fjrdvY8aMMQ6Hwxw6dMhq69ixowkODjYxMTFW2+bNm+Odw6TEHeOmTZua2NhYq71WrVrG4XCYnj17Wm03b940hQoVMuHh4VZb3PvGx8fH/P3331b7zz//bCSZAQMGWG0VKlQwhQoVMhcuXLDa1qxZYySZkJCQZNcMABkd1wL20upaICIiwri5uSU4b1wfF3csVq9ebU1r0aJFgv3QsmXLjCSzdOlSp/aKFSs69YXJEXf+bz8+kydPNpJM/vz5zfnz5632QYMGxTuW4eHhRpIZN26c1Xbt2jXr/Fy/ft0YY8y4ceOMJLNgwQJrvitXrpiwsLB4+w0AAACkBI92QZr54IMPtGLFCq1YsUIzZ85UgwYN1L17d3311VfWPN9++63c3d2tu5bjvPjiizLGaOnSpVbbsGHDVK5cOUVGRqpXr14KDw+Pt5ydrl27Kk+ePAoODlaLFi106dIlzZgxw+nZrbc7duyYtm7dqs6dOyswMNBqr1ixopo0aaJvv/022du+3a+//qoTJ06oV69eTs8obdGihcLCwrRkyZK7Wm+cnj17Or2uW7euTp06pfPnzye6zHfffadatWqpcuXKVltgYGCid5qVLVvW6S7yPHnyqHTp0vrzzz+dtnv8+HHt2bNH0q270OrVq6e6detq/fr1km7dpW6McVqXj4+P9f+XLl3SyZMnVbt2bRljnB7lEhERoaNHjzrdYTZr1iz5+PjoscceS3RfE9OtWzc5HA7rdc2aNWWMUbdu3aw2d3d3VatWzWk/4zz66KNOd5bXqFFDNWvWtN4nR48e1fbt2xURESE/Pz9rvvDwcFWoUCHF9QJAZsC1QMLS4logNjZWCxYsUKtWrRLcn9v7uORq3LixgoODNWvWLKttx44d2rZtm9OnCpKrUaNGTo8yq1mzpiTpscceU44cOeK139nfZsuWTc8++6z12tPTU88++6xOnDih3377TdKta5qCBQvqkUcesebz9vbWM888k+J6AQAAgNsRpCPN1KhRQ40bN1bjxo3VqVMnLVmyRGXLllWfPn2s53QeOnRIwcHBToMnSSpTpow1PY6np6c++eQTRUdH68KFC9ZzspNryJAhWrFihb7//ntt27ZNR48e1dNPP53o/HHbLl26dLxpZcqU0cmTJ3Xp0qVkbz856w0LC3Pa57tRpEgRp9e5cuWSdOvj0HY1lShRIl57Qm0JbSNuO7dvIy4cX79+vS5duqQtW7aobt26qlevnhWkr1+/Xv7+/qpUqZK13OHDh63Aws/PT3ny5FF4eLikW48IiNOkSRMVKFDAGtzHxsZqzpw5at26dbz3U3LcuU85c+aUJBUuXDhee0LHsmTJkvHaSpUqZT3jNe68puQ4A0Bmx7VAytd7t9cC//77r86fP6/y5cuneNnEuLm5qVOnTlqwYIH1fSuzZs2St7e32rdvn+L1paSvleJfuwQHB8vX19eprVSpUpLk1N8WL1483vuCvhYAAAD3iiAd6cbNzU0NGjTQsWPHtG/fvrtax7JlyyRJV69eTfE6KlSooMaNG6tBgwaqUKFCvC86yyoSe0asue0LMtNjG8HBwSpatKjWrVunjRs3yhijWrVqqW7duvrrr7906NAhrV+/XrVr15ab261fRTExMWrSpImWLFmiV155RQsWLNCKFSsUFRUl6VZYfnsNTz75pL788ktdvXpVq1ev1tGjR+/qDjm7fUqoPTWPJQDcT7gWyHwiIiJ08eJFLViwQMYYzZ49Wy1btrTC7pRISV8r0d8CAAAgYyFIR7q6efOmJOnixYuSpJCQEB09elQXLlxwmm/37t3W9Djbtm3TiBEj1KVLF1WpUkXdu3d3ukM5tcVtO+7RJHfWlzt3buuuqJTcDWe33j179jjtc3oJCQnR/v3747Un1JYScY9xWb9+vSpXrqwcOXKoUqVKypkzp7777jtt3rxZ9erVs+bfvn279u7dq3HjxumVV15R69atrY+VJyQiIkLnz5/XokWLNGvWLOXJk0dNmza9p5rvVkJhzt69e62PsMed17Q4zgCQmXAtkDbXAnny5JG/v7927NiR4mXtai9fvryqVKmiWbNmaf369Tp8+LDtXfxp6ejRo/E+AbB3715JcupvDxw4EC+Ep68FAADAvSJIR7q5ceOGli9fLk9PT+vj2s2bN1dMTIzef/99p3nHjx8vh8OhZs2aWct27txZwcHBmjBhgqKionT8+HENGDAgzeotUKCAKleurBkzZujs2bNW+44dO7R8+XI1b97caosbRN8+X2KqVaumvHnzatKkSbp27ZrVvnTpUu3atUstWrRItX1IrqZNm2rjxo3aunWr1Xb69GmnZ6Lejbp16+rgwYP6/PPPrUe9uLm5qXbt2nrnnXd048YNp+ejx92Rdvvg1xijCRMmJLj+ihUrqmLFipo2bZq+/PJLPfHEEy67u3DBggU6cuSI9fqXX37Rzz//bL2Hg4ODVb58eX366adWeCRJa9eu1fbt29O9XgBwBa4FbkmLawE3Nzc9+uijWrRokX799dd40+3u7vb19bX9g8TTTz+t5cuX691331VQUJB1TtLbzZs3NXnyZOv19evXNXnyZOXJk0dVq1aVdOua5siRI/rmm2+s+a5evaqpU6eme70AAADIWvg8K9LM0qVLrbvJTpw4odmzZ2vfvn169dVX5e/vL0lq1aqVGjRooMGDB+vgwYOqVKmSli9froULF6p///4qXry4JGnkyJHaunWrVq1apRw5cqhixYoaMmSI/vvf/6pdu3ZOA9nUNHbsWDVr1ky1atVSt27ddOXKFU2cOFE5c+bUsGHDrPniBm+DBw/WE088IQ8PD7Vq1SreczwlycPDQ2+++aa6dOmi8PBwdezYUcePH9eECRMUGhqapoFAYgYOHKiZM2eqSZMmev755+Xr66tp06apSJEiOn369F19QZn0f89J37Nnj0aPHm2116tXT0uXLpWXl5eqV69utYeFhal48eJ66aWXdOTIEfn7++vLL7+0fb57RESEXnrpJUm668e6pIYSJUrowQcf1HPPPadr165ZYcPAgQOteUaPHq3WrVurTp066tKli86cOaP3339f5cuXdwrXASCr4Fogfa8FRo8ereXLlys8PFw9evRQmTJldOzYMc2bN08//PCDAgICElyuatWq+vzzz/XCCy+oevXq8vPzU6tWrazpTz75pAYOHKivv/5azz33nDw8PO6qvnsVHBysN998UwcPHlSpUqX0+eefa+vWrZoyZYpV07PPPqv3339fHTt2VL9+/azvU4n7Ute7vaYBAAAAZIBUNn36dCPJ6Z+3t7epXLmy+eijj0xsbKzT/BcuXDADBgwwwcHBxsPDw5QsWdKMHTvWmu+3334z2bJlM88//7zTcjdv3jTVq1c3wcHB5syZM4nWs3r1aiPJzJs3z7bu6OhoI8lMnz7dqX3lypWmTp06xsfHx/j7+5tWrVqZnTt3xlv+jTfeMAULFjRubm5GkomOjrbd3ueff26qVKlivLy8TGBgoOnUqZP5+++/neaJO5abNm2yXZcxxgwdOtRIMv/++2+C67i9npCQEBMZGek035YtW0zdunWNl5eXKVSokBkzZox57733jCTzzz//OC3bokWLeNsPDw834eHh8drz5s1rJJnjx49bbT/88IORZOrWrRtv/p07d5rGjRsbPz8/kzt3bvPMM8+Y33//PcFzY4wxx44dM+7u7qZUqVKJHBl7iR3jxI5nZGSk8fX1tV7HvW/Gjh1rxo0bZwoXLmy8vLxM3bp1ze+//x5ve3PnzjVhYWHGy8vLlC9f3nzzzTfmscceM2FhYXdVPwBkRFwLuOZawBhjDh06ZCIiIkyePHmMl5eXKVasmOndu7e5du2aMeb/jsXq1autZS5evGiefPJJExAQYCSZkJCQeOtt3ry5kWR+/PHHZNVxJ0mmd+/eTm2396G3S+h8hYeHm3Llyplff/3V1KpVy3h7e5uQkBDz/vvvx9vWn3/+aVq0aGF8fHxMnjx5zIsvvmi+/PJLI8n89NNPd1U/AAAA4DCGb/EBkLD+/ftr8uTJunjxYqJfBOZqJ0+eVIECBTRkyBC9/vrr6b79gwcPqmjRoho7dqx1Z3xKVa5cWXny5NGKFStSuToAAFJHmzZttH37dpc9a7x+/fo6efLkXT0DXpLeffddDRgwQH///bcKFiyYytUBAADgfsAz0gFIkq5cueL0+tSpU/rss8/04IMPZtgQXZKioqIUExPjsi8+S4kbN25YX7IXZ82aNfr9999Vv3591xQFAEASjh07piVLlmSKvlaKf01z9epVTZ48WSVLliREBwAAwF3jGekAJEm1atVS/fr1VaZMGR0/flwff/yxzp8/75K7vJPj+++/186dOzVq1Cg9+uijCg0NdZp+5coV2y9Ok6TAwEB5enqmYZXOjhw5osaNG+upp55ScHCwdu/erUmTJil//vzq2bNnutUBAEByREdHa8OGDZo2bZo8PDz07LPPxpvnn3/+sV2Hj4+PcubMmVYlJqht27YqUqSIKleurHPnzmnmzJnavXv3PX+JOgAAAO5vBOkAJEnNmzfX/PnzNWXKFDkcDj3wwAP6+OOPVa9ePVeXlqARI0boxx9/VJ06dTRx4sR40z///HN16dLFdh2rV69O1zvBc+XKpapVq2ratGn6999/5evrqxYtWuh///ufgoKC0q0OAACSY+3aterSpYuKFCmiGTNmKH/+/PHmKVCggO06IiMjFRUVlUYVJqxp06aaNm2aZs2apZiYGJUtW1Zz587V448/nq51AAAAIGvhGekAsqRjx47pjz/+sJ2natWqypUrVzpVBABA1rNy5Urb6cHBwSpbtmw6VQMAAACkHYJ0AAAAAAAAAABs8GWjAAAAAAAAAADYuOtnpMfG/r/27j1K6vI+/Phn2WVhFXYFEhdQrhUR0RWjiVJbIMFTa9Si8RATTYzVSFHo8VIrtYpIowdjaqPGWzVeSgNiiUWq1npJBE6OeEMIxniIUhQtIO1Ruahc3P3+/siPicvlYVlmd4aZ1+scjs7Md2efZ57deb68mZ1tilWrVkXXrl2joqIin2MCACIiy7LYsGFD9O7dOzp02Pt/+7Z3A0DbyvfeDQAUj1aH9FWrVkWfPn3yORYAYCfefffdOPjgg/f6fuzdANA+8rV3AwDFo9UhvWvXrhHx+xOE2travA0IAPi99evXR58+fXJ77t6ydwNA28r33g0AFI9Wh/RtPxJeW1vrL+MA0Iby9TYs9m4AaB/eQg0ASo83bQMAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgISqQg+Avff+++/HunXrCj0MPqeuri7q6+sLPQwA8syeuyN7HgAAUA6E9H3c+++/H9/57rmxdcvmQg+Fz+lY3Sl+9q/ThQWAEmLP3Tl7HgAAUA6E9H3cunXrYuuWzfHpwJHR1Lmu0MPZKx0+/ShqViyITweMiKaaAwo9nFbrsGldxH/Pj3Xr1okKACWkUHtuMe+P9jwAAKBcCOkloqlzXTTt/4VCDyMvmmoOKJm5AFB6CrXn2h8BAAAKxy8bBQAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAASiiqkb9q0KX73u9/Fpk2bCj0UgKLluZJi4usR2o7vLwAAKB5FFdJXrlwZ48aNi5UrVxZ6KABFy3MlxcTXI7Qd318AAFA8iiqkAwAAAABAsRHSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASBDSAQAAAAAgQUgHAAAAAIAEIR0AAAAAABKEdAAAAAAASKgq9AAAaDuNjY2xdOnS+OCDD6J79+7R0NAQlZWVhR5WqxTrXIp1XABtacuWLTF37txYtWpV9O7dO8aMGRPV1dWtPq4QWvr87Xm+dfL9uOXz/qwpANAaQjpAiVqwYEHceeedsWbNmtx1PXv2jIsvvjhGjBhRwJHtuWKdS7GOC6At3X333TF79uxobGxsdt3YsWNj/Pjxe3xcIbT0+dvzfOvk+3HL5/1ZUwCgtby1C0AJWrBgQUyZMiUGDhwYd9xxR/znf/5n3HHHHTFw4MCYMmVKLFiwoNBDbLFinUuxjgugLd19990xa9asqK2tjSuuuCIeeeSRuOKKK6K2tjZmzZoVd9999x4dVwgtff72PN86+X7c8nl/1hQA2BtCOkCJaWxsjDvvvDOGDx8e119/fQwdOjT222+/GDp0aFx//fUxfPjwuOuuu5q9QrBYFetcinVcAG1py5YtMXv27OjWrVvMnj07Tj311OjRo0eceuqpza7fuHFji47bsmVLu8+hpc/fW7Zs8TzfCvneH/N5f/ZuAGBvtfitXTZv3hybN2/OXV6/fn2bDCgi4p133mmz+y41HqviZW1oK7v72lq6dGmsWbMmJk+eHB06NP/30g4dOsQ555wTEyZMiKVLl8bRRx/dlkPda8U6l2Id1/bs3flVDnNsLY9N2yi2x3Xu3LnR2NgYF1xwQVRVNf9rRFVVVZx//vlx8803x7Rp01p03Ny5c2Ps2LHtOYUWP3/PnTt3n3ieLzb53h/zeX/7yt4NABSvFof0adOmxdSpU9tyLDk33HBDu3weaEu+jimUDz74ICIiBgwYsNPbt12/7bhiVqxzKdZxbc/eTXux/uVh1apVERExfPjwnd6+7fo9Pa49tfT5e9vYiv15vtjke3/M5/3tK3s3AFC8WhzSr7rqqrj88stzl9evXx99+vRpk0FdffXV0a9fvza571Lzzjvv+MtrkfJ1TFvZ3fd99+7dIyJixYoVMXTo0B1uX7FiRbPjilmxzqVYx7U9e3d+2XN3rRzWvxCK7Wuud+/eERGxcOHCOPXUU3e4feHChbnjVqxY0aLj2ltLn7+3ja3Yn+eLTb73x3ze376ydwMAxavFIb1Tp07RqVOnthxLTr9+/eLQQw9tl88FbcXXMYXS0NAQPXv2jBkzZsT111/f7MeXm5qaYsaMGdGrV69oaGgo4ChbpljnUqzj2p69m/Zi/cvDmDFj4u6774777rsv/vzP/7zZ27Z89tlncf/990dlZWVcddVVMWbMmN0eN2bMmHafQ0ufv8eMGROPPPJI0T/PF5t874/5vL99Ze8GAIqXXzYKUGIqKyvj4osvjoULF8Y111wTr7/+enzyySfx+uuvxzXXXBMLFy6Miy66KCorKws91N0q1rkU67gA2lJ1dXWMHTs2Pvzwwxg7dmw89thj8X//93/x2GOPNbu+S5cuLTquurq63efQ0ufv6upqz/OtkO/9MZ/3Z+8GAPZWi1+RDsC+Y8SIETF16tS48847Y8KECbnre/XqFVOnTo0RI0YUcHR7pljnUqzjAmhL48ePj4iI2bNnx80335y7vrKyMr71rW/lbm/pcYXQ0udvz/Otk+/HLZ/3Z00BgL0hpAOUqBEjRsQJJ5wQS5cujQ8++CC6d+8eDQ0N++QrrYp1LsU6LoC2NH78+Dj//PNj7ty5sWrVqujdu3eMGTNmh1eYt/S4Qmjp87fn+dbJ9+OWz/uzpgBAawnpACWssrIyjj766EIPIy+KdS7FOi6AtrTtbV7ydVwhtPT52/N86+T7ccvn/VlTAKA1vEc6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUI6AAAAAAAkCOkAAAAAAJAgpAMAAAAAQIKQDgAAAAAACUUV0vv27Rv33HNP9O3bt9BDAShanispJr4eoe34/gIAgOJRVegBfF7nzp3j0EMPLfQwAIqa50qKia9HaDu+vwAAoHgU1SvSAQAAAACg2AjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQUFXoAZAfHTatK/QQ9lqHTz9q9t99VSmsBQC71t7P88W8P9rzAACAciGk7+Pq6uqiY3WniP+eX+ih5E3NigWFHsJe61jdKerq6go9DADyqNB7brHuj/Y8AACgHAjp+7j6+vr42b9Oj3XrvCKsmNTV1UV9fX2hhwFAHtlzd86eBwAAlAMhvQTU19f7CywAtAN7LgAAQHnyy0YBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgAQhHQAAAAAAEoR0AAAAAABIENIBAAAAACBBSAcAAAAAgISq1n5glmUREbF+/fq8DQYA+INte+y2PXdv2bsBoG3le+8GAIpHq0P6hg0bIiKiT58+eRsMALCjDRs2RF1dXV7uJ8LeDQBtLV97NwBQPCqyVv5TeVNTU6xatSq6du0aFRUV+R5Xm1q/fn306dMn3n333aitrS30cNpVOc89orznX85zjyjv+Zfz3CP27flnWRYbNmyI3r17R4cOe/9ubHu6d+/Lj10psQ7FwToUB+tQHKzDruV77wYAikerX5HeoUOHOPjgg/M5lnZXW1tbtid+5Tz3iPKefznPPaK851/Oc4/Yd+efz1eztXbv3lcfu1JjHYqDdSgO1qE4WIed80p0AChN/okcAAAAAAAShHQAAAAAAEgoy5DeqVOnmDJlSnTq1KnQQ2l35Tz3iPKefznPPaK851/Oc48w/73hsSsO1qE4WIfiYB2Kg3UAAMpRq3/ZKAAAAAAAlIOyfEU6AAAAAAC0lJAOAAAAAAAJQjoAAAAAACSUbEifNm1afPnLX46uXbvGgQceGKeffnosW7as2TGbNm2KCRMmRI8ePaJLly5x5plnxvvvv1+gEedXS+Y/atSoqKioaPZn/PjxBRpx/tx1113R0NAQtbW1UVtbG8OHD48nn3wyd3spr3vE7udfquu+MzfeeGNUVFTEpZdemruu1Nd/m53NvZTX/rrrrtthbocddlju9nJZ99ZYsGBBnHbaadG7d++oqKiIRx99tNntWZbFtddeG7169Yqampo48cQT48033yzMYEtYuZ+3FItyP4coVuW8nxea/RUA4A9KNqTPnz8/JkyYEC+88EI888wzsXXr1vizP/uz+Pjjj3PHXHbZZfHYY4/F7NmzY/78+bFq1ar4xje+UcBR509L5h8RceGFF8bq1atzf2666aYCjTh/Dj744Ljxxhtj0aJF8corr8TXvva1GDNmTLz++usRUdrrHrH7+UeU5rpv7+WXX45//ud/joaGhmbXl/r6R+x67hGlvfZDhw5tNrdf/epXudvKYd1b6+OPP46jjjoq7rjjjp3eftNNN8Vtt90Wd999d7z44oux//77x0knnRSbNm1q55GWtnI/bykW5X4OUYzKeT8vFvZXAID/LysTa9euzSIimz9/fpZlWfbRRx9lHTt2zGbPnp075o033sgiIlu4cGGhhtlmtp9/lmXZyJEjs0suuaRwg2pH3bp1y37605+W3bpvs23+WVYe675hw4Zs0KBB2TPPPNNsvuWw/ruae5aV9tpPmTIlO+qoo3Z6Wzmse75ERDZnzpzc5aampqxnz57Zj370o9x1H330UdapU6fsoYceKsAIy0e5n7cUk3I/hyikct7Pi4X9FQDgD0r2FenbW7duXUREdO/ePSIiFi1aFFu3bo0TTzwxd8xhhx0Wffv2jYULFxZkjG1p+/lvM2PGjPjCF74QRxxxRFx11VXxySefFGJ4baaxsTFmzZoVH3/8cQwfPrzs1n37+W9T6us+YcKEOOWUU5qtc0R5fN/vau7blPLav/nmm9G7d+8YOHBgnHPOObFy5cqIKI91bysrVqyINWvWNHvs6urq4rjjjvPYtbFyP28pBuV+DlEMynk/Lyb2VwCA36sq9ADaQ1NTU1x66aVxwgknxBFHHBEREWvWrInq6uo44IADmh1bX18fa9asKcAo287O5h8RcfbZZ0e/fv2id+/esXTp0pg0aVIsW7Ys/v3f/72Ao82P1157LYYPHx6bNm2KLl26xJw5c+Lwww+PJUuWlMW672r+EaW97hERs2bNildffTVefvnlHW4r9e/71NwjSnvtjzvuuHjwwQdj8ODBsXr16pg6dWr86Z/+afzmN78p+XVvS9sen/r6+mbXe+zaVrmftxRauZ9DFIty3s+Lif0VAOAPyiKkT5gwIX7zm980ez+/crKr+Y8bNy73/0ceeWT06tUrRo8eHcuXL48/+qM/au9h5tXgwYNjyZIlsW7duvj5z38e3/ve92L+/PmFHla72dX8Dz/88JJe93fffTcuueSSeOaZZ6Jz586FHk67asncS3ntTz755Nz/NzQ0xHHHHRf9+vWLf/u3f4uampoCjgz2XLmftxRauZ9DFINy3s+Ljf0VAOAPSv6tXSZOnBiPP/54PPfcc3HwwQfnru/Zs2ds2bIlPvroo2bHv//++9GzZ892HmXb2dX8d+a4446LiIi33nqrPYbWpqqrq+OQQw6JY445JqZNmxZHHXVU3HrrrWWz7rua/86U0rovWrQo1q5dG1/60peiqqoqqqqqYv78+XHbbbdFVVVV1NfXl+z6727ujY2NO3xMKa399g444IA49NBD46233iqb7/u2sO3xef/995td77FrO+V+3lIMyv0cohiU835e7OyvAEA5K9mQnmVZTJw4MebMmRO//OUvY8CAAc1uP+aYY6Jjx47xi1/8InfdsmXLYuXKlc3eS3pftbv578ySJUsiIqJXr15tPLr219TUFJs3by75dd+VbfPfmVJa99GjR8drr70WS5Ysyf059thj45xzzsn9f6mu/+7mXllZucPHlNLab2/jxo2xfPny6NWrV9l+3+fDgAEDomfPns0eu/Xr18eLL77oscuzcj9vKWblfg5RCOW8nxc7+ysAUM5K9q1dJkyYEDNnzoy5c+dG165dc+/TV1dXFzU1NVFXVxcXXHBBXH755dG9e/eora2Nv/7rv47hw4fH8ccfX+DR773dzX/58uUxc+bM+PrXvx49evSIpUuXxmWXXRYjRoyIhoaGAo9+71x11VVx8sknR9++fWPDhg0xc+bMmDdvXjz11FMlv+4R6fmX8rpHRHTt2rXZ7wGIiNh///2jR48euetLdf13N/dSX/srrrgiTjvttOjXr1+sWrUqpkyZEpWVlfHtb3+7LL7v98bGjRub/VTCihUrYsmSJdG9e/fo27dvXHrppXH99dfHoEGDYsCAATF58uTo3bt3nH766YUbdAkq9/OWYlHu5xDFopz382JjfwUA+JysREXETv888MADuWM+/fTT7OKLL866deuW7bffftkZZ5yRrV69unCDzqPdzX/lypXZiBEjsu7du2edOnXKDjnkkOxv//Zvs3Xr1hV24Hlw/vnnZ/369cuqq6uzL37xi9no0aOzp59+Ond7Ka97lqXnX8rrvisjR47MLrnkktzlUl//z/v83Et97c8666ysV69eWXV1dXbQQQdlZ511VvbWW2/lbi+ndd9Tzz333E73i+9973tZlmVZU1NTNnny5Ky+vj7r1KlTNnr06GzZsmWFHXQJKvfzlmJR7ucQxayc9/NCsr8CAPxBRZZlWTt2ewAAAAAA2KeU7HukAwAAAABAPgjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOgAAAAAAJAjpAAAAAACQIKQDAAAAAECCkA4AAAAAAAlCOuyhUaNGxaWXXrrL2ysqKuLRRx9t8f3NmzcvKioq4qOPPtrrsQEA7evtt9+OioqKWLJkSaGHAgAAtCEhHfJs9erVcfLJJxd6GABAO+jTp0+sXr06jjjiiIjwD+QAAFCqqgo9ACg1PXv2LPQQAIB2UllZae8HAIAy4BXp0ApNTU1x5ZVXRvfu3aNnz55x3XXX5W7b/q1dnn/++Rg2bFh07tw5jj322Hj00Ud3+iPgixYtimOPPTb222+/+OM//uNYtmxZRESsW7cuKisr45VXXsl97u7du8fxxx+f+9if/exn0adPn9zlSZMmxaGHHhr77bdfDBw4MCZPnhxbt26NiN//CHqHDh1y97fNLbfcEv369Yumpqbk3Le90u6pp56Ko48+OmpqauJrX/tarF27Np588skYMmRI1NbWxtlnnx2ffPJJ7uNGjRoVEydOjIkTJ0ZdXV184QtfiMmTJ0eWZbljVq9eHaecckrU1NTEgAEDYubMmdG/f/+45ZZbkmMCgLbW1NQUN910UxxyyCHRqVOn6Nu3b9xwww3N3trl7bffjq9+9asREdGtW7eoqKiI8847L6ZPnx49evSIzZs3N7vP008/Pb773e/u9nNfd911MWzYsLj//vujb9++0aVLl7j44oujsbExbrrppujZs2cceOCBccMNNzT7uIqKirjrrrvi5JNPjpqamhg4cGD8/Oc/b3ZMS89TAACg3Anp0Ar/8i//Evvvv3+8+OKLcdNNN8U//MM/xDPPPLPDcevXr4/TTjstjjzyyHj11VfjBz/4QUyaNGmn93n11VfHzTffHK+88kpUVVXF+eefHxERdXV1MWzYsJg3b15ERLz22mtRUVERixcvjo0bN0ZExPz582PkyJG5++ratWs8+OCD8dvf/jZuvfXWuPfee+PHP/5xRET0798/TjzxxHjggQeaff4HHnggzjvvvOjQoWVPC9ddd13cfvvt8fzzz8e7774b3/zmN+OWW26JmTNnxhNPPBFPP/10/OQnP9nhcauqqoqXXnopbr311vinf/qn+OlPf5q7/dxzz41Vq1bFvHnz4pFHHol77rkn1q5d26LxAEBbuuqqq+LGG2+MyZMnx29/+9uYOXNm1NfXNzumT58+8cgjj0RExLJly2L16tVx6623xtixY6OxsTH+4z/+I3fs2rVr44knnsjt97uzfPnyePLJJ+O//uu/4qGHHor77rsvTjnllHjvvfdi/vz58cMf/jCuueaaePHFF5t93OTJk+PMM8+MX//613HOOefEt771rXjjjTciYs/OUwAAoOxlwB4ZOXJk9id/8ifNrvvyl7+cTZo0KcuyLIuIbM6cOVmWZdldd92V9ejRI/v0009zx957771ZRGSLFy/OsizLnnvuuSwismeffTZ3zBNPPJFFRO7jLr/88uyUU07JsizLbrnlluyss87KjjrqqOzJJ5/MsizLDjnkkOyee+7Z5Zh/9KMfZcccc0zu8sMPP5x169Yt27RpU5ZlWbZo0aKsoqIiW7FixW7nv7PxTps2LYuIbPny5bnr/uqv/io76aSTcpdHjhyZDRkyJGtqaspdN2nSpGzIkCFZlmXZG2+8kUVE9vLLL+duf/PNN7OIyH784x/vdlwA0FbWr1+fderUKbv33nt3uG3FihU73dc//PDDZsdddNFF2cknn5y7fPPNN2cDBw5sti/uypQpU7L99tsvW79+fe66k046Kevfv3/W2NiYu27w4MHZtGnTcpcjIhs/fnyz+zruuOOyiy66KMuylp2nAAAAv+cV6dAKDQ0NzS736tVrp6+cXrZsWTQ0NETnzp1z133lK1/Z7X326tUrIiJ3nyNHjoxf/epX0djYGPPnz49Ro0bFqFGjYt68ebFq1ap46623YtSoUbmPf/jhh+OEE06Inj17RpcuXeKaa66JlStX5m4//fTTo7KyMubMmRMREQ8++GB89atfjf79+7fqMaivr8+9jcznr9v+MTn++OOjoqIid3n48OHx5ptvRmNjYyxbtiyqqqriS1/6Uu72Qw45JLp169biMQFAW3jjjTdi8+bNMXr06Fbfx4UXXhhPP/10/M///E9E/H7vPe+885rtiyn9+/ePrl275i7X19fH4Ycf3uwnyXa29w4fPnyHy9tekb4n5ykAAFDuhHRohY4dOza7XFFRsdv3Ft+T+9z2l+pt9zlixIjYsGFDvPrqq7FgwYJmIX3+/PnRu3fvGDRoUERELFy4MM4555z4+te/Ho8//ngsXrw4rr766tiyZUvu/qurq+Pcc8+NBx54ILZs2RIzZ85s8Y+W72q8bfGYAEAxqKmp2ev7OProo+Ooo46K6dOnx6JFi+L111+P8847r8Ufv7N91t4LAADtR0iHNjR48OB47bXXmv1ysZdffnmP7+eAAw6IhoaGuP3226Njx45x2GGHxYgRI2Lx4sXx+OOPN3t/9Oeffz769esXV199dRx77LExaNCgeOedd3a4z+9///vx7LPPxp133hmfffZZfOMb32jdJPfA9u/b+sILL8SgQYOisrIyBg8eHJ999lksXrw4d/tbb70VH374YZuPCwBSBg0aFDU1NfGLX/xit8dWV1dHRERjY+MOt33/+9+PBx98MB544IE48cQTm/2i8Lbywgsv7HB5yJAhEZG/8xQAACgHQjq0obPPPjuamppi3Lhx8cYbb8RTTz0V//iP/xgR0eIf5d5m1KhRMWPGjFw07969ewwZMiQefvjhZiF90KBBsXLlypg1a1YsX748brvtttxbuHzekCFD4vjjj49JkybFt7/97by82m53Vq5cGZdffnksW7YsHnroofjJT34Sl1xySUREHHbYYXHiiSfGuHHj4qWXXorFixfHuHHjoqamZo8fKwDIp86dO8ekSZPiyiuvjOnTp8fy5cvjhRdeiPvuu2+HY/v16xcVFRXx+OOPx//+7//mfjF4xO/PC957772499579/gnwVpr9uzZcf/998fvfve7mDJlSrz00ksxceLE3HjydZ4CAAClTkiHNlRbWxuPPfZYLFmyJIYNGxZXX311XHvttRERzd6PtCVGjhwZjY2Nzd4LfdSoUTtc9xd/8Rdx2WWXxcSJE2PYsGHx/PPPx+TJk3d6nxdccEFs2bKl3f4yf+6558ann34aX/nKV2LChAlxySWXxLhx43K3T58+Perr62PEiBFxxhlnxIUXXhhdu3bd48cKAPJt8uTJ8Td/8zdx7bXXxpAhQ+Kss87a6e9HOeigg2Lq1Knxd3/3d1FfX5+L1hERdXV1ceaZZ0aXLl3i9NNPb5dxT506NWbNmhUNDQ0xffr0eOihh+Lwww+PiPyepwAAQKmryLIsK/QgoJzMmDEj/vIv/zLWrVvXLq8CT/nBD34Qs2fPjqVLl7b55xo1alQMGzYsbrnllhZ/zHvvvRd9+vSJZ599dq9+wRsAFIvRo0fH0KFD47bbbmvzz1VRURFz5szZo2hfTOcpAABQTKoKPQAoddOnT4+BAwfGQQcdFL/+9a9j0qRJ8c1vfrOgfznduHFjvP3223H77bfH9ddfX7BxbO+Xv/xlbNy4MY488shYvXp1XHnlldG/f/8YMWJEoYcGAHvlww8/jHnz5sW8efPizjvvLPRwcorxPAUAAIqRt3aBNrZmzZr4zne+E0OGDInLLrssxo4dG/fcc09BxzRx4sQ45phjYtSoUTu8rcv48eOjS5cuO/0zfvz4Nh3X1q1b4+///u9j6NChccYZZ8QXv/jFmDdvXnTs2LFNPy8AtLWjjz46zjvvvPjhD38YgwcPbnbb0KFDd7n3zpgxo03HVYznKQAAUIy8tQvQzNq1a2P9+vU7va22tjYOPPDAdh4RAJS2d955J7Zu3brT2+rr66Nr167tPCIAAGB7QjoAAAAAACR4axcAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAShHQAAAAAAEgQ0gEAAAAAIEFIBwAAAACABCEdAAAAAAAS/h/bvEadI6pZ+QAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Выбираем столбцы для анализа\n",
|
||
"columns_to_check = ['combination_mpg', 'cylinders', 'displacement', 'highway_mpg', 'city_mpg']\n",
|
||
"\n",
|
||
"# Подсчитываем выбросы\n",
|
||
"outliers_count = count_outliers(df_cars, columns_to_check)\n",
|
||
"\n",
|
||
"# Выводим количество выбросов для каждого столбца\n",
|
||
"for col, count in outliers_count.items():\n",
|
||
" print(f\"Количество выбросов в столбце '{col}': {count}\")\n",
|
||
"\n",
|
||
"# Создаем диаграммы размахов\n",
|
||
"plt.figure(figsize=(15, 10))\n",
|
||
"for i, col in enumerate(columns_to_check, 1):\n",
|
||
" plt.subplot(2, 3, i)\n",
|
||
" sns.boxplot(x=df_cars[col])\n",
|
||
" plt.title(f'Box Plot of {col}')\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"В каждом из выбранных столбцов присутствуют выбросы. Очистим их."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 205,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Количество удаленных строк: 36\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Figure size 1500x600 with 0 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRRElEQVR4nOzdd5hU1f0/8M8usEWqVF2RpaiAImCwBBEBOyr2GhKqUSPW2GJMFHvUGGOMsQtGsaGxF2zYS2woRsWGqICgqDQRFM7vD387X8bl0mRZwNfreXh0zr1z72fundlz7ntmzhSklFIAAAAAAACVFFZ3AQAAAAAAsKoSogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCis9r76KOPoqCgIIYPH17dpeR56KGHonPnzlFSUhIFBQXx9ddfV3dJS6WgoCCOPPLIJa43fPjwKCgoiI8++qjqi1qEAQMGRMuWLatl3wCsmYwp/s+i+vmePXtGz549V+h+qmKbAKz61tQ+d+jQoVFQUJDX1rJlyxgwYMCKK/JHCgoKYujQoVW2feAHQnRyKi6WFv7XtGnT6NWrVzz44IMrvZ4nnngir5ZatWpF69ato1+/fvHhhx+ukH0899xzMXTo0BV+MTpt2rQ44IADorS0NC677LK44YYbonbt2it0Hz8HkyZNiqFDh8aYMWOquxQAloExxYpjTAHA4uhzVxx97prn3HPPjbvuuqu6y2ANUbO6C2DVc+aZZ0arVq0ipRRTpkyJ4cOHx6677hr33ntv7L777iu9nqOPPjq22GKL+O677+LVV1+Nq666Ku6///4YO3ZslJWV/aRtP/fcc3HGGWfEgAEDokGDBium4Ih46aWXYubMmXHWWWfFDjvssMK2uyr5zW9+EwcddFAUFxdX2T4mTZoUZ5xxRrRs2TI6d+6ct+zqq6+OBQsWVNm+AfjpjCl+ulVpTPHwww9X6/4ByKbP/emqqs8dN25cFBb6DGt1OPfcc2O//faLvfbaq7pLYQ0gRKeS3r17x+abb567PXjw4GjWrFncfPPN1dL5du/ePfbbb7+IiBg4cGBstNFGcfTRR8f1118fp5xyykqvZ2lMnTo1ImKFduirmho1akSNGjWqbf+1atWqtn0DsHSMKX66VWlMUVRUVN0lLNaCBQti3rx5UVJSUt2lAKx0+tyfrqr63Kr84Bmw8ngrjCVq0KBBlJaWRs2a+e+5zJ49O44//vhYf/31o7i4ONq2bRt//etfI6UUERFz5syJdu3aRbt27WLOnDm5+3355Zex7rrrxtZbbx3z589f5nq22267iIgYP378Ytd7/PHHo3v37lG7du1o0KBB7LnnnvH222/nlg8dOjROPPHEiIho1apV7utmS5rje+TIkdGlS5coLS2Nxo0bx69//euYOHFibnnPnj2jf//+ERGxxRZbREFBwRLnP5s4cWIMHjw4ysrKori4OFq1ahW/+93vYt68ebl1Pvzww9h///2jYcOGsdZaa8Uvf/nLuP/++/O2U/HVudtuuy3OOOOMWG+99aJu3bqx3377xfTp02Pu3Llx7LHHRtOmTaNOnToxcODAmDt37iJrGjFiRLRt2zZKSkqiS5cu8dRTT+UtX9RcqS1btozdd989nnnmmdhyyy2jpKQkWrduHf/+97/z7vvll1/GCSecEJtuumnUqVMn6tWrF717947XX38977FsscUWEfHDoKvi/FTMmbeoOdGX9JysUDHv+1133RUdOnSI4uLi2GSTTeKhhx7KPkmLUDGP31//+te47LLLonXr1rHWWmvFTjvtFJ988kmklOKss86K5s2bR2lpaey5557x5Zdf5m2j4pg9/PDDubn3Nt544/jPf/5TaX9vvPFG9OjRI0pLS6N58+Zx9tlnx7Bhw6p1bnqAZWFMkW9ljyk+/PDDKCgoiIsvvrjS/Z577rkoKCiIm2++OXPbP56/fOFxxznnnBPNmzePkpKS2H777eP999+vdP+rrroq2rRpE6WlpbHlllvG008/vcj9zJ07N04//fTYYIMNori4ONZff/046aSTKo1ZKvrzESNGxCabbBLFxcW5vvyWW26JLl26RN26daNevXqx6aabxiWXXLLYYwewJtHn5quKPveZZ56JLbbYIkpKSqJNmzZx5ZVXLnK9H8+J/t1338UZZ5wRG264YZSUlESjRo1im222iUceeSS3zoABA6JOnTrx4Ycfxs477xy1a9eOsrKyOPPMMytd3/7YhAkT4ogjjoi2bdtGaWlpNGrUKPbff/9FHqOvv/46jjvuuGjZsmUUFxdH8+bNo1+/fvHFF1/k1lnWfnnkyJGx8cYbR2lpaXTt2jXGjh0bERFXXnllbLDBBlFSUhI9e/ZcZD0vvvhi7LLLLlG/fv1Ya621okePHvHss8/mrVMx7/z777+f+zZC/fr1Y+DAgfHNN9/k1TN79uy4/vrrc8+TqpybnjWfT6JTyfTp0+OLL76IlFJMnTo1Lr300pg1a1b8+te/zq2TUoo99tgjRo8eHYMHD47OnTvHqFGj4sQTT4yJEyfGxRdfHKWlpXH99ddHt27d4tRTT42//e1vERExZMiQmD59egwfPny5Psn8wQcfREREo0aNMtd59NFHo3fv3tG6desYOnRozJkzJy699NLo1q1bvPrqq9GyZcvYZ5994t13342bb745Lr744mjcuHFERDRp0iRzu8OHD4+BAwfGFltsEeedd15MmTIlLrnkknj22WfjtddeiwYNGsSpp54abdu2jauuuir3lbo2bdpkbnPSpEmx5ZZbxtdffx2HHnpotGvXLiZOnBi33357fPPNN1FUVBRTpkyJrbfeOr755ps4+uijo1GjRnH99dfHHnvsEbfffnvsvffeeds877zzorS0NP7whz/E+++/H5deemnUqlUrCgsL46uvvoqhQ4fGCy+8EMOHD49WrVrFaaedlnf/J598Mm699dY4+uijo7i4OP71r3/FLrvsEv/973+jQ4cOiz0/77//fuy3334xePDg6N+/f1x33XUxYMCA6NKlS2yyySYR8cMbAnfddVfsv//+0apVq5gyZUpceeWV0aNHj3jrrbeirKws2rdvH2eeeWacdtppceihh0b37t0jImLrrbde5H6X5jm5sGeeeSb+85//xBFHHBF169aNf/zjH7HvvvvGxx9/vNjn1qKMGDEi5s2bF0cddVR8+eWXccEFF8QBBxwQ2223XTzxxBNx8skn587DCSecENddd13e/d9777048MAD4/DDD4/+/fvHsGHDYv/994+HHnoodtxxx4j4IRTp1atXFBQUxCmnnBK1a9eOa665xqcagFWaMcWqNaZo3bp1dOvWLUaMGBHHHXdc3n1HjBgRdevWjT333HNZDmFERPzlL3+JwsLCOOGEE2L69OlxwQUXRN++fePFF1/MrXPttdfGYYcdFltvvXUce+yx8eGHH8Yee+wRDRs2jPXXXz+33oIFC2KPPfaIZ555Jg499NBo3759jB07Ni6++OJ49913K81r+vjjj8dtt90WRx55ZDRu3DhatmwZjzzySBx88MGx/fbbx/nnnx8REW+//XY8++yzccwxxyzz4wNYHehzV26fO3bs2Nhpp52iSZMmMXTo0Pj+++/j9NNPj2bNmi3xWAwdOjTOO++8OOSQQ2LLLbeMGTNmxMsvvxyvvvpq7vovImL+/Pmxyy67xC9/+cu44IIL4qGHHorTTz89vv/++zjzzDMzt//SSy/Fc889FwcddFA0b948Pvroo7j88sujZ8+e8dZbb8Vaa60VERGzZs2K7t27x9tvvx2DBg2KX/ziF/HFF1/EPffcE59++mk0btx4mfvlp59+Ou65554YMmRIRPyQTey+++5x0kknxb/+9a844ogj4quvvooLLrggBg0aFI8//njuvo8//nj07t07unTpEqeffnoUFhbGsGHDYrvttounn346ttxyy7x9HXDAAdGqVas477zz4tVXX41rrrkmmjZtmuv7b7jhhtwxPvTQQyMiFntOYYkS/H/Dhg1LEVHpX3FxcRo+fHjeunfddVeKiHT22Wfnte+3336poKAgvf/++7m2U045JRUWFqannnoqjRw5MkVE+vvf/77EekaPHp0iIl133XXp888/T5MmTUr3339/atmyZSooKEgvvfRSSiml8ePHp4hIw4YNy923c+fOqWnTpmnatGm5ttdffz0VFhamfv365douvPDCFBFp/PjxS6xn3rx5qWnTpqlDhw5pzpw5ufb77rsvRUQ67bTTcm0Vx7KixsXp169fKiwsXOS6CxYsSCmldOyxx6aISE8//XRu2cyZM1OrVq1Sy5Yt0/z581NK/3fMOnTokObNm5db9+CDD04FBQWpd+/eedvv2rVrKi8vz2urOO8vv/xyrm3ChAmppKQk7b333pUe48LHrry8PEVEeuqpp3JtU6dOTcXFxen444/PtX377be5miuMHz8+FRcXpzPPPDPX9tJLL1U6txX69++fV/uyPCcjIhUVFeW1vf766yki0qWXXlppX1kqnntNmjRJX3/9da79lFNOSRGROnXqlL777rtc+8EHH5yKiorSt99+m2urOGZ33HFHrm369Olp3XXXTZtttlmu7aijjkoFBQXptddey7VNmzYtNWzYcKmfwwArizHF4lXnmOLKK69MEZHefvvtvHoaN26c+vfvX2m/Cz+eHj16pB49euRuVxzX9u3bp7lz5+baL7nkkhQRaezYsXmPt3PnznnrXXXVVSki8rZ5ww03pMLCwrwxT0opXXHFFSki0rPPPptri4hUWFiY/ve//+Wte8wxx6R69eql77//fjFHC2DNoM9dvKrqc/faa69UUlKSJkyYkGt76623Uo0aNdKPo7by8vK8PrZTp05pt912W+z2+/fvnyIiHXXUUbm2BQsWpN122y0VFRWlzz//PNceEen000/P3f7mm28qbe/5559PEZH+/e9/59pOO+20FBHpP//5T6X1K8YNy9ovFxcX552XinHHOuusk2bMmJFrr7hmrlh3wYIFacMNN0w777xzbt8Vj6VVq1Zpxx13zLWdfvrpKSLSoEGD8mrae++9U6NGjfLaateunXfs4acwnQuVXHbZZfHII4/EI488EjfeeGP06tUrDjnkkLzpJR544IGoUaNGHH300Xn3Pf744yOllPcr4EOHDo1NNtkk+vfvH0cccUT06NGj0v0WZ9CgQdGkSZMoKyuL3XbbLfd1nIXne1vY5MmTY8yYMTFgwIBo2LBhrr1jx46x4447xgMPPLDU+17Yyy+/HFOnTo0jjjgib67N3XbbLdq1a1dpapWlsWDBgrjrrruiT58+i3w8BQUFEfHD8d5yyy1jm222yS2rU6dOHHroofHRRx/FW2+9lXe/fv365c0ZvtVWW0VKKQYNGpS33lZbbRWffPJJfP/993ntXbt2jS5duuRut2jRIvbcc88YNWrUEr+6t/HGG+c+NR7xwycC2rZtm/dL7MXFxbkfVpk/f35MmzYt6tSpE23bto1XX311sdvPsizPyYiIHXbYIe9d6I4dO0a9evWW6xfj999//6hfv37u9lZbbRUREb/+9a/zvj651VZbxbx58/K+NhgRUVZWlvdtgnr16kW/fv3itddei88++ywiIh566KHo2rVr3g+sNmzYMPr27bvM9QKsLMYUi1adY4oDDjggSkpKYsSIEbllo0aNii+++CLv04rLYuDAgXnzpVeMAyr61IrHe/jhh+etN2DAgLz+M+KHr9u3b98+2rVrF1988UXuX8U0AKNHj85bv0ePHrHxxhvntTVo0CBmz56d97V4gDWdPnfRqqLPnT9/fowaNSr22muvaNGiRa69ffv2sfPOOy/x/g0aNIj//e9/8d577y1x3SOPPDL3/xXTpcybNy8effTRzPuUlpbm/v+7776LadOmxQYbbBANGjTIu96+4447olOnTpW+2V6xr4hl75e33377vGlXK66N991336hbt26l9oqxwpgxY+K9996LX/3qVzFt2rTcfmbPnh3bb799PPXUU7FgwYK8fR1++OF5t7t37x7Tpk2LGTNmZB4b+ClM50IlW265ZV7HdvDBB8dmm20WRx55ZOy+++5RVFQUEyZMiLKysrw/ghE/dBoRP8zBVaGoqCiuu+663FxhFXM4L63TTjstunfvHjVq1IjGjRtH+/btK83rtrCKfbdt27bSsvbt28eoUaNi9uzZUbt27aWuYUnbbdeuXTzzzDPLtL2IiM8//zxmzJixxClSJkyYkOtkFrbw8V54Gwt35BGRu0Bd+OvSFe0LFiyI6dOn532tbsMNN6y0r4022ii++eab+Pzzz2OdddbJrPXH+46IWHvtteOrr77K3V6wYEFccskl8a9//SvGjx+fF8wv61QqFZblObm0dS6tZTneEVFpHxtssEGl18RGG20UET/Mu77OOuvEhAkTomvXrpX2vcEGGyxzvQArizHFsm+3qscUDRo0iD59+sRNN90UZ511VkT8MJXLeuutl7sgXlY/7gfXXnvtiPi//q7i8f54fFGrVq1o3bp1Xtt7770Xb7/9dubX8it+9K1Cq1atKq1zxBFHxG233Ra9e/eO9dZbL3baaac44IADYpdddlmGRwWwetHnLvt2f0qfO2fOnEVeN7dt23aJgf+ZZ54Ze+65Z2y00UbRoUOH2GWXXeI3v/lNdOzYMW+9wsLCSv3kwteJWebMmRPnnXdeDBs2LCZOnJg3h/r06dNz///BBx/Evvvuu9hal7VfXt5r44o3FCrmpV+U6dOn58YYi9rXwuOPevXqZW4HlpcQnSUqLCyMXr16xSWXXBLvvfdebl7rZTFq1KiIiPj222/jvffeW+QFT5ZNN900dthhh2Xe589Z1hx1We0Ld6pVte+F93HuuefGn//85xg0aFCcddZZ0bBhwygsLIxjjz220rvLVWVFHovqPN4AqxNjilVDv379YuTIkfHcc8/FpptuGvfcc08cccQRuW+JLasV2d8tWLAgNt1009wcvD/244vwhT9tV6Fp06YxZsyYGDVqVDz44IPx4IMPxrBhw6Jfv35x/fXXL3NNAKsjfe6qa9ttt40PPvgg7r777nj44YfjmmuuiYsvvjiuuOKKOOSQQ37y9o866qgYNmxYHHvssdG1a9eoX79+FBQUxEEHHbTM19vL2i8v77VxRV0XXnhh3revF1anTp1l2iasaEJ0lkrFdB+zZs2KiIjy8vJ49NFHY+bMmXnvYr/zzju55RXeeOONOPPMM2PgwIExZsyYOOSQQ2Ls2LGVvr67olTse9y4cZWWvfPOO9G4cePcu9fL8k76wtv98Se1xo0bl/eYl1aTJk2iXr168eabby5x31mPZ+HaVpRFfa3s3XffjbXWWmuxP9iytG6//fbo1atXXHvttXntX3/9de6HYSKW/fws7XNyVfP+++9HSinv8b777rsREbmvwpWXl8f777+/yPsCrE6MKap3TBERscsuu0STJk1ixIgRsdVWW8U333wTv/nNb5Z5n0ur4vG89957eY/3u+++i/Hjx0enTp1ybW3atInXX389tt9++2U6pj9WVFQUffr0iT59+sSCBQviiCOOiCuvvDL+/Oc/+xYX8LOhz626Pre0tHSR182Lqn9RGjZsGAMHDoyBAwfGrFmzYtttt42hQ4fmhegLFiyIDz/8MPfp84jK14mLcvvtt0f//v3joosuyrV9++238fXXX+et16ZNmyWOG1ZUv7wkFVOt1qtXb4W++VKVNfPzY050lui7776Lhx9+OIqKinJf89p1111j/vz58c9//jNv3YsvvjgKCgqid+/eufsOGDAgysrK4pJLLonhw4fHlClT4rjjjquyetddd93o3LlzXH/99XmdxJtvvhkPP/xw7Lrrrrm2ik74x53Jomy++ebRtGnTuOKKK2Lu3Lm59gcffDDefvvt2G233Za51sLCwthrr73i3nvvjZdffrnS8op3UHfdddf473//G88//3xu2ezZs+Oqq66Kli1bVpoL9Kd6/vnn8+ZK++STT+Luu++OnXbaabl+if3HatSoUend4ZEjR1aaK3xZzs/SPidXRZMmTYo777wzd3vGjBnx73//Ozp37pybOmfnnXeO559/PsaMGZNb78svv8yb0xZgVWdM8YPqHFNERNSsWTMOPvjguO2222L48OGx6aabVvoK+Yq0+eabR5MmTeKKK66IefPm5dqHDx9e6XgdcMABMXHixLj66qsrbWfOnDkxe/bsJe5v2rRpebcLCwtzj2/h4w2wJtPn/qAq+twaNWrEzjvvHHfddVd8/PHHufa333479+n9xflxP1WnTp3YYIMNFtlHLXyuUkrxz3/+M2rVqhXbb7/9Yuv78fX2pZdeWun3zfbdd994/fXX865FF95XxIrpl5dGly5dok2bNvHXv/4196bPwj7//PPl2m7t2rWX6nkCS8Mn0ankwQcfzL0TPXXq1Ljpppvivffeiz/84Q+5eaX69OkTvXr1ilNPPTU++uij6NSpUzz88MNx9913x7HHHpt7F/Hss8+OMWPGxGOPPRZ169aNjh07xmmnnRZ/+tOfYr/99svrCFekCy+8MHr37h1du3aNwYMHx5w5c+LSSy+N+vXrx9ChQ3PrVfx45qmnnhoHHXRQ1KpVK/r06bPIedZq1aoV559/fgwcODB69OgRBx98cEyZMiUuueSSaNmy5XIPKM4999x4+OGHo0ePHnHooYdG+/btY/LkyTFy5Mh45plnokGDBvGHP/whbr755ujdu3ccffTR0bBhw7j++utj/Pjxcccddyz316+zdOjQIXbeeec4+uijo7i4OP71r39FRMQZZ5yxQra/++675z7VsPXWW8fYsWNjxIgRleZ7a9OmTTRo0CCuuOKKqFu3btSuXTu22mqrRX6NcGmfk6uijTbaKAYPHhwvvfRSNGvWLK677rqYMmVKDBs2LLfOSSedFDfeeGPsuOOOcdRRR0Xt2rXjmmuuiRYtWsSXX37pHXZglWRMseqNKSr069cv/vGPf8To0aPj/PPPX679La1atWrF2WefHYcddlhst912ceCBB8b48eNj2LBhlfr+3/zmN3HbbbfF4YcfHqNHj45u3brF/Pnz45133onbbrstRo0alfmjdBUOOeSQ+PLLL2O77baL5s2bx4QJE+LSSy+Nzp0754IkgDWNPnfl9rlnnHFGPPTQQ9G9e/c44ogj4vvvv49LL700Ntlkk3jjjTcWe9+NN944evbsGV26dImGDRvGyy+/HLfffnvej4hGRJSUlMRDDz0U/fv3j6222ioefPDBuP/+++OPf/zjYr8hvvvuu8cNN9wQ9evXj4033jief/75ePTRRyv9/tiJJ54Yt99+e+y///4xaNCg6NKlS3z55Zdxzz33xBVXXBGdOnVaIf3y0igsLIxrrrkmevfuHZtsskkMHDgw1ltvvZg4cWKMHj066tWrF/fee+8yb7dLly7x6KOPxt/+9rcoKyuLVq1aLfL35mCpJPj/hg0bliIi719JSUnq3Llzuvzyy9OCBQvy1p85c2Y67rjjUllZWapVq1bacMMN04UXXphb75VXXkk1a9ZMRx11VN79vv/++7TFFluksrKy9NVXX2XWM3r06BQRaeTIkYute/z48Ski0rBhw/LaH3300dStW7dUWlqa6tWrl/r06ZPeeuutSvc/66yz0nrrrZcKCwtTRKTx48cvdn+33npr2myzzVJxcXFq2LBh6tu3b/r000/z1qk4li+99NJit1VhwoQJqV+/fqlJkyapuLg4tW7dOg0ZMiTNnTs3t84HH3yQ9ttvv9SgQYNUUlKSttxyy3TfffflbSfrmGXVc/rpp6eISJ9//nmuLSLSkCFD0o033pg23HDDVFxcnDbbbLM0evToRW5z4eNVXl6edtttt0qPr0ePHqlHjx65299++206/vjj07rrrptKS0tTt27d0vPPP19pvZRSuvvuu9PGG2+catasmXee+/fvn8rLy/PWXdJz8seP8cfKy8tT//79K7VnqXjuXXjhhXnty3IeKo7ZqFGjUseOHVNxcXFq167dIp/3r732WurevXsqLi5OzZs3T+edd176xz/+kSIiffbZZ0tdN0BVM6ZYtccUFTbZZJNUWFhYaZ8L73fhx/DjfjrruGYdx3/961+pVatWqbi4OG2++ebpqaeeWmTfP2/evHT++eenTTbZJBUXF6e11147denSJZ1xxhlp+vTpufWy+vPbb7897bTTTqlp06apqKgotWjRIh122GFp8uTJizlyAKsnfW719blPPvlk6tKlSyoqKkqtW7dOV1xxRe4ae2E/vs48++yz05ZbbpkaNGiQSktLU7t27dI555yT5s2bl1unf//+qXbt2umDDz5IO+20U1prrbVSs2bN0umnn57mz5+ft/2ISKeffnru9ldffZUGDhyYGjdunOrUqZN23nnn9M477yzyenfatGnpyCOPTOutt14qKipKzZs3T/37909ffPFFbp2f0i8v6zXza6+9lvbZZ5/UqFGjVFxcnMrLy9MBBxyQHnvssdw6i8oxUlr02OWdd95J2267bSotLU0RsUzX+/BjBSmZcR+gurRs2TI6dOgQ991333Ld/9hjj40rr7wyZs2atUKm2gHg52OzzTaLhg0bxmOPPVbdpQAACxkwYEDcfvvti5zaBKge5kQHWE3MmTMn7/a0adPihhtuiG222UaADsAyefnll2PMmDHRr1+/6i4FAABWeeZEB/iR+fPnL/GHS+rUqRN16tRZSRX9oGvXrtGzZ89o3759TJkyJa699tqYMWNG/PnPf16pdQCw+nrzzTfjlVdeiYsuuijWXXfdOPDAA6u7JAAAWOUJ0QF+5JNPPlnkj5cu7PTTT8/7cZuVYdddd43bb789rrrqqigoKIhf/OIXce2118a22267UusAYPV1++23x5lnnhlt27aNm2++OUpKSqq7JAAAWOWZEx3gR7799tt45plnFrtO69ato3Xr1iupIgAAAACqixAdAAAAAAAy+GFRAAAAAADIsNxzoi9YsCAmTZoUdevWjYKCghVZEwD8rKWUYubMmVFWVhaFhSv2/W79NwBUDf03AKx+lrb/Xu4QfdKkSbH++usv790BgCX45JNPonnz5it0m/pvAKha+m8AWP0sqf9e7hC9bt26uR3Uq1dveTcDAPzIjBkzYv3118/1tSuS/hsAqob+GwBWP0vbfy93iF7xFbJ69erpxAGgClTF17X13wBQtfTfALD6WVL/7YdFAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAy1KzuAvh5mDJlSkyfPr26y2AVVr9+/WjWrFl1lwGwStF/sjrRlwM/B/rmnxd9G1BBiE6VmzJlSvz6N/3iu3lzq7sUVmG1iorjxhv+bYAC8P+98847ccQRQ2LBgvnVXQosFX05sKZzbfvzo28DKgjRqXLTp0+P7+bNjTmte8SCkvrVXU6VKZzzdZSOfyrmtNo2FpQ2qO5yViuF306P+PDJmD59usEJwP/3ySefxIIF8+Pb9X4R8+s3r+5yYLH05cDPwep8bet6ddnp24CFCdFZaRaU1I8FtRtXdxlVbkFpg5/F4wRg5UhFdfQrALAKWZ2vbV2vAiwfPywKAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQYZUK0b/99tt4991349tvv63uUgBgqei7HAMAVj/6LscAYHXh7/WqYZUK0T/++OM49NBD4+OPP67uUgBgqei7HAMAVj/6LscAYHXh7/WqYZUK0QEAAAAAYFUiRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADDWruwAAAAAAAKrXRx99FIMHD4758+dHjRo14tprr42WLVtWd1kxb968uPvuu2PSpElRVlYWe+65ZxQVFa3UGoToAAAAAAA/Y7169YqUUu72/PnzY8CAAVFQUBCjR4+utrquuOKKGDlyZMyfPz+vbf/994/DDz98pdVhOhcAAAAAgJ+phQP04uLiOOyww6K4uDgiIlJK0atXr2qp64orrohbbrkl6tWrFyeccELccccdccIJJ0S9evXilltuiSuuuGKl1SJEBwAAAAD4Gfroo49yAfott9wSo0aNioMPPjhGjRoVt9xyS0T8EKR/9NFHK7WuefPmxciRI2PttdeOkSNHxu677x6NGjWK3XffPa993rx5K6WepZ7OZe7cuTF37tzc7RkzZlRJQREREyZMqLJts/I5nywtzxVWR6v681b/vfqaPHlydZcAy8zfAVYXq/pzVf+9anKsfp6cd6pbVT8HBw8eHBE/fAJ9nXXWyVu2zjrrRHFxccydOzcGDx4cjz32WJXWsrC777475s+fH4MHD46aNfMj7Jo1a8agQYPioosuirvvvjv233//Kq9nqUP08847L84444yqrCXnnHPOWSn7AVYtXvuw4um/gZXJ3wFYMfTfsOrwGmFNVzHX+IABAxa5vG/fvnHdddflzUm+MkyaNCkiIrp27brI5RXtFetVtaUO0U855ZT4/e9/n7s9Y8aMWH/99aukqFNPPTXKy8urZNusfBMmTNDpsFS89lkdrep/4/Tfq68XXnghrrvuuuouA5aJvwOsLvTf/8frdumt6s8bqobXCNWtqv/21KhRI+bPnx/Dhw+Pgw8+uNLyESNG5NZbmcrKyiIi4vnnn4/dd9+90vLnn38+b72qttQhenFxcW5C+apWXl4eG2200UrZF7Dq8NqHFU//vfry1WFWR/4OwIqh/4ZVh9cIa7prr702BgwYEHPnzo3PPvssb0qXzz77LDe92LXXXrtS69pzzz3jiiuuiGuvvTZ22WWXvCldvv/++7juuuuiRo0aseeee66UepY6RAcAAAAAYM3RsmXLKCgoiJRSHHTQQVFcXBx9+/aNESNG5AL0goKCaNmy5Uqtq6ioKPbff/+45ZZbYv/9949BgwZF165d4/nnn4/rrrsuvvrqqzjooIOiqKhopdQjRAcAAAAA+JkaPXp09OrVK1JKMXfu3LxpJQsKCmL06NHVUtfhhx8eEREjR46Miy66KNdeo0aNOOigg3LLVwYhOgAAAADAz9jo0aPjo48+isGDB8f8+fOjRo0ace211670T6D/2OGHHx6DBg2Ku+++OyZNmhRlZWWx5557rrRPoFcQogMAAAAA/My1bNkyHnvsseouo5KKqV2qU2G17h0AAAAAAFZhQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADKtUiN6iRYu46qqrokWLFtVdCgAsFX2XYwDA6kff5RgArC78vV411KzuAhZWUlISG220UXWXAQBLTd/lGACw+tF3OQYAqwt/r1cNq9Qn0QEAAAAAYFUiRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AAAAAADIIEQHAAAAAIAMNau7AH4+Cr+dXt0lVKnCOV/n/Zelt6Y/NwB+ioJ5s6Jw9hfVXQYslr4c+DlZHf/muV5ddqvjeQaqjhCdKle/fv2oVVQc8eGT1V3KSlE6/qnqLmG1VKuoOOrXr1/dZQCsMtZff/0oLKwRJRNfjZj4anWXA0ukLwfWdGvCta3r1WWjbwMqCNGpcs2aNYsbb/h3TJ/uXVyy1a9fP5o1a1bdZQCsMtq1axc333yT/pPVhr4cWNO5tv350bcBFYTorBTNmjXT8QDAMtJ/AsCqRd8M8PPkh0UBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACCDEB0AAAAAADII0QEAAAAAIIMQHQAAAAAAMgjRAQAAAAAggxAdAAAAAAAyCNEBAAAAACBDzeW9Y0opIiJmzJixwooBAP6vb63oa1ck/TcAVA39NwCsfpa2/17uEH3mzJkREbH++usv7yYAgMWYOXNm1K9ff4VvM0L/DQBVRf8NAKufJfXfBWk53yZfsGBBTJo0KerWrRsFBQXLXWBVmjFjRqy//vrxySefRL169aq7nJ8t52HV4DxUP+dg1bA6nIeUUsycOTPKysqisHDFzrxWFf336nBMV0eOa9VwXKuG41p1HNuqURXHdWX03ymlaNGihedDNfF6rD6OffVy/KuX41+1lrb/Xu5PohcWFkbz5s2X9+4rVb169TzJVgHOw6rBeah+zsGqYVU/Dyv6E2wVqrL/XtWP6erKca0ajmvVcFyrjmNbNVb0ca3q/rviK+eeD9XL8a8+jn31cvyrl+NfdZam//bDogAAAAAAkEGIDgAAAAAAGdboEL24uDhOP/30KC4uru5Sftach1WD81D9nINVg/Ow4jmmVcNxrRqOa9VwXKuOY1s1VtfjurrWvaZw/KuPY1+9HP/q5fivGpb7h0UBAAAAAGBNt0Z/Eh0AAAAAAH4KIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZFgjQvSnnnoq+vTpE2VlZVFQUBB33XVX3vIBAwZEQUFB3r9ddtmleopdQ5133nmxxRZbRN26daNp06ax1157xbhx4/LW+fbbb2PIkCHRqFGjqFOnTuy7774xZcqUaqp4zbQ056Fnz56VXg+HH354NVW8Zrr88sujY8eOUa9evahXr1507do1Hnzwwdxyr4WVY0nnwWvhp1vSMWbF+Mtf/hIFBQVx7LHHVncpq7WhQ4dWes23a9euustaI0ycODF+/etfR6NGjaK0tDQ23XTTePnll6u7rNVay5YtKz1fCwoKYsiQIdVd2mpt/vz58ec//zlatWoVpaWl0aZNmzjrrLMipVTdpS3Rkq55qTpLc41F1THeXHUYk65cxq6rnjUiRJ89e3Z06tQpLrvsssx1dtlll5g8eXLu380337wSK1zzPfnkkzFkyJB44YUX4pFHHonvvvsudtppp5g9e3ZuneOOOy7uvffeGDlyZDz55JMxadKk2Geffaqx6jXP0pyHiIjf/va3ea+HCy64oJoqXjM1b948/vKXv8Qrr7wSL7/8cmy33Xax5557xv/+97+I8FpYWZZ0HiK8Fn6qpTnG/DQvvfRSXHnlldGxY8fqLmWNsMkmm+S95p955pnqLmm199VXX0W3bt2iVq1a8eCDD8Zbb70VF110Uay99trVXdpq7aWXXsp7rj7yyCMREbH//vtXc2Wrt/PPPz8uv/zy+Oc//xlvv/12nH/++XHBBRfEpZdeWt2lLdHSXPNSNZb2GouqYby5ajAmrR7GrquYtIaJiHTnnXfmtfXv3z/tueee1VLPz9XUqVNTRKQnn3wypZTS119/nWrVqpVGjhyZW+ftt99OEZGef/756ipzjffj85BSSj169EjHHHNM9RX1M7X22muna665xmuhmlWch5S8FqrKwseYn2bmzJlpww03TI888ojn6wpw+umnp06dOlV3GWuck08+OW2zzTbVXcYa75hjjklt2rRJCxYsqO5SVmu77bZbGjRoUF7bPvvsk/r27VtNFS2fRV3zsvIs6hqLlct4c+UyJq0exq6rnjXik+hL44knnoimTZtG27Zt43e/+11Mmzatuktao02fPj0iIho2bBgREa+88kp89913scMOO+TWadeuXbRo0SKef/75aqnx5+DH56HCiBEjonHjxtGhQ4c45ZRT4ptvvqmO8n4W5s+fH7fcckvMnj07unbt6rVQTX58Hip4Law4WceY5TdkyJDYbbfd8v5e8NO89957UVZWFq1bt46+ffvGxx9/XN0lrfbuueee2HzzzWP//fePpk2bxmabbRZXX311dZe1Rpk3b17ceOONMWjQoCgoKKjuclZrW2+9dTz22GPx7rvvRkTE66+/Hs8880z07t27mitjdZJ1jUXVM96sHsak1cfYddVSs7oLWBl22WWX2GeffaJVq1bxwQcfxB//+Mfo3bt3PP/881GjRo3qLm+Ns2DBgjj22GOjW7du0aFDh4iI+Oyzz6KoqCgaNGiQt26zZs3is88+q4Yq13yLOg8REb/61a+ivLw8ysrK4o033oiTTz45xo0bF//5z3+qsdo1z9ixY6Nr167x7bffRp06deLOO++MjTfeOMaMGeO1sBJlnYcIr4UVZXHHmOV3yy23xKuvvhovvfRSdZeyxthqq61i+PDh0bZt25g8eXKcccYZ0b1793jzzTejbt261V3eauvDDz+Myy+/PH7/+9/HH//4x3jppZfi6KOPjqKioujfv391l7dGuOuuu+Lrr7+OAQMGVHcpq70//OEPMWPGjGjXrl3UqFEj5s+fH+ecc0707du3uktjNZF1jUXVMt6sPsak1cfYddXzswjRDzrooNz/b7rpptGxY8do06ZNPPHEE7H99ttXY2VrpiFDhsSbb75prqZqlnUeDj300Nz/b7rpprHuuuvG9ttvHx988EG0adNmZZe5xmrbtm2MGTMmpk+fHrfffnv0798/nnzyyeou62cn6zxsvPHGXgsryOKOMcvnk08+iWOOOSYeeeSRKCkpqe5y1hgLf9K0Y8eOsdVWW0V5eXncdtttMXjw4GqsbPW2YMGC2HzzzePcc8+NiIjNNtss3nzzzbjiiiuE6CvItddeG717946ysrLqLmW1d9ttt8WIESPipptuik022STGjBkTxx57bJSVlXm+slRc61YP483qYUxavYxdVz0/m+lcFta6deto3LhxvP/++9VdyhrnyCOPjPvuuy9Gjx4dzZs3z7Wvs846MW/evPj666/z1p8yZUqss846K7nKNV/WeViUrbbaKiLC62EFKyoqig022CC6dOkS5513XnTq1CkuueQSr4WVLOs8LIrXwvJZlmPM0nnllVdi6tSp8Ytf/CJq1qwZNWvWjCeffDL+8Y9/RM2aNWP+/PnVXeIaoUGDBrHRRht5zf9E6667bqUQo3379r5uvIJMmDAhHn300TjkkEOqu5Q1woknnhh/+MMf4qCDDopNN900fvOb38Rxxx0X5513XnWXxmpgWa6xWLGMN6uHMemqxdi1+v0sQ/RPP/00pk2bFuuuu251l7LGSCnFkUceGXfeeWc8/vjj0apVq7zlXbp0iVq1asVjjz2Waxs3blx8/PHH5jJbgZZ0HhZlzJgxERFeD1VswYIFMXfuXK+FalZxHhbFa2HFWNwxZulsv/32MXbs2BgzZkzu3+abbx59+/aNMWPGmIpuBZk1a1Z88MEHXvM/Ubdu3WLcuHF5be+++26Ul5dXU0VrlmHDhkXTpk1jt912q+5S1gjffPNNFBbmXwLXqFEjFixYUE0VsTpYnmssqpbx5sphTLpqMXatfmvEdC6zZs3Keydm/PjxMWbMmGjYsGE0bNgwzjjjjNh3331jnXXWiQ8++CBOOumk2GCDDWLnnXeuxqrXLEOGDImbbrop7r777qhbt25ubuf69etHaWlp1K9fPwYPHhy///3vo2HDhlGvXr046qijomvXrvHLX/6ymqtfcyzpPHzwwQdx0003xa677hqNGjWKN954I4477rjYdttto2PHjtVc/ZrjlFNOid69e0eLFi1i5syZcdNNN8UTTzwRo0aN8lpYiRZ3HrwWVozFHWOWX926dSvNs1q7du1o1KiR+Vd/ghNOOCH69OkT5eXlMWnSpDj99NOjRo0acfDBB1d3aau14447Lrbeeus499xz44ADDoj//ve/cdVVV8VVV11V3aWt9hYsWBDDhg2L/v37R82aa8RlW7Xr06dPnHPOOdGiRYvYZJNN4rXXXou//e1vMWjQoOoubYkWd83bokWLaqxszbekayyqlvFm9TEmrV7GrqugtAYYPXp0iohK//r375+++eabtNNOO6UmTZqkWrVqpfLy8vTb3/42ffbZZ9Vd9hplUcc/ItKwYcNy68yZMycdccQRae21105rrbVW2nvvvdPkyZOrr+g10JLOw8cff5y23Xbb1LBhw1RcXJw22GCDdOKJJ6bp06dXb+FrmEGDBqXy8vJUVFSUmjRpkrbffvv08MMP55Z7LawcizsPXgsrxpKe66w4PXr0SMccc0x1l7FaO/DAA9O6666bioqK0nrrrZcOPPDA9P7771d3WWuEe++9N3Xo0CEVFxendu3apauuuqq6S1ojjBo1KkVEGjduXHWXssaYMWNGOuaYY1KLFi1SSUlJat26dTr11FPT3Llzq7u0JVrcNS9Va2mudak6xpurFmPSlcfYddVTkFJKKyWtBwAAAACA1czPck50AAAAAABYGkJ0AAAAAADIIEQHAAAAAIAMQnQAAAAAAMggRAcAAAAAgAxCdAAAAAAAyCBEBwAAAACADEJ0AACoYi1btoy///3vudsFBQVx1113/aRtDh8+PBo0aPCTtgEAq6OePXvGscceGxGV+9ifakX