1031 lines
378 KiB
Plaintext
1031 lines
378 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Датасет №1: [Объекты вокруг Земли](https://www.kaggle.com/datasets/sameepvani/nasa-nearest-earth-objects).\n",
|
||
"\n",
|
||
"### Описание датасета:\n",
|
||
"Данный набор данных представляет собой коллекцию сведений о ближайших к Земле объектах (астероидах), сертифицированных NASA. Он содержит данные, которые могут помочь идентифицировать потенциально опасные астероиды, которые могут оказать влияние на Землю или на космические миссии. Набор данных включает в себя такие ключевые характеристики астероидов, как их размер, скорость, расстояние до Земли и информация о возможной опасности столкновения.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Анализ сведений:\n",
|
||
"**Проблемная область:**\n",
|
||
"Основной проблемной областью является отслеживание и оценка рисков, связанных с приближением астероидов к Земле. С помощью данных о движении и характеристиках астероидов можно предсказать возможные столкновения и минимизировать угрозу для Земли, планируя превентивные действия.\n",
|
||
"\n",
|
||
"**Актуальность:**\n",
|
||
"Набор данных высокоактуален для задач оценки рисков от космических объектов, мониторинга космического пространства и разработки превентивных мер по защите Земли. Также он важен для научных исследований в области астрономии и планетарной безопасности.\n",
|
||
"\n",
|
||
"**Объекты наблюдения:**\n",
|
||
"Объектами наблюдения в данном наборе данных являются астероиды, классифицированные NASA как \"ближайшие к Земле объекты\" (Near-Earth Objects, NEO). Эти объекты могут проходить в непосредственной близости от Земли, что потенциально представляет опасность.\n",
|
||
"\n",
|
||
"**Атрибуты объектов:**\n",
|
||
"- id: Уникальный идентификатор астероида.\n",
|
||
"- name: Название, присвоенное астероиду NASA.\n",
|
||
"- est_diameter_min: Минимальный оценочные диаметры астероида в километрах.\n",
|
||
"- est_diameter_max: Максимальный оценочные диаметры астероида в километрах.\n",
|
||
"- relative_velocity: Скорость астероида относительно Земли (в км/с).\n",
|
||
"- miss_distance: Расстояние, на котором астероид пролетел мимо Земли, в километрах.\n",
|
||
"- orbiting_body: Планета, вокруг которой вращается астероид.\n",
|
||
"- sentry_object: Признак, указывающий на наличие астероида в системе автоматического мониторинга столкновений (система Sentry).\n",
|
||
"- absolute_magnitude: Абсолютная величина, описывающая яркость объекта.\n",
|
||
"- hazardous: Булев признак, указывающий, является ли астероид потенциально опасным.\n",
|
||
"\n",
|
||
"**Связь между объектами:**\n",
|
||
"В данном наборе данных отсутствует явная связь между астероидами, однако на основе орбитальных параметров можно исследовать группы объектов, имеющие схожие орбиты или величины риска столкновения с Землей.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Качество набора данных:\n",
|
||
"**Информативность:**\n",
|
||
"Датасет предоставляет важные сведения о ключевых характеристиках астероидов, такие как размер, скорость и расстояние от Земли, что позволяет проводить качественный анализ их потенциальной опасности.\n",
|
||
"\n",
|
||
"**Степень покрытия:**\n",
|
||
"Набор данных включает данные о большом количестве астероидов (>90000 записей), что позволяет охватить значительную часть ближайших к Земле объектов. Однако не все астероиды могут быть обнаружены, так как данные зависят от возможности их наблюдения.\n",
|
||
"\n",
|
||
"**Соответствие реальным данным:**\n",
|
||
"Данные в наборе предоставлены NASA, что указывает на высокую достоверность и актуальность информации. Тем не менее, параметры, такие как диаметр и расстояние, могут быть оценочными и подвергаться уточнению с новыми наблюдениями.\n",
|
||
"\n",
|
||
"**Согласованность меток:**\n",
|
||
"Метрики в датасете четко обозначены, а булевы признаки, такие как \"hazardous\" (опасен или нет), соответствуют конкретным параметрам астероидов и легко интерпретируются.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Бизес-цели:\n",
|
||
"1. **Мониторинг космических угроз:**\n",
|
||
"Создание системы, которая анализирует астероиды и предсказывает риски столкновения с Землей, помогая государственным агентствам и частным компаниям разрабатывать превентивные меры.\n",
|
||
"2. **Поддержка космических миссий:**\n",
|
||
"Предоставление точных данных для планирования и безопасного проведения космических миссий, минимизация рисков столкновения с космическими объектами.\n",
|
||
"3. **Образовательные и научные исследования:**\n",
|
||
"Использование данных для поддержки образовательных программ и научных исследований в области астрономии и космической безопасности.\n",
|
||
"\n",
|
||
"**Эффект для бизнеса:**\n",
|
||
"Набор данных способствует развитию технологий космической безопасности, минимизирует финансовые риски от потенциальных катастроф и поддерживает стратегическое планирование космических миссий.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Технические цели:\n",
|
||
"1. **Моделирование риска столкновения:**\n",
|
||
"Построение алгоритмов машинного обучения для прогнозирования вероятности столкновения астероидов с Землей.\n",
|
||
"2. **Анализ и кластеризация астероидов:**\n",
|
||
"Исследование взаимосвязей между астероидами, анализ орбитальных данных и выделение групп астероидов, имеющих схожие характеристики.\n",
|
||
"3. **Оптимизация системы предупреждения угроз:**\n",
|
||
"Создание системы раннего оповещения, которая будет автоматически анализировать данные и предупреждать о потенциальных угрозах в реальном времени.\n",
|
||
"\n",
|
||
"**Входные данные:**\n",
|
||
"Диаметр, скорость, расстояние, орбитальные параметры астероидов.\n",
|
||
"\n",
|
||
"**Целевой признак:**\n",
|
||
"Признак \"hazardous\" – бинарная метка, указывающая на потенциальную опасность астероида.\n",
|
||
"\n",
|
||
"---"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Выгрузка данных из файла в DataFrame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from typing import Any\n",
|
||
"from math import ceil\n",
|
||
"\n",
|
||
"import pandas as pd\n",
|
||
"from pandas import DataFrame, Series\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"from imblearn.over_sampling import ADASYN\n",
|
||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"\n",
|
||
"df: DataFrame = pd.read_csv('..//static//csv//neo.csv')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Краткая информация о DataFrame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 90836 entries, 0 to 90835\n",
|
||
"Data columns (total 10 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 id 90836 non-null int64 \n",
|
||
" 1 name 90836 non-null object \n",
|
||
" 2 est_diameter_min 90836 non-null float64\n",
|
||
" 3 est_diameter_max 90836 non-null float64\n",
|
||
" 4 relative_velocity 90836 non-null float64\n",
|
||
" 5 miss_distance 90836 non-null float64\n",
|
||
" 6 orbiting_body 90836 non-null object \n",
|
||
" 7 sentry_object 90836 non-null bool \n",
|
||
" 8 absolute_magnitude 90836 non-null float64\n",
|
||
" 9 hazardous 90836 non-null bool \n",
|
||
"dtypes: bool(2), float64(5), int64(1), object(2)\n",
|
||
"memory usage: 5.7+ MB\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>id</th>\n",
|
||
" <th>est_diameter_min</th>\n",
|
||
" <th>est_diameter_max</th>\n",
|
||
" <th>relative_velocity</th>\n",
|
||
" <th>miss_distance</th>\n",
|
||
" <th>absolute_magnitude</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>count</th>\n",
|
||
" <td>9.083600e+04</td>\n",
|
||
" <td>90836.000000</td>\n",
|
||
" <td>90836.000000</td>\n",
|
||
" <td>90836.000000</td>\n",
|
||
" <td>9.083600e+04</td>\n",
|
||
" <td>90836.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>mean</th>\n",
|
||
" <td>1.438288e+07</td>\n",
|
||
" <td>0.127432</td>\n",
|
||
" <td>0.284947</td>\n",
|
||
" <td>48066.918918</td>\n",
|
||
" <td>3.706655e+07</td>\n",
|
||
" <td>23.527103</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>std</th>\n",
|
||
" <td>2.087202e+07</td>\n",
|
||
" <td>0.298511</td>\n",
|
||
" <td>0.667491</td>\n",
|
||
" <td>25293.296961</td>\n",
|
||
" <td>2.235204e+07</td>\n",
|
||
" <td>2.894086</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>min</th>\n",
|
||
" <td>2.000433e+06</td>\n",
|
||
" <td>0.000609</td>\n",
|
||
" <td>0.001362</td>\n",
|
||
" <td>203.346433</td>\n",
|
||
" <td>6.745533e+03</td>\n",
|
||
" <td>9.230000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>25%</th>\n",
|
||
" <td>3.448110e+06</td>\n",
|
||
" <td>0.019256</td>\n",
|
||
" <td>0.043057</td>\n",
|
||
" <td>28619.020645</td>\n",
|
||
" <td>1.721082e+07</td>\n",
|
||
" <td>21.340000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>50%</th>\n",
|
||
" <td>3.748362e+06</td>\n",
|
||
" <td>0.048368</td>\n",
|
||
" <td>0.108153</td>\n",
|
||
" <td>44190.117890</td>\n",
|
||
" <td>3.784658e+07</td>\n",
|
||
" <td>23.700000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>75%</th>\n",
|
||
" <td>3.884023e+06</td>\n",
|
||
" <td>0.143402</td>\n",
|
||
" <td>0.320656</td>\n",
|
||
" <td>62923.604633</td>\n",
|
||
" <td>5.654900e+07</td>\n",
|
||
" <td>25.700000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>max</th>\n",
|
||
" <td>5.427591e+07</td>\n",
|
||
" <td>37.892650</td>\n",
|
||
" <td>84.730541</td>\n",
|
||
" <td>236990.128088</td>\n",
|
||
" <td>7.479865e+07</td>\n",
|
||
" <td>33.200000</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" id est_diameter_min est_diameter_max relative_velocity \\\n",
|
||
"count 9.083600e+04 90836.000000 90836.000000 90836.000000 \n",
|
||
"mean 1.438288e+07 0.127432 0.284947 48066.918918 \n",
|
||
"std 2.087202e+07 0.298511 0.667491 25293.296961 \n",
|
||
"min 2.000433e+06 0.000609 0.001362 203.346433 \n",
|
||
"25% 3.448110e+06 0.019256 0.043057 28619.020645 \n",
|
||
"50% 3.748362e+06 0.048368 0.108153 44190.117890 \n",
|
||
"75% 3.884023e+06 0.143402 0.320656 62923.604633 \n",
|
||
"max 5.427591e+07 37.892650 84.730541 236990.128088 \n",
|
||
"\n",
|
||
" miss_distance absolute_magnitude \n",
|
||
"count 9.083600e+04 90836.000000 \n",
|
||
"mean 3.706655e+07 23.527103 \n",
|
||
"std 2.235204e+07 2.894086 \n",
|
||
"min 6.745533e+03 9.230000 \n",
|
||
"25% 1.721082e+07 21.340000 \n",
|
||
"50% 3.784658e+07 23.700000 \n",
|
||
"75% 5.654900e+07 25.700000 \n",
