258 lines
9.8 KiB
Plaintext
258 lines
9.8 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 162313 entries, 0 to 162312\n",
|
||
"Data columns (total 5 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 category 162313 non-null object \n",
|
||
" 1 sub_category 162313 non-null object \n",
|
||
" 2 href 162313 non-null object \n",
|
||
" 3 items 162280 non-null object \n",
|
||
" 4 price 162282 non-null float64\n",
|
||
"dtypes: float64(1), object(4)\n",
|
||
"memory usage: 6.2+ MB\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from cuml.preprocessing import LabelEncoder\n",
|
||
"from sklearn import metrics\n",
|
||
"from imblearn.over_sampling import RandomOverSampler\n",
|
||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||
"from sklearn.metrics import ConfusionMatrixDisplay\n",
|
||
"from sklearn.compose import ColumnTransformer\n",
|
||
"from sklearn.pipeline import Pipeline\n",
|
||
"from sklearn.impute import SimpleImputer\n",
|
||
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
|
||
"from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, RandomForestClassifier, GradientBoostingClassifier\n",
|
||
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
|
||
"from sklearn.metrics import (\n",
|
||
" precision_score, recall_score, accuracy_score, roc_auc_score, f1_score,\n",
|
||
" matthews_corrcoef, cohen_kappa_score, confusion_matrix\n",
|
||
")\n",
|
||
"from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n",
|
||
"import numpy as np\n",
|
||
"import featuretools as ft\n",
|
||
"from sklearn.metrics import accuracy_score, classification_report\n",
|
||
"\n",
|
||
"# Функция для применения oversampling\n",
|
||
"def apply_oversampling(X, y):\n",
|
||
" oversampler = RandomOverSampler(random_state=42)\n",
|
||
" X_resampled, y_resampled = oversampler.fit_resample(X, y)\n",
|
||
" return X_resampled, y_resampled\n",
|
||
"\n",
|
||
"# Функция для применения undersampling\n",
|
||
"def apply_undersampling(X, y):\n",
|
||
" undersampler = RandomUnderSampler(random_state=42)\n",
|
||
" X_resampled, y_resampled = undersampler.fit_resample(X, y)\n",
|
||
" return X_resampled, y_resampled\n",
|
||
"\n",
|
||
"def split_stratified_into_train_val_test(\n",
|
||
" df_input,\n",
|
||
" stratify_colname=\"y\",\n",
|
||
" frac_train=0.6,\n",
|
||
" frac_val=0.15,\n",
|
||
" frac_test=0.25,\n",
|
||
" random_state=None,\n",
|
||
"):\n",
|
||
" \"\"\"\n",
|
||
" Splits a Pandas dataframe into three subsets (train, val, and test)\n",
|
||
" following fractional ratios provided by the user, where each subset is\n",
|
||
" stratified by the values in a specific column (that is, each subset has\n",
|
||
" the same relative frequency of the values in the column). It performs this\n",
|
||
" splitting by running train_test_split() twice.\n",
|
||
"\n",
|
||
" Parameters\n",
|
||
" ----------\n",
|
||
" df_input : Pandas dataframe\n",
|
||
" Input dataframe to be split.\n",
|
||
" stratify_colname : str\n",
|
||
" The name of the column that will be used for stratification. Usually\n",
|
||
" this column would be for the label.\n",
|
||
" frac_train : float\n",
|
||
" frac_val : float\n",
|
||
" frac_test : float\n",
|
||
" The ratios with which the dataframe will be split into train, val, and\n",
|
||
" test data. The values should be expressed as float fractions and should\n",
|
||
" sum to 1.0.\n",
|
||
" random_state : int, None, or RandomStateInstance\n",
|
||
" Value to be passed to train_test_split().\n",
|
||
"\n",
|
||
" Returns\n",
|
||
" -------\n",
|
||
" df_train, df_val, df_test :\n",
|
||
" Dataframes containing the three splits.\n",
|
||
" \"\"\"\n",
|