00cCaR4gOK8lHH30UBQUFMWbMmMx1nnjiiSgoKIivv/66yusZOnRodO7cucr3AwBUNnny5Ojdu3d1lwEAq72XXnopDj300OouY7U0YMCA2Guvvaq7DFgtCNFhFbL11lvH5MmTo379+it0u4t6J/2EE06Ixx57bIXuBwBYOuuss04UFxdXdxnx3XffVXcJAPCTNGnSJNZaa63qLgNYwwnRYRVSVFQU66yzThQUFFT5vurUqRONGjWq8v0AwJpiwYIFccEFF8QGG2wQxcXF0aJFizjnnHNiu+22iyOPPDJv3c8//zyKiooy37Be+A3uim+r/ec//4levXrFWmutFZ06dYrnn38+7z7Dhw+PFi1axFprrRV77713TJs2rdJ277777vjFL34RJSUl0bp16zjjjDPi+++/z9vv5ZdfHnvssUfUrl07zjnnnPjqq6+ib9++0aRJkygtLY0NN9wwhg0b9hOPFgCsGLNnz45+/fpFnTp1Yt11142LLroob/nC07mklGLo0KHRokWLKC4ujrKysjj66KPz1j3rrLPi4IMPjtq1a8d6660Xl1122WL3f/LJJ8dGG20Ua621VrRu3Tr+/Oc/V3oT+t57740tttgiSkpKonHjxrH33nvnls2dOzdOOOGEWG+99aJ27dqx1VZbxRNPPJFbXjE923333Rdt27aNtdZaK/bbb7/45ptv4vrrr4+WLVvG2muvHUcffXTMnz9/mbc7atSoaN++fdSpUyd22WWXmDx5ckT88O3066+/Pu6+++4oKCiIgoKCvPsD+YTo/GxlXQhHRIwdOza22267KC0tjUaNGsWhhx4as2bNyt234itP5557bjRr1iwaNGgQZ555Znz//fdx4oknRsOGDaN58+aLvAB95513Yuutt46SkpLo0KFDPPnkk7llP57OZUmdXsQPX13bcccdo3HjxlG/fv3o0aNHvPrqq7nlLVu2jIiIvffeOwoKCnK3fzydy4IFC+LMM8+M5s2bR3FxcXTu3Dkeeuih3PKlvcDPsrwDg6UZ5LzzzjuxzTbbRElJSWy88cbx6KOPmscOgBXulFNOib/85S/x5z//Od5666246aabolmzZnHIIYfETTfdFHPnzs2te+ONN8Z6660X22233VJv/9RTT40TTjghxowZExtttFEcfPDBuQD8xRdfjMGDB8eRRx4ZY8aMiV69esXZZ5+dd/+nn346+vXrF8ccc0y89dZbceWVV8bw4cNz45sKQ4cOjb333jvGjh0bgwYNyj2eBx98MN5+++24/PLLo3Hjxj/hSAHAinPiiSfGk08+GXfffXc8/PDD8cQTT+Rd8y7sjjvuiIsvvjiuvPLKeO+99+Kuu+6KTTfdNG+dCy+8MDp16hSvvfZa/OEPf4hjjjkmHnnkkcz9161bN4YPHx5vvfVWXHLJJXH11VfHxRdfnFt+//33x9577x277rprvPbaa/HYY4/FlltumVt+5JFHxvPPPx+33HJLvPHGG7H//vvHLrvsEu+9915unW+++Sb+8Y9/xC233BIPPfRQPPHEE7H33nvHAw88EA888EDccMMNceWVV8btt9++zNv961//GjfccEM89dRT8fHHH8cJJ5wQET98O/2AAw7IZQyTJ0+OrbfeeinPCvwMJfiZOumkk9Laa6+dhg8fnt5///309NNPp6uvvjrNmjUrrbvuummfffZJY8eOTY899lhq1apV6t+/f+6+/fv3T3Xr1k1DhgxJ77zzTrr22mtTRKSdd945nXPOOendd99NZ511VqpVq1b65JNPUkopjR8/PkVEat68ebr99tvTW2+9lQ455JBUt27d9MUXX6SUUho9enSKiPTVV1+llFIaNmxYqlWrVtphhx3SSy+9lF555ZXUvn379Ktf/SpXy2OPPZZuuOGG9Pbbb6e33norDR48ODVr1izNmDEjpZTS1KlTU0SkYcOGpcmTJ6epU6emlFI6/fTTU6dOnXLb+dvf/pbq1auXbr755vTOO++kk046KdWqVSu9++67efW3a9cu3XfffWncuHFpv/32S+Xl5em7775b4vGueCw77rhjevXVV9OTTz6ZGjVqlHbaaad0wAEHpP/973/p3nvvTUVFRemWW27J3a+8vDzVrVs3nXfeeWncuHHpH//4R6pRo0Z6+OGHU0opff/996lt27Zpxx13TGPGjElPP/102nLLLVNEpDvvvHPZnhQAkGHGjBmpuLg4XX311ZWWzZkzJ6299trp1ltvzbV17NgxDR06NHe7vLw8XXzxxbnbC/dTFX3sNddck1v+v//9L0VEevvtt1NKKR188MFp1113zdvvgQcemOrXr5+7vf3226dzzz03b50bbrghrbvuunn7PfbYY/PW6dOnTxo4cOASjgAArHwzZ85MRUVF6bbbbsu1TZs2LZWWlqZjjjkmpZTfx1500UVpo402SvPmzVvk9srLy9Muu+yS13bggQem3r17524v6VrywgsvTF26dMnd7tq1a+rbt+8i150wYUKqUaNGmjhxYl779ttvn0455ZSU0g/XyhGR3n///dzyww47LK211lpp5syZubadd945HXbYYT9pu5dddllq1qxZ7nb//v3TnnvumflYgf8jROdnaXEXwldddVVae+2106xZs3Jt999/fyosLEyfffZZSumHjqa8vDzNnz8/t07btm1T9+7dc7e///77VLt27XTzzTenlP7vAvkvf/lLbp3vvvsuNW/ePJ1//vkppUWH6Evq9H5s/vz5qW7duunee+/NtS1qEPDjEL2srCydc845eetsscUW6Ygjjsirf3EX+IuzPAODlJY8yHnwwQdTzZo10+TJk3PLH3nkESE6ACvUiy++mCIiffjhh4tcfvTRR6edd945pZTSK6+8kgoLC9NHH32UW740Ifp///vf3PIvv/wyRUR68sknU0opde7cOZ1xxhl5+/z73/+eF6I3btw4lZSUpNq1a+f+lZSUpIhIs2fPzu33xhtvzNvOAw88kEpLS1OnTp3SiSeemJ599tllOzgAUEXGjBmTIiJNmDAhr71z586LDNE//vjjtP7666fmzZunQw45JP3nP//J+9BXeXn5IvvTli1b5m7/+FrylltuSVtvvXVq1qxZql27diouLk5NmjTJLS8tLU3XXXfdIuu/7777UkTk9c21a9dONWvWTAcccEBK6Ydr5bXWWivvfqeddlraeOON89r69euX9t5775+03f/85z+poKAgd1uIDkuv5kr4sDusct5+++2YO3dubL/99otc1qlTp6hdu3aurVu3brFgwYIYN25cNGvWLCIiNtlkkygs/L8ZkZo1axYdOnTI3a5Ro0Y0atQopk6dmrf9rl275v6/Zs2asfnmm8fbb7+dWetaa60Vbdq0yd1ed91187Y5ZcqU+NOf/hRPPPFETJ06NebPnx/ffPNNfPzxx0tzKCIiYsaMGTFp0qTo1q1bXnu3bt3i9ddfz2vr2LFjXi0REVOnTo127dotcT8/fizNmjWLli1bRp06dfLaFnfMKm5XzHk3bty4WH/99WOdddbJLV/4q3MAsCKUlpYudvkhhxwSnTt3jk8//TSGDRsW2223XZSXly/TPmrVqpX7/4rfR1mwYMFS33/WrFlxxhlnxD777FNpWUlJSe7/Fx7jRET07t07JkyYEA888EA88sgjsf3228eQIUPir3/96zLVDwDVbf31149x48bFo48+Go888kgcccQRceGFF8aTTz6Z188ureeffz769u0bZ5xxRuy8885Rv379uOWWW/LmZV/cGGHWrFlRo0aNeOWVV6JGjRp5yxa+Dv5xbQUFBYtsqxgX/JTtppQW95CBDEJ0fpaWdCG8NJa1k1uR+1m40+vfv39MmzYtLrnkkigvL4/i4uLo2rVrzJs37yftd2nqWdYL/JV1zABgRdtwww2jtLQ0HnvssTjkkEMqLd90001j8803j6uvvjpuuumm+Oc//7lC99++fft48cUX89peeOGFvNu/+MUvYty4cbHBBhss8/abNGkS/fv3j/79+0f37t3jxBNPFKIDUO3atGkTtWrVihdffDFatGgRERFfffVVvPvuu9GjR49F3qe0tDT69OkTffr0iSFDhkS7du1i7Nix8Ytf/CIiKvefL7zwQrRv336R23ruueeivLw8Tj311FzbhAkT8tbp2LFjPPbYYzFw4MBK999ss81i/vz5MXXq1OjevfvSP/AlWFHbLSoqyvtNMiCbEJ2fpcVdCLdv3z6GDx8es2fPzn1S69lnn43CwsJo27btT973Cy+8ENtuu21ERHz//ffxyiuvxJFHHrnc23v22WfjX//6V+y6664REfHJJ5/EF198kbdOrVq1Ftsx1qtXL8rKyuLZZ5/NG4g8++yzq8Snuhc3yGnbtm188sknMWXKlNy3BF566aWVXiMAa7aSkpI4+eST46STToqioqLo1q1bfP755/G///0vBg8eHBE/fBr9yCOPjNq1a8fee++9Qvd/9NFHR7du3eKvf/1r7LnnnjFq1Ki8HwCPiDjttNNi9913jxYtWsR+++0XhYWF8frrr8ebb75Z6UdIf3y/Ll26xCabbBJz586N++67LzNMAICVqU6dOjF48OA48cQTo1GjRtG0adM49dRT874VvrDhw4fH/PnzY6uttoq11lorbrzxxigtLc37dtizzz4bF1xwQey1117xyCOPxMiRI+P+++9f5PY23HDD+Pjjj+OWW26JLbbYIu6///64884789Y5/fTTY/vtt482bdrEQQcdFN9//3088MADcfLJJ8dGG20Uffv2jX79+sVFF10Um222WXz++efx2GOPRceOHWO33XZbruOyorbbsmXLGDVqVIwbNy4aNWoU9evXX65P7MPPwaL/6sAabuEL4X//+9/xwQcfxAsvvBDXXntt9O3bN0pKSqJ///7x5ptvxujRo+Ooo46K3/zmN7mQ9qe47LLL4s4774x33nknhgwZEl999VUMGjRoube34YYbxg033BBvv/12vPjii9G3b99Kn7Rv2bJlPPbYY/HZZ5/FV199tcjtnHjiiXH++efHrbfeGuPGjYs//OEPMWbMmDjmmGOWu7YVpWKQ8+6778Zll10WI0eOzNW14447Rps2baJ///7xxhtvxLPPPht/+tOfIuL/PikPACvCn//85zj++OPjtNNOi/bt28eBBx6YNwXZwQcfHDVr1oyDDz44b/qUFeGXv/xlXH311XHJJZdEp06d4uGHH871dxV23nnnuO++++Lhhx+OLbbYIn75y1/GxRdfvMRpZYqKiuKUU06Jjh07xrbbbhs1atSIW265ZYXWDwDL68ILL4zu3btHnz59YocddohtttkmunTpssh1GzRoEFdffXV069YtOnbsGI8++mjce++90ahRo9w6xx9/fLz88sux2Wabxdlnnx1/+9vfYuedd17k9vbYY4847rjj4sgjj4zOnTvHc889F3/+85/z1unZs2eMHDky7rnnnujcuXNst9128d///je3fNiwYdGvX784/vjjo23btrHXXnvFSy+9lPtk/fJaEdv97W9/G23bto3NN988mjRpEs8+++xPqgnWaNU9KTtUl/nz56ezzz47lZeXp1q1aqUWLVqkc889N6WU0htvvJF69eqVSkpKUsOGDdNvf/vbvB+/XNSPb/To0SP3wyYVFv6Bk4ofDbvpppvSlltumYqKitLGG2+cHn/88dz6i/ph0YV/MCyllO6888608Ev31VdfTZtvvnkqKSlJG264YRo5cmSlHy+755570gYbbJBq1qyZysvLU0qVf1h0/vz5aejQoWm99dZLtWrVSp06dUoPPvhgbnlF/a+99lqu7auvvkoRkUaPHp19oP+/RT2WH9eQUuVjW/HDL/vvv39aa6210jrrrJMuueSSvPu8/fbbqVu3bqmoqCi1a9cu3XvvvSki0kMPPbTEugBgRRk/fnwqLCxMr7zySnWXAgAswo+vlQGWVkFKflEAWHW1bNkyjj322Dj22GOX+j7PPvtsbLPNNvH+++/n/ZApAFSF7777LqZNmxYnnHBCjB8/3qe4AGAVtTzXlwAR5kQH1gB33nln1KlTJzbccMN4//3345hjjolu3boJ0AFYKZ599tno1atXbLTRRnH77bdXdzkAAMAKJkQHVojevXvH008/vchlf/zjH+OPf/xjle175syZcfLJJ8fHH38cjRs3jh122CEuuuiiKtsfACysZ8+e4cudALDq++ijj6q7BGA1ZToXYIWYOHFizJkzZ5HLGjZsGA0bNlzJFQEAAADATydEBwAAAACADIXVXQAAAAAAAKyqhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgAAAAAAJBBiA4AAAAAABmE6AAAAAAAkEGIDgAAAAAAGYToAAAAAACQQYgOAAAAAAAZhOgQER999FEUFBTE8OHDq7uUPA899FB07tw5SkpKoqCgIL7++utFrjd06NAoKCiIL774YonbbNmyZQwYMGC56mnZsmXsvvvuy3VfAFjVre7jgaXxxBNPREFBQTzxxBMrrD4AAFjTCdFZoYYPHx4FBQV5/5o2bRq9evWKBx98cKXXU3GhWPGvVq1a0bp16+jXr198+OGHK2Qfzz33XAwdOvQnXdAuyrRp0+KAAw6I0tLSuOyyy+KGG26I2rVrr9B9AEBVMB5YcVbGeOCmm26Kv//97yt0mwAAsCapWd0FsGY688wzo1WrVpFSiilTpsTw4cNj1113jXvvvbdaPsl89NFHxxZbbBHfffddvPrqq3HVVVfF/fffH2PHjo2ysrKftO3nnnsuzjjjjBgwYEA0aNBgxRQcES+99FLMnDkzzjrrrNhhhx1W2HbHjRsXhYXePwOg6hkP/HQrejyw7bbbxpw5c6KoqCjXdtNNN8Wbb74Zxx577E/ePgAArImE6FSJ3r17x+abb567PXjw4GjWrFncfPPN1XLR3L1799hvv/0iImLgwIGx0UYbxdFHHx3XX399nHLKKSu9nqUxderUiIgVeiEeEVFcXLxCtwcAWYwHfroVPR4oLCyMkpKSFbItAAD4ufBxVFaKBg0aRGlpadSsmf++zezZs+P444+P9ddfP4qLi6Nt27bx17/+NVJKERExZ86caNeuXbRr1y7mzJmTu9+XX34Z6667bmy99dYxf/78Za5nu+22i4iI8ePHL3a9xx9/PLp37x61a9eOBg0axJ577hlvv/12bvnQoUPjxBNPjIiIVq1a5b4m/tFHHy12uyNHjowuXbpEaWlpNG7cOH7961/HxIkTc8t79uwZ/fv3j4iILbbYIgoKCpZqHvOvv/469wm4+vXrx8CBA+Obb77JW2dRc6K/8cYb0aNHjygtLY3mzZvH2WefHcOGDct8LM8880xsueWWUVJSEq1bt45///vfeTXUqFEj/vGPf+TavvjiiygsLIxGjRrlzm1ExO9+97tYZ511creffvrp2H///aNFixZRXFwc66+/fhx33HF5576irtdee61SXeeee27UqFEj71guTsV0A88880wcffTR0aRJk2jQoEEcdthhMW/evPj666+jX79+sfbaa8faa68dJ510Ul79FXPn/vWvf42LL744ysvLo7S0NHr06BFvvvlmpf2NHDkyNt544ygpKYkOHTrEnXfeGQMGDIiWLVsuVb0AqzvjgXxVMR6YOHFiDB48OMrKyqK4uDhatWoVv/vd72LevHkRUXlO9J49e8b9998fEyZMyNXdsmXLmDVrVtSuXTuOOeaYSvv49NNPo0aNGnHeeecttpaFFRQUxJFHHpnrC0tLS6Nr164xduzYiIi48sorY4MNNoiSkpLo2bNnpWPXs2fP6NChQ7zyyiux9dZbR2lpabRq1SquuOKKSvuaMGFC7LHHHlG7du1o2rRpHHfccTFq1ChzwQMAsNx8Ep0qMX369Pjiiy8ipRRTp06NSy+9NGbNmhW//vWvc+uklGKPPfaI0aNHx+DBg6Nz584xatSoOPHEE2PixIlx8cUXR2lpaVx//fXRrVu3OPXUU+Nvf/tbREQMGTIkpk+fHsOHD48aNWosc30ffPBBREQ0atQoc51HH300evfuHa1bt46hQ4fGnDlz4tJLL41u3brFq6++Gi1btox99tkn3n333bj55pvj4osvjsaNG0dERJMmTTK3O3z48Bg4cGBsscUWcd5558WUKVPikksuiWeffTZee+21aNCgQZx66qnRtm3buOqqq3JfhW/Tps0SH9cBBxwQrVq1ivPOOy9effXVuOaaa6Jp06Zx/vnnZ95n4sSJ0atXrygoKIhTTjklateuHddcc03mJ9bff//92G+//WLw4MHRv3//uO6662LAgAHRpUuX2GSTTaJBgwbRoUOHeOqpp+Loo4+OiB9C94KCgvjyyy/jrbfeik022SQifgjNu3fvntv2yJEj45tvvonf/e530ahRo/jvf/8bl156aXz66acxcuTIiIjYb7/9YsiQITFixIjYbLPN8mobMWJE9OzZM9Zbb70lHquFHXXUUbHOOuvEGWecES+88EJcddVV0aBBg3juueeiRYsWce6558YDDzwQF154YXTo0CH69euXd/9///vfMXPmzBgyZEh8++23cckll8R2220XY8eOjWbNmkVExP333x8HHnhgbLrppnHeeefFV199FYMHD17mWgFWJ8YDK3c8MGnSpNhyyy3j66+/jkMPPTTatWsXEydOjNtvvz2++eabvClcKpx66qkxffr0+PTTT+Piiy+OiIg6depEnTp1Yu+9945bb701/va3v+Ud35tvvjlSStG3b9/FH+Afefrpp+Oee+6JIUOGRETEeeedF7vvvnucdNJJ8a9//SuOOOKI+Oqrr+KCCy6IQYMGxeOPP553/6+++ip23XXXOOCAA+Lggw+O2267LX73u99FUVFRDBo0KCJ+eENmu+22i8mTJ8cxxxwT66yzTtx0000xevToZaoVAADyJFiBhg0bliKi0r/i4uI0fPjwvHXvuuuuFBHp7LPPzmvfb7/9UkFBQXr//fdzbaecckoqLCxMTz31VBo5cmSKiPT3v/99ifWMHj06RUS67rrr0ueff54mTZqU7r///tSyZctUUFCQXnrppZRSSuPHj08RkYYNG5a7b+fOnVPTpk3TtGnTcm2vv/56KiwsTP369cu1XXjhhSki0vjx45dYz7x581LTpk1Thw4d0pw5c3Lt9913X4qIdNppp+XaKo5lRY2Lc/rpp6eISIMGDcpr33vvvVOjRo3y2srLy1P//v1zt4866qhUUFCQXnvttVzbtGnTUsOGDSs9rvLy8hQR6amnnsq1TZ06NRUXF6fjjz8+1zZkyJDUrFmz3O3f//73adttt01NmzZNl19+eW4fBQUF6ZJLLsmt980331R6bOedd14qKChIEyZMyLUdfPDBqaysLM2fPz/X9uqrr1Y6h0tScYx33nnntGDBglx7165dU0FBQTr88MNzbd9//31q3rx56tGjR66t4nlTWlqaPv3001z7iy++mCIiHXfccbm2TTfdNDVv3jzNnDkz1/bEE0+kiEjl5eVLXTPA6sB4YPGqajzQr1+/VFhYuMh1K/q5imMxevTo3LLddtttkX3RqFGjUkSkBx98MK+9Y8eOef3h0qg4/wsfnyuvvDJFRFpnnXXSjBkzcu2nnHJKpWPZo0ePFBHpoosuyrXNnTs3d37mzZuXUkrpoosuShGR7rrrrtx6c+bMSe3atav0uAEAYGmZzoUqcdlll8UjjzwSjzzySNx4443Rq1evOOSQQ+I///lPbp0HHnggatSokfu0coXjjz8+Ukrx4IMP5tqGDh0am2yySfTv3z+OOOKI6NGjR6X7Lc6gQYOiSZMmUVZWFrvttlvMnj07rr/++rx5Whc2efLkGDNmTAwYMCAaNmyYa+/YsWPsuOOO8cADDyz1vhf28ssvx9SpU+OII47Im490t912i3bt2sX999+/XNutcPjhh+fd7t69e0ybNi1mzJiReZ+HHnoounbtGp07d861NWzYMPPTZRtvvHHep8ebNGkSbdu2jQ8//DBvv1OmTIlx48ZFxA+fPNt2222je/fu8fTTT0fED59OTynlbau0tDT3/7Nnz44vvvgitt5660gp5U3f0q9fv5g0aVLep8pGjBgRpaWlse+++2Y+1iyDBw+OgoKC3O2tttoqUkoxePDgXFuNGjVi8803z3ucFfbaa6+8T5RvueWWsdVWW+WeJ5MmTYqxY8dGv379ok6dOrn1evToEZtuuuky1wuwujAeWLSqGA8sWLAg7rrrrujTp88iH8/C/dzS2mGHHaKsrCxGjBiRa3vzzTfjjTfeyPs2wdLafvvt86Yw22qrrSIiYt999426detWav9xn1uzZs047LDDcreLiorisMMOi6lTp8Yrr7wSET+Ma9Zbb73YY489cuuVlJTEb3/722WuFwAAKgjRqRJbbrll7LDDDrHDDjtE37594/7774+NN944jjzyyNycnBMmTIiysrK8i6aIiPbt2+eWVygqKorrrrsuxo8fHzNnzszNi720TjvttHjkkUfi8ccfjzfeeCMmTZoUv/nNbzLXr9h327ZtKy1r3759fPHFFzF79uyl3v/SbLddu3Z5j3l5tGjRIu/22muvHRE/fP15cTVtsMEGldoX1baofVTsZ+F9VATjTz/9dMyePTtee+216N69e2y77ba5EP3pp5+OevXqRadOnXL3+/jjj3NBRZ06daJJkybRo0ePiPhhSoAKO+64Y6y77rq5i/oFCxbEzTffHHvuuWel59PS+PFjql+/fkRErL/++pXaF3UsN9xww0ptG220UW4+14rzuizHGWBNYDyw7Ntd3vHA559/HjNmzIgOHTos832zFBYWRt++feOuu+7K/cbKiBEjoqSkJPbff/9l3t6y9LcRlccvZWVlUbt27by2jTbaKCIir89t06ZNpeeF/hYAgJ9CiM5KUVhYGL169YrJkyfHe++9t1zbGDVqVEREfPvtt8u8jU033TR22GGH6NWrV2y66aaVftBsTZE1H2xa6McwV8Y+ysrKolWrVvHUU0/F888/Hyml6Nq1a3Tv3j0++eSTmDBhQjz99NOx9dZbR2HhD3+G5s+fHzvuuGPcf//9cfLJJ8ddd90VjzzySAwfPjwifgjKF67hV7/6Vdxxxx3x7bffxujRo2PSpEnL9am4xT2mRbWvyGMJ8HNjPLD66devX8yaNSvuuuuuSCnFTTfdFLvvvnsu6F4Wy9LfRuhzAQBYdQjRWWm+//77iIiYNWtWRESUl5fHpEmTYubMmXnrvfPOO7nlFd54440488wzY+DAgbHZZpvFIYcckvfJ5BWtYt8V05H8uL7GjRvnPgm1LJ+AW9x2x40bl/eYV5by8vJ4//33K7Uvqm1ZVEzd8vTTT0fnzp2jbt260alTp6hfv3489NBD8eqrr8a2226bW3/s2LHx7rvvxkUXXRQnn3xy7LnnnrmvkS9Kv379YsaMGXHvvffGiBEjokmTJrHzzjv/pJqX16JCnHfffTf3lfWK81oVxxlgdWM8UDXjgSZNmkS9evXizTffXOb7Lq72Dh06xGabbRYjRoyIp59+Oj7++OPFfnq/Kk2aNKnSJ//ffffdiIi8PveDDz6oFMDrbwEA+CmE6KwU3333XTz88MNRVFSU+3r2rrvuGvPnz49//vOfeetefPHFUVBQEL17987dd8CAAVFWVhaXXHJJDB8+PKZMmRLHHXdcldW77rrrRufOneP666+Pr7/+Otf+5ptvxsMPPxy77rprrq3i4nnh9bJsvvnm0bRp07jiiiti7ty5ufYHH3ww3n777dhtt91W2GNYWjvvvHM8//zzMWbMmFzbl19+mTf/6fLo3r17fPTRR3HrrbfmpncpLCyMrbfeOv72t7/Fd999lzcfesWn0Ba+6E0pxSWXXLLI7Xfs2DE6duwY11xzTdxxxx1x0EEHVdsnCu+6666YOHFi7vZ///vfePHFF3PP4bKysujQoUP8+9//zoVGERFPPvlkjB07dqXXC1BdjAd+UBXjgcLCwthrr73i3nvvjZdffrnS8sV9qrt27dqLfTPiN7/5TTz88MPx97//PRo1apQ7Jyvb999/H1deeWXu9rx58+LKK6+MJk2aRJcuXSLih3HNxIkT45577smt9+2338bVV1+90usFAGDN4TusVIkHH3ww9wmyqVOnxk033RTvvfde/OEPf4h69epFRESfPn2iV69eceqpp8ZHH30UnTp1iocffjjuvvvuOPbYY6NNmzYREXH22WfHmDFj4rHHHou6detGx44d47TTTos//elPsd9+++VdwK5IF154YfTu3Tu6du0agwcPjjlz5sSll14a9evXj6FDh+bWq7hoO/XUU+Oggw6KWrVqRZ8+fSrN2RkRUatWrTj//PNj4MCB0aNHjzj44INjypQpcckll0TLli2rNAjIctJJJ8WNN94YO+64Yxx11FFRu3btuOaaa6JFixbx5ZdfLtcPkUX837zo48aNi3PPPTfXvu2228aDDz4YxcXFscUWW+Ta27VrF23atIkTTjghJk6cGPXq1Ys77rhjsfO59+vXL0444YSIiOWeymVF2GCDDWKbbbaJ3/3udzF37txcyHDSSSfl1jn33HNjzz33jG7dusXAgQPjq6++in/+85/RoUOHvGAdYE1iPLByxwPnnntuPPzww9GjR4849NBDo3379jF58uQYOXJkPPPMM9GgQYNF3q9Lly5x6623xu9///vYYostok6dOtGnT5/c8l/96ldx0kknxZ133hm/+93volatWstV309VVlYW559/fnz00Uex0UYbxa233hpjxoyJq666KlfTYYcdFv/85z/j4IMPjmOOOSb3GyoVP+C6vOMaAAB+5hKsQMOGDUsRkfevpKQkde7cOV1++eVpwYIFeevPnDkzHXfccamsrCzVqlUrbbjhhunCCy/MrffKK6+kmjVrpqOOOirvft9//33aYostUllZWfrqq68y6xk9enSKiDRy5MjF1j1+/PgUEWnYsGF57Y8++mjq1q1bKi0tTfXq1Ut9+vRJb731VqX7n3XWWWm99dZLhYWFKSLS+PHjF7u/W2+9NW222WapuLg4NWzYMPXt2zd9+umneetUHMuXXnppsdtKKaXTTz89RUT6/PPPF7mNhespLy9P/fv3z1vvtddeS927d0/FxcWpefPm6bzzzkv/+Mc/UkSkzz77LO++u+22W6X99+jRI/Xo0aNSe9OmTVNEpClTpuTannnmmRQRqXv37pXWf+utt9IOO+yQ6tSpkxo3bpx++9vfptdff32R5yallCZPnpxq1KiRNtpoo4wjs3hZxzjrePbv3z/Vrl07d7vieXPhhRemiy66KK2//vqpuLg4de/ePb3++uuV9nfLLbekdu3apeLi4tShQ4d0zz33pH333Te1a9duueoHWFUZD1TPeCCllCZMmJD69euXmjRpkoqLi1Pr1q3TkCFD0ty5c1NK/3csRo8enbvPrFmz0q9+9avUoEGDFBGpvLy80nZ33XXXFBHpueeeW6o6fiwi0pAhQ/LaFu5HF7ao89WjR4+0ySabpJdffjl17do1lZSUpPLy8vTPf/6z0r4+/PDDtNtuu6XS0tLUpEmTdPzxx6c77rgjRUR64YUXlqt+AAB+3gpS8os9QGXHHntsXHnllTFr1qzMH/yqbl988UWsu+66cdppp8Wf//znlb7/jz76KFq1ahUXXnhh7hPxy6pz587RpEmTeOSRR1ZwdQCw4uy9994xduzYaptbvGfPnvHFF18s15zvERF///vf47jjjotPP/001ltvvRVcHQAAazpzogMxZ86cvNvTpk2LG264IbbZZptVNkCPiBg+fHjMnz+/2n7gbFl89913uR/Tq/DEE0/E66+/Hj179qyeogBgKUyePDnuv//+1aK/jag8rvn222/jyiuvjA033FCADgDAcjEnOhBdu3aNnj17Rvv27WPKlClx7bXXxowZM6rl091L4/HHH4+33norzjnnnNhrr72iZcuWecvnzJmz2B9Ii4ho2LBhFBUVVWGV+SZOnBg77LBD/PrXv46ysrJ455134oorroh11lknDj/88JVWBwAsrfHjx8ezzz4b11xzTdSqVSsOO+ywSut89tlni91GaWlp1K9fv6pKXKR99tknWrRoEZ07d47p06fHjTfeGO+8885P/tF0AAB+voToQOy6665x++23x1VXXRUFBQXxi1/8Iq699trYdtttq7u0RTrzzDPjueeei27dusWll15aafmtt94aAwcOXOw2Ro8evVI/Ab722mtHly5d4pprronPP/88ateuHbvttlv85S9/iUaNGq20OgBgaT355JMxcODAaNGiRVx//fWxzjrrVFpn3XXXXew2+vfvH8OHD6+iChdt5513jmuuuSZGjBgR8+fPj4033jhuueWWOPDAA1dqHQAArDnMiQ6scSZPnhz/+9//FrtOly5dYu21115JFQHAmunRRx9d7PKysrLYeOONV1I1AABQNYToAAAAAACQwQ+LAgAAAABAhuWeE33BggUxadKkqFu3bhQUFKzImgDgZy2lFDNnzoyysrIoLFyx73frvwGgalRl/w0AVK/lDtEnTZoU66+//oqsBQBYyCeffBLNmzdfodvUfwNA1aqK/hsAqF7LHaLXrVs3In4YINSrV2+FFQQAP3czZsyI9ddfP9fXrkj6bwCoGlXZfwMA1Wu5Q/SKr4DXq1fPRTgAVIGqmG5F/w0AVct0aQCw5jFRGwAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZKhZ3QWwapoyZUpMnz69usvgZ6R+/frRrFmz6i4DgCpibLFm0n8DAPBzIESnkilTpsSvf9Mvvps3t7pL4WekVlFx3HjDv12IA6yBjC3WXPpvAAB+DoToVDJ9+vT4bt7cmNO6RywoqV/d5aw2Cud8HaXjn4o5rbaNBaUNqruc1Urht9MjPnwypk+f7iIcYA20Ko8t9N/LT/8NAMDPhRCdTAtK6seC2o2ru4zVzoLSBo4bACzCqjy20H8DAABZ/LAoAAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgAAAAAAZBCiAwAAAABABiE6AAAAAABkEKIDAAAAAEAGIToAAAAAAGQQogMAAAAAQAYhOgD/r707D66qvB8//okEQhSIgJqAsgoiLoi71A5EYUR0rKjjUm2VulAVOqidShVx+aqDYq24VFtcsHzL4qjFVh3rnjiOO4JaZaLyQ9EK0nGE4AIiOb8/OtxvIzxCkORektdrJiN3ycmT8+TkPHl7cwIAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJIjoAAAAAACSI6AAAAAAAkCCiAwAAAABAgogOAAAAAAAJBRXRV61aFe+++26sWrUq30MBgE3i3GUfALD1ce4CABqioCL64sWLY/To0bF48eJ8DwUANolzl30AwNbHuQsAaIiCiugAAAAAAFBIRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASRHQAAAAAAEgQ0QEAAAAAIEFEBwAAAACABBEdAAAAAAASijf1iatXr47Vq1fnbtfW1jbKgCIiPvzww0bbNhtn/5MvvvbYGhX6163zN4XA10bzZn7ZGvm6BQAaYpMj+qRJk+Kqq65qzLHkXHvttU3ycYDC4tiHLc/5G2hsjn0AAJq7TY7ol1xySVx00UW527W1tdGtW7dGGdSECROiR48ejbJtNu7DDz/0wxB54dhna1To3zOdvykEhX6c8MM49tka+b4EADTEJkf0kpKSKCkpacyx5PTo0SN22223JvlYQOFw7MOW5/wNNDbHPgAAzZ0/LAoAAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAEBCQUX07t27x9SpU6N79+75HgoAbBLnLvsAgK2PcxcA0BDF+R7Af2vbtm3stttu+R4GAGwy5y77AICtj3MXANAQBfVKdAAAAAAAKCQiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJBTnewAUrm1Wrcj3ELYq23y9vN5/2XS+1gBahkL8fu/8vfkKcT4BAKAxiOisp6ysLFq3KYn4f9X5HspWqXTRc/kewlapdZuSKCsry/cwAGgEW8Pawvl78zh/AwDQEojorKe8vDz+8r/TY8UKry6i6ZSVlUV5eXm+hwFAI7C2aL6cvwEAaAlEdDaovLzcD0QAwBZjbQEAAGyt/GFRAAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACBBRAcAAAAAgAQRHQAAAAAAEkR0AAAAAABIENEBAAAAACCheHPfMcuyiIiora3dYoMBAP7v3LruXLslOX8DQONozPM3AJBfmx3RV65cGRER3bp122KDAQD+z8qVK6OsrGyLbzPC+RsAGktjnL8BgPwqyjbzf5PX1dXFJ598Eu3bt4+ioqItPa4tora2Nrp16xYfffRRdOjQId/DabHMQ2EwD/lnDgrD1jAPWZbFypUro2vXrrHNNlv2ymvrzt9ZlkX37t0Lej80d1vD12JLYB4Kg3koDObhh2nM8zcAkF+b/Ur0bbbZJnbZZZctOZZG06FDB4vAAmAeCoN5yD9zUBgKfR4a6xVs687f637lvND3Q0tgDgqDeSgM5qEwmIfN5xXoANA8+d/jAAAAAACQIKIDAAAAAEBCs47oJSUlccUVV0RJSUm+h9KimYfCYB7yzxwUBvPwH/ZD/pmDwmAeCoN5KAzmAQBgwzb7D4sCAAAAAEBz16xfiQ4AAAAAAD+EiA4AAAAAAAkiOgAAAAAAJGz1EX3SpElx4IEHRvv27WOnnXaKkSNHRk1NTb3nrFq1KsaMGROdO3eOdu3axQknnBCffvppnkbcPG3KPFRWVkZRUVG9t3PPPTdPI26e7rjjjhgwYEB06NAhOnToEIMGDYrHHnss97hjoWlsbB4cC03vuuuui6Kiorjgggty97WE4+G5556LY445Jrp27RpFRUXx0EMP1Xs8y7K4/PLLo0uXLlFaWhrDhg2L9957Lz+DbcY2Ng+jRo1a73vCkUcemZ/BNmPWjPlnvVgYrBcBABpuq4/o1dXVMWbMmHjppZfiySefjDVr1sQRRxwRX375Ze45F154YTz88MNx//33R3V1dXzyySdx/PHH53HUzc+mzENExDnnnBNLlizJvU2ePDlPI26edtlll7juuuti7ty58dprr8Xhhx8exx57bLz99tsR4VhoKhubhwjHQlN69dVX409/+lMMGDCg3v0t4Xj48ssvY5999ok//OEPG3x88uTJccstt8Qf//jHePnll2O77baL4cOHx6pVq5p4pM3bxuYhIuLII4+s9z1h1qxZTTjClsGaMf+sFwuD9SIAwGbImplly5ZlEZFVV1dnWZZly5cvz1q3bp3df//9uecsWLAgi4jsxRdfzNcwm73vzkOWZdmQIUOycePG5W9QLVTHjh2zu+66y7GQZ+vmIcscC01p5cqVWd++fbMnn3yy3n5vicdDRGRz5szJ3a6rq8sqKiqyG264IXff8uXLs5KSkmzWrFl5GGHL8N15yLIsO+OMM7Jjjz02L+NpyawZ8896sXBYLwIAfL+t/pXo37VixYqIiOjUqVNERMydOzfWrFkTw4YNyz1n9913j+7du8eLL76YlzG2BN+dh3VmzJgRO+ywQ+y1115xySWXxFdffZWP4bUIa9eujdmzZ8eXX34ZgwYNcizkyXfnYR3HQtMYM2ZMHH300fW+7iOcGyIiFi1aFEuXLq23D8rKyuLggw9uMfugkFRVVcVOO+0U/fr1i/POOy8+++yzfA+p2bNmzD/rxfyzXgQA2DTF+R7AllRXVxcXXHBBHHroobHXXntFRMTSpUujTZs2sf3229d7bnl5eSxdujQPo2z+NjQPERGnnnpq9OjRI7p27RpvvvlmjB8/PmpqauKvf/1rHkfb/Lz11lsxaNCgWLVqVbRr1y7mzJkTe+yxR8yfP9+x0IRS8xDhWGgqs2fPjtdffz1effXV9R5zbojc51leXl7v/pa0DwrFkUceGccff3z06tUrFi5cGJdeemmMGDEiXnzxxWjVqlW+h9csWTPmn/ViflkvAgA0TLOK6GPGjIl//vOf8fzzz+d7KC1aah5Gjx6d+/fee+8dXbp0iaFDh8bChQtj1113bephNlv9+vWL+fPnx4oVK+KBBx6IM844I6qrq/M9rBYnNQ977LGHY6EJfPTRRzFu3Lh48skno23btvkeDnyvU045JffvvffeOwYMGBC77rprVFVVxdChQ/M4subLmjH/rBfzy3oRAKBhms3lXMaOHRuPPPJIPPvss7HLLrvk7q+oqIhvvvkmli9fXu/5n376aVRUVDTxKJu/1DxsyMEHHxwREe+//35TDK3FaNOmTfTp0yf233//mDRpUuyzzz5x8803OxaaWGoeNsSxsOXNnTs3li1bFvvtt18UFxdHcXFxVFdXxy233BLFxcVRXl7e4o+HdZ/np59+Wu/+lrQPClXv3r1jhx128D2hkVgz5p/1Yv5ZLwIANMxWH9GzLIuxY8fGnDlz4plnnolevXrVe3z//feP1q1bx9NPP527r6amJhYvXlzv+sT8MBubhw2ZP39+RER06dKlkUfXstXV1cXq1asdC3m2bh42xLGw5Q0dOjTeeuutmD9/fu7tgAMOiNNOOy3375Z+PPTq1SsqKirq7YPa2tp4+eWXW8w+KFQff/xxfPbZZ74nbGHWjPlnvVi4rBcBAL7fVn85lzFjxsTMmTPjb3/7W7Rv3z53rb6ysrIoLS2NsrKyOOuss+Kiiy6KTp06RYcOHeJXv/pVDBo0KA455JA8j7752Ng8LFy4MGbOnBlHHXVUdO7cOd5888248MILY/DgwTFgwIA8j775uOSSS2LEiBHRvXv3WLlyZcycOTOqqqri8ccfdyw0oe+bB8dC02jfvn29a+xGRGy33XbRuXPn3P0t4Xj44osv6r16c9GiRTF//vzo1KlTdO/ePS644IK45pprom/fvtGrV6+YOHFidO3aNUaOHJm/QTdD3zcPnTp1iquuuipOOOGEqKioiIULF8bFF18cffr0ieHDh+dx1M2PNWP+WS8WButFAIDNkG3lImKDb9OmTcs95+uvv87OP//8rGPHjtm2226bHXfccdmSJUvyN+hmaGPzsHjx4mzw4MFZp06dspKSkqxPnz7Zb37zm2zFihX5HXgzc+aZZ2Y9evTI2rRpk+24447Z0KFDsyeeeCL3uGOhaXzfPDgW8mfIkCHZuHHjcrdbwvHw7LPPbvB78xlnnJFlWZbV1dVlEydOzMrLy7OSkpJs6NChWU1NTX4H3Qx93zx89dVX2RFHHJHtuOOOWevWrbMePXpk55xzTrZ06dJ8D7vZsWbMP+vFwmC9CADQcEVZlmWNHeoBAAAAAGBrtNVfEx0AAAAAABqLiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKJDA1RWVsYFF1yQfLyoqCgeeuihTd5eVVVVFBUVxfLly3/w2ACApvfBBx9EUVFRzJ8/P99DAQAAGomIDlvQkiVLYsSIEfkeBgDQRLp16xZLliyJvfbaKyL8D3IAAGiOivM9AGhOKioq8j0EAKAJtWrVyvkfAACaOa9Ehwaqq6uLiy++ODp16hQVFRVx5ZVX5h777uVcXnjhhRg4cGC0bds2DjjggHjooYc2+Cvfc+fOjQMOOCC23Xbb+NGPfhQ1NTUREbFixYpo1apVvPbaa7mP3alTpzjkkENy7/uXv/wlunXrlrs9fvz42G233WLbbbeN3r17x8SJE2PNmjUR8Z9fOd9mm21y21tnypQp0aNHj6irq/vez33dq+sef/zx2HfffaO0tDQOP/zwWLZsWTz22GPRv3//6NChQ5x66qnx1Vdf5d6vsrIyxo4dG2PHjo2ysrLYYYcdYuLEiZFlWe45S5YsiaOPPjpKS0ujV69eMXPmzOjZs2dMmTLle8cEAE2hrq4uJk+eHH369ImSkpLo3r17XHvttfUu5/LBBx/EYYcdFhERHTt2jKKiohg1alRMnz49OnfuHKtXr663zZEjR8bPf/7zjX7sK6+8MgYOHBj33HNPdO/ePdq1axfnn39+rF27NiZPnhwVFRWx0047xbXXXlvv/YqKiuKOO+6IESNGRGlpafTu3TseeOCBes/Z1LUKAAC0ZCI6NNCf//zn2G677eLll1+OyZMnx//8z//Ek08+ud7zamtr45hjjom99947Xn/99bj66qtj/PjxG9zmhAkT4sYbb4zXXnstiouL48wzz4yIiLKyshg4cGBUVVVFRMRbb70VRUVFMW/evPjiiy8iIqK6ujqGDBmS21b79u3j3nvvjXfeeSduvvnmuPPOO+Omm26KiIiePXvGsGHDYtq0afU+/rRp02LUqFGxzTab9i3hyiuvjNtuuy1eeOGF+Oijj+Kkk06KKVOmxMyZM+PRRx+NJ554Im699db19ltxcXG88sorcfPNN8fvf//7uOuuu3KPn3766fHJJ59EVVVVPPjggzF16tRYtmzZJo0HABrbJZdcEtddd11MnDgx3nnnnZg5c2aUl5fXe063bt3iwQcfjIiImpqaWLJkSdx8881x4oknxtq1a+Pvf/977rnLli2LRx99NHfO35iFCxfGY489Fv/4xz9i1qxZcffdd8fRRx8dH3/8cVRXV8f1118fl112Wbz88sv13m/ixIlxwgknxBtvvBGnnXZanHLKKbFgwYKIaNhaBQAAWrQM2GRDhgzJfvzjH9e778ADD8zGjx+fZVmWRUQ2Z86cLMuy7I477sg6d+6cff3117nn3nnnnVlEZPPmzcuyLMueffbZLCKyp556KvecRx99NIuI3PtddNFF2dFHH51lWZZNmTIlO/nkk7N99tkne+yxx7Isy7I+ffpkU6dOTY75hhtuyPbff//c7fvuuy/r2LFjtmrVqizLsmzu3LlZUVFRtmjRoo1+/hsa76RJk7KIyBYuXJi775e//GU2fPjw3O0hQ4Zk/fv3z+rq6nL3jR8/Puvfv3+WZVm2YMGCLCKyV199Nff4e++9l0VEdtNNN210XADQmGpra7OSkpLszjvvXO+xRYsWbfDc/vnnn9d73nnnnZeNGDEid/vGG2/MevfuXe/cmHLFFVdk2267bVZbW5u7b/jw4VnPnj2ztWvX5u7r169fNmnSpNztiMjOPffcets6+OCDs/POOy/Lsk1bqwAAAFnmlejQQAMGDKh3u0uXLht8xXRNTU0MGDAg2rZtm7vvoIMO2ug2u3TpEhGR2+aQIUPi+eefj7Vr10Z1dXVUVlZGZWVlVFVVxSeffBLvv/9+VFZW5t7/vvvui0MPPTQqKiqiXbt2cdlll8XixYtzj48cOTJatWoVc+bMiYiIe++9Nw477LDo2bPnZu2D8vLy3KVj/vu+7+6TQw45JIqKinK3Bw0aFO+9916sXbs2ampqori4OPbbb7/c43369ImOHTtu8pgAoLEsWLAgVq9eHUOHDt3sbZxzzjnxxBNPxL/+9a+I+M/5d9SoUfXOjd+nZ8+e0b59+9zt8vLy2GOPPer9FtmGzr+DBg1a7/a6V6I3ZK0CAAAtmYgODdS6det6t4uKijZ6LfGGbHPdD9Prtjl48OBYuXJlvP766/Hcc8/Vi+jV1dXRtWvX6Nu3b0REvPjii3HaaafFUUcdFY888kjMmzcvJkyYEN98801u+23atInTTz89pk2bFt98803MnDlzk3+VPDXextgnAFAoSktLf/A29t1339hnn31i+vTpMXfu3Hj77bdj1KhRm/z+GzrXOv8CAEDTENGhkfTr1y/eeuuten9E7NVXX23wdrbffvsYMGBA3HbbbdG6devYfffdY/DgwTFv3rx45JFH6l0P/YUXXogePXrEhAkT4oADDoi+ffvGhx9+uN42zz777Hjqqafi9ttvj2+//TaOP/74zfskG+C712h96aWXom/fvtGqVavo169ffPvttzFv3rzc4++//358/vnnjT4uANiYvn37RmlpaTz99NMbfW6bNm0iImLt2rXrPXb22WfHvffeG9OmTYthw4bV+8PgjeWll15a73b//v0jYsutVQAAoLkT0aGRnHrqqVFXVxejR4+OBQsWxOOPPx6/+93vIiI2+Ve316msrIwZM2bkgnmnTp2if//+cd9999WL6H379o3FixfH7NmzY+HChXHLLbfkLtvy3/r37x+HHHJIjB8/Pn76059ukVfYbczixYvjoosuipqampg1a1bceuutMW7cuIiI2H333WPYsGExevToeOWVV2LevHkxevToKC0tbfC+AoAtrW3btjF+/Pi4+OKLY/r06bFw4cJ46aWX4u67717vuT169IiioqJ45JFH4t///nfuD4FH/Gdt8PHHH8edd97Z4N8C21z3339/3HPPPfHuu+/GFVdcEa+88kqMHTs2N54ttVYBAIDmTESHRtKhQ4d4+OGHY/78+TFw4MCYMGFCXH755RER9a49uimGDBkSa9eurXft88rKyvXu+8lPfhIXXnhhjB07NgYOHBgvvPBCTJw4cYPbPOuss+Kbb75psh/iTz/99Pj666/joIMOijFjxsS4ceNi9OjRucenT58e5eXlMXjw4DjuuOPinHPOifbt2zd4XwFAY5g4cWL8+te/jssvvzz69+8fJ5988gb/JsrOO+8cV111Vfz2t7+N8vLyXLCOiCgrK4sTTjgh2rVrFyNHjmyScV911VUxe/bsGDBgQEyfPj1mzZoVe+yxR0Rs2bUKAAA0Z0VZlmX5HgS0FDNmzIhf/OIXsWLFiiZ59ff3ufrqq+P++++PN998s9E/VmVlZQwcODCmTJmyye/z8ccfR7du3eKpp576QX/IDQAKydChQ2PPPfeMW265pdE/VlFRUcyZM6dBwb6Q1ioAAFAoivM9AGjOpk+fHr17946dd9453njjjRg/fnycdNJJef2h9IsvvogPPvggbrvttrjmmmvyNo7veuaZZ+KLL76IvffeO5YsWRIXX3xx9OzZMwYPHpzvoQHAD/b5559HVVVVVFVVxe23357v4eQU4loFAAAKjcu5QCNaunRp/OxnP4v+/fvHhRdeGCeeeGJMnTo1r2MaO3Zs7L///lFZWbnepVzOPffcaNeu3Qbfzj333EYd15o1a+LSSy+NPffcM4477rjYcccdo6qqKlq3bt2oHxcAmsK+++4bo0aNiuuvvz769etX77E999wzef6dMWNGo46rENcqAABQaFzOBchZtmxZ1NbWbvCxDh06xE477dTEIwKA5u/DDz+MNWvWbPCx8vLyaN++fROPCAAA+G8iOgAAAAAAJLicCwAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAkiOgAAAAAAJIjoAAAAAACQIKIDAAAAAECCiA4AAAAAAAn/H4qpXbq+oD+PAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 0 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Выбираем столбцы для очистки\n",
|
||
"columns_to_clean = ['combination_mpg', 'cylinders', 'displacement', 'highway_mpg', 'city_mpg']\n",
|
||
"\n",
|
||
"# Функция для удаления выбросов\n",
|
||
"def remove_outliers(df, columns):\n",
|
||
" for col in columns:\n",
|
||
" Q1 = df[col].quantile(0.25)\n",
|
||
" Q3 = df[col].quantile(0.75)\n",
|
||
" IQR = Q3 - Q1\n",
|
||
" lower_bound = Q1 - 1.5 * IQR\n",
|
||
" upper_bound = Q3 + 1.5 * IQR\n",
|
||
" \n",
|
||
" # Удаляем строки, содержащие выбросы\n",
|
||
" df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]\n",
|
||
" \n",
|
||
" return df\n",
|
||
"\n",
|
||
"# Удаляем выбросы\n",
|
||
"df_cars_clean = remove_outliers(df_cars, columns_to_clean)\n",
|
||
"\n",
|
||
"# Выводим количество удаленных строк\n",
|
||
"print(f\"Количество удаленных строк: {len(df_cars) - len(df_cars_clean)}\")\n",
|
||
"\n",
|
||
"# Создаем диаграммы размаха для очищенных данных\n",
|
||
"plt.figure(figsize=(15, 6))\n",
|
||
"\n",
|
||
"# Создаем диаграммы размахов\n",
|
||
"plt.figure(figsize=(15, 10))\n",
|
||
"for i, col in enumerate(columns_to_clean, 1):\n",
|
||
" plt.subplot(2, 3, i)\n",
|
||
" sns.boxplot(x=df_cars_clean[col])\n",
|
||
" plt.title(f'Box Plot of {col}')\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"df_cars = df_cars_clean"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Разбиение набора данных на обучающую, контрольную и тестовую выборки"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 206,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Размер обучающей выборки: 306\n",
|
||
"Размер контрольной выборки: 102\n",
|
||
"Размер тестовой выборки: 102\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train_df, test_df = train_test_split(df_cars, test_size=0.2, random_state=42)\n",
|
||
"\n",
|
||
"train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n",
|
||
"\n",
|
||
"print(\"Размер обучающей выборки:\", len(train_df))\n",
|
||
"print(\"Размер контрольной выборки:\", len(val_df))\n",
|
||
"print(\"Размер тестовой выборки:\", len(test_df))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 207,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Распределение \"Комбинированный расход топлива\" в обучающей выборке:\n",
|
||
"combination_mpg\n",
|
||
"23 32\n",
|
||
"22 29\n",
|
||
"24 23\n",
|
||
"25 22\n",
|
||
"27 22\n",
|
||
"18 21\n",
|
||
"19 19\n",
|
||
"29 18\n",
|
||
"21 18\n",
|
||
"26 17\n",
|
||
"31 16\n",
|
||
"28 14\n",
|
||
"20 13\n",
|
||
"32 12\n",
|
||
"17 11\n",
|
||
"30 10\n",
|
||
"16 3\n",
|
||
"34 3\n",
|
||
"36 1\n",
|
||
"33 1\n",
|
||
"14 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Комбинированный расход топлива\" в контрольной выборке:\n",
|
||
"combination_mpg\n",
|
||
"20 17\n",
|
||
"19 15\n",
|
||
"21 13\n",
|
||
"26 9\n",
|
||
"27 7\n",
|
||
"22 6\n",
|
||
"30 5\n",
|
||
"23 5\n",
|
||
"18 4\n",
|
||
"17 3\n",
|
||
"24 3\n",
|
||
"28 3\n",
|
||
"29 3\n",
|
||
"25 2\n",
|
||
"34 2\n",
|
||
"33 2\n",
|
||
"32 1\n",
|
||
"14 1\n",
|
||
"31 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Комбинированный расход топлива\" в тестовой выборке:\n",
|
||
"combination_mpg\n",
|
||
"21 14\n",
|
||
"18 13\n",
|
||
"22 12\n",
|
||
"27 12\n",
|
||
"23 10\n",
|
||
"31 5\n",
|
||
"20 5\n",
|
||
"26 5\n",
|
||
"24 4\n",
|
||
"29 4\n",
|
||
"28 4\n",
|
||
"19 4\n",
|
||
"25 3\n",
|
||
"32 3\n",
|
||
"17 3\n",
|
||
"30 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def check_balance(df, name):\n",
|
||
" counts = df['combination_mpg'].value_counts()\n",
|
||
" print(f\"Распределение \\\"Комбинированный расход топлива\\\" в {name}:\")\n",
|
||
" print(counts)\n",
|
||
" print()\n",
|
||
"\n",
|
||
"check_balance(train_df, \"обучающей выборке\")\n",
|
||
"check_balance(val_df, \"контрольной выборке\")\n",
|
||
"check_balance(test_df, \"тестовой выборке\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Оверсемплинг и андерсемплинг"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 208,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Оверсэмплинг:\n",
|
||
"Распределение \"Комбинированный расход топлива\" в обучающей выборке:\n",
|
||
"combination_mpg\n",
|
||
"21 32\n",
|
||
"22 32\n",
|
||
"25 32\n",
|
||
"19 32\n",
|
||
"29 32\n",
|
||
"23 32\n",
|
||
"28 32\n",
|
||
"18 32\n",
|
||
"27 32\n",
|
||
"20 32\n",
|
||
"16 32\n",
|
||
"30 32\n",
|
||
"32 32\n",
|
||
"31 32\n",
|
||
"24 32\n",
|
||
"26 32\n",
|
||
"17 32\n",
|
||
"36 32\n",
|
||
"34 32\n",
|
||
"33 32\n",
|
||
"14 32\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Комбинированный расход топлива\" в контрольной выборке:\n",
|
||
"combination_mpg\n",
|
||
"20 17\n",
|
||
"19 17\n",
|
||
"17 17\n",
|
||
"27 17\n",
|
||
"22 17\n",
|
||
"26 17\n",
|
||
"24 17\n",
|
||
"32 17\n",
|
||
"21 17\n",
|
||
"18 17\n",
|
||
"30 17\n",
|
||
"23 17\n",
|
||
"29 17\n",
|
||
"28 17\n",
|
||
"34 17\n",
|
||
"25 17\n",
|
||
"14 17\n",
|
||
"33 17\n",
|
||
"31 17\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Комбинированный расход топлива\" в тестовой выборке:\n",
|
||
"combination_mpg\n",
|
||
"28 14\n",
|
||
"32 14\n",
|
||
"30 14\n",
|
||
"23 14\n",
|
||
"20 14\n",
|
||
"26 14\n",
|
||
"21 14\n",
|
||
"18 14\n",
|
||
"27 14\n",
|
||
"25 14\n",
|
||
"22 14\n",
|
||
"19 14\n",
|
||
"29 14\n",
|
||
"24 14\n",
|
||
"31 14\n",
|
||
"17 14\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Андерсэмплинг:\n",
|
||
"Распределение \"Комбинированный расход топлива\" в обучающей выборке:\n",
|
||
"combination_mpg\n",
|
||
"14 1\n",
|
||
"16 1\n",
|
||
"17 1\n",
|
||
"18 1\n",
|
||
"19 1\n",
|
||
"20 1\n",
|
||
"21 1\n",
|
||
"22 1\n",
|
||
"23 1\n",
|
||
"24 1\n",
|
||
"25 1\n",
|
||
"26 1\n",
|
||
"27 1\n",
|
||
"28 1\n",
|
||
"29 1\n",
|
||
"30 1\n",
|
||
"31 1\n",
|
||
"32 1\n",
|
||
"33 1\n",
|
||
"34 1\n",
|
||
"36 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Комбинированный расход топлива\" в контрольной выборке:\n",
|
||
"combination_mpg\n",
|
||
"14 1\n",
|
||
"17 1\n",
|
||
"18 1\n",
|
||
"19 1\n",
|
||
"20 1\n",
|
||
"21 1\n",
|
||
"22 1\n",
|
||
"23 1\n",
|
||
"24 1\n",
|
||
"25 1\n",
|
||
"26 1\n",
|
||
"27 1\n",
|
||
"28 1\n",
|
||
"29 1\n",
|
||
"30 1\n",
|
||
"31 1\n",
|
||
"32 1\n",
|
||
"33 1\n",
|
||
"34 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Комбинированный расход топлива\" в тестовой выборке:\n",
|
||
"combination_mpg\n",
|
||
"17 1\n",
|
||
"18 1\n",
|
||
"19 1\n",
|
||
"20 1\n",
|
||
"21 1\n",
|
||
"22 1\n",
|
||
"23 1\n",
|
||
"24 1\n",
|
||
"25 1\n",
|
||
"26 1\n",
|
||
"27 1\n",
|
||
"28 1\n",
|
||
"29 1\n",
|
||
"30 1\n",
|
||
"31 1\n",
|
||
"32 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train_df_oversampled = oversample(train_df, 'combination_mpg')\n",
|
||
"val_df_oversampled = oversample(val_df, 'combination_mpg')\n",
|
||
"test_df_oversampled = oversample(test_df, 'combination_mpg')\n",
|
||
"\n",
|
||
"train_df_undersampled = undersample(train_df, 'combination_mpg')\n",
|
||
"val_df_undersampled = undersample(val_df, 'combination_mpg')\n",
|
||
"test_df_undersampled = undersample(test_df, 'combination_mpg')\n",
|
||
"\n",
|
||
"print(\"Оверсэмплинг:\")\n",
|
||
"check_balance(train_df_oversampled, \"обучающей выборке\")\n",
|
||
"check_balance(val_df_oversampled, \"контрольной выборке\")\n",
|
||
"check_balance(test_df_oversampled, \"тестовой выборке\")\n",
|
||
"\n",
|
||
"print(\"Андерсэмплинг:\")\n",
|
||
"check_balance(train_df_undersampled, \"обучающей выборке\")\n",
|
||
"check_balance(val_df_undersampled, \"контрольной выборке\")\n",
|
||
"check_balance(test_df_undersampled, \"тестовой выборке\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Датасет №3 (Экономика стран)\n",
|
||
"Ссылка: https://www.kaggle.com/datasets/pratik453609/economic-data-9-countries-19802020\n",
|
||
"\n",
|
||
"Проблемная область: экономический анализ и прогнозирование макроэкономических показателей.\n",
|
||
"\n",
|
||
"Объекты наблюдения: экономические индексы по странам за определённые годы."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 209,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['stock index', 'country', 'year', 'index price', 'log_indexprice',\n",
|
||
" 'inflationrate', 'oil prices', 'exchange_rate', 'gdppercent',\n",
|
||
" 'percapitaincome', 'unemploymentrate', 'manufacturingoutput',\n",
|
||
" 'tradebalance', 'USTreasury'],\n",
|
||
" dtype='object')\n",
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 369 entries, 0 to 368\n",
|
||
"Data columns (total 14 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 stock index 369 non-null object \n",
|
||
" 1 country 369 non-null object \n",
|
||
" 2 year 369 non-null float64\n",
|
||
" 3 index price 317 non-null float64\n",
|
||
" 4 log_indexprice 369 non-null float64\n",
|
||
" 5 inflationrate 326 non-null float64\n",
|
||
" 6 oil prices 369 non-null float64\n",
|
||
" 7 exchange_rate 367 non-null float64\n",
|
||
" 8 gdppercent 350 non-null float64\n",
|
||
" 9 percapitaincome 368 non-null float64\n",
|
||
" 10 unemploymentrate 348 non-null float64\n",
|
||
" 11 manufacturingoutput 278 non-null float64\n",
|
||
" 12 tradebalance 365 non-null float64\n",
|
||
" 13 USTreasury 369 non-null float64\n",
|
||
"dtypes: float64(12), object(2)\n",
|
||
"memory usage: 40.5+ KB\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>stock index</th>\n",
|
||
" <th>country</th>\n",
|
||
" <th>year</th>\n",
|
||
" <th>index price</th>\n",
|
||
" <th>log_indexprice</th>\n",
|
||
" <th>inflationrate</th>\n",
|
||
" <th>oil prices</th>\n",
|
||
" <th>exchange_rate</th>\n",
|
||
" <th>gdppercent</th>\n",
|
||
" <th>percapitaincome</th>\n",
|
||
" <th>unemploymentrate</th>\n",
|
||
" <th>manufacturingoutput</th>\n",
|
||
" <th>tradebalance</th>\n",
|
||
" <th>USTreasury</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>NASDAQ</td>\n",
|
||
" <td>United States of America</td>\n",
|
||
" <td>1980.0</td>\n",
|
||
" <td>168.61</td>\n",
|
||
" <td>2.23</td>\n",
|
||
" <td>0.14</td>\n",
|
||
" <td>21.59</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.09</td>\n",
|
||
" <td>12575.0</td>\n",
|
||
" <td>0.07</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>-13.06</td>\n",
|
||
" <td>0.11</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>NASDAQ</td>\n",
|
||
" <td>United States of America</td>\n",
|
||
" <td>1981.0</td>\n",
|
||
" <td>203.15</td>\n",
|
||
" <td>2.31</td>\n",
|
||
" <td>0.10</td>\n",
|
||
" <td>31.77</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.12</td>\n",
|
||
" <td>13976.0</td>\n",
|
||
" <td>0.08</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>-12.52</td>\n",
|
||
" <td>0.14</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>NASDAQ</td>\n",
|
||
" <td>United States of America</td>\n",
|
||
" <td>1982.0</td>\n",
|
||
" <td>188.98</td>\n",
|
||
" <td>2.28</td>\n",
|
||
" <td>0.06</td>\n",
|
||
" <td>28.52</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.04</td>\n",
|
||
" <td>14434.0</td>\n",
|
||
" <td>0.10</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>-19.97</td>\n",
|
||
" <td>0.13</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>NASDAQ</td>\n",
|
||
" <td>United States of America</td>\n",
|
||
" <td>1983.0</td>\n",
|
||
" <td>285.43</td>\n",
|
||
" <td>2.46</td>\n",
|
||
" <td>0.03</td>\n",
|
||
" <td>26.19</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.09</td>\n",
|
||
" <td>15544.0</td>\n",
|
||
" <td>0.10</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>-51.64</td>\n",
|
||
" <td>0.11</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>NASDAQ</td>\n",
|
||
" <td>United States of America</td>\n",
|
||
" <td>1984.0</td>\n",
|
||
" <td>248.89</td>\n",
|
||
" <td>2.40</td>\n",
|
||
" <td>0.04</td>\n",
|
||
" <td>25.88</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.11</td>\n",
|
||
" <td>17121.0</td>\n",
|
||
" <td>0.08</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>-102.73</td>\n",
|
||
" <td>0.12</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" stock index country year index price log_indexprice \\\n",
|
||
"0 NASDAQ United States of America 1980.0 168.61 2.23 \n",
|
||
"1 NASDAQ United States of America 1981.0 203.15 2.31 \n",
|
||
"2 NASDAQ United States of America 1982.0 188.98 2.28 \n",
|
||
"3 NASDAQ United States of America 1983.0 285.43 2.46 \n",
|
||
"4 NASDAQ United States of America 1984.0 248.89 2.40 \n",
|
||
"\n",
|
||
" inflationrate oil prices exchange_rate gdppercent percapitaincome \\\n",
|
||
"0 0.14 21.59 1.0 0.09 12575.0 \n",
|
||
"1 0.10 31.77 1.0 0.12 13976.0 \n",
|
||
"2 0.06 28.52 1.0 0.04 14434.0 \n",
|
||
"3 0.03 26.19 1.0 0.09 15544.0 \n",
|
||
"4 0.04 25.88 1.0 0.11 17121.0 \n",
|
||
"\n",
|
||
" unemploymentrate manufacturingoutput tradebalance USTreasury \n",
|
||
"0 0.07 NaN -13.06 0.11 \n",
|
||
"1 0.08 NaN -12.52 0.14 \n",
|
||
"2 0.10 NaN -19.97 0.13 \n",
|
||
"3 0.10 NaN -51.64 0.11 \n",
|
||
"4 0.08 NaN -102.73 0.12 "
|
||
]
|
||
},
|
||
"execution_count": 209,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_countries = pd.read_csv(\".//static//csv//Economic Data - 9 Countries (1980-2020).csv\")\n",
|
||
"print(df_countries.columns)\n",
|
||
"df_countries.info()\n",
|
||
"df_countries.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Атрибуты объектов:\n",
|
||
"1. stock index — индекс акций.\n",
|
||
"2. country — страна.\n",
|
||
"3. year — год.\n",
|
||
"4. index price — цена индекса.\n",
|
||
"5. log_indexprice — логарифм цены индекса.\n",
|
||
"6. inflationrate — уровень инфляции.\n",
|
||
"7. oil prices — цены на нефть.\n",
|
||
"8. exchange_rate — валютный курс.\n",
|
||
"9. gdppercent — процент роста ВВП.\n",
|
||
"10. percapitaincome — доход на душу населения.\n",
|
||
"11. unemploymentrate — уровень безработицы.\n",
|
||
"12. manufacturingoutput — объём производства.\n",
|
||
"13. tradebalance — торговый баланс.\n",
|
||
"14. USTreasury — доходность казначейских облигаций США.\n",
|
||
"\n",
|
||
"Связи между объектами:\n",
|
||
"Некоторые атрибуты могут быть связаны друг с другом, например, уровень инфляции и процент роста ВВП могут коррелировать с ценами на нефть, уровнем безработицы и торговым балансом.\n",
|
||
"\n",
|
||
"Примеры бизнес-целей и эффект:\n",
|
||
"1. Прогнозирование экономического роста и планирование инвестиций:\n",
|
||
" - Бизнес-цель: Создать модель прогнозирования роста экономики для стран, чтобы принять стратегические инвестиционные решения.\n",
|
||
" - Эффект: Повышение точности экономических прогнозов и улучшение прибыльности инвестиционных стратегий.\n",
|
||
"\n",
|
||
"2. Анализ и оптимизация торговой политики:\n",
|
||
" - Бизнес-цель: Изучение влияния изменений торгового баланса и валютных курсов на экономику стран.\n",
|
||
" - Эффект: Улучшение торговых соглашений и политики, что приведёт к более устойчивому экономическому росту.\n",
|
||
"\n",
|
||
"Примеры целей технического проекта:\n",
|
||
"1. Цель: Построение модели для прогнозирования уровня инфляции.\n",
|
||
" - Вход: Уровень безработицы, ВВП, доход на душу населения, валютный курс, цены на нефть.\n",
|
||
" - Целевой признак: inflationrate.\n",
|
||
"\n",
|
||
"2. Цель: Построение модели для оценки экономического роста.\n",
|
||
" - Вход: Торговый баланс, доход на душу населения, валютный курс, инфляция.\n",
|
||
" - Целевой признак: gdppercent."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Проверка на пустые значения и дубликаты"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 210,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Пустые значения по столбцам:\n",
|
||
"stock index 0\n",
|
||
"country 0\n",
|
||
"year 0\n",
|
||
"index price 52\n",
|
||
"log_indexprice 0\n",
|
||
"inflationrate 43\n",
|
||
"oil prices 0\n",
|
||
"exchange_rate 2\n",
|
||
"gdppercent 19\n",
|
||
"percapitaincome 1\n",
|
||
"unemploymentrate 21\n",
|
||
"manufacturingoutput 91\n",
|
||
"tradebalance 4\n",
|
||
"USTreasury 0\n",
|
||
"dtype: int64\n",
|
||
"\n",
|
||
"Количество дубликатов: 0\n",
|
||
"\n",
|
||
"Статистический обзор данных:\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>year</th>\n",
|
||
" <th>index price</th>\n",
|
||
" <th>log_indexprice</th>\n",
|
||
" <th>inflationrate</th>\n",
|
||
" <th>oil prices</th>\n",
|
||
" <th>exchange_rate</th>\n",
|
||
" <th>gdppercent</th>\n",
|
||
" <th>percapitaincome</th>\n",
|
||
" <th>unemploymentrate</th>\n",
|
||
" <th>manufacturingoutput</th>\n",
|
||
" <th>tradebalance</th>\n",
|
||
" <th>USTreasury</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>count</th>\n",
|
||
" <td>369.000000</td>\n",
|
||
" <td>317.000000</td>\n",
|
||
" <td>369.000000</td>\n",
|
||
" <td>326.000000</td>\n",
|
||
" <td>369.000000</td>\n",
|
||
" <td>367.000000</td>\n",
|
||
" <td>350.000000</td>\n",
|
||
" <td>368.000000</td>\n",
|
||
" <td>348.000000</td>\n",
|
||
" <td>278.000000</td>\n",
|
||
" <td>365.000000</td>\n",
|
||
" <td>369.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>mean</th>\n",
|
||
" <td>2000.000000</td>\n",
|
||
" <td>7898.648297</td>\n",
|
||
" <td>3.610542</td>\n",
|
||
" <td>0.041748</td>\n",
|
||
" <td>39.743171</td>\n",
|
||
" <td>27.897548</td>\n",
|
||
" <td>0.037114</td>\n",
|
||
" <td>20719.964674</td>\n",
|
||
" <td>0.068908</td>\n",
|
||
" <td>328.084820</td>\n",
|
||
" <td>-15.996384</td>\n",
|
||
" <td>0.059024</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>std</th>\n",
|
||
" <td>11.848225</td>\n",
|
||
" <td>7811.336862</td>\n",
|
||
" <td>0.482481</td>\n",
|
||
" <td>0.039579</td>\n",
|
||
" <td>25.452654</td>\n",
|
||
" <td>49.620521</td>\n",
|
||
" <td>0.037850</td>\n",
|
||
" <td>17435.037783</td>\n",
|
||
" <td>0.043207</td>\n",
|
||
" <td>622.395923</td>\n",
|
||
" <td>154.557170</td>\n",
|
||
" <td>0.033086</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>min</th>\n",
|
||
" <td>1980.000000</td>\n",
|
||
" <td>168.610000</td>\n",
|
||
" <td>2.230000</td>\n",
|
||
" <td>-0.040000</td>\n",
|
||
" <td>11.350000</td>\n",
|
||
" <td>0.900000</td>\n",
|
||
" <td>-0.110000</td>\n",
|
||
" <td>27.000000</td>\n",
|
||
" <td>0.020000</td>\n",
|
||
" <td>0.590000</td>\n",
|
||
" <td>-770.930000</td>\n",
|
||
" <td>0.010000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>25%</th>\n",
|
||
" <td>1990.000000</td>\n",
|
||
" <td>2407.100000</td>\n",
|
||
" <td>3.320000</td>\n",
|
||
" <td>0.020000</td>\n",
|
||
" <td>19.410000</td>\n",
|
||
" <td>1.330000</td>\n",
|
||
" <td>0.020000</td>\n",
|
||
" <td>2090.250000</td>\n",
|
||
" <td>0.040000</td>\n",
|
||
" <td>80.380000</td>\n",
|
||
" <td>-25.370000</td>\n",
|
||
" <td>0.030000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>50%</th>\n",
|
||
" <td>2000.000000</td>\n",
|
||
" <td>5160.100000</td>\n",
|
||
" <td>3.600000</td>\n",
|
||
" <td>0.030000</td>\n",
|
||
" <td>28.520000</td>\n",
|
||
" <td>5.440000</td>\n",
|
||
" <td>0.030000</td>\n",
|
||
" <td>19969.500000</td>\n",
|
||
" <td>0.060000</td>\n",
|
||
" <td>188.160000</td>\n",
|
||
" <td>-0.140000</td>\n",
|
||
" <td>0.050000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>75%</th>\n",
|
||
" <td>2010.000000</td>\n",
|
||
" <td>10279.500000</td>\n",
|
||
" <td>3.980000</td>\n",
|
||
" <td>0.057500</td>\n",
|
||
" <td>57.880000</td>\n",
|
||
" <td>15.055000</td>\n",
|
||
" <td>0.060000</td>\n",
|
||
" <td>36384.000000</td>\n",
|
||
" <td>0.090000</td>\n",
|
||
" <td>271.977500</td>\n",
|
||
" <td>19.080000</td>\n",
|
||
" <td>0.080000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>max</th>\n",
|
||
" <td>2020.000000</td>\n",
|
||
" <td>47751.330000</td>\n",
|
||
" <td>4.680000</td>\n",
|
||
" <td>0.240000</td>\n",
|
||
" <td>98.560000</td>\n",
|
||
" <td>249.050000</td>\n",
|
||
" <td>0.150000</td>\n",
|
||
" <td>65280.000000</td>\n",
|
||
" <td>0.260000</td>\n",
|
||
" <td>3868.460000</td>\n",
|
||
" <td>366.140000</td>\n",
|
||
" <td>0.140000</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" year index price log_indexprice inflationrate oil prices \\\n",
|
||
"count 369.000000 317.000000 369.000000 326.000000 369.000000 \n",
|
||
"mean 2000.000000 7898.648297 3.610542 0.041748 39.743171 \n",
|
||
"std 11.848225 7811.336862 0.482481 0.039579 25.452654 \n",
|
||
"min 1980.000000 168.610000 2.230000 -0.040000 11.350000 \n",
|
||
"25% 1990.000000 2407.100000 3.320000 0.020000 19.410000 \n",
|
||
"50% 2000.000000 5160.100000 3.600000 0.030000 28.520000 \n",
|
||
"75% 2010.000000 10279.500000 3.980000 0.057500 57.880000 \n",
|
||
"max 2020.000000 47751.330000 4.680000 0.240000 98.560000 \n",
|
||
"\n",
|
||
" exchange_rate gdppercent percapitaincome unemploymentrate \\\n",
|
||
"count 367.000000 350.000000 368.000000 348.000000 \n",
|
||
"mean 27.897548 0.037114 20719.964674 0.068908 \n",
|
||
"std 49.620521 0.037850 17435.037783 0.043207 \n",
|
||
"min 0.900000 -0.110000 27.000000 0.020000 \n",
|
||
"25% 1.330000 0.020000 2090.250000 0.040000 \n",
|
||
"50% 5.440000 0.030000 19969.500000 0.060000 \n",
|
||
"75% 15.055000 0.060000 36384.000000 0.090000 \n",
|
||
"max 249.050000 0.150000 65280.000000 0.260000 \n",
|
||
"\n",
|
||
" manufacturingoutput tradebalance USTreasury \n",
|
||
"count 278.000000 365.000000 369.000000 \n",
|
||
"mean 328.084820 -15.996384 0.059024 \n",
|
||
"std 622.395923 154.557170 0.033086 \n",
|
||
"min 0.590000 -770.930000 0.010000 \n",
|
||
"25% 80.380000 -25.370000 0.030000 \n",
|
||
"50% 188.160000 -0.140000 0.050000 \n",
|
||
"75% 271.977500 19.080000 0.080000 \n",
|
||
"max 3868.460000 366.140000 0.140000 "
|
||
]
|
||
},
|
||
"execution_count": 210,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"null_values = df_countries.isnull().sum()\n",
|
||
"print(\"Пустые значения по столбцам:\")\n",
|
||
"print(null_values)\n",
|
||
"\n",
|
||
"duplicates = df_countries.duplicated().sum()\n",
|
||
"print(f\"\\nКоличество дубликатов: {duplicates}\")\n",
|
||
"\n",
|
||
"print(\"\\nСтатистический обзор данных:\")\n",
|
||
"df_countries.describe()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Видим, что есть пустые данные, но нет дубликатов. Удаляем их"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 211,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"В наборе данных 'Countries' было удалено 150 строк с пустыми значениями.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"df_countries = drop_missing_values(df_countries, \"Countries\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Проверка на выбросы:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 212,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Количество выбросов в столбце 'year': 0\n",
|
||
"Количество выбросов в столбце 'index price': 17\n",
|
||
"Количество выбросов в столбце 'log_indexprice': 1\n",
|
||
"Количество выбросов в столбце 'inflationrate': 35\n",
|
||
"Количество выбросов в столбце 'oil prices': 0\n",
|
||
"Количество выбросов в столбце 'exchange_rate': 53\n",
|
||
"Количество выбросов в столбце 'gdppercent': 13\n",
|
||
"Количество выбросов в столбце 'percapitaincome': 0\n",
|
||
"Количество выбросов в столбце 'unemploymentrate': 9\n",
|
||
"Количество выбросов в столбце 'manufacturingoutput': 29\n",
|
||
"Количество выбросов в столбце 'tradebalance': 47\n",
|
||
"Количество выбросов в столбце 'USTreasury': 9\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAAPeCAYAAAAMETjbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN9f//8eeZMRtjZgyDGTTW7OsgFENkX0qlRHaJSpJWZSspiVTWzwcjaVPiU0iEErJl30JDhWxjBtln3r8//M71nWOuMYszq8f9dnOrua73eV+v632u87re53Wucx2HMcYIAAAAAAAAAAC48MjqAAAAAAAAAAAAyI4ooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigI1s5dOiQHA6HoqKisjoUF99//71q1KghX19fORwOxcbGZnVIAHDLcnrOjYqKksPh0KFDh9y27YzoM7OsWrVKDodDq1atyupQALgJedo9GjdurMaNG2f7PjNCyZIl1aNHj6wOA0A63O7ngP3796t58+YKDAyUw+HQggULMuS8kl3HGdkLBfRcyplUEv8rXLiwmjRpoiVLlmR6PM439c5/Xl5eKl26tLp166Y//vjDLdtYu3atRowY4fbi9unTp9WpUyf5+flp0qRJmjNnjvLly+fWbQDI2ci57kPOBZARyNPuQ54GkNNwDnCfzDwHdO/eXTt27NDo0aM1Z84c1a5d+5b6+/TTT/X++++7J7gs8tZbb2nBggVZHcZtKU9WB4CMNWrUKJUqVUrGGB0/flxRUVFq3bq1vv32W7Vt2zbT4xk4cKDq1Kmjq1ev6rffftP06dO1aNEi7dixQ2FhYbfU99q1azVy5Ej16NFDQUFB7glY0saNG3Xu3Dm98cYbatasmdv6BZD7kHNvXVpy7uOPP65HH31UPj4+btt+TtaoUSNdvHhR3t7eWR0KkG2Rp29dTpwb//DDD1kdQpbZt2+fPDy4bg6QOAe4Q2bN1S9evKh169Zp6NChevrpp9MbrotPP/1UO3fu1KBBg1yWh4eH6+LFi/Ly8nLLdjLSW2+9pYceekj3339/Vody26GAnsu1atXK5VO63r17q0iRIvrss8+y5ATRsGFDPfTQQ5Kknj176s4779TAgQM1e/ZsvfLKK5keT2qcOHFCktx60skMly5dkre3NxNmIBORc29dWnKup6enPD09Mzii7C9xvvf19c3qcIBsjTx963Li3Ph2+2DRGKNLly7Jz8+PD5mBRDgH3LrMmqufPHky1du5VQ6HI0vm0AkJCbpy5Qrz9xyCytptJigoSH5+fsqTx/Wzk3///VfPP/+8SpQoIR8fH5UvX17jxo2TMUbS9U//KlSooAoVKujixYvW42JiYhQaGqoGDRooPj4+zfHce++9kqTo6OibtluxYoUaNmyofPnyKSgoSB06dNCePXus9SNGjNALL7wgSSpVqpT1VaiU7os1b948RUREyM/PT4UKFVLXrl115MgRa33jxo3VvXt3SVKdOnXkcDiSvYfgypUr5XA49M033yRZ9+mnn8rhcGjdunXWsr179+qhhx5ScHCwfH19Vbt2bf3vf/9zeVxMTIyGDBmiqlWryt/fXwEBAWrVqpW2bdvm0s75FbDPP/9cr732mooVK6a8efPq7NmzN91/ABmLnOvKnTlXsr+vYsmSJdW2bVv98ssvqlu3rnx9fVW6dGl9/PHHSR6/a9cu3XvvvfLz81Px4sX15ptvKiEhwXZbS5YsscYkf/78atOmjXbt2uUyZh4eHho2bJjL45z5f8qUKTcdm8aNG6tKlSravHmzGjRoID8/P5UqVUpTp051aXezfJ/cPdDXr1+v1q1bq0CBAsqXL5+qVaumiRMnurRJzTkJyI3I067cnaeTM3nyZFWuXFk+Pj4KCwvTU089ZXubgUmTJql06dLy8/NT3bp1tXr16nTde/zGxzjz5ZdffqnRo0erePHi8vX1VdOmTXXgwIEkj58+fbrKlCnjEoedy5cva/jw4Spbtqx8fHxUokQJvfjii7p8+bLVpnv37vL19XV5viSpRYsWKlCggI4ePSrp/85xP//8s/r166eCBQsqICBA3bp105kzZ1we6zz3LV26VLVr15afn5+mTZtmrbvxOYqNjdVzzz2nkiVLysfHR8WLF1e3bt106tSpNO0LkNNxDnCVXebqI0aMUHh4uCTphRdekMPhUMmSJZPdzsKFC9WmTRuFhYXJx8dHZcqU0RtvvOHyHDRu3FiLFi3S4cOHrfFw9pncPdBTGmdnrA6HQwcOHLCu9g8MDFTPnj114cIFl7YOh0NPP/205s6da50Dv//+e0nSuHHj1KBBAxUsWFB+fn6KiIjQV199leTx//77r2bPnm3tQ+LxP3LkiHr16qUiRYrIx8dHlStX1syZM5MdN6QNV6DncnFxcTp16pSMMTpx4oQ+/PBDnT9/Xl27drXaGGPUvn17rVy5Ur1791aNGjW0dOlSvfDCCzpy5IgmTJggPz8/zZ49W3fffbeGDh2q8ePHS5KeeuopxcXFKSoqKl2fLB48eFCSVLBgwWTbLF++XK1atVLp0qU1YsQIXbx4UR9++KHuvvtu/fbbbypZsqQ6duyo33//XZ999pkmTJigQoUKSZJCQkKS7TcqKko9e/ZUnTp1NGbMGB0/flwTJ07UmjVrtGXLFgUFBWno0KEqX768pk+fbn3dq0yZMrb9NW7cWCVKlNDcuXP1wAMPuKybO3euypQpo/r160u6XrS5++67VaxYMb388svKly+fvvzyS91///36+uuvrcf/8ccfWrBggR5++GGVKlVKx48f17Rp0xQZGandu3cn+VrXG2+8IW9vbw0ZMkSXL1++7a62AbIaOTfzcu7NHDhwQA899JB69+6t7t27a+bMmerRo4ciIiJUuXJlSdI///yjJk2a6Nq1a1Yenj59uvz8/JL0N2fOHHXv3l0tWrTQO++8owsXLmjKlCm65557tGXLFpUsWVL33nuvBgwYoDFjxuj+++9XrVq1dOzYMT3zzDNq1qyZnnzyyRTjPnPmjFq3bq1OnTqpc+fO+vLLL9W/f395e3urV69eLm1Tm++XLVumtm3bKjQ0VM8++6yKFi2qPXv26LvvvtOzzz4rKfXnJCA3IE9nfZ4eMWKERo4cqWbNmql///7at2+fpkyZoo0bN2rNmjXWV+inTJmip59+Wg0bNtRzzz2nQ4cO6f7771eBAgVUvHjxNG0zOW+//bY8PDw0ZMgQxcXFaezYserSpYvWr19vtZkxY4b69eunBg0aaNCgQfrjjz/Uvn17BQcHq0SJEla7hIQEtW/fXr/88oueeOIJVaxYUTt27NCECRP0+++/W/esnThxolasWKHu3btr3bp18vT01LRp0/TDDz9ozpw5Seb3Tz/9tIKCgjRixAhrrA4fPmx9COC0b98+de7cWf369VPfvn1Vvnx5230+f/68GjZsqD179qhXr16qVauWTp06pf/973/6+++/VahQoVTvC5DTcA7I+nOAlPJcvWPHjgoKCtJzzz2nzp07q3Xr1vL3979p7P7+/ho8eLD8/f21YsUKDRs2TGfPntW7774rSRo6dKji4uL0999/a8KECZJ00z5TM86JderUSaVKldKYMWP022+/6b///a8KFy6sd955x6XdihUr9OWXX+rpp59WoUKFrH4mTpyo9u3bq0uXLrpy5Yo+//xzPfzww/ruu+/Upk0bSdffk/Tp00d169bVE088IUnW+B8/flz16tWzivQhISFasmSJevfurbNnzya5bQ3SwSBXmjVrlpGU5J+Pj4+JiopyabtgwQIjybz55psuyx966CHjcDjMgQMHrGWvvPKK8fDwMD///LOZN2+ekWTef//9FONZuXKlkWRmzpxpTp48aY4ePWoWLVpkSpYsaRwOh9m4caMxxpjo6GgjycyaNct6bI0aNUzhwoXN6dOnrWXbtm0zHh4eplu3btayd99910gy0dHRKcZz5coVU7hwYVOlShVz8eJFa/l3331nJJlhw4ZZy5xj6YzxZl555RXj4+NjYmNjrWUnTpwwefLkMcOHD7eWNW3a1FStWtVcunTJWpaQkGAaNGhgypUrZy27dOmSiY+Pd9lGdHS08fHxMaNGjbKWOce3dOnS5sKFCynGCcC9yLk3l1E519k2cQzh4eFGkvn555+tZSdOnDA+Pj7m+eeft5YNGjTISDLr1693aRcYGOjS57lz50xQUJDp27evy7b/+ecfExgY6LL833//NWXLljWVK1c2ly5dMm3atDEBAQHm8OHDKe5LZGSkkWTee+89a9nly5et5+PKlSvGmJvne+e6lStXGmOMuXbtmilVqpQJDw83Z86ccWmbkJBg/X9qz0lATkaevrnMytMnTpww3t7epnnz5i5z3I8++sgaD2Ou57+CBQuaOnXqmKtXr1rtoqKijCQTGRmZ4rYTi4yMdHmMc/wrVqxoLl++bC2fOHGikWR27NjhMi41atRwaTd9+vQkccyZM8d4eHiY1atXu2x76tSpRpJZs2aNtWzp0qXWMfbHH38Yf39/c//999uOXUREhHUOMMaYsWPHGklm4cKF1jLnue/7779Psu/h4eGme/fu1t/Dhg0zksz8+fOTtHWeG9KyL0BOwDng5rLjXN257++++26KfdrVQPr162fy5s3rMr9t06aNCQ8PT9L2VsZ5+PDhRpLp1auXS58PPPCAKViwoMsyScbDw8Ps2rUrSQw37sOVK1dMlSpVzL333uuyPF++fC453al3794mNDTUnDp1ymX5o48+agIDA6kTuQG3cMnlJk2apGXLlmnZsmX65JNP1KRJE/Xp00fz58+32ixevFienp4aOHCgy2Off/55GWNcfpV6xIgRqly5srp3764BAwYoMjIyyeNuplevXgoJCVFYWJjatGljff0kuV9TPnbsmLZu3aoePXooODjYWl6tWjXdd999Wrx4caq3ndimTZt04sQJDRgwwOV+U23atFGFChW0aNGidPXbrVs3Xb582eWrNl988YWuXbtmfaodExOjFStWqFOnTjp37pxOnTqlU6dO6fTp02rRooX2799vfU3Kx8fHuod5fHy8Tp8+LX9/f5UvX16//fZbku13797d9upJAJmDnGsvo3JucipVqqSGDRtaf4eEhKh8+fL6448/rGWLFy9WvXr1VLduXZd2Xbp0celr2bJlio2NVefOna18ferUKXl6euquu+7SypUrrbZ58+ZVVFSU9uzZo0aNGmnRokWaMGGC7rjjjlTFnSdPHvXr18/629vbW/369dOJEye0efNml7apyfdbtmxRdHS0Bg0alOT+kc6rFtNyTgJyA/K0vczK08uXL9eVK1c0aNAgl9/p6du3rwICAqztbNq0SadPn1bfvn1dbq3QpUsXFShQwC2xSNfvOZz4GzzOc4fzfOEclyeffNKlXY8ePRQYGOjS17x581SxYkVVqFDB5XzhvCVD4vNF8+bN1a9fP40aNUodO3aUr6+vdcuVGz3xxBMuP2zXv39/5cmTJ8lzXapUKbVo0SLFff76669VvXp1228XOc8NadkXICfhHGAvO87V0yLxnNg5n23YsKEuXLigvXv3prm/9Izzjd82bdiwoU6fPp3ktrqRkZGqVKnSTffhzJkziouLU8OGDW3rPjcyxujrr79Wu3btZIxxydstWrRQXFxcqvrBzXELl1yubt26Lsm3c+fOqlmzpp5++mm1bdtW3t7eOnz4sMLCwpQ/f36Xx1asWFGSdPjwYWuZt7e3Zs6cqTp16sjX11ezZs1y+epgSoYNG6aGDRvK09NThQoVUsWKFZPcbywx57btvoJYsWJFLV26VP/++6/y5cuX6hhS6rdChQr65Zdf0tRf4sfWqVNHc+fOVe/evSVdv31LvXr1VLZsWUnXv65kjNHrr7+u119/3bafEydOqFixYkpISNDEiRM1efJkRUdHu9zDy+5rXaVKlUpX3ADcg5yb9n5vJecmx65gXaBAAZd7xh4+fFh33XVXknY3xrh//35J/3dPyhsFBAS4/H333Xerf//+mjRpklq0aJHk1is3ExYWlmRs77zzTknX781Yr149a3lq8r3za8BVqlRJtk1azklAbkCeTnu/7szTyW3H29tbpUuXttY7/+ucPzvlyZPnpvfBTasbzxfO4rzzfOGMo1y5ci7tvLy8VLp0aZdl+/fv1549e5K9RYLzh/ecxo0bp4ULF2rr1q369NNPVbhwYdvH3bhtf39/hYaGJrmXcWrfBxw8eFAPPvjgTdukdV+AnIJzQNr7zaq5elrs2rVLr732mlasWJGkYB0XF5fm/tIzzjc7nyR+v5Bcrv7uu+/05ptvauvWrS6/NZGa4+nkyZOKjY3V9OnTNX36dNs25O1bRwH9NuPh4aEmTZpo4sSJ2r9/v3Uv2LRYunSpJOnSpUvav39/moq2VatWVbNmzdK8zZykW7duevbZZ/X333/r8uXL+vXXX/XRRx9Z650/UDdkyJBkrxJxvll466239Prrr6tXr1564403FBwcLA8PDw0aNMj2h+64+hzIXsi5WSO5e06a///DT2nhzLVz5sxR0aJFk6y/8U3O5cuXrR/xPHjwoC5cuKC8efOmebspcVe+T8s5CciNyNO3N3efL6pWrWrdC/lGie+XLl3/lpCzoLFjxw517tw5zdtMzJ3vA9K6L0BOxTkga7gz98bGxioyMlIBAQEaNWqUypQpI19fX/3222966aWXbOsmGSG1+2SXq1evXq327durUaNGmjx5skJDQ+Xl5aVZs2bp008/TXHbzn3s2rWr9SOvN6pWrVqK/eDmKKDfhq5duybp+g/ISFJ4eLiWL1+uc+fOuXzK6vyqi/PXjyVp+/btGjVqlHr27KmtW7eqT58+2rFjR5KvMLqLc9v79u1Lsm7v3r0qVKiQ9alfWj7pTdzvjVcV7tu3z2Wf0+rRRx/V4MGD9dlnn+nixYvy8vLSI488Yq13Xq3i5eWV4snyq6++UpMmTTRjxgyX5bGxsdYPgQDI3si5GZtz0ys8PNy6uvzGeBJz/jBP4cKFU/UGZ/jw4dqzZ4/GjRunl156SS+//LI++OCDVMV09OjRJFez/P7775KUrisunbHv3Lkz2djTck4CcivydObl6cTbSXwF95UrVxQdHW3lIWe7AwcOqEmTJla7a9eu6dChQ5lWCHDGsX//fpdxuXr1qqKjo1W9enVrWZkyZbRt2zY1bdo0xbH/999/1bNnT1WqVEkNGjTQ2LFj9cADD6hOnTpJ2u7fv99lDM6fP69jx46pdevW6dqnMmXKaOfOnSm2Se2+ADkd54DsOVdPrVWrVun06dOaP3++GjVqZC2Pjo5O0ja1Y5KWcXaHr7/+Wr6+vlq6dKl8fHys5bNmzUrS1m4fQkJClD9/fsXHxzOfz0DcA/02c/XqVf3www/y9va2voLUunVrxcfHu1wlLUkTJkyQw+FQq1atrMf26NFDYWFhmjhxoqKionT8+HE999xzGRZvaGioatSoodmzZys2NtZavnPnTv3www8uE0dnAkvcLjm1a9dW4cKFNXXqVJevxyxZskR79uyxfuU4PQoVKqRWrVrpk08+0dy5c9WyZUuXYnfhwoXVuHFjTZs2TceOHUvy+JMnT1r/7+npmeQTy3nz5nE/WiCHIOdel5E5N71at26tX3/9VRs2bLCWnTx5UnPnznVp16JFCwUEBOitt97S1atXk/STOGevX79e48aN06BBg/T888/rhRde0EcffaSffvopVTFdu3bN5R64V65c0bRp0xQSEqKIiIi07qJq1aqlUqVK6f3330/yPDnPLWk5JwG5EXn6uszK082aNZO3t7c++OADlznujBkzFBcXZ22ndu3aKliwoP7zn/9YxS3p+q0R0/sV//SoXbu2QkJCNHXqVF25csVaHhUVlWRcO3XqpCNHjug///lPkn4uXryof//91/r7pZde0p9//qnZs2dr/PjxKlmypLp37+4y9k7Tp093Of9MmTJF165ds47DtHrwwQe1bds2ffPNN0nWOZ+TtOwLkJNxDrguO87VU8t55Xfic8qVK1c0efLkJG3z5cuXqlu6pGWc3cHT01MOh8Pllr2HDh3SggULkrTNly9fkufU09NTDz74oL7++mvbD0iZz7sHV6DnckuWLLE+KT1x4oQ+/fRT7d+/Xy+//LJ1H6Z27dqpSZMmGjp0qA4dOqTq1avrhx9+0MKFCzVo0CDrCjbn/Zh+/PFH5c+fX9WqVdOwYcP02muv6aGHHnJ7EnF699131apVK9WvX1+9e/fWxYsX9eGHHyowMFAjRoyw2jmLC0OHDtWjjz4qLy8vtWvXzvaTQS8vL73zzjvq2bOnIiMj1blzZx0/flwTJ05UyZIlb/mk161bNz300EOSpDfeeCPJ+kmTJumee+5R1apV1bdvX5UuXVrHjx/XunXr9Pfff2vbtm2SpLZt21qfaDdo0EA7duzQ3Llzk9xzEUD2QM7NmpybHi+++KLmzJmjli1b6tlnn1W+fPk0ffp0hYeHa/v27Va7gIAATZkyRY8//rhq1aqlRx99VCEhIfrzzz+1aNEi3X333froo4906dIlde/eXeXKldPo0aMlSSNHjtS3336rnj17aseOHSleqRIWFqZ33nlHhw4d0p133qkvvvhCW7du1fTp011+QC61PDw8NGXKFLVr1041atRQz549FRoaqr1792rXrl3WV45Te04CcgPydNbm6ZCQEL3yyisaOXKkWrZsqfbt22vfvn2aPHmy6tSpo65du0q6fl/hESNG6JlnntG9996rTp066dChQ4qKilKZMmUy7apoLy8vvfnmm+rXr5/uvfdePfLII4qOjtasWbOSzMcff/xxffnll3ryySe1cuVK3X333YqPj9fevXv15ZdfaunSpapdu7ZWrFihyZMna/jw4apVq5ak61cZNm7cWK+//rrGjh3r0u+VK1fUtGlTderUyRqre+65R+3bt0/XPr3wwgv66quv9PDDD6tXr16KiIhQTEyM/ve//2nq1KmqXr16qvcFyGk4B+ScuXpqNWjQQAUKFFD37t01cOBAORwOzZkzx/Z2MBEREfriiy80ePBg1alTR/7+/mrXrp1tv6kdZ3do06aNxo8fr5YtW+qxxx7TiRMnNGnSJJUtW9blfYlzH5YvX67x48crLCxMpUqV0l133aW3335bK1eu1F133aW+ffuqUqVKiomJ0W+//ably5crJibGrTHflgxypVmzZhlJLv98fX1NjRo1zJQpU0xCQoJL+3PnzpnnnnvOhIWFGS8vL1OuXDnz7rvvWu02b95s8uTJY5555hmXx127ds3UqVPHhIWFmTNnziQbz8qVK40kM2/evJvGHR0dbSSZWbNmuSxfvny5ufvuu42fn58JCAgw7dq1M7t3707y+DfeeMMUK1bMeHh4GEkmOjr6ptv74osvTM2aNY2Pj48JDg42Xbp0MX///bdLG+dYbty48aZ9JXb58mVToEABExgYaC5evGjb5uDBg6Zbt26maNGixsvLyxQrVsy0bdvWfPXVV1abS5cumeeff96EhoYaPz8/c/fdd5t169aZyMhIExkZabVL7fgCyBjk3KzJuc62ibcbHh5u2rRpk6TtjXnTGGO2b99uIiMjja+vrylWrJh54403zIwZM2z3ZeXKlaZFixYmMDDQ+Pr6mjJlypgePXqYTZs2GWOMee6554ynp6dZv369y+M2bdpk8uTJY/r373/TfYmMjDSVK1c2mzZtMvXr1ze+vr4mPDzcfPTRR0niSO65da5buXKly/JffvnF3HfffSZ//vwmX758plq1aubDDz90aZOacxKQk5Gns0+eNsaYjz76yFSoUMF4eXmZIkWKmP79+9uO1wcffGDCw8ONj4+PqVu3rlmzZo2JiIgwLVu2THHbiaV27pzceE+ePNmUKlXK+Pj4mNq1a5uff/7Z9rxy5coV884775jKlSsbHx8fU6BAARMREWFGjhxp4uLizNmzZ014eLipVauWuXr1qstjn3vuOePh4WHWrVvnMnY//fSTeeKJJ0yBAgWMv7+/6dKlizl9+rTLY5M79znXde/e3WXZ6dOnzdNPP22KFStmvL29TfHixU337t3NqVOnUr0vQE7COSD7nANSO1d37vu7776bYp9r1qwx9erVM35+fiYsLMy8+OKLZunSpUnmxefPnzePPfaYCQoKMpJMeHi4y7bSM87Dhw83kszJkydTjFOSeeqpp2zHasaMGaZcuXLGx8fHVKhQwcyaNcvqO7G9e/eaRo0aGT8/PyPJJb8fP37cPPXUU6ZEiRLGy8vLFC1a1DRt2tRMnz7ddptIG4cx6bhLP4CbunbtmsLCwtSuXbsk9y8HAOBGjRs31qlTp1K8Ly0A3M4SEhIUEhKijh072t5eJDeJiopSz549tXHjRq72BgAgi3EPdCADLFiwQCdPnlS3bt2yOhQAAAAgx7l06VKSr+B//PHHiomJUePGjbMmKAAAcFviHuiAG61fv17bt2/XG2+8oZo1ayoyMjKrQwIAAABynF9//VXPPfecHn74YRUsWFC//fabZsyYoSpVqujhhx+WdP2H0RL/6NqNvL29FRwcnFkhAwCAXIoCOuBGU6ZM0SeffKIaNWooKioqq8MBAAAAcqSSJUuqRIkS+uCDDxQTE6Pg4GB169ZNb7/9try9vSVJderU0eHDh5PtIzIyUqtWrcqkiAEAQG7FPdABAAAAADnOmjVrdPHixWTXFyhQQBEREZkYEQAAyI0ooAMAAAAAAAAAYIMfEQUAAAAAAAAAwEa674GekJCgo0ePKn/+/HI4HO6MCQByLWOMzp07p7CwMHl4ZM/PMMnvAJB25HcAyJ1yQn6XyPEAkB6pzfHpLqAfPXpUJUqUSO/DAeC29tdff6l48eJZHYYt8jsApB/5HQByp+yc3yVyPADcipRyfLoL6Pnz57c2EBAQkN5uAOC2cvbsWZUoUcLKodkR+R0A0o78DgC5U07I7xI5HgDSI7U5Pt0FdOdXggICAkjOAJBG2flrleR3AEg/8jsA5E7ZOb9L5HgAuBUp5fjsewMvAAAAAAAAAACyEAV0AAAAAAAAAABsUEAHAAAAAAAAAMAGBXQAAAAAAAAAAGxQQAcAAAAAAAAAwAYFdAAAAAAAAAAAbFBABwAAAAAAAADABgV0AAAAAAAAAABsUEAHAAAAAAAAAMAGBXQAAAAAAAAAAGxQQAcAAAAAAAAAwAYFdAAAAAAAAAAAbFBABwAAAAAAAADABgV0AAAAAAAAAABsUEAHAAAAAAAAAMAGBXQAAAAAAAAAAGxQQAcAAAAAAAAAwAYFdAAAAAAAAAAAbFBABwAAAAAAAADABgV0AAAAAAAAAABsUEAHAAAAAAAAAMBGnqwOALe348ePKy4uLqvDwC0KDAxUkSJFsjoM5CK5ITfwugAA5Ba54byc1ZgXAHCXzMzJ5C7gOgroyDLHjx9X18e76eqVy1kdCm6Rl7ePPpnzMSdWuEVuyQ28LgAAuUFuOS9nNeYFANxh7969GjDgKSUkxGfK9shdwHUU0JFl4uLidPXKZV0sHakE38CsDifDeVyMlV/0z7pYqpES/IKyOhy38bgUJ/3xk+Li4jipwi3ckRuy+vXG6wIAkFvkhDl7Vp/3U8K8AIC7/PXXX0pIiNelYrUUH1g8Q7dF7gL+DwV0ZLkE30Al5CuU1WFkmgS/oNtqf4H0ckdu4PUGAIB75IQ5O+d9ALcL4+1PvgMyET8iCgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANiggA4AAAAAAAAAgA0K6AAAAAAAAAAA2KCADgAAAAAAAACADQroAAAAAAAAAADYoIAOAAAAAAAAAIANCugAAAAAAAAAANjIkgL6pUuX9Pvvv+vSpUtZsXkAuCXksOQxNrgZjg8ATuQDAJmJnIOsxjF4c4wPsrssKaD/+eefeuKJJ/Tnn39mxeYB4JaQw5LH2OBmOD4AOJEPAGQmcg6yGsfgzTE+yO64hQsAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADbyZHUAAADg9hYfH6/t27crJiZGwcHBqlatmiRp+/btOnXqlGJjYxUUFKTg4GAlJCRo+/btkqQaNWqoRo0a8vT0TLHvU6dOKSYmRmfPnpWHh4eqVasmDw8Pq29Jio2NtbafuM8b46tcubJ27drlEu/NYnCXK1euaOHChTp69KjCwsLUoUMHeXt73/QxdmObGbFmtxhSI6fEmVUYHwDIndyV39MzT8nIeOLi4jR06FAdP35cRYoU0ejRoxUYGJjmfpBzxMTEaPDgwTp9+rQKFiyo8ePHKzg4OM39nD9/XmPGjLGO5VdeeUX+/v5Z1o+7jmV3vUazUz+ZOT+lgA4AALLMzz//rMmTJ+uff/6xliUuaN/MnDlzFBQUpMGDB6tRo0ap6js1ihYtqgEDBqhRo0a2fXh6eio+Pt62fUaZOnWq5s2b57LdqVOn6uGHH9aTTz5p+xi72DMj1uwWQ2rklDizCuMDALmTu/J7euYpGRlPly5ddOTIEevvkydPqkOHDipWrJjmzp2b6n6Qc3Ts2FExMTHW3+fOnVPHjh0VHBys+fPnp7qfJ598Unv37rX+jo6OVtu2bVWhQgVNnTo10/tx17Hsrtdoduons+en3MIFAABkiZ9//lnDhw9X6dKlNWnSJC1evFh9+/ZVbGysVTy/66671L59e+sxvr6+kqQePXqoatWqio2N1bBhw/Tzzz/b9p346owyZcqoePHikiQ/Pz9r+R133KGqVavK4XCob9++Kl26tIYPH66pU6e6xDd06FBJUkBAgBwOh4YOHapJkyZZ7W+MwV2mTp2qzz//XAEBARoyZIi+/vprDRkyRAEBAfr8889tJ+F2Y5sZsWa3GFIjp8SZVRgfAMid3JXf0zNPych4Ehcc69atq48++kh169aVJB05ckRdunRJVT/IORIXzytVqqT33ntPlSpVknT9qvSOHTumqh9n0dvhcKh58+b673//q+bNm8vhcGjv3r2pLuy6qx93Hcvueo1mp36yYn5KAR0AAGS6+Ph4TZ48WfXr19ebb76pypUry8fHR99++63q1asnb29v+fj4aOTIkdqwYYO8vb0VFBSkoKAg1a9fX0uXLtX48eNVv359+fj4aPLkydYVDM6+69Wrp7i4OPn4+Kh+/fqaOnWqrl27pgIFCiggIEDe3t7y8PDQlStXrL6+++47jRw5UvXq1dO8efNUr149vfnmm6pQoYJmzJihBg0aaN68eapfv75mzpypChUq6M0331T9+vU1ZcoUl6so3OHKlSuaN2+eChQooHnz5qlt27YqWLCg2rZt67L8ypUrNx3bvHnzqnLlyhkaa2LZIYbcFGdWYXwAIHdyV35PzzwlI+OJi4uzCo6LFy/W2LFjVaVKFY0dO1aLFy+WdL3wGBcXl4bRQnYWExNjFc+/++47TZ48WREREZo8ebK+++67JG2Sc/78eavovWTJEr366qsqW7asXn31VS1ZssQqfp8/fz5T+nHXseyu12h26ier5qepvoXL5cuXdfnyZevvs2fP3vLGDx8+fMt9IOfi+c9dbqfnM7fta3bL77lpfHPTvrhD4vHYvn27/vnnH73++uvy8PBwWfbII4/o119/lSR9++231tfynnnmGb333nt65JFHtG7dOu3cuVNdu3bVunXr9M8//2j79u2qWbOmSz/r1q2TJHXt2lU7d+7UP//8oyFDhmjcuHFWLP/884927typLl266KmnntLOnTtVt25drVu3TnXr1pWHh4e2bNlixZsnTx6rrXObN/7tLgsXLlR8fLx69+6tPHlcp2158uRRr1699N5772nhwoV6+OGHkx1bJw8PjwyLNbHsEENq5JQ40+tW83tmjA95MvvjOXIfxjLr5Maxv5Uc7678np55SkbG4/y2YN26dZU3b16XdXnz5lWdOnW0ceNGDR06VB999FGy/WSkWz0Wjx075qZIUi8zXj/p3cbgwYMlXb/y/Mb7i/v7+6tixYras2ePBg8erKioqGT7GTNmjCTpvvvus77x6uTr66tmzZpp2bJlGjNmjEaPHp3h/bjrWHbXazQ79ZNV8/dUF9DHjBmjkSNHum3Dkm56sADIWXg951zk94zDOCTPeRVIqVKlkixLPNk8evSo9f/169eXJPn4+FjtncsSP975X2c753acxfTEj0n8WOfymJgY67HOWG6M1/nfG5endHVLWjn33y7mxMsTj5Pd2CaWUbEmlh1iSI2cEmd63Wp+z4zxIU/idsLxDne6lRzvrvyennlKRsZz/PhxSVK3bt1s1z/++OPauHGj1S4r5MQ8kJ1jPn36tCSpd+/etut79uypF1980WqXHOcx2qlTJ9v1Dz/8sJYtW5biseyuftx1LLvrNZqd+smq+XuqC+ivvPKK9cmOdP3TzRIlStzSxocOHarw8PBb6gM51+HDh7N1Ikba3E6v59x27Ga3/J6bxvd2el2kRuLnNjg4WNL1H9SpXLmyy7JLly5ZjwkLC7P+31kAd15tFRwcrOjoaGu98/HO/ya+Kis6Otpa7uwnscR9BQcH69ChQy6x3Bhv4rbO5Yn/dhfn/q9bt05t27ZNst65L4nHyW5sE8uoWBPLDjGkRk6JM71uNb9nxviQJ7O/3HRezmoc71knNx7Ht5Lj3ZXf0zNPych4ihQpopMnT+rjjz/W2LFjk6yfM2eO1S6r3Goe+PXXXzVz5kw3RpSyzMhd6X2NFixYUOfOndOMGTMUERGRZP2sWbOsdjcTFham6Ohoffnll3r11VeTrJ83b57VLjP6cdex7K7XaHbqJ6vm76kuoPv4+LhcyeUO4eHhuvPOO93aJ4Cswes55yK/ZxzGIXnVqlVT0aJFNXfuXL355pvy8PCwlq1fv17e3t5yOBxq166dvv76a8XExGjGjBkqWrSoNmzYoNDQUFWpUkXDhg2Tj4+PChQooGrVqrn0vWHDBhUtWlRnzpzRJ598olGjRqlo0aKaMWOGihQpojNnzujatWsqXLiwqlSpouHDh1v9fvnll/L09NSGDRvUoUMHl3hHjRqluXPnKjQ0VNWqVVNCQoLL3+7UoUMHTZ06VTNmzFDLli1dvup47do1zZw5U56enurQocNNx9YpI2NNLDvEkBo5Jc70utX8nhnjQ57E7YTjHe50KzneXfk9PfOUjIxn9OjR6tChgzZs2KALFy643PriwoUL2rhxo9Uuq9xqHsiK2xFl59w1fvx4dezYUbt379b58+ddbuNy/vx57dmzx2p3M6+88oratm2rZcuWafDgwS7fiL106ZKWL19utcuMftx1LLvrNZqd+smq+Ts/IgoAADKdp6enBgwYoHXr1um1117Trl27dPnyZbVr106//vqrrly5osuXL2v48OGqW7eurly5otjYWMXGxmrdunVq3ry5Bg8erHXr1uny5csaMGCAPD09Xfr+9ddfFRgYqMuXL2vdunXq16+f8uTJozNnzujs2bO6cuWKEhIS5O3tbfXVtm1bDR8+XL/++qsefvhh/frrr3rttde0d+9e9e7dW2vXrtXDDz+sdevWqVevXtq7d69ee+01rVu3Tv3797dicBdvb289/PDDOnPmjB5++GF9++23OnXqlL799luX5d7e3jcd2wsXLmjXrl0ZGmti2SGG3BRnVmF8ACB3cld+T888JSPjCQwMVLFixSRJrVu31gsvvKDt27frhRdeUOvWrSVJxYoVU2BgYBpGC9lZcHCwdaVx27Zt1b9/f23YsEH9+/e3rnBO3CY5/v7+qlChgowxatWqlUaPHq3ff/9do0ePVqtWrWSMUYUKFZLcZz2j+nHXseyu12h26ier5qepvgIdAADAnRo1aqSRI0dq8uTJeuqpp6zlQUFBkqTY2FitX7/e5THOW6rMnj3bajt48GA1atQo2b6d/vjjD+v/L168aP3/n3/+af3/f/7zH4WGhmrkyJFq1KiRKlWqlCS+s2fPyhhjXfGRuH1GePLJJyVd/8rne++9Zy339PTUo48+aq1PLLmxzehYs1sMqZFT4swqjA8A5E7uyu/pmadkZDxz585Vly5ddOTIEW3cuNG6Ule6XnCcO3duqvpBzjF//nx17NhRMTEx2rNnj1588UVrXXBwsObPn5+qfqZOnaonn3xSe/fu1bJly7Rs2TJrXYUKFTR16tRM7cddx7K7XqPZqZ+smJ9SQAcAAFmmUaNGuvvuu7V9+3bFxMQoODjY+rrd9u3bderUKcXGxiooKEjBwcFKSEjQ9u3bJUk1atRQjRo1kr26IHHfp06dUkxMjM6ePWvdLsbDw8PqW7pesHdu39mnXXyVK1fWrl27XOLN6Ctwn3zySfXq1UsLFy7U0aNHFRYWpg4dOtz06ozkxjYzrxbODjGkRk6JM6swPgCQO7krv6dnnpKR8cydO1dxcXEaOnSojh8/riJFimj06NFceZ6LzZ8/XzExMRo8eLBOnz6tggULavz48Wm+D/bUqVN1/vx5jRkzxjqWX3nllRSvGM+oftx1LLvrNZqd+sns+SkFdAAAkKU8PT1Vs2bNJMvtlklSnTp1brnvtLDr41b7TA/nVx7Twh37f6uyQwypkVPizCqMDwDkTu7K7+mZp2RkPIGBgfroo49uuR/kHMHBwYqKirrlfvz9/d1yn3x39eOuY9ldr9Hs1E9mzk+5BzoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYCNLCuh33HGHpk+frjvuuCMrNg8At4QcljzGBjfD8QHAiXwAIDORc5DVOAZvjvFBdpcnKzbq6+urO++8Mys2DQC3jByWPMYGN8PxAcCJfAAgM5FzkNU4Bm+O8UF2xy1cAAAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALCRJ6sDADwuxWV1CJnC42Ksy39zi9vl+UPmu5VjK6tfb7wuAAC5TXY+t2X1eT8l2XnsAORMjivn5fHvqQzdBrkL+D8U0JFlAgMD5eXtI/3xU1aHkqn8on/O6hDczsvbR4GBgVkdBnIJd+aGrHy98boAAOQGOWnOnp3n2cwLALhDiRIl5OHhKd8jv0lHfsvw7ZG7gOsooCPLFClSRJ/M+VhxcXyqmdMFBgaqSJEiWR0Gconckht4XQAAcoPccl7OaswLALhDhQoV9Nlnn2ZaTiZ3AddRQEeWKlKkCMkYQBLkBgAAsg/OywCQfZCTgczHj4gCAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYIMCOgAAAAAAAAAANiigAwAAAAAAAABggwI6AAAAAAAAAAA2KKADAAAAAAAAAGCDAjoAAAAAAAAAADYooAMAAAAAAAAAYCNPeh9ojJEknT171m3BAEBu58yZzhyaHZHfASDtyO8AkDvlhPwukeMBID1Sm+PTXUA/d+6cJKlEiRLp7QIAblvnzp1TYGBgVodhi/wOAOlHfgeA3Ck753eJHA8AtyKlHO8w6fwYNSEhQUePHlX+/PnlcDjS9NizZ8+qRIkS+uuvvxQQEJCezd9WGK+0YbzSjjFLm1sZL2OMzp07p7CwMHl4ZM+7aKUnv9/uxxD7f3vvv8QYsP/X93/37t0qX758rsrvt5vb/VhOLcYpZYxR6uSEccoJ83cp5+T4nPCcJ5bT4pWIObMQc8bLjHhTm+PTfQW6h4eHihcvnt6HS5ICAgJyxBOWXTBeacN4pR1jljbpHa/sfOWKdGv5/XY/htj/23v/Jcbgdt//YsWKZeviijvm77eL2/1YTi3GKWWMUepk93HK7vN3Kefl+Oz+nN8op8UrEXNmIeaMl9HxpibHZ98ZPgAAAAAAAAAAWYgCOgAAAAAAAAAANrKkgO7j46Phw4fLx8cnKzaf4zBeacN4pR1jljaMV1K3+5iw/7f3/kuMAft/e+9/bsJzmTqMU8oYo9RhnG4/Oe05z2nxSsScWYg542WneNP9I6IAAAAAAAAAAORm3MIFAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsJHuAvrPP/+sdu3aKSwsTA6HQwsWLHBZf/z4cfXo0UNhYWHKmzevWrZsqf3797u0+eeff/T444+raNGiypcvn2rVqqWvv/7apU1MTIy6dOmigIAABQUFqXfv3jp//nx6w84y7hivgwcP6oEHHlBISIgCAgLUqVMnHT9+3KVNbhmvMWPGqE6dOsqfP78KFy6s+++/X/v27XNpc+nSJT311FMqWLCg/P399eCDDyYZjz///FNt2rRR3rx5VbhwYb3wwgu6du2aS5tVq1apVq1a8vHxUdmyZRUVFZXRu+d27hqvgQMHKiIiQj4+PqpRo4bttrZv366GDRvK19dXJUqU0NixYzNqtzKMO8Zr27Zt6ty5s0qUKCE/Pz9VrFhREydOTLKt3HB8pWTSpEkqWbKkfH19ddddd2nDhg1ZHVKqpJSXjTEaNmyYQkND5efnp2bNmiXJy6nJual5zcybN08VKlSQr6+vqlatqsWLF7t9f2+U3fJsZh9HU6ZMUbVq1RQQEKCAgADVr19fS5Yssdbn5n238/bbb8vhcGjQoEHWstw+BiNGjJDD4XD5V6FCBWt9bt//21FKr3s7WZGfs1paxykqKirJa8nX1zcTI856djnUzu14PDmlZow4lnKm9NQg3PFea9WqVUmOF4fDoX/++SfJ9tJ6nk3ptequ9wnJcWe8V69e1UsvvaSqVasqX758CgsLU7du3XT06FGXPkqWLJlkLN9+++1UxevumCWpR48eSeJp2bKlS5tbrX+5O2a749HhcOjdd9+12mTmOO/atUsPPvigtc33338/XX2mZk6cmTGn5n1s48aNk4zzk08+meqYbZl0Wrx4sRk6dKiZP3++kWS++eYba11CQoKpV6+eadiwodmwYYPZu3eveeKJJ8wdd9xhzp8/b7W77777TJ06dcz69evNwYMHzRtvvGE8PDzMb7/9ZrVp2bKlqV69uvn111/N6tWrTdmyZU3nzp3TG3aWudXxOn/+vCldurR54IEHzPbt28327dtNhw4dTJ06dUx8fLzVV24ZrxYtWphZs2aZnTt3mq1bt5rWrVsnOX6efPJJU6JECfPjjz+aTZs2mXr16pkGDRpY669du2aqVKlimjVrZrZs2WIWL15sChUqZF555RWrzR9//GHy5s1rBg8ebHbv3m0+/PBD4+npab7//vtM3d9b5Y7xMsaYZ555xnz00Ufm8ccfN9WrV0+ynbi4OFOkSBHTpUsXs3PnTvPZZ58ZPz8/M23atIzeRbdyx3jNmDHDDBw40KxatcocPHjQzJkzx/j5+ZkPP/zQapNbjq+b+fzzz423t7eZOXOm2bVrl+nbt68JCgoyx48fz+rQUnSzvGyMMW+//bYJDAw0CxYsMNu2bTPt27c3pUqVMhcvXrTapJRzU/OaWbNmjfH09DRjx441u3fvNq+99prx8vIyO3bsyND9z055NiuOo//9739m0aJF5vfffzf79u0zr776qvHy8jI7d+7M9ft+ow0bNpiSJUuaatWqmWeffdZantvHYPjw4aZy5crm2LFj1r+TJ0/eNvt/O0rpdX+jrMrPWS2t4zRr1iwTEBDg8lr6559/MjnqrJNcDr3R7Xo8GZP6Mbrdj6WcKj01CHe811q5cqWRZPbt2+dyzCSujxiT9vNsal6r7nifkBx3xxsbG2uaNWtmvvjiC7N3716zbt06U7duXRMREeHST3h4uBk1apTLWCZ+X5CZMRtjTPfu3U3Lli1d4omJiXHp51bqXxkRc+JYjx07ZmbOnGkcDoc5ePCg1SYzx3nDhg1myJAh5rPPPjNFixY1EyZMSFefqaklZWbMqXkfGxkZafr27esyznFxcamKOTnpLqC7dHJD4WHfvn1GksskKz4+3oSEhJj//Oc/1rJ8+fKZjz/+2KWv4OBgq83u3buNJLNx40Zr/ZIlS4zD4TBHjhxxR+hZIj3jtXTpUuPh4eHyhMfGxhqHw2GWLVtmjMm942WMMSdOnDCSzE8//WSMub7vXl5eZt68eVabPXv2GElm3bp1xpjrxTEPDw+XSdeUKVNMQECAuXz5sjHGmBdffNFUrlzZZVuPPPKIadGiRUbvUoZKz3glNnz4cNsC+uTJk02BAgWs8TPGmJdeesmUL1/e/TuRiW51vJwGDBhgmjRpYv2dW4+vxOrWrWueeuop6+/4+HgTFhZmxowZk4VRpZ3dB5tFixY17777rrUsNjbW+Pj4mM8++8wYk7qcm5rXTKdOnUybNm1c4rnrrrtMv3793LqPKcnKPJtdjqMCBQqY//73v7fVvp87d86UK1fOLFu2zERGRlqFjdthDJI71xlze+w/rnO+7u1kl/ycHdxsnGbNmmUCAwMzN6BsIrkcaud2PZ7SMka387GUU6WnBuGu91rOAvqZM2duGmNaz7MpvVbd9T4hs+K1s2HDBiPJHD582FoWHh5uW6xMjYyIuXv37qZDhw7JbvNW61+ZMc4dOnQw9957r8uyzBzn1Gw3pT7T+3rNyJhvdOP7WGNMiueb9MiQe6BfvnxZkly+buXh4SEfHx/98ssv1rIGDRroiy++UExMjBISEvT555/r0qVLaty4sSRp3bp1CgoKUu3ata3HNGvWTB4eHlq/fn1GhJ4lUjNely9flsPhkI+Pj9XG19dXHh4eVpvcPF5xcXGSpODgYEnS5s2bdfXqVTVr1sxqU6FCBd1xxx1at26dpOvjUbVqVRUpUsRq06JFC509e1a7du2y2iTuw9nG2UdOlZ7xSo1169apUaNG8vb2tpa1aNFC+/bt05kzZ9wUfeZz13jFxcVZfUi59/hyunLlijZv3uyyjx4eHmrWrFmO38fo6Gj9888/LvsWGBiou+66yyXHpJRzU/OayS7HSVbl2exwHMXHx+vzzz/Xv//+q/r1699W+/7UU0+pTZs2SeK8XcZg//79CgsLU+nSpdWlSxf9+eefkm6f/b+d3fi6t5Nd8nNWSs04SdL58+cVHh6uEiVKqEOHDtZrILdLLofauV2Pp7SMkXT7Hks5VXpqEO56r+VUo0YNhYaG6r777tOaNWtc1qXnPJvSa9Vd7xPsZES8duLi4uRwOBQUFOSy/O2331bBggVVs2ZNvfvuu0luS5fZMa9atUqFCxdW+fLl1b9/f50+fdqlj/TWvzJjnI8fP65Fixapd+/eSdZl1ji7o89bqSVl1jz3xvexTnPnzlWhQoVUpUoVvfLKK7pw4cItbSfPLT06Gc7BfOWVVzRt2jTly5dPEyZM0N9//61jx45Z7b788ks98sgjKliwoPLkyaO8efPqm2++UdmyZSVdv0d64cKFXQPOk0fBwcG297XKqVIzXvXq1VO+fPn00ksv6a233pIxRi+//LLi4+OtNrl1vBISEjRo0CDdfffdqlKliqTr++rt7Z0k4RcpUsTa13/++cflTa1zvXPdzdqcPXtWFy9elJ+fX0bsUoZK73ilxj///KNSpUol6cO5rkCBArcWfBZw13itXbtWX3zxhRYtWmQty43HV2KnTp1SfHy87T7u3bs3i6JyD+fzbLdvifNHSjk3Na+Z5I6TzMzbWZlnz5w5k2XH0Y4dO1S/fn1dunRJ/v7++uabb1SpUiVt3bo11++7JH3++ef67bfftHHjxiTrbofn/6677lJUVJTKly+vY8eOaeTIkWrYsKF27tx5W+z/7Sq5172d7JCfs0paxql8+fKaOXOmqlWrpri4OI0bN04NGjTQrl27VLx48UyOPPPcLIfauR2Pp7SO0e16LOVk6alBuOu9VmhoqKZOnaratWvr8uXL+u9//6vGjRtr/fr1qlWrlqT0vV9J6bXqrvcJdjIi3htdunRJL730kjp37qyAgABr+cCBA1WrVi0FBwdr7dq1euWVV3Ts2DGNHz8+2XgzMuaWLVuqY8eOKlWqlA4ePKhXX31VrVq10rp16+Tp6XlL9a/MGOfZs2crf/786tixo8vyzBznlKSmz1upJWVGvcDufawkPfbYYwoPD1dYWJi2b9+ul156Sfv27dP8+fPTva0MKaB7eXlp/vz56t27t4KDg+Xp6almzZqpVatWMsZY7V5//XXFxsZq+fLlKlSokBYsWKBOnTpp9erVqlq1akaEli2lZrxCQkI0b9489e/fXx988IE8PDzUuXNn1apVSx4eGfJFgmzjqaee0s6dO12+vYDkMV5p447x2rlzpzp06KDhw4erefPmbowOyBy3a94oX768tm7dqri4OH311Vfq3r27fvrpp6wOK1P89ddfevbZZ7Vs2bLb9gfaWrVqZf1/tWrVdNdddyk8PFxffvlljv+AE8lL7nWfXHH4dpWWcapfv77L1ekNGjRQxYoVNW3aNL3xxhuZGXamIYemLD1jdDseS9nVyy+/rHfeeeembfbs2ZMpsST3Xqt8+fIqX7689XeDBg108OBBTZgwQXPmzMmU2HKaq1evqlOnTjLGaMqUKS7rBg8ebP1/tWrV5O3trX79+mnMmDEud0LILI8++qj1/1WrVlW1atVUpkwZrVq1Sk2bNs30eNJq5syZ6tKlS5L8l93GOadL7n3sE088Yf1/1apVFRoaqqZNm+rgwYMqU6ZMuraVYZXXiIgIbd26VbGxsTp27Ji+//57nT59WqVLl5YkHTx4UB999JFmzpyppk2bqnr16ho+fLhq166tSZMmSZKKFi2qEydOuPR77do1xcTEqGjRohkVepZIabwkqXnz5jp48KBOnDihU6dOac6cOTpy5IjVJjeO19NPP63vvvtOK1eudLnqoGjRorpy5YpiY2Nd2h8/ftza16JFiyb5ZWDn3ym1CQgIyJFvnm9lvFIjNWOak7hjvHbv3q2mTZvqiSee0GuvveayLrcdXzcqVKiQPD09bfcxJx4PiTnjv9m+pSbn3koeyqwxzOo8m5XHkbe3t8qWLauIiAiNGTNG1atX18SJE2+Lfd+8ebNOnDihWrVqKU+ePMqTJ49++uknffDBB8qTJ4+KFCmS68fgRkFBQbrzzjt14MCB2+IYuF0l97q3k9X5OSulZZxu5OXlpZo1a+rAgQMZHGXWSSmHxsfHJ3nM7XY8pWeMbnQ7HEvZ1fPPP689e/bc9F/p0qXTVYNw13stO3Xr1nU5XtJznk3ptequ9wl2MiJeJ2fx/PDhw1q2bJnL1ed27rrrLl27dk2HDh26abuMjDmx0qVLq1ChQtbzeyv1r4yOefXq1dq3b5/69Olz0zikjB3nlKSmz1upJWX0PDe597F27rrrLkm6pfNJhl+6HBgYqJCQEO3fv1+bNm1Shw4dJMm698yNV097enoqISFB0vVPoGNjY7V582Zr/YoVK5SQkGDtfG6T3HglVqhQIQUFBWnFihU6ceKE2rdvLyl3jZcxRk8//bS++eYbrVixIsktECIiIuTl5aUff/zRWrZv3z79+eef1lUL9evX144dO1ySqvNE4bx6pn79+i59ONvc7B6P2ZE7xis16tevr59//llXr161li1btkzly5fPUbdvcdd47dq1S02aNFH37t01evToJNvJLcdXcry9vRUREeGyjwkJCfrxxx9z/D6WKlVKRYsWddm3s2fPav369S45JqWcm5rXTFYdJ9klz2an4yghIUGXL1++Lfa9adOm2rFjh7Zu3Wr9q127trp06WL9f24fgxudP39eBw8eVGho6G1xDOA65+veTm4/j6fFzcbpRvHx8dqxY4dCQ0MzOKqsk1IO9fT0TPKY2+14Ss8Y3eh2OJayq5CQEFWoUOGm/7y9vdNVg3DXey07W7dudTle0nOeTem16q73CXYyIl7p/4rn+/fv1/Lly1WwYMFkY3DaunWrPDw8ktwmJbNivtHff/+t06dPW8/vrdS/MjrmGTNmKCIiQtWrV79pHFLGjnNKUtPnrdSSMmqem9L7WDtbt26VpFs7n6T310fPnTtntmzZYrZs2WIkmfHjx5stW7ZYv+L75ZdfmpUrV5qDBw+aBQsWmPDwcNOxY0fr8VeuXDFly5Y1DRs2NOvXrzcHDhww48aNMw6HwyxatMhq17JlS1OzZk2zfv1688svv5hy5cqZzp07pzfsLHOr42WMMTNnzjTr1q0zBw4cMHPmzDHBwcFm8ODBLm1yy3j179/fBAYGmlWrVpljx45Z/y5cuGC1efLJJ80dd9xhVqxYYTZt2mTq169v6tevb62/du2aqVKlimnevLnZunWr+f77701ISIh55ZVXrDZ//PGHyZs3r3nhhRfMnj17zKRJk4ynp6f5/vvvM3V/b5U7xssYY/bv32+2bNli+vXrZ+68807rmL18+bIx5vovMBcpUsQ8/vjjZufOnebzzz83efPmNdOmTcvU/b1V7hivHTt2mJCQENO1a1eXPk6cOGG1yS3H1818/vnnxsfHx0RFRZndu3ebJ554wgQFBZl//vknq0NLUUp5+e233zZBQUFm4cKFZvv27aZDhw6mVKlS5uLFi1YfKeXc1Lxm1qxZY/LkyWPGjRtn9uzZY4YPH268vLzMjh07MnT/s1OezYrj6OWXXzY//fSTiY6ONtu3bzcvv/yycTgc5ocffsj1+56cG3+tPrePwfPPP29WrVploqOjzZo1a0yzZs1MoUKFrDye2/f/dpTS6/7xxx83L7/8stU+q/JzVkvrOI0cOdIsXbrUHDx40GzevNk8+uijxtfX1+zatSurdiFL3JhDOZ6SSmmMOJZyppTmw3///bcpX768Wb9+vbXMHe+1JkyYYBYsWGD2799vduzYYZ599lnj4eFhli9f7hJfSufZ9LxW3fE+ITnujvfKlSumffv2pnjx4mbr1q0u4+l8n7927VozYcIEs3XrVnPw4EHzySefmJCQENOtW7cU482ImM+dO2eGDBli1q1bZ6Kjo83y5ctNrVq1TLly5cylS5dueYwzImanuLg4kzdvXjNlypQk28zscb58+bL1fjc0NNQMGTLEbNmyxezfvz/VfRqTulpSZsac0vvYAwcOmFGjRplNmzaZ6Ohos3DhQlO6dGnTqFGjVMWcnHQX0FeuXGkkJfnXvXt3Y4wxEydONMWLFzdeXl7mjjvuMK+99pr14nT6/fffTceOHU3hwoVN3rx5TbVq1czHH3/s0ub06dOmc+fOxt/f3wQEBJiePXuac+fOpTfsLOOO8XrppZdMkSJFjJeXlylXrpx57733TEJCgkub3DJedmMlycyaNctqc/HiRTNgwABToEABkzdvXvPAAw+YY8eOufRz6NAh06pVK+Pn52cKFSpknn/+eXP16lWXNitXrjQ1atQw3t7epnTp0i7byCncNV6RkZG2/URHR1tttm3bZu655x7j4+NjihUrZt5+++1M2kv3ccd4DR8+3LaP8PBwl23lhuMrJR9++KG54447jLe3t6lbt6759ddfszqkVEkpLyckJJjXX3/dFClSxPj4+JimTZuaffv2ufSRmpybmtfMl19+ae68807j7e1tKleu7PJBckbJbnk2s4+jXr16mfDwcOPt7W1CQkJM06ZNreKQMbl735NzY2Ejt4/BI488YkJDQ423t7cpVqyYeeSRR8yBAwes9bl9/29HKb3uIyMjrXOAU1bk56yW1nEaNGiQdfwWKVLEtG7d2vz2229ZEHnWujGHcjwlldIYcSzlTCnNh6Ojo40ks3LlSmuZO95rvfPOO6ZMmTLG19fXBAcHm8aNG5sVK1bYxniz82x6Xqvuep+QHHfG6xx/u3/O52Tz5s3mrrvuMoGBgcbX19dUrFjRvPXWWy7F6syM+cKFC6Z58+YmJCTEeHl5mfDwcNO3b98kFxfcav3L3ceFMcZMmzbN+Pn5mdjY2CTrMnuck3vuIyMjU92nMambE2dmzCm9j/3zzz9No0aNTHBwsPHx8TFly5Y1L7zwgomLi0t1zHYc/3/jAAAAAAAAAAAgkQy/BzoAAAAAAAAAADkRBXQAAAAAAAAAAGxQQAcAAAAAAAAAwAYFdAAAAAAAAAAAbFBABwAAAAAAAADABgV0AAAAAAAAAABsUEAHAAAAAAAAAMAGBXQAAGCrcePGGjRo0C31cejQITkcDm3dutUtMbmbO/YRALKDzMxnI0aMUI0aNW65n5IlS+r999+/5X7cITvFAgBpkdb8v3fvXtWrV0++vr6qUaOG2+br2X3eD9yKPFkdAAAAyJ7mz58vLy+vrA4jQ90O+wgA7jZkyBA988wzWR2GW23cuFH58uXL6jAAIM3SOp8dPny48uXLp3379snf31/nzp1L8zZ79Oih2NhYLViwwFpWokQJHTt2TIUKFUpzfxnBLkYgvSigA4nEx8fL4XDIw4MvZwBAcHBwVoeQYa5cuSJvb+9cvY8AkFH8/f3l7++f1WG4hfN8EBISktWhAEC6pHU+e/DgQbVp00bh4eGSlK4Cuh1PT08VLVrULX3dzNWrV7kABpmOKiGyrY8//lgFCxbU5cuXXZbff//9evzxxyVJCxcuVK1ateTr66vSpUtr5MiRunbtmtV2/Pjxqlq1qvLly6cSJUpowIABOn/+vLU+KipKQUFB+t///qdKlSrJx8dHf/75Z+bsIABkczd+HbRkyZJ666231KtXL+XPn1933HGHpk+f7vKYDRs2qGbNmvL19VXt2rW1ZcuWJP3u3LlTrVq1kr+/v4oUKaLHH39cp06dkiStWrVK3t7eWr16tdV+7NixKly4sI4fP24bpzOXL1iwQOXKlZOvr69atGihv/76y2rjvN3Af//7X5UqVUq+vr62+3j58mW99NJLKlGihHx8fFS2bFnNmDEjVbEDQHZx5swZdevWTQUKFFDevHnVqlUr7d+/36XNf/7zH5UoUUJ58+bVAw88oPHjxysoKChV/d94C5cePXro/vvv17hx4xQaGqqCBQvqqaee0tWrV602J06cULt27eTn56dSpUpp7ty5SfqNjY1Vnz59FBISooCAAN17773atm2bJOnkyZMqWrSo3nrrLav92rVr5e3trR9//NElrmnTpln71qlTJ8XFxSWJdfTo0QoLC1P58uUlJb2FS2xsrPr166ciRYrI19dXVapU0XfffWet/+WXX9SwYUP5+fmpRIkSGjhwoP79999UjR8AuFPi+WxK83WHw6HNmzdr1KhRcjgcGjFiRJL+4uPj1bt3b5UqVUp+fn4qX768Jk6caK0fMWKEZs+erYULF8rhcMjhcGjVqlW2t3D56aefVLduXfn4+Cg0NFQvv/yyS82mcePGGjhwoF588UUFBweraNGiSWJyOByaMmWK2rdvr3z58mn06NHpjlGS/vrrL3Xq1ElBQUEKDg5Whw4ddOjQoXSPP24PFNCRbT388MOKj4/X//73P2vZiRMntGjRIvXq1UurV69Wt27d9Oyzz2r37t2aNm2aoqKiNHr0aKu9h4eHPvjgA+3atUuzZ8/WihUr9OKLL7ps58KFC3rnnXf03//+V7t27VLhwoUzbR8BIKd57733rML4gAED1L9/f+3bt0+SdP78ebVt21aVKlXS5s2bNWLECA0ZMsTl8bGxsbr33ntVs2ZNbdq0Sd9//72OHz+uTp06Sfq/NwCPP/644uLitGXLFr3++uv673//qyJFiiQb14ULFzR69Gh9/PHHWrNmjWJjY/Xoo4+6tDlw4IC+/vprzZ8/P9l7M3br1k2fffaZPvjgA+3Zs0fTpk2zrrJMKXYAyC569OihTZs26X//+5/WrVsnY4xat25tFbTXrFmjJ598Us8++6y2bt2q++67z2UOnR4rV67UwYMHtXLlSs2ePVtRUVGKiopyiemvv/7SypUr9dVXX2ny5Mk6ceKESx8PP/ywTpw4oSVLlmjz5s2qVauWmjZtqpiYGIWEhGjmzJkaMWKENm3apHPnzunxxx/X008/raZNm1p9HDhwQF9++aW+/fZbff/999b5KrEff/xR+/bt07Jly1yK4k4JCQlq1aqV1qxZo08++US7d+/W22+/LU9PT0nXr95s2bKlHnzwQW3fvl1ffPGFfvnlFz399NO3NIYA4A43m68fO3ZMlStX1vPPP69jx44lmatL13Ng8eLFNW/ePO3evVvDhg3Tq6++qi+//FLS9dt4derUSS1bttSxY8d07NgxNWjQIEk/R44cUevWrVWnTh1t27ZNU6ZM0YwZM/Tmm2+6tJs9e7by5cun9evXa+zYsRo1apSWLVvm0mbEiBF64IEHtGPHDvXq1SvdMV69elUtWrRQ/vz5tXr1aq1Zs0b+/v5q2bKlrly54pbxRy5lgGysf//+plWrVtbf7733nildurRJSEgwTZs2NW+99ZZL+zlz5pjQ0NBk+5s3b54pWLCg9fesWbOMJLN161b3Bw8AOVxkZKR59tlnrb/Dw8NN165drb8TEhJM4cKFzZQpU4wxxkybNs0ULFjQXLx40WozZcoUI8ls2bLFGGPMG2+8YZo3b+6ynb/++stIMvv27TPGGHP58mVTo0YN06lTJ1OpUiXTt2/fm8bpzOW//vqrtWzPnj1Gklm/fr0xxpjhw4cbLy8vc+LEiWT3cd++fUaSWbZsme12UhM7AGQVZz77/fffjSSzZs0aa92pU6eMn5+f+fLLL40xxjzyyCOmTZs2Lo/v0qWLCQwMTNW2hg8fbqpXr2793b17dxMeHm6uXbtmLXv44YfNI488Yoz5v/y6YcMGa70zT0+YMMEYY8zq1atNQECAuXTpksu2ypQpY6ZNm2b9PWDAAHPnnXeaxx57zFStWtWl/fDhw42np6f5+++/rWVLliwxHh4e5tixY1asRYoUMZcvX3bZTnh4uBXL0qVLjYeHR7K5vXfv3uaJJ55wWbZ69Wrj4eHhcg4EgMyQeD6b0nzdGGOqV69uhg8fbv0dHR3tMl+389RTT5kHH3zQ+rt79+6mQ4cOLm1u7OfVV1815cuXNwkJCVabSZMmGX9/fxMfH2/Ffs8997j0U6dOHfPSSy9Zf0sygwYNuukYpDbGOXPmJInp8uXLxs/PzyxdujTFbeD2xT3Qka317dtXderU0ZEjR1SsWDFFRUWpR48ecjgc2rZtm9asWeNytUx8fLwuXbqkCxcuKG/evFq+fLnGjBmjvXv36uzZs7p27ZrLekny9vZWtWrVsmoXASBHSZwvHQ6HihYtal1BuGfPHlWrVs26PYok1a9f3+Xx27Zt08qVK23vnXvw4EHdeeed8vb21ty5c1WtWjWFh4drwoQJKcaVJ08e1alTx/q7QoUKCgoK0p49e1S3bl1JUnh4+E3vcbt161Z5enoqMjLSdn1qYgeArLZnzx7lyZNHd911l7WsYMGCKl++vPbs2SNJ2rdvnx544AGXx9WtW9f2auzUqly5snWFtiSFhoZqx44dLjFFRERY65152mnbtm06f/68ChYs6NLvxYsXdfDgQevvcePGqUqVKpo3b542b94sHx8fl/Z33HGHihUrZv1dv359JSQkaN++fda9eatWrSpvb+9k92Xr1q0qXrx4snl927Zt2r59u8ttaIwxSkhIUHR0tCpWrJhs3wCQ0W42X0+tSZMmaebMmfrzzz918eJFXblyxeXWXamxZ88e1a9fXw6Hw1p299136/z58/r77791xx13JIlXun7+uDHe2rVruyXGbdu26cCBA8qfP7/L8kuXLrmca4AbUUBHtlazZk1Vr15dH3/8sZo3b65du3Zp0aJFkq7fKmDkyJHq2LFjksf5+vrq0KFDatu2rfr376/Ro0crODhYv/zyi3r37q0rV65YBXQ/Pz+XhA4ASN6NP9jjcDiUkJCQ6sefP39e7dq10zvvvJNkXWhoqPX/a9eulSTFxMQoJiZG+fLlS2fE/yelPvz8/G66PrWxA8DtyB3nh9DQUOsetYklLrQfPHhQR48eVUJCgg4dOqSqVaumOVZ3nA/69eungQMHJlnnLAgBQFa51Xz8+eefa8iQIXrvvfdUv3595c+fX++++67Wr1/v7lAlpS7eG/N2emM8f/68IiIibH+Hgx+Txs1QQEe216dPH73//vs6cuSImjVrphIlSkiSatWqpX379qls2bK2j9u8ebMSEhL03nvvycPj+u3+nffDAgC4X8WKFTVnzhxdunTJugr9119/dWlTq1Ytff311ypZsqTy5LGfhhw8eFDPPfec/vOf/+iLL75Q9+7dtXz5ciuX27l27Zo2bdpkXW2+b98+xcbGpukqwKpVqyohIUE//fSTmjVrlmR9amIHgKxWsWJFXbt2TevXr7fuSXv69Gnt27dPlSpVkiSVL19eGzdudHncjX+7U4UKFXTt2jVt3rzZ+raQM0871apVS//884/y5MmjkiVL2vZz5coVde3aVY888ojKly+vPn36aMeOHS6/YfTnn3/q6NGjCgsLk3T9POTh4WH9WGhqVKtWTX///bd+//1326vQa9Wqpd27dyf7PgQAcrI1a9aoQYMGLr8fcePV2d7e3oqPj79pPxUrVtTXX38tY4x10eKaNWuUP39+FS9ePEtirFWrlr744gsVLlxYAQEBtxQDbi/8iCiyvccee0x///23/vOf/6hXr17W8mHDhunjjz/WyJEjtWvXLu3Zs0eff/65XnvtNUlS2bJldfXqVX344Yf6448/NGfOHE2dOjWrdgMAcr3HHntMDodDffv21e7du7V48WKNGzfOpc1TTz2lmJgYde7cWRs3btTBgwe1dOlS9ezZU/Hx8YqPj1fXrl3VokUL9ezZU7NmzdL27dv13nvv3XTbXl5eeuaZZ7R+/Xpt3rxZPXr0UL169ayCemqULFlS3bt3V69evbRgwQJFR0dr1apV1oevKcUOANlBuXLl1KFDB/Xt21e//PKLtm3bpq5du6pYsWLq0KGDJOmZZ57R4sWLNX78eO3fv1/Tpk3TkiVLMuxbmeXLl1fLli3Vr18/K0/36dPH5UrvZs2aqX79+rr//vv1ww8/6NChQ1q7dq2GDh2qTZs2SZKGDh2quLg4ffDBB3rppZd05513urw/kK5/E7V79+7atm2bVq9erYEDB6pTp07W7VtSIzIyUo0aNdKDDz6oZcuWKTo6WkuWLNH3338vSXrppZe0du1aPf3009q6dav279+vhQsX8iOiAHKFcuXKadOmTVq6dKl+//13vf7660k+ZC1ZsqS2b9+uffv26dSpU9aPVCc2YMAA/fXXX3rmmWe0d+9eLVy4UMOHD9fgwYNvemFMRsbYpUsXFSpUSB06dNDq1aut+f7AgQP1999/31JMyN0ooCPbCwwM1IMPPih/f3/df//91vIWLVrou+++0w8//KA6deqoXr16mjBhgsLDwyVJ1atX1/jx4/XOO++oSpUqmjt3rsaMGZNFewEAuZ+/v7++/fZb7dixQzVr1tTQoUOT3O4kLCxMa9asUXx8vJo3b66qVatq0KBBCgoKkoeHh0aPHq3Dhw9r2rRpkq7fGmX69Ol67bXXtG3btmS3nTdvXr300kt67LHHdPfdd8vf319ffPFFmvdhypQpeuihhzRgwABVqFBBffv21b///puq2AEgu5g1a5YiIiLUtm1b1a9fX8YYLV682Pqa/N13362pU6dq/Pjxql69ur7//ns999xzLr9hkRExhYWFKTIyUh07dtQTTzzhcuW4w+HQ4sWL1ahRI/Xs2VN33nmnHn30UR0+fFhFihTRqlWr9P7772vOnDkKCAiQh4eH5syZo9WrV2vKlClWP2XLllXHjh3VunVrNW/eXNWqVdPkyZPTHO/XX3+tOnXqqHPnzqpUqZJefPFF68PSatWq6aefftLvv/+uhg0bqmbNmho2bJh11TsA5GT9+vVTx44d9cgjj+iuu+7S6dOnXa70lq7/Xl358uVVu3ZthYSEaM2aNUn6KVasmBYvXqwNGzaoevXqevLJJ9W7d2/rosesiDFv3rz6+eefdccdd6hjx46qWLGievfurUuXLnFFOm7KYYwxWR0EkJKmTZuqcuXK+uCDD7I6FABANhMVFaVBgwa53AoAAJA2ffv21d69e7V69eqsDiXdRowYoQULFmjr1q1ZHQoAAMhFuIEnsrUzZ85o1apVWrVqVbquHAEAAACQ1Lhx43TfffcpX758WrJkiWbPns18GwAAwAYFdGRrNWvW1JkzZ/TOO++k6Yd/AAAAACRvw4YNGjt2rM6dO6fSpUvrgw8+UJ8+fSRJlStX1uHDh20fN23aNHXp0iUzQwUAAMhS3MIFAAAAAGA5fPiw7Q/CSVKRIkWUP3/+TI4IAAAg61BABwAAAAAAAADAhkdWBwAAAAAAAAAAQHZEAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR0AAAAAAAAAABsU0AEAAAAAAAAAsEEBHQAAAAAAAAAAGxTQAQAAAAAAAACwQQEdAAAAAAAAAAAbFNABAAAAAAAAALBBAR237NChQ3I4HIqKisrqUFx8//33qlGjhnx9feVwOBQbG3tL/a1atUoOh0OrVq2ylvXo0UMlS5a8pX5TKyoqSg6HQ4cOHcqU7QEAACBnuV3m5TfjcDg0YsSIDOsfAFJCLs7+MqK+kl2fd7gHBfRsxPkCTvyvcOHCatKkiZYsWZLp8TgLxs5/Xl5eKl26tLp166Y//vjDLdtYu3atRowY4fbEffr0aXXq1El+fn6aNGmS5syZo3z58rl1GwCQ1bLrJC07T84bN26sKlWqZHUYALI55uXuw7w8e5k8eXK2mzcAySEXuw+5OGXkR9xMnqwOAEmNGjVKpUqVkjFGx48fV1RUlFq3bq1vv/1Wbdu2zfR4Bg4cqDp16ujq1av67bffNH36dC1atEg7duxQWFjYLfW9du1ajRw5Uj169FBQUJB7Apa0ceNGnTt3Tm+88YaaNWvmlj4bNWqkixcvytvb2y39pdXjjz+uRx99VD4+PlmyfSA3i4qKUs+ePV2WhYSEqHLlynrxxRfVqlWrTI1n1apVatKkifV3njx5VKJECd1zzz0aMWKESpcufcvbWLt2rX744QcNGjTIrfnXOTmvXLmyJk2aJB8fHybnOVxGHStATsC8/NZlxLwc6Td58mQVKlRIPXr0yOpQgFQjF986crEru/rKrebH8PBwXbx4UV5eXm6KEtkJBfRsqFWrVqpdu7b1d+/evVWkSBF99tlnWXJyaNiwoR566CFJUs+ePXXnnXdq4MCBmj17tl555ZVMjyc1Tpw4IUluPeF4eHjI19fXbf2l1r///qt8+fLJ09NTnp6emb594HbC5PzWMTnPfTLqWAFyAublty4j5uU52aVLl+Tt7S0PD74MDqQWufjWZcdcfOHCBeXNmzdLtp0R9RWHw5ElNSNkDs7aOUBQUJD8/PyUJ4/r5x3//vuvnn/+eZUoUUI+Pj4qX768xo0bJ2OMJOnixYuqUKGCKlSooIsXL1qPi4mJUWhoqBo0aKD4+Pg0x3PvvfdKkqKjo2/absWKFWrYsKHy5cunoKAgdejQQXv27LHWjxgxQi+88IIkqVSpUtbXoFK6B9W8efMUEREhPz8/FSpUSF27dtWRI0es9Y0bN1b37t0lSXXq1JHD4UjxE8QtW7aoVatWCggIkL+/v5o2bapff/3VpY3dPdBTq2TJkmrbtq1++OEH67YGlSpV0vz5813aOb+i9tNPP2nAgAEqXLiwihcv7rLuxvFZsmSJIiMjlT9/fgUEBKhOnTr69NNPXdqsX79eLVu2VGBgoPLmzavIyEitWbPGpc25c+c0aNAglSxZUj4+PipcuLDuu+8+/fbbb2neXyCnatWqlbp27arHH39cQ4YM0erVq+Xl5aXPPvssS+Jp2LChunbtqp49e+rDDz/UuHHjFBMTo9mzZ2dJPKmRHSfncPXvv/9mdQhAjsW83FVGzMtXrVql2rVry9fXV2XKlNG0adM0YsQIORwOl3aXL1/Wc889p5CQEOXPn1/t27fX33//naQ/52P37t2rTp06KSAgQAULFtSzzz6rS5cuubR1OBx6+umnNXfuXJUvX16+vr6KiIjQzz//nKTfI0eOqFevXipSpIh8fHxUuXJlzZw5M8m+OBwOff7553rttddUrFgx5c2bV2fPnpV0fY7eunVrFShQQPny5VO1atU0ceJElz727t2rhx56SMHBwfL19VXt2rX1v//9z6WN833CmjVrNHjwYIWEhChfvnx64IEHdPLkSatdyZIltWvXLv3000/Wc9y4ceObPh9AdkQuduXuXJyWvClJn3zyibX94OBgPfroo/rrr79c2jhvo7h582Y1atRIefPm1auvvirp+geLI0aM0J133ilfX1+FhoaqY8eOOnjwoPX4cePGqUGDBipYsKD8/PwUERGhr776Kkksqc3jN9ZXbpYfY2JiNGTIEFWtWlX+/v4KCAhQq1attG3bNpc+7W6v2aNHD/n7++vIkSO6//775e/vr5CQEA0ZMiTJsZaQkKCJEyeqatWq8vX1VUhIiFq2bKlNmzZZba5du6Y33nhDZcqUkY+Pj0qWLKlXX31Vly9fdunLWYNynlP9/PxUtWpVq541f/58azsRERHasmVLkrFMzfnndkIBPRuKi4vTqVOndPLkSe3atUv9+/fX+fPn1bVrV6uNMUbt27fXhAkT1LJlS40fP17ly5fXCy+8oMGDB0uS/Pz8NHv2bB04cEBDhw61HvvUU08pLi5OUVFR6frEzZnEChYsmGyb5cuXq0WLFjpx4oRGjBihwYMHa+3atbr77rutBNWxY0d17txZkjRhwgTNmTNHc+bMUUhISLL9RkVFqVOnTvL09NSYMWPUt29fzZ8/X/fcc491j7ChQ4fqiSeekHT9atI5c+aoX79+yfa5a9cuNWzYUNu2bdOLL76o119/XdHR0WrcuLHWr1+flqG5qf379+uRRx5Rq1atNGbMGOXJk0cPP/ywli1blqTtgAEDtHv3bg0bNkwvv/xysn1GRUWpTZs2iomJ0SuvvKK3335bNWrU0Pfff2+1WbFihRo1aqSzZ89q+PDheuuttxQbG6t7771XGzZssNo9+eSTmjJlih588EFNnjxZQ4YMkZ+fn8sJHbjdMDl3lRGFkpQKEGkdy9R8qChJu3fvVpMmTZQ3b14VK1ZMY8eOdVl/5coVDRs2TBEREQoMDFS+fPnUsGFDrVy50qWdc6I8btw4TZ8+3ZrM1qlTRxs3brQdw0qVKsnX11dVqlTRN998Y/uD1AkJCXr//fdVuXJl+fr6qkiRIurXr5/OnDlz0/G8kfMN0O7du/XYY4+pQIECuueeeyRJ27dvV48ePVS6dGn5+vqqaNGi6tWrl06fPu3y+JSOldS8aQJyKublmTsv37Jli1q2bKnTp09r5MiR6t27t0aNGqUFCxYkadunTx+9//77at68ud5++215eXmpTZs2yfbdqVMnXbp0SWPGjFHr1q31wQcfWLEl9tNPP2nQoEHq2rWrRo0apdOnT6tly5bauXOn1eb48eOqV6+eli9frqeffloTJ05U2bJl1bt3b73//vtJ+nzjjTe0aNEiDRkyRG+99Za8vb21bNkyNWrUSLt379azzz6r9957T02aNNF3331nPW7Xrl2qV6+e9uzZo5dfflnvvfee8uXLp/vvv1/ffPNNku0888wz2rZtm4YPH67+/fvr22+/1dNPP22tf//991W8eHFVqFDBeo4TH49AdkUuztxc7JSavDl69Gh169ZN5cqV0/jx4zVo0CD9+OOPatSoUZL7uJ8+fVqtWrVSjRo19P7776tJkyaKj49X27ZtNXLkSEVEROi9997Ts88+q7i4OJe8O3HiRNWsWVOjRo3SW2+9ZdVTFi1alCTu1OTxG90sP/7xxx9asGCB2rZtq/Hjx+uFF17Qjh07FBkZqaNHj6Y4jvHx8WrRooUKFiyocePGKTIyUu+9956mT5/u0q53794aNGiQSpQooXfeeUcvv/yyfH19XS7u7NOnj4YNG6ZatWppwoQJioyM1JgxY/Too48m2e6BAwf02GOPqV27dhozZozOnDmjdu3aae7cuXruuefUtWtXjRw5UgcPHlSnTp2UkJBgPTat55/bgkG2MWvWLCMpyT8fHx8TFRXl0nbBggVGknnzzTddlj/00EPG4XCYAwcOWMteeeUV4+HhYX7++Wczb948I8m8//77KcazcuVKI8nMnDnTnDx50hw9etQsWrTIlCxZ0jgcDrNx40ZjjDHR0dFGkpk1a5b12Bo1apjChQub06dPW8u2bdtmPDw8TLdu3axl7777rpFkoqOjU4znypUrpnDhwqZKlSrm4sWL1vLvvvvOSDLDhg2zljnH0hnjzdx///3G29vbHDx40Fp29OhRkz9/ftOoUaMk47Fy5UprWffu3U14eHiK2wgPDzeSzNdff20ti4uLM6GhoaZmzZpJ4r7nnnvMtWvXXPpwrnOOVWxsrMmfP7+56667XMbDGGMSEhKs/5YrV860aNHCWmaMMRcuXDClSpUy9913n7UsMDDQPPXUUynuC5AbOV9fy5cvNydPnjQnTpwwO3fuNP369TMeHh7mhx9+sNomJCSYe++91zgcDtOnTx/z0UcfmXbt2hlJZtCgQVa7X3/91Xh6eprnnnvOWvboo48aPz8/s2/fvpvG48w38+bNc1m+cOFCI8m8/PLLxhj7/Lts2TKTJ08ec+edd5qxY8eakSNHmkKFCpkCBQpY+WPbtm2mc+fORpKZMGGCmTNnjpkzZ445f/58imNUp04dM2HCBPPyyy8bPz8/U7JkSXPmzBljjDE//PCDeeKJJ4wkM2rUKDNnzhyzdu3aZPv8559/TPHixU2JEiXMqFGjzJQpU0z79u2tuNI6lrNmzTIOh8NUqVLFjB492kyaNMn06dPHPP7441abyMhIExYWZkqUKGGeffZZM3nyZHPvvfcaSWbx4sVWu5MnT5rQ0FAzePBgM2XKFDN27FhTvnx54+XlZbZs2WK1cz4HNWvWNGXLljXvvPOOGTt2rClUqJApXry4uXLlitX2u+++Mw6Hw1SrVs2MHz/evP7666ZAgQKmSpUqSc4lffr0MXny5DF9+/Y1U6dONS+99JLJly+fqVOnjkufKRk+fLiRZCpVqmQ6dOhgJk+ebCZNmmSMMWbcuHGmYcOGZtSoUWb69Onm2WefNX5+fqZu3brWOSOlY+XNN980DofDPPLII2by5MnW8Zb4uAByIublN5dR8/J27dqZvHnzmiNHjljL9u/fb/LkyWMSv3XdunWrkWQGDBjg8vjHHnvMSDLDhw+3ljnzYPv27V3aDhgwwEgy27Zts5Y5n+dNmzZZyw4fPmx8fX3NAw88YC3r3bu3CQ0NNadOnXLp89FHHzWBgYHmwoULxpj/e95Kly5tLTPGmGvXrplSpUqZ8PDwJLky8Zy9adOmpmrVqubSpUsu6xs0aGDKlStnLXOOcbNmzVwe/9xzzxlPT08TGxtrLatcubKJjIw0QE5ALr65jMrFqc2bhw4dMp6enmb06NEu7Xbs2GHy5MnjsjwyMtJIMlOnTnVpO3PmTCPJjB8/PkkcN9Ywbtz3KlWqmHvvvddleWrz+I31FWOSz4+XLl0y8fHxLsuio6ONj4+PGTVqlMuyG5/37t27W++NEqtZs6aJiIiw/l6xYoWRZAYOHJjsODjPfX369HFZP2TIECPJrFixwlrmrEElfi+2dOlSI8n4+fmZw4cPW8unTZuWpNaV2vPP7YQCejbifAFPmjTJLFu2zCxbtsx88sknpmXLliZPnjwuxdcnnnjCeHp6mrNnz7r0sW7dOiPJfPjhh9ayy5cvm6pVq5pSpUqZkJAQExkZ6ZKIkuM8Odz4LyQkxHz88cdWuxuTxNGjR40k8+KLLybps0WLFqZQoULW32k5Oaxdu9ZIMpMnT06yrkKFCi7JJ7Unh2vXrpm8efOaTp06JVnnLJzFxcUZY269gB4WFpZk3F966SUjyRw7dswl7tmzZyfp48YE7zzRf/PNN8lu97fffrP6O3nypMu/Pn36GB8fH+tEEB4ebmrXru3yhgW4XTA5v7mMmpyntgBhTMpjmZoPFY35v8l74vPY5cuXTdGiRc2DDz5oLbt27Zq5fPmySz9nzpwxRYoUMb169bKWOZ+DggULmpiYGGu588OOb7/91lpWtWpVU7x4cXPu3Dlr2apVq4wkl3PJ6tWrjSQzd+5cl+1///33tstvxvkGqHPnzknW3fhGxBhjPvvsMyPJ/Pzzz9ay5I6VtLxpAnIa5uU3l1Hzcj8/P/PYY48lWef8oNrprbfeMpLM3r17Xdpt2LAh2QL60qVLXdru2bPHSDJjxoyxlkky9evXT7L9Rx55xOTNm9dcu3bNJCQkmKCgIPPEE08kmV879/WXX34xxvzf8zZy5EiX/jZu3Jjkw+IbnT592jgcDvPGG28k2c7IkSONJPP3338bY/5vjL/88kuXPubPn5/kQwIK6MhJyMU3lxG52JjU583x48cbh8Nh9u/fnyRPVaxY0TRr1sx6bGRkpPHx8Ukyv27Tpo0pVKiQuXr1aopxOcXExJiTJ0+a/v37m6CgIJd1qcnjxqStgJ7YtWvXzKlTp8zJkydNtWrVzP3332+tu1kB/cSJEy79DBw40BQoUMD6+6mnnjIOh8PlPdyNnOe+3bt3uyw/duyYkWSef/55a1l4eLipVKmSS7vY2FgjybRp08ZlubMwP2PGDGNM2s4/txN+RDQbqlu3rssPZHTu3Fk1a9bU008/rbZt28rb21uHDx9WWFiY8ufP7/LYihUrSpIOHz5sLfP29tbMmTNVp04d+fr6atasWUnuIXgzw4YNU8OGDeXp6alChQqpYsWKSW5nkJhz2+XLl0+yrmLFilq6dKn1w5hpcbN+K1SooF9++SVN/UnSyZMndeHChWRjTUhI0F9//aXKlSunue8blS1bNsm433nnnZKu3wKgaNGi1vJSpUql2J/za2JVqlRJts3+/fslybqlgp24uDgVKFBAY8eOVffu3VWiRAlFRESodevW6tatm0qXLp1iLEBuMWnSJOt1efz4cX3yySfq06eP8ufPr44dO0qSFi9eLE9PTw0cONDlsc8//7y++uorLVmyxPq69IgRI/Tdd9+pe/fuOn/+vCIjI5M87mZ69erl8ndISIhmz57tco5I7NixY9q6datefPFFBQcHW8urVaum++67T4sXL071thPbtGmT9XXTxD+M06ZNG1WoUEGLFi3SyJEj09SnMUZff/21OnXqJGOMTp06Za1r0aKFPv/8c/3222+6++67JaU8lsuWLdO5c+esrzomdmPu9ff3d/nKr7e3t+rWras//vjDWpb4h4USEhIUGxurhIQE1a5d2/a3IR555BEVKFDA+rthw4aSZPV59OhR7dixQ6+++qr8/f2tdpGRkapatap1P1zp+m1eAgMDdd9997mMS0REhPz9/bVy5Uo99thjyY6tnSeffDLJMj8/P+v/L126pPPnz6tevXqSpN9++83ah+TMnz9fCQkJ6tSpk0ucRYsWVbly5bRy5Urr3pZATsW8PO39pndefuLECV28eFFly5ZNsu7GZYcPH5aHh4fKlCnjstwuHqdy5cq5/F2mTBl5eHgkuX3Zje2k63P2Cxcu6OTJk/Lw8FBsbKymT5+e5Ov3ifclsRvn9qmZxx84cEDGGL3++ut6/fXXk91OsWLFrL/vuOMOl/XO81Jab/8FZDfk4rT3m95cnFhKeXP//v0yxtjmTUny8vJy+btYsWLy9vZ2WXbw4EGVL1/+puMnSd99953efPNNbd261eV+33bPW0p5PHHtJTWc9yafPHmyoqOjXW4febPb9jg572eeWIECBVxy88GDBxUWFubyHu5GznPfjefEokWLKigoyOUYl5KeEwIDAyVJJUqUsF3ujCc955/bAQX0HMDDw0NNmjTRxIkTtX///nQVc5cuXSrp+hvk/fv3p6pA61S1alU1a9YszdtE+iUuatwK5z2s3n33XdWoUcO2jbOQ06lTJzVs2FDffPONfvjhB7377rt65513NH/+fLVq1cot8QDZHZPztPd7Kx9gpqUAkdJYpqYY4VS8ePEkz0OBAgW0fft2l2WzZ8/We++9p7179+rq1avWcrtzaEpFC+cYJlcYSlyU379/v+Li4lS4cGHb+G8szKSGXcwxMTEaOXKkPv/88yR9xsXFpdhnWt80AbkB8/LcIy3n48Sc8+uuXbsme5FKtWrVXP5Oz9zeuZ0hQ4aoRYsWtm1uPKckd+9m8/9/owXILcjFWePGvJmQkCCHw6ElS5bY5p/EF41I6a9zrF69Wu3bt1ejRo00efJkhYaGysvLS7NmzbL9rSN3e+utt/T666+rV69eeuONNxQcHCwPDw8NGjTI5b7hyUnPffVvJrXnr+S2m9K5Ij3nn9sBBfQc4tq1a5Kk8+fPS5LCw8O1fPlynTt3zqWIs3fvXmu90/bt2zVq1Cj17NlTW7duVZ8+fbRjxw7rUyZ3c2573759Sdbt3btXhQoVsoo3aZm4Ju7X+UN6Tvv27XPZ59QKCQlR3rx5k43Vw8Mjyadz6eX8FC/xPv/++++SlOTH41LDecXNzp07k01ezjYBAQGpOsGHhoZqwIABGjBggE6cOKFatWpp9OjRFNBx22JynnHSU4C4lbFMLDUFhk8++UQ9evTQ/fffrxdeeEGFCxe2fpzJWaxPa5+plZCQoMKFC2vu3Lm262/2Q1LJsXvD0qlTJ61du1YvvPCCatSoIX9/fyUkJKhly5apejOQ1jdNQG7BvDxj5uWFCxeWr6+vDhw4kGTdjcvCw8OVkJBgXbmYeNvJufG8ceDAASUkJCSZhzu/wZnY77//rrx581r5N3/+/IqPj0/3OTrxPD65PpzfAvXy8nLrXCC9HxwA2Q25OGNycWIp5c0yZcrIGKNSpUpZ3+JNqzJlymj9+vW6evVqshdffP311/L19dXSpUvl4+NjLZ81a1aycd/oxjxuJ7mx/+qrr9SkSRPNmDHDZXlsbKwKFSqUbH9pUaZMGS1dulQxMTHJXoXuPPft37/funhLuv7N6djY2Ft+vp0y6vyT03lkdQBI2dWrV/XDDz/I29vbepG0bt1a8fHx+uijj1zaTpgwQQ6Hwyp4Xr16VT169FBYWJgmTpyoqKgoHT9+XM8991yGxRsaGqoaNWpo9uzZLr+6vHPnTv3www9q3bq1tcx5krjx15nt1K5dW4ULF9bUqVNdvrKzZMkS7dmzR23atElzrJ6enmrevLkWLlzo8vXN48eP69NPP9U999yjgICANPdr5+jRoy6/Vnz27Fl9/PHHqlGjRpq/QiRJzZs3V/78+TVmzBhdunTJZZ2zYBMREaEyZcpo3Lhx1sQisZMnT0q6/qvQN15tWLhwYYWFhbmMNXA7spucHz16VOfOnXNpl9LkvGbNmurTp0+qruxNr8yYnN/oVj7ATFyAsPuX+ArslMYycTHCHb766iuVLl1a8+fP1+OPP64WLVqoWbNmSfJtajnHKDWFoTJlyuj06dO6++67bcelevXq6YohsTNnzujHH3/Uyy+/rJEjR+qBBx7QfffdZ3vbruSOlcRvmuzidN4OBshNmJdfl1Hz8mbNmmnBggU6evSotfzAgQNasmSJS1vnmH7wwQcuy99///1k+580aZLL3x9++KFLX07r1q1z+VbQX3/9pYULF6p58+bW7b0efPBBff3117bnHOf8+mZq1aqlUqVK6f33308y3s55fOHChdW4cWNNmzZNx44dS9d27OTLly9VzzGQnZGLr8uIXJxYSnmzY8eO8vT01MiRI5NcNGKM0enTp1PcxoMPPqhTp04led6cfUjXzw8Oh8Pl1imHDh3SggULbPtMKY8nJ7n86OnpmWT/5s2bpyNHjtxs19LkwQcflDHG9raYzm07j5Mbz3Xjx4+XpFt+vp0y6vyT03EFeja0ZMkSqxBz4sQJffrpp9q/f79efvllq5jbrl07NWnSREOHDtWhQ4dUvXp1/fDDD1q4cKEGDRpkFRKc94j68ccflT9/flWrVk3Dhg3Ta6+9poceesglUbvTu+++q1atWql+/frq3bu3Ll68qA8//FCBgYEaMWKE1S4iIkLS/2PvPsOrqNa/j/92QhohCSWE3luQ3gkgRTgUqSooiALSREAEhaOIUmygiIIeqgooIAiIgiIiIIpiEER6b9KkCSR0Asl6Xvjs+Wcnk97J93NdXLqnrFlrzcw9a+7sPSONGjVKXbt2lYeHh9q3b2/7eAEPDw+9/fbbeuqpp9SkSRN169ZN586d05QpU1SyZMlkX/DeeOMNrVmzRo0aNdLAgQOVI0cOzZw5U7dv39Y777yTrDLtlC9fXn369NGWLVtUoEABzZ49W+fOnYvzr6YJ8ff31/vvv6++ffuqTp06evzxx5UnTx7t2LFDN27c0Keffio3Nzd9/PHHatOmjSpVqqSnnnpKRYoU0enTp7V+/Xr5+/vrm2++0dWrV1W0aFF17txZ1apVU65cubR27Vpt2bJFkyZNSrU+ALKauAbns2bN0v/+9z+NHDnSWjahwfmxY8dUp04dDRs2TLNnz06T+kYfnI8cOVK5c+eW9H+D8+jP/U7u4Lx3797WNz+cg/PRo0cnua7OBMTnn3+u3bt3x3r0yoULF6xviCSmL6P/UbF169Yuz0GP+eufxNYv5rq///67QkNDYz2uJTEKFy6sypUr67PPPtPIkSOtb2f//PPP2rVrl8sfIR599FFNmzZNr7/+ut566y2Xcu7evatr165Z+za5orcvOrvkU1zHysMPP6yRI0dq3Lhxmj9/vksfG2N06dKlRD0XEsjMGJen77h87Nix+uGHH9SwYUM988wzVjKscuXK2r59u7Vc9erV1a1bN02bNk3h4eFq0KCB1q1bZ/tHSqdjx46pQ4cOat26tUJDQzV//nw9/vjjsf4oWblyZbVq1UpDhgyRl5eXpk2bJkkuSY0JEyZo/fr1qlevnvr166f77rtPly5d0p9//qm1a9fq0qVL8bbTzc1N06dPV/v27VW9enU99dRTKlSokPbv3689e/ZYv7iaOnWqGjVqpCpVqqhfv34qXbq0zp07p9DQUJ06dUo7duxIaherVq1amj59ut544w2VLVtWQUFBsb65CmQ2xOL0jcVOCcXNMmXK6I033tDIkSP1119/qVOnTvLz89OxY8f01VdfqX///ho+fHi82+jRo4c+++wzPf/889q8ebPuv/9+Xb9+XWvXrtXAgQPVsWNHtW3bVu+9955at26txx9/XOfPn9fUqVNVtmzZWI9glBIXx+3EFR/btWtnfZGnQYMG2rVrlxYsWJCq74tr1qyZnnzySX3wwQc6dOiQ9YvQX375Rc2aNdPgwYNVrVo19ezZU7NmzVJYWJiaNGmizZs369NPP1WnTp3UrFmzVKtPWlx/srx0e10pEuR8C3D0f97e3qZ69epm+vTpsd4KffXqVTNs2DBTuHBh4+HhYcqVK2cmTpxoLbd161aTI0cO8+yzz7qsd/fuXVOnTh1TuHBhc/ny5Tjr43zD9JIlS+Ktt92bho0xZu3ataZhw4bGx8fH+Pv7m/bt28d6W7Axxrz++uumSJEixs3NLVFvm/7iiy9MjRo1jJeXl8mbN6/p3r17rDcAJ+UN08YY8+eff5pWrVqZXLlymZw5c5pmzZqZ3377zWUZZ3+sX7/emtazZ09TokSJBMsvUaKEadu2rVm9erWpWrWq8fLyMsHBwbH6Nr56270l2hhjVqxYYRo0aGD1c926dc3ChQtdltm2bZt5+OGHTb58+YyXl5cpUaKEefTRR826deuMMf++hXzEiBGmWrVqxs/Pz/j6+ppq1arZvs0buBc5z6/XXnvNzJs3z8ybN89MmjTJ1KpVy0gyL730krVsZGSkadasmXE4HKZ///5m6tSppmPHjkaSGTp0qLXc6NGjjcPhMD/++KM17Y033jCSzMqVK+OtT0ri75o1a0yOHDlMcHCwmThxonnttddM/vz5TZ48eczRo0et5TZv3mwkmQcffNB89tlnZuHChebatWsJ9lG9evXM5MmTzciRI03OnDlNyZIlXa4lSYm/Z8+eNSVKlDA5c+Y0zz33nJk5c6YZP3686dKli8tb6RPblx9//LGRZCpXrmzeeustM336dDNgwADTo0cPa5kmTZqYSpUqxapLzHg+e/ZsI8l06NDBzJw507z00ksmd+7cplKlSi7LOffBxIkTY5UpyYwZM8b6vGLFCuNwOEzVqlXN+++/b0aPHm3y5s1rKleubEqWLOmy7tNPP20kmTZt2pj333/f/O9//zPPPfecKVy4cILHRXRjxowxksyFCxdizWvcuLHJmTOnGTVqlJk2bZrp1KmTqVatWqx6x3esjB8/3kgyDRo0MO+8846ZPn26+e9//2uNSYCsinF5xo3L161bZ2rUqGE8PT1NmTJlzMcff2xeeOEF4+3t7bLczZs3zZAhQ0y+fPmMr6+vad++vTl58mSsGOaMg3v37jWdO3c2fn5+Jk+ePGbw4MHm5s2bLmVKMoMGDTLz58835cqVM15eXqZGjRou43+nc+fOmUGDBplixYoZDw8PU7BgQdO8eXMza9Ysa5mE9tuvv/5q/vOf/1jj76pVq5oPP/zQZZkjR46YHj16mIIFCxoPDw9TpEgR065dO7N06dIE+9ju/uXs2bOmbdu2xs/Pz0gyTZo0sa0bkBkQizMmFiclbhpjzJdffmkaNWpkfH19ja+vrwkODjaDBg0yBw4csJaJawxujDE3btwwo0aNMqVKlbLiaefOnc2RI0esZT755BMrLgcHB5s5c+ZY9YwusXHcLr8SV3y8deuWeeGFF0yhQoWMj4+PadiwoQkNDTVNmjRxiaF2+71nz57G19c3zj6O7u7du2bixIkmODjYeHp6mvz585s2bdqYrVu3WsvcuXPHjBs3zuqrYsWKmZEjR5pbt265lOXMQcXk7J/o4rqfScz1JzshgQ6kg7iCF4DMgcF5xiVKEkpAJLUvE/qjYmIT6FFRUeatt94yJUqUsAbe3377bazlkpJAN8aYRYsWmeDgYOPl5WUqV65sVqxYYR555BETHBwca/1Zs2aZWrVqGR8fH+Pn52eqVKli/vvf/5q///47vi51EV8C/dSpU+ahhx4yuXPnNgEBAaZLly7m77//tq13fMdKYm6aACAlOnbsaMqWLZusdeOLgzHZJRYAILtJStzMbIjjSCsOY3glN5DWSpYsqcqVK+vbb7/N6KoAADKZ6tWrK3/+/FqzZk1GVwUAMtzNmzddXnzsfIl3z5499dFHHyW5vLFjx2rcuHG6cOFCgi97czgcGjRokO2zeAEgu0hK3MxsiONIKzwDHQAAIB3cuXNHDodDOXL83/Drp59+0o4dO/TGG29kYM0AIPMoXbq0evXqpdKlS+v48eOaPn26PD099d///jejqwYAALIpEugAAADp4PTp02rRooWeeOIJFS5cWPv379eMGTNUsGBBDRgwIEllXbt2TdeuXYt3mfz581svCwWArKJ169ZauHChzp49Ky8vL4WEhOitt95SuXLlMrpqAAAgm+IRLgAAAOkgPDxc/fv318aNG3XhwgX5+vqqefPmmjBhgsqUKZOkspw/rY3PsWPHVLJkyRTUGAAAAABAAh0AACCLOXr0qI4ePRrvMo0aNZK3t3c61QgAAAAA7k0k0AEAAAAAAAAAsOGW0RUAAAAAAAAAACAzSvZLRKOiovT333/Lz89PDocjNesEAPcsY4yuXr2qwoULy80tc/4Nk/gOAElHfAeAe1NWiO8SMR4AkiOxMT7ZCfS///5bxYoVS+7qAJCtnTx5UkWLFs3oatgivgNA8hHfAeDelJnju0SMB4CUSCjGJzuB7ufnZ23A398/ucUAQLZy5coVFStWzIqhmRHxHQCSjvgOAPemrBDfJWI8ACRHYmN8shPozp8E+fv7E5wBIIky888qie8AkHzEdwC4N2Xm+C4R4wEgJRKK8Zn3AV4AAAAAAAAAAGQgEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANjIkdEVyCjnzp1TeHh4RlcDmVxAQIAKFCiQ0dUAspzkxljOOQAAsq/Meo/G+ARImsx6LiP7IX4jtWTLBPq5c+f0xJM9dCfidkZXBZmch6eX5s/7jIALJMH+/fs1cOAgRUVFJnldzjkAALKnzHyPxvgESLzMfC4j+yF+I7VkywR6eHi47kTc1s3STRTlHZDR1cl03G6GyefYBt0s1VhRPrkzujoZxu1WuHT0Z4WHhxNsgSQ4efKkoqIidatITUUGFE30epxzAABkX8m5R0uP+xbGJ0DSkG/JfLJrjof4jdSULRPoTlHeAYryDczoamRaUT656R8AyWY8cxFDAABAkiTnHo37FiDzId+S+RArgeTjJaIAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACAjQxJoN+6dUsHDx7UrVu3MmLzAJAixLC43bp1S2fOnMnoarCPAADZAtc7JAXHC+LCsQEgq0qv+JUhCfQTJ06of//+OnHiREZsHgBShBgWtxMnTmj27NkZXQ32EQAgW+B6h6TgeEFcODYAZFXpFb94hAsAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYCNHRlcAAIC0FBERoa+++kq7du2Sj4+PWrZsqWrVqmnXrl3avn27JKl69eqqXr263N3dFRERoeXLl+vUqVO6cOGCjDG6deuWrly5ovDwcOXIkUPly5dXQECA3N3dVaRIEXXs2FGenp6KjIzUzp07denSJeXNm1dVq1aVu7u7y/TcuXNLksLCwpQ3b15VqlTJpS5Vq1aVJO3cudP67Obm5rL8nj17Ym0jKeKqZ0Lz7MrZvn27bT/GLCep9Xbuh7///luFCxdWu3bttH//fl26dEn+/v46evSozpw5I0mqWLGiAgMDY/VrzO05+zWuOjjr/M8//ygsLEy5c+dWYGBgqvR5XJLS3/ei1DoWo7M752vWrJngutl9XyQkPfons+6DmPHIGfPjk9S2ZNa2I/u6efOmZs6cqVOnTqlo0aJ6+umn5ePjE+86yTlXkio55wrnFwAgpUigAwDuWUuXLtXatWsVFRVlTVuzZk2s5ebNm6fcuXOrUqVK2rRpkyIjI+Mt9+zZsy6fZ8yYofr16+vIkSMu8woWLKimTZvqp59+irWOk5ubm0v9EuJMTkffxsCBA9W4ceNErb9hwwZNmzYtVj0HDhwoSXHOi1n+hg0b9N577yksLMya5uzH1q1bx2pzUuo9Y8YMLVmyxGX5qVOnxtmmr7/+Ota0mNuL/ocLuzrY9Uty6p4U8e2LlJadFaTWsRjdjBkztHjx4ljnvK+vr1588cU4183u+yIh6dE/mXUf2MWjGTNmqEuXLhowYIDtOkltS2ZtO7KvUaNGaePGjdbnP/74Q19//bUaNmyoN99803ad5JwrSZWcc4XzCwCQGniECwDgnvXDDz8oKipKZcqU0fjx4/Xggw+6zO/Vq5cmTZqkKlWqKCwsTBs3bpTD4UjydnLkyKGNGzfKzc1NU6dO1XfffaepU6cqICBAixYtUkBAgPr16yeHw6EqVaqoSpUq1rrORF/Tpk1ty/bz83P57O/vL+nfm9upU6eqdOnSGjNmjDZs2JBgPTds2KAxY8aodOnSLvV0ljF69Og450Uvf8OGDRo9erTCwsJUpUoVvffeey796Gzz1KlTNWrUKKveDocjwXrPmDFDixYtkr+/v4YPH64RI0ZIkjw8PKxlon8DLjg42Pp/57fQY26vX79+CgsLU1hYmPr16xerbTNmzNCYMWMUEBAgh8OhevXqafjw4SpXrpwkydvbO9l9ntx9kZKys4LUOhajcx470c/5IUOGyM/PT9evX9fo0aNt183u+yIh6dE/mXUfxIxHX375pYYPHy5/f38tWrRIM2bMiLVOUtuSWduO7MuZPPfw8NDjjz+u+fPn6/HHH5eHh4c2btxoXdejS865klTJOVc4vwAAqYUEOgDgnnP37l1JksPhUEhIiD766CPVrVtXW7dulZeXl3Lk+PcHWN9//72qV6+uiRMnuqzr5uYW7097Y867c+eOPDw8dPbsWZUrV045c+ZUcHCwwsPDlSdPHoWFhembb75RSEiIpkyZovfee8/6SXP9+vVVv359bdiwQV5eXgoJCVG9evUkSV5eXlq6dKnq169vfV60aJEaNGig2bNnKzg4WG+88YZCQkI0ffr0eL85HxkZqWnTpikkJERvvPGGKlWqpJw5c6pSpUoaN26cPD095eXlpXHjxrnMi1l+ZGSkpk6datV1ypQpqlmzpmrVqmW1y83NTeHh4SpXrpw++eQTNWjQQEuWLFFISEi89Y6IiNCSJUuUJ08eLVmyRG3atNG8efPUoEEDffXVV1ZbfH19FRISovr16+vQoUOqV6+e8uTJo8uXL8vDw8PqJ+f2VqxYoZCQEIWEhOjbb7+Vl5eX1bb69etryZIlqlevnsLDwxUSEqLx48erTZs2unr1qvLkyaNcuXIlWPekiG9fpLTsrCC1jsXoIiIitHjxYrm5uVnnfEhIiB5++GF99dVX1i8Qpk2b5rJudt8XCUmP/sms+yBmPGrXrp3y5cundu3auUyPiIhIdlsya9uRfd28edNKnq9cuVL9+/dX0aJF1b9/f61cudJKot+8edNaJznnSlIl51zh/AIApKZEP8Ll9u3bun37tvX5ypUrKd748ePHU1xGVtousiaOF8R0rx0TaRHfUyI1+nfZsmWSJGOMnnjiCbm5uWnbtm06d+6cJKlbt25auHChzp49q507d+rw4cMu6yf0SJWYN1tRUVFq1qyZ1q1bp+XLl6tLly7auXOnzp49q+HDh+vdd9+VJL366qtyc3PTjh07rBtJZ7J806ZNun37tp544gkdPHhQv//+u27fvq29e/eqXr161vy9e/eqe/fuGjRokHbu3KkaNWrE+mzHWR9nHaLbvXu3dQzs3r3bpQw3NzeX8iVZ/ejs2+jlONt19uxZLV++3Npmjhw5Eqz38uXLFRkZqT59+ihHjhzatm2btf6qVaus7fzzzz8aN26cDh48qE2bNql+/fpq1KiRJk2aZO2b6P0kSaNHj5Ykl+25ubmpbt26Cg0NVZEiRbRp0yarf5zbdu6/rl27KjQ0NEl9Hpf49kXM/k5q2VlBah2L0ectX77cOm9jHpc5cuRQnz59NGnSJOucd657r++LlMb39OifzLoPYsaj6HLkyKHevXtr0qRJVsxPTltSs+33wtgks7chs9cvMRJqw8yZMyVJXbp0ifXsck9PT3Xu3FkLFy7UzJkzNXToUEnJO1eSKjnnSmaNLakps+Zo7oVzBfcWjsl7W3rt30Qn0MePH69x48al6sbjen4akJlwnOJelxbxPSVS+5wrVaqUJOnSpUvWtAcffFALFy60pv/9998p3k758uW1bt06qyzn9kJCQuKti7e3t4wxLstEHwRcunRJXl5eLp+dZTrLsSs3ppjL2s2Lq4y4yo9ZVsz5zr5wLheznJifncvbtW/t2rWxtu3sJy8vL9WtWzdWXez6PmY9nX3rTPzHrJOzDOdySenzuMS3L1JadlaQFsdi9HPYrtzox4LdNu7VfZHS+J4e/ZNZ90HMeBSTc3r0Yy+pbUnNtjNeTXvZoY9PnTolSbEeeefkHD85l5OSd64kVXLOlcwaW1ITORogcTiukRoSnUAfOXKknn/+eevzlStXVKxYsRRtfNSoUSpRokSKykiO48ePcwIh0TLqOEXmda/FkLSI7ymRGufc4sWLrYTrsWPHVKlSJeXNm9ea/91331n/nzdvXhUuXDhF25OkgwcPSpJVlnN7oaGh1jJ2dbl165ZLOceOHXP5NlHevHn1119/uXw+duyYyzZifrYTfdlKlSrZzourjLjKj1lWzPnOvnAul1C9ncuHhoaqXbt2LsvF3EfR++n27dsu/ews01l+9G3FrKezDOc37WLuI2e5zuWS0udxiW9fpLTsrCAtjsXox4ddudGPD7tt3Kv7IqXxPT36J7Pug5jxKCbnMRX92EtqW1Kz7ffCeDWzj6+yQx8XLVpUf/zxh7777jv1798/1nzn+Klo0aLWtOScK0mVnHMls8aW1JRZczSZ/VxG9nMvxG/ELb1iTqIT6F5eXi7fgEsNJUqUUPny5VO1TCC1cZziXpcW8T0lUuOce/jhh7V27Vo5HA7Nnz9fb775pqpWraoCBQooLCxMS5YskSQVLFhQVatWVcWKFTV16lRrfTc3Nzkcjjifi+nu7u4yz83NTRs2bJCbm5s6duwoSapataoKFiyoTz75RAUKFJDD4dCCBQv0xhtvqHLlyvL09FRERIR+//13qwwPDw/Nnz/fehSFl5eX7rvvPn3xxRcun8eNG6dChQqpatWqioqK0oIFC6zPcXHWx1mH6D9nrly5snUMVK5c2WU9u/Kd/ejsW2dZznbdvXtXQUFB6tixo7788kstWLBAr732mks5duV27NhRM2bM0CeffKLWrVu71Pnll1+29lFgYKDmz58vY4zc3d21adMmHTx4UO7u7nJzc5Obm5tLP0VFRWn+/PmS5LK9qKgobd68We7u7jp9+rRL/8Tcf5s3b05ynydnX6S07KwgNY9Fp44dO2r69OmSFOu4vHv3rj755BNJ/3fOJ6Yu98K+SGl8T4/+yaz7IGY8iv5oirt372r27Nlyd3e3Yn5y2pKabWe8mvayQx8//fTT+vrrr7VkyRL16tXL5TEuERERWrp0qbWcU3LOlaRKzrmSWWNLaiJHAyQOxzVSAy8RBQDcc5w3b8YYhYaGqm/fvtq0aZNq1qyp27dvWy8ZbdWqlbZv364RI0a4rBsVFZXgCzmj8/Dw0J07d1SwYEEdOnRIN27c0P79+xUQEKDLly8rd+7cat++vUJDQ/Xcc8/p+eeftx4ZsmnTJm3atEmNGze2vkntTKrfvn1bnTt31qZNm6zPXbt21W+//abevXtr//79euWVVxQaGqpnnnkmwRefDhw4UKGhoXrllVe0Z88e3bhxQ3v27NGYMWMUERGh27dva8yYMS7zYpbv7u6uQYMGWXV97rnntHXrVm3dutVqV1RUlAICAnTo0CH16dNHv/32m7p06aLQ0NB46+3p6akuXbro8uXL6tKli7777js98cQT+u233/TQQw9Zbbl+/bpCQ0O1adMmlStXTr///rsuX76sPHny6M6dO1Y/Obfn7Hvnt+Nu375ttW3Tpk3q0qWLfv/9dwUEBCg0NFQjR47Ud999Jz8/P12+fFnXrl1LsO5JEd++SGnZWUFqHYvReXp66tFHH1VUVJR1zm/cuFFffvmlHnroIYWFhUmSBg4c6LJudt8XCUmP/sms+yBmPPrmm2/0zz//6JtvvnGZHj3BmNS2ZNa2I/vy8fFRw4YNdefOHbVt21YzZ87UyZMnNXPmTLVt21Z37txRw4YN5ePjY62TnHMlqZJzrnB+AQBSk8NEf/BqEly5ckUBAQEKDw+Xv79/ktY9ePCg+vfvr1mzZmXIX4Gc279+XwdF+Qam+/YzO7fr/8h374ps3z/Ofsio4xSZV0piWEpiZ3pJjfguSTdLNdbdwLKJXjc1zzlnPVq2bKm1a9cm+FJQScqTJ4/uu+8+bdq0Kd7kuR13d3fVr19fR44c0dmzZ63phQoVUpMmTfTTTz+5TI/Ozc0tUfWLvq3o9StUqJCeeeYZNW7cOFHrb9iwQdOmTYtVz2eeeUaS4pwXs/wNGzbovffesxKTTnny5FGrVq1itTkp9Z4xY4aWLFmS5P0QXczt5cmTR8YYl/pGr4NdvySn7kkR375IadlZQWodi9HNmDFDixcvjnVO+fr66sUXX4xz3dTYF/dyfE+PYzWzng928cjd3V1dunTRgAEDbNdJaltS0vaMvq9KTcm5R0uP+5Z76Z4gscfLqFGjtHHjxljTGzZsGOfP5JNzriRVcs6V7BLfpcyToyHfkvlk1xzPvRS/EbeUxq/Exs5EP8IFAICspnPnzho+fLi++uor7dq1Sz4+PmrZsqWqVaumXbt2afv27ZKk6tWrq3r16nJ3d1dERISWL1+uU6dO6cKFCzLG6NatW7py5YrCw8OVI0cOlS9fXgEBAXJ3d1eRIkXUsWNHeXp6KjIyUjt37tSlS5eUN29eVa1aVe7u7urXr581PXfu3JKksLAw5c2bV5UqVXKpi/OnxDt37rQ+u7m5uSy/Z8+eWNtIrMaNG6thw4a29ZQU7zy7crZv327bj9HbnNR6DxgwQL1799by5cv1999/q3DhwmrXrp3279+vS5cuyd/fX0ePHtWZM2ckSRUrVlRgYGCsfo25PWe/2tUher/8888/CgsLU+7cuRUYGJjiPk/uvrjXpdaxGJ3z2Il5ztesWTPedbP7vkhIevRPZt0HdvHIGfPjktS2ZNa2I/t68803dfPmTc2cOVOnTp1S0aJF9fTTT7t88zym5JwrSZWcc4XzCwCQGkigAwDuaZ6ennrsscf02GOPuUyvVauWatWqZbt8ly5dkrUtd3d31ahRI9HT46tLnTp14lw+vrISI776JFTXmMvG1Y925SSl3nb7Ifr68fVPfNuLrw7xtT2lfZ6cbWYHqXUsRhfXOZ+SuiB9+iez7oPkXBeS2pbM2nZkXz4+Pho6dGiS1knJGCqxknOucH4BAFKKZ6ADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGAjQxLoxYsX16xZs1S8ePGM2DwApAgxLG7FixdX7969M7oa7CMAQLbA9Q5JwfGCuHBsAMiq0it+5UjT0uPg7e2t8uXLZ8SmASDFiGFx8/b2VqFChTK6GuwjAEC2wPUOScHxgrhwbADIqtIrfvEIFwAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMBGjoyuQEZyuxWe0VXIlNxuhrn8N7vi+ABSxhFxTW7X/0n08pxzAAAgKeOB9LhvYXwCJA/nTuaRXXM8HINITdkygR4QECAPTy/p6M8ZXZVMzefYhoyuQobz8PRSQEBARlcDyFKKFSsmNzd3eZ/+Uzr9Z5LW5ZwDACB7Ssk9WlrftzA+ARKPfEvmlR1zPMRvpJZsmUAvUKCA5s/7TOHh/DUK8QsICFCBAgUyuhpAlhIcHKyFCz9PVozlnAMAIHvKzPdojE+AxMvM5zKyH+I3Uku2TKBL/wZ1TiIASBvEWAAAkFSMH4B7A+cygHsNLxEFAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGzkSO6KxhhJ0pUrV1KtMgBwr3PGTGcMzYyI7wCQdMR3ALg3ZYX4LhHjASA5Ehvjk51Av3r1qiSpWLFiyS0CALKtq1evKiAgIKOrYYv4DgDJR3wHgHtTZo7vEjEeAFIioRjvMMn8M2pUVJT+/vtv+fn5yeFwJLuC6enKlSsqVqyYTp48KX9//4yuTqZBv9ijX+zRL/YS2y/GGF29elWFCxeWm1vmfIpWcuN7dj02smO7aXP2aLOUPdud3Dbfy/HdKTseD060PXu2Xcre7c/ObZf+r/0nTpyQw+HI1PFdyp5jeOqeMbJq3bNqvSXqnpYSO4ZP9jfQ3dzcVLRo0eSunqH8/f0z5U7LaPSLPfrFHv1iLzH9kpm/uSKlPL5n12MjO7abNmcf2bHdyWnzvR7fnbLj8eBE27Nn26Xs3f7s3Hbp39ieFdqfncfw1D1jZNW6Z9V6S9Q9rSRmDJ95/3wKAAAAAAAAAEAGIoEOAAAAAAAAAICNbJVA9/Ly0pgxY+Tl5ZXRVclU6Bd79Is9+sUe/ZJ9+yA7tps2Zx/Zsd3Zsc2JlZ37hrZnz7ZL2bv92bntUvZpf1ZuJ3XPGFm17lm13hJ1zwyS/RJRAAAAAAAAAADuZdnqG+gAAAAAAAAAACQWCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbNyTCfTx48erTp068vPzU1BQkDp16qQDBw64LHPr1i0NGjRI+fLlU65cufTII4/o3LlzGVTj9DdhwgQ5HA4NHTrUmpZd++T06dN64oknlC9fPvn4+KhKlSr6448/rPnGGI0ePVqFChWSj4+PWrRooUOHDmVgjdNeZGSkXn31VZUqVUo+Pj4qU6aMXn/9dUV/53B26JcNGzaoffv2Kly4sBwOh77++muX+Ynpg0uXLql79+7y9/dX7ty51adPH127di0dW5F+pk6dqpIlS8rb21v16tXT5s2bM7pKqWbs2LFyOBwu/4KDg63590L8zK7He0Lt7tWrV6x937p1a5dlslq7U2ucdOLECbVt21Y5c+ZUUFCQRowYobt376ZnUxItMW1u2rRprH09YMAAl2WyUpuTIznH8qxZs9S0aVP5+/vL4XAoLCwsVcpNb8mpY2LOk5jHlMPh0KJFi9KyKYmS1Gv2kiVLFBwcLG9vb1WpUkXfffedy/ysNi5M7fYn5lqRWSSl7Xv27NEjjzyikiVLyuFwaPLkySkuMyOldtsTGh9mFem9/9JrzLlz507df//98vb2VrFixfTOO+/EqktC53Z06Tl++umnn1SzZk15eXmpbNmymjt3bqz6JGW/TZ8+XVWrVpW/v7/8/f0VEhKiVatWZfp6x5TcPFZG1D017h8zss9TI0+WEedpmjL3oFatWpk5c+aY3bt3m+3bt5sHH3zQFC9e3Fy7ds1aZsCAAaZYsWJm3bp15o8//jD169c3DRo0yMBap5/NmzebkiVLmqpVq5rnnnvOmp4d++TSpUumRIkSplevXub33383R48eNatXrzaHDx+2lpkwYYIJCAgwX3/9tdmxY4fp0KGDKVWqlLl582YG1jxtvfnmmyZfvnzm22+/NceOHTNLliwxuXLlMlOmTLGWyQ798t1335lRo0aZZcuWGUnmq6++cpmfmD5o3bq1qVatmtm0aZP55ZdfTNmyZU23bt3SuSVpb9GiRcbT09PMnj3b7Nmzx/Tr18/kzp3bnDt3LqOrlirGjBljKlWqZM6cOWP9u3DhgjX/Xoif2fV4T6jdPXv2NK1bt3bZ95cuXXJZJqu1OzXGSXfv3jWVK1c2LVq0MNu2bTPfffedCQwMNCNHjsyIJiUoMW1u0qSJ6devn8u+Dg8Pt+ZntTYnR3KO5ffff9+MHz/ejB8/3kgyly9fTpVy01ty6piY2C/JzJkzx+W4yuixUlKv2Rs3bjTu7u7mnXfeMXv37jWvvPKK8fDwMLt27bKWyUrjwrRof2KuFZlBUtu+efNmM3z4cLNw4UJTsGBB8/7776e4zIySFm1PaHyYFWTE/kuPMWd4eLgpUKCA6d69u9m9e7dZuHCh8fHxMTNnzrSWScy5HV16jZ+OHj1qcubMaZ5//nmzd+9e8+GHHxp3d3fz/fffW8skdb+tWLHCrFy50hw8eNAcOHDAvPzyy8bDw8Ps3r07U9c7uuTmsTKq7im9f8zIPk+tPFlGnKdp6Z5MoMd0/vx5I8n8/PPPxhhjwsLCjIeHh1myZIm1zL59+4wkExoamlHVTBdXr1415cqVM2vWrDFNmjSxAk927ZMXX3zRNGrUKM75UVFRpmDBgmbixInWtLCwMOPl5WUWLlyYHlXMEG3btjW9e/d2mfbwww+b7t27G2OyZ7/EHNwlpg/27t1rJJktW7ZYy6xatco4HA5z+vTpdKt7eqhbt64ZNGiQ9TkyMtIULlzYjB8/PgNrlXrGjBljqlWrZjvvXoyf2fV4jyuB3rFjxzjXuRfanZxx0nfffWfc3NzM2bNnrWWmT59u/P39ze3bt9O3AckQs83GGJdxkZ2s3uaEpPRYXr9+vW0CPSucI8mpY2Jjv11cyWhJvWY/+uijpm3bti7T6tWrZ55++mljTNYbF6Z2+41J+FqRWaRkvFaiRAnbJHJWGQOmRdvjGx9mFRm9/9JqzDlt2jSTJ08el+vziy++aCpUqGB9Tsy5HZ+0Gj/997//NZUqVXLZ1mOPPWZatWplfU6N/ZYnTx7z8ccfZ4l6pySPlVF1T+n9Y0b2eWrkyTLLeZqa7slHuMQUHh4uScqbN68kaevWrbpz545atGhhLRMcHKzixYsrNDQ0Q+qYXgYNGqS2bdu6tF3Kvn2yYsUK1a5dW126dFFQUJBq1Kihjz76yJp/7NgxnT171qVfAgICVK9evXu6Xxo0aKB169bp4MGDkqQdO3bo119/VZs2bSRl336JLjF9EBoaqty5c6t27drWMi1atJCbm5t+//33dK9zWomIiNDWrVtd+sLNzU0tWrS4p46HQ4cOqXDhwipdurS6d++uEydOSMoe8TO7H+8//fSTgoKCVKFCBT3zzDO6ePGiNe9eaHdyxkmhoaGqUqWKChQoYC3TqlUrXblyRXv27EnH2idPzDY7LViwQIGBgapcubJGjhypGzduWPOyepsTklbHclY4R5JTx6TE/kGDBikwMFB169bV7NmzXR6Jl96Sc80ODQ2Nde/QqlUra/msNC5Mi/Y7xXetyAzSYryWVcaAaVnPuMaHWUFm3H+pNeYMDQ1V48aN5enpaS3TqlUrHThwQJcvX7aWScy5HZe0Gj8lVK+U7rfIyEgtWrRI169fV0hISJaod0ryWBlZ95TcP2ZkvVMjT5ZZztPUlCPdt5jOoqKiNHToUDVs2FCVK1eWJJ09e1aenp7KnTu3y7IFChTQ2bNnM6CW6WPRokX6888/tWXLlljzsmufHD16VNOnT9fzzz+vl19+WVu2bNGQIUPk6empnj17Wm2PHrScn+/lfnnppZd05coVBQcHy93dXZGRkXrzzTfVvXt3Scq2/RJdYvrg7NmzCgoKcpmfI0cO5c2b957qp3/++UeRkZG2fbF///4MqlXqqlevnubOnasKFSrozJkzGjdunO6//37t3r07W8TP7Hy8t27dWg8//LBKlSqlI0eO6OWXX1abNm0UGhoqd3f3LN/u5I6Tzp49a3s8OOdlZnZtlqTHH39cJUqUUOHChbVz5069+OKLOnDggJYtWyYpa7c5MdLqWM4K50hy6pjY2P/aa6/pgQceUM6cOfXDDz9o4MCBunbtmoYMGZLq7UiM5Fyz4zr2o8cD57S4lsks0qL9UsLXiswgLcZrWWUMmFb1jG986Ofnl9Jqp7nMuP9Sa8x59uxZlSpVKlYZznl58uRJ1Lkdl7QcP8W1zJUrV3Tz5k1dvnw5Wftt165dCgkJ0a1bt5QrVy599dVXuu+++7R9+/ZMXe+U5rEyqu4pvX/MyD5PjTxZZjhPU9s9n0AfNGiQdu/erV9//TWjq5KhTp48qeeee05r1qyRt7d3Rlcn04iKilLt2rX11ltvSZJq1Kih3bt3a8aMGerZs2cG1y7jLF68WAsWLNDnn3+uSpUqafv27Ro6dKgKFy6crfsF2Zfz1xeSVLVqVdWrV08lSpTQ4sWL5ePjk4E1Q1rr2rWr9f9VqlRR1apVVaZMGf30009q3rx5BtYsdWTHcVJcbe7fv7/1/1WqVFGhQoXUvHlzHTlyRGXKlEnvaqaal156SW+//Xa8y+zbty+dapO+MkPbX331Vev/a9SooevXr2vixIkZlkBH2rjXrxWwF9/4sE+fPhlYM6S1rDh+qlChgrZv367w8HAtXbpUPXv21M8//5zR1YpXVs5jZeX7R/Jk9u7pR7gMHjxY3377rdavX6+iRYta0wsWLKiIiAiFhYW5LH/u3DkVLFgwnWuZPrZu3arz58+rZs2aypEjh3LkyKGff/5ZH3zwgXLkyKECBQpkuz6RpEKFCum+++5zmVaxYkXrpzXOtsd8G/K93i8jRozQSy+9pK5du6pKlSp68sknNWzYMI0fP15S9u2X6BLTBwULFtT58+dd5t+9e1eXLl26p/opMDBQ7u7u2ep4yJ07t8qXL6/Dhw9ni2sKx/v/KV26tAIDA3X48GFJWbvdKRknFSxY0PZ4cM7LrOJqs5169epJksu+zoptfuGFF7Rv3754/5UuXTrNjuWMPEfSsu3Jjf316tXTqVOndPv27RS3LzmSc82O69iPHg+c0xJbZkZJi/bbiXmtyAzSYryWVcaA6VXP6OPDrCAz7r/UGnMm5pqdnHNbSvvxU1zL+Pv7y8fHJ9n7zdPTU2XLllWtWrU0fvx4VatWTVOmTMnU9U6NPFZG9nl0Sb1/zMh6p0aeLKPP07RwTybQjTEaPHiwvvrqK/3444+xfhJQq1YteXh4aN26dda0AwcO6MSJEwoJCUnv6qaL5s2ba9euXdq+fbv1r3bt2urevbv1/9mtTySpYcOGOnDggMu0gwcPqkSJEpKkUqVKqWDBgi79cuXKFf3+++/3dL/cuHFDbm6u4cHd3V1RUVGSsm+/RJeYPggJCVFYWJi2bt1qLfPjjz8qKirKSszcCzw9PVWrVi2XvoiKitK6devu2ePh2rVrOnLkiAoVKpQtrikc7//n1KlTunjxogoVKiQpa7Y7NcZJISEh2rVrl8vAeM2aNfL394814M4MEmqzne3bt0uSy77OSm12yp8/v4KDg+P95+npmWbHckaeI2nZ9uTG/u3btytPnjzy8vJKvYYmQXKu2SEhIS7LS/8e+87ls9K4MC3abyfmtSIzSIvxWlYZA6ZXPaOPD7OCzLj/UmvMGRISog0bNujOnTvWMmvWrFGFChWUJ08ea5mknNvpNX5KqF6ptd+ioqJ0+/btTF3v1MhjZZY+T+r9Y0bWOzXyZBl1nqapdH9taTp45plnTEBAgPnpp5/MmTNnrH83btywlhkwYIApXry4+fHHH80ff/xhQkJCTEhISAbWOv1Ff3uxMdmzTzZv3mxy5Mhh3nzzTXPo0CGzYMECkzNnTjN//nxrmQkTJpjcuXOb5cuXm507d5qOHTuaUqVKmZs3b2ZgzdNWz549TZEiRcy3335rjh07ZpYtW2YCAwPNf//7X2uZ7NAvV69eNdu2bTPbtm0zksx7771ntm3bZo4fP26MSVwftG7d2tSoUcP8/vvv5tdffzXlypUz3bp1y6gmpZlFixYZLy8vM3fuXLN3717Tv39/kzt3bpe3hmdlL7zwgvnpp5/MsWPHzMaNG02LFi1MYGCgOX/+vDHm3oif2fV4j6/dV69eNcOHDzehoaHm2LFjZu3ataZmzZqmXLly5tatW1YZWa3dqTFOunv3rqlcubJp2bKl2b59u/n+++9N/vz5zciRIzOiSQlKqM2HDx82r732mvnjjz/MsWPHzPLly03p0qVN48aNrTKyWpuTI6Fj+dSpU6ZChQrm999/t6adOXPGbNu2zXz00UdGktmwYYPZtm2buXjxYqLLzQyS0/aEzpMVK1aYjz76yOzatcscOnTITJs2zeTMmdOMHj06XdsWU0LX7CeffNK89NJL1vIbN240OXLkMO+++67Zt2+fGTNmjPHw8DC7du2ylslK48LUbn9irxWZQVLbfvv2besaWahQITN8+HCzbds2c+jQoUSXmVmkRdsTGh9mBRmx/9JjzBkWFmYKFChgnnzySbN7926zaNEikzNnTjNz5kxrmcTEtujSa/x09OhRkzNnTjNixAizb98+M3XqVOPu7m6+//57a5mk7reXXnrJ/Pzzz+bYsWNm586d5qWXXjIOh8P88MMPmbredpKax8qouqf0/jEj+zy18mQZcZ6mpXsygS7J9t+cOXOsZW7evGkGDhxo8uTJY3LmzGkeeughc+bMmYyrdAaIGXiya5988803pnLlysbLy8sEBwebWbNmucyPiooyr776qilQoIDx8vIyzZs3NwcOHMig2qaPK1eumOeee84UL17ceHt7m9KlS5tRo0aZ27dvW8tkh35Zv369bSzp2bOnMSZxfXDx4kXTrVs3kytXLuPv72+eeuopc/Xq1QxoTdr78MMPTfHixY2np6epW7eu2bRpU0ZXKdU89thjplChQsbT09MUKVLEPPbYY+bw4cPW/HshfmbX4z2+dt+4ccO0bNnS5M+f33h4eJgSJUqYfv36xRpwZrV2p9Y46a+//jJt2rQxPj4+JjAw0Lzwwgvmzp076dyaxEmozSdOnDCNGzc2efPmNV5eXqZs2bJmxIgRJjw83KWcrNTm5EjoWD527JiRZNavX29NGzNmTILHU1Y4R5LT9oTOk1WrVpnq1aubXLlyGV9fX1OtWjUzY8YMExkZmZ5NsxXfNbtJkyZW7HdavHixKV++vPH09DSVKlUyK1eudJmf1caFqdn+xF4rMouktN153Mf816RJk0SXmZmkdtsTGh9mFem9/9JrzLljxw7TqFEj4+XlZYoUKWImTJgQqy4Jxbbo0nP8tH79elO9enXj6elpSpcu7bINp6Tst969e5sSJUoYT09Pkz9/ftO8eXMreZ6Z620nOXmsjKh7atw/ZmSfp0aeLCPO07TkMMaYlH6LHQAAAAAAAACAe809+Qx0AAAAAAAAAABSigQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKAjQ/30009yOBwKCwuTJM2dO1e5c+dOk22NHTtW1atXT5OyASC7K1mypCZPnpzR1QAApBHiPAAgpqZNm2ro0KGZphwgrZBAR4Zq0KCBzpw5o4CAgDTf1vDhw7Vu3bo03w4AIHtyOBz6+uuvM7oaAIBUkJZf7AGAe8WyZcv0+uuvW5+T+8fWmOUAmU2OjK4AsjdPT08VLFgwTbdhjFFkZKRy5cqlXLlypem2AAD3lsjISDkcDrm58Z0DAMgMIiIi5OnpmdHVAIBMKz3Hr3nz5s1U5QBphbtBpKnbt29ryJAhCgoKkre3txo1aqQtW7ZY82M+wiUhf/31lxwOhxYtWqQGDRrI29tblStX1s8//xyrzFWrVqlWrVry8vLSr7/+avsIl9mzZ6tSpUry8vJSoUKFNHjwYGteWFiY+vbtq/z588vf318PPPCAduzYYc3fsWOHmjVrJj8/P/n7+6tWrVr6448/ktdRAJAOoqKiNH78eJUqVUo+Pj6qVq2ali5dKmOMWrRooVatWskYI0m6dOmSihYtqtGjR1vrf/PNN6pTp468vb0VGBiohx56yKX8GzduqHfv3vLz81Px4sU1a9Ysl/kvvviiypcvr5w5c6p06dJ69dVXdefOHWu+M07PmzdPJUuWVEBAgLp27aqrV69ay1y9elXdu3eXr6+vChUqpPfffz/WTz5v376t4cOHq0iRIvL19VW9evX0008/JaqPnN84XLFihe677z55eXnpxIkT2rJli/7zn/8oMDBQAQEBatKkif78809rvZIlS0qSHnroITkcDuuzJC1fvlw1a9aUt7e3SpcurXHjxunu3buJqg8ApIWEYun58+fVvn17+fj4qFSpUlqwYEGsMhwOh6ZPn642bdrIx8dHpUuX1tKlS635iRm3S9Lu3bvVpk0b5cqVSwUKFNCTTz6pf/75x5rftGlTDR48WEOHDlVgYKBatWolSdqzZ4/atWsnf39/+fn56f7779eRI0es9T7++GNVrFhR3t7eCg4O1rRp02LVbdmyZWrWrJly5sypatWqKTQ0VNK/9xNPPfWUwsPD5XA45HA4NHbs2BT3OwDYcca5wYMHKyAgQIGBgXr11VetcXlCY9u4xq+3b9/Wiy++qGLFisnLy0tly5bVJ598IunfJHufPn2s+4IKFSpoypQpLvXq1auXOnXqpHHjxll5kQEDBigiIsKl7s5rR9OmTXX8+HENGzbMip2SdPHiRXXr1k1FihRRzpw5VaVKFS1cuDBWH0Qfz5csWVJvvfVWvPcWp06dUrdu3ZQ3b175+vqqdu3a+v33363506dPV5kyZeTp6akKFSpo3rx5Lus7HA7NnDlT7dq1U86cOVWxYkWFhobq8OHDatq0qXx9fdWgQQOXa4vE2D7bMkAaGjJkiClcuLD57rvvzJ49e0zPnj1Nnjx5zMWLF40xxqxfv95IMpcvXzbGGDNnzhwTEBAQZ3nHjh0zkkzRokXN0qVLzd69e03fvn2Nn5+f+eeff1zKrFq1qvnhhx/M4cOHzcWLF82YMWNMtWrVrLKmTZtmvL29zeTJk82BAwfM5s2bzfvvv2/Nb9GihWnfvr3ZsmWLOXjwoHnhhRdMvnz5rLpXqlTJPPHEE2bfvn3m4MGDZvHixWb79u2p2n8AkJreeOMNExwcbL7//ntz5MgRM2fOHOPl5WV++uknc+rUKZMnTx4zefJkY4wxXbp0MXXr1jV37twxxhjz7bffGnd3dzN69Gizd+9es337dvPWW29ZZZcoUcLkzZvXTJ061Rw6dMiMHz/euLm5mf3791vLvP7662bjxo3m2LFjZsWKFaZAgQLm7bfftuaPGTPG5MqVyzz88MNm165dZsOGDaZgwYLm5Zdftpbp27evKVGihFm7dq3ZtWuXeeihh4yfn5957rnnXJZp0KCB2bBhgzl8+LCZOHGi8fLyMgcPHkywj+bMmWM8PDxMgwYNzMaNG83+/fvN9evXzbp168y8efPMvn37zN69e02fPn1MgQIFzJUrV4wxxpw/f95IMnPmzDFnzpwx58+fN8YYs2HDBuPv72/mzp1rjhw5Yn744QdTsmRJM3bs2GTsQQBIHQnF0jZt2phq1aqZ0NBQ88cff5gGDRoYHx8fl7GyJJMvXz7z0UcfmQMHDphXXnnFuLu7m7179xpjEjduv3z5ssmfP78ZOXKk2bdvn/nzzz/Nf/7zH9OsWTNrO02aNDG5cuUyI0aMMPv37zf79+83p06dMnnz5jUPP/yw2bJlizlw4ICZPXu2dc2ZP3++KVSokPnyyy/N0aNHzZdffmny5s1r5s6d61K34OBg8+2335oDBw6Yzp07mxIlSpg7d+6Y27dvm8mTJxt/f39z5swZc+bMGXP16tV02DMAsiNnnHvuuefM/v37zfz5803OnDnNrFmzjDEJj23jGr8++uijplixYmbZsmXmyJEjZu3atWbRokXGGGMiIiLM6NGjzZYtW8zRo0etbX7xxRdWvXr27Gly5cplHnvsMbN7927z7bffmvz587uMzZs0aWJdOy5evGiKFi1qXnvtNSt2GmPMqVOnzMSJE822bdvMkSNHzAcffGDc3d3N77//bluOMQnfW1y9etWULl3a3H///eaXX34xhw4dMl988YX57bffjDHGLFu2zHh4eJipU6eaAwcOmEmTJhl3d3fz448/WtuQZIoUKWK++OILc+DAAdOpUydTsmRJ88ADD5jvv//e7N2719SvX9+0bt3aWoexffZFAh1p5tq1a8bDw8MsWLDAmhYREWEKFy5s3nnnHWNM8hPoEyZMsKbduXPHFC1a1ErCOMv8+uuvXdaNmUAvXLiwGTVqlO12fvnlF+Pv729u3brlMr1MmTJm5syZxhhj/Pz8rEE4AGR2t27dMjlz5rQGlU59+vQx3bp1M8YYs3jxYuPt7W1eeukl4+vr65JwDgkJMd27d4+z/BIlSpgnnnjC+hwVFWWCgoLM9OnT41xn4sSJplatWtbnMWPGmJw5c1pJaWOMGTFihKlXr54xxpgrV64YDw8Ps2TJEmt+WFiYyZkzpzXgPn78uHF3dzenT5922Vbz5s3NyJEj46yL05w5c4ykBP8gGhkZafz8/Mw333xjTZNkvvrqq1jbjf6HBmOMmTdvnilUqFCCdQGAtJBQLD1w4ICRZDZv3mzN37dvn5EUK4E+YMAAl7Lr1atnnnnmGWNM4sbtr7/+umnZsqVLGSdPnjSSzIEDB4wx/yZVatSo4bLMyJEjTalSpUxERIRtG8uUKWM+//xzl2mvv/66CQkJcanbxx9/bM3fs2ePkWT27dtnjEn4vgQAUkuTJk1MxYoVTVRUlDXtxRdfNBUrVkzU2NZu/OqM5WvWrEl0PQYNGmQeeeQR63PPnj1N3rx5zfXr161p06dPN7ly5TKRkZFW3WMmvqNfK+LStm1b88ILL1if7cqJ795i5syZxs/Pz/qCY0wNGjQw/fr1c5nWpUsX8+CDD1qfJZlXXnnF+hwaGmokmU8++cSatnDhQuPt7W19ZmyfffEMdKSZI0eO6M6dO2rYsKE1zcPDQ3Xr1tW+fftSVHZISIj1/zly5FDt2rVjlVm7du041z9//rz+/vtvNW/e3Hb+jh07dO3aNeXLl89l+s2bN62f7zz//PPq27ev5s2bpxYtWqhLly4qU6ZMcpsEAGnq8OHDunHjhv7zn/+4TI+IiFCNGjUkSV26dNFXX32lCRMmaPr06SpXrpy13Pbt29WvX794t1G1alXr/x0OhwoWLKjz589b07744gt98MEHOnLkiK5du6a7d+/K39/fpYySJUvKz8/P+lyoUCGrjKNHj+rOnTuqW7euNT8gIEAVKlSwPu/atUuRkZEqX768S7m3b9+OFdPj4unp6dIWSTp37pxeeeUV/fTTTzp//rwiIyN148YNnThxIt6yduzYoY0bN+rNN9+0pkVGRurWrVu6ceOGcubMmag6AUBqSSiW7tu3Tzly5FCtWrWs+cHBwbYv1Iw+Jnd+3r59e5zLxBy379ixQ+vXr7d9T9GRI0esWB69LtK/16T7779fHh4esda7fv26jhw5oj59+rhct+7evauAgACXZaPH+kKFCkn69z4hODg4VrkAkJbq169vPfJE+jd2Tpo0KdFj25jj1+3bt8vd3V1NmjSJc5tTp07V7NmzdeLECd28eVMRERGxHntbrVo1l/FqSEiIrl27ppMnT6pEiRKJaltkZKTeeustLV68WKdPn1ZERIRu376d4Dg4vnuL7du3q0aNGnE+O33fvn3q37+/y7SGDRvGekxN9G0UKFBAklSlShWXabdu3dKVK1fk7+/P2D4bI4GOe5avr2+c83x8fOJd99q1aypUqJDtM3OdNw9jx47V448/rpUrV2rVqlUaM2aMFi1aFOuZwACQGVy7dk2StHLlShUpUsRlnpeXl6R/n2G+detWubu769ChQy7LJBQ3JcVKZDgcDkVFRUmSQkND1b17d40bN06tWrVSQECAFi1apEmTJiW6jMS4du2a3N3drXZEl9gXSfv4+LjcwEhSz549dfHiRU2ZMkUlSpSQl5eXQkJCXJ4BGVd9xo0bp4cffjjWPG9v70TVBwDuVdeuXVP79u319ttvx5rnTGhLscf18V2TnNe7jz76SPXq1XOZF/O6EP2a44z7SbnmAEBaS+zYNub4NaGx+6JFizR8+HBNmjRJISEh8vPz08SJE12eIZ5aJk6cqClTpmjy5MmqUqWKfH19NXTo0ATH0fHdFyTm3iQx7K4D8V0bGNtnX7xEFGnG+bKGjRs3WtPu3LmjLVu26L777ktR2Zs2bbL+/+7du9q6dasqVqyY6PX9/PxUsmRJrVu3znZ+zZo1dfbsWeXIkUNly5Z1+RcYGGgtV758eQ0bNkw//PCDHn74Yc2ZMyf5jQKANBT9hUIx41qxYsUkSS+88ILc3Ny0atUqffDBB/rxxx+t9atWrRpnzEyM3377TSVKlNCoUaNUu3ZtlStXTsePH09SGaVLl5aHh4fLy6jDw8N18OBB63ONGjUUGRmp8+fPx2pnwYIFk13/jRs3asiQIXrwwQetl09Hf8md9O9gOzIy0mVazZo1deDAgVh1KVu2rNzcGIYBSH8JxdLg4GBrfO104MABhYWFxSor+pjc+TnmmDy+cXvNmjW1Z88elSxZMlaMjO/LMFWrVtUvv/zi8iJqpwIFCqhw4cI6evRorDJLlSoVT8+48vT0jBXTASCtxExcb9q0SeXKlUv22LZKlSqKioqK9eJmp40bN6pBgwYaOHCgatSoobJly8Z6Wab07y+Fbt686VKvXLlyWfcPMdnFzo0bN6pjx4564oknVK1aNZUuXdpl/J4cVatW1fbt23Xp0iXb+RUrVnTJRTnrkdJcFGP77ItvoCPN+Pr66plnntGIESOUN29eFS9eXO+8845u3LihPn36pKjsqVOnqly5cqpYsaLef/99Xb58Wb17905SGWPHjtWAAQMUFBSkNm3a6OrVq9q4caOeffZZtWjRQiEhIerUqZPeeecdlS9fXn///bdWrlyphx56SJUqVdKIESPUuXNnlSpVSqdOndKWLVv0yCOPpKhdAJBW/Pz8NHz4cA0bNkxRUVFq1KiRwsPDtXHjRvn7+yswMFCzZ89WaGioatasqREjRqhnz57auXOn8uTJozFjxqh58+YqU6aMunbtqrt37+q7777Tiy++mKjtlytXTidOnNCiRYtUp04drVy5Ul999VWS29CzZ0/ruhIUFKQxY8bIzc3N+nZI+fLl1b17d/Xo0UOTJk1SjRo1dOHCBa1bt05Vq1ZV27Ztk9x3zvrPmzdPtWvX1pUrVzRixIhY33xx/mG2YcOG8vLyUp48eTR69Gi1a9dOxYsXV+fOneXm5qYdO3Zo9+7deuONN5JVFwBIiYRiaYUKFdS6dWs9/fTTmj59unLkyKGhQ4fafttvyZIlql27tho1aqQFCxZo8+bN+uSTT1yWiW/cPmjQIH300Ufq1q2b/vvf/ypv3rw6fPiwFi1apI8//jjWty2dBg8erA8//FBdu3bVyJEjFRAQoE2bNqlu3bqqUKGCxo0bpyFDhiggIECtW7fW7du39ccff+jy5ct6/vnnE9VPJUuW1LVr17Ru3TrrEQb8NB9AWjlx4oSef/55Pf300/rzzz/14YcfatKkScke25YsWVI9e/ZU79699cEHH6hatWo6fvy4zp8/r0cffVTlypXTZ599ptWrV6tUqVKaN2+etmzZEusPjREREerTp49eeeUV/fXXXxozZowGDx4cZ7K4ZMmS2rBhg7p27SovLy8FBgaqXLlyWrp0qX777TflyZNH7733ns6dO5eiZHa3bt301ltvqVOnTho/frwKFSqkbdu2qXDhwgoJCdGIESP06KOPqkaNGmrRooW++eYbLVu2TGvXrk32NiUxts/G+PMI0tSECRP0yCOP6Mknn1TNmjV1+PBhrV69Wnny5ElxuRMmTFC1atX066+/asWKFS7fDE+Mnj17avLkyZo2bZoqVaqkdu3aWY8scDgc+u6779S4cWM99dRTKl++vLp27arjx4+rQIECcnd318WLF9WjRw+VL19ejz76qNq0aaNx48alqF0AkJZef/11vfrqqxo/frwqVqyo1q1ba+XKlSpZsqT69OmjsWPHqmbNmpKkcePGqUCBAhowYIAkqWnTplqyZIlWrFih6tWr64EHHtDmzZsTve0OHTpo2LBhGjx4sKpXr67ffvtNr776apLb8N577ykkJETt2rVTixYt1LBhQ1WsWNHlJ5Nz5sxRjx499MILL6hChQrq1KmTtmzZouLFiyd5e06ffPKJLl++rJo1a+rJJ5/UkCFDFBQU5LLMpEmTtGbNGhUrVsx6rnyrVq307bff6ocfflCdOnVUv359vf/++4l+ZiQApIWEYumcOXNUuHBhNWnSRA8//LD69+8fK+ZJ/14rFi1apKpVq+qzzz7TwoULYyVE4hu3Fy5cWBs3blRkZKRatmypKlWqaOjQocqdO3e83+TLly+ffvzxR127dk1NmjRRrVq19NFHH1k/u+/bt68+/vhjzZkzR1WqVFGTJk00d+7cJH0DvUGDBhowYIAee+wx5c+fX++8806i1wWApOrRo4du3rypunXratCgQXruueesZ3gnd2w7ffp0de7cWQMHDlRwcLD69eun69evS5KefvppPfzww3rsscdUr149Xbx4UQMHDoxVRvPmzVWuXDk1btxYjz32mDp06KCxY8fGuc3XXntNf/31l8qUKaP8+fNLkl555RXVrFlTrVq1UtOmTVWwYEF16tQpeR31/3l6euqHH35QUFCQHnzwQVWpUkUTJkyw/vDaqVMnTZkyRe+++64qVaqkmTNnas6cOWratGmKtsvYPvtyGGNMRlcCSKy//vpLpUqV0rZt22K93AIAkP1cv35dRYoU0aRJk1L86yYAyK6SE0sdDoe++uqrOJMgjNsBIHGaNm2q6tWra/LkyRldFRe9evVSWFiYvv7664yuCpDheIQLAADIMrZt26b9+/erbt26Cg8P12uvvSZJ6tixYwbXDACyDmIpAABA4vEIFwAAkKW8++67qlatmlq0aKHr16/rl19+SfRjvNq0aaNcuXLZ/nvrrbfSuOYAkHmkJJYCAABkJzzCBQAAZBunT5/WzZs3beflzZtXefPmTecaAQAAAAAyMxLoAAAAAAAAAADY4BEuAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIEOAAAAAAAAAIANEugAAAAAAAAAANgggQ4AAAAAAAAAgA0S6AAAAAAAAAAA2CCBDgAAAAAAAACADRLoAAAAAAAAAADYIIGeSf31119yOByaO3duRlfFxffff6/q1avL29tbDodDYWFhGV2lDDV37lw5HA799ddfGV0VAJkE8TtjXbt2TX379lXBggXlcDg0dOjQjK5SkjkcDo0dOzajqwEgk+I6kzzJja0//fSTHA6Hli5dmmp1GTt2rBwOR6qVByB7IP4DGeeeT6A7E5zR/wUFBalZs2ZatWpVutfHOQBz/vPw8FDp0qXVo0cPHT16NFW28dtvv2ns2LGpHrQuXryoRx99VD4+Ppo6darmzZsnX1/fVN0GsoZp06al2UV77969Gjt2LH+UAPE7FWWn+P3WW29p7ty5euaZZzRv3jw9+eSTabKNr7/+OtXLzerS8toQE9cKpAauM6knKdeZtKoDACQW8T/1JCX+O/94+M8//9jOr1y5spo2beoy7cKFC3ruuecUHBwsHx8fBQUFqW7dunrxxRd17dq1WH0X3z8gJXJkdAXSy2uvvaZSpUrJGKNz585p7ty5evDBB/XNN9+oXbt26V6fIUOGqE6dOrpz547+/PNPzZo1SytXrtSuXbtUuHDhFJX922+/ady4cerVq5dy586dOhWWtGXLFl29elWvv/66WrRokWrlIuuZNm2aAgMD1atXr1Qve+/evRo3bpyaNm2qkiVLpnr5yHqI3ymXneL3jz/+qPr162vMmDFpto233npLnTt3VqdOndKk/Js3bypHjqw3REvLa0NMXCuQmrjOpFxSrjNpVQcASCrif8ql5X3GpUuXVLt2bV25ckW9e/dWcHCwLl68qJ07d2r69Ol65plnVLFiRc2bN89lvZEjRypXrlwaNWpUqtYH2VvWuztLpjZt2qh27drW5z59+qhAgQJauHBhhgTG+++/X507d5YkPfXUUypfvryGDBmiTz/9VCNHjkz3+iTG+fPnJYmBLpLk+vXr9+w3XZE+iN8pl53i9/nz53XfffdldDWSLCoqShEREfL29pa3t3dGVwfIVrjOpFxaXWeix0YASG3E/5RLy/uMTz75RCdOnNDGjRvVoEEDl3lXrlyRp6envL299cQTT7jMmzBhggIDA2NNjy6rXl+MMbp165Z8fHwyuirZzj3/CJe45M6dWz4+PrG+4XX9+nW98MILKlasmLy8vFShQgW9++67MsZI+vdbYcHBwQoODtbNmzet9S5duqRChQqpQYMGioyMTHJ9HnjgAUnSsWPH4l3uxx9/1P333y9fX1/lzp1bHTt21L59+6z5Y8eO1YgRIyRJpUqVsn6qktBPnJcsWaJatWrJx8fHCjSnT5+25jdt2lQ9e/aUJNWpU0cOhyPeb5j16tXL9hthds/7czgcGjx4sL7++mtVrlxZXl5eqlSpkr7//vtY658+fVq9e/dWgQIFrOVmz57tsozzJzyLFy/WuHHjVKRIEfn5+alz584KDw/X7du3NXToUAUFBSlXrlx66qmndPv2bds6LViwQBUqVJC3t7dq1aqlDRs2xNuPTtOmTVOlSpXk5eWlwoULa9CgQS4/lRozZow8PDx04cKFWOv2799fuXPn1q1btyRJJUuWVLt27fTTTz+pdu3a8vHxUZUqVfTTTz9JkpYtW6YqVapYddy2bVusMvfv36/OnTsrb9688vb2Vu3atbVixQqXZZw/Y9u4caOef/555c+fX76+vnrooYdc6lmyZEnt2bNHP//8s3V8OX9m5Szj559/1sCBAxUUFKSiRYtKko4fP66BAweqQoUK8vHxUb58+dSlSxeXY3Pu3Lnq0qWLJKlZs2ZW+c62StKqVausc8DPz09t27bVnj17ErVfcG8gfrtK7fjtjNMHDx7UE088oYCAAOXPn1+vvvqqjDE6efKkOnbsKH9/fxUsWFCTJk1yWT8iIkKjR49WrVq1FBAQIF9fX91///1av369y3LOZzi+++67mjVrlsqUKSMvLy/VqVNHW7ZscVm2adOmsX7OKblea5yx/9ixY1q5cqVL/yW2TtK/g+kpU6ZYcTV//vxq3bq1/vjjD0n/Xh+uX7+uTz/91NqGsz+Tc+1bsGCBdb1wXvdiPqfXuf7hw4etbw0FBAToqaee0o0bN1zKvXnzpoYMGaLAwED5+fmpQ4cOOn36tO2zf7dt26Y2bdrI399fuXLlUvPmzbVp06YE6y7FfgdIYq4NGzZs0NNPP618+fLJ399fPXr00OXLl2P1i90zikuWLGn1c2KuFUBKcJ1xlZrXmYTqEF9sfPfdd9WgQQPly5dPPj4+qlWrlu1zyW/fvq1hw4Ypf/78Vhw8deqUbX0Sc2/hFBkZqZdfflkFCxaUr6+vOnTooJMnT7os88svv6hLly4qXry4vLy8VKxYMQ0bNszleIjLnDlz9MADDygoKEheXl667777NH369FjLOe8Nfv31V9WtW1fe3t4qXbq0Pvvss1jLhoWFadiwYSpZsqS8vLxUtGhR9ejRw+XxCbdv39aYMWNUtmxZq87//e9/Y90fAdkB8d9Vat9nJNWRI0fk7u6u+vXrx5rn7++fpOR3fNeXxFwLknI/sWjRItWqVUt+fn7y9/dXlSpVNGXKFGt+YsfX0v/F/NWrV1v5oJkzZ6pJkyaqVq2abVsrVKigVq1aJbpvkDjZ5hvo4eHh+ueff2SM0fnz5/Xhhx/q2rVrLn+RMsaoQ4cOWr9+vfr06aPq1atr9erVGjFihE6fPq33339fPj4++vTTT9WwYUONGjVK7733niRp0KBBCg8P19y5c+Xu7p7k+h05ckSSlC9fvjiXWbt2rdq0aaPSpUtr7Nixunnzpj788EM1bNhQf/75p0qWLKmHH35YBw8e1MKFC/X+++8rMDBQkpQ/f/44y507d66eeuop1alTR+PHj9e5c+c0ZcoUbdy4Udu2bVPu3Lk1atQoVahQQbNmzbJ+5lSmTJkktzMuv/76q5YtW6aBAwfKz89PH3zwgR555BGdOHHC6pNz586pfv36VuDLnz+/Vq1apT59+ujKlSuxXhQ3fvx4+fj46KWXXtLhw4f14YcfysPDQ25ubrp8+bLGjh2rTZs2ae7cuSpVqpRGjx7tsv7PP/+sL774QkOGDJGXl5emTZum1q1ba/PmzapcuXKcbRk7dqzGjRunFi1a6JlnntGBAwc0ffp0bdmyRRs3bpSHh4eefPJJvfbaa/riiy80ePBga92IiAgtXbpUjzzyiMvF4PDhw3r88cf19NNP64knntC7776r9u3ba8aMGXr55Zc1cOBAq82PPvqoDhw4IDe3f/8+tmfPHjVs2FBFihTRSy+9JF9fXy1evFidOnXSl19+qYceesil/s8++6zy5MmjMWPG6K+//tLkyZM1ePBgffHFF5KkyZMn69lnn3X5SVSBAgVcyhg4cKDy58+v0aNH6/r165L+/WnXb7/9pq5du6po0aL666+/NH36dDVt2lR79+5Vzpw51bhxYw0ZMkQffPCBXn75ZVWsWFGSrP/OmzdPPXv2VKtWrfT222/rxo0bmj59uho1aqRt27bxM/57FPE7Y+L3Y489pooVK2rChAlauXKl3njjDeXNm1czZ87UAw88oLffflsLFizQ8OHDVadOHTVu3FjSv98G+fjjj9WtWzf169dPV69e1SeffKJWrVpp8+bNql69ust2Pv/8c129elVPP/20HA6H3nnnHT388MM6evSoPDw8Eqynk/Pnm8OGDVPRokX1wgsvWP2XlDr16dNHc+fOVZs2bdS3b1/dvXtXv/zyizZt2qTatWtr3rx56tu3r+rWrav+/ftLUrKvhz/++KMWL16swYMHKzAwMMEY9uijj6pUqVIaP368/vzzT3388ccKCgrS22+/bS3Tq1cvLV68WE8++aTq16+vn3/+WW3bto1V1p49e3T//ffL399f//3vf+Xh4aGZM2eqadOm+vnnn1WvXr0ktSUx14bBgwcrd+7cGjt2rHVtPH78uPXHj8RK6FoBJBXXmfS7ziSmDnHFxilTpqhDhw7q3r27IiIitGjRInXp0kXffvutS5zr27ev5s+fr8cff1wNGjTQjz/+aBsHk3pv8eabb8rhcOjFF1/U+fPnNXnyZLVo0ULbt2+3vgm4ZMkS3bhxQ88884zy5cunzZs368MPP9SpU6e0ZMmSOPtZkqZPn65KlSqpQ4cOypEjh7755hsNHDhQUVFRGjRokMuyhw8fVufOndWnTx/17NlTs2fPVq9evVSrVi1VqlRJ0r8v1b7//vu1b98+9e7dWzVr1tQ///yjFStW6NSpUwoMDFRUVJQ6dOigX3/9Vf3791fFihW1a9cuvf/++zp48CDv+8A9j/ifufNEJUqUUGRkpJUHSCm760tirwWJvZ9Ys2aNunXrpubNm1tj9H379mnjxo167rnnklXvAwcOqFu3bnr66afVr18/VahQQbly5VK/fv20e/dul/zUli1bdPDgQb3yyisp6ivYMPe4OXPmGEmx/nl5eZm5c+e6LPv1118bSeaNN95wmd65c2fjcDjM4cOHrWkjR440bm5uZsOGDWbJkiVGkpk8eXKC9Vm/fr2RZGbPnm0uXLhg/v77b7Ny5UpTsmRJ43A4zJYtW4wxxhw7dsxIMnPmzLHWrV69ugkKCjIXL160pu3YscO4ubmZHj16WNMmTpxoJJljx44lWJ+IiAgTFBRkKleubG7evGlN//bbb40kM3r0aGuasy+ddYxPz549TYkSJWJNHzNmjIl52Ekynp6eLv27Y8cOI8l8+OGH1rQ+ffqYQoUKmX/++cdl/a5du5qAgABz48YNY8z/9XHlypVNRESEtVy3bt2Mw+Ewbdq0cVk/JCQkVl2dx8kff/xhTTt+/Ljx9vY2Dz30kDXN2SfOvj5//rzx9PQ0LVu2NJGRkdZy//vf/6z9Hn279erVc9nusmXLjCSzfv16a1qJEiWMJPPbb79Z01avXm0kGR8fH3P8+HFr+syZM2Ot37x5c1OlShVz69Yta1pUVJRp0KCBKVeuXKy2tGjRwkRFRVnThw0bZtzd3U1YWJg1rVKlSqZJkyYmJmcZjRo1Mnfv3nWZ59w/0YWGhhpJ5rPPPrOmOc+n6G0wxpirV6+a3Llzm379+rlMP3v2rAkICIg1HVkf8Tt+aRW/nXG6f//+1rS7d++aokWLGofDYSZMmGBNv3z5svHx8TE9e/Z0Wfb27dsuZV6+fNkUKFDA9O7d25rm7Kd8+fKZS5cuWdOXL19uJJlvvvnGmtakSRPbmGN3rSlRooRp27aty7TE1unHH380ksyQIUNibSt6XPT19XVpc3z1MSbua5+bm5vZs2dPrOUlmTFjxsRaP3pdjTHmoYceMvny5bM+b9261UgyQ4cOdVmuV69escrs1KmT8fT0NEeOHLGm/f3338bPz880btw43robE/v6Z0zC14ZatWq5XJffeecdI8ksX748zrY7lShRwqXP47pWAEnBdSZ+aXWdia8O8cXGmGPJiIgIU7lyZfPAAw9Y07Zv324kmYEDB7os+/jjj8eKL0m9tyhSpIi5cuWKtdzixYuNJDNlypQ462iMMePHjzcOh8NlzG4XW+3WbdWqlSldurTLNOe9wYYNG6xp58+fN15eXuaFF16wpo0ePdpIMsuWLYtVrvOaNm/ePOPm5mZ++eUXl/kzZswwkszGjRtjrQvcC4j/8Uvr+4wLFy7Yzo85ljx79qzJnz+/kWSCg4PNgAEDzOeff+6Sm0hMOcbEfX1J7LUgsfcTzz33nPH394+VD4kuKeNrZ8z//vvvXZYNCwsz3t7e5sUXX3SZPmTIEOPr62uuXbsW5/aRPNnmES5Tp07VmjVrtGbNGs2fP1/NmjVT3759tWzZMmuZ7777Tu7u7hoyZIjLui+88IKMMS5vYx47dqwqVaqknj17auDAgWrSpEms9eLTu3dv5c+fX4ULF1bbtm2tn4NHf/5WdGfOnNH27dvVq1cv5c2b15petWpV/ec//9F3332X6G1H98cff+j8+fMaOHCgyzee27Ztq+DgYK1cuTJZ5SZVixYtXP5SWbVqVfn7+1tvnDbG6Msvv1T79u1ljNE///xj/WvVqpXCw8P1559/upTZo0cPl28v1qtXT8YY9e7d22W5evXq6eTJk7p7967L9JCQENWqVcv6XLx4cXXs2FGrV6+O8+dXa9euVUREhIYOHWp9A1yS+vXrJ39/f5f+7NGjh37//Xfrr8qStGDBAhUrVkxNmjRxKfe+++5TSEiIS52lf3/SVbx48VjTnf126dIl/fjjj3r00Ud19epVq88uXryoVq1a6dChQy4/wZL+fYRM9G8C3n///YqMjNTx48dt22ynX79+sf7CHv0ZXXfu3NHFixdVtmxZ5c6dO9a+s7NmzRqFhYWpW7duLvvf3d1d9erVs/3pFO4NxG97aR2/+/bta/2/u7u7ateuLWOM+vTpY03PnTu3KlSoYMUc57Kenp6S/n0cyqVLl3T37l3Vrl3b9lx/7LHHlCdPHuvz/fffL0kuZaZUYuv05ZdfyuFw2L6ANCnfkE6sJk2aJOl57QMGDHD5fP/99+vixYu6cuWKJFk/Q3X+Ksnp2WefdfkcGRmpH374QZ06dVLp0qWt6YUKFdLjjz+uX3/91SozNfXv39/luvzMM88oR44cyT4HgNTCdcZeRt0nxBUbo48lL1++rPDwcN1///0ucdzZ1pj9HfPb5Mm9t/Dz87M+d+7cWYUKFXLp3+h1vH79uv755x81aNBAxhjbxyzG1T7nt2KbNGmio0ePKjw83GXZ++67z7peSv9+izTm9fjLL79UtWrVYv3aVPq/a9qSJUtUsWJFBQcHu/SB87ERjK9xryP+28sseaICBQpox44dGjBggC5fvqwZM2bo8ccfV1BQkF5//XXrETqJFfP6kpRrQWLvJ3Lnzq3r169rzZo1qdAD/ypVqlSsR7IEBASoY8eOWrhwodUPkZGR+uKLL9SpUyfeQ5cGss0jXOrWresSdLp166YaNWpo8ODBateunTw9PXX8+HEVLlzYZWAk/d9PgqMnED09PTV79mzVqVNH3t7emjNnTpJurkePHq37779f7u7uCgwMVMWKFWM9Zys657YrVKgQa17FihW1evXqZL2sMb5yg4OD9euvvyapvOSKngR2ypMnj/Vs1AsXLigsLEyzZs3SrFmzbMtwvrwirjIDAgIkScWKFYs1PSoqSuHh4S4/jSpXrlysbZQvX143btzQhQsXVLBgwVjz4+pPT09PlS5d2uUYeuyxxzR06FAtWLBAo0ePVnh4uL799lsNGzYs1rGUlLZIsvrt8OHDMsbo1Vdf1auvvhqrvtK//VakSJE4t+VMbMV8Tm18SpUqFWvazZs3NX78eM2ZM0enT592udjFvCmwc+jQIUn/9xy4mPz9/RNdP2QtxO+kl5sa8dsu7nh7e1s/+Yw+/eLFiy7TPv30U02aNEn79+/XnTt3rOl2sSE1Yk5iJKZOR44cUeHChV1uQNKSXX/EJ76+8vf31/Hjx+Xm5har3LJly7p8vnDhgm7cuBHnMRkVFaWTJ09ajwFILTGvq7ly5VKhQoUSfP4mkNa4ziS93LS8T4grNn777bd64403tH37dpfnc0fvW2ccjPkIgZhtSM69RcwY5nA4VLZsWZcYduLECY0ePVorVqyIdR1LaLy7ceNGjRkzRqGhobHebxEeHm6N86WE752kf69pjzzySLzbPHTokPbt2xfnYxxi9gFwryH+J73ctM4TxeyvQoUKafr06Zo2bZoOHTqk1atX6+2339bo0aNVqFAhly/9JCTm9SWp14LE3E8MHDhQixcvVps2bVSkSBG1bNlSjz76qFq3bp3oeiZUb6cePXroiy++0C+//KLGjRtr7dq1OnfunJ588slkbwtxyzYJ9Jjc3NzUrFkzTZkyRYcOHUrWTeLq1aslSbdu3dKhQ4eSdCNcpUoVtWjRIsnbzCriukjE9c3tuJ4H5kyyRkVFSZKeeOKJOJ99VbVq1USVmdC20kuePHnUrl07K4G+dOlS3b592/ZN0clti7Pfhg8fHudLJGImVlKjf+zeCP3ss89qzpw5Gjp0qEJCQhQQECCHw6GuXbta9YyPc5l58+bZ/vEivoEF7i3E7/RhFwsSEx/mz5+vXr16qVOnThoxYoSCgoLk7u6u8ePHu/ziJillOhwO2xiU2JcxJbVOyZXUa59drIxPRly/ktqmtJLe20P2xnUmY9nFxl9++UUdOnRQ48aNNW3aNBUqVEgeHh6aM2eOPv/88yRvIzn3FgmJjIzUf/7zH126dEkvvviigoOD5evrq9OnT6tXr17xjnePHDmi5s2bKzg4WO+9956KFSsmT09Pfffdd3r//fdjrZta14OoqChVqVLFel5zTDG/rAPc64j/acv5bfa4Xqx848aNOF8M6nA4VL58eZUvX15t27ZVuXLltGDBgiQl0GNeX5JyLUjs/URQUJC2b9+u1atXa9WqVVq1apXmzJmjHj166NNPP7XaYiep9wytWrVSgQIFNH/+fDVu3Fjz589XwYIF7+ljKCNl64yT85Ed165dk/TvCwrWrl2rq1evuvx1cf/+/dZ8p507d+q1117TU089pe3bt6tv377atWuXyzcDUpNz2wcOHIg1b//+/QoMDLT+qpiUv3BGLzfmN3sPHDjg0uakyJMnj8LCwmJNT8pjQKLLnz+//Pz8FBkZmW7BwPmN5+gOHjyonDlzxvktjej9Gf1n8RERETp27Fisuvfo0UMdO3bUli1btGDBAtWoUSNVv/HnrIOHh0eq9ltyHmWwdOlS9ezZU5MmTbKm3bp1K9ZxElfZzm8SBQUFcUEA8VtpF79TaunSpSpdurSWLVvm0h67x6IkVp48eWwf6ZLYa0pi61SmTBmtXr1aly5divdb6HHtp9S+9iVViRIlFBUVpWPHjrl8U/Lw4cMuy+XPn185c+aM85h0c3OzkibOb7mHhYUpd+7c1nJ2bUro+D106JCaNWtmfb527ZrOnDmjBx980Jpm14cRERE6c+ZMkrYFpBTXmbS7ziTn/P3yyy/l7e2t1atXy8vLy5o+Z84cl+WccfDIkSMu35yM2TfJubeIeW9gjNHhw4et5MquXbt08OBBffrpp+rRo4e1XGJ+xv/NN9/o9u3bWrFihcu3y1PyCJUyZcpo9+7dCS6zY8cONW/enLgK/H/E/7SL/9HLjfkHuhs3bujkyZNq2bJlguWULl1aefLkiTU+TKqkXAuSco/j6emp9u3bq3379oqKitLAgQM1c+ZMvfrqqypbtmySxtfxcXd31+OPP665c+fq7bff1tdff237OF2kjmzzDPSY7ty5ox9++EGenp7WT28efPBBRUZG6n//+5/Lsu+//74cDofatGljrdurVy8VLlxYU6ZM0dy5c3Xu3DkNGzYszepbqFAhVa9eXZ9++qnLjeXu3bv1ww8/uNx8OgOk3U18TLVr11ZQUJBmzJjh8lPIVatWad++fbZvrE+MMmXKKDw8XDt37rSmnTlzRl999VWyynN3d9cjjzyiL7/80nYgeOHChWSVG5/Q0FCXZ1mdPHlSy5cvV8uWLeMMSC1atJCnp6c++OADl2+AfPLJJwoPD4/Vn23atFFgYKDefvtt/fzzz7bfPk+JoKAgNW3aVDNnzrS9uCS333x9fRN1fEXn7u4e61sxH374Yay/ssZ1/LZq1Ur+/v566623XH4u5ZQWxwAyJ+L3v9IqfqeUMz5GP99///13hYaGJrvMMmXKaP/+/S7n+Y4dO7Rx48ZUrdMjjzwiY4zGjRsXq4zo68YVA1P72pdUzl8aTZs2zWX6hx9+6PLZ3d1dLVu21PLly10ePXDu3Dl9/vnnatSokfVYLOcfLzds2GAt53weZ0wJXRtmzZrlEr+nT5+uu3fvWuenc3vRt+VcL7HXCiA1cJ35V1pdZ5Jz/rq7u8vhcLjEgr/++ktff/21y3LO/fDBBx+4TJ88eXKs8pJ6b/HZZ5/p6tWr1uelS5fqzJkz1jbtrjXGGE2ZMiVR7Yu5bnh4eKw/ECTFI488oh07dtheg5zbefTRR3X69Gl99NFHsZa5efOmrl+/nuztA1kR8f9faRX/mzdvLk9PT02fPj3WL2tmzZoVa1z4+++/28ahzZs36+LFi7aPmEmKpFwLEns/EfPRlm5ubtYfWp19mZTxdUKefPJJXb58WU8//bSuXbuW6jkl/J9s8w30VatWWX8hPH/+vD7//HMdOnRIL730knWT2L59ezVr1kyjRo3SX3/9pWrVqumHH37Q8uXLNXToUOsgdz57b926dfLz81PVqlU1evRovfLKK+rcubNLkEpNEydOVJs2bRQSEqI+ffro5s2b+vDDDxUQEKCxY8dayzlffDlq1Ch17dpVHh4eat++ve1zrzw8PPT222/rqaeeUpMmTdStWzedO3dOU6ZMUcmSJZMd7Lt27aoXX3xRDz30kIYMGaIbN25o+vTpKl++fKJeGGlnwoQJWr9+verVq6d+/frpvvvu06VLl/Tnn39q7dq1unTpUrLKjUvlypXVqlUrDRkyRF5eXlZCwi6x4pQ/f36NHDlS48aNU+vWrdWhQwcdOHBA06ZNU506dWIFMw8PD3Xt2lX/+9//5O7urm7duqVqG6R/X4zSqFEjValSRf369VPp0qV17tw5hYaG6tSpU9qxY0eSy6xVq5amT5+uN954Q2XLllVQUFCczyZ3ateunebNm6eAgADdd999Cg0N1dq1a12eOy9J1atXl7u7u95++22Fh4fLy8tLDzzwgIKCgjR9+nQ9+eSTqlmzprp27ar8+fPrxIkTWrlypRo2bBhrUIN7A/E7feN3SrVr107Lli3TQw89pLZt2+rYsWOaMWOG7rvvPuubPEnVu3dvvffee2rVqpX69Omj8+fPa8aMGapUqVKiXnaZ2Do1a9ZMTz75pD744AMdOnRIrVu3VlRUlH755Rc1a9ZMgwcPlvTvflq7dq3ee+89FS5cWKVKlVK9evXS5NqXFLVq1dIjjzyiyZMn6+LFi6pfv75+/vlnHTx4UJLrN4/eeOMNrVmzRo0aNdLAgQOVI0cOzZw5U7dv39Y777xjLdeyZUsVL15cffr00YgRI+Tu7q7Zs2db8Tfm9uO7NkRERKh58+Z69NFHrWtjo0aN1KFDB2uZvn37asCAAXrkkUf0n//8Rzt27NDq1atjPXs/vmsFkFRcZ9L3OpOUOji1bdtW7733nlq3bq3HH39c58+f19SpU1W2bFmXP1pWr15d3bp107Rp0xQeHq4GDRpo3bp1sX6JIyX93iJv3rxq1KiRnnrqKZ07d06TJ09W2bJl1a9fP0n/Phe4TJkyGj58uE6fPi1/f399+eWXiXqnR8uWLa1vLDqTIB999JGCgoKS/Q3LESNGaOnSperSpYt69+6tWrVq6dKlS1qxYoVmzJihatWq6cknn9TixYs1YMAArV+/Xg0bNlRkZKT279+vxYsXa/Xq1XG+vBC4FxD/0zf+BwUFWX3SuHFjdejQQTlz5tRvv/2mhQsXqmXLlmrfvr21/Lx587RgwQI99NBDqlWrljw9PbVv3z7Nnj1b3t7eevnll5NVj+gSey1I7P1E3759denSJT3wwAMqWrSojh8/rg8//FDVq1e3/iiTlPF1QmrUqKHKlStbL4WuWbNmivsEcTD3uDlz5hhJLv+8vb1N9erVzfTp001UVJTL8levXjXDhg0zhQsXNh4eHqZcuXJm4sSJ1nJbt241OXLkMM8++6zLenfv3jV16tQxhQsXNpcvX46zPuvXrzeSzJIlS+Kt97Fjx4wkM2fOHJfpa9euNQ0bNjQ+Pj7G39/ftG/f3uzduzfW+q+//ropUqSIcXNzM5LMsWPH4t3eF198YWrUqGG8vLxM3rx5Tffu3c2pU6dclnH25ZYtW+Ity+mHH34wlStXNp6enqZChQpm/vz5ZsyYMSbmYSfJDBo0KNb6JUqUMD179nSZdu7cOTNo0CBTrFgx4+HhYQoWLGiaN29uZs2aZS0TVx/HVX9nnS5cuBCrTvPnzzflypUzXl5epkaNGmb9+vW2Zcbs3//9738mODjYeHh4mAIFCphnnnkmzuNi8+bNRpJp2bKl7fwSJUqYtm3bxppu12/O42bixIku048cOWJ69OhhChYsaDw8PEyRIkVMu3btzNKlSxPsH2d/Rm/72bNnTdu2bY2fn5+RZJo0aRJvGcYYc/nyZfPUU0+ZwMBAkytXLtOqVSuzf/9+2/380UcfmdKlSxt3d/dY216/fr1p1aqVCQgIMN7e3qZMmTKmV69e5o8//rDtP2RdxO+Mid92MdEYY3r27Gl8fX1jLd+kSRNTqVIl63NUVJR56623TIkSJazY+e2335qePXuaEiVKWMvFFa+M+Te+jRkzxmXa/PnzTenSpY2np6epXr26Wb16dawyjbGPmYmtkzH/Hg8TJ040wcHBxtPT0+TPn9+0adPGbN261Vpm//79pnHjxsbHx8dIcolhKb322bU/rn1idw26fv26GTRokMmbN6/JlSuX6dSpkzlw4ICRZCZMmOCy/p9//mlatWplcuXKZXLmzGmaNWtmfvvtt1j12bp1q6lXr57x9PQ0xYsXN++9957tthO6Nvz888+mf//+Jk+ePCZXrlyme/fu5uLFiy7bioyMNC+++KIJDAw0OXPmNK1atTKHDx9O8rUCSAyuMxl3nxBXHeKLjZ988ok1Lg8ODjZz5syxja83b940Q4YMMfny5TO+vr6mffv25uTJk7bXlqTcWyxcuNCMHDnSBAUFGR8fH9O2bVtz/Phxl/L27t1rWrRoYXLlymUCAwNNv379zI4dO2LtL7t6r1ixwlStWtV4e3ubkiVLmrffftvMnj071j6K696gSZMmVtx1unjxohk8eLApUqSI8fT0NEWLFjU9e/Y0//zzj7VMRESEefvtt02lSpWMl5eXyZMnj6lVq5YZN26cCQ8Pt90XQFZH/M+4+G/Mv+P6+vXrG19fXyumjxs3zty6dctluZ07d5oRI0aYmjVrmrx585ocOXKYQoUKmS5dupg///wzzvIrVaoUKx7Gd31JzLUgsfcTS5cuNS1btjRBQUHW2Pnpp582Z86ccdlmYsfXccX86N555x0jybz11lvxLoeUcRiTzm9OBLIAh8OhQYMGpcs3mnfs2KHq1avrs88+423JAIBUt337dtWoUUPz589X9+7d0337c+fO1VNPPaUtW7bwTUYAAAAgFU2ZMkXDhg3TX3/95fIeDaSubPsMdCCz0FA9UgAAVeNJREFU+Oijj5QrVy49/PDDGV0VAEAWd/PmzVjTJk+eLDc3NzVu3DgDagQAAAAgLRhj9Mknn6hJkyYkz9NYtnkGOpDZfPPNN9q7d69mzZqlwYMHx/vcRwAAEuOdd97R1q1b1axZM+XIkUOrVq3SqlWr1L9/fxUrViyjqwcAAAAgha5fv64VK1Zo/fr12rVrl5YvX57RVbrnkUAHMsizzz6rc+fO6cEHH4z3xaQAACRWgwYNtGbNGr3++uu6du2aihcvrrFjx2rUqFEZXTUAAAAAqeDChQt6/PHHlTt3br388svq0KFDRlfpnscz0AEAAAAAAAAAsMEz0AEAAAAAAAAAsEECHQAAAAAAAAAAG8l+BnpUVJT+/vtv+fn5yeFwpGadAOCeZYzR1atXVbhwYbm5Zc6/YRLfASDpiO8AcG/KCvFdIsYDQHIkNsYnO4H+999/q1ixYsldHQCytZMnT6po0aIZXQ1bxHcASD7iOwDcmzJzfJeI8QCQEgnF+GQn0P38/KwN+Pv7J7cYAMhWrly5omLFilkxNDMivgNA0hHfAeDelBXiu0SMB4DkSGyMT3YC3fmTIH9/f4IzACRRZv5ZJfEdAJKP+A4A96bMHN8lYjwApERCMT7zPsALAAAAAAAAAIAMRAIdAAAAAAAAAAAbJNABAAAAAAAAALBBAh0AAAAAAAAAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBBAh0AAAAAAAAAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBBAh0AAAAAAAAAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALCRI6MrkNmcO3dO4eHhGV2NVBEQEKACBQpkdDUAwJKSGEtMAwAAmUlq3DsyvgFS7l7K46Qm4guQekigR3Pu3Dk98WQP3Ym4ndFVSRUenl6aP+8zAiaATCGlMZaYBgAAMovUundkfAOkzL2Wx0lNxBcg9ZBAjyY8PFx3Im7rZukmivIOSNQ6bjfD5HNsg26Waqwon9xpW8EkcLsVLh39WeHh4QRLAJlCYmOsXVwlpgEAgMwkJeMaax7jGyDFkpPHySzSMp9EfAFSFwl0G1HeAYryDUzaOj65k7wOAGRHiY2xxFUAAJDZMa4BMofk5HEyC+IDkPnxElEAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAwP9r787Do6jS/+9/kkAWliSsYQ8BIQgkIIiIqKAwgCACzgAig6CAojguLIMMSxSGr6jgMgqK4gAqI24oyKaIIAphkT2IYQsiyiYQFoEEkvP8wdP1SycV6HS6k+7k/bouL+muU6fOXVXnnOo71dUAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBBAh0AAAAAAAAAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBBAh0AAAAAAAAAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBBAh0AAAAAAAAAABsk0AEAAAAAAAAAsEECHQAAAAAAAAAAGyTQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBRKAn0ixcvavfu3bp48WJhbB7IgXMS8Ax/7Ev+2GYAAHBtxXWOL65xw32cMyguONfhrkJJoB88eFAPP/ywDh48WBibB3LgnAQ8wx/7kj+2GQAAXFtxneOLa9xwH+cMigvOdbiLR7gAAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZIoAMAAAAAAAAAYIMEOgAAAAAAAAAANkigAwAAAAAAAABggwQ6AAAAAAAAAAA2SKADAAAAAAAAAGCDBDoAAAAAAAAAADZKFHYDAH+UkZGh7du36+TJkypfvrzi4+MVFBTksfLuruOOvG4nPT1dCxYs0O+//65q1aqpW7duCg4O9ug2CoovHxcUjIyMDCUnJ0uSkpOTVbt2be3YsUNbt26VJMXHxyszM1PffPONLly4oMaNGys6OlorVqzQ4cOHlZ6ergoVKqhSpUoqW7asgoKC1LRpUzVt2tTpvPD0eeNr40NBtMeX+5432ubJOj1Vl6OeP/74Q6mpqQoPD9eZM2cUGRmpihUr+s15bbe9yMhIZWZmavv27ZJk24+LO3fnzK1bt1pjqjf3a9b2hYeHa//+/Tpy5IjttUr2Yy9JqampTv++VoyO2LZs2aIjR45IkqKiotSsWTPFxcVp586d+TqX3e0P2fupp/qnt9vta9soSnLbX3b9s2HDhlq0aJF1nX/33XcrKSlJX3/9tS5cuKC4uDj16NHD6k9Zz7fjx49r48aN+vXXXxUUFKTSpUsrLCxMVapUUb169VShQgWVL19e6enp+vTTT3Xu3DnFxsbq0UcfVVhYmNtxXK2st+YrAChop0+f1pgxY3T06FFFRUVp0qRJioiI8Fj97uR5XOXNebsgrwlIoAN5tHr1ak2fPt36sCRJVapU0WOPPabbb7893+XdXacgYnnrrbf0ySefKCMjw+m9nj17asiQIYUaS1758nFBwch+PKdOnapXXnlFmZmZua7zww8/5Hhvz549Tq/ff/99RUZGatiwYbr99ts9ft742vhQEO3x5b7njbZ5sk5P1WVXT3b+cF5fbXtZZe/HxZ27c+bLL7+s1NRU6z1v7ddrHc+s1yqunMsOucVoF5vD3LlzFRgY6DSX5PVcdrc/XC22ghgzi/t84Is2b96s8ePH59hfbdu21bJly3L0z+ymTZvm9PqHH37QjBkz1KtXLzVs2NClvrRz506tWLHCdllycrIWLlyo1q1ba9KkSbnWkZfj7u35CgAKWt++ffXbb79Zr48fP65u3bqpevXqmjt3br7rdyfP4ypvztsFfU3AI1yAPFi9erUSEhJUp04dTZs2TUuWLNG0adNUp04dJSQkaPXq1fkq7+46BRHLW2+9pXnz5ik8PFwjRozQZ599phEjRig8PFzz5s3TW2+9VWix5JUvHxcUjKzH85lnnrHedyQ87rjjjmvWERhoP4VWrFhRqampSkhI0FtvveXR88bXxoeCaI8v9z1vtM2TdXqqLkc9jrtc6tWrJ0nW3bqO1xERET59Xtttb/Dgwdb7ZcuWlSQNGDBAcXFxSk1N1fjx44v9+O7unDl+/HilpqYqLi5OL7/8sqZOnWrtV2+NV+3bt5d05VjWrVtXknTPPfdY1ypjxoxxOvYBAQGKi4tTrVq1JEm1atVSXFycJGnw4MG2MWaNzSEmJka1a9e2XjvmkjFjxuT5XHa3P2TtpwEBAWrZsqVGjBihli1bSnK/f7qquM8HvmrGjBk59ldERITmzZvn1D+zX/d069bN6fUNN9yg559/XnXr1lVmZqbmzZun8ePH5+vux169eql69eqSpDVr1mjMmDG25fJy3LP3A0/PVwBQ0LImz2+66Sa98cYbuummmyRJv/32m/r27Zuv+t3J87jKm/N2YVwTBBhjjDsrnjlzRhERETp9+rTCw8PztO7u3bv18MMP6+2331b9+vXd2bxXONr1Z8N7lFm6okvrBP75h0r/tDBP6xQER7t8bR/7KlfOyYyMDPXt21d16tTRv//9b6fkWWZmpsaOHauUlBR98MEH1tci81LenW24K6/bSU9P11133aXw8HB98sknKlHi/3155fLly+rZs6fOnDmjpUuXOn2lsyBi8Xbsno4lP2NnQfHW+O7qGGs3rnpyTMt+PHfv3q0hQ4aoZMmSat68uSRp/fr1MsaoXLlyqlevnjZs2CBJCggIUNZpMzg4WKVKldLp06dljFFAQIACAwN14403auvWrbp8+bJuuukmTZo0Kd99wNfGhzlz5uiBBx7want8dRzxVts8Waen6nLUExMTo/3796tOnTpKSUlRnTp1NGHCBI0fP14pKSmqXbu2UlJSFBMTowMHDvjceW23veeee079+vXTqVOn1KxZM02cONGK57333tP48eO1efNmlStXTnPnzi2W47u7c+b999+v1NRUNWvWzGn8y8zM1JgxY7R582aVL1/eo+PV+PHj1aVLF+taJTAw0Grf7Nmzdd999+nUqVO6+eabNXHiRPXr18/pPEhLS1NISIjef/99JSQkWOeB498ffPCBJFmxSZIxRs2bN9ekSZOUkZGhLl266NKlSwoODpYxRuXLl9fcuXMVEBDg0rnsbn/I2k8d/dOxvmO9/fv357l/unMcfG0+8Obnzvxc12Rf5un2/fzzzxoyZIji4+P16quvWvvL0T+PHz+ukiVLatGiRTLGWNf59evX15YtW3T58mVlZmZaieezZ89q6dKlKlGihEaPHq3169dLkipVqqTjx4/n2H6JEiUUGBio9PT0HMsqVqyoevXq6cCBA3rvvfc0btw4rVu3TpK0dOlSp8e55OW4S3LqB1n7g2O+cvSDvM5X/jC+S0UzR+MKd/I4vsKb+SRyQvb86Vw/ffq09QfNJUuWqFSpUtay8+fPq3PnzpKkBQsWuPUHTXfyPK7y5rWBp+t2dex0+REuaWlpSktLc9pAfv3yyy/5rsOTfK09nlAUY/IGV/bT9u3bdeTIEY0bNy7HnaeBgYHq27evhg4dqu3bt+uGG27Ic3l3tuGuvG5nwYIFysjI0MCBA50GVenKBfJDDz2kqVOnasGCBerZs2eBxpJXvnxcCktBje+eGI88UUdycrKOHDmiAQMGaO/evdZjWS5duqR+/fpp9+7d1ge5gQMH6tKlS1YCPfvfnNPT0/XEE09oypQp1vKMjAzVqFHD+nB50003eeS88bXxYcGCBV5vjy/3PW+0zZN1eqouRz29e/dWYmKi7rvvPiUmJmrcuHEqUaKEVU+vXr2UmJholfO189pue0lJSdZXPv/+9787xZOUlKS///3vSkxM1JEjR4rt+O7unHn06FFJV/Zr1vUCAwOt/Xr48GGPjldffvlljmsVR/t++ukn/eUvf9HHH3+s6tWrW8c+63kwYsQITZkyRUlJSU7nQdYYJVmxOThi3LZtm5UsdOzzrOeOK+eyu/0hez/Nun7W9fLaP11VEP04v9vwxmciT9bp6fY5rm06d+7stL+y9s+0tDQlJSVp7969Vt+JiYmxrl8kadCgQTLGOF3n33zzzVYZu+S5dCXxkps//vhDffv2VWJiopKSktSvXz/rumvGjBl66qmnnNrr6nGX5NQPsvaHrON79uX+Or5LxSNH4wp/bHNBYv8486f94fhmzk033eSUPJekUqVKqUWLFtq4caPGjBmjN954I8/1u5PncZU3rw0K6zOiywn0559/Xs8995zHNizpqs85g2ewjz3n5MmTkq58TdeO431HubyWd3cdd+R1O7///rskqVWrVrblHe87yrmzjYLiy8elsPjT+O7JeidPnpzjvZiYGKeLqlatWjl9kLRj1y+yfpgJCQmxXS+v542vjQ+O/u7N9vhy3/NG2zxZp6fqciwPDQ2V9P/OZ8f6jv873nf839fOa7vtJSYm5thO1u1l7dvFdXzPz5yZ23pZ3/PkePXNN99Ich6Ts7avatWqkq6Mz3bngWO9rMc++7/tXOsczb4Prxazu/3B8Tp7/8y+Xl77p6sKoh/ndxu+/pnIW+2rVq2a02u7cyfrdX72H/Ns1aqVdfOAo1xu1zV5kfVczNpnDx06ZNvevBz37PORp+YrX+RP1/AoPBxT/+X4g+cDDzxgu7xfv37auHFjjj/uu8qdPI+rvHltUFifEV1OoI8ePVrDhg2zXp85c0Y1a9bM18bHjBmj6OjofNXhSb/88kuRG1x8bR/7KleOffny5SVJKSkpatSoUY7lKSkpTuXyWt7dddyR1+04Lr4TExN199135yjv+PCZ9SK9oGLJK18+LoWloMZ3T4yxnhjTkpOTNXXqVD3zzDOqU6eOVq9ebX31NyUlxSn5nZiYqEuXLl21vqxJOIesHy6z1pdVXs8bXxsfHP3dm+3x5b7njbZ5sk5P1eVYfvHiRUn/73x21Ouox/G+4/++dl7bbS9rndnjKV++vPVvT26/oOV3fM/PnJnbep7cr1nbZ3etkrV9ycnJkq6Mz3bngWMsz3rss//bjiPG3JZn3dbV6sleNi/9wfE6e//Mvl5e+6erCqIf53cb3vhM5MnPjp5un+Pa5vfff1d8fLz1vt25k7XvZE9GJCYmWgl0R7ncrmvyIuu5mHVMqFGjRo72SXk77tnnI0/NV76oOORoXFEU8zie5I/H1Jv86XyJiorS8ePH9d577+nFF1/Msdzx489RUVFu1e9OnsdV3rw2KKzPiC4n0ENCQjzy1+asoqOjff6ZQ/6Ofew58fHxqlKliubOnWv7nKW5c+eqatWq1kVqXsu7u05BxNKtWze99dZbevfdd9WpU6ccz8b673//q6CgIKcfHCqoWPLKl49LYfGn8d0T9datW1dz587V6tWr1aFDB2VmZuqDDz5QyZIlrYsQx7PO3333XesHp7K+7xAcHKyZM2da7zuegX7o0CGFhITo8uXL2rBhg7p165bv88bXxodu3brps88+82p7fLnveaNtnqzTU3U56tmwYYOioqK0YcMGq94JEyZY9Tje37Bhg0+e13bbe+6551SlShWdOnVKH3zwgSZOnGhtr3Hjxho/frxCQkJUrly5Yju+uztnRkVFKTU1VR988EGOZ6B/8MEHVhLbk+PV+PHjna5VAgMDrfY1bNhQEyZMkHTlB7caN26c4zx49913VaVKFTVu3FgJCQnWeeD4t6OtjtikK4/tcsTYuHFjBQcH53gGenx8vMvnsrv9IWs/zb6+Yz13+qc7x8FX5wNf/0zk6fY5+tqSJUvUoUMHa385+qfjGeiNGzdWo0aNrL5Tv359BQcHW89AnzlzpiRZ1/mZmZnW41Yk95+B7jgXGzdurHHjxlnLHnnkEaeyeT3uWfuB3XyVfbk/X79L/nUNj8LDMfVfkyZNUrdu3bRhwwadP38+xzPQN27caJVzhzt5Hld589qgsD4jBl67CADpyoXjY489psTERI0dO1Y7d+7U+fPntXPnTo0dO1aJiYl69NFHrR8pyGt5d9cpiFiCg4PVs2dPnTp1Sj179tSXX36pP/74Q19++aXT+1l/WKKgYvF27L4cC9yT/Xg6/kJ96dIlrVu3TuvWrVObNm0kSadOnbKefy45PwPd8cEwNTXVet/xw6Pr169Xenq6evbsqXXr1nnkvPG18SE4ONjr7fHlvueNtnmyTk/V5ahn3bp1ioyMVGJiosqWLau1a9fqb3/7m9auXasyZcooMTFRERERWrdunU+e13bbS0hIUNeuXZWWlqbExET16NFDa9euVYcOHTRs2DAlJiYqLS1Njz32WLEd392dM4cOHWrt1yeffFKbNm3Spk2b9OSTTyoxMVHp6ekeH68mTJigO+64Q6dOnVKPHj00aNAgrV27VjfeeKP1A6KtW7fW+vXrrWOfmJioYcOGKTg4WKdOnVJwcLCGDRumtWvXqkuXLkpISHCKMWtsaWlpSk9PV2Jioh566CENHjxY6enpMsZYywYOHKiff/7Z5XPZ3f6QtZ9GREQoMTFRo0eP1pdffqnRo0dr7dq1bvVPd45DcZwPfJEjmbBjxw6n/fXzzz8rMjJSmZmZSktL07Bhw7Rjxw7deuutOnXqlHX94rgTMTU1VampqYqPj9fGjRs1aNAgp0fb5XZ33+XLl22T59KVZ6AnJibq1ltvVf/+/a2EfOvWrXM8QiYvxz17P1i3bl2O+aps2bJuz1cAUNAiIiJUvXp1SVd+02LkyJHavn27Ro4caf2AaPXq1d36AVHJvTyPq7w5bxfWNUGAyf6LaC4qir/w7M6vN3vzV5Pzg19czpu8nJOrV6/W9OnTrR8ek6SqVavq0Ucf1e23357v8u6u4468buett97SJ598ooyMDOu9oKAg9ezZU0OGDCnUWPKqsI5LfsbOguKt8d3VMdZuXPXGmGZ3PB136+VXuXLl9PTTT+v222/3eB/wtfGhINrjq+OI5J22ebJOT9VlV092/nBeX2172UVGRmrYsGGM73J/znz55Zetu7Udso6PnnKt45n1WsWVY++QW4y5xeaQfS7J67nsbn+4WmwFMWb64nzgzc+d+bmuyb7M0+1ztG3IkCH64osvcuyvNm3aaNmyZbmew1cTGBioXr16qWHDhi73pWtp3br1Ve+gzMtx98Z85Q/ju1Q0czSucCeP4yu8mU8iJ2TPH8/1vn376rfffsvxfvXq1TV37tx81+9OnsdV3rw28FTdro6dJNCzIIFefOX1nMzIyND27dt18uRJ6+u5V/vrVl7Lu7uOO/K6nfT0dC1YsEC///67qlWrpm7dul3zL5IFFUteFcZx8YcL8OKSQJeuHM8lS5Zo6tSpGj58uDp27KgdO3Zo69atkmR99f6bb77RhQsX1LhxY0VHR2vFihU6fPiw0tPTVaFCBVWqVElly5ZVUFCQmjZtqqZNmzqdF57uA742PhREe3x1HJG80zZP1umpuhz1/PHHH0pNTVV4eLjOnDmjyMhIVaxY0W/Oa7vtOe7I3L59uyTZ9uNrKerju7tz5tatW60x1Z396k77wsPDtX//fh05csT2WiX7sZeu3Gmb9d/XitER25YtW6wPblFRUWrWrJni4uK0c+fOfJ3L7vaH7P3UU/3T2+321jaKewL97bffVt26dW33l13/bNiwoRYtWmRd5999991KSkrS119/rQsXLiguLk49evSw+lPW8+348ePauHGjfv31VwUFBal06dIKCwtTlSpVVK9ePVWoUEHly5dXenq6Pv30U507d06xsbF69NFHc9x5bicvx93T85U/jO9S0czRuIIE+tXr9sdj6k3+eq6fPn1aY8aM0dGjRxUVFaVJkya5fee5HXfyPK7y5rWBJ+p2dex0+RnoAP6foKAg3XDDDV4r7+467sjrdhxf8/HmNgqKLx8XFIygoCDFxsZKkmJjYxUcHKzmzZurefPmTuVatmzp9Dq3Xyq/2nY8ed742vhQEO3x5b7njbZ5sk5P1eXtY1DQx9huey1atCiw7fsbd+dMuzHVG7K372rH0hPn2rVi80T97tRR2GNlcZ8PfFFu+yu3czj7dX6LFi1y7U/Z677//vtdalNer6PstuWpsgDgDyIiIvTGG294rX538jyu8uaYXJDjPc9ABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADARqEk0GvVqqW3335btWrVKozNAzlwTgKe4Y99yR/bDAAArq24zvHFNW64j3MGxQXnOtxVojA2Ghoaqvr16xfGpgFbnJOAZ/hjX/LHNgMAgGsrrnN8cY0b7uOcQXHBuQ538QgXAAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwEaJwm6ALwq8eNr1shdSnf7vK/ISAwAUpGuNT3bjKmMaAADwRe5c17i6LgDX+WN/8mY+yR/3B+DLSKBnERERoZLBIdL+7/K8bljKai+0KH9KBocoIiKisJsBAJLyPsZmH1cZ0wAAgK/I73WNA9c3QP7kJ4/jK7yVT2J8ATyHBHoWUVFR+uD993T6dNH4S11ERISioqIKuxkAICn/YyxjGgAA8BWe+uzI9Q2QP0Utj+NJjC+A55BAzyYqKooBBgC8hDEWAAAUFVzXAL6BvgjA2/gRUQAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABslHB3RWOMJOnMmTMeawwAFHWOMdMxhvoixncAyDvGdwAomvxhfJcY4wHAHa6O8W4n0M+ePStJqlmzprtVAECxdfbsWUVERBR2M2wxvgOA+xjfAaBo8uXxXWKMB4D8uNYYH2Dc/DNqZmamfv/9d5UtW1YBAQFuN9CXnDlzRjVr1tSvv/6q8PDwwm5OgSvO8Rfn2KXiHX9Bx26M0dmzZ1WtWjUFBvrmU7TyM74X53Mpv9h37mPfuY995x67/VYUxveieD4UxZgk4vInRTEmqWjGlVtM/jC+S76bo/Hnc4W2Fw7aXjj8te35bberY7zbd6AHBgaqRo0a7q7u08LDw/3qZPG04hx/cY5dKt7xF2TsvnzniuSZ8b04n0v5xb5zH/vOfew792Tfb0VlfC+K50NRjEkiLn9SFGOSimZcdjH5+vgu+X6Oxp/PFdpeOGh74fDXtuen3a6M8b7751MAAAAAAAAAAAoRCXQAAAAAAAAAAGyQQM8iJCRECQkJCgkJKeymFIriHH9xjl0q3vEX59i9gf3pPvad+9h37mPfuaeo7reiGFdRjEkiLn9SFGOSimZcRTEmX+DP+5W2Fw7aXjj8te0F1W63f0QUAAAAAAAAAICijDvQAQAAAAAAAACwQQIdAAAAAAAAAAAbJNABAAAAAAAAALBR5BPo06ZNU+3atRUaGqqWLVtqw4YNVy3/ySefqEGDBgoNDVVcXJyWLFnitHzAgAEKCAhw+q9Tp07eDMFteYl9586d+utf/6ratWsrICBAr776ar7rLGyejv/ZZ5/NcewbNGjgxQjcl5fY33nnHd12220qV66cypUrp/bt2+cob4zR+PHjVbVqVYWFhal9+/bas2ePt8Nwm6fj96d+X9j8aYzwhtWrV6tr166qVq2aAgIC9MUXXzgtd6UvnTx5Un379lV4eLgiIyM1cOBAnTt3zqnM9u3bddtttyk0NFQ1a9bUiy++6O3QvOr5559XixYtVLZsWVWuXFndu3dXcnKyU5mLFy9q6NChqlChgsqUKaO//vWvOnr0qFOZgwcPqkuXLipVqpQqV66skSNH6vLly05lVq1apWbNmikkJETXXXedZs+e7e3wvOrNN99UfHy8wsPDFR4erlatWmnp0qXWcvabayZPnqyAgAA99dRT1ntFed/t3r1b3bp1U8WKFRUeHq5bb71VK1eudCrjr7EtXrxYLVu2VFhYmMqVK6fu3bs7LffXuNLS0tS0aVMFBARo69atTstcmROu9RmnIB04cEADBw5UTEyMwsLCVLduXSUkJCg9Pd2pnL/FlRt/ujYqyPm4sHhzvC9OPJlnuXTpkkaNGqW4uDiVLl1a1apV0wMPPKDff//d59ue3ZAhQ66aT8kPb7R7165duueeexQREaHSpUurRYsWOnjwoM+3/dy5c3r88cdVo0YNhYWFqWHDhnrrrbc83u68tt3X8mqebrsrc4Svtj0ru3nAJaYImzdvngkODjb//e9/zc6dO83gwYNNZGSkOXr0qG35NWvWmKCgIPPiiy+an376yYwdO9aULFnS7NixwyrTv39/06lTJ3P48GHrv5MnTxZUSC7La+wbNmwwI0aMMB9++KGpUqWKeeWVV/JdZ2HyRvwJCQmmUaNGTsf++PHjXo4k7/Ia+/3332+mTZtmtmzZYnbt2mUGDBhgIiIizKFDh6wykydPNhEREeaLL74w27ZtM/fcc4+JiYkxFy5cKKiwXOaN+P2l3xc2fxojvGXJkiVmzJgxZv78+UaS+fzzz52Wu9KXOnXqZJo0aWLWrVtnvv/+e3PdddeZPn36WMtPnz5toqKiTN++fU1SUpL58MMPTVhYmJkxY0ZBhelxHTt2NLNmzTJJSUlm69atpnPnzqZWrVrm3LlzVpkhQ4aYmjVrmhUrVpgff/zR3HzzzeaWW26xll++fNk0btzYtG/f3mzZssUsWbLEVKxY0YwePdoqs3//flOqVCkzbNgw89NPP5nXX3/dBAUFmWXLlhVovJ60cOFCs3jxYrN7926TnJxs/vWvf5mSJUuapKQkYwz7zRUbNmwwtWvXNvHx8ebJJ5+03i/K+65evXqmc+fOZtu2bWb37t3mscceM6VKlTKHDx82xvhvbJ9++qkpV66cefPNN01ycrLZuXOn+eijj6zl/hqXMcY88cQT5q677jKSzJYtW6z3XZkTXPmMU5CWLl1qBgwYYL766iuzb98+s2DBAlO5cmUzfPhwq4w/xmXH366NCmo+LizeHO+LE0/nWVJTU0379u3NRx99ZH7++WeTmJhobrrpJtO8eXOfb3tW8+fPN02aNDHVqlWzzSf4Wrv37t1rypcvb0aOHGk2b95s9u7daxYsWODx8ckbbR88eLCpW7euWblypUlJSTEzZswwQUFBZsGCBYXadl/Kq3mj7a7MEb7a9qxl7eYBVxTpBPpNN91khg4dar3OyMgw1apVM88//7xt+V69epkuXbo4vdeyZUvzyCOPWK/79+9vunXr5pX2elJeY88qOjra9oTLT50FzRvxJyQkmCZNmniwld6R3+N0+fJlU7ZsWTNnzhxjjDGZmZmmSpUq5qWXXrLKpKammpCQEPPhhx96tvEe4On4jfGffl/Y/GmMKAjZE+iu9KWffvrJSDIbN260yixdutQEBASY3377zRhjzPTp0025cuVMWlqaVWbUqFEmNjbWyxEVnGPHjhlJ5rvvvjPGXNlPJUuWNJ988olVZteuXUaSSUxMNMZc+eNFYGCgOXLkiFXmzTffNOHh4da++uc//2kaNWrktK3evXubjh07ejukAlWuXDkzc+ZM9psLzp49a+rVq2eWL19u2rRpY11IF+V9d/z4cSPJrF692nrvzJkzRpJZvny5McY/Y7t06ZKpXr26mTlzZq5l/DEuY660u0GDBmbnzp05EuiuzAmufMYpbC+++KKJiYmxXheVuPz92shb83Fh8PZ4X5x4I8+S3YYNG4wk88svv3im0f8/b7X90KFDpnr16iYpKSnXfIKvtbt3797m73//u0fbaccbbW/UqJGZMGGCU5lmzZqZMWPGeLDl/p1X80bbs8s+R3iKt9qe2zzgqiL7CJf09HRt2rRJ7du3t94LDAxU+/btlZiYaLtOYmKiU3lJ6tixY47yq1atUuXKlRUbG6tHH31UJ06c8HwA+eBO7IVRp7d4s6179uxRtWrVVKdOHfXt29crX2/KD0/Efv78eV26dEnly5eXJKWkpOjIkSNOdUZERKhly5ZF8thnj9/B1/t9YfOnMaKwuNKXEhMTFRkZqRtvvNEq0759ewUGBmr9+vVWmdtvv13BwcFWmY4dOyo5OVmnTp0qoGi86/Tp05Jk9cNNmzbp0qVLTvuuQYMGqlWrltO+i4uLU1RUlFWmY8eOOnPmjHbu3GmVcWWe91cZGRmaN2+e/vzzT7Vq1Yr95oKhQ4eqS5cuOeIryvuuQoUKio2N1Xvvvac///xTly9f1owZM1S5cmU1b95ckn/GtnnzZv32228KDAzUDTfcoKpVq+quu+5SUlKSVcYf4zp69KgGDx6s999/X6VKlcqx3JU5wddisnP69Gmna6+iEFdRuDby1nxcGLw93hcX3syzZHX69GkFBAQoMjLSI+2WvNf2zMxM9evXTyNHjlSjRo081l5vtjszM1OLFy9W/fr11bFjR1WuXFktW7bM8fhJX2y7JN1yyy1auHChfvvtNxljtHLlSu3evVsdOnQo1LYXRp2FuZ3sc4QneLPtuc0DriqyCfQ//vhDGRkZTpOcJEVFRenIkSO26xw5cuSa5Tt16qT33ntPK1as0AsvvKDvvvtOd911lzIyMjwfhJvcib0w6vQWb7W1ZcuWmj17tpYtW6Y333xTKSkpuu2223T27Nn8NtljPBH7qFGjVK1aNWtQcaxXXI599vgl/+j3hc2fxojC4kpfOnLkiCpXruy0vESJEipfvrxTGbs6sm7Dn2VmZuqpp55S69at1bhxY0lX4goODs7xISr7vrvWfsmtzJkzZ3ThwgVvhFMgduzYoTJlyigkJERDhgzR559/roYNG7LfrmHevHnavHmznn/++RzLivK+CwgI0DfffKMtW7aobNmyCg0N1csvv6xly5apXLlykvwztv3790u68ps1Y8eO1aJFi1SuXDm1bdtWJ0+evGqbHcuuVqYw4jLGaMCAARoyZIjTH1azyk9MvjJn7N27V6+//roeeeQR672iEJe/Xxt5cz4uaAUx3hcX3sqzZHXx4kWNGjVKffr0UXh4uGcaLu+1/YUXXlCJEiX0xBNPeKytWXmj3ceOHdO5c+c0efJkderUSV9//bV69Oihe++9V999951Pt12SXn/9dTVs2FA1atRQcHCwOnXqpGnTpun2228v1LYXRp2FtR27OcITvNX2q80Drirh9prF1H333Wf9Oy4uTvHx8apbt65WrVqldu3aFWLL4G133XWX9e/4+Hi1bNlS0dHR+vjjjzVw4MBCbJnnTJ48WfPmzdOqVasUGhpa2M0pcLnFT78HCs7QoUOVlJSkH374obCb4jdiY2O1detWnT59Wp9++qn69+/v0Q8/RdGvv/6qJ598UsuXLy8y890zzzyjF1544apldu3apdjYWA0dOlSVK1fW999/r7CwMM2cOVNdu3bVxo0bVbVq1QJqsWtcjSszM1OSNGbMGP31r3+VJM2aNUs1atTQJ5984pScLWyuxvT111/r7NmzGj16dAG1LH9cjatBgwbW699++02dOnVSz549NXjwYG83EXlQVObjojjeF2WXLl1Sr169ZIzRm2++WdjNuaZNmzbptdde0+bNmxUQEFDYzXGZY87s1q2bnn76aUlS06ZNtXbtWr311ltq06ZNYTbvml5//XWtW7dOCxcuVHR0tFavXq2hQ4fmuBEO3uNPc4Sn5oEim0CvWLGigoKCcvx69tGjR1WlShXbdapUqZKn8pJUp04dVaxYUXv37vWZRJo7sRdGnd5SUG2NjIxU/fr1tXfvXo/VmV/5iX3KlCmaPHmyvvnmG8XHx1vvO9Y7evSo04fqo0ePqmnTpp5rvAd4I347vtjvC5s/jRGFxZW+VKVKFR07dsxpvcuXL+vkyZPW+rnNVVm34a8ef/xxLVq0SKtXr1aNGjWs96tUqaL09HSlpqY63SGW9fyqUqVKjl9nz75fctt34eHhCgsL80ZIBSI4OFjXXXedJKl58+bauHGjXnvtNfXu3Zv9lotNmzbp2LFjatasmfVeRkaGVq9erTfeeENfffWV3+274cOHa8CAAVctU6dOHX377bdatGiRTp06Zd3ZN336dC1fvlxz5szRM88841OxuRrX4cOHJUkNGza03g8JCVGdOnWsR+75Slx5OVaJiYkKCQlxWnbjjTeqb9++mjNnjktzgjufcdzhalwOv//+u+644w7dcsstevvtt53K+VJc7vLnayNvz8cFqaDG++LCm3kWR/L8l19+0bfffuvRu8+91fbvv/9ex44dU61atazlGRkZGj58uF599VUdOHDAJ9tdsWJFlShRwmnOlKTrr7/eowlRb7T9woUL+te//qXPP/9cXbp0kXTlBsetW7dqypQpHkug+3NezdvbyW2O8ARvtP1a80BaWpqCgoKuWU+RfYRLcHCwmjdvrhUrVljvZWZmasWKFWrVqpXtOq1atXIqL0nLly/PtbwkHTp0SCdOnPCpu3Xcib0w6vSWgmrruXPntG/fviJx7F988UVNnDhRy5Yty/EV4ZiYGFWpUsWpzjNnzmj9+vVF5thfLX47vtjvC5s/jRGFxZW+1KpVK6WmpmrTpk1WmW+//VaZmZlq2bKlVWb16tW6dOmSVWb58uWKjY21Hr/gb4wxevzxx/X555/r22+/VUxMjNPy5s2bq2TJkk77Ljk5WQcPHnTadzt27HD6A8Ty5csVHh5ufThwZ573R5mZmUpLS2O/XUW7du20Y8cObd261frPkZR0/Nvf9l2lSpXUoEGDq/4XHBys8+fPS7ryPMmsAgMDrTvSfCk2V+Nq3ry5QkJClJycbK176dIlHThwQNHR0T4Vl6sx/ec//9G2bdusc3TJkiWSpI8++kiTJk2y2nutOcHXjpV05c7ztm3bqnnz5po1a1aO89GX4nKXP14bFdR8XJAKarwvLryVZ3Ekz/fs2aNvvvlGFSpU8Iu29+vXT9u3b3c6v6pVq6aRI0fqq6++8tl2BwcHq0WLFk5zpiTt3r3bmjN9te2XLl3SpUuXcswbQUFB1nVMYbW9MOosyO1ca47wBG+0/VrzgCvJc0lSnn5y1M/MmzfPhISEmNmzZ5uffvrJPPzwwyYyMtL69ex+/fqZZ555xiq/Zs0aU6JECTNlyhSza9cuk5CQYEqWLGl27NhhjLnyi60jRowwiYmJJiUlxXzzzTemWbNmpl69eubixYuFEmNu8hp7Wlqa2bJli9myZYupWrWqGTFihNmyZYvZs2ePy3X6Em/EP3z4cLNq1SqTkpJi1qxZY9q3b28qVqxojh07VuDxXU1eY588ebIJDg42n376qTl8+LD139mzZ53KREZGmgULFpjt27ebbt26mZiYGHPhwoUCj+9aPB2/P/X7wuZPY4S3nD171hpLJJmXX37ZbNmyxfzyyy/GGNf6UqdOncwNN9xg1q9fb3744QdTr14906dPH2t5amqqiYqKMv369TNJSUlm3rx5plSpUmbGjBkFHq+nPProoyYiIsKsWrXKqR+eP3/eKjNkyBBTq1Yt8+2335off/zRtGrVyrRq1cpafvnyZdO4cWPToUMHs3XrVrNs2TJTqVIlM3r0aKvM/v37TalSpczIkSPNrl27zLRp00xQUJBZtmxZgcbrSc8884z57rvvTEpKitm+fbt55plnTEBAgPn666+NMey3vGjTpo158sknrddFdd8dP37cVKhQwdx7771m69atJjk52YwYMcKULFnSbN261Rjjv7E9+eSTpnr16uarr74yP//8sxk4cKCpXLmyOXnypDHGf+NySElJMZLMli1brPdcmROu9RmnoB06dMhcd911pl27dubQoUNO476DP8Zlx9+ujQpqPi5s3hjvixNP51nS09PNPffcY2rUqGG2bt3qdO6lpaX5dNvtREdHm1deecXn2z1//nxTsmRJ8/bbb5s9e/aY119/3QQFBZnvv//e59vepk0b06hRI7Ny5Uqzf/9+M2vWLBMaGmqmT59eqG33pbyaN9ruyhzhq23PLvs84IoinUA3xpjXX3/d1KpVywQHB5ubbrrJrFu3zlrWpk0b079/f6fyH3/8salfv74JDg42jRo1MosXL7aWnT9/3nTo0MFUqlTJlCxZ0kRHR5vBgwf77AVQXmJ3XJBn/69NmzYu1+lrPB1/7969TdWqVU1wcLCpXr266d27t9m7d28BRuS6vMQeHR1tG3tCQoJVJjMz04wbN85ERUWZkJAQ065dO5OcnFyAEeWNJ+P3t35f2PxpjPCGlStX2p5PjnPOlb504sQJ06dPH1OmTBkTHh5uHnzwQac/aBljzLZt28ytt95qQkJCTPXq1c3kyZMLKkSvsNtnksysWbOsMhcuXDCPPfaYKVeunClVqpTp0aOHU7LFGGMOHDhg7rrrLhMWFmYqVqxohg8fbi5duuRUZuXKlaZp06YmODjY1KlTx2kb/uihhx4y0dHRJjg42FSqVMm0a9fOSp4bw37Li+wX0kV5323cuNF06NDBlC9f3pQtW9bcfPPNZsmSJU5l/DG29PR0M3z4cFO5cmVTtmxZ0759e5OUlORUxh/jcrBLoBvj2pxwtc84BW3WrFm5jvtZ+VtcufGna6OCnI8Lk7fG++LEk3mW3D6LSzIrV6706bbb8UYC3Vvtfvfdd811111nQkNDTZMmTcwXX3zh8XZ7o+2HDx82AwYMMNWqVTOhoaEmNjbWTJ061WRmZhZq230tr+bptrsyR/hq27NzJ4EeYIwxrt2rDgAAAAAAAABA8VFkn4EOAAAAAAAAAEB+kEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXT4lNmzZysyMrKwmwEAsPHzzz/r5ptvVmhoqJo2bVrYzbFVu3Ztvfrqq4XdDAAo8vI63j777LMemTsCAgL0xRdf5LseAAAAV5FAB7zIkxf4Bw4cUEBAgLZu3eqR+gAgrxISElS6dGklJydrxYoVHqnT0wnvjRs36uGHH/ZYfZ7i7TGchBKA7Nq2baunnnqqsJsBAChAuY39WW9WPH/+vEaPHq26desqNDRUlSpVUps2bbRgwQLrmvVq/82ePbtAYwJ8QYnCbgBQ3KWnpys4OLiwmwEA17Rv3z516dJF0dHRhd2UHBxjaaVKlQq7KQDgF4wxysjIUIkSfCQEgOJkyJAhWr9+vV5//XU1bNhQJ06c0Nq1a3XixAnVrFlThw8ftspOmTJFy5Yt0zfffGO9FxERYf07IyNDAQEBCgz0vftzybXAk3zvDEe+2d3N17RpUz377LOSrtylNnPmTPXo0UOlSpVSvXr1tHDhQqfySUlJuuuuu1SmTBlFRUWpX79++uOPP6zlbdu21T/+8Q899dRTKleunKKiovTOO+/ozz//1IMPPqiyZcvquuuu09KlS611Vq1apYCAAC1evFjx8fEKDQ3VzTffrKSkpKvG8+abb6pu3boKDg5WbGys3n//fWvZQw89pLvvvtup/KVLl1S5cmW9++67brfV1X3wxBNP6J///KfKly+vKlWqWPvYcRwkqUePHgoICLBeO76+OnPmTMXExCg0NFSStGzZMt16662KjIxUhQoVdPfdd2vfvn1WfTExMZKkG264QQEBAWrbtq21bObMmbr++usVGhqqBg0aaPr06VfdpwB8V17HrIyMDA0cOFAxMTEKCwtTbGysXnvtNac6BwwYoO7du2vKlCmqWrWqKlSooKFDh+rSpUtWGbs7mCMjI607TAICArRp0yZNmDBBAQEB1ng3atQo1a9fX6VKlVKdOnU0btw4p3ol6csvv1SLFi0UGhqqihUrqkePHlasv/zyi55++mnrjhbJ/mv+r776qjWOZo1p0qRJqlatmmJjYyXlnANdmfMWLlyoevXqKTQ0VHfccYfmzJmjgIAApaamWmU+++wzNWrUSCEhIapdu7amTp3qVMe19l9uY7gjjueee06VKlVSeHi4hgwZovT0dKuea83ruc03AIqvAQMG6LvvvtNrr73mdMdgQECAli5dqubNmyskJEQ//PCD9u3bp27duikqKkplypRRixYtnBIlknTs2DF17dpVYWFhiomJ0dy5c3NsMzU1VYMGDbLGsjvvvFPbtm3LUW7GjBmqWbOmSpUqpV69eun06dPWso0bN+ovf/mLKlasqIiICLVp00abN2++aqzXmoccc8r777+v2rVrKyIiQvfdd5/Onj1rlcnMzNSLL76o6667TiEhIapVq5YmTZpkLf/111/Vq1cvRUZGqnz58urWrZsOHDhwzeMAAL5o4cKF+te//qXOnTurdu3aat68uf7xj3/ooYceUlBQkKpUqWL9V6ZMGZUoUcJ6vWzZMlWtWlULFy5Uw4YNFRISooMHDyotLU0jRoxQ9erVVbp0abVs2VKrVq2ytnnixAn16dNH1atXV6lSpRQXF6cPP/zQqV2ffvqp4uLiFBYWpgoVKqh9+/b6888/JdnfWd+9e3cNGDDAel27dm1NnDhRDzzwgMLDw/Xwww/rzjvv1OOPP+603vHjxxUcHOyxb9SieCCBXkw999xz6tWrl7Zv367OnTurb9++OnnypKQrF7933nmnbrjhBv34449atmyZjh49ql69ejnVMWfOHFWsWFEbNmzQP/7xDz366KPq2bOnbrnlFm3evFkdOnRQv379dP78eaf1Ro4cqalTp2rjxo2qVKmSunbtmiPZ4vD555/rySef1PDhw5WUlKRHHnlEDz74oFauXClJGjRokJYtW+b0F9JFixbp/Pnz6t27t9ttzcs+KF26tNavX68XX3xREyZM0PLlyyVd+QAgSbNmzdLhw4et15K0d+9effbZZ5o/f771df4///xTw4YN048//qgVK1YoMDBQPXr0UGZmpiRpw4YNkqRvvvlGhw8f1vz58yVJc+fO1fjx4zVp0iTt2rVL//d//6dx48Zpzpw5Vz0HAPiuvIxZmZmZqlGjhj755BP99NNPGj9+vP71r3/p448/dqpz5cqV2rdvn1auXKk5c+Zo9uzZefr65eHDh9WoUSMNHz5chw8f1ogRIyRJZcuW1ezZs/XTTz/ptdde0zvvvKNXXnnFWm/x4sXq0aOHOnfurC1btmjFihW66aabJEnz589XjRo1NGHCBB0+fNhpLHfFihUrlJycrOXLl2vRokW5lrvanJeSkqK//e1v6t69u7Zt26ZHHnlEY8aMcVp/06ZN6tWrl+677z7t2LFDzz77rMaNG5en/ZfbGO6IY9euXVq1apU+/PBDzZ8/X88995zLdV9tvgFQPL322mtq1aqVBg8ebI2vNWvWlCQ988wzmjx5snbt2qX4+HidO3dOnTt31ooVK7RlyxZ16tRJXbt21cGDB636BgwYoF9//VUrV67Up59+qunTp+vYsWNO2+zZs6eOHTumpUuXatOmTWrWrJnatWtnjbfSlWvgjz/+WF9++aWWLVumLVu26LHHHrOWnz17Vv3799cPP/ygdevWqV69eurcubNTsju7a81D0pVvUH3xxRdatGiRFi1apO+++06TJ0+2lo8ePVqTJ0/WuHHj9NNPP+l///ufoqKiJF25Oadjx44qW7asvv/+e61Zs0ZlypRRp06dnP7YCQD+okqVKlqyZMlVx9arOX/+vF544QXNnDlTO3fuVOXKlfX4448rMTFR8+bN0/bt29WzZ0916tRJe/bskSRdvHhRzZs31+LFi5WUlKSHH35Y/fr1s66RDx8+rD59+uihhx6yrovvvfdeGWPy1LYpU6aoSZMm2rJli8aNG6dBgwbpf//7n9LS0qwyH3zwgapXr64777zTrfhRTBkUOdHR0eaVV15xeq9JkyYmISHBGGOMJDN27Fhr2blz54wks3TpUmOMMRMnTjQdOnRwWv/XX381kkxycrIxxpg2bdqYW2+91Vp++fJlU7p0adOvXz/rvcOHDxtJJjEx0RhjzMqVK40kM2/ePKvMiRMnTFhYmPnoo4+MMcbMmjXLREREWMtvueUWM3jwYKe29OzZ03Tu3Nl63bBhQ/PCCy9Yr7t27WoGDBhgvXanre7sA2OMadGihRk1apT1WpL5/PPPncokJCSYkiVLmmPHjpmrOX78uJFkduzYYYwxJiUlxUgyW7ZscSpXt25d87///c/pvYkTJ5pWrVpdtX4AvsmdMSu7oUOHmr/+9a/W6/79+5vo6Ghz+fJl672ePXua3r17W6/txquIiAgza9Ys63XWuSQ3L730kmnevLn1ulWrVqZv3765lrebsxISEkyTJk2c3nvllVdMdHS0U0xRUVEmLS3tqvVda84bNWqUady4sVMdY8aMMZLMqVOnjDHG3H///eYvf/mLU5mRI0eahg0bOm3navsvtzG8f//+pnz58ubPP/+03nvzzTdNmTJlTEZGhm1MxuQ8FnbbB1C8tWnTxjz55JPWa8e1+BdffHHNdRs1amRef/11Y4wxycnJRpLZsGGDtXzXrl1GkjU2ff/99yY8PNxcvHjRqZ66deuaGTNmGGOujO1BQUHm0KFD1vKlS5eawMBAc/jwYdt2ZGRkmLJly5ovv/zSeu9a4132eSghIcGUKlXKnDlzxnpv5MiRpmXLlsYYY86cOWNCQkLMO++8Y1vf+++/b2JjY01mZqb1XlpamgkLCzNfffVVru0AgMKQfex3yJpr+e6770yNGjVMyZIlzY033mieeuop88MPP9jWl/26fNasWUaS2bp1q/XeL7/8YoKCgsxvv/3mtG67du3M6NGjc21rly5dzPDhw40xxmzatMlIMgcOHHA5rm7dupn+/ftbr6Ojo0337t2dyly4cMGUK1fOyjkZY0x8fLx59tlnc20XYIc70Iup+Ph469+lS5dWeHi4dRfJtm3btHLlSpUpU8b6r0GDBpLk9EiRrHUEBQWpQoUKiouLs95z3LWR/e6UVq1aWf8uX768YmNjtWvXLtt27tq1S61bt3Z6r3Xr1k7lBw0apFmzZkmSjh49qqVLl+qhhx7KNV5X2urOPpCkqlWr5ojXTnR0dI7n9O7Zs0d9+vRRnTp1FB4ebn0FP+vdP9n9+eef2rdvnwYOHOjU1n//+99O7QTgX/I6Zk2bNk3NmzdXpUqVVKZMGb399ts5xo5GjRopKCjIeu3qeHUtH330kVq3bm19xXPs2LFO2966davatWuX7+3YiYuLc+m5hleb85KTk9WiRQun8o475B1ym4v27NmjjIwMd5tvadKkiUqVKmW9btWqlc6dO6dff/0133UDQHY33nij0+tz585pxIgRuv766xUZGakyZcpo165d1li+a9culShRQs2bN7fWadCggfVjdNKVa+dz586pQoUKTtekKSkpTtektWrVUvXq1a3XrVq1UmZmppKTkyVduZYfPHiw6tWrp4iICIWHh+vcuXNXvR6+1jwkXflaf9myZa3XWefAXbt2KS0tLde5atu2bdq7d6/Kli1rxVW+fHldvHiR620Afun222/X/v37tWLFCv3tb3/Tzp07ddttt2nixIkurR8cHOx0fb1jxw5lZGSofv36TnPAd999Z42TGRkZmjhxouLi4lS+fHmVKVNGX331lTVeN2nSRO3atVNcXJx69uypd955R6dOncpzbNnnuNDQUPXr10///e9/JUmbN29WUlKS06NfAFfwizFFUGBgYI6vuWR/RErJkiWdXgcEBFiPCjl37py6du2qF154IUfdVatWvWodWd9zPMvWUa+3PPDAA3rmmWeUmJiotWvXKiYmRrfddptTmby2NT/7wJV4S5cuneO9rl27Kjo6Wu+8846qVaumzMxMNW7c+KpfDT137pwk6Z133lHLli2dlmVNlAHwL3kZs+bNm6cRI0Zo6tSpatWqlcqWLauXXnpJ69evv2adWcergICAa84d2SUmJqpv37567rnn1LFjR0VERGjevHlOzwcPCwtzIWJnrsxjkv1YasfdsTov3Nl/rnJ1fwCAK7KPnSNGjNDy5cs1ZcoUXXfddQoLC9Pf/va3PD2e5Ny5c6patarT824dsibar6V///46ceKEXnvtNUVHRyskJEStWrXKtS2uzEPS1eeBa81T586dU/PmzW2f+84PVwPwNeHh4U6/LeGQmprq9OOfJUuW1G233abbbrtNo0aN0r///W9NmDBBo0aNuuYNKmFhYdbnEenKOBkUFKRNmzblyEOUKVNGkvTSSy/ptdde06uvvqq4uDiVLl1aTz31lDW+BwUFafny5Vq7dq2+/vprvf766xozZozWr1+vmJiYfH0+GDRokJo2bapDhw5p1qxZuvPOOxUdHX3VGIHsSKAXQZUqVXJ6juyZM2eUkpLi8vrNmjXTZ599ptq1a6tECc+fIuvWrVOtWrUkSadOndLu3bt1/fXX25a9/vrrtWbNGvXv3996b82aNWrYsKH1ukKFCurevbtmzZqlxMREPfjgg/luo6f2QcmSJV26O/HEiRNKTk7WO++8YyX/f/jhB6cyjkksa31RUVGqVq2a9u/fr759+7rdTgD+a82aNbrlllucniHrzh1x2eeOPXv25PgNi+zWrl2r6Ohop2eG//LLL05l4uPjtWLFilzH5uDg4BzjZKVKlXTkyBEZY6yLc8fvRXhabGyslixZ4vRe9meIO+airNasWaP69etbHxKutf/sxnCHbdu26cKFC1YSZ926dSpTpoz1vGJX5nVX5xsAxYfd+GpnzZo1GjBggPUDz+fOnXP6gcwGDRro8uXL2rRpk/WNneTkZKcfWm7WrJmOHDmiEiVKXPWHjA8ePKjff/9d1apVk3RlvAsMDLR+CHrNmjWaPn26OnfuLOnKj3f+8ccfudbnyjx0LfXq1VNYWJhWrFihQYMG5VjerFkzffTRR6pcubLCw8PzVDcAFLTY2Fh9/fXXOd7fvHmz6tevn+t6DRs21OXLl3Xx4kWXvuGZ1Q033KCMjAwdO3Ysx82MDmvWrFG3bt3097//XdKVG4F2797tlNsJCAhQ69at1bp1a40fP17R0dH6/PPPNWzYsBzXwxkZGUpKStIdd9xxzfbFxcXpxhtv1DvvvKP//e9/euONN/IUHyDxI6JF0p133qn3339f33//vXbs2KH+/fvn6W7koUOH6uTJk+rTp482btyoffv26auvvtKDDz7okQ/nEyZM0IoVK6yvzVSsWFHdu3e3LTty5EjNnj1bb775pvbs2aOXX35Z8+fPt368zmHQoEGaM2eOdu3a5ZRsd5en9kHt2rW1YsUKHTly5KpfPypXrpwqVKigt99+W3v37tW3336rYcOGOZWpXLmywsLCrB80dfxV+bnnntPzzz+v//znP9q9e7d27NihWbNm6eWXX3YveAB+pV69evrxxx/11Vdfaffu3Ro3bpxbPyJ555136o033tCWLVv0448/asiQITnu2LPb9sGDBzVv3jzt27dP//nPf/T55587lUlISNCHH36ohIQE7dq1Szt27HD6dk/t2rW1evVq/fbbb1aSpG3btjp+/LhefPFF7du3T9OmTdPSpUvzHJMrHnnkEf38888aNWqUdu/erY8//tj6cVBH8n748OFasWKFJk6cqN27d2vOnDl64403nOaia+2/3MZwSUpPT9fAgQP1008/acmSJUpISNDjjz+uwMBAq+5rzeuuzjcAio/atWtr/fr1OnDggP74449cv3lTr14964ftt23bpvvvv9+pbGxsrDp16qRHHnlE69ev16ZNmzRo0CCnO7fbt2+vVq1aqXv37vr666914MABrV27VmPGjNGPP/5olQsNDVX//v21bds2ff/993riiSfUq1cvValSxWrL+++/r127dmn9+vXq27fvVe8Qd2UeupbQ0FCNGjVK//znP/Xee+9p3759Wrdund59911JUt++fVWxYkV169ZN33//vVJSUrRq1So98cQTOnToUJ62BQDe9uijj2r37t164okntH37diUnJ+vll1/Whx9+qOHDh0u6cq09Y8YMbdq0SQcOHNCSJUv0r3/9S3fccYdbfyisX7+++vbtqwceeEDz589XSkqKNmzYoOeff16LFy+WdGW8dtxhvmvXLj3yyCM6evSoVcf69ev1f//3f/rxxx918OBBzZ8/X8ePH7dutrzzzju1ePFiLV68WD///LMeffRRpz/kXsugQYM0efJkGWOsPxgDeUECvQgaPXq02rRpo7vvvltdunRR9+7dVbduXZfXr1atmtasWaOMjAx16NBBcXFxeuqppxQZGWl9mM+PyZMn68knn1Tz5s115MgRffnll7n+hbN79+567bXXNGXKFDVq1EgzZszQrFmz1LZtW6dy7du3V9WqVdWxY0frjpb88NQ+mDp1qpYvX66aNWvqhhtuyLVcYGCg5s2bp02bNqlx48Z6+umn9dJLLzmVKVGihP7zn/9oxowZqlatmrp16ybpykQwc+ZMzZo1S3FxcWrTpo1mz56tmJgY94IH4FceeeQR3Xvvverdu7datmypEydOON2N7qqpU6eqZs2auu2223T//fdrxIgRTs/ltnPPPffo6aef1uOPP66mTZtq7dq1GjdunFOZtm3b6pNPPtHChQvVtGlT3XnnndqwYYO1fMKECTpw4IDq1q1rfRX++uuv1/Tp0zVt2jQ1adJEGzZsyPGHU0+JiYnRp59+qvnz5ys+Pl5vvvmmdSdjSEiIpCt3H3788ceaN2+eGjdurPHjx2vChAlOz0681v7LbQyXpHbt2qlevXq6/fbb1bt3b91zzz169tlnreWuzOuuzjcAio8RI0YoKChIDRs2VKVKlXJ9jvjLL7+scuXK6ZZbblHXrl3VsWNHNWvWzKnMrFmzVK1aNbVp00b33nuvHn74YVWuXNlaHhAQoCVLluj222/Xgw8+qPr16+u+++7TL7/8Yv1uhyRdd911uvfee9W5c2d16NBB8fHxmj59urX83Xff1alTp9SsWTP169dPTzzxhNN2snNlHnLFuHHjNHz4cI0fP17XX3+9evfubT0jvVSpUlq9erVq1aqle++9V9dff70GDhyoixcvckc6AJ9Tp04drV69Wj///LPat2+vli1b6uOPP9Ynn3yiTp06SZI6duyoOXPmqEOHDrr++uv1j3/8Qx07dtTHH3/s9nZnzZqlBx54QMOHD1dsbKy6d++ujRs3Wk8fGDt2rJo1a6aOHTuqbdu2qlKlitONlOHh4Vq9erU6d+6s+vXra+zYsZo6daruuusuSdJDDz2k/v3764EHHlCbNm1Up04dl+4+d+jTp49KlCihPn36KDQ01O04UXwFmOwPEQK8ZNWqVbrjjjt06tSpPD0L0RXnzp1T9erVNWvWLN17770erRsAULxMmjRJb731VoH8iOeAAQOUmpqqL774wuvbAgAAAIojxw07GzduzPFHYsAVPAMdfi0zM1N//PGHpk6dqsjISN1zzz2F3SQAgJ+ZPn26WrRooQoVKmjNmjV66aWX9Pjjjxd2swAAAADkw6VLl3TixAmNHTtWN998M8lzuI0EOvzawYMHFRMToxo1amj27Nle+dFTAEDRtmfPHv373//WyZMnVatWLQ0fPlyjR48u7GYBAAAAyIc1a9bojjvuUP369fXpp58WdnPgx3iECwAAAAAAAAAANvgRUQAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABskEAHAAAAAAAAAMAGCXQAAAAAAAAAAGyQQAcAAAAAAAAAwAYJdAAAAAAAAAAAbJBABwAAAAAAAADABgl0AAAAAAAAAABs/H9Rg8lDn30ywAAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 12 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Выбираем столбцы для анализа\n",
|
||
"columns_to_check = ['year', 'index price', 'log_indexprice',\n",
|
||
" 'inflationrate', 'oil prices', 'exchange_rate', 'gdppercent',\n",
|
||
" 'percapitaincome', 'unemploymentrate', 'manufacturingoutput',\n",
|
||
" 'tradebalance', 'USTreasury']\n",
|
||
"\n",
|
||
"# Подсчитываем выбросы\n",
|
||
"outliers_count = count_outliers(df_countries, columns_to_check)\n",
|
||
"\n",
|
||
"# Выводим количество выбросов для каждого столбца\n",
|
||
"for col, count in outliers_count.items():\n",
|
||
" print(f\"Количество выбросов в столбце '{col}': {count}\")\n",
|
||
"\n",
|
||
"# Создаем диаграммы размахов\n",
|
||
"plt.figure(figsize=(15, 10))\n",
|
||
"for i, col in enumerate(columns_to_check, 1):\n",
|
||
" plt.subplot(3, 4, i)\n",
|
||
" sns.boxplot(x=df_countries[col])\n",
|
||
" plt.title(f'Box Plot of {col}')\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"В большинстве из выбранных столбцов присутствуют выбросы. Очистим их."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 213,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Количество удаленных строк: 136\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Figure size 1500x600 with 0 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABc0AAAPeCAYAAADeQTKDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUZdfH8d8mpAEptEACmNB7bwJSVJQm2FGkhCKggAhWsNCUoviISIngo4CIXR4LgoAKFkSUDgpICSjSQQJIJ+f9w919s6SQhCSbhO/nunLpzt57z7nvHfbMnJ2dcZiZCQAAAAAAAAAAyMfbAQAAAAAAAAAAkFNQNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQH0mnXrl1yOByaNWuWt0Px8OWXX6p27doKDAyUw+HQsWPHkm03a9YsORwO7dq1K9PWnRV9Zpdly5bJ4XBo2bJl3g4FAJAK8m/maNmypVq2bJnj+8wK0dHR6tGjh7fDAAAkcrXn923btunmm29WaGioHA6HPvnkkyzZZ8ip8wzkZBTN4TWuRJD4Lzw8XNdff70WLlyY7fG4iqeuPz8/P5UtW1bdu3fXzp07M2UdP/74o0aOHJliws2oI0eOqFOnTgoKCtLUqVM1Z84cFShQIFPXAQDIG8i/mYf8CwDIKcjvmSc783tMTIw2btyoMWPGaM6cOapfv/4V9ffOO+/olVdeyZzgvGTs2LH65JNPvB0GoHzeDgAYPXq0ypQpIzPTgQMHNGvWLLVr106ff/65brnllmyPZ9CgQWrQoIHOnz+vNWvWaMaMGfriiy+0ceNGRUZGXlHfP/74o0aNGqUePXooLCwscwKW9Msvv+jEiRN67rnn1KpVq1TbduvWTffee68CAgIybf25WfPmzXX69Gn5+/t7OxQAyFbk3yuXnvybUyxevNjbIXjN1q1b5ePDOUMA8jby+5XLruPr06dPa8WKFXr66ac1cODAjIbr4Z133tGmTZs0ePBgj+VRUVE6ffq0/Pz8MmU9WWns2LG66667dNttt3k7FFzlKJrD69q2bevxbWrv3r1VvHhxvfvuu15J6s2aNdNdd90lSerZs6cqVqyoQYMGafbs2Ro2bFi2x5MWBw8elKQ07Sj4+vrK19c3iyPK+c6cOSN/f3/5+PgoMDDQ2+EAQLYj/1659OTfnOJq+5LYzHTmzBkFBQVxwgCAqwL5/cpl1/H1oUOH0ryeK+VwOLxy3JuQkKBz585xzI1ciVMtkOOEhYUpKChI+fJ5fqfzzz//6NFHH1Xp0qUVEBCgSpUq6aWXXpKZSfr3W9rKlSurcuXKOn36tPt1R48eVUREhJo0aaKLFy+mO54bbrhBkhQXF5dqu2+++UbNmjVTgQIFFBYWpltvvVWbN292Pz9y5Eg9/vjjkqQyZcq4f6Z2ueuUffjhh6pXr56CgoJUtGhRde3aVX/99Zf7+ZYtWyomJkaS1KBBAzkcjlSv15nc9dGio6N1yy236IcfflDDhg0VGBiosmXL6q233kry+l9//VU33HCDgoKCVKpUKT3//PNKSEhIdl0LFy50z0lwcLDat2+vX3/91WPOfHx8NHz4cI/XvfPOO3I4HIqNjU11blq2bKnq1atr9erVatKkiYKCglSmTBm99tprHu1cPw1877339Mwzz6hkyZLKnz+/jh8/nuI1zVeuXKl27dqpUKFCKlCggGrWrKlJkyZ5tNmyZYvuuusuFS5cWIGBgapfv74+++yzVGMGgJyK/Osps/NvSqZNm6Zq1aopICBAkZGRGjBgQLI/M586darKli2roKAgNWzYUN9//32GriV+6WtcefCDDz7QmDFjVKpUKQUGBurGG2/U9u3bk7x+xowZKleunEccyTl79qxGjBih8uXLKyAgQKVLl9YTTzyhs2fPutvExMQoMDDQ4/2SpNatW6tQoULau3evpP/fd/nuu+/Ur18/FSlSRCEhIerevbv+/vtvj9e69mkWLVqk+vXrKygoSNOnT3c/d+l7dOzYMQ0ZMkTR0dEKCAhQqVKl1L17dx0+fDhdYwGAnIr87imnHF+PHDlSUVFRkqTHH39cDodD0dHRKa7n008/Vfv27RUZGamAgACVK1dOzz33nMd70LJlS33xxRfavXu3ez5cfaZ0TfPLzbMrVofDoe3bt7vP6g8NDVXPnj116tQpj7YOh0MDBw7U3Llz3fs3X375pSTppZdeUpMmTVSkSBEFBQWpXr16+uijj5K8/p9//tHs2bPdY0g8/3/99Zd69eql4sWLKyAgQNWqVdObb76Z4rwBV4IzzeF18fHxOnz4sMxMBw8e1OTJk3Xy5El17drV3cbM1LFjRy1dulS9e/dW7dq1tWjRIj3++OP666+/NHHiRAUFBWn27Nlq2rSpnn76ab388suSpAEDBig+Pl6zZs3K0DfAO3bskCQVKVIkxTZfffWV2rZtq7Jly2rkyJE6ffq0Jk+erKZNm2rNmjWKjo7WHXfcod9//13vvvuuJk6cqKJFi0qSihUrlmK/s2bNUs+ePdWgQQONGzdOBw4c0KRJk7R8+XKtXbtWYWFhevrpp1WpUiXNmDHD/VO8cuXKpXuc27dv11133aXevXsrJiZGb775pnr06KF69eqpWrVqkqT9+/fr+uuv14ULFzR06FAVKFBAM2bMUFBQUJL+5syZo5iYGLVu3VovvPCCTp06pdjYWF133XVau3atoqOjdcMNN6h///4aN26cbrvtNtWtW1f79u3TQw89pFatWumBBx64bNx///232rVrp06dOqlz58764IMP9OCDD8rf31+9evXyaPvcc8/J399fjz32mM6ePZvi2XZLlizRLbfcooiICD388MMqUaKENm/erPnz5+vhhx+W9O+XB02bNlXJkiXdc/HBBx/otttu08cff6zbb789vW8BAGQr8q/38+/IkSM1atQotWrVSg8++KC2bt2q2NhY/fLLL1q+fLn7J9SxsbEaOHCgmjVrpiFDhmjXrl267bbbVKhQIZUqVSpd60zJ+PHj5ePjo8cee0zx8fF68cUX1aVLF61cudLd5o033lC/fv3UpEkTDR48WDt37lTHjh1VuHBhlS5d2t0uISFBHTt21A8//KC+ffuqSpUq2rhxoyZOnKjff//dfZ3SSZMm6ZtvvlFMTIxWrFghX19fTZ8+XYsXL9acOXOS/Gx/4MCBCgsL08iRI91ztXv3bnfh32Xr1q3q3Lmz+vXrpz59+qhSpUrJjvnkyZNq1qyZNm/erF69eqlu3bo6fPiwPvvsM+3Zs0dFixZN81gAIKcgv3s/v0uXP76+4447FBYWpiFDhqhz585q166dChYsmGrsBQsW1COPPKKCBQvqm2++0fDhw3X8+HFNmDBBkvT0008rPj5ee/bs0cSJEyUp1T7TMs+JderUSWXKlNG4ceO0Zs0a/fe//1V4eLheeOEFj3bffPONPvjgAw0cOFBFixZ19zNp0iR17NhRXbp00blz5/Tee+/p7rvv1vz589W+fXtJ/9YR7r//fjVs2FB9+/aVJPf8HzhwQNdee627MF+sWDEtXLhQvXv31vHjx5Nckga4YgZ4ycyZM01Skr+AgACbNWuWR9tPPvnEJNnzzz/vsfyuu+4yh8Nh27dvdy8bNmyY+fj42HfffWcffvihSbJXXnnlsvEsXbrUJNmbb75phw4dsr1799oXX3xh0dHR5nA47JdffjEzs7i4OJNkM2fOdL+2du3aFh4ebkeOHHEvW79+vfn4+Fj37t3dyyZMmGCSLC4u7rLxnDt3zsLDw6169ep2+vRp9/L58+ebJBs+fLh7mWsuXTGmxtU2cQxRUVEmyb777jv3soMHD1pAQIA9+uij7mWDBw82SbZy5UqPdqGhoR59njhxwsLCwqxPnz4e696/f7+FhoZ6LP/nn3+sfPnyVq1aNTtz5oy1b9/eQkJCbPfu3ZcdS4sWLUyS/ec//3EvO3v2rPv9OHfunJn9/3tbtmxZO3XqlEcfrueWLl1qZmYXLlywMmXKWFRUlP39998ebRMSEtz/f+ONN1qNGjXszJkzHs83adLEKlSocNnYAcBbyL+py678e/DgQfP397ebb77ZLl686G43ZcoU93yY/ZvXihQpYg0aNLDz58+7282aNcskWYsWLS677sRatGjh8RrX/FepUsXOnj3rXj5p0iSTZBs3bvSYl9q1a3u0mzFjRpI45syZYz4+Pvb99997rPu1114zSbZ8+XL3skWLFrm3sZ07d1rBggXttttuS3bu6tWr587tZmYvvviiSbJPP/3Uvcy1T/Pll18mGXtUVJTFxMS4Hw8fPtwk2bx585K0deX89IwFALyJ/J66nHh87Rr7hAkTLtvnpcexZmb9+vWz/PnzexyTtm/f3qKiopK0vZJ5HjFihEmyXr16efR5++23W5EiRTyWSTIfHx/79ddfk8Rw6RjOnTtn1atXtxtuuMFjeYECBTzytUvv3r0tIiLCDh8+7LH83nvvtdDQ0GTnCLgSXJ4FXjd16lQtWbJES5Ys0dtvv63rr79e999/v+bNm+dus2DBAvn6+mrQoEEer3300UdlZh53Ax85cqSqVaummJgY9e/fXy1atEjyutT06tVLxYoVU2RkpNq3b+/+aVBKd7Het2+f1q1bpx49eqhw4cLu5TVr1tRNN92kBQsWpHndia1atUoHDx5U//79Pa7/1b59e1WuXFlffPFFhvpNSdWqVdWsWTP342LFiqlSpUoedzZfsGCBrr32WjVs2NCjXZcuXTz6WrJkiY4dO6bOnTvr8OHD7j9fX181atRIS5cudbfNnz+/Zs2apc2bN6t58+b64osvNHHiRF1zzTVpijtfvnzq16+f+7G/v7/69eungwcPavXq1R5tY2Jikj0rPrG1a9cqLi5OgwcPTnJtOddZbEePHtU333yjTp066cSJE+7xHTlyRK1bt9a2bds8fuIHADkR+Td52ZV/v/rqK507d06DBw/2uDllnz59FBIS4l7PqlWrdOTIEfXp08fjp/VdunRRoUKFMiUW6d/rzCb+BZZrn8C1H+CalwceeMCjXY8ePRQaGurR14cffqgqVaqocuXKHvsBrp/kJ94PuPnmm9WvXz+NHj1ad9xxhwIDA92XU7lU3759PW5g9uCDDypfvnxJ3usyZcqodevWlx3zxx9/rFq1aiX76zBXzk/PWAAgJyC/Jy8nHl+nR+LjWNcxaLNmzXTq1Clt2bIl3f1lZJ4v/SV4s2bNdOTIER0/ftxjeYsWLVS1atVUx/D3338rPj5ezZo105o1ay4br5np448/VocOHWRmHjm5devWio+PT1M/QHpweRZ4XcOGDT0SZufOnVWnTh0NHDhQt9xyi/z9/bV7925FRkYqODjY47VVqlSRJO3evdu9zN/fX2+++aYaNGigwMBAzZw50+Mnu5czfPhwNWvWTL6+vipatKiqVKmS5PpvibnWndxPf6tUqaJFixbpn3/+UYECBdIcw+X6rVy5sn744Yd09Xc5yRWpCxUq5HGt0N27d6tRo0ZJ2l0a47Zt2yT9//XqLhUSEuLxuGnTpnrwwQc1depUtW7dOsllVVITGRmZZG4rVqwo6d/rtl177bXu5WXKlLlsf66fC1avXj3FNtu3b5eZ6dlnn9Wzzz6bbJuDBw+qZMmSl10fAHgL+Tf9/WZm/k1pPf7+/ipbtqz7edd/y5cv79EuX758qV77NL0u3Q9wFeRd+wGuOCpUqODRzs/PT2XLlvVYtm3bNm3evDnFn8i7brDm8tJLL+nTTz/VunXr9M477yg8PDzZ11267oIFCyoiIiLJ9WvTku+lf3P+nXfemWqb9I4FALyN/J7+fr11fJ0ev/76q5555hl98803SYrU8fHx6e4vI/Oc2r5C4mP8lPLw/Pnz9fzzz2vdunUe9wVJy/Z06NAhHTt2TDNmzNCMGTOSbUNORmajaI4cx8fHR9dff70mTZqkbdu2ua+nnR6LFi2SJJ05c0bbtm1L88GTJNWoUUOtWrVK9zpzu5SuR2fOG8Gkh+vGoHPmzFGJEiWSPH/pTtLZs2fdN+LcsWOHTp06pfz586d7vZdzubPM08o1vsceeyzFM9kuLW4AQE5H/r26ZfZ+QI0aNdzXv71U4uufS//+yst1oLtx40Z17tw53etMLLPyvZT+sQBATkN+947MzKvHjh1TixYtFBISotGjR6tcuXIKDAzUmjVr9OSTT7qPT7NaWseUXB7+/vvv1bFjRzVv3lzTpk1TRESE/Pz8NHPmTL3zzjuXXbdrjF27dnXfqPVSNWvWvGw/QHpQNEeOdOHCBUn/3qBJkqKiovTVV1/pxIkTHt+Gu36G5LrrtCRt2LBBo0ePVs+ePbVu3Trdf//92rhxY5KfDmcW17q3bt2a5LktW7aoaNGi7m9n0/ONfOJ+Lz1je+vWrR5jzi5RUVHus8gvjScx1406wsPD07SDNGLECG3evFkvvfSSnnzySQ0dOlSvvvpqmmLau3dvkm/Af//9d0nK0Bl4rtg3bdqUYuyuM+r8/Pyuyh1AAHkX+Tf78m/i9SQ+U/vcuXOKi4tz5xdXu+3bt+v66693t7tw4YJ27dqVbQeIrji2bdvmMS/nz59XXFycatWq5V5Wrlw5rV+/XjfeeONl5/6ff/5Rz549VbVqVTVp0kQvvviibr/9djVo0CBJ223btnnMwcmTJ7Vv3z61a9cuQ2MqV66cNm3adNk2aR0LAORU5PeceXydVsuWLdORI0c0b948NW/e3L08Li4uSdu0zkl65jkzfPzxxwoMDNSiRYsUEBDgXj5z5swkbZMbQ7FixRQcHKyLFy9yDI5swzXNkeOcP39eixcvlr+/v/vnYe3atdPFixc1ZcoUj7YTJ06Uw+FQ27Zt3a/t0aOHIiMjNWnSJM2aNUsHDhzQkCFDsizeiIgI1a5dW7Nnz9axY8fcyzdt2qTFixd7HMi5kk7idimpX7++wsPD9dprr3n8dGnhwoXavHmz++7S2aldu3b66aef9PPPP7uXHTp0SHPnzvVo17p1a4WEhGjs2LE6f/58kn4OHTrk/v+VK1fqpZde0uDBg/Xoo4/q8ccf15QpU/Ttt9+mKaYLFy54XPv03Llzmj59uooVK6Z69eqld4iqW7euypQpo1deeSXJ++T6Bj08PFwtW7bU9OnTtW/fvlTHBwC5Bfn3X9mVf1u1aiV/f3+9+uqrHmdovfHGG4qPj3evp379+ipSpIhef/11d9FDkubOnZvhn3hnRP369VWsWDG99tprOnfunHv5rFmzksxrp06d9Ndff+n1119P0s/p06f1zz//uB8/+eST+uOPPzR79my9/PLLio6OVkxMjMfcu8yYMcNjvyI2NlYXLlxwb4fpdeedd2r9+vX63//+l+Q513uSnrEAQE5Efv9XTjy+TivXGd6J9xfOnTunadOmJWlboECBNF2uJT3znBl8fX3lcDh08eJF97Jdu3bpk08+SdK2QIECSd5TX19f3Xnnnfr444+T/cKbY3BkBc40h9ctXLjQ/Y32wYMH9c4772jbtm0aOnSo+7pYHTp00PXXX6+nn35au3btUq1atbR48WJ9+umnGjx4sPvsYNf1sb7++msFBwerZs2aGj58uJ555hndddddmf7B7zJhwgS1bdtWjRs3Vu/evXX69GlNnjxZoaGhGjlypLudq4j79NNP695775Wfn586dOiQ7De4fn5+euGFF9SzZ0+1aNFCnTt31oEDBzRp0iRFR0dn6Y5KSp544gnNmTNHbdq00cMPP6wCBQpoxowZioqK0oYNG9ztQkJCFBsbq27duqlu3bq69957VaxYMf3xxx/64osv1LRpU02ZMkVnzpxRTEyMKlSooDFjxkiSRo0apc8//1w9e/bUxo0bL/vtdmRkpF544QXt2rVLFStW1Pvvv69169ZpxowZHjcLSysfHx/FxsaqQ4cOql27tnr27KmIiAht2bJFv/76q/uniVOnTtV1112nGjVqqE+fPipbtqwOHDigFStWaM+ePVq/fn261w0A2Yn86938W6xYMQ0bNkyjRo1SmzZt1LFjR23dulXTpk1TgwYN1LVrV0n/Xkt25MiReuihh3TDDTeoU6dO2rVrl2bNmqVy5cpl29nPfn5+ev7559WvXz/dcMMNuueeexQXF6eZM2cmuaZ5t27d9MEHH+iBBx7Q0qVL1bRpU128eFFbtmzRBx98oEWLFql+/fr65ptvNG3aNI0YMUJ169aV9O8ZZy1bttSzzz6rF1980aPfc+fO6cYbb1SnTp3cc3XdddepY8eOGRrT448/ro8++kh33323evXqpXr16uno0aP67LPP9Nprr6lWrVppHgsA5BTk99xzfJ1WTZo0UaFChRQTE6NBgwbJ4XBozpw5yV7qpV69enr//ff1yCOPqEGDBipYsKA6dOiQbL9pnefM0L59e7388stq06aN7rvvPh08eFBTp05V+fLlPWoJrjF89dVXevnllxUZGakyZcqoUaNGGj9+vJYuXapGjRqpT58+qlq1qo4ePao1a9boq6++0tGjRzM1ZkAGeMnMmTNNksdfYGCg1a5d22JjYy0hIcGj/YkTJ2zIkCEWGRlpfn5+VqFCBZswYYK73erVqy1fvnz20EMPebzuwoUL1qBBA4uMjLS///47xXiWLl1qkuzDDz9MNe64uDiTZDNnzvRY/tVXX1nTpk0tKCjIQkJCrEOHDvbbb78lef1zzz1nJUuWNB8fH5NkcXFxqa7v/ffftzp16lhAQIAVLlzYunTpYnv27PFo45rLX375JdW+ErdNvN6oqChr3759krYtWrSwFi1aeCzbsGGDtWjRwgIDA61kyZL23HPP2RtvvJHsWJYuXWqtW7e20NBQCwwMtHLlylmPHj1s1apVZmY2ZMgQ8/X1tZUrV3q8btWqVZYvXz578MEHUx1LixYtrFq1arZq1Spr3LixBQYGWlRUlE2ZMiVJHCm9t67nli5d6rH8hx9+sJtuusmCg4OtQIECVrNmTZs8ebJHmx07dlj37t2tRIkS5ufnZyVLlrRbbrnFPvroo1TjBgBvIv/mnPxrZjZlyhSrXLmy+fn5WfHixe3BBx9Mdr5effVVi4qKsoCAAGvYsKEtX77c6tWrZ23atLnsuhO7NLenNP8pzfe0adOsTJkyFhAQYPXr17fvvvsu2f2Fc+fO2QsvvGDVqlWzgIAAK1SokNWrV89GjRpl8fHxdvz4cYuKirK6deva+fPnPV47ZMgQ8/HxsRUrVnjM3bfffmt9+/a1QoUKWcGCBa1Lly525MgRj9emtE/jei4mJsZj2ZEjR2zgwIFWsmRJ8/f3t1KlSllMTIwdPnw4zWMBgJyA/J5z8ntaj69dY58wYcJl+1y+fLlde+21FhQUZJGRkfbEE0/YokWLkhzLnjx50u677z4LCwszSRYVFeWxrozM84gRI0ySHTp06LJxSrIBAwYkO1dvvPGGVahQwQICAqxy5co2c+ZMd9+JbdmyxZo3b25BQUEmySN3HzhwwAYMGGClS5c2Pz8/K1GihN144402Y8aMZNcJXAmHWQbuQgAAOUDLli11+PDhy16PFACAvCYhIUHFihXTHXfckeylQ/KSWbNmqWfPnvrll184qxsAAADZgmuaAwAAADnYmTNnkvwE+6233tLRo0fVsmVL7wQFAAAA5GFc0xwAAADIwX766ScNGTJEd999t4oUKaI1a9bojTfeUPXq1XX33XdL+vcGWIlvrnUpf39/FS5cOLtCBgAAAHI1iuYAAABADhYdHa3SpUvr1Vdf1dGjR1W4cGF1795d48ePl7+/vySpQYMG2r17d4p9tGjRQsuWLcumiAEAAIDcjWuaAwAAALnc8uXLdfr06RSfL1SokOrVq5eNEQEAAAC5F0VzAAAAAAAAAACcuBEoAAAAAAAAAABOGb6meUJCgvbu3avg4GA5HI7MjAkAgKuWmenEiROKjIyUj0/mfbdN3gYAIPNlVd6WyN0AAGSFtObuDBfN9+7dq9KlS2f05QAAIBV//vmnSpUqlWn9kbcBAMg6mZ23JXI3AABZ6XK5O8NF8+DgYPcKQkJCMtoNAABI5Pjx4ypdurQ7z2YW8jYAAJkvq/K2RO4GACArpDV3Z7ho7vp5WEhICAkcAIBMltk/wyZvAwCQdbLi8inkbgAAss7lcjc3AgUAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnPJ5OwBc3oEDBxQfH+/tMJAOoaGhKl68uLfDAAAAuQj7fLkP+3wAribkKWQU+RK5EUXzHO7AgQPq2q27zp876+1QkA5+/gF6e85bJAUAAJAm7PPlTuzzAbhabNmyRf37D1BCwkVvh4JciHyJ3IiieQ4XHx+v8+fO6nTZFkoIDPV2ONnC5/QxBcV9p9NlmishKMzb4aSbz5l4aee3io+PJyEAAIA0uRr3+dIqp+4bss8H4Gry559/KiHhos6UrKuLoaW8HQ5yEfIlciuK5rlEQmCoEgoU9XYY2SohKOyqGzMAALi6XY37fGnFviEAeJ/5F+SzGMBVgRuBAgAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHDKUUXzM2fO6Pfff9eZM2e8HQoAeB2fiUDOwb9HAMj9+CxnDgAAuYe3c1aOKpr/8ccf6tu3r/744w9vhwIAXsdnIpBz8O8RAHI/PsuZAwBA7uHtnJWjiuYAAAAAAAAAAHgTRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADglM/bAQAAcp+LFy9qw4YNOnr0qAoXLqyaNWvK19c3x8WRVXHmlPF7W1bMQ1r6ZP4BAAAAAFmJojkAIF2+++47TZs2Tfv373cvK1GihPr376/mzZvnmDiyKs6cMn5vy4p5SEufzD8AAAAAIKtxeRYAQJp99913GjFihMqWLaupU6dqwYIFmjp1qsqWLasRI0bou+++yxFxvPbaa1kSZ04Zv7dlxTykpU/mHwAAAACQHSiaAwDS5OLFi5o2bZoaN26s559/XtWqVVP+/PlVrVo1Pf/882rcuLFiY2N18eJFr8Zx7bXX6sMPP9S1116bqXHmlPF7W1bMQ1r6nDZtGvMPAAAAAMgWab48y9mzZ3X27Fn34+PHj2dJQJK0e/fuLOs7t2Euci/eO1ypnLYNbdiwQfv379ezzz4rHx/P71x9fHzUpUsXDRgwQBs2bFCdOnW8FkfDhg21YsUKNWzYMFPjzCnjT6usyttZMQ9p7VOS1+c/p/27RN7BtpV78d7lHjn9veKYGznZvn37vB0Ccjk+d5Be3t5m0lw0HzdunEaNGpWVsbiNGTMmW9YDZCW2Y+Q1R48elSSVKVMm2eddy13tvBVHQECAx38vldE4c8r40yqr8nZWzENa+8zs9WYEn+0ALsXnAjILx9wA8jI+d5DbpLloPmzYMD3yyCPux8ePH1fp0qWzJKinn35aUVFRWdJ3brN7924+WHIptmNcqZz2779w4cKSpLi4OFWrVi3J83FxcR7tvBWH6wytxGdqJZbROHPK+NMqq/J2VsxDWvvM7PVmBJ/tyCo57TMfacfnQu6R0/+dccyNnOynn37Sm2++6e0wkIvxuYP08nbeTnPRPCAgIMWz9jJbVFSUKlasmC3rArIK2zHympo1a6pEiRKaO3eunn/+eY9LZCQkJGju3LmKiIhQzZo1vRrHzz//LF9fX/3888+69dZbMy3OnDL+tMqqvJ0V85CWPkuUKCFJXp9/PtsBXIrPBWQWjrmRk3n7MgnI/fjcQW7DjUABAGni6+ur/v37a8WKFXrmmWf066+/6tSpU/r111/1zDPPaMWKFXrwwQfl6+vr1Th++ukn3X333frpp58yNc6cMn5vy4p5SEuf/fv3Z/4BAAAAANkizWeaAwDQvHlzjRo1StOmTXPfmFGSIiIiNGrUKDVv3jzHxFG1atVMjzOnjN/bsmIe0ton8w8AAAAAyGoUzQEA6dK8eXM1bdpUGzZs0NGjR1W4cGHVrFkz28/wvVwcWRVnThm/t2XFPKSlT+YfAAAAAJDVKJoDANLN19dXderU8XYYl40jq+LMKeP3tqyYh7T0yfwDAAAAALIS1zQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIBTjiqaX3PNNZoxY4auueYab4cCAF7HZyKQc/DvEQByPz7LmQMAQO7h7ZyVzytrTUFgYKAqVqzo7TAAIEfgMxHIOfj3CAC5H5/lzAEAIPfwds7KUWeaAwAAAAAAAADgTRTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADglM/bASBtfM7EezuEbONz+pjHf3Obq+m9AgAAmYv9iKRy6r4h7xWAq5Hj3En5/HPY22EgFyFfIreiaJ7DhYaGys8/QNr5rbdDyXZBcd95O4QM8/MPUGhoqLfDAAAAucTVvM+XVjlx35B9PgBXi9KlS8vHx1eBf62R/lrj7XCQy5AvkRtRNM/hihcvrrfnvKX4eL6Zy01CQ0NVvHhxb4cBAAByCfb5cif2+QBcLSpXrqx3332HPIUMIV8iN6JongsUL16cDxcAAIA8jn0+AEBORp4CcDXhRqAAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgFO+jL7QzCRJx48fz7RgAAC42rnyqivPZhbyNgAAmS+r8nbiPsndAABknrTm7gwXzU+cOCFJKl26dEa7AAAAKThx4oRCQ0MztT+JvA0AQFbI7Lzt6lMidwMAkBUul7sdlsGvxBMSErR3714FBwfL4XDo+PHjKl26tP7880+FhIRkOODc4GoZ69UyTomx5lWMNW/K62M1M504cUKRkZHy8cm8q6hdmrezWl5/n5JzNY5ZujrHzZgZc152NY77SsacVXlbyprcfTW+v+nB/KSMuUkd85My5iZ1zE/Ksmpu0pq7M3ymuY+Pj0qVKpVkeUhIyFXzJl8tY71axikx1ryKseZNeXmsmX2mmpRy3s5qefl9SsnVOGbp6hw3Y746XI1jlq7OcWd0zFmRt6Wszd1X4/ubHsxPypib1DE/KWNuUsf8pCwr5iYtuZsbgQIAAAAAAAAA4ETRHAAAAAAAAAAAp0wrmgcEBGjEiBEKCAjIrC5zrKtlrFfLOCXGmlcx1rzpahprbnY1vk9X45ilq3PcjPnqcDWOWbo6x301jflqGmtGMD8pY25Sx/ykjLlJHfOTMm/PTYZvBAoAAAAAAAAAQF7D5VkAAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADglClF86lTpyo6OlqBgYFq1KiRfv7558zoNsuMGzdODRo0UHBwsMLDw3Xbbbdp69atHm3OnDmjAQMGqEiRIipYsKDuvPNOHThwwKPNH3/8ofbt2yt//vwKDw/X448/rgsXLni0WbZsmerWrauAgACVL19es2bNyurhpWr8+PFyOBwaPHiwe1leGutff/2lrl27qkiRIgoKClKNGjW0atUq9/NmpuHDhysiIkJBQUFq1aqVtm3b5tHH0aNH1aVLF4WEhCgsLEy9e/fWyZMnPdps2LBBzZo1U2BgoEqXLq0XX3wxW8bncvHiRT377LMqU6aMgoKCVK5cOT333HNKfF/f3DrW7777Th06dFBkZKQcDoc++eQTj+ezc1wffvihKleurMDAQNWoUUMLFizIlnGeP39eTz75pGrUqKECBQooMjJS3bt31969e3PdOC831ks98MADcjgceuWVVzyW55axXi3SkkeT88orr6hSpUoKCgpS6dKlNWTIEJ05cyYbIr5ysbGxqlmzpkJCQhQSEqLGjRtr4cKFqb4mL2xv6R3366+/rmbNmqlQoUIqVKiQWrVqleP3Cy+Vkffa5b333pPD4dBtt92WtUFmsoyM+dixYxowYIAiIiIUEBCgihUr5rptPCPjzs2fY8lJ7tggOXnh88wlLWPOyZ9l6T32vtx7N2/ePN18880qUqSIHA6H1q1bl6SPtBwv5hTemJ+WLVvK4XB4/D3wwAOZOaxMkZlzk5nHKzmFN+YnOjo6ybYzfvz4LBnflcrsf1sjR45U5cqVVaBAAffn7MqVKz3a5JbtxxtzczVvO4ldSf0gTewKvffee+bv729vvvmm/frrr9anTx8LCwuzAwcOXGnXWaZ169Y2c+ZM27Rpk61bt87atWtn11xzjZ08edLd5oEHHrDSpUvb119/batWrbJrr73WmjRp4n7+woULVr16dWvVqpWtXbvWFixYYEWLFrVhw4a52+zcudPy589vjzzyiP322282efJk8/X1tS+//DJbx+vy888/W3R0tNWsWdMefvhh9/K8MtajR49aVFSU9ejRw1auXGk7d+60RYsW2fbt291txo8fb6GhofbJJ5/Y+vXrrWPHjlamTBk7ffq0u02bNm2sVq1a9tNPP9n3339v5cuXt86dO7ufj4+Pt+LFi1uXLl1s06ZN9u6771pQUJBNnz4928Y6ZswYK1KkiM2fP9/i4uLsww8/tIIFC9qkSZNy/VgXLFhgTz/9tM2bN88k2f/+9z+P57NrXMuXLzdfX1978cUX7bfffrNnnnnG/Pz8bOPGjVk+zmPHjlmrVq3s/fffty1bttiKFSusYcOGVq9ePY8+csM4LzfWxObNm2e1atWyyMhImzhxYq4c69UiLXn0UnPnzrWAgACbO3euxcXF2aJFiywiIsKGDBmSjZFn3GeffWZffPGF/f7777Z161Z76qmnzM/PzzZt2pRs+7yyvaV33Pfdd59NnTrV1q5da5s3b7YePXpYaGio7dmzJ5sjz7j0jtklLi7OSpYsac2aNbNbb701e4LNJOkd89mzZ61+/frWrl07++GHHywuLs6WLVtm69aty+bIr0x6x53bP8culdKxwaXyyueZWdrHnFM/y9J77J2W9+6tt96yUaNG2euvv26SbO3atUn6udzxYk7hrflp0aKF9enTx/bt2+f+i4+Pz6phZkhmz01mHa/kFN6an6ioKBs9erTHtpPa/rS3ZMW/rblz59qSJUtsx44dtmnTJuvdu7eFhITYwYMH3W1yw/bjrbm5mrcdlyupH6TVFRfNGzZsaAMGDHA/vnjxokVGRtq4ceOutOtsc/DgQZNk3377rZn9+wHn5+dnH374obvN5s2bTZKtWLHCzP4tAvn4+Nj+/fvdbWJjYy0kJMTOnj1rZmZPPPGEVatWzWNd99xzj7Vu3Tqrh5TEiRMnrEKFCrZkyRJr0aKFeycxL431ySeftOuuuy7F5xMSEqxEiRI2YcIE97Jjx45ZQECAvfvuu2Zm9ttvv5kk++WXX9xtFi5caA6Hw/766y8zM5s2bZoVKlTIPXbXuitVqpTZQ0pR+/btrVevXh7L7rjjDuvSpYuZ5Z2xXlpgzc5xderUydq3b+8RT6NGjaxfv36ZOkazpONMzs8//2ySbPfu3WaWO8dplvJY9+zZYyVLlrRNmzZZVFSUR9LLrWO9mlyaR5MzYMAAu+GGGzyWPfLII9a0adOsDi/LFCpUyP773/8m+1xe3t5SG/elLly4YMHBwTZ79uwsjiprXW7MFy5csCZNmth///tfi4mJyXVF8+SkNubY2FgrW7asnTt3LpujynqpjTsvfY6ldGyQnLzyeZaeMV8qp3yWpffYOz3vXVxcXLJF4bQcL+YU3pgfM0v39uQNWTk3Lhk5XskpvDE/ZpbkuCenyo75iY+PN0n21VdfmVnu2X68MTdmbDtXWj9Iqyu6PMu5c+e0evVqtWrVyr3Mx8dHrVq10ooVK66k62wVHx8vSSpcuLAkafXq1Tp//rzHuCpXrqxrrrnGPa4VK1aoRo0aKl68uLtN69atdfz4cf3666/uNon7cLXxxtwMGDBA7du3TxJPXhrrZ599pvr16+vuu+9WeHi46tSpo9dff939fFxcnPbv3+8RZ2hoqBo1auQx1rCwMNWvX9/dplWrVvLx8XH/HGbFihVq3ry5/P393W1at26trVu36u+//87qYUqSmjRpoq+//lq///67JGn9+vX64Ycf1LZtW0l5a6yJZee4csI2nVh8fLwcDofCwsIk5a1xJiQkqFu3bnr88cdVrVq1JM/npbHmVZfm0eQ0adJEq1evdv8cb+fOnVqwYIHatWuXLTFmposXL+q9997TP//8o8aNGyfbJi9ub2kZ96VOnTql8+fPp7pt5GRpHfPo0aMVHh6u3r17Z2N0WSMtY/7ss8/UuHFjDRgwQMWLF1f16tU1duxYXbx4MZujzTxpGXde+hxL6dggOXnl8yw9Y75UTvgsy8ixd2a8d2k5XswJvDU/LnPnzlXRokVVvXp1DRs2TKdOnUp3H1klu+YmI8crOYG35sdl/PjxKlKkiOrUqaMJEyYkuQyut2XH/Jw7d04zZsxQaGioatWq5e4jp28/3pobl6t128mM+kFa5UtX60scPnxYFy9e9CimSlLx4sW1ZcuWK+k62yQkJGjw4MFq2rSpqlevLknav3+//P39k3yYFS9eXPv373e3SW7crudSa3P8+HGdPn1aQUFBWTGkJN577z2tWbNGv/zyS5Ln8tJYd+7cqdjYWD3yyCN66qmn9Msvv2jQoEHy9/dXTEyMO9bk4kw8jvDwcI/n8+XLp8KFC3u0KVOmTJI+XM8VKlQoS8aX2NChQ3X8+HFVrlxZvr6+unjxosaMGaMuXbq440gcV+I4c9tYE8vOcaW0Tbv6yE5nzpzRk08+qc6dOyskJMQdZ14Z5wsvvKB8+fJp0KBByT6fl8aaFyWXR5Nz33336fDhw7ruuutkZrpw4YIeeOABPfXUU9kY7ZXZuHGjGjdurDNnzqhgwYL63//+p6pVqybbNi9tb+kZ96WefPJJRUZGZqhI5U3pGfMPP/ygN954I9nr3OYm6Rnzzp079c0336hLly5asGCBtm/frv79++v8+fMaMWJENkd+ZdIz7rzwOSalfmyQnLzweZbeMV8qJ3yWZeTYOzPeu7QcL+YE3pof6d/PhqioKEVGRmrDhg168skntXXrVs2bNy99g8gi2TE3GT1eyQm8NT+SNGjQINWtW1eFCxfWjz/+qGHDhmnfvn16+eWXr3BUmScr52f+/Pm69957derUKUVERGjJkiUqWrSou4+cvv14a26kq3vbyYz6QVpdUdE8LxgwYIA2bdqkH374wduhZIk///xTDz/8sJYsWaLAwEBvh5OlEhISVL9+fY0dO1aSVKdOHW3atEmvvfaaYmJivBxd5vrggw80d+5cvfPOO6pWrZrWrVunwYMHKzIyMs+N9Wp3/vx5derUSWam2NhYb4eT6VavXq1JkyZpzZo1cjgc3g4HGZDWPLps2TKNHTtW06ZNU6NGjbR9+3Y9/PDDeu655/Tss89mU7RXplKlSlq3bp3i4+P10UcfKSYmRt9++22aC8i5VUbHPX78eL333ntatmxZrtsHSeuYT5w4oW7duun111/3OJDJjdLzPickJCg8PFwzZsyQr6+v6tWrp7/++ksTJkzIdUXz9Iw7L3yOXU3HBi5XOubc/FmG7NG3b1/3/9eoUUMRERG68cYbtWPHDpUrV86LkWWPvH68cqVSm59HHnnE/f81a9aUv7+/+vXrp3HjxikgICC7Q812119/vdatW6fDhw/r9ddfV6dOnbRy5cokBc+r0eXm5mrddrK7fnBFl2cpWrSofH19k9w5+8CBAypRosQVBZYdBg4cqPnz52vp0qUqVaqUe3mJEiV07tw5HTt2zKN94nGVKFEi2XG7nkutTUhISLadZb569WodPHhQdevWVb58+ZQvXz59++23evXVV5UvXz4VL148z4w1IiIiyQFOlSpV9Mcff3jEmtr2WqJECR08eNDj+QsXLujo0aPpmo+s9vjjj2vo0KG69957VaNGDXXr1k1DhgzRuHHjPOLIC2NNLDvHlVKb7By3awdr9+7dWrJkicdZCXllnN9//70OHjyoa665xv0ZtXv3bj366KOKjo52x5gXxpoXpZRHk/Pss8+qW7duuv/++1WjRg3dfvvtGjt2rMaNG6eEhIRsivjK+Pv7q3z58qpXr57GjRunWrVqadKkScm2zUvbW3rG7fLSSy9p/PjxWrx4sWrWrJlNkWaetI55x44d2rVrlzp06OD+DHvrrbf02WefKV++fNqxY4cXos+Y9LzPERERqlixonx9fd3LqlSpov379+vcuXPZFXKmSM+488Ln2OWODZK7xE5u/zzLyJhdctJnWUaOvTPjvUvLsXFO4K35SU6jRo0kSdu3b7+ifjJLVs7NlR6v5ATemp/kNGrUSBcuXNCuXbvSP5AskpXzU6BAAZUvX17XXnut3njjDeXLl09vvPGGu4+cvv14a26Sc7VsO5lVP0irKyqa+/v7q169evr666/dyxISEvT111+n+VqX3mBmGjhwoP73v//pm2++SfKT/nr16snPz89jXFu3btUff/zhHlfjxo21ceNGjzfC9SHoKtw2btzYow9Xm+ycmxtvvFEbN27UunXr3H/169dXly5d3P+fV8batGlTbd261WPZ77//rqioKElSmTJlVKJECY84jx8/rpUrV3qM9dixY1q9erW7zTfffKOEhAT3zk/jxo313Xff6fz58+42S5YsUaVKlbLtciWnTp2Sj4/nP19fX1/3AVteGmti2Tkub2/Trh2sbdu26auvvlKRIkU8ns8r4+zWrZs2bNjg8RkVGRmpxx9/XIsWLXLHmBfGmpdcLo8mJ6XPLVd/uVFCQoLOnj2b7HN5eXtLbdyS9OKLL+q5557Tl19+6XEtwdwspTFXrlw5yX5