||
"\n",
|
||
" if frac_train + frac_val + frac_test != 1.0:\n",
|
||
" raise ValueError(\n",
|
||
" \"fractions %f, %f, %f do not add up to 1.0\"\n",
|
||
" % (frac_train, frac_val, frac_test)\n",
|
||
" )\n",
|
||
"\n",
|
||
" if stratify_colname not in df_input.columns:\n",
|
||
" raise ValueError(\"%s is not a column in the dataframe\" % (stratify_colname))\n",
|
||
"\n",
|
||
" X = df_input # Contains all columns.\n",
|
||
" y = df_input[\n",
|
||
" [stratify_colname]\n",
|
||
" ] # Dataframe of just the column on which to stratify.\n",
|
||
"\n",
|
||
" # Split original dataframe into train and temp dataframes.\n",
|
||
" df_train, df_temp, y_train, y_temp = train_test_split(\n",
|
||
" X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state\n",
|
||
" )\n",
|
||
"\n",
|
||
" # Split the temp dataframe into val and test dataframes.\n",
|
||
" relative_frac_test = frac_test / (frac_val + frac_test)\n",
|
||
" df_val, df_test, y_val, y_test = train_test_split(\n",
|
||
" df_temp,\n",
|
||
" y_temp,\n",
|
||
" stratify=y_temp,\n",
|
||
" test_size=relative_frac_test,\n",
|
||
" random_state=random_state,\n",
|
||
" )\n",
|
||
"\n",
|
||
" assert len(df_input) == len(df_train) + len(df_val) + len(df_test)\n",
|
||
"\n",
|
||
" return df_train, df_val, df_test\n",
|
||
"\n",
|
||
"\n",
|
||
"df = pd.read_csv('/mnt/c/3curse/mii/AIM-PIbd-31-Medvedkov-A-D/data/jio_mart_items.csv')\n",
|
||
"df.info()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Как бизнес-цели выделим следующие 2 варианта:\n",
|
||
" 1) GameDev. Создание игры про конкретного персонажа, живущего в конкретном временном промежутке в конкретной стране. \n",
|
||
" 2) Исследование зависимости длительности жизни от страны проживания.\n",
|
||
" \n",
|
||
"Поскольку именно эти бизнес-цели были выбраны в предыдущей лабораторной работе, будем их использовать.\n",
|
||
"Но возникает проблема с 1 целью: её невозможно использовать для задачи классификации. Заменим ее на классификацию людей по возрастным группам, что может быть полезно для рекламных целей."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Выполним подготовку данных"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/tmp/ipykernel_833/3539008564.py:1: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
|
||
" df.fillna({\"category\": \"NaN\", \"sub_category\": \"NaN\", \"href\" : \"NaN\", \"items\" : \"NaN\", \"price\" : \"NaN\" }, inplace=True)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"df.fillna({\"category\": \"NaN\", \"sub_category\": \"NaN\", \"href\" : \"NaN\", \"items\" : \"NaN\", \"price\" : \"NaN\" }, inplace=True)\n",
|
||
"df = df.dropna()\n",
|
||
"data = df.copy()\n",
|
||
"\n",
|
||
"value_counts = data[\"category\"].value_counts()\n",
|
||
"rare = value_counts[value_counts < 100].index\n",
|
||
"data = data[~data[\"category\"].isin(rare)]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Определить достижимый уровень качества модели для каждой задачи. На основе имеющихся данных уровень качества моделей не будет высоким, поскольку все таки длительность жизни лишь примерная и точно ее угадать невозможно."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Выберем ориентиры для наших 2х задач:\n",
|
||
" 1)Регрессии - средний возраст человека\n",
|
||
" 2)Классификации - аиболее часто встречающаяся возрастная группа"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Построим конвейер."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['category', 'sub_category', 'href', 'items', 'price'], dtype='object')\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(data.columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|