Wx44d3WcHlS5d2gvRZo7U3uemTZtq+/btHoXi33//XRERER73lsiNUht3Xvgcu9yxQeIvQlxy++dZRsYs5bzPsowce2fGe5eWY+OcwFvzkxzX5boiIiKuqJ/MklVzkxnHKzmBt+YnOevWrZOPj0+OOtM6O/9tJc7BuWH78dbcJOdq2XYyq36QZum6bWgy3nvvPQsICLBZs2bZb7/9Zn379rWwsDDbv3//lXadZR588EELDQ21ZcuW2b59+9x/p06dcrd54IEH7JprrrFvvvnGVq1aZY0bN7bGjRu7n79w4YJVr17dbr75Zlu3bp19+eWXVqxYMRs2bJi7zc6dOy1//vz2+OOP2+bNm23q1Knm6+trX375ZbaO91KX3t07r4z1559/tnz58tmYMWNs27ZtNnfuXMufP7+9/fbb7jbjx4+3sLAw+/TTT23Dhg126623WpkyZez06dPuNm3atLE6derYypUr7YcffrAKFSpY586d3c8fO3bMihcvbt26dbNNmzbZe++9Z/nz57fp06dn21hjYmKsZMmSNn/+fIuLi7N58+ZZ0aJF7Yknnsj1Yz1x4oStXbvW1q5da5Ls5ZdftrVr17rvMp5d41q+fLnly5fPXnrpJdu8ebONGDHC/Pz8bOPGjVk+znPnzlnHjh2tVKlStm7dOo/PqbNnz+aqcV5urMlJ7k7guWWsV4u05NFu3brZ0KFD3Y9HjBhhwcHB9u6779rOnTtt8eLFVq5cOevUqZM3hpBuQ4cOtW+//dbi4uJsw4YNNnToUHM4HLZ48WIzSzrevLK9pXfc48ePN39/f/voo488to0TJ054awjplt4xXyomJsZuvfXWbIo2c6R3zH/88YcFBwfbwIEDbevWrTZ//nwLDw+3559/3ltDyJD0jju3f46l5NJjg7z6eZbY5cacUz/LLnfsnZH37siRI7Z27Vr74osvTJK99957tnbtWtu3b5+7zeWOF3MKb8zP9u3bbfTo0bZq1SqLi4uzTz/91MqWLWvNmzfP3sFfRmbPTWYdr+QU3pifH3/80SZOnGjr1q2zHTt22Ntvv23FihWz7t27Z/8EXEZmz8/Jkydt2LBhtmLFCtu1a5etWrXKevbsaQEBAbZp0yZ3P7lh+/HG3FzN205yMlI/SKsrLpqbmU2ePNmuueYa8/f3t4YNG9pPP/2UGd1mGUnJ/s2cOdPd5vTp09a/f38rVKiQ5c+f326//XaPHQczs127dlnbtm0tKCjIihYtao8++qidP3/eo83SpUutdu3a5u/vb2XLlvVYh7dcupOYl8b6+eefW/Xq1S0gIMAqV65sM2bM8Hg+ISHBnn32WStevLgFBATYjTfeaFu3bvVoc+TIEevcubMVLFjQQkJCrGfPnkl2kNevX2/XXXedBQQEWMmSJW38+PFZPrbEjh8/bg8//LBdc801FhgYaGXLlrWnn37aYwclt4516dKlyf77jImJyfZxffDBB1axYkXz9/e3atWq2RdffJEt44yLi0vxc2rp0qW5apyXG2tykkt6uWWsV4u05NEWLVp4vMfnz5+3kSNHWrly5SwwMNBKly5t/fv3t7///jvb48+IXr16WVRUlPn7+1uxYsXsxhtvdBfWzJKO1yxvbG/pHXdUVFSy28aIESOyP/gMysh7nVhuLJpnZMw//vijNWrUyAICAqxs2bI2ZswYu3DhQjZHfmXSO+7c/jmWkkuPDfLq51lilxtzTv4sS+3YOyPv3cyZMy871rQcL+YU2T0/f/zxhzVv3twKFy5sAQEBVr58eXv88cctPj4+q4eabpk5N5l5vJJTZPf8rF692ho1amShoaEWGBhoVapUsbFjx9qZM2eyY7jplpnzc/r0abv99tstMjLS/P39LSIiwjp27Gg///yzRx+5ZfvJ7rm5mred5GS0fpAWDrNc8ltCAAAAAAAAAACy2BVd0xwAAAAAAAAAgLyEojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5kAma9mypQYPHnxFfezatUsOh0Pr1q3LlJgyW2aMEQCArJKdeWrkyJGqXbv2FfcTHR2tV1555Yr7yQw5KRYAANKb17ds2aJrr71WgYGBql27dqYdX+f043QAmSuftwMA8pp58+bJz8/P22FkqathjAAApMVjjz2mhx56yNthZKpffvlFBQoU8HYYAABISv/x54gRI1SgQAFt3bpVBQsW1IkTJ9K9zh49eujYsWP65JNP3MtKly6tffv2qWjRounuLyskFyOAzEPRHMhkhQsX9nYIWebcuXPy9/fP02MEACA9ChYsqIIFC3o7jEzhyvPFihXzdigAALil9/hzx44dat++vaKioiQpQ0Xz5Pj6+qpEiRKZ0ldqzp8/z0lqQA7A5VmATHbpT8eio6M1duxY9erVS8HBwbrmmms0Y8YMj9f8/PPPqlOnjgIDA1W/fn2tXbs2Sb+bNm1S27ZtVbBgQRUvXlzdunXT4cOHJUnLli2Tv7+/vv/+e3f7F198UeHh4Tpw4ECycc6aNUthYWH65JNPVKFCBQUGBqp169b6888/3W1cPzn/73//qzJlyigwMDDZMZ49e1ZPPvmkSpcurYCAAJUvX15vvPFGmmIHACAr/f333+revbsKFSqk/Pnzq23bttq2bZtHm9dff12lS5dW/vz5dfvtt+vll19WWFhYmvq/9PIsPXr00G233aaXXnpJERERKlKkiAYMGKDz58+72xw8eFAdOnRQUFCQypQpo7lz5ybp99ixY7r//vtVrFgxhYSE6IYbbtD69eslSYcOHVKJEiU0duxYd/sff/xR/v7++vrrrz3imj59untsnTp1Unx8fJJYx4wZo8jISFWqVElS0suzHDt2TP369VPx4sUVGBio6tWra/78+e7nf/jhBzVr1kxBQUEqXbq0Bg0apH/++SdN8wcAwOUkPv683PG1w+HQ6tWrNXr0aDkcDo0cOTJJfxcvXlTv3r1VpkwZBQUFqVKlSpo0aZL7+ZEjR2r27Nn69NNP5XA45HA4tGzZsmQvz/Ltt9+qYcOGCggIUEREhIYOHaoLFy54xD5o0CA98cQTKly4sEqUKJEkJofDodjYWHXs2FEFChTQmDFjMhyjJP3555/q1KmTwsLCVLhwYd16663atWtXhucfuFpRNAeywX/+8x93Mbx///568MEHtXXrVknSyZMndcstt6hq1apavXq1Ro4cqccee8zj9ceOHdMNN9ygOnXqaNWqVfryyy914MABderUSdL/70R069ZN8fHxWrt2rZ599ln997//VfHixVOM69SpUxozZozeeustLV++XMeOHdO9997r0Wb79u36+OOPNW/evBSv3da9e3e9++67evXVV7V582ZNnz7dfdbd5WIHACAr9ejRQ6tWrdJnn32mFStWyMzUrl07dxF7+fLleuCBB/Twww9r3bp1uummmzRmzJgrWufSpUu1Y8cOLV26VLNnz9asWbM0a9Ysj5j+/PNPLV26VB999JGmTZumgwcPevRx99136+DBg1q4cKFWr16tunXr6sYbb9TRo0dVrFgxvfnmmxo5cqRWrVqlEydOqFu3bho4cKBuvPFGdx/bt2/XBx98oM8//1xffvmlez8ksa+//lpbt27VkiVLPArhLgkJCWrbtq2WL1+ut99+W7/99pvGjx8vX19fSf+ezdemTRvdeeed2rBhg95//3398MMPGjhw4BXNIQAAKUnt+Hrfvn2qVq2aHn30Ue3bty/JsbX0b24rVaqUPvzwQ/32228aPny4nnrqKX3wwQeS/r30WqdOndSmTRvt27dP+/btU5MmTZL089dff6ldu3Zq0KCB1q9fr9jYWL3xxht6/vnnPdrNnj1bBQoU0MqVK/Xiiy9q9OjRWrJkiUebkSNH6vbbb9fGjRvVq1evDMd4/vx5tW7dWsHBwfr++++1fPlyFSxYUG3atNG5c+cyZf6Bq4YByFQtWrSwhx9+2P04KirKunbt6n6ckJBg4eHhFhsba2Zm06dPtyJFitjp06fdbWJjY02SrV271szMnnvuObv55ps91vPnn3+aJNu6dauZmZ09e9Zq165tnTp1sqpVq1qfPn1SjXPmzJkmyX766Sf3ss2bN5skW7lypZmZjRgxwvz8/OzgwYMpjnHr1q0myZYsWZLsetISOwAAmcmVp37//XeTZMuXL3c/d/jwYQsKCrIPPvjAzMzuuecea9++vcfru3TpYqGhoWla14gRI6xWrVruxzExMRYVFWUXLlxwL7v77rvtnnvuMbP/z5s///yz+3lX/p04caKZmX3//fcWEhJiZ86c8VhXuXLlbPr06e7H/fv3t4oVK9p9991nNWrU8Gg/YsQI8/X1tT179riXLVy40Hx8fGzfvn3uWIsXL25nz571WE9UVJQ7lkWLFpmPj0+KObt3797Wt29fj2Xff/+9+fj4eOzbAACQUYmPPy93fG1mVqtWLRsxYoT7cVxcnMfxdXIGDBhgd955p/txTEyM3XrrrR5tLu3nqaeeskqVKllCQoK7zdSpU61gwYJ28eJFd+zXXXedRz8NGjSwJ5980v1Ykg0ePDjVOUhrjHPmzEkS09mzZy0oKMgWLVp02XUA+H9c0xzIBjVr1nT/v8PhUIkSJdxnlG3evFk1a9Z0X/pEkho3buzx+vXr12vp0qXJXjN1x44dqlixovz9/TV37lzVrFlTUVFRmjhx4mXjypcvnxo0aOB+XLlyZYWFhWnz5s1q2LChJCkqKirVa5uuW7dOvr6+atGiRbLPpyV2AACywubNm5UvXz41atTIvaxIkSKqVKmSNm/eLEnaunWrbr/9do/XNWzYMNmzrtOqWrVq7jOxJSkiIkIbN270iKlevXru513512X9+vU6efKkihQp4tHv6dOntWPHDvfjl156SdWrV9eHH36o1atXKyAgwKP9Nddco5IlS7ofN27cWAkJCdq6dav7mqw1atSQv79/imNZt26dSpUqlWK+Xr9+vTZs2OBxiRkzU0JCguLi4lSlSpUU+wYAICNSO75Oq6lTp+rNN9/UH3/8odOnT+vcuXMel1tLi82bN6tx48ZyOBzuZU2bNtXJkye1Z88eXXPNNUnilf7dL7g03vr162dKjOvXr9f27dsVHBzssfzMmTMe+xAALo+iOZANLr2Jh8PhUEJCQppff/LkSXXo0EEvvPBCkuciIiLc///jjz9Kko4ePaqjR4+qQIECGYz4/12uj6CgoFSfT2vsAADkFZmR9yMiItzXJk0scXF9x44d2rt3rxISErRr1y7VqFEj3bFmRp7v16+fBg0alOQ5V7EAAIDMdKV59r333tNjjz2m//znP2rcuLGCg4M1YcIErVy5MrNDlZS2eC/NxxmN8eTJk6pXr16y90vhRt9A+lA0B7ysSpUqmjNnjs6cOeM+2/ynn37yaFO3bl19/PHHio6OVr58yf+z3bFjh4YMGaLXX39d77//vmJiYvTVV1/JxyflWxdcuHBBq1atcp9VvnXrVh07dixdZ4XVqFFDCQkJ+vbbb9WqVaskz6cldgAAskKVKlV04cIFrVy50n0t0iNHjmjr1q2qWrWqJKlSpUr65ZdfPF536ePMVLlyZV24cEGrV692/9rLlX9d6tatq/379ytfvnyKjo5Otp9z586pa9euuueee1SpUiXdf//92rhxo8LDw91t/vjjD+3du1eRkZGS/t2/8PHxcd/wMy1q1qypPXv26Pfff0/2bPO6devqt99+U/ny5dPcJwAA3rR8+XI1adLE4z4fl56F7e/vr4sXL6baT5UqVfTxxx/LzNxnmy9fvlzBwcEqVaqUV2KsW7eu3n//fYWHhyskJOSKYgCudtwIFPCy++67Tw6HQ3369NFvv/2mBQsW6KWXXvJoM2DAAB09elSdO3fWL7/8oh07dmjRokXq2bOnLl68qIsXL6pr165q3bq1evbsqZkzZ2rDhg36z3/+k+q6/fz89NBDD2nlypVavXq1evTooWuvvdZdRE+L6OhoxcTEqFevXvrkk08UFxenZcuWuW9QcrnYAQDIKhUqVNCtt96qPn366IcfftD69evVtWtXlSxZUrfeeqsk6aGHHtKCBQv08ssva9u2bZo+fboWLlzo8VPrzFSpUiW1adNG/fr1c+ff+++/3+OM7latWqlx48a67bbbtHjxYu3atUs//vijnn76aa1atUqS9PTTTys+Pl6vvvqqnnzySVWsWFG9evXyWFdgYKBiYmK0fv16ff/99xo0aJA6derkvjRLWrRo0ULNmzfXnXfeqSVLliguLk4LFy7Ul19+KUl68skn9eOPP2rgwIFat26dtm3bpk8//ZQbgQIAcqwKFSpo1apVWrRokX7//Xc9++yzSb4wj46O1oYNG7R161YdPnzYfQPxxPr3768///xTDz30kLZs2aJPP/1UI0aM0COPPJLqyWtZGWOXLl1UtGhR3Xrrrfr+++/dx+eDBg3Snj17rigm4GpD0RzwsoIFC+rzzz/Xxo0bVadOHT399NNJLmUSGRmp5cuX6+LFi7r55ptVo0YNDR48WGFhYfLx8dGYMWO0e/duTZ8+XdK/lz2ZMWOGnnnmGa1fvz7FdefPn19PPvmk7rvvPjVt2lQFCxbU+++/n+4xxMbG6q677lL//v1VuXJl9enTR//880+aYgcAICvNnDlT9erV0y233KLGjRvLzLRgwQL3T6WbNm2q1157TS+//LJq1aqlL7/8UkOGDPG410hWxBQZGakWLVrojjvuUN++fT3OEHc4HFqwYIGaN2+unj17qmLFirr33nu1e/duFS9eXMuWLdMrr7yiOXPmKCQkRD4+PpozZ46+//57xcbGuvspX7687rjjDrVr104333yzatasqWnTpqU73o8//lgNGjRQ586dVbVqVT3xxBPuL75r1qypb7/9Vr///ruaNWumOnXqaPjw4e6z2wEAyGn69eunO+64Q/fcc48aNWqkI0eOeJzRLUl9+vRRpUqVVL9+fRUrVkzLly9P0k/JkiW1YMEC/fzzz6pVq5YeeOAB9e7dW88884zXYsyfP7++++47XXPNNbrjjjtUpUoV9e7dW2fOnOHMcyCdHGZm3g4CQPabNWuWBg8e7PFzcAAA8O9B6JYtW/T99997O5QMGzlypD755BOtW7fO26EAAAAAuQ4XGAYAAMBV7aWXXtJNN92kAgUKaOHChZo9e3aGzsgGAAAAkDdwbQQAAABc1X7++WfddNNNqlGjhl577TW9+uqruv/++yVJ1apVU8GCBZP9mzt3rpcjBwAAAJAVuDwLAAAAkILdu3cne/MvSSpevLiCg4OzOSIAAAAAWY2iOQAAAAAAAAAATlyeBQAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAIA8adeuXXI4HJo1a5a3Q/Hw5Zdfqnbt2goMDJTD4dCxY8eybF0Oh0MjR47Msv4BAHkHeTN3mDVrlhwOh3bt2uXtUIA8jaI5rkrsDKRfy5YtVb16dW+HAQDwAtfBWeK/8PBwXX/99Vq4cGG2x7Ns2TKPWPz8/FS2bFl1795dO3fuzJR1/Pjjjxo5cmSm5+IjR46oU6dOCgoK0tSpUzVnzhwVKFAgU9eBtJs2bVqO2x8EkPuRNzMPeRMuWZmzf/vtN40cOZIvIuCBojmuCDsDmYedgbwnq7YVAPCW0aNHa86cOXrrrbf0xBNP6NChQ2rXrp3mz5/vlXgGDRqkOXPmaMaMGWrfvr3ef/99NWjQQHv37r3ivn/88UeNGjUq0z/Df/nlF504cULPPfecevfura5du8rPzy9T14G0o2gOICuRN68ceRMuWV00HzVqFEVzeMjn7QCQN4wePVplypSRmenAgQOaNWuW2rVrp88//1y33HJLtsczaNAgNWjQQOfPn9eaNWs0Y8YMffHFF9q4caMiIyOvqG/XzkCPHj0UFhaWOQHLc2egVatWmdYvvCerthUA8Ja2bduqfv367se9e/dW8eLF9e6773ol3zdr1kx33XWXJKlnz56qWLGiBg0apNmzZ2vYsGHZHk9aHDx4UJLIC05nzpyRv7+/fHw4lwdA3kPevHLkTWTEP//8w0mIuGLsnSJTtG3bVl27dlW3bt302GOP6fvvv5efn5/effddr8TTrFkzde3aVT179tTkyZP10ksv6ejRo5o9e7ZX4kkLdgZyvn/++cfbIQBAjhIWFqagoCDly+d5HsY///yjRx99VKVLl1ZAQIAqVaqkl156SWYmSTp9+rQqV66sypUr6/Tp0+7XHT16VBEREWrSpIkuXryY7nhuuOEGSVJcXFyq7b755hs1a9ZMBQoUUFhYmG699VZt3rzZ/fzIkSP1+OOPS5LKlCnj/gXb5c4++vDDD1WvXj0FBQWpaNGi6tq1q/766y/38y1btlRMTIwkqUGDBnI4HOrRo0eqfS5btkz169dXYGCgypUrp+nTp2vkyJFyOBwe7c6ePashQ4aoWLFiCg4OVseOHbVnz54k/bleu2XLFnXq1EkhISEqUqSIHn74YZ05c8ajrcPh0MCBAzV37lxVqlRJgYGBqlevnr777rsk/f7111/q1auXihcvroCAAFWrVk1vvvlmkrE4HA699957euaZZ1SyZEnlz59fx48flyStXLlS7dq1U6FChVSgQAHVrFlTkyZN8uhjy5Ytuuuuu1S4cGEFBgaqfv36+uyzzzzauH4JuXz5cj3yyCMqVqyYChQooNtvv12HDh1yt4uOjtavv/6qb7/91v0et2zZMtX3AwCuBHnTU2bnzR49eig6OjrJ8uTypivHffLJJ6pevbo7d3355ZdJXp+eHPfBBx9o1KhRKlmypIKDg3XXXXcpPj5eZ8+e1eDBgxUeHq6CBQuqZ8+eOnv2bLIxpSXvJmfatGmqVq2aAgICFBkZqQEDBnic+T9ixAj5+fl55EKXvn37KiwszL0vEB0drVtuucW9HxIUFKQaNWpo2bJlkqR58+apRo0a7hjXrl2bpM/sytmuPr799lv1799f4eHhKlWqlCRp9+7d6t+/vypVqqSgoCAVKVJEd999t8e2OWvWLN19992SpOuvv97dv2uskrRw4UL3v4Hg4GC1b99ev/76a5reF+RiBlyBmTNnmiT75ZdfPJYnJCRYSEiIde/e3WP5yZMn7ZFHHrFSpUqZv7+/VaxY0SZMmGAJCQlmZnbq1CmrVKmSVapUyU6dOuV+3ZEjR6xEiRLWuHFju3DhQorxLF261CTZhx9+6LF806ZNJsn69OljZmZxcXEmyWbOnOnR7uuvv7brrrvO8ufPb6GhodaxY0f77bff3M+PGDHCJCX5i4uLS3WePvjgA6tbt64FBgZakSJFrEuXLrZnzx738y1atEjSZ0xMTKp97tmzx3r27Gnh4eHm7+9vVatWtTfeeMP9fHrncsGCBda8eXMrWLCgBQcHW/369W3u3LkeMVarVs1+/fVXa9mypQUFBVlkZKS98MILHnGdPXvWnn32Watbt66FhIRY/vz57brrrrNvvvnGo53rPZgwYYJNnz7dypYta/7+/la/fn37+eefk53DKlWqWEBAgFWrVs3mzZtnMTExFhUV5dHu4sWLNnHiRKtataoFBARYeHi49e3b144ePZrqfF7K9V7/+uuv1rlzZwsLC7PatWubmdn69estJibGypQpYwEBAVa8eHHr2bOnHT58OMnrU9tW5syZ494uChUqZPfcc4/98ccf6YoTALKDK99/9dVXdujQITt48KBt2rTJ+vXrZz4+PrZ48WJ324SEBLvhhhvM4XDY/fffb1OmTLEOHTqYJBs8eLC73U8//WS+vr42ZMgQ97J7773XgoKCbOvWranGk1K+//TTT02SDR061MySz/dLliyxfPnyWcWKFe3FF1+0UaNGWdGiRa1QoULuz+j169db586dTZJNnDjR5syZY3PmzLGTJ09edo4aNGhgEydOtKFDh1pQUJBFR0fb33//bWZmixcvtr59+5okGz16tM2ZM8d+/PHHFPtcs2aNBQQEWHR0tI0fP97GjBljkZGRVqtWLbt0N75r164mye677z6bMmWK3XHHHVazZk2TZCNGjHC3c+WnGjVqWIcOHWzKlCnu13br1s2jT0lWvXp1K1q0qI0ePdpeeOEFi4qKsqCgINu4caO73f79+61UqVJWunRpGz16tMXGxlrHjh3d83fp+1a1alWrXbu2vfzyyzZu3Dj7559/bPHixebv729RUVE2YsQIi42NtUGDBlmrVq3cr9+0aZOFhoZa1apV7YUXXrApU6ZY8+bNzeFw2Lx585K8F3Xq1LEbbrjBJk+ebI8++qj5+vpap06d3O3+97//WalSpaxy5cru9zjxtgwAGUXe9E7eTO740Oz/c19ikqxWrVoWERFhzz33nL3yyitWtmxZy58/v8dxXXpzXO3ata1x48b26quv2qBBg8zhcNi9995r9913n7Vt29amTp1q3bp1M0k2atSoJDGlJe+65i7xsaVrjK1atbLJkyfbwIEDzdfX1xo0aGDnzp0zM7Nt27aZJJs8ebLHes+ePWuFChWyXr16uZdFRUVZpUqVLCIiwkaOHGkTJ060kiVLWsGCBe3tt9+2a665xsaPH2/jx4+30NBQK1++vF28eNH9+uzM2a4+qlatai1atLDJkyfb+PHjzczsww8/tFq1atnw4cNtxowZ9tRTT1mhQoUsKirK/vnnHzMz27Fjhw0aNMgk2VNPPeXuf//+/WZm9tZbb5nD4bA2bdrY5MmT7YUXXrDo6GgLCwu7bC0IuRtFc1wRdga8szOQ1sSd1rmcOXOmORwOq169uo0ZM8amTp1q999/v8fBc4sWLSwyMtJKly5tDz/8sE2bNs1uuOEGk2QLFixwtzt06JBFRETYI488YrGxsfbiiy9apUqVzM/Pz9auXetu53oP6tSpY+XLl7cXXnjBXnzxRStatKiVKlXKndjNzObPn28Oh8Nq1qxpL7/8sj377LNWqFAhq169epKdovvvv9/y5ctnffr0sddee82efPJJK1CggMfOQlq4djqqVq1qt956q02bNs2mTp1qZmYvvfSSNWvWzEaPHm0zZsywhx9+2IKCgqxhw4buL4Aut608//zz5nA47J577rFp06a5t7fE2wUA5BSuXHbpX0BAgM2aNcuj7SeffGKS7Pnnn/dYftddd5nD4bDt27e7lw0bNsx8fHzsu+++sw8//NAk2SuvvHLZeFz5/s0337RDhw7Z3r177YsvvrDo6GhzOBzuL/OTy/e1a9e28PBwO3LkiHvZ+vXrzcfHx+PL/gkTJqTpi3Ezs3Pnzll4eLhVr17dTp8+7V4+f/58k2TDhw93L0vphIPkdOjQwfLnz29//fWXe9m2bdssX758Hgf/69atM0nWv39/j9ffd999KRbNO3bs6NG2f//+JsnWr1/vXuZ6n1etWuVetnv3bgsMDLTbb7/dvax3794WERHhUWQw+3efIzQ01P3lvet9K1u2rMcX+hcuXLAyZcpYVFRUkhzoyqtmZjfeeKPVqFHDzpw54/F8kyZNrEKFCu5lrjlu1aqVx+uHDBlivr6+duzYMfeyatWqWYsWLQwAMhN5M3VZlTfTWzT39/f3mN/169cnKSqnN8dVr17d47izc+fO5nA4rG3bth6vb9y4cZJY05p3Ly2aHzx40Pz9/e3mm2/2KFxPmTLF/b4nXm+jRo081jtv3jyTZEuXLnUvi4qKMkkedYlFixaZJAsKCrLdu3e7l0+fPj3J67MzZ7v6uO6665KcZJl4f8NlxYoVJsneeust9zLXv6fEYzAzO3HihIWFhblPwHTZv3+/hYaGJlmOvIWiOa4IOwOpy6qdgbQmbrPLz+WxY8csODjYGjVq5BGjmeeBquts+MSJ5ezZs1aiRAm788473csuXLhgZ8+e9ejn77//tuLFi3t8c+16D4oUKeJxFrjrC47PP//cvaxGjRpWqlQpO3HihHvZsmXLTJLHjsb3339vkjzOkDcz+/LLL5NdnhrXjlXnzp2TPJdc4n333XdNkn333XfuZSltK7t27TJfX18bM2aMx/KNGzdavnz5kiwHAG9z5aipU6fakiVLbMmSJfb2229bmzZtLF++fPbxxx+72/bt29d8fX3t+PHjHn24DlASH4iePXvWatSoYWXKlLFixYpZixYtPHJPSlz5/tK/YsWKeeSpS/P93r17TZI98cQTSfps3bq1FS1a1P04Pfn+xx9/NEk2bdq0JM9VrlzZ6tWr536c1nx/4cIFCwoKsvvuuy/Jc66TDlzGjh1rkmzLli0e7X7++ecUi+aLFi3yaLt582aTZOPGjXMvk2SNGzdOsv577rnH8ufPbxcuXLCEhAQLCwuzvn372qFDhzz+XGP94YcfzOz/37dLz6z75Zdfknzxf6kjR46Yw+Gw5557Lsl6Ro0aZZLcv+JzrfeDDz7w6MNVFEj8xQBFcwBZgbyZuqzIm2bpL5q3a9cuSduQkBD3SWcZyXEvvviiR3+vvPJKsif2DR482Hx8fOz8+fMeMV0u7yaeE9dcv/POO0lOZjP7d3sJCQnxOF6PjY01SR71lzvvvNNKly7tsS1FRUVZ1apVPfo7duyYSbL27dt7LHd9ee/65Xt252xXH7Nnz07yXGLnzp2zw4cP26FDhywsLMzj5M2UiuauOL755pskY7n55putfPnyqa4TuRs3AkWmmDp1qipWrChJOnDggN5++23df//9Cg4O1h133CFJWrBggXx9fTVo0CCP1z766KP66KOPtHDhQg0cOFDSv9ccmz9/vmJiYnTy5Em1aNEiyetS06tXL4/HxYoV0+zZsz1uwpLYvn37tG7dOj3xxBMqXLiwe3nNmjV10003acGCBWled2KrVq3SwYMHNXLkSAUGBrqXt2/fXpUrV9YXX3yhUaNGpatPM9PHH3+sTp06ycx0+PBh93OtW7fWe++9pzVr1qhp06aSLj+XS5Ys0YkTJzR06FCPGCUlue5bwYIF1bVrV/djf39/NWzYUDt37nQv8/X1la+vryQpISFBx44dU0JCgurXr681a9YkGc8999yjQoUKuR83a9ZMktx97t27Vxs3btRTTz2lggULutu1aNFCNWrUcF8HVfr3mnihoaG66aabPOalXr16KliwoJYuXar77rsvxblNzgMPPJBkWVBQkPv/z5w5o5MnT+raa6+VJK1Zs8Y9hpTMmzdPCQkJ6tSpk0ecJUqUUIUKFbR06VI99dRT6YoTALJDw4YNPXJp586dVadOHQ0cOFC33HKL/P39tXv3bkVGRio4ONjjtVWqVJH077UlXfz9/fXmm2+qQYMGCgwM1MyZM5PkntQMHz5czZo1k6+vr4oWLaoqVaokuU5sYq51V6pUKclzVapU0aJFizJ046jU+q1cubJ++OGHdPUn/Xuvk9OnT6t8+fJJnrt02e7du+Xj46Ny5cp5LE8uHpcKFSp4PC5Xrpx8fHySXH/20naSVLFiRZ06dUqHDh2Sj4+Pjh07phkzZmjGjBkpjiWxMmXKeDzesWOHJKl69eopxrt9+3aZmZ599lk9++yzKa6nZMmS7sfXXHONx/Ou/Y2///47xfUAQGYib6a/34zmzYy4NE9I/+YKV544dOhQunPcpX2GhoZKkkqXLp1keUJCguLj41WkSBH38svl3RIlSiR5PqX59Pf3V9myZT22oXvuuUeDBw/W3LlzNXz4cMXHx2v+/PkaMmRIkm0pPWOR/j+/eitnX7p/If17P4Bx48Zp5syZ+uuvv9z3CZCk+Pj4y/a5bds2Sf9//f9LhYSEpDk+5D4UzZEp2BlIf78Z3RlIb+K+3Fym5UDVpVSpUkneh0KFCmnDhg0ey2bPnq3//Oc/2rJli86fP+9enlwSu1xydM1hSkWDxIX4bdu2KT4+XuHh4cnGf+kOTVokF/PRo0c1atQovffee0n6TGviNbNkd4gkyc/PL91xAoA3+Pj46Prrr9ekSZO0bds2VatWLd19LFq0SNK/X0Ju27Yt2c/dlNSoUUOtWrVK9zqRVHr2sxJLSEiQJHXt2tV9s7ZL1axZ0+Nx4i+f07uexx57TK1bt062zaX7Cq4v8S+V+IAZALITeTNrpZTLUrpJ6uXyREZyXEp95pScVKhQId1yyy3uovlHH32ks2fPepwc55LRsXgrZye3f/HQQw9p5syZGjx4sBo3bqzQ0FA5HA7de++97jhT42ozZ86cZL+wSK3OhNyPdxdZgp2BrJORxH0lc5lYWhLZ22+/rR49eui2227T448/rvDwcPn6+mrcuHHuAn16+0yrhIQEhYeHa+7cuck+X6xYsXT3mVzi7dSpk3788Uc9/vjjql27tgoWLKiEhAS1adMmzYnX4XBo4cKFyY4/8Rn1AJDTXbhwQZJ08uRJSVJUVJS++uornThxwuOL8i1btrifd9mwYYNGjx6tnj17at26dbr//vu1ceNG9xlLmc217q1btyZ5bsuWLSpatKj7C/L0FJET93vpmUhbt271GHNahYeHKzAwUNu3b0/y3KXLoqKilJCQoB07dnh8UZ/cOF0u3R/Yvn27EhISFB0dnaTdpX7//Xflz5/fnVeDg4N18eLFDO97uc6Q37RpU4p9lC1bVtK/Xyxn5j5eRr8sAICMIm9mTd6U/i0IHzt2LMnyxCfopUexYsWuOMelV1ry7qUSz6crX0rSuXPnFBcXlyT27t2769Zbb9Uvv/yiuXPnqk6dOhmq2aQkJ+Xsjz76SDExMfrPf/7jXnbmzJkk20lKfbv2UcLDw/NsjQkp8/F2AMi7ktsZ2Lt3r06cOOHR7nI7A3Xq1NH999+fpjN4Myo7dgYuldGdgUsTd3J/ic+0vtxcJj5QzQwfffSRypYtq3nz5qlbt25q3bq1WrVqpTNnzmSoP9ccpaVoUK5cOR05ckRNmzZNdl5q1aqVoRgS+/vvv/X1119r6NChGjVqlG6//XbddNNNHjsnLqklXjNTmTJlko3TdakXAMjpzp8/r8WLF8vf39/9y7F27drp4sWLmjJlikfbiRMnyuFwqG3btu7X9ujRQ5GRkZo0aZJmzZqlAwcOaMiQIVkWb0REhGrXrq3Zs2d7HCxt2rRJixcvVrt27dzLXHk/uYPvS9WvX1/h4eF67bXXdPbsWffyhQsXavPmzWrfvn26Y/X19VWrVq30ySefaO/eve7l27dv18KFCz3auub01Vdf9Vj+yiuvpNj/1KlTPR5PnjzZoy+XFStWePyq688//9Snn36qm2++2X1JtjvvvFMff/xxsvsShw4dSmWU/6pbt67KlCmjV155Jcl8u75EDw8PV8uWLTV9+nTt27cvQ+tJToECBdL0HgNAZiBv/isr8qb073FWfHy8xy+h9+3bp//9738Z6i8zclx6XS7vJqdVq1by9/fXq6++6nHy2RtvvKH4+Pgk89m2bVsVLVpUL7zwgr799ttkzzK/EjkpZ/v6+iY5IW/y5MlJfn2Q0vbbunVrhYSEaOzYsR6/onfJim0AOQdnmiNLpLQzMGPGDE2ZMkXDhg1zt73czkBcXJwaNGigIUOG6M0338ySeBPvDAwbNkxhYWGS/n9nIHESyejOQK9evRQQECDp/3cGhg8fnu5YXYn7nXfe0aZNm5JcVuXQoUPub6DTMpc333yzgoODNW7cOLVp08bjuuZmlu5vc12JPPFrV65cqRUrViR7zbjLiYyMVPXq1fXWW29p2LBh7rOwv/32W23cuNHji4dOnTpp2rRpeu655zR27FiPfi5cuKCTJ0+639uMSjy+xJIrTKS0rdxxxx0aNmyYRo0apbfffttjjs1MR48e9biuHQDkFAsXLnR/2X3w4EG988472rZtm4YOHeq+pmOHDh10/fXX6+mnn9auXbtUq1YtLV68WJ9++qkGDx7s/rL2+eef17p16/T1118rODhYNWvW1PDhw/XMM8/orrvu8jgQz0wTJkxQ27Zt1bhxY/Xu3VunT5/W5MmTFRoaqpEjR7rb1atXT5L09NNP695775Wfn586dOiQ7KXa/Pz89MILL6hnz55q0aKFOnfurAMHDmjSpEmKjo7OcEFj5MiRWrx4sZo2baoHH3zQXVSpXr261q1b525Xu3Ztde7cWdOmTVN8fLyaNGmir7/+OtkvnF3i4uLUsWNHtWnTRitWrNDbb7+t++67L8kXzNWrV1fr1q01aNAgBQQEaNq0aZLkcU+W8ePHa+nSpWrUqJH69OmjqlWr6ujRo1qzZo2++uorHT16NNVx+vj4KDY2Vh06dFDt2rXVs2dPRUREaMuWLfr111/dv5ibOnWqrrvuOtWoUUN9+vRR2bJldeDAAa1YsUJ79uzR+vXr0zvFqlevnmJjY/X888+rfPnyCg8PT/G6pQCQXuTN7M2b9957r5588kndfvvtGjRokE6dOqXY2FhVrFgx2ftrpcWV5rj0SkvevVSxYsXcx5dt2rRRx44dtXXrVk2bNk0NGjRIUhT38/PTvffeqylTpsjX11edO3fO1DFIOSdn33LLLZozZ45CQ0NVtWpVrVixQl999VWS4+3atWvL19dXL7zwguLj4xUQEKAbbrhB4eHhio2NVbdu3VS3bl3de++9KlasmP744w998cUXatq0aZIvvJCHZOttR5HnuO5SPHr0aJszZ47NmTPH/vOf/1i9evVMkg0dOtTd9uLFi3b99debw+Gwvn372tSpU+3WW281SR53LR4+fLg5HA775ptv3Muef/55k2RffPFFqvG47lh96Z2pL3XpXcHNzJYsWWL58uWzypUr24QJE2z06NFWrFgxK1SokO3cudPd7ueff3bfafutt96yd999106ePHnZOWrUqJG98sorNmzYMMufP79FR0fb33//naRdWu4Kvn//fouKirL8+fPbww8/bNOnT7dx48bZ3XffbYUKFXK3S+tc/ve//zVJVr16dRs7dqzFxsbaAw88YN27d3e3adGihVWrVi1JLJfeofzNN980SdaxY0ebPn26DR061MLCwqxatWoe7VzvwYQJE5L0KclGjBjhfvzZZ5+Zw+GwmjVr2sSJE2348OFWuHBhq169ukVHR3u8tl+/fibJ2rZtaxMnTrQpU6bYww8/bJGRkZfdLhJz3WH90KFDSZ5r3ry55c+f355++mmbNm2a3XbbbVarVq0kcae2rYwbN84kWZMmTezFF1+02NhYe+KJJ6xChQrJzgkAeJMrRyX+CwwMtNq1a1tsbKwlJCR4tD9x4oQNGTLEIiMjzc/Pz/3Z5mq3evVqy5cvnz300EMer7tw4YI1aNDAIiMjPXLkpa4k35uZffXVV9a0aVMLCgqykJAQ69Chg/32229JXv/cc89ZyZIlzcfHxyRZXFxcqut7//33rU6dOhYQEGCFCxe2Ll262J49ezzapCffm5l9/fXXVqdOHfP397dy5crZf//7X3v00UctMDDQo93p06dt0KBBVqRIEStQoIB16NDB/vzzzyS5yZXffvvtN7vrrrssODjYChUqZAMHDrTTp0979CnJBgwYYG+//bZVqFDBAgICrE6dOrZ06dIkcR44cMAGDBhgpUuXNj8/PytRooTdeOONNmPGDHeby71vP/zwg910000WHBxsBQoUsJo1a9rkyZM92uzYscO6d+9uJUqUMD8/PytZsqTdcsst9tFHH112jl3rTxz//v37rX379hYcHGySrEWLFsnGBgDpQd70Xt5cvHixVa9e3fz9/a1SpUr29ttvu3NfYq4cd6moqCiLiYnxWHYlOS6l+JM73kxr3nX1een8TpkyxSpXrmx+fn5WvHhxe/DBB1PcLlzHqjfffHOyz0dFRVn79u2TLE9u3lI6ts+unJ3aNvL3339bz549rWjRolawYEFr3bq1bdmyJdn3+fXXX7eyZcuar69vknUvXbrUWrdubaGhoRYYGGjlypWzHj162KpVq5KdP+QNFM1xRdgZ8N7OwOUSd3rn8rPPPrMmTZq4x96wYUN799133c+ntWiekJBgY8eOtaioKHeSnz9/fpJ26Smam5m99957VrlyZQsICLDq1avbZ599ZnfeeadVrlw5yetnzJhh9erVs6CgIAsODrYaNWrYE088YXv37k1tSj2kVjTfs2eP3X777RYWFmahoaF299132969e5ONO7Vt5eOPP7brrrvOChQoYAUKFLDKlSvbgAEDbOvWrWmOEwBw9bn11lutfPnyGXptavntUikVFAAAQObLzry7bt06k2RvvfVWtqwPyI0cZtw+HkDuVLt2bRUrVkxLlizxdigAAGSJ06dPe9yU2nWD9ZiYGL3++uvp7m/kyJEaNWqUDh06pKJFi6ba1uFwaMCAAfzsGACAbJCdeXfgwIGaPXu29u/fn+wldABwTXMAucD58+flcDiUL9//f2QtW7ZM69ev1/PPP+/FyAAAyFply5ZVjx49VLZsWe3evVuxsbHy9/fXE0884e3QAABALvP555/rt99+04wZMzRw4EAK5kAqKJoDyPH++usvtWrVSl27dlVkZKS2bNmi1157TSVKlNADDzyQrr5OnjypkydPptqmWLFiKd6ZHACA7NSmTRu9++672r9/vwICAtS4cWONHTtWFSpU8HZoAAAgl3nooYd04MABtWvXLtWbiwKQuDwLgBwvPj5effv21fLly3Xo0CEVKFBAN954o8aPH+++m3xauX6Wnpq4uDhFR0dfQcQAAAAAAADIrSiaA7iq7Ny5Uzt37ky1zXXXXafAwMBsiggAAAAAAAA5CUVzAAAAAAAAAACcfLwdAAAAAAAAAAAAOUWGbwSakJCgvXv3Kjg4WA6HIzNjAgDgqmVmOnHihCIjI+Xjk3nfbZO3AQDIfFmVtyVyNwAAWSGtuTvDRfO9e/eqdOnSGX05AABIxZ9//qlSpUplWn/kbQAAsk5m522J3A0AQFa6XO7OcNE8ODjYvYKQkJCMdgMAABI5fvy4Spcu7c6zmYW8DQBA5suqvC2RuwEAyAppzd0ZLpq7fh4WEhJCAgcAIJNl9s+wydsAAGSdrLh8CrkbAICsc7nczY1AAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADglM/bAWSmAwcOKD4+3qsxhIaGqnjx4l6NAQAA5Aw5Yd8EuRP7lACQtcjRyGnI/UDOkmeK5gcOHFDXbt11/txZr8bh5x+gt+e8xQcdAABXuS1btqh//wFKSLjo7VCQC7FPCQBZJ6fUD4DEyP1AzpJniubx8fE6f+6sTpdtoYTA0HS/3uf0MQXFfafTZZorISgsQzH4nImXdn6r+Ph4PuQAALjK/fnnn0pIuKgzJevqYmgpb4eDXIR9SgDIWldaP0DmyYxaTF5A7gdynjxTNHdJCAxVQoGiGX99UNgVvR4AACAx8y/IvgUAADnQldYPkHmoxQDIabgRKAAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAAAniuYAAAAAAAAAADhRNAcAAAAAAAAAwImiOQAAAAAAAAAAThTNAQAAAAAAAABwomgOAAAAAAAAAIATRXMAAAAAAAAAAJwomgMAAAAAAAAA4ETRHAAAAAAAAAAAJ4rmAAAAAAAAAAA4UTQHAAAAAAAAAMCJojkAAAAAAAAAAE4UzQEAAAAAAAAAcKJoDgAAAAAAAACAE0VzAAAAAAAAAACcKJoDAAAAAAAAAOBE0RwAAAAAAAAAACeK5gAAAAAAAAAAOFE0BwAAAAAAAADAiaI5AAAAAAAAAABOFM0BAAAAAAAAAHCiaA4AAAAAAAAAgBNFcwAAAAAAAAAAnCiaAwAAAAAAAADgRNEcAAAAAAAAAACnHFU0P3PmjH7//XedOXPG26HkGMwJACAnI08BAHILchZzAADIPbyds3JU0fyPP/5Q37599ccff3g7lByDOQEA5GTkKQBAbkHOYg4AALmHt3NWjiqaAwAAAAAAAADgTRTN8X/s3Xl8TGf///H3ZI+QBBGSInYhxE5pUaWWWrvoppZaWttX9W5VVSt0Qzd1+1lKiS5arVZLqSpqq6bVIrXH0pRWkdpirSW5fn84mdtIkMRMJsvr+XjkwZw5c87nus7MXOe858wZAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABYvdxcAoGBLSUnR5s2bdezYMRUrVkzR0dHy9PTM8jzOWF5Wp2e2TVFRUdq2bVuGt4ODgyVJJ06cyNSysyKrdbtKbqnDmS5cuKAFCxbo77//Vnh4uDp37iwfHx93lwUAAAAAAJyA0ByA26xZs0ZTpkzRoUOH7NNKlSqlgQMHqlmzZpmexxnLu+OOO7Rq1apMT89o/ddaflrwfq3bV7resrMiK/3mSrmlDmeaNm2a5s2b57ANp02bpq5du6p///5urAwAAAAAADgDl2cB4BZr1qxRTEyMKlSooMmTJ+ubb77R5MmTVaFCBcXExGjNmjWZmscZywsKCtLcuXMVFBSUqekZrT+jGkaOHCmbzabAwEBJ0n333SdJ9tuSVLNmTdWsWVM2m039+vW75rKd3bc5IbfU4UzTpk3T3LlzFRgYqGeeeUZffPGFnnnmGQUGBmru3LmaNm2au0sEAAAAAAA3idAcQI5LSUnRlClT1LhxY73yyiuKiopSoUKFFBUVpVdeeUWNGzfWlClTbjjP1KlTlZKSkqnlTZ06VZMnT043T2RkpJKTk1W0aFElJycrMjLSPv3EiRMqWrSoTp48aZ+e0fozalNkZKRmzpypxo0ba968eWrcuLG++uorNW7cWHPnzpWvr698fX319ttva+LEiWrcuLEWLVqkMWPGpFu2s/s2u8vOi3U404ULFzRv3jwVLVpU8+bNU4cOHVS8eHF16NDBYfqFCxfcXSoAAAAAALgJmb48y/nz53X+/Hn77ZMnT7qkIEnat29fjjzGVZxZS25qF+Asmzdv1qFDh/Tiiy/Kw8PxszsPDw9169ZNgwYNkqQbzrN582ZJyvTyRo0a5TBPWi3PPPOM3nzzTW3evFl16tTR5s2bdfjwYT399NN666237NMzWn/a/FfWsGnTJvttLy8vNWzYUHFxcWrYsKG2b99ufz/dunWr6tSpY1/e1q1b0y3bFX2bnWXnxTqcacGCBUpJSVGfPn3k5eU4fHp5eal379566623tGDBAnXt2tVNVf5PTo7bEuNVRg4ePOjuEpDH8boCnCu3v6Zy+zF3flLQ24/ci+cm8D/ufj1kOjQfO3asxowZ48pa7F599dUcWY+r5PX6AVc7duyYJKl8+fIZ3n/l9BvNk7as7C4v7fGNGzd2uH2t6dda/9Vtuvq2r6+v/d8rl5XR4661zszIbN9mZ9l5sQ5n+vvvvyX97zlxtbTpafO5W06O2xJjH+AKvK6AgoVjbgC8NoHcI9Oh+YgRI/Sf//zHfvvkyZMqU6aMS4oaOXKkIiIisvSYffv25Zo3l+zUfy25qV2AsxQrVkySlJiYqKioqHT3JyYmOvz/evOkLSu7y0t7fFxcnMPta02/1vqvbtPVt9POGjp//rzCwsIy7Iu02xm1LbMy27fZWXZerMOZwsPDJV1+TnTo0CHd/WnPlbT53C0nx23JuWNffvHTTz9p1qxZ7i4DeRivK8C5cvuxVW4/5s5PcvtzAQVXQX9tAldy93t1pkPztOvv5oSIiAhVqVIlR9blCnm9fsDVoqOjVapUKc2ZM0evvPKKw+U7UlNTNWfOHJUqVUqSrjtPWFiYoqOjJemGywsLC7P//8p50mqZOXOmSpUqZV9edHS0SpYsqVmzZjms51rrv7pNV95+6aWXtH79enl6emr9+vW6++677e+nNWrUcFhejRo1FBMTk26dzuzb7C47L9bhTJ07d9a0adM0c+ZMtW3b1uESLZcuXdKsWbPk6empzp07u7HK/8nJcVti7MuIu79OiLyP1xVQsHDMDYDXJpB78EOgAHKcp6enBg4cqLi4OL3wwgvatm2bzp49q23btumFF15QXFycBg4ceMN5BgwYIE9Pz0wtb8CAARo0aFC6eXbu3KmgoCAdP35cQUFB2rlzp316cHCwjh8/rsDAQPv0jNafUZt27typPn36KC4uTl27dlVcXJy6dOmiuLg4PfTQQ/ZrVv7nP//Rk08+aT97OSYmJt2ynd232V12XqzDmXx8fNS1a1cdP35cXbt21ddff60jR47o66+/dpju4+Pj7lIBAAAAAMBNyPSZ5gDgTM2aNdOYMWM0ZcoU+490SlJYWJjGjBmjZs2aSVKm5nHG8h566CGtWrUq09OvXv/1akj7EacvvvjC4bYkbdmyxf7/GTNmXHPZWZHZvnC13FKHM/Xv31+SNG/ePL311lv26Z6ennrooYfs9wMAAAAAgLyL0ByA2zRr1ky33XabNm/erGPHjqlYsWKKjo52OPs4M/M4a3n9+vXL0vTMtikqKkrbtm3L8HZwcLAk6cSJEzdctrP7NifkljqcqX///urdu7cWLFigv//+W+Hh4ercuTNnmAMAAAAAkE8QmgNwK09PT9WpU+em53HG8rI6PSvLv9FtV8hq3fm9DmdKu1QLAAAAAADIf7imOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYclVoXrZsWU2fPl1ly5Z1dym5Bn0CAMjNGKcAAHkFYxZ9AADIO9w9Znm5Za3X4OfnpypVqri7jFyFPgEA5GaMUwCAvIIxiz4AAOQd7h6zctWZ5gAAAAAAAAAAuBOhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYPFydwHO5vFvcvYed+6Ew785uW4AAJB/2S6clseZI+4uA3kI+5QAkDN4v3U/Z2Qx+QHPRSD3yTeheVBQkLx9fKXfV9/UcvwT19zU4719fBUUFHRTywAAAHlfmTJl5OHhKb8DG6UDG91dDvIY9ikBwHWclR/AeW42i8kPGPuB3CXfhOYlS5bURx9+oORk9346FxQUpJIlS7q1BgAA4H6RkZH65JOP3b5vgryJfUoAcJ3ckh8AV2LsB3KXfBOaS5cHPt5gAABAbsG+CQAAuRNjNADgevghUAAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGDxyu4DjTGSpJMnTzqtGAAACrq0cTVtnHUWxm0AAJzPVeP2lctk7AYAwHkyO3ZnOzQ/deqUJKlMmTLZXQQAALiGU6dOKSgoyKnLkxi3AQBwBWeP22nLlBi7AQBwhRuN3TaTzY/EU1NT9ffff6tIkSKy2WzZLjCzTp48qTJlyujPP/9UYGCgy9eXW9DugtVuqeC2nXYXrHZLBbftN2q3MUanTp1SeHi4PDycdxU1V43bBXU7ZgZ9c330z7XRN9dH/1wbfXN9rugfV43bkmvGbp4jl9EPl9EPl9EPl9EPl9EPl+Xnfsjs2J3tM809PDxUunTp7D482wIDA/PdxsoM2l3wFNS20+6Cp6C2/XrtdvaZapLrx+2Cuh0zg765Pvrn2uib66N/ro2+uT5n948rxm3JtWM3z5HL6IfL6IfL6IfL6IfL6IfL8ms/ZGbs5odAAQAAAAAAAACwEJoDAAAAAAAAAGDJM6G5r6+vYmJi5Ovr6+5SchTtLljtlgpu22l3wWq3VHDbnt/and/a40z0zfXRP9dG31wf/XNt9M310T/0QRr64TL64TL64TL64TL64TL64SZ+CBQAAAAAAAAAgPwmz5xpDgAAAAAAAACAqxGaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgCXXh+Zr1qxRx44dFR4eLpvNpq+++srdJeWIsWPHqkGDBipSpIhCQ0PVpUsXJSQkuLssl5s6daqio6MVGBiowMBANW7cWEuWLHF3WTlu3LhxstlsGjp0qLtLcbnRo0fLZrM5/EVGRrq7rBxx4MABPfrooypevLj8/f1Vs2ZN/frrr+4uy+XKlSuXbpvbbDYNGjTI3aW5VEpKil588UWVL19e/v7+qlixol5++WXltt/jnjx5ssqVKyc/Pz81atRI69evv+788+bNU2RkpPz8/FSzZk198803DvfPnz9frVu3VvHixWWz2RQfH+/C6l3Pmf1z8eJFDR8+XDVr1lRAQIDCw8PVo0cP/f33365uhks4+7kzevRoRUZGKiAgQEWLFlWrVq30888/u7IJLuXs/rlS//79ZbPZ9M477zi56pzh7L7p1atXujGmbdu2rmyCS7niubNjxw516tRJQUFBCggIUIMGDbR//35XNcGlnN0/Ge2j2Gw2vfHGG65sxk3h/eUyXiuXObsfTp8+rcGDB6t06dLy9/dX9erVNW3aNFc2wSmy0g/btm3TfffdZz9OudbzPat9mxs4ux/yalbliudDmryU37iiH/J1rmFyuW+++caMHDnSzJ8/30gyX375pbtLyhFt2rQxsbGxZuvWrSY+Pt7cfffdpmzZsub06dPuLs2lFi5caBYvXmx27dplEhISzPPPP2+8vb3N1q1b3V1ajlm/fr0pV66ciY6ONk8++aS7y3G5mJgYExUVZQ4ePGj/++eff9xdlssdO3bMREREmF69epmff/7Z/P7772bp0qVmz5497i7N5ZKSkhy297Jly4wks3LlSneX5lKvvvqqKV68uFm0aJFJTEw08+bNM4ULFzYTJ050d2l2c+fONT4+PmbWrFlm27Ztpl+/fiY4ONgcPnw4w/nXrVtnPD09zeuvv262b99uXnjhBePt7W22bNlin+eDDz4wY8aMMTNmzDCSzKZNm3KoNc7n7P45ceKEadWqlfn000/Nzp07TVxcnGnYsKGpV69eTjbLKVzx3JkzZ45ZtmyZ2bt3r9m6davp06ePCQwMNElJSTnVLKdxRf+kmT9/vqlVq5YJDw83EyZMcHFLnM8VfdOzZ0/Ttm1bh7Hm2LFjOdUkp3JF/+zZs8cUK1bMDBs2zGzcuNHs2bPHLFiw4JrLzM1c0T9XPm8OHjxoZs2aZWw2m9m7d29ONStLeH+5jNfKZa7oh379+pmKFSualStXmsTERPPuu+8aT09Ps2DBgpxqVpZltR/Wr19vnnnmGfPJJ5+YUqVKZfh8z+oycwNX9ENezKpc0Q9XzptX8htX9EN+zzVyfWh+pYIUml8tKSnJSDKrV692dyk5rmjRoua9995zdxk54tSpU6Zy5cpm2bJlpnnz5rn+TdcZYmJiTK1atdxdRo4bPny4uf32291dRq7w5JNPmooVK5rU1FR3l+JS7du3N71793aYdu+995pu3bq5qaL0GjZsaAYNGmS/nZKSYsLDw83YsWMznP+BBx4w7du3d5jWqFEj88QTT6SbNzExMc+H5q7snzTr1683ksy+ffucU3QOyYm+SU5ONpLM8uXLnVN0DnJV//z111/mlltuMVu3bjURERG5PtTKiCv6pmfPnqZz584uqTenuaJ/HnzwQfPoo4+6puAclhPvPZ07dzZ33nmncwp2Ad5fLuO1cpkr+iEqKsq89NJLDvPUrVvXjBw50omVO1dW++FK13q+38wy3cUV/XC1vJBVuaof8lp+44p+yO+5Rq6/PAsuS05OliQVK1bMzZXknJSUFM2dO1dnzpxR48aN3V1Ojhg0aJDat2+vVq1aubuUHLV7926Fh4erQoUK6tatW67/yqMzLFy4UPXr11fXrl0VGhqqOnXqaMaMGe4uK8dduHBBH330kXr37i2bzebuclyqSZMmWrFihXbt2iVJ+u233/TDDz+oXbt2bq7ssgsXLmjDhg0O7z8eHh5q1aqV4uLiMnxMXFxcuverNm3aXHP+vCyn+ic5OVk2m03BwcFOqTsn5ETfXLhwQdOnT1dQUJBq1arlvOJzgKv6JzU1Vd27d9ewYcMUFRXlmuJdzJXPnVWrVik0NFRVq1bVgAEDdPToUec3wMVc0T+pqalavHixqlSpojZt2ig0NFSNGjXKk5fAzIn3nsOHD2vx4sXq06eP8wp3It5fLuO1cpmrng9NmjTRwoULdeDAARljtHLlSu3atUutW7d2TUNuUnb6wR3LdLWcqjm3Z1Wu7Ie8lN+4qh/ye65BaJ4HpKamaujQobrttttUo0YNd5fjclu2bFHhwoXl6+ur/v3768svv1T16tXdXZbLzZ07Vxs3btTYsWPdXUqOatSokWbPnq1vv/1WU6dOVWJiopo2bapTp065uzSX+v333zV16lRVrlxZS5cu1YABAzRkyBC9//777i4tR3311Vc6ceKEevXq5e5SXO65557TQw89pMjISHl7e6tOnToaOnSounXr5u7SJElHjhxRSkqKSpYs6TC9ZMmSOnToUIaPOXToUJbmz8tyon/+/fdfDR8+XA8//LACAwOdU3gOcGXfLFq0SIULF5afn58mTJigZcuWKSQkxLkNcDFX9c/48ePl5eWlIUOGOL/oHOKqvmnbtq0++OADrVixQuPHj9fq1avVrl07paSkOL8RLuSK/klKStLp06c1btw4tW3bVt99953uuece3XvvvVq9erVrGuIiOfG+/P7776tIkSK69957nVO0k/H+chmvlctc9XyYNGmSqlevrtKlS8vHx0dt27bV5MmT1axZM+c3wgmy0w/uWKar5UTNeSGrclU/5LX8xlX9kN9zDS93F4AbGzRokLZu3aoffvjB3aXkiKpVqyo+Pl7Jycn6/PPP1bNnT61evTpfB+d//vmnnnzySS1btkx+fn7uLidHXXmWbXR0tBo1aqSIiAh99tlnufasHmdITU1V/fr19dprr0mS6tSpo61bt2ratGnq2bOnm6vLOTNnzlS7du0UHh7u7lJc7rPPPtOcOXP08ccfKyoqSvHx8Ro6dKjCw8ML1DZHxi5evKgHHnhAxhhNnTrV3eXkGi1atFB8fLyOHDmiGTNm6IEHHtDPP/+s0NBQd5fmVhs2bNDEiRO1cePGfP8tnex46KGH7P+vWbOmoqOjVbFiRa1atUotW7Z0Y2Xul5qaKknq3LmznnrqKUlS7dq19eOPP2ratGlq3ry5O8vLdWbNmqVu3boVqP1z3l8u47XyP5MmTdJPP/2khQsXKiIiQmvWrNGgQYMUHh6eJ86whesUtKwqTUHOb66W33MNzjTP5QYPHqxFixZp5cqVKl26tLvLyRE+Pj6qVKmS6tWrp7Fjx6pWrVqaOHGiu8tyqQ0bNigpKUl169aVl5eXvLy8tHr1av33v/+Vl5dXnjsz6mYEBwerSpUq2rNnj7tLcamwsLB0HwRVq1atQFyaJs2+ffu0fPly9e3b192l5Ihhw4bZzzavWbOmunfvrqeeeirXnJ0QEhIiT09PHT582GH64cOHVapUqQwfU6pUqSzNn5e5sn/SAvN9+/Zp2bJleeosc8m1fRMQEKBKlSrp1ltv1cyZM+Xl5aWZM2c6twEu5or+Wbt2rZKSklS2bFn7fsO+ffv09NNPq1y5ci5phyvk1PtOhQoVFBISkuf2LVzRPyEhIfLy8soX+yCufv6sXbtWCQkJuXo/hfeXy3itXOaKfjh37pyef/55vf322+rYsaOio6M1ePBgPfjgg3rzzTdd05CblJ1+cMcyXc3VNeeVrMoV/ZAX8xtXPR/ye65BaJ5LGWM0ePBgffnll/r+++9Vvnx5d5fkNqmpqTp//ry7y3Cpli1basuWLYqPj7f/1a9fX926dVN8fLw8PT3dXWKOOX36tPbu3auwsDB3l+JSt912mxISEhym7dq1SxEREW6qKOfFxsYqNDRU7du3d3cpOeLs2bPy8HAcdj09Pe1nMrmbj4+P6tWrpxUrVtinpaamasWKFdf8XYnGjRs7zC9Jy5Yty5e/Q+Gq/kkLzHfv3q3ly5erePHirmmAC+Xkcycv7hO4on+6d++uzZs3O+w3hIeHa9iwYVq6dKnrGuNkOfXc+euvv3T06NE8t2/hiv7x8fFRgwYN8sU+iKufPzNnzlS9evVy9e8o8P5yGa+Vy1zRDxcvXtTFixdz9T7s1bLTD+5Ypqu5qua8llW5oh/yYn7jqudDvs813Ps7pDd26tQps2nTJrNp0yYjybz99ttm06ZNZt++fe4uzaUGDBhggoKCzKpVq8zBgwftf2fPnnV3aS713HPPmdWrV5vExESzefNm89xzzxmbzWa+++47d5eW4/LCry87w9NPP21WrVplEhMTzbp160yrVq1MSEiISUpKcndpLrV+/Xrj5eVlXn31VbN7924zZ84cU6hQIfPRRx+5u7QckZKSYsqWLWuGDx/u7lJyTM+ePc0tt9xiFi1aZBITE838+fNNSEiIefbZZ91dmt3cuXONr6+vmT17ttm+fbt5/PHHTXBwsDl06JAxxpju3bub5557zj7/unXrjJeXl3nzzTfNjh07TExMjPH29jZbtmyxz3P06FGzadMms3jxYiPJzJ0712zatMkcPHgwx9t3s5zdPxcuXDCdOnUypUuXNvHx8Q7j/fnz593Sxuxydt+cPn3ajBgxwsTFxZk//vjD/Prrr+axxx4zvr6+ZuvWrW5p481wxWvrahEREWbChAmuborTObtvTp06ZZ555hkTFxdnEhMTzfLly03dunVN5cqVzb///uuWNt4MVzx35s+fb7y9vc306dPN7t27zaRJk4ynp6dZu3ZtjrfvZrnqtZWcnGwKFSpkpk6dmqPtyQ7eXy7jtXKZK/qhefPmJioqyqxcudL8/vvvJjY21vj5+ZkpU6bkePsyK6v9cP78eXvuFBYWZp555hmzadMms3v37kwvMzdyRT/kxazKFf1wtbyQ37iiH/J7rpHrQ/OVK1caSen+evbs6e7SXCqjNksysbGx7i7NpXr37m0iIiKMj4+PKVGihGnZsmWBDMyNyRtvus7w4IMPmrCwMOPj42NuueUW8+CDD5o9e/a4u6wc8fXXX5saNWoYX19fExkZaaZPn+7uknLM0qVLjSSTkJDg7lJyzMmTJ82TTz5pypYta/z8/EyFChXMyJEjc104OmnSJFO2bFnj4+NjGjZsaH766Sf7fc2bN083/n722WemSpUqxsfHx0RFRZnFixc73B8bG5vheBYTE5MDrXE+Z/ZPYmLiNcf7lStX5lCLnMeZfXPu3Dlzzz33mPDwcOPj42PCwsJMp06dzPr163OqOU7n7NfW1fJCqHUtzuybs2fPmtatW5sSJUoYb29vExERYfr165erQ40bccVzZ+bMmaZSpUrGz8/P1KpVy3z11VeubobLuKJ/3n33XePv729OnDjh6vKdgveXy3itXObsfjh48KDp1auXCQ8PN35+fqZq1armrbfeMqmpqTnRnGzLSj9ca5+sefPmmV5mbuXsfsirWZUrng9Xyiv5jSv6IT/nGjZjjHHyyesAAAAAAAAAAORJXNMcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0Bxwo3Llyumdd95xdxkAACALGL8BAMgfZs+ereDgYHeXASAXIjQH4FY2m01fffWVu8sAAADXQKAAAEDe4Mzj6z/++EM2m03x8fFOWR6Q1xCaA3C6lJQUpaamursMAADytQsXLri7BAAAkMew/wBkDqE5cAOpqakaO3asypcvL39/f9WqVUuff/65jDFq1aqV2rRpI2OMJOnYsWMqXbq0Ro0aZX/8119/rQYNGsjPz08hISG65557HJZ/9uxZ9e7dW0WKFFHZsmU1ffp0h/uHDx+uKlWqqFChQqpQoYJefPFFXbx40X7/6NGjVbt2bX344YcqV66cgoKC9NBDD+nUqVP2eU6dOqVu3bopICBAYWFhmjBhgu644w4NHTrUPs/58+f1zDPP6JZbblFAQIAaNWqkVatWZaqP0s5AW7hwoapXry5fX1/t379fv/zyi+666y6FhIQoKChIzZs318aNG+2PK1eunCTpnnvukc1ms9+WpAULFqhu3bry8/NThQoVNGbMGF26dClT9QAAkFk3GiOTkpLUsWNH+fv7q3z58pozZ066ZdhsNk2dOlXt2rWTv7+/KlSooM8//9x+f9qZWnPnzlWTJk3k5+enGjVqaPXq1Q7L2bp1q9q1a6fChQurZMmS6t69u44cOWK//4477tDgwYM1dOhQhYSEqE2bNpKkbdu2qUOHDgoMDFSRIkXUtGlT7d271/649957T9WqVZOfn58iIyM1ZcqUdLXNnz9fLVq0UKFChVSrVi3FxcVJklatWqXHHntMycnJstlsstlsGj169E33OwAg/8josmW1a9e2jxc2m03vvfee7rnnHhUqVEiVK1fWwoULHebPzBj4f//3fxo6dKiKFi2qkiVLasaMGTpz5owee+wxFSlSRJUqVdKSJUvsj1m1apVsNpsWL16s6Oho+fn56dZbb9XWrVuv256pU6eqYsWK8vHxUdWqVfXhhx/a7+vdu7c6dOjgMP/FixcVGhqqmTNnZrvWzPbBkCFD9Oyzz6pYsWIqVaqUw5h8rePrtMzgvffeU/ny5eXn5ydJ+vbbb3X77bcrODhYxYsXV4cOHRz2H8qXLy9JqlOnjmw2m+644w77fdfbtwDyDQPgul555RUTGRlpvv32W7N3714TGxtrfH19zapVq8xff/1lihYtat555x1jjDFdu3Y1DRs2NBcvXjTGGLNo0SLj6elpRo0aZbZv327i4+PNa6+9Zl92RESEKVasmJk8ebLZvXu3GTt2rPHw8DA7d+60z/Pyyy+bdevWmcTERLNw4UJTsmRJM378ePv9MTExpnDhwubee+81W7ZsMWvWrDGlSpUyzz//vH2evn37moiICLN8+XKzZcsWc88995giRYqYJ5980mGeJk2amDVr1pg9e/aYN954w/j6+ppdu3bdsI9iY2ONt7e3adKkiVm3bp3ZuXOnOXPmjFmxYoX58MMPzY4dO8z27dtNnz59TMmSJc3JkyeNMcYkJSUZSSY2NtYcPHjQJCUlGWOMWbNmjQkMDDSzZ882e/fuNd99950pV66cGT16dDa2IAAA13ajMbJdu3amVq1aJi4uzvz666+mSZMmxt/f30yYMMG+DEmmePHiZsaMGSYhIcG88MILxtPT02zfvt0YY0xiYqKRZEqXLm0+//xzs337dtO3b19TpEgRc+TIEWOMMcePHzclSpQwI0aMMDt27DAbN240d911l2nRooV9Pc2bNzeFCxc2w4YNMzt37jQ7d+40f/31lylWrJi59957zS+//GISEhLMrFmz7PsSH330kQkLCzNffPGF+f33380XX3xhihUrZmbPnu1QW2RkpFm0aJFJSEgw999/v4mIiDAXL14058+fN++8844JDAw0Bw8eNAcPHjSnTp3KgS0DAMgrIiIiHMZFY4ypVauWiYmJMcYY+xj48ccfm927d5shQ4aYwoULm6NHjxpjMj8GFilSxLz88stm165d5uWXXzaenp6mXbt2Zvr06WbXrl1mwIABpnjx4ubMmTPGGGNWrlxpJJlq1aqZ7777zmzevNl06NDBlCtXzly4cMEYc/lYNigoyL6e+fPnG29vbzN58mSTkJBg3nrrLePp6Wm+//57Y4wx69atM56enubvv/92eExAQIB9fMxOrZntg8DAQDN69Giza9cu8/777xubzWa+++47Y8y1j69jYmJMQECAadu2rdm4caP57bffjDHGfP755+aLL74wu3fvNps2bTIdO3Y0NWvWNCkpKcYYY9avX28kmeXLl5uDBw/at9eN9i2A/ILQHLiOf//91xQqVMj8+OOPDtP79OljHn74YWOMMZ999pnx8/Mzzz33nAkICHAImRs3bmy6det2zeVHRESYRx991H47NTXVhIaGmqlTp17zMW+88YapV6+e/XZMTIwpVKiQPYg2xphhw4aZRo0aGWOMOXnypPH29jbz5s2z33/ixAlTqFAheyCwb98+4+npaQ4cOOCwrpYtW5oRI0Zcs5Y0sbGxRpKJj4+/7nwpKSmmSJEi5uuvv7ZPk2S+/PLLdOu98sMFY4z58MMPTVhY2A1rAQAgs240RiYkJBhJZv369fb7d+zYYSSlC8379+/vsOxGjRqZAQMGGGP+F0yPGzfOfv/FixdN6dKl7R+Ev/zyy6Z169YOy/jzzz+NJJOQkGCMuXywXKdOHYd5RowYYcqXL28/+L9axYoVzccff+ww7eWXXzaNGzd2qO29996z379t2zYjyezYscMYkz5QAADgSpkJzV944QX7fadPnzaSzJIlS4wxmR8Db7/9dvv9ly5dMgEBAaZ79+72aQcPHjSSTFxcnDHmf6H53Llz7fMcPXrU+Pv7m08//dQYk36Ma9KkienXr59DLV27djV33323/Xb16tUdTmTr2LGj6dWrl/12dmrNTh8YY0yDBg3M8OHD7bczOr6OiYkx3t7e9hD9Wv755x8jyWzZssUY8799hE2bNjnMd6N9CyC/8MqhE9qBPGnPnj06e/as7rrrLofpFy5cUJ06dSRJXbt21Zdffqlx48Zp6tSpqly5sn2++Ph49evX77rriI6Otv/fZrOpVKlSSkpKsk/79NNP9d///ld79+7V6dOndenSJQUGBjoso1y5cipSpIj9dlhYmH0Zv//+uy5evKiGDRva7w8KClLVqlXtt7ds2aKUlBRVqVLFYbnnz59X8eLFr1t/Gh8fH4e2SNLhw4f1wgsvaNWqVUpKSlJKSorOnj2r/fv3X3dZv/32m9atW6dXX33VPi0lJUX//vuvzp49q0KFCmWqJgAArudGY+SOHTvk5eWlevXq2e+PjIzM8EcxGzdunO721T+cdeU8Xl5eql+/vnbs2CHp8ti3cuVKFS5cON2y9+7dax+jr6xFuryv0bRpU3l7e6d73JkzZ7R371716dPHYX/k0qVLCgoKcpj3yjE8LCxM0uVL00RGRqZbLgAAWXXlOBMQEKDAwED7MWtmx8Arl+Hp6anixYurZs2a9mklS5aUJIfjaclx/C1WrJiqVq1qH3+vtmPHDj3++OMO02677TZNnDjRfrtv376aPn26nn32WR0+fFhLlizR999/f832ZqbW7PSB5Hjsfz0REREqUaKEw7Tdu3dr1KhR+vnnn3XkyBH775Lt379fNWrUyHA5Wdm3API6QnPgOk6fPi1JWrx4sW655RaH+3x9fSVdvib5hg0b5Onpqd27dzvM4+/vf8N1XH2Qa7PZ7INVXFycunXrpjFjxqhNmzYKCgrS3Llz9dZbb2V6GZlx+vRpeXp62ttxpYwG7Yz4+/vLZrM5TOvZs6eOHj2qiRMnKiIiQr6+vmrcuPENf3jk9OnTGjNmjO69995096Vdfw0AgPzk9OnT6tixo8aPH5/uvrQQW7ocNFzpevsaafsxM2bMUKNGjRzuu3q8v3JfIm0850e9AQCZ4eHhYf+drzRX/g6XdP1j1syOgRktwx3jV48ePfTcc88pLi5OP/74o8qXL6+mTZs6zJPVWm+mDzLT3qv3HySpY8eOioiI0IwZMxQeHq7U1FTVqFHjusfrWdm3API6QnPgOq78UcvmzZtnOM/TTz8tDw8PLVmyRHfffbfat2+vO++8U9LlT4FXrFihxx57LFvr//HHHxUREaGRI0fap+3bty9Ly6hQoYK8vb31yy+/qGzZspKk5ORk7dq1S82aNZN0+Yc9UlJSlJSUlG6wvxnr1q3TlClTdPfdd0uS/vzzT4cfMpEuD/opKSkO0+rWrauEhARVqlTJabUAAHC1G42RkZGRunTpkjZs2KAGDRpIkhISEnTixIl0y/rpp5/Uo0cPh9tp30q7clra2Ju23MGDB0u6PPZ98cUXKleunLy8Mr+LHh0drffff18XL15MdyBdsmRJhYeH6/fff1e3bt0yvcyr+fj4pBurAQBIU6JECR08eNB+++TJk0pMTMz047M7BmbWTz/9ZB/njx8/rl27dqlatWoZzlutWjWtW7dOPXv2tE9bt26dqlevbr9dvHhxdenSRbGxsYqLi8v28f6VnNUHGR1fZ+To0aNKSEjQjBkz7BnADz/84DCPj4+PJDksz1n7FkBeQGgOXEeRIkX0zDPP6KmnnlJqaqpuv/12JScna926dQoMDFRISIhmzZqluLg41a1bV8OGDVPPnj21efNmFS1aVDExMWrZsqUqVqyohx56SJcuXdI333yj4cOHZ2r9lStX1v79+zV37lw1aNBAixcv1pdffpnlNvTs2VPDhg1TsWLFFBoaqpiYGHl4eNg/3a5SpYq6deumHj166K233lKdOnX0zz//aMWKFYqOjlb79u2z3Hdp9X/44YeqX7++Tp48qWHDhqU7I65cuXJasWKFbrvtNvn6+qpo0aIaNWqUOnTooLJly+r++++Xh4eHfvvtN23dulWvvPJKtmoBAOBqNxojq1atqrZt2+qJJ57Q1KlT5eXlpaFDh2Z4dve8efNUv3593X777ZozZ47Wr1+vmTNnOswzefJkVa5cWdWqVdOECRN0/Phx9e7dW5I0aNAgzZgxQw8//LCeffZZFStWTHv27NHcuXP13nvvXfPsrcGDB2vSpEl66KGHNGLECAUFBemnn35Sw4YNVbVqVY0ZM0ZDhgxRUFCQ2rZtq/Pnz+vXX3/V8ePH9Z///CdT/VSuXDmdPn1aK1asUK1atVSoUCEulQYAsLvzzjs1e/ZsdezYUcHBwRo1alSWzjrO7hiYWS+99JKKFy+ukiVLauTIkQoJCVGXLl0ynHfYsGF64IEHVKdOHbVq1Upff/215s+fr+XLlzvM17dvX3Xo0EEpKSkOAXt2OasPMjq+zkjRokVVvHhxTZ8+XWFhYdq/f7+ee+45h3lCQ0Pl7++vb7/9VqVLl5afn5+CgoKcsm8B5AUe7i4AyO1efvllvfjiixo7dqyqVaumtm3bavHixSpXrpz69Omj0aNHq27dupKkMWPGqGTJkurfv78k6Y477tC8efO0cOFC1a5dW3feeafWr1+f6XV36tRJTz31lAYPHqzatWvrxx9/1IsvvpjlNrz99ttq3LixOnTooFatWum2225TtWrVHC51Ehsbqx49eujpp59W1apV1aVLF4cz77Jj5syZOn78uOrWravu3btryJAhCg0NdZjnrbfe0rJly1SmTBn7GXlt2rTRokWL9N1336lBgwa69dZbNWHCBEVERGS7FgAAMnKjMTI2Nlbh4eFq3ry57r33Xj3++OPpxjLp8j7A3LlzFR0drQ8++ECffPKJw1lpkjRu3DiNGzdOtWrV0g8//KCFCxcqJCREkhQeHq5169YpJSVFrVu3Vs2aNTV06FAFBwfLw+Pau+zFixfX999/r9OnT6t58+aqV6+eZsyYYT/rvG/fvnrvvfcUGxurmjVrqnnz5po9e7bKly+f6T5q0qSJ+vfvrwcffFAlSpTQ66+/nunHAgDyvxEjRqh58+bq0KGD2rdvry5duqhixYqZfnx2x8DMGjdunJ588knVq1dPhw4d0tdff20/i/pqXbp00cSJE/Xmm28qKipK7777rmJjY3XHHXc4zNeqVSuFhYWpTZs2Cg8Pv+kandUHGR1fZ8TDw0Nz587Vhg0bVKNGDT311FN64403HObx8vLSf//7X7377rsKDw9X586dJTln3wLIC2zm6gtPAcj3zpw5o1tuuUVvvfWW+vTp4+5yAADINbIzRtpsNn355ZfXPGvtjz/+UPny5bVp0ybVrl3becUCAIBrWrVqlVq0aKHjx49n+CPeN+P06dO65ZZbFBsbm+FvcQHI+7g8C1AAbNq0STt37lTDhg2VnJysl156SZLsnxQDAFBQMUYCAIDMSk1N1ZEjR/TWW28pODhYnTp1cndJAFyE0BwoIN58800lJCTIx8dH9erV09q1a+1fCb+Rdu3aae3atRne9/zzz+v55593ZqkAAOSomxkjAQBAwbF//36VL19epUuX1uzZs13yw6UAcgcuzwLghg4cOKBz585leF+xYsVUrFixHK4IAAAAAAAAcA1CcwAAAAAAAAAALDf/M8QAAAAAAAAAAOQThOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJojlzjjz/+kM1m0+zZs91dioNvv/1WtWvXlp+fn2w2m06cOOHuklzi9OnT6tu3r0qVKiWbzaahQ4e6u6Qss9lsGj16tLvLAADkIPYfsie7Y+aqVatks9n0+eefO62W0aNHy2azOW15AIC8i3EdQG5BaJ4PzZ49WzabzeEvNDRULVq00JIlS3K8nrSDq7Q/b29vVahQQT169NDvv//ulHX8+OOPGj16tNMHrqNHj+qBBx6Qv7+/Jk+erA8//FABAQFOXUdu8dprr2n27NkaMGCAPvzwQ3Xv3t0l6/jqq6+cvty8bsqUKTm2U7h9+3aNHj1af/zxR46sD0Dewf6D82Rl/8FVNQAACjbGdefJyrie9kHwkSNHMry/Ro0auuOOOxym/fPPP3ryyScVGRkpf39/hYaGqmHDhho+fLhOnz6dru+u9wfAebzcXQBc56WXXlL58uVljNHhw4c1e/Zs3X333fr666/VoUOHHK9nyJAhatCggS5evKiNGzdq+vTpWrx4sbZs2aLw8PCbWvaPP/6oMWPGqFevXgoODnZOwZJ++eUXnTp1Si+//LJatWrltOXmRt9//71uvfVWxcTEuGwdr732mu6//3516dLFJcs/d+6cvLzy3tvalClTFBISol69erl8Xdu3b9eYMWN0xx13qFy5ci5fH4C8h/2Hm5eV/QdX1QAAgMS47gyuzAWOHTum+vXr6+TJk+rdu7ciIyN19OhRbd68WVOnTtWAAQNUrVo1ffjhhw6PGzFihAoXLqyRI0c6tR4A/5P30iVkWrt27VS/fn377T59+qhkyZL65JNP3DI4Nm3aVPfff78k6bHHHlOVKlU0ZMgQvf/++xoxYkSO15MZSUlJklQgDmKTkpJUvXp1d5eRZampqbpw4YL8/Pzk5+fn7nIAIM9j/+HmuWr/4coxDwCAzGBcv3muzAVmzpyp/fv3a926dWrSpInDfSdPnpSPj4/8/Pz06KOPOtw3btw4hYSEpJt+pby632CM0b///it/f393l4ICjsuzFCDBwcHy9/dPdybumTNn9PTTT6tMmTLy9fVV1apV9eabb8oYI+ny2buRkZGKjIzUuXPn7I87duyYwsLC1KRJE6WkpGS5njvvvFOSlJiYeN35vv/+ezVt2lQBAQEKDg5W586dtWPHDvv9o0eP1rBhwyRJ5cuXt38t6UaXn5g3b57q1asnf39/+2Bz4MAB+/133HGHevbsKUlq0KCBbDbbdc8ETvsa1q5du/Too48qKChIJUqU0IsvvihjjP7880917txZgYGBKlWqlN566y2Hx1+4cEGjRo1SvXr1FBQUpICAADVt2lQrV650mC/tGm9vvvmmpk+frooVK8rX11cNGjTQL7/84jDvHXfcke6rX5LUq1cv+1nGaV/1SkxM1OLFix36L7M1SZcH5IkTJ6pmzZry8/NTiRIl1LZtW/3666+SLl879cyZM3r//fft60jrzyvryahPr2Sz2TR48GDNmTNHUVFR8vX11bfffmu/78rrs6Y9fs+ePfazDYKCgvTYY4/p7NmzDss9d+6chgwZopCQEBUpUkSdOnXSgQMHMrzm66ZNm9SuXTsFBgaqcOHCatmypX766acb1i7972uSac/PcuXKadu2bVq9erW9X9K2Wdq8a9as0RNPPKHixYsrMDBQPXr00PHjx9P1S0bXpi1Xrpy9n2fPnq2uXbtKklq0aGFf36pVq9I9DgDSsP/gyJn7Dzeq4Xpj3ptvvqkmTZqoePHi8vf3V7169TK8zvj58+f11FNPqUSJEvbx7a+//sqwngMHDqh3794qWbKkfH19FRUVpVmzZmU4b0pKip5//nmVKlVKAQEB6tSpk/7880+HedauXauuXbuqbNmy8vX1VZkyZfTUU085PB+uJTY2VnfeeadCQ0Pl6+ur6tWra+rUqenmK1eunDp06KAffvhBDRs2lJ+fnypUqKAPPvgg3bwnTpzQU089pXLlysnX11elS5dWjx49HL5Cf/78ecXExKhSpUr2mp999lmdP3/+hjUDQF7AuO7I2blAVu3du1eenp669dZb090XGBiYpcD7evsNmRnjs3L8P3fuXNWrV09FihRRYGCgatasqYkTJ9rvz+zxsPS/sXzp0qWqX7++/P399e6776p58+aqVatWhm2tWrWq2rRpk+m+AbKDM83zseTkZB05ckTGGCUlJWnSpEk6ffq0wyeRxhh16tRJK1euVJ8+fVS7dm0tXbpUw4YN04EDBzRhwgT5+/vr/fff12233aaRI0fq7bffliQNGjRIycnJmj17tjw9PbNc3969eyVJxYsXv+Y8y5cvV7t27VShQgWNHj1a586d06RJk3Tbbbdp48aNKleunO69917t2rVLn3zyiSZMmKCQkBBJUokSJa653NmzZ+uxxx5TgwYNNHbsWB0+fFgTJ07UunXrtGnTJgUHB2vkyJGqWrWqpk+fbv9KW8WKFW/YrgcffFDVqlXTuHHjtHjxYr3yyisqVqyY3n33Xd15550aP3685syZo2eeeUYNGjRQs2bNJF3+FPm9997Tww8/rH79+unUqVOaOXOm2rRpo/Xr16t27doO6/n444916tQpPfHEE7LZbHr99dd177336vfff5e3t/cN60yT9lWvp556SqVLl9bTTz9t77+s1NSnTx/Nnj1b7dq1U9++fXXp0iWtXbtWP/30k+rXr68PP/xQffv2VcOGDfX4449LUqb6MyPff/+9PvvsMw0ePFghISE3vMzIAw88oPLly2vs2LHauHGj3nvvPYWGhmr8+PH2eXr16qXPPvtM3bt316233qrVq1erffv26Za1bds2NW3aVIGBgXr22Wfl7e2td999V3fccYdWr16tRo0aZakt77zzjv7v//7P4at1JUuWdJhn8ODBCg4O1ujRo5WQkKCpU6dq37599g88MqtZs2YaMmSI/vvf/+r5559XtWrVJMn+LwBI7D/k5P5DZmq41pg3ceJEderUSd26ddOFCxc0d+5cde3aVYsWLXIYv/r27auPPvpIjzzyiJo0aaLvv/8+w/Ht8OHDuvXWW+0H3CVKlNCSJUvUp08fnTx5Mt0PhL/66quy2WwaPny4kpKS9M4776hVq1aKj4+3nxk2b948nT17VgMGDFDx4sW1fv16TZo0SX/99ZfmzZt3zX6WpKlTpyoqKkqdOnWSl5eXvv76aw0cOFCpqakaNGiQw7x79uzR/fffrz59+qhnz56aNWuWevXqpXr16ikqKkrS5R88b9q0qXbs2KHevXurbt26OnLkiBYuXKi//vpLISEhSk1NVadOnfTDDz/o8ccfV7Vq1bRlyxZNmDBBu3bt4ndZAORJjOvuyQUyKyIiQikpKfrwww/t4fzNyGi/IbNjfGaP/5ctW6aHH35YLVu2tB9T79ixQ+vWrdOTTz6ZrboTEhL08MMP64knnlC/fv1UtWpVFS5cWP369dPWrVtVo0YN+7y//PKLdu3apRdeeOGm+gq4IYN8JzY21khK9+fr62tmz57tMO9XX31lJJlXXnnFYfr9999vbDab2bNnj33aiBEjjIeHh1mzZo2ZN2+ekWTeeeedG9azcuVKI8nMmjXL/PPPP+bvv/82ixcvNuXKlTM2m8388ssvxhhjEhMTjSQTGxtrf2zt2rVNaGioOXr0qH3ab7/9Zjw8PEyPHj3s09544w0jySQmJt6wngsXLpjQ0FBTo0YNc+7cOfv0RYsWGUlm1KhR9mlpfZlW4/XExMQYSebxxx+3T7t06ZIpXbq0sdlsZty4cfbpx48fN/7+/qZnz54O854/f95hmcePHzclS5Y0vXv3tk9L66fixYubY8eO2acvWLDASDJff/21fVrz5s1N8+bN09Xas2dPExER4TAtIiLCtG/f3mFaZmv6/vvvjSQzZMiQdOtKTU21/z8gIMChzderx5j/9emVJBkPDw+zbdu2dPNLMjExMekef2Wtxhhzzz33mOLFi9tvb9iwwUgyQ4cOdZivV69e6ZbZpUsX4+PjY/bu3Wuf9vfff5siRYqYZs2aXbd2Y/73nLryuRoVFZXhdkqbt169eubChQv26a+//rqRZBYsWHDNtqeJiIhw6PO01+7KlSvTzQugYGP/4fpctf9wvRquN+adPXs2XX01atQwd955p31afHy8kWQGDhzoMO8jjzySbtzo06ePCQsLM0eOHHGY96GHHjJBQUH29aVtl1tuucWcPHnSPt9nn31mJJmJEydes0ZjjBk7dqyx2Wxm37599mkZjZkZPbZNmzamQoUKDtMiIiKMJLNmzRr7tKSkJOPr62uefvpp+7RRo0YZSWb+/Pnplpu2r/Lhhx8aDw8Ps3btWof7p02bZiSZdevWpXssAORWjOvX5+pc4J9//snw/quP/Q4dOmRKlChhJJnIyEjTv39/8/HHH5sTJ05cdz0ZHUNea78hs2N8Zo//n3zySRMYGGguXbp0zfqycjycNpZ/++23DvOeOHHC+Pn5meHDhztMHzJkiAkICDCnT5++5voBZ+DyLPnY5MmTtWzZMi1btkwfffSRWrRoob59+2r+/Pn2eb755ht5enpqyJAhDo99+umnZYxx+FXt0aNHKyoqSj179tTAgQPVvHnzdI+7nt69e6tEiRIKDw9X+/bt7ZfquPL6alc6ePCg4uPj1atXLxUrVsw+PTo6WnfddZe++eabTK/7Sr/++quSkpI0cOBAh686tW/fXpGRkVq8eHG2lpumb9++9v97enqqfv36MsaoT58+9unBwcGqWrWqw6+Ee3p6ysfHR9LlS50cO3ZMly5dUv369bVx48Z063nwwQdVtGhR++2mTZtKktN+eTwrNX3xxRey2WwZ/oioK37Bu3nz5lm6/nr//v0dbjdt2lRHjx7VyZMnJcn+lbWBAwc6zPd///d/DrdTUlL03XffqUuXLqpQoYJ9elhYmB555BH98MMP9mU60+OPP+7w7YEBAwbIy8sr268BALge9h8y5ur9h2u51ph35XU+jx8/ruTkZDVt2tRhfE5r69X9ffVZ48YYffHFF+rYsaOMMTpy5Ij9r02bNkpOTk63L9KjRw8VKVLEfvv+++9XWFiYQ/9eWeOZM2d05MgRNWnSRMYYbdq06brtvvKxaWdJNm/eXL///ruSk5Md5q1evbp9P0i6fFbh1ftZX3zxhWrVqqV77rkn3brS9lXmzZunatWqKTIy0qEP0i4dkNHX0wEgt2Ncz5i7xvWrlSxZUr/99pv69++v48ePa9q0aXrkkUcUGhqql19+2X55nMy6er8hK2N8Zo//g4ODdebMGS1btswJPXBZ+fLl011uJSgoSJ07d9Ynn3xi74eUlBR9+umn6tKliwICApy2fiAjXJ4lH2vYsKHDwPPwww+rTp06Gjx4sDp06CAfHx/t27dP4eHhDgc90v8u17Bv3z77NB8fH82aNUsNGjSQn5+fYmNjsxSIjho1Sk2bNpWnp6dCQkJUrVq1dNdRu1LauqtWrZruvmrVqmnp0qU6c+ZMlt8or7fcyMhI/fDDD1la3tXKli3rcDsoKEh+fn72r4ddOf3o0aMO095//3299dZb2rlzpy5evGifXr58+RuuJy1Av/pa1zcrMzXt3btX4eHhDjsxrpRRf1zP9foqMDBQ+/btk4eHR7rlVqpUyeH2P//8o7Nnz17zOZmamqo///zT/lVwZ6lcubLD7cKFCyssLOyG1+cDgOxg/yHry3XG/sO1XGvMW7RokV555RXFx8c7XG/7yr5NG9+u/hr51W34559/dOLECU2fPl3Tp0/PcH1pP4KW5uqxyWazqVKlSg5j0/79+zVq1CgtXLgw3f7J1cH31datW6eYmBjFxcWl+x2S5ORkBQUF2W9fPc5Ll8f6K9e5d+9e3Xfffddd5+7du7Vjx45rfpX/6j4AgLyAcT3ry3XluC6lP7EsLCxMU6dO1ZQpU7R7924tXbpU48eP16hRoxQWFuZwYt6NXL3fkNUxPjPH/wMHDtRnn32mdu3a6ZZbblHr1q31wAMPqG3btpmu80Z1p+nRo4c+/fRTrV27Vs2aNdPy5ct1+PBhde/ePdvrAjKL0LwA8fDwUIsWLTRx4kTt3r07W8He0qVLJUn//vuvdu/enaXwsmbNmmrVqlWW15nXZHQdt2td2+3KT40/+ugj9erVS126dNGwYcMUGhoqT09PjR071n6dt6wu02azZfjJdGZ/oCWrNWXXtXayrlVnVn9FOzN95WxZbZOr5PT6AOQ/7D+4V0Zj3tq1a9WpUyc1a9ZMU6ZMUVhYmLy9vRUbG6uPP/44y+tITU2VJD366KPXvJ5qdHR0lpaZkpKiu+66S8eOHdPw4cMVGRmpgIAAHThwQL169bKvMyN79+5Vy5YtFRkZqbfffltlypSRj4+PvvnmG02YMCHdY501zqempqpmzZr26/RerUyZMllaHgDkRozrrpV21vq1fvT67Nmz1/xxT5vNpipVqqhKlSpq3769KleurDlz5mQpNL96vyErY3xmj/9DQ0MVHx+vpUuXasmSJVqyZIliY2PVo0cPvf/++/a2ZCSrx/ht2rRRyZIl9dFHH6lZs2b66KOPVKpUqXz9HELuQWhewFy6dEnS5R9Dki7/6MTy5ct16tQph0+Vd+7cab8/zebNm/XSSy/pscceU3x8vPr27astW7Y4nOnjTGnrTkhISHffzp07FRISYv80OSufbF+53LSv26ZJSEhwaHNO+vzzz1WhQgXNnz/foT0ZXfIks4oWLZrh5VquPFPAGTVVrFhRS5cu1bFjx657tvm1tlPRokV14sSJbNd5syIiIpSamqrExESHM+f27NnjMF+JEiVUqFChaz4nPTw87AfUaWeznzhxQsHBwfb5MmrTjZ6/u3fvVosWLey3T58+rYMHD+ruu++2T8uoDy9cuKCDBw9maV0AkBH2H1y3/5Cd9+UvvvhCfn5+Wrp0qXx9fe3TY2NjHeZLG9/27t3rcCbd1X1TokQJFSlSRCkpKZk+CN29e7fDbWOM9uzZYz/w3rJli3bt2qX3339fPXr0sM+Xma9yf/311zp//rwWLlzocBb5zVwepWLFitq6desN5/ntt9/UsmVLxksA+RrjuuvG9SuXe/WHrWfPntWff/6p1q1b33A5FSpUUNGiRdMdz2VVVsb4rGQSPj4+6tixozp27KjU1FQNHDhQ7777rl588UVVqlQpS8fD1+Pp6alHHnlEs2fP1vjx4/XVV1+pX79+2frRWSCruKZ5AXLx4kV999138vHxsX/N6u6771ZKSor+3//7fw7zTpgwQTabTe3atbM/tlevXgoPD9fEiRM1e/ZsHT58WE899ZTL6g0LC1Pt2rX1/vvvO4SBW7du1XfffecQGKYNkhkFr1erX7++QkNDNW3aNIevMy9ZskQ7duxQ+/btndaGrEh707/yrKiff/5ZcXFx2V5mxYoVtXPnTv3zzz/2ab/99pvWrVvn1Jruu+8+GWM0ZsyYdMu48rEBAQEZbqOKFSsqOTlZmzdvtk87ePCgvvzyy0zVebPSrp02ZcoUh+mTJk1yuO3p6anWrVtrwYIFDl8/P3z4sD7++GPdfvvtCgwMlCT7V+HXrFljny/ten1Xu1a/pJk+fbrDV+OmTp2qS5cu2V+faeu7cl1pj7v6k/ysvFYAQGL/IY2r9h+y877s6ekpm83m8B7/xx9/6KuvvnKYL207/Pe//3WY/s4776Rb3n333acvvvgiw2D5yv2INB988IFOnTplv/3555/r4MGD9nVmtA9hjNHEiRMz1b6rH5ucnJzuQ4GsuO+++/Tbb79luG+Rtp4HHnhABw4c0IwZM9LNc+7cOZ05cybb6weA3IJx/TJXjestW7aUj4+Ppk6dmu6bUdOnT093HPfzzz9nOL6sX79eR48ezfDyMVmRlTE+s8f/V19m1sPDw/6heVpfZuV4+Ea6d++u48eP64knntDp06f16KOPZnkZQHZwpnk+tmTJEvsnw0lJSfr444+1e/duPffcc/Zgr2PHjmrRooVGjhypP/74Q7Vq1dJ3332nBQsWaOjQofY3urRrZq5YsUJFihRRdHS0Ro0apRdeeEH333+/w0DlTG+88YbatWunxo0bq0+fPjp37pwmTZqkoKAgjR492j5fvXr1JEkjR47UQw89JG9vb3Xs2DHD65p5e3tr/Pjxeuyxx9S8eXM9/PDDOnz4sCZOnKhy5cq5dMC/ng4dOmj+/Pm655571L59eyUmJmratGmqXr26/QyArOrdu7fefvtttWnTRn369FFSUpKmTZumqKioTP1gZWZratGihbp3767//ve/2r17t9q2bavU1FStXbtWLVq00ODBgyVd3k7Lly/X22+/rfDwcJUvX16NGjXSQw89pOHDh+uee+7RkCFDdPbsWU2dOlVVqlTJ8EdQna1evXq677779M477+jo0aO69dZbtXr1au3atUuS4xkLr7zyipYtW6bbb79dAwcOlJeXl959912dP39er7/+un2+1q1bq2zZsurTp4+GDRsmT09PzZo1SyVKlND+/fvTrX/q1Kl65ZVXVKlSJYWGhjqc7XDhwgW1bNlSDzzwgBISEjRlyhTdfvvt6tSpk32evn37qn///rrvvvt011136bffftPSpUvTXUu/du3a8vT01Pjx45WcnCxfX1/deeedCg0NdWqfAsi72H/I2f2HrNSQpn379nr77bfVtm1bPfLII0pKStLkyZNVqVIlhw+ga9eurYcfflhTpkxRcnKymjRpohUrVqT7JpUkjRs3TitXrlSjRo3Ur18/Va9eXceOHdPGjRu1fPlyHTt2zGH+YsWK6fbbb9djjz2mw4cP65133lGlSpXUr18/SZevB1uxYkU988wzOnDggAIDA/XFF19k6rdXWrdubT+DLe0AecaMGQoNDc32GXfDhg3T559/rq5du6p3796qV6+ejh07poULF2ratGmqVauWunfvrs8++0z9+/fXypUrddtttyklJUU7d+7UZ599pqVLl17zh+oAILdiXM/ZcT00NNTeJ82aNVOnTp1UqFAh/fjjj/rkk0/UunVrdezY0T7/hx9+qDlz5uiee+5RvXr15OPjox07dmjWrFny8/PT888/n606rpTZMT6zx/99+/bVsWPHdOedd6p06dLat2+fJk2apNq1a9s/iMnK8fCN1KlTRzVq1LD/YHfdunVvuk+ATDHId2JjY40khz8/Pz9Tu3ZtM3XqVJOamuow/6lTp8xTTz1lwsPDjbe3t6lcubJ544037PNt2LDBeHl5mf/7v/9zeNylS5dMgwYNTHh4uDl+/Pg161m5cqWRZObNm3fduhMTE40kExsb6zB9+fLl5rbbbjP+/v4mMDDQdOzY0Wzfvj3d419++WVzyy23GA8PDyPJJCYmXnd9n376qalTp47x9fU1xYoVM926dTN//fWXwzxpffnLL79cd1nGGBMTE2MkmX/++cdhes+ePU1AQEC6+Zs3b26ioqLst1NTU81rr71mIiIijK+vr6lTp45ZtGiR6dmzp4mIiLDPl9ZPb7zxRrplSjIxMTEO0z766CNToUIF4+PjY2rXrm2WLl2abpnGGBMREWHat2/vMC2zNRlz+fnwxhtvmMjISOPj42NKlChh2rVrZzZs2GCfZ+fOnaZZs2bG39/fSDI9e/a03/fdd9+ZGjVqGB8fH1O1alXz0Ucf2fv06jYOGjQoXdszav+1tknadr3yOXLmzBkzaNAgU6xYMVO4cGHTpUsXk5CQYCSZcePGOTx+48aNpk2bNqZw4cKmUKFCpkWLFubHH39MV8+GDRtMo0aNjI+Pjylbtqx5++23M1z3oUOHTPv27U2RIkWMJNO8eXOHOlevXm0ef/xxU7RoUVO4cGHTrVs3c/ToUYd1paSkmOHDh5uQkBBTqFAh06ZNG7Nnzx4TERHh0M/GGDNjxgxToUIF4+npaSSZlStXZtifAAoW9h/cs/9wvRquN+bNnDnTVK5c2fj6+prIyEgTGxub4bh57tw5M2TIEFO8eHETEBBgOnbsaP78888M9xkOHz5sBg0aZMqUKWO8vb1NqVKlTMuWLc306dPt86Rtl08++cSMGDHChIaGGn9/f9O+fXuzb98+h+Vt377dtGrVyhQuXNiEhISYfv36md9++y3d9sqo7oULF5ro6Gjj5+dnypUrZ8aPH29mzZqVbhtltP9izOX9rLTxNM3Ro0fN4MGDzS233GJ8fHxM6dKlTc+ePc2RI0fs81y4cMGMHz/eREVFGV9fX1O0aFFTr149M2bMGJOcnJzhtgCA3Ihx3X3jujGXj8NvvfVWExAQYB+rx4wZY/7991+H+TZv3myGDRtm6tata4oVK2a8vLxMWFiY6dq1q9m4ceM1lx8VFZVunLvefkNmxvjMHv9//vnnpnXr1iY0NNR+rPvEE0+YgwcPOqwzs8fD1xrLr/T6668bSea111677nyAM9mMceEv4QFAHhYfH686deroo48+Urdu3XJ8/bNnz9Zjjz2mX375hTPbAAAAAAAF0sSJE/XUU0/pjz/+cPi9E8CVuKY5ACjjXzd/55135OHhoWbNmrmhIgAAAAAACjZjjGbOnKnmzZsTmCNHcU1zAJD0+uuva8OGDWrRooW8vLy0ZMkSLVmyRI8//ni6Xz0HAAAAAACuc+bMGS1cuFArV67Uli1btGDBAneXhAKG0BwAJDVp0kTLli3Tyy+/rNOnT6ts2bIaPXq0Ro4c6e7SAAAAAAAoUP755x898sgjCg4O1vPPP69OnTq5uyQUMFzTHAAAAAAAAAAAC9c0BwAAAAAAAADAQmgOAAAAAAAAAIAl29c0T01N1d9//60iRYrIZrM5syYAAAosY4xOnTql8PBweXg477Ntxm0AAJzPVeO2xNgNAIArZHbsznZo/vfff6tMmTLZfTgAALiOP//8U6VLl3ba8hi3AQBwHWeP2xJjNwAArnSjsTvboXmRIkXsKwgMDMzuYgAAwBVOnjypMmXK2MdZZ2HcBgDA+Vw1bkuM3QAAuEJmx+5sh+ZpXw8LDAxkAAcAwMmc/TVsxm0AAFzHFZdPYewGAMB1bjR280OgAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAxcvdBQCucvjwYSUnJ7u7DFxHUFCQSpYs6e4yAABAJrF/5XrsHwFwFt6zCwbGDcA1CM2RLx0+fFiPdu+hixfOu7sUXIe3j68++vADBngAAPIA9q9yBvtHAJyB9+yCg3EDcA1Cc+RLycnJunjhvM5VaK5UvyB3l5PjPM6dkH/iGp0r30yp/sHuLidDHv8mS7+vVnJyMoM7AAB5QH7av8qt+0rsHwFwlvz0np1ZufW93ZUYNwDXITRHvpbqF6TUgBB3l+E2qf7BBbr9AADA+fLT/hX7SgDyu/z0np1ZvLcDcAZ+CBQAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALDkqtD833//1a5du/Tvv/+6uxQAQC7B2ADkHrweAeRlvIfRBwCAvMPdY1auCs3379+vxx9/XPv373d3KQCAXIKxAcg9eD0CyMt4D6MPAAB5h7vHrFwVmgMAAAAAAAAA4E6E5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABg8XJ3AQAA5DUpKSnavHmzjh07pmLFiik6Olqenp7uLivH0Q8AAAAAgPyI0BwAgCxYs2aNpkyZokOHDtmnlSpVSgMHDlSzZs3cWFnOoh8AAAAAAPkVl2cBACCT1qxZo5iYGFWoUEGTJ0/WN998o8mTJ6tChQqKiYnRmjVr3F1ijqAfAAAAAAD5GaE5AACZkJKSoilTpqhx48Z65ZVXFBUVpUKFCikqKkqvvPKKGjdurKlTpyolJcXdpboU/QAAAAAAyO8yfXmW8+fP6/z58/bbJ0+edElBkrRv3z6XLRsFA8+hvINthRvJLc+RzZs369ChQ3rxxRfl4eH4mbOHh4e6deumQYMGafPmzapTp46bqvwfV43bea0f4Bq55XWJnMV2zzn0tWvk9n7lmBvOxDYuWNjeyI/c/bzOdGg+duxYjRkzxpW12L366qs5sh4A7sfrHXnFsWPHJEnly5fP8P606WnzuZurxu281g9wDd67AdfiNVYwccwNILt4TQPOl+nQfMSIEfrPf/5jv33y5EmVKVPGJUWNHDlSERERLlk2CoZ9+/YxaOQRvN5xI7nl9VysWDFJUmJioqKiotLdn5iY6DCfu7lq3M5r/QDX4L27YMot78cFAa8x18jtz2GOueFMuf35DufiNY38yN3vY5kOzX19feXr6+vKWuwiIiJUpUqVHFkXAPfi9Y68Ijo6WqVKldKcOXP0yiuvOFyaJDU1VXPmzFFYWJiio6PdWOX/uGrczmv9ANfgvRtwLV5jBRPH3ACyi9c04Hz8ECgAAJng6empgQMHKi4uTi+88IK2bdums2fPatu2bXrhhRcUFxenAQMGyNPT092luhT9AAAAAADI7zJ9pjkAAAVds2bNNGbMGE2ZMkWDBg2yTw8LC9OYMWPUrFkzN1aXc+gHAAAAAEB+RmgOAEAWNGvWTLfddps2b96sY8eOqVixYoqOji5wZ1bTDwAAAACA/IrQHACALPL09FSdOnXcXYbb0Q8AAAAAgPyIa5oDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgCVXheZly5bV9OnTVbZsWXeXAgDIJRgbgNyD1yOAvIz3MPoAAJB3uHvM8nLLWq/Bz89PVapUcXcZAIBchLEByD14PQLIy3gPow8AAHmHu8esXHWmOQAAAAAAAAAA7kRoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWAjNAQAAAAAAAACwEJoDAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACyE5gAAAAAAAAAAWLzcXQDgSh7/Jru7BLfwOHfC4d/cqKBuGwAA8rr8MIbn1n2l/NC3AHKXgvS+klvf212pIG1fIKcRmiNfCgoKkrePr/T7aneX4lb+iWvcXcJ1efv4KigoyN1lAACATMiP+1e5cV+J/SMAzpAf37MzKze+t7sS4wbgGoTmyJdKliypjz78QMnJfOqamwUFBalkyZLuLgMAAGQC+1c5g/0jAM7Ae3bBwbgBuAahOfKtkiVLMnAAAAA4EftXAJB38J4NANnHD4ECAAAAAAAAAGAhNAcAAAAAAAAAwEJoDgAAAAAAAACAhdAcAAAAAAAAAAALoTkAAAAAAAAAABZCcwAAAAAAAAAALITmAAAAAAAAAABYCM0BAAAAAAAAALAQmgMAAAAAAAAAYCE0BwAAAAAAAADAQmgOAAAAAAAAAICF0BwAAAAAAAAAAAuhOQAAAAAAAAAAFkJzAAAAAAAAAAAshOYAAAAAAAAAAFgIzQEAAAAAAAAAsBCaAwAAAAAAAABgITQHAAAAAAAAAMBCaA4AAAAAAAAAgIXQHAAAAAAAAAAAC6E5AAAAAAAAAAAWr+w+0BgjSTp58qTTigEAoKBLG1fTxllnYdwGAMD5XDVuX7lMxm4AAJwns2N3tkPzU6dOSZLKlCmT3UUAAIBrOHXqlIKCgpy6PIlxGwAAV3D2uJ22TImxGwAAV7jR2G0z2fxIPDU1VX///beKFCkim82W5cefPHlSZcqU0Z9//qnAwMDslAAnYVvkHmyL3INtkXsUtG1hjNGpU6cUHh4uDw/nXUXtZsdtdytoz4O8gu2SO7Fdcie2S+50s9vFVeO25Jqxu6A+Dwtiu2kzbc7PCmK7abPz2pzZsTvbZ5p7eHiodOnS2X24XWBgYIHZ2Lkd2yL3YFvkHmyL3KMgbQtnn6kmOW/cdreC9DzIS9guuRPbJXdiu+RON7NdXDFuS64duwvq87Agtps2FwwFsc1SwWw3bXaOzIzd/BAoAAAAAAAAAAAWQnMAAAAAAAAAACxuC819fX0VExMjX19fd5UAC9si92Bb5B5si9yDbQGJ50FuxXbJndguuRPbJXcqaNuloLU3TUFsN20uGApim6WC2W7anPOy/UOgAAAAAAAAAADkN1yeBQAAAAAAAAAAC6E5AAAAAAAAAAAWQnMAAAAAAAAAACxuC80nT56scuXKyc/PT40aNdL69evdVUq+tWbNGnXs2FHh4eGy2Wz66quvHO43xmjUqFEKCwuTv7+/WrVqpd27dzvMc+zYMXXr1k2BgYEKDg5Wnz59dPr06RxsRd43duxYNWjQQEWKFFFoaKi6dOmihIQEh3n+/fdfDRo0SMWLF1fhwoV133336fDhww7z7N+/X+3bt1ehQoUUGhqqYcOG6dKlSznZlDxv6tSpio6OVmBgoAIDA9W4cWMtWbLEfj/bwX3GjRsnm82moUOH2qexPQqmV199VU2aNFGhQoUUHByc4Tw2my3d39y5cx3mWbVqlerWrStfX19VqlRJs2fPdn3x+VhmtktmXo9sF9crV65cutfHuHHjHObZvHmzmjZtKj8/P5UpU0avv/66m6otWDj+ca/Ro0ene21ERkba78/MfkduldXn1rx58xQZGSk/Pz/VrFlT33zzjf2+ixcvavjw4apZs6YCAgIUHh6uHj166O+//3Z1M7LEmW2WLj8/IiMjFRAQoKJFi6pVq1b6+eefXdmELHN2m6/Uv39/2Ww2vfPOO06u+uY5u929evVK917Qtm1bVzYhy1yxrXfs2KFOnTopKChIAQEBatCggfbv3++qJmSZs9uc0fGCzWbTG2+84cpmZJmz23369GkNHjxYpUuXlr+/v6pXr65p06a5sglZ5uw2Hz58WL169VJ4eLgKFSqktm3bpss2s824wdy5c42Pj4+ZNWuW2bZtm+nXr58JDg42hw8fdkc5+dY333xjRo4caebPn28kmS+//NLh/nHjxpmgoCDz1Vdfmd9++8106tTJlC9f3pw7d84+T9u2bU2tWrXMTz/9ZNauXWsqVapkHn744RxuSd7Wpk0bExsba7Zu3Wri4+PN3XffbcqWLWtOnz5tn6d///6mTJkyZsWKFebXX381t956q2nSpIn9/kuXLpkaNWqYVq1amU2bNplvvvnGhISEmBEjRrijSXnWwoULzeLFi82uXbtMQkKCef755423t7fZunWrMYbt4C7r16835cqVM9HR0ebJJ5+0T2d7FEyjRo0yb7/9tvnPf/5jgoKCMpxHkomNjTUHDx60/105dv3++++mUKFC5j//+Y/Zvn27mTRpkvH09DTffvttDrUi/7nRdsnM65HtkjMiIiLMSy+95PD6uHKfIzk52ZQsWdJ069bNbN261XzyySfG39/fvPvuu26sOv/j+Mf9YmJiTFRUlMNr459//rHff6P9jtwqq8+tdevWGU9PT/P666+b7du3mxdeeMF4e3ubLVu2GGOMOXHihGnVqpX59NNPzc6dO01cXJxp2LChqVevXk4267qc3WZjjJkzZ45ZtmyZ2bt3r9m6davp06ePCQwMNElJSTnVrOtyRZvTzJ8/39SqVcuEh4ebCRMmuLglWeOKdvfs2dO0bdvW4b3g2LFjOdWkG3JFm/fs2WOKFStmhg0bZjZu3Gj27NljFixYkGvGIFe0+crte/DgQTNr1ixjs9nM3r17c6pZN+SKdvfr189UrFjRrFy50iQmJpp3333XeHp6mgULFuRUs67L2W1OTU01t956q2natKlZv3692blzp3n88cfTZW7Z5ZbQvGHDhmbQoEH22ykpKSY8PNyMHTvWHeUUCFeH5qmpqaZUqVLmjTfesE87ceKE8fX1NZ988okxxpjt27cbSeaXX36xz7NkyRJjs9nMgQMHcqz2/CYpKclIMqtXrzbGXO53b29vM2/ePPs8O3bsMJJMXFycMebyByAeHh7m0KFD9nmmTp1qAgMDzfnz53O2AflM0aJFzXvvvcd2cJNTp06ZypUrm2XLlpnmzZvbQ3O2B2JjY68bml/9QfCVnn32WRMVFeUw7cEHHzRt2rRxYoUF07W2S2Zej2yXnBEREXHd0GPKlCmmaNGiDu+Tw4cPN1WrVs2B6goujn/cLyYmxtSqVSvD+zKz35FbZfW59cADD5j27ds7TGvUqJF54oknrrmO9evXG0lm3759zin6JuVEm5OTk40ks3z5cucUfZNc1ea//vrL3HLLLWbr1q03HD/cwRXt7tmzp+ncubNL6nUGV7T5wQcfNI8++qhrCnaCnHhNd+7c2dx5553OKdhJXNHuqKgo89JLLznMU7duXTNy5EgnVp59zm5zQkKCkWQ/ETJtmSVKlDAzZsy46Xpz/PIsFy5c0IYNG9SqVSv7NA8PD7Vq1UpxcXE5XU6BlZiYqEOHDjlsh6CgIDVq1Mi+HeLi4hQcHKz69evb52nVqpU8PDxy3VfV8pLk5GRJUrFixSRJGzZs0MWLFx22RWRkpMqWLeuwLWrWrKmSJUva52nTpo1Onjypbdu25WD1+UdKSormzp2rM2fOqHHjxmwHNxk0aJDat2/v0O8Srwvc2KBBgxQSEqKGDRtq1qxZMsbY74uLi0v3nGrTpg37GS6Umdcj2yXnjBs3TsWLF1edOnX0xhtvOFwmJy4uTs2aNZOPj499Wps2bZSQkKDjx4+7o9x8j+Of3GP37t0KDw9XhQoV1K1bN/ulCTKz35EbZee5lZ334uTkZNlstmtenisn5USbL1y4oOnTpysoKEi1atVyXvHZ5Ko2p6amqnv37ho2bJiioqJcU/xNcOW2XrVqlUJDQ1W1alUNGDBAR48edX4DssEVbU5NTdXixYtVpUoVtWnTRqGhoWrUqFG6y/e6S068pg8fPqzFixerT58+ziv8Jrmq3U2aNNHChQt14MABGWO0cuVK7dq1S61bt3ZNQ7LAFW0+f/68JMnPz89hmb6+vvrhhx9uuuYcD82PHDmilJQUh4MqSSpZsqQOHTqU0+UUWGl9fb3tcOjQIYWGhjrc7+XlpWLFirGtsik1NVVDhw7Vbbfdpho1aki63M8+Pj7pdkKv3hYZbau0+5B5W7ZsUeHCheXr66v+/fvryy+/VPXq1dkObjB37lxt3LhRY8eOTXcf2wPX89JLL+mzzz7TsmXLdN9992ngwIGaNGmS/f5rPTdOnjypc+fO5XS5BUJmXo9sl5wxZMgQzZ07VytXrtQTTzyh1157Tc8++6z9ft47cx7HP7lDo0aNNHv2bH377beaOnWqEhMT1bRpU506dSpT+x25UXaeW9d6D7jW/P/++6+GDx+uhx9+WIGBgc4p/Ca4ss2LFi1S4cKF5efnpwkTJmjZsmUKCQlxbgOywVVtHj9+vLy8vDRkyBDnF+0Ermp327Zt9cEHH2jFihUaP368Vq9erXbt2iklJcX5jcgiV7Q5KSlJp0+f1rhx49S2bVt99913uueee3Tvvfdq9erVrmlIFuTE+9j777+vIkWK6N5773VO0U7gqnZPmjRJ1atXV+nSpeXj46O2bdtq8uTJatasmfMbkUWuaHPaB9wjRozQ8ePHdeHCBY0fP15//fWXDh48eNM1e930EgBk2qBBg7R161anfOKF7Klatari4+OVnJyszz//XD179swVOwsFzZ9//qknn3xSy5Ytc/hUGPnTc889p/Hjx193nh07djj8INv1vPjii/b/16lTR2fOnNEbb7yRaw/6citnbxe4Tla21X/+8x/7tOjoaPn4+OiJJ57Q2LFj5evr6+pSgVyrXbt29v9HR0erUaNGioiI0GeffSZ/f383VpZ7Xbx4UQ888ICMMZo6daq7y3G5Fi1aKD4+XkeOHNGMGTP0wAMP6Oeff053Ill+sGHDBk2cOFEbN26UzWZzdzk56qGHHrL/v2bNmoqOjlbFihW1atUqtWzZ0o2VuUZqaqokqXPnznrqqackSbVr19aPP/6oadOmqXnz5u4sL0fMmjVL3bp1KxDHnZMmTdJPP/2khQsXKiIiQmvWrNGgQYMUHh6e7ozt/MDb21vz589Xnz59VKxYMXl6eqpVq1Zq166dwzeRsyvHQ/OQkBB5enqm+yXyw4cPq1SpUjldToGV1teHDx9WWFiYffrhw4dVu3Zt+zxJSUkOj7t06ZKOHTvGtsqGwYMHa9GiRVqzZo1Kly5tn16qVClduHBBJ06ccDi75crXRKlSpdL9onDaa4htkTU+Pj6qVKmSJKlevXr65ZdfNHHiRD344INshxy0YcMGJSUlqW7duvZpKSkpWrNmjf7f//t/Wrp0KdsjH3n66afVq1ev685ToUKFbC+/UaNGevnll3X+/Hn5+vqqVKlSGe5nBAYGEoxcwZnbJTOvR7ZL9t3MtmrUqJEuXbqkP/74Q1WrVr3mdpB473QVjn9yp+DgYFWpUkV79uzRXXfddcP9jtwoO8+ta70HXD1/WmC+b98+ff/997niLHPJtW0OCAhQpUqVVKlSJd16662qXLmyZs6cqREjRji3EVnkijavXbtWSUlJKlu2rP3+lJQUPf3003rnnXf0xx9/OLcR2eDKbX2lChUqKCQkRHv27HF7aO6KNoeEhMjLy0vVq1d3mKdatWq54mQ+V2/ntWvXKiEhQZ9++qnzinYCV7T73Llzev755/Xll1+qffv2ki5/SBwfH68333zT7aG5q7Z1vXr17CdGXrhwQSVKlFCjRo0cLjWdXTl+eRYfHx/Vq1dPK1assE9LTU3VihUr1Lhx45wup8AqX768SpUq5bAdTp48qZ9//tm+HRo3bqwTJ05ow4YN9nm+//57paamqlGjRjlec15ljNHgwYP15Zdf6vvvv1f58uUd7q9Xr568vb0dtkVCQoL279/vsC22bNni8CHGsmXLFBgYmG7wQ9akpqbq/PnzbIcc1rJlS23ZskXx8fH2v/r166tbt272/7M98o8SJUooMjLyun9XXl85q+Lj41W0aFH7WbSNGzd2eO5Il58b7Gc4cuZ2yczrke2SfTezreLj4+Xh4WE/U7Jx48Zas2aNLl68aJ9n2bJlqlq1qooWLZoj7SloOP7JnU6fPq29e/cqLCwsU/uBuVF2nluZeS9OC8x3796t5cuXq3jx4q5pQDa4qs0ZSTtOcDdXtLl79+7avHmzw754eHi4hg0bpqVLl7quMVmQU9v6r7/+0tGjRx1OJnQXV7TZx8dHDRo0UEJCgsM8u3btUkREhJNbkHWu3s4zZ85UvXr1csXvE1zJFe2+ePGiLl68KA8Px6jX09PT/o0Dd3L1tg4KClKJEiW0e/du/frrr+rcufPNF33TPyWaDXPnzjW+vr5m9uzZZvv27ebxxx83wcHB5tChQ+4oJ986deqU2bRpk9m0aZORZN5++22zadMm+6+ejxs3zgQHB5sFCxaYzZs3m86dO5vy5cubc+fO2ZfRtm1bU6dOHfPzzz+bH374wVSuXNk8/PDD7mpSnjRgwAATFBRkVq1aZQ4ePGj/O3v2rH2e/v37m7Jly5rvv//e/Prrr6Zx48amcePG9vsvXbpkatSoYVq3bm3i4+PNt99+a0qUKGFGjBjhjiblWc8995xZvXq1SUxMNJs3bzbPPfecsdls5rvvvjPGsB3crXnz5ubJJ5+032Z7FEz79u0zmzZtMmPGjDGFCxe2j2OnTp0yxhizcOFCM2PGDLNlyxaze/duM2XKFFOoUCEzatQo+zJ+//13U6hQITNs2DCzY8cOM3nyZOPp6Wm+/fZbdzUrz7vRdsnM65Ht4no//vijmTBhgomPjzd79+41H330kSlRooTp0aOHfZ4TJ06YkiVLmu7du5utW7eauXPnmkKFCpl3333XjZXnfxz/uN/TTz9tVq1aZRITE826detMq1atTEhIiElKSjLG3Hi/I7e60XOre/fu5rnnnrPPv27dOuPl5WXefPNNs2PHDhMTE2O8vb3Nli1bjDHGXLhwwXTq1MmULl3axMfHOxy/nD9/3i1tvJqz23z69GkzYsQIExcXZ/744w/z66+/mscee8z4+vqarVu3uqWNV3N2mzMSERFhJkyY4OqmZImz233q1CnzzDPPmLi4OJOYmGiWL19u6tataypXrvz/27v3uJyy/Q/gn0e356mncgsVPblUU00XxZgYU8rI5NDlIHQo5DaDY07N6aDkMuaYoaFBxhgnjnNc4qSD5DK9QkKRhJHQlMucx2UaxoRcav3+UPs3W1FMZPi8X69eL3vvtdde373VWnvttdcW5eXljRLjo57HtU5OThZ6enri66+/FmfPnhWLFy8WOjo6IjMz84XHV5vn9f/7559/FoaGhmLZsmUvNJ76eh5xe3p6CkdHR5GRkSG+//57kZiYKJRKpUhISHjh8dXmecSclJQkMjIyRFFRkUhJSREajUYEBQU1SHkbpdNcCCEWL14srKyshL6+vnjrrbfEoUOHGqsor6yMjAwBoMZPaGioEEKIyspKERMTI1q3bi0MDAyEj4+PKCwslOVRWloqhg4dKtRqtTAxMREjR46UbpCpfmq7BgBEYmKilObOnTvigw8+EM2aNROGhoYiMDBQaLVaWT4lJSXi/fffFyqVSrRs2VJERESI+/fvv+Boft9GjRolNBqN0NfXF2ZmZsLHx0fqMBeC16GxPdppzuvxegoNDa31b2ZGRoYQQoi0tDTh6uoq1Gq1MDIyEi4uLuKrr74SFRUVsnwyMjKEq6ur0NfXFx06dJD9zaWnV9d1EaJ+v4+8Ls9Xbm6u6NatmzA1NRVKpVLY29uLTz/9tEZHQH5+vnjnnXeEgYGBsLS0FPPmzWukEr9eeP/TuIKDg4W5ubnQ19cXlpaWIjg4WJw7d07aXp92x8vqSf+3PD09pfu/aklJScLW1lbo6+sLR0dHkZqaKm0rLi5+7P3Lr//mN7aGjPnOnTsiMDBQWFhYCH19fWFubi4GDBggcnJyXlQ49dKQMdfmZew0F6Jh4759+7bo06ePMDMzE3p6ekKj0YgxY8a8dA8wn8e1XrlypejUqZNQKpXCxcVFpKSkPO8wnsrziHn58uVCpVKJGzduPO/iP7OGjlur1YqwsDBhYWEhlEqlsLOzE3FxcaKysvJFhFMvDR1zfHy8aNu2rdDT0xNWVlYiOjq6wR7yKoRogJnRiYiIiIiIiIiIiIheAS98TnMiIiIiIiIiIiIiopcVO82JiIiIiIiIiIiIiKqw05yIiIiIiIiIiIiIqAo7zYmIiIiIiIiIiIiIqrDTnIiIiIiIiIiIiIioCjvNiYiIiIiIiIiIiIiqsNOciIiIiIiIiIiIiKgKO82JiIiIiIiIiIiIiKqw05zoOTt9+jTefvttKJVKuLq6NnZxamVtbY1FixY1djGIiIh+t562Lp05c2aDtAsUCgVSUlJ+cz5ERERERPT/2GlO9JzFxsbCyMgIhYWFSE9Pb5A8G7qT+/Dhwxg7dmyD5ddQSkpKoFAocOzYseeSPzsaiIheH15eXpgyZUpjF4OIiIh+o8fV6atWrULTpk0BALdv38bUqVPRsWNHKJVKmJmZwdPTE//973+l+8wn/axateqFxkRELx/dxi4A0auuqKgI/fr1g0ajaeyi1HDv3j3o6+vDzMyssYtCRETUqIQQqKiogK4um8dERES/d+PHj0d2djYWL14MBwcHlJaW4sCBAygtLUW7du2g1WqltAsWLMCOHTvw7bffSutMTU2lf1dUVEChUKBJk5dv3Gn1PT0RNbyX7zee6Bl4eXlh0qRJmDJlCpo1a4bWrVtjxYoVuHXrFkaOHAljY2N06tQJaWlpAB5WeqNHj0b79u2hUqlgZ2eH+Ph4WZ5hYWEICAjAggULYG5ujhYtWuDDDz/E/fv3pTS1jVRu2rSp9FRaoVAgNzcXs2fPhkKhwMyZMwEAUVFRsLW1haGhITp06ICYmBhZvgCwdetWdO3aFUqlEi1btkRgYKAU6/nz5/HRRx9JT8GB2l/zXrRoEaytrWvENHfuXFhYWMDOzg5AzZHrCoUC33zzDQIDA2FoaAgbGxts2bJFlveWLVtgY2MDpVKJXr16YfXq1VAoFLhx44aU5j//+Q8cHR1hYGAAa2trxMXFyfKo6/y1b98eANC5c2coFAp4eXnJ4pg1axbMzMxgYmKC8ePH4969e1I+tY3Gd3V1la5B9XkJDAyEQqGQnSciInq1hIWFYe/evYiPj5eNIFMoFEhLS4O7uzsMDAywf/9+FBUVwd/fH61bt4ZarUbXrl1lN9EAcPXqVfTv3x8qlQrt27fHv//97xrHvHHjBsLDw6V6ytvbG/n5+TXSLV++HO3atYOhoSEGDx6Mn3/+Wdp2+PBhvPfee2jZsiVMTU3h6emJo0ePPjHWutoY1e2FNWvWwNraGqamphgyZAh++eUXKU1lZSU+//xzdOrUCQYGBrCyssLcuXOl7RcvXsTgwYPRtGlTNG/eHP7+/igpKanzOhAREb0oW7ZswbRp0+Dn5wdra2u4u7tj0qRJGDVqFHR0dNCmTRvpR61WQ1dXV1resWMHzM3NsWXLFjg4OMDAwAAXLlzA3bt3ERkZCUtLSxgZGaFbt27Ys2ePdMzS0lIMHToUlpaWMDQ0hJOTE9atWycr16ZNm+Dk5ASVSoUWLVqgd+/euHXrFoDaR9AHBAQgLCxMWra2tsacOXMwYsQImJiYYOzYsfD29sbEiRNl+127dg36+voN9rY70euIneb0yli9ejVatmyJnJwcTJo0CRMmTMCgQYPQvXt3HD16FH369MHw4cNx+/ZtVFZWom3btti4cSNOnTqFGTNmYNq0aUhKSpLlmZGRgaKiImRkZGD16tVYtWrVU72mpdVq4ejoiIiICGi1WkRGRgIAjI2NsWrVKpw6dQrx8fFYsWIFFi5cKO2XmpqKwMBA+Pn5IS8vD+np6XjrrbcAAMnJyWjbti1mz54NrVYre0JeH+np6SgsLMTu3buxbdu2x6abNWsWBg8ejOPHj8PPzw8hISH46aefAADFxcUYOHAgAgICkJ+fj3HjxmH69Omy/XNzczF48GAMGTIEJ06cwMyZMxETE/NU5y8nJwcA8O2330Kr1SI5OVkWR0FBAfbs2YN169YhOTkZs2bNqnfehw8fBgAkJiZCq9VKy0RE9OqJj4+Hh4cHxowZI9Wd7dq1AwD87W9/w7x581BQUABnZ2eUlZXBz88P6enpyMvLQ9++fdG/f39cuHBByi8sLAwXL15ERkYGNm3ahISEBFy9elV2zEGDBuHq1atIS0tDbm4u3Nzc4OPjI9WlAHDu3DkkJSVh69at2LFjB/Ly8vDBBx9I23/55ReEhoZi//79OHToEGxsbODn5yfr4H5UXW0M4OFbcCkpKdi2bRu2bduGvXv3Yt68edL2qVOnYt68eYiJicGpU6ewdu1atG7dGgBw//59+Pr6wtjYGJmZmcjKyoJarUbfvn1lD6+JiIgaU5s2bbB9+/Yn1plPcvv2bXz22Wf45ptv8N1336FVq1aYOHEiDh48iPXr1+P48eMYNGgQ+vbti7NnzwIAysvL4e7ujtTUVJw8eRJjx47F8OHDpftarVaLoUOHYtSoUdK9bFBQEIQQT1W2BQsWwMXFBXl5eYiJiUF4eDjWrl2Lu3fvSmn+9a9/wdLSEt7e3s8UPxEBEESvAE9PT/HOO+9Iyw8ePBBGRkZi+PDh0jqtVisAiIMHD9aax4cffij++Mc/SsuhoaFCo9GIBw8eSOsGDRokgoODpWUAYvPmzbJ8TE1NRWJiorTs4uIiYmNjn1j++fPnC3d3d2nZw8NDhISEPDa9RqMRCxculK2LjY0VLi4usnULFy4UGo1GFlPr1q3F3bt3n5gfABEdHS0tl5WVCQAiLS1NCCFEVFSUePPNN2V5TJ8+XQAQ169fF0IIMWzYMPHee+/J0nz88cfCwcFBdpwnnb/i4mIBQOTl5cnShIaGiubNm4tbt25J65YtWybUarWoqKioNSYhal6L2o5PRESvJk9PT/HnP/9ZWs7IyBAAREpKSp37Ojo6isWLFwshhCgsLBQARE5OjrS9oKBAAJDqnczMTGFiYiLKy8tl+XTs2FEsX75cCPGw3tbR0RGXLl2Stqelp1dkswAADCJJREFUpYkmTZoIrVZbazkqKiqEsbGx2Lp1q7Surrrs0TZGbGysMDQ0FDdv3pTWffzxx6Jbt25CCCFu3rwpDAwMxIoVK2rNb82aNcLOzk5UVlZK6+7evStUKpXYuXPnY8tBRETUUB6t06slJiYKU1NTIYQQe/fuFW3bthV6enqiS5cuYsqUKWL//v215vfovXRiYqIAII4dOyatO3/+vNDR0RE//PCDbF8fHx8xderUx5a1X79+IiIiQgghRG5urgAgSkpK6h2Xv7+/CA0NlZY1Go0ICAiQpblz545o1qyZ2LBhg7TO2dlZzJw587HlIqK6caQ5vTKcnZ2lf+vo6KBFixZwcnKS1lWPkKoeCbZ06VK4u7vDzMwMarUaX3/9tWwUGQA4OjpCR0dHWjY3N68xkuxZbNiwAT169JBeBYuOjpYd+9ixY/Dx8fnNx6mNk5NTveY8+/X5NDIygomJiRR7YWEhunbtKktfPRK+WkFBAXr06CFb16NHD5w9exYVFRXPWnyJi4sLDA0NpWUPDw+UlZXh4sWLvzlvIiJ6fXTp0kW2XFZWhsjISNjb26Np06ZQq9UoKCiQ6umCggLo6urC3d1d2ueNN96QPjwGAPn5+SgrK0OLFi2gVquln+LiYhQVFUnprKysYGlpKS17eHigsrIShYWFAIArV65gzJgxsLGxgampKUxMTFBWVlajvfJrdbUxgIevdhsbG0vLv27fFBQU4O7du49th+Tn5+PcuXMwNjaW4mrevDnKy8tlsRERETWmd999F99//z3S09MxcOBAfPfdd+jZsyfmzJlTr/319fVl98QnTpxARUUFbG1tZXX73r17pfqvoqICc+bMgZOTE5o3bw61Wo2dO3dK9bCLiwt8fHzg5OSEQYMGYcWKFbh+/fpTx/Zo20WpVGL48OH4xz/+AQA4evQoTp48KZvWhYieHr90RK8MPT092bJCoZCtq577u7KyEuvXr0dkZCTi4uLg4eEBY2NjzJ8/H9nZ2XXmWVlZKVsWj7xK9ejc5I86ePAgQkJCMGvWLPj6+sLU1BTr16+XzfetUqnqEbFckyZN6lUWIyOjeuVXV+wN4VnOX33V93wQEdHr7dF6MTIyErt378aCBQvQqVMnqFQqDBw48KmmHikrK4O5ublsntNqv+5cr0toaChKS0sRHx8PjUYDAwMDeHh4PLYs9WljAE+u4+tqg5SVlcHd3b3Wedz5YXEiInoRTExMZN8AqXbjxg3ZBzz19PTQs2dP9OzZE1FRUfjkk08we/ZsREVF1TmQTKVSSX0IwMP6T0dHB7m5ubKBdQCgVqsBAPPnz0d8fDwWLVoEJycnGBkZYcqUKVK9raOjg927d+PAgQPYtWsXFi9ejOnTpyM7Oxvt27f/Tff04eHhcHV1xaVLl5CYmAhvb29oNJonxkhET8ZOc3otZWVloXv37rJ5Q59ldJSZmZlsTvGzZ8/i9u3bT9znwIED0Gg0sjnAz58/L0vj7OyM9PR0jBw5stY89PX1a4zWNjMzw+XLlyGEkCr3Y8eOPU049WZnZ4ft27fL1j06J7i9vT2ysrJk67KysmBrays1Muo6f9UNmdpGpufn5+POnTvSzf2hQ4egVqulOWofzfvmzZsoLi6W5aGnp9cgo96JiOjlV1vdWZusrCyEhYVJH+AuKyuTfeTyjTfewIMHD5Cbmyu9dVVYWCj7ELabmxsuX74MXV3dJ35o+sKFC/jf//4HCwsLAA/rsiZNmkgf6s7KykJCQgL8/PwAPPwA548//vjY/OrTxqiLjY0NVCoV0tPTER4eXmO7m5sbNmzYgFatWsHExOSp8iYiImoIdnZ22LVrV431R48eha2t7WP3c3BwwIMHD1BeXl6vt69/rXPnzqioqMDVq1fRs2fPWtNkZWXB398ff/rTnwA8HLB35swZODg4SGkUCgV69OiBHj16YMaMGdBoNNi8eTP+8pe/1LiHraiowMmTJ9GrV686y+fk5IQuXbpgxYoVWLt2LZYsWfJU8RFRTZyehV5LNjY2OHLkCHbu3IkzZ84gJibmmT4E6e3tjSVLliAvLw9HjhzB+PHja4zequ3YFy5cwPr161FUVIQvv/wSmzdvlqWJjY3FunXrEBsbi4KCApw4cQKfffaZtN3a2hr79u3DDz/8IN08e3l54dq1a/j8889RVFSEpUuXIi0t7aljqo9x48bh9OnTiIqKwpkzZ5CUlCR94LO6wz4iIgLp6emYM2cOzpw5g9WrV2PJkiXSx1CBus9fq1atoFKpsGPHDly5ckU2muDevXsYPXo0Tp06he3btyM2NhYTJ05EkyZNpLzXrFmDzMxMnDhxAqGhoTVGBFhbWyM9PR2XL19+ptfiiIjo98Pa2hrZ2dkoKSnBjz/++Ni3p2xsbJCcnIxjx44hPz8fw4YNk6W1s7ND3759MW7cOGRnZyM3Nxfh4eGyEdq9e/eGh4cHAgICsGvXLpSUlODAgQOYPn06jhw5IqVTKpUIDQ1Ffn4+MjMzMXnyZAwePBht2rSRyrJmzRoUFBQgOzsbISEhTxwJXp82Rl2USiWioqLw17/+Ff/85z9RVFSEQ4cOYeXKlQCAkJAQtGzZEv7+/sjMzERxcTH27NmDyZMn49KlS091LCIiomcxYcIEnDlzBpMnT8bx48dRWFiIL774AuvWrUNERASAh/fHy5cvR25uLkpKSrB9+3ZMmzYNvXr1eqaHvra2tggJCcGIESOQnJyM4uJi5OTk4O9//ztSU1MBPKyHq0eSFxQUYNy4cbhy5YqUR3Z2Nj799FMcOXIEFy5cQHJyMq5duwZ7e3sAD+9hU1NTkZqaitOnT2PChAmyh/J1CQ8Px7x58yCEkB7+E9GzY6c5vZbGjRuHoKAgBAcHo1u3bigtLZWNOq+vuLg4tGvXDj179sSwYcMQGRkpm2e7NgMGDMBHH32EiRMnwtXVFQcOHEBMTIwsjZeXFzZu3IgtW7bA1dUV3t7e0he3AWD27NkoKSlBx44dpVeh7e3tkZCQgKVLl8LFxQU5OTmyDuqG1L59e2zatAnJyclwdnbGsmXLpFFtBgYGAB6OREtKSsL69evx5ptvYsaMGZg9e7ZsXrW6zp+uri6+/PJLLF++HBYWFvD395e2+fj4wMbGBu+++y6Cg4MxYMAAzJw5U9o+depUeHp64g9/+AP69euHgIAAdOzYURZHXFwcdu/ejXbt2qFz587P4UwREdHLIjIyEjo6OnBwcICZmdlj5wX/4osv0KxZM3Tv3h39+/eHr68v3NzcZGkSExNhYWEBT09PBAUFYezYsWjVqpW0XaFQYPv27Xj33XcxcuRI2NraYsiQITh//rz0jRUA6NSpE4KCguDn54c+ffrA2dkZCQkJ0vaVK1fi+vXrcHNzw/DhwzF58mTZcR5VnzZGfcTExCAiIgIzZsyAvb09goODpTnPDQ0NsW/fPlhZWSEoKAj29vYYPXo0ysvLOfKciIheiA4dOmDfvn04ffo0evfujW7duiEpKQkbN25E3759AQC+vr5YvXo1+vTpA3t7e0yaNAm+vr5ISkp65uMmJiZixIgRiIiIgJ2dHQICAnD48GFYWVkBAKKjo+Hm5gZfX194eXmhTZs2CAgIkPY3MTHBvn374OfnB1tbW0RHRyMuLg7vv/8+AGDUqFEIDQ3FiBEj4OnpiQ4dOtRrlHm1oUOHQldXF0OHDoVSqXzmOInoIYV4dMIkIqJnMHfuXHz11Vcv5EOcYWFhuHHjBlJSUp77sYiIiIiIiIhedtUD6w4fPlzjgT8RPT3OaU5EzyQhIQFdu3ZFixYtkJWVhfnz52PixImNXSwiIiIiIiKi18b9+/dRWlqK6OhovP322+wwJ2og7DQnomdy9uxZfPLJJ/jpp59gZWWFiIgITJ06tbGLRURERERERPTayMrKQq9evWBra4tNmzY1dnGIXhmcnoWIiIiIiIiIiIiIqAo/BEpEREREREREREREVIWd5kREREREREREREREVdhpTkRERERERERERERUhZ3mRERERERERERERERV2GlORERERERERERERFSFneZERERERERERERERFXYaU5EREREREREREREVIWd5kREREREREREREREVdhpTkRERERERERERERU5f8ARiFkHnRYU00AAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 9 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 0 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Выбираем столбцы для очистки\n",
|
||
"columns_to_clean = ['index price', 'log_indexprice',\n",
|
||
" 'inflationrate', 'exchange_rate', 'gdppercent', 'unemploymentrate', 'manufacturingoutput',\n",
|
||
" 'tradebalance', 'USTreasury']\n",
|
||
"\n",
|
||
"# Удаляем выбросы\n",
|
||
"df_countries_clean = remove_outliers(df_countries, columns_to_clean)\n",
|
||
"\n",
|
||
"# Выводим количество удаленных строк\n",
|
||
"print(f\"Количество удаленных строк: {len(df_countries) - len(df_countries_clean)}\")\n",
|
||
"\n",
|
||
"# Создаем диаграммы размаха для очищенных данных\n",
|
||
"plt.figure(figsize=(15, 6))\n",
|
||
"\n",
|
||
"# Создаем диаграммы размахов\n",
|
||
"plt.figure(figsize=(15, 10))\n",
|
||
"for i, col in enumerate(columns_to_clean, 1):\n",
|
||
" plt.subplot(3, 3, i)\n",
|
||
" sns.boxplot(x=df_countries_clean[col])\n",
|
||
" plt.title(f'Box Plot of {col}')\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()\n",
|
||
"\n",
|
||
"df_countries = df_countries_clean"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Разбиение набора данных на обучающую, контрольную и тестовую выборки"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 214,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Размер обучающей выборки: 49\n",
|
||
"Размер контрольной выборки: 17\n",
|
||
"Размер тестовой выборки: 17\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train_df, test_df = train_test_split(df_countries, test_size=0.2, random_state=42)\n",
|
||
"\n",
|
||
"train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n",
|
||
"\n",
|
||
"print(\"Размер обучающей выборки:\", len(train_df))\n",
|
||
"print(\"Размер контрольной выборки:\", len(val_df))\n",
|
||
"print(\"Размер тестовой выборки:\", len(test_df))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 215,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Распределение \"Уровень инфляции\" в обучающей выборке:\n",
|
||
"inflationrate\n",
|
||
"0.02 25\n",
|
||
"0.03 11\n",
|
||
"0.01 9\n",
|
||
"0.04 4\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Уровень инфляции\" в контрольной выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 6\n",
|
||
"0.01 6\n",
|
||
"0.02 5\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Уровень инфляции\" в тестовой выборке:\n",
|
||
"inflationrate\n",
|
||
"0.02 6\n",
|
||
"0.03 6\n",
|
||
"0.01 4\n",
|
||
"0.04 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def check_balance(df, name):\n",
|
||
" counts = df['inflationrate'].value_counts()\n",
|
||
" print(f\"Распределение \\\"Уровень инфляции\\\" в {name}:\")\n",
|
||
" print(counts)\n",
|
||
" print()\n",
|
||
"\n",
|
||
"check_balance(train_df, \"обучающей выборке\")\n",
|
||
"check_balance(val_df, \"контрольной выборке\")\n",
|
||
"check_balance(test_df, \"тестовой выборке\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Оверсемплинг и андерсемплинг"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 216,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Оверсэмплинг:\n",
|
||
"Распределение \"Уровень инфляции\" в обучающей выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 26\n",
|
||
"0.02 25\n",
|
||
"0.01 9\n",
|
||
"0.04 8\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Уровень инфляции\" в контрольной выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 11\n",
|
||
"0.01 6\n",
|
||
"0.02 5\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Уровень инфляции\" в тестовой выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 8\n",
|
||
"0.02 6\n",
|
||
"0.01 4\n",
|
||
"0.04 2\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Андерсэмплинг:\n",
|
||
"Распределение \"Уровень инфляции\" в обучающей выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 11\n",
|
||
"0.02 10\n",
|
||
"0.01 5\n",
|
||
"0.04 4\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Уровень инфляции\" в контрольной выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 6\n",
|
||
"0.01 4\n",
|
||
"0.02 2\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n",
|
||
"Распределение \"Уровень инфляции\" в тестовой выборке:\n",
|
||
"inflationrate\n",
|
||
"0.03 6\n",
|
||
"0.02 5\n",
|
||
"0.01 2\n",
|
||
"0.04 1\n",
|
||
"Name: count, dtype: int64\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def binning(target, bins):\n",
|
||
" return pd.qcut(target, q=bins, labels=False)\n",
|
||
"\n",
|
||
"train_df['inflationrate_binned'] = binning(train_df['inflationrate'], bins=2)\n",
|
||
"val_df['inflationrate_binned'] = binning(val_df['inflationrate'], bins=2)\n",
|
||
"test_df['inflationrate_binned'] = binning(test_df['inflationrate'], bins=2)\n",
|
||
"\n",
|
||
"train_df_oversampled = oversample(train_df, 'inflationrate_binned')\n",
|
||
"val_df_oversampled = oversample(val_df, 'inflationrate_binned')\n",
|
||
"test_df_oversampled = oversample(test_df, 'inflationrate_binned')\n",
|
||
"\n",
|
||
"train_df_undersampled = undersample(train_df, 'inflationrate_binned')\n",
|
||
"val_df_undersampled = undersample(val_df, 'inflationrate_binned')\n",
|
||
"test_df_undersampled = undersample(test_df, 'inflationrate_binned')\n",
|
||
"\n",
|
||
"print(\"Оверсэмплинг:\")\n",
|
||
"check_balance(train_df_oversampled, \"обучающей выборке\")\n",
|
||
"check_balance(val_df_oversampled, \"контрольной выборке\")\n",
|
||
"check_balance(test_df_oversampled, \"тестовой выборке\")\n",
|
||
"\n",
|
||
"print(\"Андерсэмплинг:\")\n",
|
||
"check_balance(train_df_undersampled, \"обучающей выборке\")\n",
|
||
"check_balance(val_df_undersampled, \"контрольной выборке\")\n",
|
||
"check_balance(test_df_undersampled, \"тестовой выборке\")"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "aimvenv",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.5"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|