|
||
"max 7.479865e+07 33.200000 "
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Краткая информация о DataFrame\n",
|
||
"df.info()\n",
|
||
"\n",
|
||
"# Статистическое описание числовых столбцов\n",
|
||
"df.describe()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Проблема пропущенных данных:\n",
|
||
"\n",
|
||
"**Проблема пропущенных данных** — это отсутствие значений в наборе данных, что может искажать результаты анализа и статистические выводы.\n",
|
||
"\n",
|
||
"Проверка на отсутствие значений, представленная ниже, показала, что DataFrame не имеет пустых значений признаков. Нет необходимости использовать методы заполнения пропущенных данных."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"id False\n",
|
||
"name False\n",
|
||
"est_diameter_min False\n",
|
||
"est_diameter_max False\n",
|
||
"relative_velocity False\n",
|
||
"miss_distance False\n",
|
||
"orbiting_body False\n",
|
||
"sentry_object False\n",
|
||
"absolute_magnitude False\n",
|
||
"hazardous False\n",
|
||
"dtype: bool \n",
|
||
"\n",
|
||
"id 0\n",
|
||
"name 0\n",
|
||
"est_diameter_min 0\n",
|
||
"est_diameter_max 0\n",
|
||
"relative_velocity 0\n",
|
||
"miss_distance 0\n",
|
||
"orbiting_body 0\n",
|
||
"sentry_object 0\n",
|
||
"absolute_magnitude 0\n",
|
||
"hazardous 0\n",
|
||
"dtype: int64\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Проверка пропущенных данных\n",
|
||
"def check_null_columns(dataframe: DataFrame) -> None:\n",
|
||
" # Присутствуют ли пустые значения признаков\n",
|
||
" print(dataframe.isnull().any(), '\\n')\n",
|
||
"\n",
|
||
" # Количество пустых значений признаков\n",
|
||
" print(dataframe.isnull().sum())\n",
|
||
"\n",
|
||
" # Процент пустых значений признаков\n",
|
||
" for i in dataframe.columns:\n",
|
||
" null_rate: float = dataframe[i].isnull().sum() / len(dataframe) * 100\n",
|
||
" if null_rate > 0:\n",
|
||
" print(f\"{i} процент пустых значений: %{null_rate:.2f}\")\n",
|
||
" \n",
|
||
"\n",
|
||
"# Проверка пропущенных данных\n",
|
||
"check_null_columns(df)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Проблема зашумленности данных:\n",
|
||
"\n",
|
||
"**Зашумленность** – это наличие случайных ошибок или вариаций в данных, которые могут затруднить выявление истинных закономерностей. Шум может возникать из-за ошибок измерений, неправильных записей или других факторов.\n",
|
||
"\n",
|
||
"**Выбросы** – это значения, которые значительно отличаются от остальных наблюдений в наборе данных. Выбросы могут указывать на ошибки в данных или на редкие, но важные события. Их наличие может повлиять на статистические методы анализа.\n",
|
||
"\n",
|
||
"Представленный ниже код помогает определить наличие выбросов в наборе данных и устранить их (при наличии), заменив значения ниже нижней границы (рассматриваемого минимума) на значения нижней границы, а значения выше верхней границы (рассматриваемого максимума) – на значения верхней границы."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Колонка est_diameter_min:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 8306\n",
|
||
"\tМинимальное значение: 0.0006089126\n",
|
||
"\tМаксимальное значение: 37.8926498379\n",
|
||
"\t1-й квартиль (Q1): 0.0192555078\n",
|
||
"\t3-й квартиль (Q3): 0.1434019235\n",
|
||
"\n",
|
||
"Колонка est_diameter_max:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 8306\n",
|
||
"\tМинимальное значение: 0.00136157\n",
|
||
"\tМаксимальное значение: 84.7305408852\n",
|
||
"\t1-й квартиль (Q1): 0.0430566244\n",
|
||
"\t3-й квартиль (Q3): 0.320656449\n",
|
||
"\n",
|
||
"Колонка relative_velocity:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 1574\n",
|
||
"\tМинимальное значение: 203.34643253\n",
|
||
"\tМаксимальное значение: 236990.1280878666\n",
|
||
"\t1-й квартиль (Q1): 28619.02064490995\n",
|
||
"\t3-й квартиль (Q3): 62923.60463276395\n",
|
||
"\n",
|
||
"Колонка miss_distance:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 6745.532515957\n",
|
||
"\tМаксимальное значение: 74798651.4521972\n",
|
||
"\t1-й квартиль (Q1): 17210820.23576468\n",
|
||
"\t3-й квартиль (Q3): 56548996.45139917\n",
|
||
"\n",
|
||
"Колонка absolute_magnitude:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 101\n",
|
||
"\tМинимальное значение: 9.23\n",
|
||
"\tМаксимальное значение: 33.2\n",
|
||
"\t1-й квартиль (Q1): 21.34\n",
|
||
"\t3-й квартиль (Q3): 25.7\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPdCAYAAABlRyFLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvLElEQVR4nOzdf3zN9f//8fvZZj+YHW32M8NC+Z2sYmoiMqIsFPqFSD9QCLXeElIrEio/Qm+UlB+hWkXyK++MspIfRWJCbH7EDjObba/vH333+uy0HTa2nf24XS+Xc7HzfD3O6/U4L2fn8drjvM7zZTEMwxAAAAAAAAAAAMjDxdkJAAAAAAAAAABQWtFEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEB4AC2rBhgywWizZs2GCO9e3bV7Vr13ZaThXBwYMHZbFYNH/+fGenAgAop6jxAACUfvnV66JgsVg0duzYIl2ns7Vp00Zt2rQptvXXrl1bffv2Lbb1l0YVpom+bNkyWSyWfG+NGzd2dnpAhdGmTRvzjbZv377F9qZ+/vx5jR07tsiLa1m0efNmjR07VmfOnHF2Kk6RuwFfu3btcndwBGo8UFpQ40teRa/x/5bzwXvOa4MP4SsOjgWA0qGkjgWuxFdffcXfgsXo119/1dixY3Xw4MErXkfuv9dzv5ZKCzdnJ1DSXnzxRTVo0MC8/+qrrzoxGwDF5fz58xo3bpwkFWvhnjNnjrKzs4tt/UVh8+bNGjdunPr27atq1ao5O51Cq1WrltLS0lSpUiVnp4JSjhoPVAzU+P9T1ms8UNQ4FgDgyFdffaXp06fn20hPS0uTm1uFa5Felb1798rF5f/Ozf711181btw4tWnTptx+k6/CvULuuusuu4PtuXPn6uTJk85LCECZVpEbu+fPn1flypWLfTsWi0Wenp7Fvh2UfdR4AEWJGl/8NR4oahwLAGVLZmamsrOz5e7u7tQ8+Huz8Dw8PJydQomrMNO5ZGRkSJLdpySOzJ8/XxaLxe4rCNnZ2WratGmerwTu2LFDffv21XXXXSdPT08FBQXpscce06lTp+zWOXbs2Hy/Wpb7k642bdqocePGSkhIUKtWreTl5aWwsDDNmjUrz3MZM2aMwsPDZbVaVaVKFUVGRmr9+vV2cTlfZ7RYLFq5cqXdsgsXLuiaa66RxWLRm2++mSfPgIAAXbx40e4xH3/8sbm+3Acin332mTp37qyQkBB5eHioTp06euWVV5SVlXXZfZ2zvT179uiBBx6Qj4+P/Pz89Oyzz+rChQt2sfPmzdOdd96pgIAAeXh4qGHDhpo5c2aedXbt2lW1a9eWp6enAgICdO+992rnzp12MTnPY+rUqXkeX79+fVksFg0ePNgc+/vvvzVixAg1adJE3t7e8vHxUadOnfTLL7/YPbZPnz7y9PTUb7/9ZjceFRWla665RkePHjXHDhw4oPvvv1++vr6qXLmyWrZsqS+//NLucTnzfeXcPDw8dP311ys2NlaGYVx65/5/jl57+Z25lfs18+9bbsePH1f//v1Vs2ZNubq6mjHe3t4FyulSsrOzNXXqVDVq1Eienp4KDAzUE088odOnT9vFbdu2TVFRUapevbr5u/LYY4+Zz8Pf31+SNG7cODO/wnx168iRI4qOjlaVKlUUEBCgYcOGKT09PU9cfvOlvvnmm2rVqpX8/Pzk5eWl8PBwLVu2LM9jc15nS5cuVcOGDeXl5aWIiAjz9free++pbt268vT0VJs2bfL9WtTWrVvVsWNHWa1WVa5cWXfccYe+//57c/nYsWM1cuRISVJYWJi5L3Kva+HChQoPD5eXl5d8fX3Vq1cvHT582G47ud+fWrdurcqVK+vFF18s0L7MeQ3+/vvvevjhh2W1WuXv76+XXnpJhmHo8OHD6tq1q3x8fBQUFKTJkyfbPT6/OdH79u0rb29v/fXXX4qOjpa3t7f8/f01YsSIAr33oHyhxq+0W0aNp8ZT4y+NGl96anxB3/Nefvllubi4aO3atXbjAwcOlLu7e57fV1Q8HAustFvGsQDHAqXxWCBn+2+++aamTp2qOnXqyMPDQ7/++qskac+ePerRo4d8fX3l6empm2++WZ9//vll17tp0ybdf//9qlmzpjw8PBQaGqphw4YpLS3NjOnbt6+mT58uSfk+79zHEjnTQ23cuDHPtt577z1ZLBbt2rXLHLvSvHNr3Lix2rZtm2c8Oztb1157rXr06GE3VpDjqfzk/N8GBgbK09NTN954oxYsWJDvdqdNm6YmTZrI09NT/v7+6tixo7Zt22bG5J4Tff78+br//vslSW3btjX374YNG9SnTx9Vr149z3uOJHXo0EE33HDDZfMuLSrMmeg5RfVKPyn58MMP87wxS9KaNWt04MAB9evXT0FBQdq9e7dmz56t3bt3a8uWLXnejGbOnGn3xvPvIn/69GndfffdeuCBB9S7d28tWbJETz31lNzd3c0/Hmw2m+bOnavevXvr8ccf19mzZ/X+++8rKipKP/zwg5o1a2a3Tk9PT82bN0/R0dHm2PLly/MUrdzOnj2ruLg43XfffebYvHnz5Onpmedx8+fPl7e3t4YPHy5vb2+tW7dOY8aMkc1m06RJkxxuI7cHHnhAtWvXVmxsrLZs2aK3335bp0+f1gcffGC37xo1aqR7771Xbm5u+uKLL/T0008rOztbgwYNslvfwIEDFRQUpKNHj+rdd99V+/btlZiYaHdGTc5+GTp0qDm2efNm/fnnn3nyO3DggFauXKn7779fYWFhSk5O1nvvvac77rhDv/76q0JCQiRJ06ZN07p169SnTx/Fx8fL1dVV7733nr755ht9+OGHZlxycrJatWql8+fP65lnnpGfn58WLFige++9V8uWLbPb79L/fS0xLS1Nixcv1osvvqiAgAD179+/QPs3Z//lvPZiYmIuGTtw4EBFRkZK+ue1smLFCrvlffr00bfffqshQ4boxhtvlKurq2bPnq2ffvqpwPk48sQTT2j+/Pnq16+fnnnmGSUmJurdd9/Vzz//rO+//16VKlXS8ePH1aFDB/n7++uFF15QtWrVdPDgQS1fvlyS5O/vr5kzZ+qpp57Sfffdp27dukmSmjZtWqAc0tLS1K5dOx06dEjPPPOMQkJC9OGHH2rdunUFevy0adN077336qGHHlJGRoY++eQT3X///YqLi1Pnzp3tYjdt2qTPP//cfA3HxsaqS5cuGjVqlGbMmKGnn35ap0+f1sSJE/XYY4/Z5bBu3Tp16tRJ4eHh5h+XOQefmzZt0q233qpu3brp999/18cff6wpU6aoevXq5j6S/vmK60svvaQHHnhAAwYM0IkTJ/TOO++odevW+vnnn+2+Gn7q1Cl16tRJvXr10sMPP6zAwMAC7Y8cPXv2VIMGDfT666/ryy+/1IQJE+Tr66v33ntPd955p9544w199NFHGjFihG655Ra1bt36kuvLyspSVFSUWrRooTfffFPffvutJk+erDp16uipp54qVG4o26jx1HhqPDWeGl82a3xB3/NGjx6tL774Qv3799fOnTtVtWpVrV69WnPmzNErr7yiG2+8sVD5ovzhWIBjAY4FysaxgPTPa+3ChQsaOHCgPDw85Ovrq927d+u2227TtddeqxdeeEFVqlTRkiVLFB0drU8//TTPPstt6dKlOn/+vJ566in5+fnphx9+0DvvvKMjR45o6dKlkv45Bjl69KjWrFmjDz/88JL5de7cWd7e3lqyZInuuOMOu2WLFy9Wo0aNzGstXE3eufXs2VNjx45VUlKSgoKCzPH//e9/Onr0qHr16mWOFeR4Kj9paWlq06aN/vjjDw0ePFhhYWFaunSp+vbtqzNnzujZZ581Y/v376/58+erU6dOGjBggDIzM7Vp0yZt2bJFN998c551t27dWs8884zefvttu2m1GjRooEceeUQffPCBVq9erS5dupiPSUpK0rp16/Tyyy8XaB+VCkYFMXXqVEOS8csvv9iN33HHHUajRo3sxubNm2dIMhITEw3DMIwLFy4YNWvWNDp16mRIMubNm2fGnj9/Ps+2Pv74Y0OS8d1335ljL7/8siHJOHHihMMc77jjDkOSMXnyZHMsPT3daNasmREQEGBkZGQYhmEYmZmZRnp6ut1jT58+bQQGBhqPPfaYOZaYmGhIMnr37m24ubkZSUlJ5rJ27doZDz74oCHJmDRpUp48e/fubXTp0sUc//PPPw0XFxejd+/eeZ5HfvvgiSeeMCpXrmxcuHDB4fPNvb17773Xbvzpp5/O8/+V33aioqKM66677pLbWLJkiSHJ2LZtmzkmyejRo4fh5uZmN96/f39zvwwaNMgcv3DhgpGVlWW33sTERMPDw8MYP3683fjq1asNScaECROMAwcOGN7e3kZ0dLRdzNChQw1JxqZNm8yxs2fPGmFhYUbt2rXNba1fv96QZKxfv94uFxcXF+Ppp5++5PPO8eKLLxqSjJMnT5pjjRo1Mu644448sfv27TMkGQsWLDDHcv6PcqSlpRkuLi7GE088YffYPn36GFWqVClQTo5s2rTJkGR89NFHduOrVq2yG1+xYoUhyfjxxx8druvEiROGJOPll18udB457xdLliwxx1JTU426devm+f/o06ePUatWLbvH//u1mpGRYTRu3Ni488477cYlGR4eHuZ7jWEYxnvvvWdIMoKCggybzWaOx8TE2L0vZWdnG/Xq1TOioqKM7Oxsu22HhYUZd911lzk2adIku8fmOHjwoOHq6mq8+uqrduM7d+403Nzc7MZz3p9mzZqVd4ddRs5raODAgeZYZmamUaNGDcNisRivv/66OX769GnDy8vL6NOnjzmW816W+723T58+hqQ8v3833XSTER4eXugcUbZR46nx1HhqfEFR40tXjS/oe15O7u7u7saAAQOM06dPG9dee61x8803GxcvXix03ih/OBbgWIBjgdJ/LJDzmvXx8TGOHz9ut6xdu3ZGkyZN7F5T2dnZRqtWrYx69eqZY/nts/xeO7GxsYbFYjH+/PNPc2zQoEF2zzW3fx9X9O7d2wgICDAyMzPNsWPHjhkuLi52r4mC5n05e/fuNSQZ77zzjt34008/bXh7e5vPsaDHU4bxz3tO7tdBzvvkwoULzbGMjAwjIiLC8Pb2No9N1q1bZ0gynnnmmTx55j4uqVWrll1NX7p0aZ7/G8MwjKysLKNGjRpGz5497cbfeustw2KxGAcOHLjEnildKsx0Ljlft8o5M6Mwpk+frlOnTuX76YiXl5f584ULF3Ty5Em1bNlSkq7oUzo3Nzc98cQT5n13d3c98cQTOn78uBISEiRJrq6u5nxR2dnZ+vvvv5WZmambb7453202b95cjRo1Mj9t+/PPP7V+/fpLXuX2scce06pVq5SUlCRJWrBggSIiInT99dfnic29D86ePauTJ08qMjJS58+f1549ewr0vP/9yfKQIUMk/XPhh/y2k5KSopMnT+qOO+7QgQMHlJKSYvf48+fP6+TJk9q+fbvmzJmjwMDAPLkHBgaqc+fOmjdvnvmYJUuWqF+/fnny8/DwMM8iyMrK0qlTp+Tt7a0bbrghzz7v0KGDnnjiCY0fP17dunWTp6en3nvvPbuYr776Srfeeqtuv/12c8zb21sDBw7UwYMHza8z/fv5Hjp0SBMnTlR2drbuvPPOfPZkXjlnEhRkjq+CnMGRmpqq7Oxs+fn5FWj7hbF06VJZrVbdddddOnnypHkLDw+Xt7e3+RXGnDOn4uLi8v1K0NX66quvFBwcbPeVqcqVK2vgwIEFenzu1+rp06eVkpKiyMjIfH8/27VrZ/dV8RYtWkiSunfvrqpVq+YZP3DggCRp+/bt2rdvnx588EGdOnXK3Fepqalq166dvvvuu8teDG358uXKzs7WAw88YLe/g4KCVK9evTxfGfXw8Mj396OgBgwYYP7s6uqqm2++WYZh2J1hUa1aNd1www3m87ycJ5980u5+ZGRkgR+L8oMaT42nxlPjC4oaX7pqfGHe8xo3bqxx48Zp7ty5ioqK0smTJ7VgwQIuBAdJHAtwLMCxQFk4FsjRvXt3u9/Vv//+W+vWrdMDDzxgvsZOnjypU6dOKSoqSvv27dNff/3lcH25Xzupqak6efKkWrVqJcMw9PPPP19Rjj179tTx48e1YcMGc2zZsmXKzs5Wz549iyTv3K6//no1a9ZMixcvNseysrK0bNky3XPPPeZzLOjxVH6++uorBQUFqXfv3uZYpUqV9Mwzz+jcuXPm9DWffvqpLBZLvu+J//72TUG4uLjooYce0ueff66zZ8+a4x999JFatWqlsLCwQq/TWSpME/3PP/+Um5tboYtqSkqKXnvtNQ0fPjzfrzX+/fffevbZZxUYGCgvLy/5+/ubL4B/v9EXREhIiKpUqWI3llMMcs/ZtmDBAjVt2lSenp7y8/OTv7+/vvzyS4fb7Nevn1k85s+fr1atWqlevXoO82jWrJkaN26sDz74QIZhmF8Vyc/u3bt13333yWq1ysfHR/7+/nr44YclFXwf/DuXOnXqyMXFxe45f//992rfvr2qVKmiatWqyd/f35yv8d/bGT9+vPz9/XXTTTfp4MGD2rBhg90fKzn69eunRYsWKT09XUuXLtU111yTb7HKzs7WlClTVK9ePXl4eKh69ery9/fXjh078n2Ob775pnx9fbV9+3a9/fbbCggIsFv+559/5jvvU85XXv79FbPo6Gj5+/urVq1aGjt2rEaPHq3u3bvneXx+Tp48qUqVKhXo4lBnzpyRpEvOdebn56d69epp7ty5+uabb3T8+HGdPHky37lEC2vfvn1KSUlRQECA/P397W7nzp3T8ePHJUl33HGHunfvrnHjxql69erq2rWr5s2bVyQ5SP/s/7p16+YpEAWdqysuLk4tW7aUp6enfH19za+e5/daqVmzpt19q9UqSQoNDc13PGees3379kn656t2/95Xc+fOVXp6+mV///bt2yfDMFSvXr086/jtt9/M/Z3j2muvvaoLvuT3XD09Pc2vn+ceL8h8bjlzs+V2zTXXFOixKF+o8dR4ajw1vqCo8aWvxhfmPW/kyJG68cYb9cMPP+jll19Ww4YNrzhnlC8cC3AswLFA6T8WyPHvpukff/whwzD00ksv5alZOY3cf9et3A4dOqS+ffvK19fXvFZWzjQsV/J7Ksm8JknupvbixYvVrFkz83f2avP+t549e+r77783G+8bNmzQ8ePHzaa9VPDjqfz8+eefqlevXp5ppv79uty/f79CQkLk6+tb4Nwv59FHH1VaWpo5ddDevXuVkJCgRx55pMi2URIqzMf2e/fu1XXXXVfoMxXeeOMNubi4aOTIkXkuHiL9M7fX5s2bNXLkSDVr1kze3t7Kzs5Wx44dL3uGyJVauHCh+vbtq+joaI0cOVIBAQFydXVVbGys9u/fn+9jHn74YY0aNUpbtmzRggULNHr06Mtu57HHHtOMGTN06623KikpSQ888ECeiwGdOXNGd9xxh3x8fDR+/HjVqVNHnp6e+umnn/T8889f8T749x82+/fvV7t27VS/fn299dZbCg0Nlbu7u7766itNmTIlz3YGDBigdu3a6ciRI5oyZYq6d++uzZs3m3+k5OjcubPc3d21cuVKzZs3T3369Mn3YjSvvfaaXnrpJT322GN65ZVX5OvrKxcXFw0dOjTf5/jzzz+bb147d+60+6TvSrz55pu68cYbdfHiRf3444+aMGGC3NzcCjR31MGDB1WzZs0CfWKYcyZC7jm48rN48WI99NBDioqKshv/9wFhYWVnZysgIEAfffRRvstzDootFouWLVumLVu26IsvvtDq1av12GOPafLkydqyZUuRXPzsSm3atEn33nuvWrdurRkzZig4OFiVKlXSvHnztGjRojzxrq6u+a7H0bjx/y8wk/O6mzRpUp55EXNcbj9kZ2fLYrHo66+/znd7/3587k/4r0R+27jc8yzs+lAxUeOp8dR4anxJoMY7dqU1vrDveQcOHDA/ZMhv/mpUXBwLcCzAsUDpPxbI8e+ak7OPR4wYkWebOerWrZvveFZWlu666y79/fffev7551W/fn1VqVJFf/31l/r27XvFr1EPDw9FR0drxYoVmjFjhpKTk/X999/rtddeK5K889OzZ0/FxMRo6dKlGjp0qJYsWSKr1aqOHTvabbMgx1OlTcOGDRUeHq6FCxfq0Ucf1cKFC+Xu7q4HHnjA2akVSoVooqenp2v79u12F9ooiKNHj2ratGmKjY1V1apV8xTV06dPa+3atRo3bpzGjBljjucc2F2Jo0ePKjU11e7N6ffff5ck8+ugy5Yt03XXXafly5fbvVFe6g3Wz89P9957r/lVsZyvdl7KQw89pJEjR+rZZ59Vjx498v1kd8OGDTp16pSWL19udxHAxMTEAj3fHPv27bP7NPKPP/5Qdna2+Zy/+OILpaen6/PPP7c708XRV1Xq1q1rvlm1b99eNWvW1KJFi/JcbNDNzU2PPPKIXn31Ve3evVv//e9/813fsmXL1LZtW73//vt242fOnMlzhk1qaqr69eunhg0bqlWrVpo4caLuu+8+3XLLLWZMrVq1tHfv3jzbyfk6XK1atezGw8PDzatrd+rUSX/99ZfeeOMNvfTSS5e8An1mZqZ++eUXuzfdS/n1119lsVguezbWTTfdpDlz5igyMlLjx49Xy5YtNWnSJH3//fcF2o4jderU0bfffqvbbrutQH/MtWzZUi1bttSrr76qRYsW6aGHHtInn3yiAQMGXNHXjHLUqlVLu3btkmEYduvJ7//s3z799FN5enpq9erVdl+TyzkzpKjUqVNHkuTj46P27dtfMtbRvqhTp44Mw1BYWFi+X90EygJqPDWeGk+NLwxqfOlSmPe87Oxs9e3bVz4+Pho6dKhee+019ejRw7y4LCoujgU4FuBYoGwcCzhy3XXXSfpnapHL1b1/27lzp37//XctWLBAjz76qDm+Zs2aPLGFPX7o2bOnFixYoLVr1+q3336TYRh2Z4VfTd75CQsL06233qrFixdr8ODBWr58uaKjo+2OOQp7PJVbrVq1tGPHDmVnZ9u9rv79uqxTp45Wr16tv//+u1Bno19u/z766KMaPny4jh07pkWLFqlz58665pprCvUcnK1CTOeS8/Wddu3aFepx48aNU2BgYJ45d3PknF3x7zMmp06dekV5Sv+8CeaeTysjI0Pvvfee/P39FR4e7nC7W7duVXx8/CXX/dhjj2nHjh26//77C3QWj6+vr7p27aodO3aYVwr/t/xyycjI0IwZMy67/tymT59ud/+dd96R9E8BcbSdlJSUAv3RknPw4OjrR4899ph27typ1q1bm2+C/+bq6prn/3np0qX5zm/1/PPP69ChQ1qwYIHeeust1a5dW3369LHb/t13360ffvjB7v8sNTVVs2fPVu3atS/71dS0tDRlZmYqMzPzknHffPONUlJS1LVr10vGSf+89j799FPdeuutl3192Gw2PfLII7r33ns1evRotW/fXsHBwZfdxuU88MADysrK0iuvvJJvfjlfPzt9+nSe/4+cM7Vy9nPO19lyHlMYd999t44ePaply5aZY+fPn9fs2bMv+1hXV1dZLBZlZWWZYwcPHtTKlSsLncelhIeHq06dOnrzzTd17ty5PMtPnDhh/pxzkP7vfdGtWze5urpq3LhxefanYRj5no0DlDbU+H9Q46nxl0KN/z/U+NJV4wvznvfWW29p8+bNmj17tl555RW1atVKTz311GUbhSj/OBb4B8cCHAtcSmk4FnAkICBAbdq00Xvvvadjx47lWZ677v1bfq8dwzA0bdq0PLGOaqYj7du3l6+vrxYvXqzFixfr1ltvtfsw6GrydqRnz57asmWL/vvf/+rkyZN2TXup4MdT+bn77ruVlJRkN0VNZmam3nnnHXl7e5tT4HTv3l2GYWjcuHF51nGpb4xfbv/27t1bFotFzz77rA4cOGBOC1WWlOsz0VNTU/XOO+9o/Pjx5pviwoUL7WKSk5N17tw5LVy4UHfddZfdPGjffPONPvroI4fzA/r4+Kh169aaOHGiLl68qGuvvVbffPNNoT+VzS0kJERvvPGGDh48qOuvv16LFy/W9u3bNXv2bFWqVEmS1KVLFy1fvlz33XefOnfurMTERM2aNUsNGzbM90A7R8eOHXXixIlCfQ12/vz5mj59ep5PX3O0atVK11xzjfr06aNnnnlGFotFH374YYGmYsgtMTFR9957rzp27Kj4+HgtXLhQDz74oG688UZJ/1y8w93dXffcc4+eeOIJnTt3TnPmzFFAQIDdm9VXX32luXPnqlWrVvL19dWBAwc0Z84cValSRffdd1++227QoIFOnjx5yU/xunTpovHjx6tfv35q1aqVdu7cqY8++ihPEV63bp1mzJihl19+Wc2bN5f0z9lJbdq00UsvvaSJEydKkl544QV9/PHH6tSpk5555hn5+vpqwYIFSkxM1Keffprn0+Y1a9boyJEj5te7PvroI917772XnLty8eLFGjFihDw8PJSWlmb32k9JSVFWVpZWrlyp6Ohoffvtt3rppZe0Y8cOffHFFw7XmWPQoEFKS0vT3LlzLxtbGHfccYeeeOIJxcbGavv27erQoYMqVaqkffv2aenSpZo2bZp69OihBQsWaMaMGbrvvvtUp04dnT17VnPmzJGPj4/uvvtuSf98Raxhw4ZavHixrr/+evn6+qpx48Zq3LjxZfN4/PHH9e677+rRRx9VQkKCgoOD9eGHHxZonrnOnTvrrbfeUseOHfXggw/q+PHjmj59uurWrasdO3Zc9T7K4eLiorlz56pTp05q1KiR+vXrp2uvvVZ//fWX1q9fLx8fH/P/MueA/D//+Y969eqlSpUq6Z577lGdOnU0YcIExcTE6ODBg4qOjlbVqlWVmJioFStWaODAgRoxYkSR5QwUJWq8PWo8NT4HNf7SqPGlq8YX9D3vt99+00svvaS+ffvqnnvukfTPe1izZs309NNPa8mSJc56CnAijgXscSzAsUCO0noscCnTp0/X7bffriZNmujxxx/Xddddp+TkZMXHx+vIkSP65Zdf8n1c/fr1VadOHY0YMUJ//fWXfHx89Omnn+Z7naycmvnMM88oKipKrq6u6tWrl8OcKlWqpG7duumTTz5Ramqq3nzzzSLL25EHHnhAI0aM0IgRI+Tr65vnDPeCHk/lZ+DAgXrvvffUt29fJSQkqHbt2lq2bJm+//57TZ061fw2Stu2bfXII4/o7bff1r59+8zpqzZt2qS2bdtq8ODB+a6/WbNmcnV11RtvvKGUlBR5eHjozjvvNK8Z4O/vr44dO2rp0qWqVq2aOnfuXKh9UyoY5VhiYqIhqcC39evXG4ZhGPPmzTMkGc2aNTOys7PzrG/evHnm2JEjR4z77rvPqFatmmG1Wo3777/fOHr0qCHJePnll824l19+2ZBknDhxwmG+d9xxh9GoUSNj27ZtRkREhOHp6WnUqlXLePfdd+3isrOzjddee82oVauW4eHhYdx0001GXFyc0adPH6NWrVp58p00adIl90/u5ZfLM7/l33//vdGyZUvDy8vLCAkJMUaNGmWsXr3abp86krO+X3/91ejRo4dRtWpV45prrjEGDx5spKWl2cV+/vnnRtOmTQ1PT0+jdu3axhtvvGH897//NSQZiYmJhmEYxq5du4wOHToYfn5+hru7uxEaGmr06tXL2LFjh926JBmDBg1ymNe/l1+4cMF47rnnjODgYMPLy8u47bbbjPj4eOOOO+4w7rjjDsMwDMNmsxm1atUymjdvbly8eNFufcOGDTNcXFyM+Ph4c2z//v1Gjx49jGrVqhmenp7GrbfeasTFxdk9bv369XavUTc3N6NWrVrGM888Y5w+ffqS+7ZWrVqXfc3nvF6GDBlitG7d2li1alWe9eT8H+X4+OOPDYvFkie2T58+RpUqVS6ZU0HNnj3bCA8PN7y8vIyqVasaTZo0MUaNGmUcPXrUMAzD+Omnn4zevXsbNWvWNDw8PIyAgACjS5cuxrZt2+zWs3nzZiM8PNxwd3fP8zt5OX/++adx7733GpUrVzaqV69uPPvss8aqVavyvK7//XtnGIbx/vvvG/Xq1TM8PDyM+vXrG/PmzcuzHw0j/9eho9/bnNfC0qVL7cZ//vlno1u3boafn5/h4eFh1KpVy3jggQeMtWvX2sW98sorxrXXXmu4uLjY/c4YhmF8+umnxu23325UqVLFqFKlilG/fn1j0KBBxt69e82YnPenK+HofcXRa+bf28rvvdfRY/PbzyifqPHUeGo8NZ4a/4+yXOML8p6XmZlp3HLLLUaNGjWMM2fO2K1v2rRphiRj8eLFV5Q/yjaOBTgW4FigbB0LXO41u3//fuPRRx81goKCjEqVKhnXXnut0aVLF2PZsmVmTM4+y/3a+/XXX4327dsb3t7eRvXq1Y3HH3/c+OWXX/L8PmdmZhpDhgwx/P39DYvFYve8HR1LrFmzxpBkWCwW4/Dhw1ecd2HcdttthiRjwIABDmMudzxlGIbd6zdHcnKy0a9fP6N69eqGu7u70aRJE7t9lCMzM9OYNGmSUb9+fcPd3d3w9/c3OnXqZCQkJJgxtWrVMvr06WP3uDlz5hjXXXed4erqmu97xJIlSwxJxsCBAwu8P0oTi2EU8iPEMuTgwYMKCwvT+vXrzfmlriauuLVp00YnT57Url27nJZDSRs7dqzGjRunEydOOPz0G1emdu3aGjt2rPr27Zvv8g0bNqhv3752V0QHgLKCGl/6UeOLDzUeADgWKAs4Fig+HAugLPrss88UHR2t7777TpGRkc5Op9AqxJzoAAAAAAAAAADnmDNnjq677jrdfvvtzk7lipTrOdG9vb310EMP2c17djVxQFmSM5eoI4GBgQ7njSuvMjIy9Pfff18yxmq1Fvoq1xXVuXPnLjkvo/TPvGc5F3sBihI1HhUZNT4vanzRosajLOBYABUZxwJlR1JS0iWXe3l5yWq1llA2zvHJJ59ox44d+vLLLzVt2jRZLBZnp3RFyvV0LmUNX+/i610oXhs2bFDbtm0vGTNv3jyHX4mDvZzf30tJTExU7dq1SyYhoBSjxlPjUbyo8UWLGg8UPY4FOBZAxXS5hnGfPn00f/78kknGSSwWi7y9vdWzZ0/NmjVLbm5l85xumugAKozTp08rISHhkjGNGjVScHBwCWVUth04cEAHDhy4ZMztt98uT0/PEsoIAFBRUeOLFjUeAICi8e23315yeUhIiBo2bFhC2eBq0EQHAAAAAAAAAMCBUnf+fHZ2to4ePaqqVauW2TlyAAAVh2EYOnv2rEJCQuTiwvW6C4JaDwAoK6jzV4ZaDwAoKwpa60tdE/3o0aMKDQ11dhoAABTK4cOHVaNGDWenUSZQ6wEAZQ11vnCo9QCAsuZytb7UNdGrVq0q6Z/EfXx8nJwNAACXZrPZFBoaatYvXB61HgBQVlDnrwy1HgBQVhS01pe6JnrOV718fHwotgCAMoOvKhcctR4AUNZQ5wuHWg8AKGsuV+uZ1A0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHHBzdgIAil9WVpY2bdqkY8eOKTg4WJGRkXJ1dXV2WgAAoIhQ6wEAKL+o84DzcSY6UM4tX75cdevWVdu2bfXggw+qbdu2qlu3rpYvX+7s1AAAQBGg1gMAUH5R54HSgSY6UI4tX75cPXr0UJMmTRQfH6+zZ88qPj5eTZo0UY8ePSi6AACUcdR6AADKL+o8UHpYDMMwnJ1EbjabTVarVSkpKfLx8XF2OkCZlZWVpbp166pJkyZauXKlXFz+7zOz7OxsRUdHa9euXdq3bx9fAwOuAnWr8NhnQNGg1gPFj5p1ZdhvwNWjzgMlo6A1izPRgXJq06ZNOnjwoF588UW7YitJLi4uiomJUWJiojZt2uSkDAEAwNWg1gMAUH5R54HShSY6UE4dO3ZMktS4ceN8l+eM58QBAICyhVoPAED5RZ0HShea6EA5FRwcLEnatWtXvstzxnPiAABA2UKtBwCg/KLOA6ULTXSgnIqMjFTt2rX12muvKTs7225Zdna2YmNjFRYWpsjISCdlCAAArga1HgCA8os6D5QuNNGBcsrV1VWTJ09WXFycoqOj7a7kHR0drbi4OL355ptcgAQAgDKKWg8AQPlFnQdKFzdnJwCg+HTr1k3Lli3Tc889p1atWpnjYWFhWrZsmbp16+bE7AAAwNWi1gMAUH5R54HSw2IYhuHsJHKz2WyyWq1KSUmRj4+Ps9MByoWsrCxt2rRJx44dU3BwsCIjI/m0Gigi1K3CY58BRY9aDxQPataVYb8BRYs6DxSfgtYszkQHKgBXV1e1adPG2WkAAIBiQq0HAKD8os4Dzsec6AAAAAAAAAAAOMCZ6AAAAAAAAEApxXQugPNxJjoAAAAAAABQCi1fvlx169ZV27Zt9eCDD6pt27aqW7euli9f7uzUgAqFJjoAAAAAAABQyixfvlw9evRQkyZNFB8fr7Nnzyo+Pl5NmjRRjx49aKQDJYgmOgAAAAAAAFCKZGVl6bnnnlOXLl20cuVKtWzZUt7e3mrZsqVWrlypLl26aMSIEcrKynJ2qkCFQBMdAAAAAAAAKEU2bdqkgwcP6sUXX5SLi337zsXFRTExMUpMTNSmTZuclCFQsdBEBwAAAAAAAEqRY8eOSZIaN26c7/Kc8Zw4AMWLJjoAAAAAAABQigQHB0uSdu3ale/ynPGcOADFiyY6AAAAAAAAUIpERkaqdu3aeu2115SdnW23LDs7W7GxsQoLC1NkZKSTMgQqFproAAAAAAAAQCni6uqqyZMnKy4uTtHR0YqPj9fZs2cVHx+v6OhoxcXF6c0335Srq6uzUwUqBJroAADAlJWVpZdeeklhYWHy8vJSnTp19Morr8gwDDPGMAyNGTNGwcHB8vLyUvv27bVv3z4nZg0AAACUP926ddOyZcu0c+dOtWrVSj4+PmrVqpV27dqlZcuWqVu3bs5OEagw3JydAAAAKD3eeOMNzZw5UwsWLFCjRo20bds29evXT1arVc8884wkaeLEiXr77be1YMEChYWF6aWXXlJUVJR+/fVXeXp6OvkZAAAAAOVHt27d1LVrV23atEnHjh1TcHCwIiMjOQMdKGE00QEAgGnz5s3q2rWrOnfuLEmqXbu2Pv74Y/3www+S/jkLferUqRo9erS6du0qSfrggw8UGBiolStXqlevXnnWmZ6ervT0dPO+zWYrgWcCAAAAlA+urq5q06aNs9MAKjSmcwEAAKZWrVpp7dq1+v333yVJv/zyi/73v/+pU6dOkqTExEQlJSWpffv25mOsVqtatGih+Pj4fNcZGxsrq9Vq3kJDQ4v/iQAAAAAAUEQ4Ex0AAJheeOEF2Ww21a9fX66ursrKytKrr76qhx56SJKUlJQkSQoMDLR7XGBgoLns32JiYjR8+HDzvs1mo5EOAAAAACgzaKIDAADTkiVL9NFHH2nRokVq1KiRtm/frqFDhyokJER9+vS5onV6eHjIw8OjiDMFAAAAAKBk0EQHAACmkSNH6oUXXjDnNm/SpIn+/PNPxcbGqk+fPgoKCpIkJScnKzg42HxccnKymjVr5oyUAQAAAAAoVoWaE33mzJlq2rSpfHx85OPjo4iICH399dfm8jZt2shisdjdnnzyySJPGgAAFI/z58/LxcX+8MDV1VXZ2dmSpLCwMAUFBWnt2rXmcpvNpq1btyoiIqJEcwUAAAAAoCQU6kz0GjVq6PXXX1e9evVkGIYWLFigrl276ueff1ajRo0kSY8//rjGjx9vPqZy5cpFmzEAACg299xzj1599VXVrFlTjRo10s8//6y33npLjz32mCTJYrFo6NChmjBhgurVq6ewsDC99NJLCgkJUXR0tHOTBwAAAACgGBSqiX7PPffY3X/11Vc1c+ZMbdmyxWyiV65c2fyqNwAAKFveeecdvfTSS3r66ad1/PhxhYSE6IknntCYMWPMmFGjRik1NVUDBw7UmTNndPvtt2vVqlXy9PR0YuYAAAAAABQPi2EYxpU8MCsrS0uXLlWfPn30888/q2HDhmrTpo12794twzAUFBSke+65Ry+99NIlz0ZPT09Xenq6ed9msyk0NFQpKSny8fG5ktQAACgxNptNVquVulUI7DMAQFlBzboy7DcAQFlR0JpV6AuL7ty5UxEREbpw4YK8vb21YsUKNWzYUJL04IMPqlatWgoJCdGOHTv0/PPPa+/evVq+fLnD9cXGxmrcuHGFTQMAAAAAAAAAgGJX6DPRMzIydOjQIaWkpGjZsmWaO3euNm7caDbSc1u3bp3atWunP/74Q3Xq1Ml3fZyJDgAoyzjTqvDYZwCAsoKadWXYbwCAsqLYzkR3d3dX3bp1JUnh4eH68ccfNW3aNL333nt5Ylu0aCFJl2yie3h4yMPDo7BpAAAAAAAAAABQ7FyudgXZ2dl2Z5Lntn37dklScHDw1W4GAAAAAAAAAIASV6gz0WNiYtSpUyfVrFlTZ8+e1aJFi7RhwwatXr1a+/fv16JFi3T33XfLz89PO3bs0LBhw9S6dWs1bdq0uPIHAAAAAAAAAKDYFKqJfvz4cT366KM6duyYrFarmjZtqtWrV+uuu+7S4cOH9e2332rq1KlKTU1VaGiounfvrtGjRxdX7gAAAAAAAAAAFKtCNdHff/99h8tCQ0O1cePGq04IAAAAAAAAAIDS4qrnRAcAAAAAAAAAoLyiiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA44ObsBAAAAAAAAADkLysrS5s2bdKxY8cUHBysyMhIubq6OjstoELhTHQAAAAAAACgFFq+fLnq1q2rtm3b6sEHH1Tbtm1Vt25dLV++3NmpARUKTXQAAAAAAACglFm+fLl69OihJk2aKD4+XmfPnlV8fLyaNGmiHj160EgHShBNdAAAAAAAAKAUycrK0nPPPacuXbpo5cqVatmypby9vdWyZUutXLlSXbp00YgRI5SVleXsVIEKgSY6AAAAAAAAUIps2rRJBw8e1IsvvigXF/v2nYuLi2JiYpSYmKhNmzY5KUOgYqGJDgAAAAAAAJQix44dkyQ1btw43+U54zlxAIoXTXQAAAAAAACgFAkODpYk7dq1K9/lOeM5cQCKF010AAAAAAAAoBSJjIxU7dq19dprryk7O9tuWXZ2tmJjYxUWFqbIyEgnZQhULDTRAQAAAAAAgFLE1dVVkydPVlxcnKKjoxUfH6+zZ88qPj5e0dHRiouL05tvvilXV1dnpwpUCG7OTgAAAAAAAACAvW7dumnZsmV67rnn1KpVK3M8LCxMy5YtU7du3ZyYHVCx0EQHAAAAAAAASqFu3bqpa9eu2rRpk44dO6bg4GBFRkZyBjpQwmiiAwAAAAAAAKWUq6ur2rRp4+w0gAqNOdEBAAAAAAAAAHCAJjoAAAAAAMUkNjZWt9xyi6pWraqAgABFR0dr7969djEXLlzQoEGD5OfnJ29vb3Xv3l3Jycl2MYcOHVLnzp1VuXJlBQQEaOTIkcrMzLSL2bBhg5o3by4PDw/VrVtX8+fPz5PP9OnTVbt2bXl6eqpFixb64YcfCp0LAAAVDU10AAAAAACKycaNGzVo0CBt2bJFa9as0cWLF9WhQwelpqaaMcOGDdMXX3yhpUuXauPGjTp69KjdBQOzsrLUuXNnZWRkaPPmzVqwYIHmz5+vMWPGmDGJiYnq3Lmz2rZtq+3bt2vo0KEaMGCAVq9ebcYsXrxYw4cP18svv6yffvpJN954o6KionT8+PEC5wIAQEVkMQzDcHYSudlsNlmtVqWkpMjHx8fZ6QAAcEnUrcJjnwEAyoriqFknTpxQQECANm7cqNatWyslJUX+/v5atGiRevToIUnas2ePGjRooPj4eLVs2VJff/21unTpoqNHjyowMFCSNGvWLD3//PM6ceKE3N3d9fzzz+vLL7/Url27zG316tVLZ86c0apVqyRJLVq00C233KJ3331XkpSdna3Q0FANGTJEL7zwQoFyyU96errS09Pt9ltoaCi1HgBQ6hW01nMmOgAAAAAAJSQlJUWS5OvrK0lKSEjQxYsX1b59ezOmfv36qlmzpuLj4yVJ8fHxatKkidlAl6SoqCjZbDbt3r3bjMm9jpyYnHVkZGQoISHBLsbFxUXt27c3YwqSS35iY2NltVrNW2hoaOF3DAAApRhNdAAAAAAASkB2draGDh2q2267TY0bN5YkJSUlyd3dXdWqVbOLDQwMVFJSkhmTu4Geszxn2aVibDab0tLSdPLkSWVlZeUbk3sdl8slPzExMUpJSTFvhw8fLsDeAACg7HBzdgIAAAAAAFQEgwYN0q5du/S///3P2akUKQ8PD3l4eDg7DQAAig1nogMAAAAAUMwGDx6suLg4rV+/XjVq1DDHg4KClJGRoTNnztjFJycnKygoyIxJTk7Oszxn2aVifHx85OXlperVq8vV1TXfmNzruFwuAABURDTRAQAAAAAoJoZhaPDgwVqxYoXWrVunsLAwu+Xh4eGqVKmS1q5da47t3btXhw4dUkREhCQpIiJCO3fu1PHjx82YNWvWyMfHRw0bNjRjcq8jJyZnHe7u7goPD7eLyc7O1tq1a82YguQCoORlZWVpw4YN+vjjj7VhwwZlZWU5OyWgwmE6FwAAAAAAismgQYO0aNEiffbZZ6patao5t7jVapWXl5esVqv69++v4cOHy9fXVz4+PhoyZIgiIiLUsmVLSVKHDh3UsGFDPfLII5o4caKSkpI0evRoDRo0yJxG5cknn9S7776rUaNG6bHHHtO6deu0ZMkSffnll2Yuw4cPV58+fXTzzTfr1ltv1dSpU5Wamqp+/fqZOV0uFwAla/ny5Xruued08OBBc6x27dqaPHmyunXr5rzEgAqGJjoAAAAAAMVk5syZkqQ2bdrYjc+bN099+/aVJE2ZMkUuLi7q3r270tPTFRUVpRkzZpixrq6uiouL01NPPaWIiAhVqVJFffr00fjx482YsLAwffnllxo2bJimTZumGjVqaO7cuYqKijJjevbsqRMnTmjMmDFKSkpSs2bNtGrVKruLjV4uFwAlZ/ny5erRo4c8PT3txpOTk9WjRw8tW7aMRjpQQiyGYRjOTiI3m80mq9WqlJQU+fj4ODsdAAAuibpVeOwzAEBZQc26Muw34OplZWUpJCREx48fV5cuXfSf//xHjRs31q5du/Tqq68qLi5OAQEBOnr0qFxdXZ2dLlBmFbRmMSc6AAAAAAAAUIps2LBBx48f1+23367PPvtMLVu2lLe3t1q2bKnPPvtMt912m44fP64NGzY4O1WgQqCJDgAAAAAAAJQiOc3xcePGyTAMuwuLGoahsWPH2sUBKF7MiQ4AAAAAAACUQps2bVL//v3zXFi0T58+zksKqIA4Ex0AAAAAAAAoRXIuRjx27Fg1btxY8fHxOnv2rOLj49W4cWONGzfOLg5A8aKJDgAAAAAAAJQikZGRcnH5v7adYRjmLYeLi4siIyOdkR5Q4TCdCwAAAAAAAFCKbN68WdnZ2ZKktWvXKi4uzlxWuXJlSVJ2drY2b97M2ehACeBMdAAAAAAAAKAUOXbsmCRp4cKFCggIsFsWEBCghQsX2sUBKF6ciQ4AAAAAAACUIsHBwZKkOnXq6Pfff9eMGTO0f/9+1alTR08//bQSEhLs4gAUr0KdiT5z5kw1bdpUPj4+8vHxUUREhL7++mtz+YULFzRo0CD5+fnJ29tb3bt3V3JycpEnDQAAAAAAAJRXkZGRql27toYMGaIbbrhBw4YN07vvvqthw4bphhtu0DPPPKOwsDDmRAdKSKGa6DVq1NDrr7+uhIQEbdu2TXfeeae6du2q3bt3S5KGDRumL774QkuXLtXGjRt19OhRdevWrVgSBwAAAAAAAMojV1dX3X///dq2bZvS0tI0e/ZsHT16VLNnz1ZaWpq2bdumHj16yNXV1dmpAhWCxch9Wd8r4Ovrq0mTJqlHjx7y9/fXokWL1KNHD0nSnj171KBBA8XHx6tly5b5Pj49PV3p6enmfZvNptDQUKWkpMjHx+dqUgMAoNjZbDZZrVbqViGwzwAAZQU168qw34Crl5WVpbp166p69eo6ceKE/vzzT3NZ7dq1Vb16dZ06dUr79u2jkQ5chYLWrCu+sGhWVpY++eQTpaamKiIiQgkJCbp48aLat29vxtSvX181a9ZUfHy8w/XExsbKarWat9DQ0CtNCQAAAAAAACjzNm3apIMHD+qdd97R/v37tX79ei1atEjr16/XH3/8obfffluJiYnatGmTs1MFKoRCN9F37twpb29veXh46Mknn9SKFSvUsGFDJSUlyd3dXdWqVbOLDwwMVFJSksP1xcTEKCUlxbwdPny40E8CAAAAAAAAKC+OHTsmSWrcuLGysrK0fft2bd68Wdu3b1dWVpYaN25sFwegeLkV9gE33HCDtm/frpSUFC1btkx9+vTRxo0brzgBDw8PeXh4XPHjAQAAAAAAgPIkODhYkvTkk09q8eLFyszMNJeNHDlSDzzwgF0cgOJV6Ca6u7u76tatK0kKDw/Xjz/+qGnTpqlnz57KyMjQmTNn7M5GT05OVlBQUJElDAAAAAAAAJRnkZGRslqt+uijj2SxWOyWZWVladGiRbJarYqMjHRShkDFcsVzoufIzs5Wenq6wsPDValSJa1du9ZctnfvXh06dEgRERFXuxkAAAAAAACgQsjKypLNZpMk+fv767nnntP06dP13HPPyd/fX9I/F0TMyspyZppAhVGoM9FjYmLUqVMn1axZU2fPntWiRYu0YcMGrV69WlarVf3799fw4cPl6+srHx8fDRkyRBEREWrZsmVx5Q8AAAAAAACUK++8844Mw5C/v79OnTqlyZMnm8vc3Nzk7++vEydO6J133tFzzz3nxEyBiqFQTfTjx4/r0Ucf1bFjx2S1WtW0aVOtXr1ad911lyRpypQpcnFxUffu3ZWenq6oqCjNmDGjWBIHAAAAAAAAyqP//e9/kqQTJ06oc+fOqlu3rtLS0uTl5aU//vhDX375pRlHEx0ofoVqor///vuXXO7p6anp06dr+vTpV5UUAAAAAAAAUFFVqVJFkhQaGqrdu3ebTXNJql27tkJDQ3X48GEzDkDxuuo50QEAAAAAAAAUnWbNmkmSDh8+rMaNGys+Pl5nz55VfHy8GjdurMOHD9vFAShehToTHQAAAAAAAEDxCgwMNH/eunWrli5dqoSEBB04cEBbt27NNw5A8aGJDgAAAAAAAJQip06dMn8+ceKE3nrrrcvGASg+TOcCAAAAAAAAlCL+/v5FGgfg6tBEBwAAAAAAAEqRoKAg82cXF/v2Xe77ueMAFB+a6AAAAAAAAEApkpWVZf6cnZ1ttyz3/dxxAIoPc6IDAAAAAAAApcjGjRvNn/39/dW2bVtVqVJFqampWr9+vU6cOGHGdejQwVlpAhUGTXQAAAAAAACgFPnzzz8lSdWrV9fff/+tJUuWmMtcXV3l5+enU6dOmXEAihfTuQAAAAAAAACl0MmTJ1WpUiW7sUqVKunUqVNOygiomDgTHQAAAAAAAChFatasaf7s7e2tQYMG6brrrtOBAwe0YMECXbhwIU8cgOJDEx0AAAAAAAAoRa655hrz55MnT2ry5MmXjQNQfJjOBQAAAAAAAChFzpw5Y/7s4mLfvst9P3ccgOJDEx0AAAAAAAAopbKzsy95H0Dxo4kOAAAAAAAAlCK+vr7mzxaLxW5Z7vu54wAUH5roAAAAAAAAQClSvXp182c3N/tLGua+nzsOQPGhiQ4AAAAAAACUIj/++KP588WLF+2W5b6fOw5A8aGJDgAAAAAAAJQiuec99/T0tFvm5eWVbxyA4kMTHQAAAAAAACgjDMNwdgpAhUMTHQAAAAAAAChFrFZrkcYBuDo00QEAgJ2//vpLDz/8sPz8/OTl5aUmTZpo27Zt5nLDMDRmzBgFBwfLy8tL7du31759+5yYMQAAAFC+uLj8X8vO29tbfn5+qly5svz8/OTt7Z1vHIDiw28aAAAwnT59WrfddpsqVaqkr7/+Wr/++qsmT56sa665xoyZOHGi3n77bc2aNUtbt25VlSpVFBUVpQsXLjgxcwAAAKD88PX1lSRZLBadPHlSp06d0vnz53Xq1CmdPHlSFovFLg5A8XJzdgIAAKD0eOONNxQaGqp58+aZY2FhYebPhmFo6tSpGj16tLp27SpJ+uCDDxQYGKiVK1eqV69eJZ4zAAAAUN4EBQVJcjz/ec54ThyA4sWZ6AAAwPT555/r5ptv1v3336+AgADddNNNmjNnjrk8MTFRSUlJat++vTlmtVrVokULxcfH57vO9PR02Ww2uxsAAAAAx3JP2VIUcQCuDk10AABgOnDggGbOnKl69epp9erVeuqpp/TMM89owYIFkqSkpCRJUmBgoN3jAgMDzWX/FhsbK6vVat5CQ0OL90kAAAAAZVxMTIz5s7u7u92y3PdzxwEoPjTRAQCAKTs7W82bN9drr72mm266SQMHDtTjjz+uWbNmXfE6Y2JilJKSYt4OHz5chBkDAAAA5c+BAwfMny9evGi3LPf93HEAig9NdAAAYAoODlbDhg3txho0aKBDhw5J+r85F5OTk+1ikpOTHc7H6OHhIR8fH7sbAAAAAMdyLhwq5Z0XPff93HEAig9NdAAAYLrtttu0d+9eu7Hff/9dtWrVkvTPRUaDgoK0du1ac7nNZtPWrVsVERFRorkCAAAA5dUtt9xSpHEArg5NdAAAYBo2bJi2bNmi1157TX/88YcWLVqk2bNna9CgQZL+OdNl6NChmjBhgj7//HPt3LlTjz76qEJCQhQdHe3c5AEAAIBy4rrrrivSOABXx83ZCQAAgNLjlltu0YoVKxQTE6Px48crLCxMU6dO1UMPPWTGjBo1SqmpqRo4cKDOnDmj22+/XatWrZKnp6cTMwcAAADKj/Xr1xdpHICrYzH+PbGSk9lsNlmtVqWkpDBnKgCg1KNuFR77DABQVlCzrgz7Dbh6lStXVlpa2mXjvLy8dP78+RLICCifClqzmM4FAAAAAAAAKEXc3Ao2eURB4wBcHZroAAAAAAAAQCly0003FWkcgKtDEx0AAAAAAAAoRTp06FCkcQCuDk10AAAAAAAAoBTZvXt3kcYBuDo00QEAAAAAAIBS5KeffirSOABXhyY6AAAAAAAAUIocPny4SOMAXB2a6AAAAAAAAEApkp6eXqRxAK5OoZrosbGxuuWWW1S1alUFBAQoOjpae/futYtp06aNLBaL3e3JJ58s0qQBAAAAAACA8io7O7tI4wBcnUI10Tdu3KhBgwZpy5YtWrNmjS5evKgOHTooNTXVLu7xxx/XsWPHzNvEiROLNGkAAAAAAAAAAEqCW2GCV61aZXd//vz5CggIUEJCglq3bm2OV65cWUFBQUWTIQAAAAAAAFCBGIZRpHEArs5VzYmekpIiSfL19bUb/+ijj1S9enU1btxYMTExOn/+vMN1pKeny2az2d0AAAAAAAAAACgNCnUmem7Z2dkaOnSobrvtNjVu3Ngcf/DBB1WrVi2FhIRox44dev7557V3714tX7483/XExsZq3LhxV5oGAAAAAAAAAADF5oqb6IMGDdKuXbv0v//9z2584MCB5s9NmjRRcHCw2rVrp/3796tOnTp51hMTE6Phw4eb9202m0JDQ680LQAAAAAAAKBMc3FxKdBFQ11crmqSCQAFdEVN9MGDBysuLk7fffedatSoccnYFi1aSJL++OOPfJvoHh4e8vDwuJI0AAAAAAAAgHKnIA30wsQBuDqFaqIbhqEhQ4ZoxYoV2rBhg8LCwi77mO3bt0uSgoODryhBAAAAAAAAAACcpVBN9EGDBmnRokX67LPPVLVqVSUlJUmSrFarvLy8tH//fi1atEh33323/Pz8tGPHDg0bNkytW7dW06ZNi+UJAAAAAAAAAABQXArVRJ85c6YkqU2bNnbj8+bNU9++feXu7q5vv/1WU6dOVWpqqkJDQ9W9e3eNHj26yBIGAAAAAAAAAKCkFOrqA4Zh5Hvr27evJCk0NFQbN27UqVOndOHCBe3bt08TJ06Uj49PceQOAAAAAECp99133+mee+5RSEiILBaLVq5cabe8b9++slgsdreOHTvaxfz999966KGH5OPjo2rVqql///46d+6cXcyOHTsUGRkpT09PhYaGauLEiXlyWbp0qerXry9PT081adJEX331ld1ywzA0ZswYBQcHy8vLS+3bt9e+ffuKZkcAAFBGcQlfAAAAAACKUWpqqm688UZNnz7dYUzHjh117Ngx8/bxxx/bLX/ooYe0e/durVmzRnFxcfruu+80cOBAc7nNZlOHDh1Uq1YtJSQkaNKkSRo7dqxmz55txmzevFm9e/dW//799fPPPys6OlrR0dHatWuXGTNx4kS9/fbbmjVrlrZu3aoqVaooKipKFy5cKMI9AgBA2WIxDMNwdhK52Ww2Wa1WpaSkcAY7AKDUo24VHvsMAFBWFEfNslgsWrFihaKjo82xvn376syZM3nOUM/x22+/qWHDhvrxxx918803S5JWrVqlu+++W0eOHFFISIhmzpyp//znP0pKSpK7u7sk6YUXXtDKlSu1Z88eSVLPnj2VmpqquLg4c90tW7ZUs2bNNGvWLBmGoZCQED333HMaMWKEJCklJUWBgYGaP3++evXqVaDnSK0Hrp7FYilwbClr7QFlSkFrFmeiAwAAAADgZBs2bFBAQIBuuOEGPfXUUzp16pS5LD4+XtWqVTMb6JLUvn17ubi4aOvWrWZM69atzQa6JEVFRWnv3r06ffq0GdO+fXu77UZFRSk+Pl6SlJiYqKSkJLsYq9WqFi1amDH5SU9Pl81ms7sBAFCe0EQHAAAAAMCJOnbsqA8++EBr167VG2+8oY0bN6pTp07KysqSJCUlJSkgIMDuMW5ubvL19VVSUpIZExgYaBeTc/9yMbmX535cfjH5iY2NldVqNW+hoaGFev4AAJR2bs5OAAAAAACAiiz3NClNmjRR06ZNVadOHW3YsEHt2rVzYmYFExMTo+HDh5v3bTYbjXQAQLnCmegAAAAAAJQi1113napXr64//vhDkhQUFKTjx4/bxWRmZurvv/9WUFCQGZOcnGwXk3P/cjG5l+d+XH4x+fHw8JCPj4/dDQCA8oQmOgAAAAAApciRI0d06tQpBQcHS5IiIiJ05swZJSQkmDHr1q1Tdna2WrRoYcZ89913unjxohmzZs0a3XDDDbrmmmvMmLVr19pta82aNYqIiJAkhYWFKSgoyC7GZrNp69atZgwAABURTXSgAkhLS9PgwYMVFRWlwYMHKy0tzdkpAQCAIkStB0q3c+fOafv27dq+fbukfy7guX37dh06dEjnzp3TyJEjtWXLFh08eFBr165V165dVbduXUVFRUmSGjRooI4dO+rxxx/XDz/8oO+//16DBw9Wr169FBISIkl68MEH5e7urv79+2v37t1avHixpk2bZjfNyrPPPqtVq1Zp8uTJ2rNnj8aOHatt27Zp8ODBkiSLxaKhQ4dqwoQJ+vzzz7Vz5049+uijCgkJUXR0dInuMwAAShOLYRiGs5PIzWazyWq1KiUlha+AAUUgOjpan332WZ7xrl27auXKlSWfEFDOULcKj30GFC1qPVB8iqpmbdiwQW3bts0z3qdPH82cOVPR0dH6+eefdebMGYWEhKhDhw565ZVX7C7w+ffff2vw4MH64osv5OLiou7du+vtt9+Wt7e3GbNjxw4NGjRIP/74o6pXr64hQ4bo+eeft9vm0qVLNXr0aB08eFD16tXTxIkTdffdd5vLDcPQyy+/rNmzZ+vMmTO6/fbbNWPGDF1//fUFfr7UeuDqWSyWAseWstYeUKYUtGbRRAfKsZw/qt3d3TV8+HANGDBAc+fO1VtvvaWMjAz+uAaKAHWr8NhnQNGh1gPFi5p1ZdhvwNWjiQ6UDJroQAWXlpamypUry93dXWfPnpW7u7u5LCMjQ1WrVlVGRobOnz8vLy8vJ2YKlG3UrcJjnwFFg1oPFD9q1pVhvwFXjyY6UDIKWrOYEx0op0aOHClJGj58uN0f1ZLk7u6uoUOH2sUBAICyhVoPAAAAlAya6EA5tW/fPknSgAED8l3ev39/uzgAAFC2UOsBAACAkkETHSin6tWrJ0maO3duvsvff/99uzgAAFC2UOsBAACAksGc6EA5xTypQMmgbhUe+wwoGtR6oPhRs64M+w24esyJDpQM5kQHKjgvLy917drV/CP6+eef1++//67nn3/e/KO6a9eu/FENAEAZRa0HAAAASgZnogPlXHR0tD777LM84127dtXKlStLPiGgnKFuFR77DCha1Hqg+FCzrgz7Dbh6nIkOlIyC1iy3EswJgBOsXLlSaWlpGjlypPbt26d69epp0qRJnJUGAEA5Qa0HAAAAihdNdKAC8PLy0rvvvuvsNAAAQDGh1gMAAADFhznRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMCBQjXRY2Njdcstt6hq1aoKCAhQdHS09u7daxdz4cIFDRo0SH5+fvL29lb37t2VnJxcpEkDAAAAAAAAAFASCtVE37hxowYNGqQtW7ZozZo1unjxojp06KDU1FQzZtiwYfriiy+0dOlSbdy4UUePHlW3bt2KPHEAAAAAAAAAAIqbW2GCV61aZXd//vz5CggIUEJCglq3bq2UlBS9//77WrRoke68805J0rx589SgQQNt2bJFLVu2zLPO9PR0paenm/dtNtuVPA8AAAAAAAAAAIrcVc2JnpKSIkny9fWVJCUkJOjixYtq3769GVO/fn3VrFlT8fHx+a4jNjZWVqvVvIWGhl5NSgAAAAAAAAAAFJkrbqJnZ2dr6NChuu2229S4cWNJUlJSktzd3VWtWjW72MDAQCUlJeW7npiYGKWkpJi3w4cPX2lKAAAAAAAAAAAUqUJN55LboEGDtGvXLv3vf/+7qgQ8PDzk4eFxVesAAAAAAAAAAKA4XNGZ6IMHD1ZcXJzWr1+vGjVqmONBQUHKyMjQmTNn7OKTk5MVFBR0VYkCAAAAAAAAAFDSCtVENwxDgwcP1ooVK7Ru3TqFhYXZLQ8PD1elSpW0du1ac2zv3r06dOiQIiIiiiZjAAAAAAAAAABKSKGmcxk0aJAWLVqkzz77TFWrVjXnObdarfLy8pLValX//v01fPhw+fr6ysfHR0OGDFFERIRatmxZLE8AAAAAAAAAAIDiUqgm+syZMyVJbdq0sRufN2+e+vbtK0maMmWKXFxc1L17d6WnpysqKkozZswokmQBAAAAAAAAAChJhWqiG4Zx2RhPT09Nnz5d06dPv+KkAAAAAAAAAAAoDa7owqIAAAAAAAAAAFQENNEBAAAAAAAAAHCAJjoAAAAAAAAAAA7QRAcAAAAAAAAAwAGa6AAAAAAAAAAAOEATHQAAAAAAAAAAB2iiAwAAAAAAAADgAE10AAAAAAAAAAAccHN2AgAAAAAAAEB5dv78ee3Zs6dY1v3TTz8VOLZ+/fqqXLlyseQBlGc00QEAQL5ef/11xcTE6Nlnn9XUqVMlSRcuXNBzzz2nTz75ROnp6YqKitKMGTMUGBjo3GQBAACAUmzPnj0KDw8vlnUXZr0JCQlq3rx5seQBlGc00QEAQB4//vij3nvvPTVt2tRufNiwYfryyy+1dOlSWa1WDR48WN26ddP333/vpEwBAACA0q9+/fpKSEgocHxhG+OFyQNA4dFEBwAAds6dO6eHHnpIc+bM0YQJE8zxlJQUvf/++1q0aJHuvPNOSdK8efPUoEEDbdmyRS1btnRWygAAAECpVrly5UKdAb506VLdf//9BYrjzHKg+HFhUQAAYGfQoEHq3Lmz2rdvbzeekJCgixcv2o3Xr19fNWvWVHx8vMP1paeny2az2d0AAAAAONajR48ijQNwdTgTHQAAmD755BP99NNP+vHHH/MsS0pKkru7u6pVq2Y3HhgYqKSkJIfrjI2N1bhx44o6VQAAAKBcMwxDFovlkssBlAzORAcAAJKkw4cP69lnn9VHH30kT0/PIltvTEyMUlJSzNvhw4eLbN0AAABAeWYYhpYuXWo3tnTpUhroQAmjiQ4AACT9M13L8ePH1bx5c7m5ucnNzU0bN27U22+/LTc3NwUGBiojI0Nnzpyxe1xycrKCgoIcrtfDw0M+Pj52NwAAAAAF06NHD/PioQkJCUzhAjgB07kAAABJUrt27bRz5067sX79+ql+/fp6/vnnFRoaqkqVKmnt2rXq3r27JGnv3r06dOiQIiIinJEyAAAAAADFjiY6AACQJFWtWlWNGze2G6tSpYr8/PzM8f79+2v48OHy9fWVj4+PhgwZooiICLVs2dIZKQMAAAAAUOxoogMAgAKbMmWKXFxc1L17d6WnpysqKkozZsxwdloAAAAAABQbmugAAMChDRs22N339PTU9OnTNX36dOckBAAAAABACePCogAAAAAAAAAAOEATHQAAAAAAAAAAB2iiAwAAAAAAAADgAE10AAAAAAAAAAAcoIkOAAAAAAAAAIADNNEBAAAAAAAAAHCAJjoAAAAAAAAAAA7QRAcAAAAAAAAAwAGa6AAAAAAAFKPvvvtO99xzj0JCQmSxWLRy5Uq75YZhaMyYMQoODpaXl5fat2+vffv22cX8/fffeuihh+Tj46Nq1aqpf//+OnfunF3Mjh07FBkZKU9PT4WGhmrixIl5clm6dKnq168vT09PNWnSRF999VWhcwEAoKKhiQ4AAAAAQDFKTU3VjTfeqOnTp+e7fOLEiXr77bc1a9Ysbd26VVWqVFFUVJQuXLhgxjz00EPavXu31qxZo7i4OH333XcaOHCgudxms6lDhw6qVauWEhISNGnSJI0dO1azZ882YzZv3qzevXurf//++vnnnxUdHa3o6Gjt2rWrULkAAFDRWAzDMJydRG42m01Wq1UpKSny8fFxdjoAAFwSdavw2GcAgLKiOGqWxWLRihUrFB0dLemfM79DQkL03HPPacSIEZKklJQUBQYGav78+erVq5d+++03NWzYUD/++KNuvvlmSdKqVat0991368iRIwoJCdHMmTP1n//8R0lJSXJ3d5ckvfDCC1q5cqX27NkjSerZs6dSU1MVFxdn5tOyZUs1a9ZMs2bNKlAu+UlPT1d6errdfgsNDaXWA0Xop59+Unh4uBISEtS8eXNnpwOUGwWt9ZyJDgAAAACAkyQmJiopKUnt27c3x6xWq1q0aKH4+HhJUnx8vKpVq2Y20CWpffv2cnFx0datW82Y1q1bmw10SYqKitLevXt1+vRpMyb3dnJicrZTkFzyExsbK6vVat5CQ0OvdHcAAFAq0UQHAAAAAMBJkpKSJEmBgYF244GBgeaypKQkBQQE2C13c3OTr6+vXUx+68i9DUcxuZdfLpf8xMTEKCUlxbwdPnz4Ms8aAICyxc3ZCQAAAAAAgLLLw8NDHh4ezk4DAIBiw5noAAAAAAA4SVBQkCQpOTnZbjw5OdlcFhQUpOPHj9stz8zM1N9//20Xk986cm/DUUzu5ZfLBQCAiogmOgAAAAAAThIWFqagoCCtXbvWHLPZbNq6dasiIiIkSRERETpz5owSEhLMmHXr1ik7O1stWrQwY7777jtdvHjRjFmzZo1uuOEGXXPNNWZM7u3kxORspyC5AABQEdFEBwAAAACgGJ07d07bt2/X9u3bJf1zAc/t27fr0KFDslgsGjp0qCZMmKDPP/9cO3fu1KOPPqqQkBBFR0dLkho0aKCOHTvq8ccf1w8//KDvv/9egwcPVq9evRQSEiJJevDBB+Xu7q7+/ftr9+7dWrx4saZNm6bhw4ebeTz77LNatWqVJk+erD179mjs2LHatm2bBg8eLEkFygUAgIqo0E307777Tvfcc49CQkJksVi0cuVKu+V9+/aVxWKxu3Xs2LGo8gUAAAAAoEzZtm2bbrrpJt10002SpOHDh+umm27SmDFjJEmjRo3SkCFDNHDgQN1yyy06d+6cVq1aJU9PT3MdH330kerXr6927drp7rvv1u23367Zs2eby61Wq7755hslJiYqPDxczz33nMaMGaOBAweaMa1atdKiRYs0e/Zs3XjjjVq2bJlWrlypxo0bmzEFyQUAgIrGYhiGUZgHfP311/r+++8VHh6ubt26acWKFXafSPft21fJycmaN2+eOebh4WF+fexybDabrFarUlJS5OPjU5jUAAAocdStwmOfAQDKCmrWlWG/AUXvp59+Unh4uBISEtS8eXNnpwOUGwWtWW6FXXGnTp3UqVOnS8Z4eHhw0REAAAAAAAAAQJlXLHOib9iwQQEBAbrhhhv01FNP6dSpUw5j09PTZbPZ7G4AAAAAAAAAAJQGRd5E79ixoz744AOtXbtWb7zxhjZu3KhOnTopKysr3/jY2FhZrVbzFhoaWtQpAQAAAAAAAABwRQo9ncvl9OrVy/y5SZMmatq0qerUqaMNGzaoXbt2eeJjYmLsrhZus9lopAMAAAAAAAAASoVimc4lt+uuu07Vq1fXH3/8ke9yDw8P+fj42N0AAAAAAAAAACgNir2JfuTIEZ06dUrBwcHFvSkAAAAAAAAAAIpUoadzOXfunN1Z5YmJidq+fbt8fX3l6+urcePGqXv37goKCtL+/fs1atQo1a1bV1FRUUWaOAAAAAAAAAAAxa3QTfRt27apbdu25v2c+cz79OmjmTNnaseOHVqwYIHOnDmjkJAQdejQQa+88oo8PDyKLmsAAAAAAAAAAEpAoZvobdq0kWEYDpevXr36qhICAAAAAAAAAKC0KPY50QEAAAAAAAAAKKtoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAOFLqJ/t133+mee+5RSEiILBaLVq5cabfcMAyNGTNGwcHB8vLyUvv27bVv376iyhcAAAAAAAAAgBJT6CZ6amqqbrzxRk2fPj3f5RMnTtTbb7+tWbNmaevWrapSpYqioqJ04cKFq04WAAAAAAAAAICS5FbYB3Tq1EmdOnXKd5lhGJo6dapGjx6trl27SpI++OADBQYGauXKlerVq1eex6Snpys9Pd28b7PZCpsSAAAAAAAAUKwOHTqkkydPOmXbv/32m92/zlK9enXVrFnTqTkAzlDoJvqlJCYmKikpSe3btzfHrFarWrRoofj4+Hyb6LGxsRo3blxRpgEAAAAAAAAUmUOHDumG+g10Ie28U/N4+OGHnbp9T6/K2rvnNxrpqHCKtImelJQkSQoMDLQbDwwMNJf9W0xMjIYPH27et9lsCg0NLcq0AAAAAAAAgCt28uRJXUg7L78uz6mSX8n3rYzMDGWmJMvNGiiLm3uJb1+SLp46rFNxk3Xy5Ema6KhwirSJfiU8PDzk4eHh7DQAAAAAAACAS6rkFyqPoLrO2XiNhs7ZLoDCX1j0UoKCgiRJycnJduPJycnmMgAAAAAAAAAAyooibaKHhYUpKChIa9euNcdsNpu2bt2qiIiIotwUAAAAAAAAAADFrtDTuZw7d05//PGHeT8xMVHbt2+Xr6+vatasqaFDh2rChAmqV6+ewsLC9NJLLykkJETR0dFFmTcAAAAAAAAAAMWu0E30bdu2qW3btub9nIuC9unTR/Pnz9eoUaOUmpqqgQMH6syZM7r99tu1atUqeXp6Fl3WAAAAAAAAAACUgEJP59KmTRsZhpHnNn/+fEmSxWLR+PHjlZSUpAsXLujbb7/V9ddfX9R5AwCAYhAbG6tbbrlFVatWVUBAgKKjo7V37167mAsXLmjQoEHy8/OTt7e3unfvnud6KAAAAAAAlBdFOic6gNIpIyNDU6dO1ZAhQzR16lRlZGQ4OyUApdTGjRs1aNAgbdmyRWvWrNHFixfVoUMHpaammjHDhg3TF198oaVLl2rjxo06evSounXr5sSsAVDrAQAAgOJT6OlcAJQto0aN0pQpU5SZmWmOjRw5UsOGDdPEiROdmBmA0mjVqlV29+fPn6+AgAAlJCSodevWSklJ0fvvv69FixbpzjvvlCTNmzdPDRo00JYtW9SyZcs860xPT1d6erp532azFe+TACoYaj0AAABQvDgTHSjHRo0apUmTJsnPz09z5szRsWPHNGfOHPn5+WnSpEkaNWqUs1MEUMqlpKRIknx9fSVJCQkJunjxotq3b2/G1K9fXzVr1lR8fHy+64iNjZXVajVvoaGhxZ84UEFQ6wEAAIDiRxMdKKcyMjI0ZcoUBQYG6siRIxowYICCgoI0YMAAHTlyRIGBgZoyZQpf9wbgUHZ2toYOHarbbrtNjRs3liQlJSXJ3d1d1apVs4sNDAxUUlJSvuuJiYlRSkqKeTt8+HBxpw5UCNR6AAAAoGTQRAfKqRkzZigzM1MTJkyQm5v9zE1ubm4aP368MjMzNWPGDCdlCKC0GzRokHbt2qVPPvnkqtbj4eEhHx8fuxuAq0etBwAAAEoGTXSgnNq/f78kqUuXLvkuzxnPiQOA3AYPHqy4uDitX79eNWrUMMeDgoKUkZGhM2fO2MUnJycrKCiohLMEKjZqPQAAAFAyaKID5VSdOnUkSXFxccrKytKGDRv08ccfa8OGDcrKylJcXJxdHABIkmEYGjx4sFasWKF169YpLCzMbnl4eLgqVaqktWvXmmN79+7VoUOHFBERUdLpAhUatR4AAAAoGRbDMAxnJ5GbzWaT1WpVSkoKX/cGrkJGRoaqVKmiKlWqqFq1avrzzz/NZbVq1dKZM2eUmpqq1NRUubu7OzFToGwrb3Xr6aef1qJFi/TZZ5/phhtuMMetVqu8vLwkSU899ZS++uorzZ8/Xz4+PhoyZIgkafPmzQXaRnnbZ4CzUOuB4kfNujLsN5RHP/30k8LDwxXUZ6o8guo6Ox2nSE/6Q0kLhiohIUHNmzd3djpAkShozeJMdKCccnd3V+fOnZWSkqJjx47p+eef1++//67nn39ex44dU0pKijp37swf1QDszJw5UykpKWrTpo2Cg4PN2+LFi82YKVOmqEuXLurevbtat26toKAgLV++3IlZAxUTtR4oP8aOHSuLxWJ3q1+/vrn8woULGjRokPz8/OTt7a3u3bsrOTnZbh2HDh1S586dVblyZQUEBGjkyJHKzMy0i9mwYYOaN28uDw8P1a1bV/Pnz8+Ty/Tp01W7dm15enqqRYsW+uGHH4rlOQMAUJa4XT4EQFmUlZWlX375RXXq1NHBgwf1xhtv6I033pD0z8XG6tSpox07digrK0uurq5OzhZAaVGQL6h5enpq+vTpmj59eglkBMARaj1QvjRq1EjffvuteT/3BYOHDRumL7/8UkuXLpXVatXgwYPVrVs3ff/995L+eT/o3LmzgoKCtHnzZh07dkyPPvqoKlWqpNdee02SlJiYqM6dO+vJJ5/URx99pLVr12rAgAEKDg5WVFSUJGnx4sUaPny4Zs2apRYtWmjq1KmKiorS3r17FRAQUIJ7AwCA0oUz0YFyatOmTTp48KAWLlyo8+fPa8qUKRo8eLCmTJmi1NRUffjhh0pMTNSmTZucnSoAALgC1HqgfHFzc1NQUJB5q169uiQpJSVF77//vt566y3deeedCg8P17x587R582Zt2bJFkvTNN9/o119/1cKFC9WsWTN16tRJr7zyiqZPn66MjAxJ0qxZsxQWFqbJkyerQYMGGjx4sHr06KEpU6aYObz11lt6/PHH1a9fPzVs2FCzZs1S5cqV9d///rfkdwgAAKUIZ6ID5dSxY8ckSY0bN5a7u7uGDh1qt7xx48Z2cQAAoGyh1gPly759+xQSEiJPT09FREQoNjZWNWvWVEJCgi5evKj27dubsfXr11fNmjUVHx+vli1bKj4+Xk2aNFFgYKAZExUVpaeeekq7d+/WTTfdpPj4eLt15MTkvHdkZGQoISFBMTEx5nIXFxe1b99e8fHxl8w9PT1d6enp5n2bzXY1uwIAgFKHM9GBcio4OFiStGvXLmVkZGjq1KkaMmSIpk6dqoyMDO3atcsuDgAAlC3UeqD8aNGihebPn69Vq1Zp5syZSkxMVGRkpM6ePaukpCS5u7urWrVqdo8JDAxUUlKSJCkpKcmugZ6zPGfZpWJsNpvS0tJ08uRJZWVl5RuTsw5HYmNjZbVazVtoaGih9wEAAKUZZ6ID5VRkZKRq166thx9+WH/++afdRYVGjhypWrVqKSwsTJGRkU7MEgAAXClqPVB+dOrUyfy5adOmatGihWrVqqUlS5bIy8vLiZkVTExMjIYPH27et9lsNNIBAOUKZ6ID5ZSrq6tuvPFG7d+/Xy4uLnrhhRe0b98+vfDCC3JxcdH+/fvVtGlTLjQGAEAZRa0Hyq9q1arp+uuv1x9//KGgoCBlZGTozJkzdjHJyckKCgqSJAUFBSk5OTnP8pxll4rx8fGRl5eXqlevLldX13xjctbhiIeHh3x8fOxuAACUJzTRgXIqIyNDX375paxWq4KCgvT666+rXr16ev311xUcHCyr1aovv/zSvNAQAAAoW6j1QPl17tw57d+/X8HBwQoPD1elSpW0du1ac/nevXt16NAhRURESJIiIiK0c+dOHT9+3IxZs2aNfHx81LBhQzMm9zpyYnLW4e7urvDwcLuY7OxsrV271owBAKCiookOlFMzZsxQZmam3nzzTR04cEDr16/XokWLtH79eu3fv18TJ05UZmamZsyY4exUAQDAFaDWA+XHiBEjtHHjRh08eFCbN2/WfffdJ1dXV/Xu3VtWq1X9+/fX8OHDtX79eiUkJKhfv36KiIhQy5YtJUkdOnRQw4YN9cgjj+iXX37R6tWrNXr0aA0aNEgeHh6SpCeffFIHDhzQqFGjtGfPHs2YMUNLlizRsGHDzDyGDx+uOXPmaMGCBfrtt9/01FNPKTU1Vf369XPKfgEAoLRgTnSgnNq/f78kqUuXLnJ1dVWbNm3slnfp0sUuDgAAlC3UeqD8OHLkiHr37q1Tp07J399ft99+u7Zs2SJ/f39J0pQpU+Ti4qLu3bsrPT1dUVFRdh+Qubq6Ki4uTk899ZQiIiJUpUoV9enTR+PHjzdjwsLC9OWXX2rYsGGaNm2aatSooblz5yoqKsqM6dmzp06cOKExY8YoKSlJzZo106pVq/JcbBQAgIqGJjpQTtWpU0eSFBcXpwEDBuRZHhcXZxcHAADKFmo9UH588sknl1zu6emp6dOna/r06Q5jatWqpa+++uqS62nTpo1+/vnnS8YMHjxYgwcPvmQMAAAVDdO5AOXU008/LTc3N40ePVqZmZl2yzIzMzVmzBi5ubnp6aefdlKGAADgalDrAQAAgJLBmehAOeXu7q5hw4Zp0qRJqlGjhsaPH68uXbooLi5OY8aMUXJyskaOHCl3d3dnpwoAAK4AtR4AgJIV5G1RE/ejqmRxdXYqTnHR/ajkbXF2GoBT0EQHyrGJEydK+mcOxSeeeMIcd3Nz08iRI83lAACgbKLWAwBQcp4Id9fYkFnOTsN5QqSx4Xw4j4qJJjpQzk2cOFETJkzQjBkztH//ftWpU0dPP/00Z6UBAFBOUOsBACgZ7yVkaPP1z6qSX6izU3GKi6cOa2fCJN3r7EQAJ6CJDlQA7u7uGjp0qLPTAAAAxYRaDwBA8Us6Z0gZIfIwwpydilOkZ2T9sw+ACogLiwIAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ICbsxMAUPwyMjI0Y8YM7d+/X3Xq1NHTTz8td3d3Z6cFAACKCLUeAAAAKD400YFybtSoUZoyZYoyMzPNsZEjR2rYsGGaOHGiEzMDAABFgVoPAAAAFC+mcwHKsVGjRmnSpEny8/PTnDlzdOzYMc2ZM0d+fn6aNGmSRo0a5ewUAQDAVaDWAwAAAMXPYhiG4ewkcrPZbLJarUpJSZGPj4+z0wHKrIyMDFWpUkV+fn46cuSI3Nz+74snmZmZqlGjhk6dOqXU1FS+7g1cBepW4bHPgKJBrQeKHzXryrDfUB799NNPCg8PV1CfqfIIquvsdJwiPekPJS0YqoSEBDVv3tzZ6QBFoqA1q8jPRB87dqwsFovdrX79+kW9GQCXMWPGDGVmZmrChAl2f1RLkpubm8aPH6/MzEzNmDHDSRkCAICrQa0HAAAASkaxzIneqFEjffvtt/+3ETemXgdK2v79+yVJXbp0yXd5znhOHAAAKFuo9QAAAEDJKJY50d3c3BQUFGTeqlevXhybAXAJderUkSTFxcUpLS1NgwcPVlRUlAYPHqy0tDTFxcXZxQEAgLKFWg8AAACUjCKfE33s2LGaNGmSrFarPD09FRERodjYWNWsWTPf+PT0dKWnp5v3bTabQkNDmTsNuEo586S6uLgoIyMjz3J3d3dlZ2czTypwlZjzs/DYZ0DRoNYDxY+adWXYbyiPmBOdOdFRPjltTvQWLVpo/vz5WrVqlWbOnKnExERFRkbq7Nmz+cbHxsbKarWat9DQ0KJOCaiQ3N3dVatWrXz/qJb++cO7Vq1a/FENAEAZRa0HAAAASkaRN9E7deqk+++/X02bNlVUVJS++uornTlzRkuWLMk3PiYmRikpKebt8OHDRZ0SUCGlpaVddg7U/fv3Ky0trYQyAgAARYlaDwAAAJSMYpkTPbdq1arp+uuv1x9//JHvcg8PD/n4+NjdAFy9oUOHSpJcXV119uxZTZkyRYMHD9aUKVN09uxZubq62sUBAICyhVoPAAAAlAy34t7AuXPntH//fj3yyCPFvSkAuXz99deSpAEDBigrK0vLli3ToUOHVLNmTfXr10/9+vXT3LlzzTgAAFC2UOsBACh5F085ZwYFIzNDmSnJcrMGyuLmnKnanPXcgdKgyJvoI0aM0D333KNatWrp6NGjevnll+Xq6qrevXsX9aYAXELONYMXLVqk9957zxw/fPiwqlWrJm9vb7s4AABQtlDrAQAoOdWrV5enV2Wdipvs7FScytOrsqpXr+7sNIASV+RN9CNHjqh37946deqU/P39dfvtt2vLli3y9/cv6k0BuIS7775bs2fPNi/qW6VKFbm6uiorK0upqak6d+6cGQcAAMoeaj0AACWnZs2a2rvnN508edIp2//tt9/08MMPa+HChWrQoIFTcpD++TChZs2aTts+4CwWo5SdmmKz2WS1WpWSksL86MBVSEpKUnBw8GXjjh07pqCgoBLICCifqFuFxz4Diga1Hih+1Kwrw34Dit5PP/2k8PBwJSQkqHnz5s5OByg3Clqziv3CogCco0ePHkUaBwAAShdqPQAAAFAyaKID5dSBAweKNA4AAJQu1HoAAACgZNBEB8qp06dPF2kcAAAoXaj1AAAAQMmgiQ6UU56enkUaBwAAShdqPQAAAFAyaKID5ZS3t3eRxgEAgNKFWg8AAACUDJroQDl17ty5Io0DAAClC7UeAAAAKBk00YFy6syZM0UaBwAAShdqPQAAAFAyaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAATdnJwCgYM6fP689e/YUy7p/+umnAsfWr19flStXLpY8AACoyKj1AAAAQOlUbE306dOna9KkSUpKStKNN96od955R7feemtxbQ4o9/bs2aPw8PBiWXdh1puQkKDmzZsXSx4Ayg7qPFD0qPUAShNqPQAA/6dYmuiLFy/W8OHDNWvWLLVo0UJTp05VVFSU9u7dq4CAgOLYJFAmHDp0SCdPnryix6alpWnhwoUFjn/44YcLHFuY9aalpRXqbLbcqlevrpo1a17RYwGUHtR5IH9XU+claj2A0oNaDwCAPYthGEZRr7RFixa65ZZb9O6770qSsrOzFRoaqiFDhuiFF16wi01PT1d6erp532azKTQ0VCkpKfLx8Snq1ACnOXTokO4Ib6Br3C44OxWnOZ3pqY0Jv/HHNcoVm80mq9VaoepWYeq8RK1HxUCd/we1HuVNRazzErUeKA5XO23bb7/9pocfflgLFy5UgwYNrng9TNsG2CtorS/yM9EzMjKUkJCgmJgYc8zFxUXt27dXfHx8nvjY2FiNGzeuqNMASqX+zVw0+jZvZ6fhNBO+z3Z2CgCuUmHrvEStR8VR0eu8RK0HygNqPVA8imratsJ8Ey0/TNsGXJkib6KfPHlSWVlZCgwMtBsPDAzM9xO3mJgYDR8+3Lyf84k1UN7UrFlTfd/ZoN+O7ruix6enp+vo0aOFftzo0aMdLpswYUKh1xcSEiIPD49CP06S+vaqpxqcmQaUaYWt8xK1HhXD1dZ5iVoPoHSg1gPFo379+kpISLjix6elpengwYOqXbu2vLy8rioPAIVXbBcWLSgPD48rPkgHypoa9cOl+lf+yXOzK3jM3f1jZLFY8owXw0xOAJAvaj0qiqut8xK1HkDZRK0HLq9y5cpXfQb4bbfdVkTZACisIm+iV69eXa6urkpOTrYbT05OVlBQUFFvDkAB8Ec0gKJCnQdKJ2o9gKJCrQcAIC+Xol6hu7u7wsPDtXbtWnMsOztba9euVURERFFvDgAAlCDqPAAA5Ru1HgCAvIplOpfhw4erT58+uvnmm3Xrrbdq6tSpSk1NVb9+/YpjcwAAoARR5wEAKN+o9QAA2CuWJnrPnj114sQJjRkzRklJSWrWrJlWrVqV58IkAACg7KHOAwBQvlHrAQCwZzFK2QSKNptNVqtVKSkp8vHxcXY6AABcEnWr8NhnAICygpp1ZdhvAICyoqA1q8jnRAcAAAAAAAAAoLygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABxwc3YC/2YYhiTJZrM5ORMAAC4vp17l1C9cHrUeAFBWUOevDLUeAFBWFLTWl7om+tmzZyVJoaGhTs4EAICCO3v2rKxWq7PTKBOo9QCAsoY6XzjUegBAWXO5Wm8xStlH6tnZ2Tp69KiqVq0qi8Xi7HSAcsNmsyk0NFSHDx+Wj4+Ps9MByg3DMHT27FmFhITIxYVZ0gqCWg8UD2o9UPSo81eGWg8UPeo8UDwKWutLXRMdQPGw2WyyWq1KSUmh4AIAUA5R6wEAKL+o84Bz8VE6AAAAAAAAAAAO0EQHAAAAAAAAAMABmuhABeHh4aGXX35ZHh4ezk4FAAAUA2o9AADlF3UecC7mRAcAAAAAAAAAwAHORAcAAAAAAAAAwAGa6AAAAAAAAAAAOEATHQAAAAAAAAAAB2iiAwAAAAAAAADgAE10AAAAAAAAAP+PvTuPi6rs/z/+HkAGkEVBQElwL9xzKbcUlxLNPc37NhdcWsVMTS3ub6VmRVpp3aVmWtiirS6Vpba5tGAp5b6Uhku5m4IrKFy/P/oxtyMcBZtxRF/Px2Meeq5zzTmfcwCv4e011wCwQIgOXOVWrFihTp06KSoqSjabTQsWLPB0SQAAwIUY6wEAuHoxzgNXBkJ04Cp34sQJ1a1bV1OmTPF0KQAAwA0Y6wEAuHoxzgNXBh9PFwDAvdq3b6/27dt7ugwAAOAmjPUAAFy9GOeBKwMz0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAs+ni4AgHsdP35c27Ztc2ynp6drzZo1Cg0NVUxMjAcrAwAArsBYDwDA1YtxHrgy2IwxxtNFAHCfZcuWqVWrVvnaExISNGvWrMtfEAAAcCnGegAArl6M88CVgRAdAAAAAAAAAAALrIkOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDnhQ//791bVrV8d2y5YtNWzYMI/VU5zYbDYtWLDA02UAAJAP4zsAAMWLq8bq4jbmz5o1S6VKlbpijwdcSQjRgUuwY8cO2Ww2rVmzxqXHnTdvnsaPH+/SY16KZcuWyWaz6ejRo54uxdLevXvVvn17T5cBALiKML4DAIDCsBpTr5Qx31P+9a9/6ddff3Vsjx07VjfeeKPnCgJcyMfTBQD4n9DQUE+X4FLGGOXk5MjHx/X/1JQtW9blxwQAwB0Y3wEA8Jzs7Gz5+vpelnNdbWN+Ufn7+8vf39/TZQBuwUx0XNNyc3OVnJysSpUqyd/fX3Xr1tVHH30kSTpy5Ih69+6t8PBw+fv7q1q1akpJSZEkVapUSZJUr1492Ww2tWzZ8qLnysnJ0YgRI1SqVCmFhYVp9OjRMsY49Tn/rV9vv/22GjZsqKCgIJUtW1Z33XWXDhw44Nif97/fS5YsUb169eTv76/WrVvrwIEDWrRokapXr67g4GDdddddOnnyZKGue8eOHWrVqpUkqXTp0rLZbOrfv/9Fn3duPYsWLVKDBg1kt9v13XffXfC+5P3P9BtvvKGYmBgFBgZq8ODBysnJ0cSJE1W2bFlFRETo6aefdnreucu55M0cnDdvnlq1aqWAgADVrVtXqampF/26AACuPozvxXd8nzRpkmrXrq2SJUsqOjpagwcP1vHjxx37Bw4cqDp16igrK0vS38FIvXr11K9fv4t9qQAA14iWLVtqyJAhGjZsmMqUKaP4+Hht2LBB7du3V2BgoCIjI9W3b18dOnTI8hgXGqsvNKaeO+b/5z//UaNGjfIdu27dunryyScd2zNnzlT16tXl5+en2NhYTZ06tVDX2bRpUz3yyCNObQcPHlSJEiW0YsUKSVJWVpZGjhyp6667TiVLllSjRo20bNmyCx532rRpqlKlinx9fXXDDTfo7bffdtp/9OhR3XfffYqMjJSfn59q1aqlhQsXSnJezmXWrFkaN26c1q5dK5vNJpvNplmzZmngwIHq2LGj0zHPnDmjiIgIvf7664W6dsAjDHANe+qpp0xsbKxZvHix2b59u0lJSTF2u90sW7bMJCYmmhtvvNGsWrXKpKenmy+//NJ88sknxhhjfvrpJyPJfPXVV2bv3r3m8OHDFz3XhAkTTOnSpc3cuXPNpk2bzKBBg0xQUJDp0qWLo09cXJx56KGHHNuvv/66+fzzz8327dtNamqqadKkiWnfvr1j/9KlS40k07hxY/Pdd9+Zn3/+2VStWtXExcWZtm3bmp9//tmsWLHChIWFmWeffbZQ13327Fkzd+5cI8ls3brV7N271xw9evSizzu3njp16pgvvvjCbNu27aL3ZsyYMSYwMND06NHDbNy40XzyySfG19fXxMfHmwcffNBs2bLFvPHGG0aSWblypeN5ksz8+fONMcakp6cbSSY2NtYsXLjQbN261fTo0cNUqFDBnDlz5qJfGwDA1YXxvfiO75MnTzbffPONSU9PN19//bW54YYbzAMPPODYf+zYMVO5cmUzbNgwY4wxI0eONBUrVjQZGRkX/VoBAK4NcXFxJjAw0IwaNcps2bLFrFy50oSHh5ukpCSzefNm8/PPP5vbbrvNtGrVyuk5hR2rLzSmnnucDRs2GElm27ZtjuPmtf3222/GGGPeeecdU65cOTN37lzz+++/m7lz55rQ0FAza9asi17nK6+8YmJiYkxubq6j7eWXX3Zqu/vuu03Tpk3NihUrzLZt28xzzz1n7Ha7+fXXX40xxqSkpJiQkBDH8+fNm2dKlChhpkyZYrZu3WpeeOEF4+3tbb755htjjDE5OTmmcePGpmbNmuaLL74w27dvN59++qn5/PPP8x3v5MmT5uGHHzY1a9Y0e/fuNXv37jUnT54033//vfH29jZ79uxxOm/JkiXNsWPHLnrdgKcQouOadfr0aRMQEGB++OEHp/ZBgwaZXr16mU6dOpkBAwYU+Ny80PaXX34p9PnKlStnJk6c6Ng+c+aMKV++/AV/yT7fqlWrjCTHwJL3S+1XX33l6JOcnGwkme3btzva7rvvPhMfH2+Mufh1n3vcI0eOOPYX5XkLFiwoxB3525gxY0xAQIDJzMx0tMXHx5uKFSuanJwcR9sNN9xgkpOTHdsFhegzZ8507N+4caORZDZv3lzoWgAAxR/je/Ee38/34YcfmrCwMKe2H374wZQoUcI8/vjjxsfHx3z77beFrgsAcPWLi4sz9erVc2yPHz/etG3b1qnP7t27HSF43nMuZaw+d0wt6Dh169Y1Tz75pGM7KSnJNGrUyLFdpUoVM2fOHKdjjB8/3jRp0uSi13ngwAHj4+NjVqxY4Whr0qSJeeSRR4wxxuzcudN4e3ubP//80+l5bdq0MUlJScaY/CF606ZNzT333OPU/8477zS33367McaYJUuWGC8vL8d9O9/5xxszZoypW7duvn41atQwEyZMcGx36tTJ9O/f/6LXDHgSCxnimrVt2zadPHlSt912m1N73tuCx44dq+7du+vnn39W27Zt1bVrVzVt2vSSzpWRkaG9e/c6vZXLx8dHDRs2zPeW73OlpaVp7NixWrt2rY4cOaLc3FxJ0q5du1SjRg1Hvzp16jj+HhkZqYCAAFWuXNmp7aeffirUdVspyvMaNmxoeZyCVKxYUUFBQU71ent7y8vLy6nt3Le6F+Tc+1CuXDlJ0oEDBxQbG1ukegAAxRfje/Ee37/66islJydry5YtyszM1NmzZ3X69GmdPHlSAQEBkqQmTZpo5MiRGj9+vB555BHdcsstRaoLAHD1a9CggePva9eu1dKlSxUYGJiv3/bt23X99dfnay/sWH0xvXv31htvvKHHH39cxhi9++67GjFihCTpxIkT2r59uwYNGqR77rnH8ZyzZ88qJCTkoscODw9X27ZtNXv2bDVv3lzp6elKTU3V9OnTJUnr169XTk5OvuvLyspSWFhYgcfcvHmz7r33Xqe2Zs2a6aWXXpIkrVmzRuXLly/wnhXF3Xffrddee02jR4/W/v37tWjRIn3zzTf/6JiAuxGi45qVt77mZ599puuuu85pn91uV3R0tHbu3KnPP/9cX375pdq0aaPExEQ9//zzl6W+EydOKD4+XvHx8Zo9e7bCw8O1a9cuxcfHKzs726lviRIlHH+32WxO23lteYP+xa7bSlGeV7JkycJcYoH159V7oWsozHFsNpskXfQ5AICrC+N78R3fd+zYoY4dO+qBBx7Q008/rdDQUH333XcaNGiQsrOzHSF6bm6uvv/+e3l7e2vbtm1FqgkAcG04d8w6fvy4OnXqpAkTJuTrlzf56lxFGasvplevXnrkkUf0888/69SpU9q9e7f+9a9/OeqSpBkzZuRbO93b27tQx+/du7eGDh2ql19+WXPmzFHt2rVVu3Ztx/G9vb2VlpaW73gF/YdCYbjqQ0P79eunRx99VKmpqfrhhx9UqVIlNW/e3CXHBtyFEB3XrBo1ashut2vXrl2Ki4srsE94eLgSEhKUkJCg5s2ba9SoUXr++ecdn+ydk5NTqHOFhISoXLly+vHHH9WiRQtJf//vclpamurXr1/gc7Zs2aLDhw/r2WefVXR0tCRp9erVRb3MfApz3QVdX2GeBwCApzG+F9/xPS0tTbm5uXrhhRccs9U/+OCDfP2ee+45bdmyRcuXL1d8fLxSUlI0YMCAy10uAKCYqF+/vubOnauKFSvKx+fiMVhhxurCvmYoX7684uLiNHv2bJ06dUq33XabIiIiJP39bqyoqCj9/vvv6t2796Vcmrp06aJ7771Xixcv1pw5c5w+aLtevXrKycnRgQMHCh1QV69eXd9//70SEhIcbd9//71j9n2dOnX0xx9/6Ndffy3UbHRfX98C71FYWJi6du2qlJQUpaamMo6jWCBExzUrKChII0eO1PDhw5Wbm6tbbrlFGRkZ+v777xUcHKzt27erQYMGqlmzprKysrRw4UJVr15dkhQRESF/f38tXrxY5cuXl5+f30XfbvXQQw/p2WefVbVq1RQbG6tJkybp6NGjlv1jYmLk6+url19+Wffff782bNig8ePHu/26ExISVKFCBdlsNi1cuFC33367/P39C/U8AAA8jfG9+I7vVatW1ZkzZ/Tyyy+rU6dO+v777/Xqq6869fnll1/0xBNP6KOPPlKzZs00adIkPfTQQ4qLi3Na6gYAgDyJiYmaMWOGevXqpdGjRys0NFTbtm3Te++9p5kzZ+abpV2YsbqgMdVqdnfv3r01ZswYZWdna/LkyU77xo0bp6FDhyokJETt2rVTVlaWVq9erSNHjjiWfbmQkiVLqmvXrnr88ce1efNm9erVy7Hv+uuvV+/evdWvXz+98MILqlevng4ePKivv/5aderUUYcOHfIdb9SoUerZs6fq1aunW2+9VZ9++qnmzZunr776SpIUFxenFi1aqHv37po0aZKqVq2qLVu2yGazqV27dvmOV7FiRaWnpzuWgQkKCnK80+3uu+9Wx44dlZOTQ56AYsHr4l2Aq9f48eP1+OOPKzk5WdWrV1e7du302WefqVKlSvL19VVSUpLq1KmjFi1ayNvbW++9956kv9c7/e9//6vp06crKipKXbp0uei5Hn74YfXt21cJCQlq0qSJgoKC1K1bN8v+4eHhmjVrlj788EPVqFFDzz77rMvean6h65ak6667TuPGjdOjjz6qyMhIDRkypFDPAwDgSsD4XjzH97p162rSpEmaMGGCatWqpdmzZys5Odmx//Tp0+rTp4/69++vTp06SZLuvfdetWrVSn379i30OwgAANeWqKgoff/998rJyVHbtm1Vu3ZtDRs2TKVKlXL6nI48hRmrrcbUgvTo0UOHDx/WyZMn1bVrV6d9d999t2bOnKmUlBTVrl1bcXFxmjVrVpHG4N69e2vt2rVq3ry5YmJinPalpKSoX79+evjhh3XDDTeoa9euWrVqVb5+ebp27aqXXnpJzz//vGrWrKnp06crJSVFLVu2dPSZO3eubrrpJvXq1Us1atTQ6NGjLcfg7t27q127dmrVqpXCw8P17rvvOvbdeuutKleunOLj4xUVFVXo6wU8xWYu9KlHAAAAAAAAAOBCx48f13XXXaeUlBTdcccdni4HuCiWcwEAAAAAAADgdrm5uTp06JBeeOEFlSpVSp07d/Z0SUChsJwL4CKBgYGWj2+//dbT5XlMzZo1Le/L7NmzPV0eAAAXxPheMMZ3AADc65lnnrEca9u3b+/p8i7Zrl27FBkZqTlz5uiNN94o1Ie9AlcClnMBXGTbtm2W+6677jr5+/tfxmquHDt37tSZM2cK3BcZGamgoKDLXBEAAIXH+F4wxncAANzrr7/+0l9//VXgPn9/f1133XWXuSLg2kaIDgAAAAAAAACABZZzAQAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAA4R8uWLdWyZUtPl+Ewa9Ys2Ww27dixw9F2pdUIAEBR2Gw2DRky5LKec+zYsbLZbJf1nNeSihUrqn///pflXAW9NgIAAHA3QvRC+uijj2Sz2Qp81KpVy9PlAdeMli1bOn5J69+/P2FyIf3www8aO3asjh496ulSiqxixYoaO3asJOevP64djMHAleFaHYOL8xjqKZs2bdLYsWOvuKB77NixqlixoqT/hfEAAACF4ePpAoqb//znP6pevbpj++mnn/ZgNQBc7YsvvvB0CRd1KTX+8MMPGjdunPr3769SpUq5vijgMmAMBuAJjKEXt3XrVnl5/W9+1qZNmzRu3Di1bNnSEVoDAAAUZ4ToRXTbbbc5zbqZOXOmDh065LmCALiUr6+vp0u4qOJQI+AOjMEAcGWy2+2eLgEAAMCtWM6lkLKzsyXJaYaFlYLW6cvNzVWdOnVks9k0a9YsR/u6devUv39/Va5cWX5+fipbtqwGDhyow4cPOx0zbx3H8x8+Pv/7f5CWLVuqVq1aSktLU9OmTeXv769KlSrp1VdfzXctTzzxhBo0aKCQkBCVLFlSzZs319KlS5367dixw3GeBQsWOO07ffq0SpcuLZvNpueffz5fnRERETpz5ozTc959913H8c4NPT7++GN16NBBUVFRstvtqlKlisaPH6+cnJyL3uu8823ZskU9e/ZUcHCwwsLC9NBDD+n06dNOfVNSUtS6dWtFRETIbrerRo0amjZtWr5jdunSRRUrVpSfn58iIiLUuXNnrV+/3qlP3nW8+OKL+Z4fGxubb63Pv/76SyNHjlTt2rUVGBio4OBgtW/fXmvXrnV6bkJCgvz8/LR582an9vj4eJUuXVp79uxxtP3++++68847FRoaqoCAADVu3FifffaZ0/OWLVvm9P1it9t1/fXXKzk5WcaYC9/c/8/qe6+gt3Cf+z1z/uNcBw4c0KBBgxQTEyNvb29Hn8DAwELVZCXv/M8//7ymTJmiypUrKyAgQG3bttXu3btljNH48eNVvnx5+fv7q0uXLvrrr7+cjlHQeuMvv/yyatasqYCAAJUuXVoNGzbUnDlzHPuPHTumYcOGqWLFirLb7YqIiNBtt92mn3/+uUj1b9y4Ua1bt5a/v7/Kly+vp556Srm5ufn6FbXGsWPHatSoUZKkSpUqOe533r9Rhf3ZqFixojp27KjvvvtON998s/z8/FS5cmW99dZb+foePXpUw4cPd9yT8uXLq1+/fk4/+1lZWRozZoyqVq0qu92u6OhojR49WllZWUW6b7j6MQYvcNrHGMwYfCWOwZL0/PPPq2nTpgoLC5O/v78aNGigjz76yLL/7NmzdcMNN8jPz08NGjTQihUrnPYXdnz98MMP1aBBA/n7+6tMmTLq06eP/vzzzwvWmne/zv03IY/NZnMsI3axMVSS3nnnHcf5Q0ND9e9//1u7d+++4PnPl/dv13fffaehQ4cqPDxcpUqV0n333afs7GwdPXpU/fr1U+nSpVW6dGmNHj063/dRYe//qVOnNHToUJUpU0ZBQUHq3Lmz/vzzT6frzrt2m82mbdu2OWbhh4SEaMCAATp58qTTMc9dE33WrFm68847JUmtWrVy3LNly5blu79Wx8hT2NdGkrRo0SI1b95cJUuWVFBQkDp06KCNGzde4K4DAAAUHjPRCynvF/hLnWXx9ttv5/slUJK+/PJL/f777xowYIDKli2rjRs36rXXXtPGjRu1cuXKfL/4TJs2zemXnPMDhSNHjuj2229Xz5491atXL33wwQd64IEH5Ovrq4EDB0qSMjMzNXPmTPXq1Uv33HOPjh07ptdff13x8fH66aefdOONNzod08/PTykpKerataujbd68efl+QT7XsWPHtHDhQnXr1s3RlpKSIj8/v3zPmzVrlgIDAzVixAgFBgbqm2++0RNPPKHMzEw999xzluc4V8+ePVWxYkUlJydr5cqV+u9//6sjR444hXvTpk1TzZo11blzZ/n4+OjTTz/V4MGDlZubq8TERKfj3XvvvSpbtqz27NmjV155RbfeeqvS09MVEBCQ774MGzbM0fbDDz9o586d+er7/ffftWDBAt15552qVKmS9u/fr+nTpysuLk6bNm1SVFSUJOmll17SN998o4SEBKWmpsrb21vTp0/XF198obffftvRb//+/WratKlOnjypoUOHKiwsTG+++aY6d+6sjz76yOm+S/9bAuHUqVN6//339Z///EcREREaNGhQoe5v3v3L+95LSkq6YN97771XzZs3l/T398r8+fOd9ickJOirr77Sgw8+qLp168rb21uvvfZakUNnK7Nnz1Z2drYefPBB/fXXX5o4caJ69uyp1q1ba9myZXrkkUe0bds2vfzyyxo5cqTeeOMNy2PNmDFDQ4cOVY8ePRzB0Lp16/Tjjz/qrrvukiTdf//9+uijjzRkyBDVqFFDhw8f1nfffafNmzerfv36hap53759atWqlc6ePatHH31UJUuW1GuvvSZ/f/+LPvdiNd5xxx369ddf9e6772ry5MkqU6aMJCk8PFxS0X42tm3bph49emjQoEFKSEjQG2+8of79+6tBgwaqWbOmJOn48eNq3ry5Nm/erIEDB6p+/fo6dOiQPvnkE/3xxx8qU6aMcnNz1blzZ3333Xe69957Vb16da1fv16TJ0/Wr7/+mi80xLWNMZgxmDG4eIzBL730kjp37qzevXsrOztb7733nu68804tXLhQHTp0cOq7fPlyvf/++xo6dKjsdrumTp2qdu3a6aeffnJ81kFhxtdZs2ZpwIABuummm5ScnKz9+/frpZde0vfff69ffvnlHy+/crEx9Omnn9bjjz+unj176u6779bBgwf18ssvq0WLFpd0/gcffFBly5bVuHHjtHLlSr322msqVaqUfvjhB8XExOiZZ57R559/rueee061atVSv379HM8t7P3v37+/PvjgA/Xt21eNGzfW8uXL8319ztWzZ09VqlRJycnJ+vnnnzVz5kxFRERowoQJBfZv0aKFhg4dqv/+979Oy3CduxxXYRTltdHbb7+thIQExcfHa8KECTp58qSmTZumW265Rb/88gtLygAAgH/OoFBefPFFI8msXbvWqT0uLs7UrFnTqS0lJcVIMunp6cYYY06fPm1iYmJM+/btjSSTkpLi6Hvy5Ml853r33XeNJLNixQpH25gxY4wkc/DgQcsa4+LijCTzwgsvONqysrLMjTfeaCIiIkx2drYxxpizZ8+arKwsp+ceOXLEREZGmoEDBzra0tPTjSTTq1cv4+PjY/bt2+fY16ZNG3PXXXcZSea5557LV2evXr1Mx44dHe07d+40Xl5eplevXvmuo6B7cN9995mAgABz+vRpy+s993ydO3d2ah88eHC+r1dB54mPjzeVK1e+4Dk++OADI8msXr3a0SbJ9OjRw/j4+Di1Dxo0yHFfEhMTHe2nT582OTk5TsdNT083drvdPPnkk07tS5YsMZLMU089ZX7//XcTGBhounbt6tRn2LBhRpL59ttvHW3Hjh0zlSpVMhUrVnSca+nSpUaSWbp0qVMtXl5eZvDgwRe87jz/+c9/jCRz6NAhR1vNmjVNXFxcvr6//fabkWTefPNNR1ve1yjPqVOnjJeXl7nvvvucnpuQkGBKlixZqJqs5H3PhoeHm6NHjzrak5KSjCRTt25dc+bMGUd7r169jK+vr9P3WVxcnNO1denSJd/P+PlCQkKcvt6XIu9r+uOPPzraDhw4YEJCQpz+PbnUGp977rl8x8lT2J+NChUq5Pu36cCBA8Zut5uHH37Y0fbEE08YSWbevHn5jpubm2uMMebtt982Xl5eTt/Dxhjz6quvGknm+++/v+D14NrCGMwYzBh85Y/BxuT/OmdnZ5tatWqZ1q1bO7VLyvd13blzp/Hz8zPdunVztF1sfM3OzjYRERGmVq1a5tSpU472hQsXGknmiSeecLSdfy/yfsbO/Tfh3PrGjBnj2LYaQ3fs2GG8vb3N008/7dS+fv164+Pjk6/9QvL+7YqPj3eMlcYY06RJE2Oz2cz999/vaDt79qwpX758vu+Dwtz/tLQ0I8kMGzbMqW///v3zXXfePTv33yZjjOnWrZsJCwtzaqtQoYJJSEhwbH/44Yf5vv/znH8eq2MU9rXRsWPHTKlSpcw999zjdLx9+/aZkJCQfO0AAACXguVcCinvrd15s06KYsqUKTp8+LDGjBmTb9+5MylOnz6tQ4cOqXHjxpJ0STOCfHx8dN999zm2fX19dd999+nAgQNKS0uTJHl7ezvWVM7NzdVff/2ls2fPqmHDhgWes379+qpZs6befvttSdLOnTu1dOnSfG+3PNfAgQO1ePFi7du3T5L05ptvqkmTJrr++uvz9T33Hhw7dkyHDh1S8+bNdfLkSW3ZsqVQ133+LLYHH3xQkvT5558XeJ6MjAwdOnRIcXFx+v3335WRkeH0/JMnT+rQoUNas2aNZsyYocjIyHy1R0ZGqkOHDkpJSXE854MPPtCAAQPy1We32x0zFnNycnT48GEFBgbqhhtuyHfP27Ztq/vuu09PPvmk7rjjDvn5+Wn69OlOfT7//HPdfPPNuuWWWxxtgYGBuvfee7Vjxw5t2rTJqX/e9e7atUsTJ05Ubm6uWrduXcCdzC9v1qKfn99F+xZmtuiJEyeUm5ursLCwQp3/Utx5550KCQlxbDdq1EiS1KdPH6flFxo1aqTs7OwLvuW7VKlS+uOPP7Rq1aoL9vnxxx+d3upfVJ9//rkaN26sm2++2dEWHh6u3r17X/S5hanxQorys1GjRg3HDMe8Gm+44Qb9/vvvjra5c+eqbt26+WZjSnLM7P3www9VvXp1xcbG6tChQ45H3vfl+Utb4NrGGMwYzBhcPMbgc7/OR44cUUZGhpo3b17g93aTJk3UoEEDx3ZMTIy6dOmiJUuWOJYTutj4unr1ah04cECDBw92ukcdOnRQbGxsviV2XG3evHnKzc1Vz549ncaysmXLqlq1apc0lg0aNMjpXTCNGjWSMcbpnQve3t5q2LCh09grFe7+L168WJI0ePBgp+fm/dwW5P7773fabt68uQ4fPqzMzMwiXFnRFfa10ZdffqmjR4+qV69eTl8Hb29vNWrUiNcUAADAJa7oEH3FihXq1KmToqKiClwT9GKs1pEsWbJkkWvZuXOnfHx8ivwLfEZGhp555hmNGDFCkZGR+fb/9ddfeuihhxQZGSl/f3+Fh4erUqVKjucWVVRUVL7ry/vF89y1G998803VqVNHfn5+CgsLU3h4uD777DPLcw4YMMDxi+qsWbPUtGlTVatWzbKOG2+8UbVq1dJbb70lY4zjrbYF2bhxo7p166aQkBAFBwcrPDxcffr0kVT4e3B+LVWqVJGXl5fTNX///fe69dZbVbJkSZUqVUrh4eH6z3/+U+B5nnzySYWHh6tevXrasWOHli1bpqCgoHznHTBggObMmaOsrCx9+OGHKl26dIG/GOfm5mry5MmqVq2a7Ha7ypQpo/DwcK1bt67Aa3z++ecVGhqqNWvW6L///a8iIiKc9u/cuVM33HBDvuflvU32/Lezd+3aVeHh4apQoYLGjh2rxx57TN27d8/3/IIcOnRIJUqUcHobvZWjR49K0gXXVQ0LC1O1atU0c+ZMffHFFzpw4IAOHTrk0nWwY2JinLbzAvXo6OgC248cOWJ5rEceeUSBgYG6+eabVa1aNSUmJur777936jNx4kRt2LBB0dHRuvnmmzV27Nh8v9hezM6dOwv8mSro63wpNV5IUX42zr+3klS6dGmne7h9+3bHW/Gt/Pbbb9q4caPCw8OdHnn/Xh04cKDQ9ePqxxjMGMwYXDzG4IULF6px48by8/NTaGiowsPDNW3atALvc0Hfw9dff71OnjypgwcPSrr4+Jp3rwv6esTGxha4vI8r/fbbbzLGqFq1avnGs82bN1/SWFaU1zDnv34pzP3fuXOnvLy8HP/W5alatWqhaypdurSkC79+coXCvjb67bffJEmtW7fO93XI+z4HAAD4p67oNdFPnDihunXrauDAgbrjjjuK/PyRI0fmmznRpk0b3XTTTUU+1tatW1W5cmWnWayFMWHCBHl5eWnUqFH5PqhM+nuNwR9++EGjRo3SjTfeqMDAQOXm5qpdu3aWH5rzT73zzjvq37+/unbtqlGjRikiIkLe3t5KTk7W9u3bC3xOnz59NHr0aK1cuVJvvvmmHnvssYueZ+DAgZo6dapuvvlm7du3Tz179tQLL7zg1Ofo0aOKi4tTcHCwnnzySVWpUkV+fn76+eef9cgjj1zyPTh/Hdvt27erTZs2io2N1aRJkxQdHS1fX199/vnnmjx5cr7z3H333WrTpo3++OMPTZ48Wd27d9cPP/zgNLtZ+numk6+vrxYsWKCUlBQlJCQU+MF3zzzzjB5//HENHDhQ48ePV2hoqLy8vDRs2LACr/GXX35xvOBfv369evXqdUn3Ic/zzz+vunXr6syZM1q1apWeeuop+fj4FDgz83w7duxQTExMvntakLxZj2XLlr1gv/fff1+9e/dWfHy8U/ul/AdXQby9vYvUbi7wAW/Vq1fX1q1btXDhQi1evFhz587V1KlT9cQTT2jcuHGS/v45bt68uebPn68vvvhCzz33nCZMmKB58+apffv2//yCLqIwNVop6s/GpdzDguTm5qp27dqaNGlSgfvPDwtwbWMMZgxmDL7yx+Bvv/1WnTt3VosWLTR16lSVK1dOJUqUUEpKitOHcReFO8dXq3tamA/VzZObmyubzaZFixYVOD5eyoe1FuU1zLljrzvu/8VqKurYfzFFuffnyvs5fvvttwv8/i/q2AEAAFCQK/oVRfv27S/4AjkrK0v/93//p3fffVdHjx5VrVq1NGHCBLVs2VLS3y9cz33xunbtWm3atEmvvvpqkerIysrSmjVrnD7UqzD27Nmjl156ScnJyQoKCsr3C/yRI0f09ddfa9y4cXriiScc7XmzKS7Fnj17dOLECadfhH799VdJcnygzkcffaTKlStr3rx5Tr9AXOiXubCwMHXu3NnxtvS8t61eSO/evTVq1Cg99NBD6tGjR4GzyJYtW6bDhw9r3rx5atGihaM9PT29UNeb57fffnOaUbNt2zbl5uY6rvnTTz9VVlaWPvnkE6fZNFZv76xatapjRs6tt96qmJgYzZkzRw888IBTPx8fH/Xt21dPP/20Nm7caPkBlR999JFatWql119/3an96NGjjg+oynPixAkNGDBANWrUUNOmTTVx4kR169bN6T9/KlSooK1bt+Y7T95b7ytUqODU3qBBA8fPRfv27fXnn39qwoQJevzxxwsMHPKcPXtWa9euVbt27Sz7nGvTpk2y2WwXnT1dr149zZgxQ82bN9eTTz6pxo0b67nnnivS7OnLqWTJkvrXv/6lf/3rX8rOztYdd9yhp59+WklJSY63j5crV06DBw/W4MGDdeDAAdWvX19PP/10oX/Jr1ChQoE/+wV9nS+lRquwoKg/G4VRpUoVbdiw4aJ91q5dqzZt2hQqHMK1izGYMZgxuHiMwXPnzpWfn5+WLFnitKRM3rsozlfQz9qvv/6qgIAAp3edXGh8zbvXW7duzfcuhK1bt+b7WpwrbzZ13gz+PAXNXrcap6pUqSJjjCpVqlTgckmXU2Hvf4UKFZSbm6v09HSnWd7btm1zaT0XGttLly6d775nZ2dr7969+WotzGujKlWqSJIiIiJ06623XmLFAAAAF3ZFL+dyMUOGDFFqaqree+89rVu3TnfeeafatWtn+QvwzJkzdf311zut51sYeW8VbtOmTZGeN27cOEVGRuabDZ8nb1bH+bM4XnzxxSKd51xnz551WrszOztb06dPV3h4uGPdyYLO++OPPyo1NfWCxx44cKDjPhdmZk1oaKi6dOmidevWaeDAgQX2KaiW7OxsTZ069aLHP9eUKVOctl9++WVJcgSYBZ0nIyPD8he7c+UFFVZvdR44cKDWr1+vFi1aqHLlygX28fb2zvd1/vDDDwtci/uRRx7Rrl279Oabb2rSpEmqWLGiEhISnM5/++2366effnL6mp04cUKvvfaaKlasqBo1alzwmk6dOqWzZ8/q7NmzF+z3xRdfKCMjQ126dLlgP+nv7725c+fq5ptvvuj3R2Zmpvr27avOnTvrscce06233qpy5cpd9ByecH7w5uvrqxo1asgYozNnzignJyff29QjIiIUFRVVpLfH33777Vq5cqV++uknR9vBgwc1e/bsf1yj9L8Zhuf/0vpPfjasdO/eXWvXrtX8+fPz7cs7T8+ePfXnn39qxowZ+fqcOnVKJ06cuOTz4+rCGPw3xmDG4Au5EsZgb29v2Ww2p9nEO3bssFyOMTU11Wmt7t27d+vjjz9W27Zt5e3tXajxtWHDhoqIiNCrr77q9DVatGiRNm/erA4dOljWGxwcrDJlymjFihVO7QV9/1uNoXfccYe8vb01bty4fN9jxpgC3wHjLoW9/3nvQDj/OvN+bl3F6p5Jf4fe59/31157Ld9M9MK+NoqPj1dwcLCeeeYZx+uec+UtDwQAAPBPXNEz0S9k165dSklJ0a5duxQVFSXp7+VbFi9erJSUFD3zzDNO/U+fPq3Zs2fr0UcfLfQ5Tpw4oZdffllPPvmk4xewd955x6nP/v37dfz4cb3zzju67bbbnNZc/eKLLzR79mzHB4idLzg4WC1atNDEiRN15swZXXfddfriiy+KPAPsXFFRUZowYYJ27Nih66+/Xu+//77WrFmj1157TSVKlJAkdezYUfPmzVO3bt3UoUMHpaen69VXX1WNGjV0/Phxy2O3a9dOBw8eLNJbU2fNmqUpU6bkm+mVp2nTpipdurQSEhI0dOhQ2Ww2vf3220V+e2h6ero6d+6sdu3aKTU1Ve+8847uuusu1a1bV9LfHxTm6+urTp066b777tPx48c1Y8YMRUREOM16+fzzzzVz5kw1bdpUoaGh+v333zVjxgyVLFmywA9JlP5eSuPQoUNOH+Z0vo4dO+rJJ5/UgAED1LRpU61fv16zZ8/O9wv/N998o6lTp2rMmDGqX7++pL9nELVs2VKPP/64Jk6cKEl69NFH9e6776p9+/YaOnSoQkND9eabbyo9PV1z587NN7Ptyy+/1B9//OF4K/ns2bPVuXNny+9N6e+3e48cOVJ2u12nTp1y+t7PyMhQTk6OFixYoK5du+qrr77S448/rnXr1unTTz+1PGaexMREnTp1SjNnzrxoX09r27atypYtq2bNmikyMlKbN2/WK6+8og4dOigoKEhHjx5V+fLl1aNHD9WtW1eBgYH66quvtGrVqnxLJ1zI6NGj9fbbb6tdu3Z66KGHVLJkSb322muqUKGC1q1b949qlOQI8P7v//5P//73v1WiRAl16tSp0D8bRTFq1Ch99NFHuvPOOzVw4EA1aNBAf/31lz755BO9+uqrqlu3rvr27asPPvhA999/v5YuXapmzZopJydHW7Zs0QcffKAlS5aoYcOGl3R+XB0Yg50xBjMG57lSx+AOHTpo0qRJateune666y4dOHBAU6ZMUdWqVQscx2rVqqX4+HgNHTpUdrvdEermLUN27Nixi46vJUqU0IQJEzRgwADFxcWpV69e2r9/v1566SVVrFhRw4cPv2DNd999t5599lndfffdatiwoVasWOF498i5rMbQKlWq6KmnnlJSUpJ27Nihrl27KigoSOnp6Zo/f77uvfdejRw58h/d18Iq7P1v0KCBunfvrhdffFGHDx9W48aNtXz5csd1u+rdYTfeeKO8vb01YcIEZWRkyG63q3Xr1oqIiNDdd9+t+++/X927d9dtt92mtWvXasmSJfn+rSrsa6Pg4GBNmzZNffv2Vf369fXvf/9b4eHh2rVrlz777DM1a9ZMr7zyikuuCwAAXMNMMSHJzJ8/37G9cOFCI8mULFnS6eHj42N69uyZ7/lz5swxPj4+Zt++fYU+Z3p6upFU6MfSpUuNMcakpKQYSebGG280ubm5+Y6XkpLiaPvjjz9Mt27dTKlSpUxISIi58847zZ49e4wkM2bMGEe/MWPGGEnm4MGDlvXGxcWZmjVrmtWrV5smTZoYPz8/U6FCBfPKK6849cvNzTXPPPOMqVChgrHb7aZevXpm4cKFJiEhwVSoUCFfvc8999wF78+5+y9WZ0H7v//+e9O4cWPj7+9voqKizOjRo82SJUuc7qmVvONt2rTJ9OjRwwQFBZnSpUubIUOGmFOnTjn1/eSTT0ydOnWMn5+fqVixopkwYYJ54403jCSTnp5ujDFmw4YNpm3btiYsLMz4+vqa6Oho8+9//9usW7fO6ViSTGJiomVd5+8/ffq0efjhh025cuWMv7+/adasmUlNTTVxcXEmLi7OGGNMZmamqVChgqlfv745c+aM0/GGDx9uvLy8TGpqqqNt+/btpkePHqZUqVLGz8/P3HzzzWbhwoVOz1u6dKnT96iPj4+pUKGCGTp0qDly5MgF722FChUu+j2f9/3y4IMPmhYtWpjFixfnO07e1yjPu+++a2w2W76+CQkJpmTJkhes6WKsvmfz7sOHH37o1J73s7pq1SpH27lfE2OMmT59umnRooUJCwszdrvdVKlSxYwaNcpkZGQYY4zJysoyo0aNMnXr1jVBQUGmZMmSpm7dumbq1KlFrn/dunUmLi7O+Pn5meuuu86MHz/evP76607fo5dSY57x48eb6667znh5eTkdszA/G8b8/T3RoUOHfHWfX48xxhw+fNgMGTLEXHfddcbX19eUL1/eJCQkmEOHDjn6ZGdnmwkTJpiaNWsau91uSpcubRo0aGDGjRuXr3ZcexiDGYMZg4vXGGyMMa+//rqpVq2asdvtJjY21qSkpOSrwZj/fY3eeecdR/969eo5fc8VZXx9//33Tb169YzdbjehoaGmd+/e5o8//rjgvTDGmJMnT5pBgwaZkJAQExQUZHr27GkOHDiQ798AY6zHUGOMmTt3rrnlllscv4/ExsaaxMREs3Xr1kLfu4Jek5xb9/k/1wV9zQp7/0+cOGESExNNaGioCQwMNF27djVbt241ksyzzz570XPn1Xr+a4SEhASnfjNmzDCVK1c23t7eTv+m5OTkmEceecSUKVPGBAQEmPj4eLNt27YCj1HY10bG/P0zFx8fb0JCQoyfn5+pUqWK6d+/v1m9enVBtxwAAKBIbMa4+BNh3MRms2n+/PmONVHzPhRp48aN+T7sJjAwMN+HyrRp00bBwcEFLi9gZceOHapUqZKWLl3qWMvyn/Rzt5YtW+rQoUMXXYv4ajJ27FiNGzdOBw8etJxph0tTsWJFjR07Vv379y9w/7Jly9S/f3/t2LHjstYF4NrAGHzlYwx2H8ZgXG5r1qxRvXr19M4776h3796eLgcAAOCKU2yXc6lXr55ycnJ04MCBi65xnp6erqVLl+qTTz65TNUBAAAAwJXn1KlT+ZZAevHFF+Xl5eX0IcMAAAD4nys6RD9+/LjTJ8Wnp6drzZo1Cg0N1fXXX6/evXurX79+euGFF1SvXj0dPHhQX3/9terUqeP0QUJvvPGGypUr5/iAq8IKDAxU7969ndZY/Sf9gOKkW7duqlKliuX+yMhIyzVq8T+nTp3K98Fo5wsNDb3g2rjAtYgxGNcyxuCrx5X4OmDixIlKS0tTq1at5OPjo0WLFmnRokW69957FR0dfdnqAAAAKE6u6OVcli1bplatWuVrT0hI0KxZs3TmzBk99dRTeuutt/Tnn3+qTJkyaty4scaNG6fatWtLknJzc1WhQgX169dPTz/99OW+hMuKt5LzVnJceWbNmqUBAwZcsI+nl6EA8M8xBjMGAwW5El8HfPnllxo3bpw2bdqk48ePKyYmRn379tX//d//ycfnip5jBQAA4DFXdIgOAMXd3r17tXHjxgv2adCggUqXLn2ZKgIAAJcLrwMAAACuDoToAAAAAAAAAABYuOLer5ebm6s9e/YoKChINpvN0+UAAHBBxhgdO3ZMUVFR8vLy8nQ5xQJjPQCguGCcBwAA0hUYou/Zs4cPtAEAFDu7d+9W+fLlPV1GscBYDwAobhjnAQC4tl1xIXpQUJCkv1+kBAcHe7gaAAAuLDMzU9HR0Y7xCxfHWA8AKC4Y5wEAgHQFhuh5b+sODg7mF2sAQLHBsiSFx1gPAChuGOcBALi2sagbAAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFH08XAAAAAOCfycnJ0bfffqu9e/eqXLlyat68uby9vT1dFgAAAHBVYCY6AAAAUIzNmzdPVatWVatWrXTXXXepVatWqlq1qubNm+fp0gAAAICrAiE6AAAAUEzNmzdPPXr0UO3atZWamqpjx44pNTVVtWvXVo8ePQjSAQAAABewGWOMp4s4V2ZmpkJCQpSRkaHg4GBPlwMAwAUxbhUd9wxwjZycHFWtWlW1a9fWggUL5OX1v/kxubm56tq1qzZs2KDffvuNpV2AS8SYBQAAJNZEB4qNkydPasuWLZf8/FOnTmnHjh2qWLGi/P39L/k4sbGxCggIuOTnAwAA1/j222+1Y8cOvfvuuzp69Kji4uK0Z88eRUVFafny5UpKSlLTpk317bffqmXLlp4uFwAAACi2CNGBYmLLli1q0KCBp8tQWlqa6tev7+kyAAC45u3du1eS1KVLFx04cMDR/tdffyksLEwRERFO/QAAAABcGkJ0oJiIjY1VWlraJT9/8+bN6tOnj9555x1Vr179H9UBAAA8r1y5cpLkCNAbN26sp59+Wv/3f/+nlStXOtrz+gEAAAC4NIToQDEREBDgkhng1atXZyY5AABXgZo1azr+fu56zampqY51nM/vBwAAAKDovC7eBQAAAMCVpnXr1o6/9+nTR6mpqTp27JhSU1PVp0+fAvsBAAAAKDpCdAAAAKAY2rNnjyRpzJgxWr9+vZo2barg4GA1bdpUGzZs0GOPPebUDwAAAMClIUQHAAAAiqGoqChJ0pIlS5SWlqZatWopNDRUtWrV0urVq/XFF1849QMAAABwaVgTHQAAACiGli9frrCwMK1cuVJhYWGO9r/++stpe/ny5Z4oDwAAALhqMBMdAAAAKIZCQ0Pl5fW/l/NBQUGaNGmSgoKCHG1eXl4KDQ31RHkAAADAVYMQHQAAACiGMjIylJub69g+duyYRowYoWPHjjnacnNzlZGR4YnyAAAAgKsGIToAAABQDHXo0EGS1K5dO+3cuVOBgYHy8vJSYGCgdu7cqbZt2zr1AwAAAHBpWBMdAAAAKIZ27dolSdqxY4cqVKjgaD9+/LgqVKigG264wakfAAAAgEvDTHQAAACgGIqJiZEkbdmyRTabTX379tXatWvVt29f2Ww2bd261akfAAAAgEtDiA4AAAAUQ++//77j74cOHdJbb72lOnXq6K233tKhQ4cK7AcAAACg6AjRAQAAgGJoyJAhjr+HhYUpPj5e3377reLj4xUWFlZgPwAAAABFx5roAAAAQDG0fft2SVL58uX1xx9/6IsvvtAXX3zh2J/XntcPAAAAwKVhJjoAAABQDFWpUkWS1KpVKx09elTNmjVTdHS0mjVrpqNHjyouLs6pHwAAAIBLYzPGGE8Xca7MzEyFhIQoIyNDwcHBni4HuGr8/PPPatCggdLS0lS/fn1PlwNcNRi3io57BhTs5MmT2rJlS6H7Hz9+XHFxcbLZbPruu+9kjNGOHTtUsWJF2Ww23XLLLTLGaPny5QoMDCz0cWNjYxUQEHAplwBcdRizAACAxHIuAAAAwBVhy5YtatCgQZGfZ4xRs2bNLPfnzUgvLP7DHQAAAHBGiA4AAABcAWJjY5WWllbk5/Xt21ebNm3K116jRg29/fbbl1QHAAAAgP8hRAcAAACuAAEBAZc0A3zjxo06fvy4OnbsqOXLlysuLk4LFy4s0hIuAAAAAKy5/INF89ZgPP+RmJjo6lMBAAAAkBQYGKhJkyZJkiZNmkSADgAAALiQy2eir1q1Sjk5OY7tDRs26LbbbtOdd97p6lMBAAAAAAAAAOBWLg/Rw8PDnbafffZZValSxfIDjbKyspSVleXYzszMdHVJAAAAAAAAAABcEpcv53Ku7OxsvfPOOxo4cKBsNluBfZKTkxUSEuJ4REdHu7MkAAAAAAAAAAAKza0h+oIFC3T06FH179/fsk9SUpIyMjIcj927d7uzJAAAAAAAAAAACs3ly7mc6/XXX1f79u0VFRVl2cdut8tut7uzDAAAAAAAAAAALonbQvSdO3fqq6++0rx589x1CgAAAAAAAAAA3Mpty7mkpKQoIiJCHTp0cNcpAAAAAAAAAABwK7eE6Lm5uUpJSVFCQoJ8fNy6YgwAAAAAAAAAAG7jlhD9q6++0q5duzRw4EB3HB4AAAAAAAAAgMvCLdPE27ZtK2OMOw4NAAAAAAAAAMBl47Y10QEAAAAAAAAAKO4I0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAMBh2rRpqlOnjoKDgxUcHKwmTZpo0aJFjv2nT59WYmKiwsLCFBgYqO7du2v//v0erBgAAAAAAPciRAcAAA7ly5fXs88+q7S0NK1evVqtW7dWly5dtHHjRknS8OHD9emnn+rDDz/U8uXLtWfPHt1xxx0erhoAAAAAAPfx8XQBAADgytGpUyen7aefflrTpk3TypUrVb58eb3++uuaM2eOWrduLUlKSUlR9erVtXLlSjVu3NgTJQMAAAAA4FbMRAcAAAXKycnRe++9pxMnTqhJkyZKS0vTmTNndOuttzr6xMbGKiYmRqmpqZbHycrKUmZmptMDAAAAAIDighAdAAA4Wb9+vQIDA2W323X//fdr/vz5qlGjhvbt2ydfX1+VKlXKqX9kZKT27dtnebzk5GSFhIQ4HtHR0W6+AgAAAAAAXIcQHQAAOLnhhhu0Zs0a/fjjj3rggQeUkJCgTZs2XfLxkpKSlJGR4Xjs3r3bhdUCAAAAAOBerIkOAACc+Pr6qmrVqpKkBg0aaNWqVXrppZf0r3/9S9nZ2Tp69KjTbPT9+/erbNmylsez2+2y2+3uLhsAAAAAALdgJjoAALig3NxcZWVlqUGDBipRooS+/vprx76tW7dq165datKkiQcrBAAAAADAfZiJDgAAHJKSktS+fXvFxMTo2LFjmjNnjpYtW6YlS5YoJCREgwYN0ogRIxQaGqrg4GA9+OCDatKkiRo3buzp0gEAAAAAcAtCdAAA4HDgwAH169dPe/fuVUhIiOrUqaMlS5botttukyRNnjxZXl5e6t69u7KyshQfH6+pU6d6uGoAAAAAANyHEB0AADi8/vrrF9zv5+enKVOmaMqUKZepIgAAAAAAPIs10QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALbgnR//zzT/Xp00dhYWHy9/dX7dq1tXr1anecCgAAAAAAAAAAt/Fx9QGPHDmiZs2aqVWrVlq0aJHCw8P122+/qXTp0q4+FQAAAAAAAAAAbuXyEH3ChAmKjo5WSkqKo61SpUqW/bOyspSVleXYzszMdHVJAAAAAAAAAABcEpcv5/LJJ5+oYcOGuvPOOxUREaF69eppxowZlv2Tk5MVEhLieERHR7u6JAAAAAAAAAAALonLQ/Tff/9d06ZNU7Vq1bRkyRI98MADGjp0qN58880C+yclJSkjI8Px2L17t6tLAgAAAAAAAADgkrh8OZfc3Fw1bNhQzzzzjCSpXr162rBhg1599VUlJCTk62+322W3211dBgAAAAAAAAAA/5jLZ6KXK1dONWrUcGqrXr26du3a5epTAQAAAAAAAADgVi4P0Zs1a6atW7c6tf3666+qUKGCq08FAAAAAAAAAIBbuTxEHz58uFauXKlnnnlG27Zt05w5c/Taa68pMTHR1acCAAAAAAAAAMCtXB6i33TTTZo/f77effdd1apVS+PHj9eLL76o3r17u/pUAAAAAAAAAAC4lcs/WFSSOnbsqI4dO7rj0AAAAAAAAAAAXDYun4kOAAAAAAAAAMDVghAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACz4eLoA4Fqya9cuHTp0yCPn3rx5s9OfnlCmTBnFxMR47PwAAAAAAABAURGiA5fJrl27dENsdZ0+ddKjdfTp08dj5/bzD9DWLZsJ0gEAAAAAAFBsEKIDl8mhQ4d0+tRJhXV8WCXCoi/7+c3ZbJ3N2C+fkEjZfHwv+/nPHN6twwtf0KFDhwjRAQAAAAAAUGwQogOXWYmwaNnLVvXMycvX8Mx5AQAAAAAAgGKKDxYFAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYMHH0wUAAAAAV4Ndu3bp0KFDHjv/5s2bnf70hDJlyigmJsZj5wcAAADcgRAdAAAA+Id27dqlG2Kr6/Spk54uRX369PHYuf38A7R1y2aCdAAAAFxVCNEBAACAf+jQoUM6feqkwjo+rBJh0R6pwZzN1tmM/fIJiZTNx/eyn//M4d06vPAFHTp0iBAdAAAAVxVCdAAAAMBFSoRFy162qucKKF/Dc+cGAAAArlIu/2DRsWPHymazOT1iY2NdfRoAAAAAAAAAANzOLTPRa9asqa+++up/J/FhwjsAAAAAAAAAoPhxS7rt4+OjsmXLuuPQAAAAAAAAAABcNi5fzkWSfvvtN0VFRaly5crq3bu3du3aZdk3KytLmZmZTg8AAAAAAAAAAK4ELg/RGzVqpFmzZmnx4sWaNm2a0tPT1bx5cx07dqzA/snJyQoJCXE8oqOjXV0SAAAopOTkZN10000KCgpSRESEunbtqq1btzr1admyZb7PP7n//vs9VDEAAAAAAO7l8hC9ffv2uvPOO1WnTh3Fx8fr888/19GjR/XBBx8U2D8pKUkZGRmOx+7du11dEgAAKKTly5crMTFRK1eu1JdffqkzZ86obdu2OnHihFO/e+65R3v37nU8Jk6c6KGKAQAAAABwL7d/4mepUqV0/fXXa9u2bQXut9vtstvt7i4DAAAUwuLFi522Z82apYiICKWlpalFixaO9oCAgEJ//klWVpaysrIc2yzdBgAAAAAoTtyyJvq5jh8/ru3bt6tcuXLuPhUAAHCxjIwMSVJoaKhT++zZs1WmTBnVqlVLSUlJOnnypOUxWLoNAAAAAFCcuXwm+siRI9WpUydVqFBBe/bs0ZgxY+Tt7a1evXq5+lQAAMCNcnNzNWzYMDVr1ky1atVytN91112qUKGCoqKitG7dOj3yyCPaunWr5s2bV+BxkpKSNGLECMd2ZmYmQToAAAAAoNhweYj+xx9/qFevXjp8+LDCw8N1yy23aOXKlQoPD3f1qQAAgBslJiZqw4YN+u6775za7733Xsffa9eurXLlyqlNmzbavn27qlSpku84LN0GAAAAACjOXB6iv/fee64+JAAAuMyGDBmihQsXasWKFSpfvvwF+zZq1EiStG3btgJDdAAAAAAAijO3f7AoAAAoPowxevDBBzV//nwtW7ZMlSpVuuhz1qxZI0l8/gkAAAAA4KpEiA4AABwSExM1Z84cffzxxwoKCtK+ffskSSEhIfL399f27ds1Z84c3X777QoLC9O6des0fPhwtWjRQnXq1PFw9QAAAAAAuB4hOgAAcJg2bZokqWXLlk7tKSkp6t+/v3x9ffXVV1/pxRdf1IkTJxQdHa3u3bvrscce80C1AAAAAAC4HyE6AABwMMZccH90dLSWL19+maoBAAAAAMDzvDxdAAAAAAAAAAAAVypCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYMHH0wUAAAAAV4OygTbV9t2jEjZvT5fiEWd890iBNk+XAQAAALgcIToAAADgAvc18NXYqFc9XYbnREljG/h6ugoAAADA5QjRAQAAABeYnpatH65/SCXCoj1dikecObxb69OeU2dPFwIAAAC4GCE6AAAA4AL7jhspO0p2U8nTpXhEVnbO3/cAAAAAuMrwwaIAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAW3B6iP/vss7LZbBo2bJi7TwUAAAAAAAAAgEu5NURftWqVpk+frjp16rjzNAAAAAAAAAAAuIXbQvTjx4+rd+/emjFjhkqXLu2u0wAAAAAAAAAA4DZuC9ETExPVoUMH3XrrrRfsl5WVpczMTKcHAAAAAAAAAABXAh93HPS9997Tzz//rFWrVl20b3JyssaNG+eOMgAAAAAAAAAA+EdcPhN99+7deuihhzR79mz5+fldtH9SUpIyMjIcj927d7u6JAAAAAAAAAAALonLZ6KnpaXpwIEDql+/vqMtJydHK1as0CuvvKKsrCx5e3s79tntdtntdleXAQAAAAAAAADAP+byEL1NmzZav369U9uAAQMUGxurRx55xClABwAAAAAAAADgSubyED0oKEi1atVyaitZsqTCwsLytQMAAAAAAAAAcCVz+ZroAAAAAAAAAABcLVw+E70gy5YtuxynAQAAAAAAAADApZiJDgAAAAAAAACABUJ0AAAAAAAAAAAsXJblXAD8rWygTbV996iEzdvTpVx2Z3z3SIE2T5cBAAAAAAAAFAkhOnAZ3dfAV2OjXvV0GZ4RJY1t4OvpKgAAcKszh3d77NzmbLbOZuyXT0ikbD6Xf8z15LUDAAAA7kSIDlxG09Oy9cP1D6lEWLSnS7nszhzerfVpz6mzpwsBAMANypQpIz//AB1e+IKnS/EoP/8AlSlTxtNlAAAAAC5FiA5cRvuOGyk7SnZTydOlXHZZ2Tl/Xz8AAFehmJgYbd2yWYcOHfJYDZs3b1afPn30zjvvqHr16h6poUyZMoqJifHIuQEAAAB3IUQHAAAAXCAmJuaKCJCrV6+u+vXre7oMAAAA4Krh5ekCAAAAAAAAAAC4UhGiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAgENycrJuuukmBQUFKSIiQl27dtXWrVud+pw+fVqJiYkKCwtTYGCgunfvrv3793uoYgAAAAAA3IsQHQAAOCxfvlyJiYlauXKlvvzyS505c0Zt27bViRMnHH2GDx+uTz/9VB9++KGWL1+uPXv26I477vBg1QAAAAAAuI+PpwsAAABXjsWLFzttz5o1SxEREUpLS1OLFi2UkZGh119/XXPmzFHr1q0lSSkpKapevbpWrlypxo0b5ztmVlaWsrKyHNuZmZnuvQgAAAAAAFyImegAAMBSRkaGJCk0NFSSlJaWpjNnzujWW2919ImNjVVMTIxSU1MLPEZycrJCQkIcj+joaPcXDgAAAACAixCiAwCAAuXm5mrYsGFq1qyZatWqJUnat2+ffH19VapUKae+kZGR2rdvX4HHSUpKUkZGhuOxe/dud5cOAAAAAIDLsJwLAAAoUGJiojZs2KDvvvvuHx3HbrfLbre7qCoAAAAAAC4vZqIDAIB8hgwZooULF2rp0qUqX768o71s2bLKzs7W0aNHnfrv379fZcuWvcxVAgAAAADgfoToAADAwRijIUOGaP78+frmm29UqVIlp/0NGjRQiRIl9PXXXzvatm7dql27dqlJkyaXu1wAAAAAANyO5VwAAIBDYmKi5syZo48//lhBQUGOdc5DQkLk7++vkJAQDRo0SCNGjFBoaKiCg4P14IMPqkmTJmrcuLGHqwcAAAAAwPUI0QEAgMO0adMkSS1btnRqT0lJUf/+/SVJkydPlpeXl7p3766srCzFx8dr6tSpl7lSAAAAAAAuD0J0AADgYIy5aB8/Pz9NmTJFU6ZMuQwVAQAAAADgWayJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAgstD9GnTpqlOnToKDg5WcHCwmjRpokWLFrn6NAAAAAAAAAAAuJ3LQ/Ty5cvr2WefVVpamlavXq3WrVurS5cu2rhxo6tPBQAAAAAAAACAW/m4+oCdOnVy2n766ac1bdo0rVy5UjVr1nT16QAAAAAAAAAAcBuXh+jnysnJ0YcffqgTJ06oSZMmBfbJyspSVlaWYzszM9OdJQEAAAAAAAAAUGhu+WDR9evXKzAwUHa7Xffff7/mz5+vGjVqFNg3OTlZISEhjkd0dLQ7SgIAAAAAAAAAoMjcEqLfcMMNWrNmjX788Uc98MADSkhI0KZNmwrsm5SUpIyMDMdj9+7d7igJAAAAAAAAAIAic8tyLr6+vqpataokqUGDBlq1apVeeuklTZ8+PV9fu90uu93ujjIAAAAAAAAAAPhH3DIT/Xy5ublO654DAAAAAAAAAFAcuHwmelJSktq3b6+YmBgdO3ZMc+bM0bJly7RkyRJXnwoAAAAAAAAAALdyeYh+4MAB9evXT3v37lVISIjq1KmjJUuW6LbbbnP1qQAAAAAAAAAAcCuXh+ivv/66qw8JAAAAAAAAAIBHXJY10QEAAAAAAAAAKI4I0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALLg/Rk5OTddNNNykoKEgRERHq2rWrtm7d6urTAAAAAAAAAADgdi4P0ZcvX67ExEStXLlSX375pc6cOaO2bdvqxIkTrj4VAAAAAAAAAABu5ePqAy5evNhpe9asWYqIiFBaWppatGjh6tMBAAAAAAAAAOA2Lg/Rz5eRkSFJCg0NLXB/VlaWsrKyHNuZmZnuLgkAAAAAAAAAgEJx6weL5ubmatiwYWrWrJlq1apVYJ/k5GSFhIQ4HtHR0e4sCQAAAAAAAACAQnNriJ6YmKgNGzbovffes+yTlJSkjIwMx2P37t3uLAkAAAAAAAAAgEJz23IuQ4YM0cKFC7VixQqVL1/esp/dbpfdbndXGQAAAAAAAAAAXDKXh+jGGD344IOaP3++li1bpkqVKrn6FAAAAAAAAAAAXBYuD9ETExM1Z84cffzxxwoKCtK+ffskSSEhIfL393f16QAAAAAAAAAAcBuXr4k+bdo0ZWRkqGXLlipXrpzj8f7777v6VAAAAAAAAAAAuJXLQ3RjTIGP/v37u/pUAADAxVasWKFOnTopKipKNptNCxYscNrfv39/2Ww2p0e7du08UywAAAAAAJeBy0N0AABQfJ04cUJ169bVlClTLPu0a9dOe/fudTzefffdy1ghAAAAAACXl8vXRAcAAMVX+/bt1b59+wv2sdvtKlu27GWqCEBhrF+/Xg0bNpQkNWzYUGvXrlXt2rU9XBUAAABwdSBEBwAARbJs2TJFRESodOnSat26tZ566imFhYVZ9s/KylJWVpZjOzMz83KUCVwzbDab07YxRnXq1HH8HQAAAMA/w3IuAACg0Nq1a6e33npLX3/9tSZMmKDly5erffv2ysnJsXxOcnKyQkJCHI/o6OjLWDFwdTs/QC/qfgAAAAAXx0x0AABQaP/+978df69du7bq1KmjKlWqaNmyZWrTpk2Bz0lKStKIESMc25mZmQTpgAusX7++0P1Y2gUAAAC4dIToAADgklWuXFllypTRtm3bLEN0u90uu91+mSsDip+TJ09qy5Ythe7foEGDQvWrU6eO0tLSCn3c2NhYBQQEFLo/AAAAcLUjRAcuszOHd3vkvOZsts5m7JdPSKRsPr6X/fyeum4A7vXHH3/o8OHDKleunKdLAYq9LVu2FDoYL6qiHDctLU3169d3Sx0AAABAcUSIDlwmZcqUkZ9/gA4vfMHTpXiMn3+AypQp4+kyAFzA8ePHtW3bNsd2enq61qxZo9DQUIWGhmrcuHHq3r27ypYtq+3bt2v06NGqWrWq4uPjPVg1cHWIjY0t0ozxogbjRakDAAAAwP/YjDHG00WcKzMzUyEhIcrIyFBwcLCnywFcateuXTp06JBHzr1582b16dNH77zzjqpXr+6RGsqUKaOYmBiPnBtwl6tt3Fq2bJlatWqVrz0hIUHTpk1T165d9csvv+jo0aOKiopS27ZtNX78eEVGRhb6HFfbPQM8pSgfGnqFveQHig3GLAAAIDETHbisYmJiPB4iV69enbdoA7DUsmXLC4ZtS5YsuYzVAAAAAADgeV6eLgAAAAAAAAAAgCsVIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAoBgqVaqUS/sBAAAAKBghOgAAAFAMBQQEuLQfAAAAgIIRogMAAADF0JEjR1zaDwAAAEDBCNEBAACAYignJ8el/QAAAAAUjBAdAAAAKIbKly/v0n4AAAAACkaIDgAAABRDcXFxTttly5bV4MGDVbZs2Qv2AwAAAFA0Pp4uAAAAAEDR7du3L9/21KlTL9oPAAAAQNEwEx0AAAAohn755ReX9gMAAABQMEJ0AAAAoBjy8/NzaT8AAAAABSNEBwAAAIqhu+++2/H3AwcOKDExUW3btlViYqIOHDhQYD8AAAAARUeIDgAAABRDvr6+jr9HRkbq6NGjSk5O1tGjRxUZGVlgPwAAAABFxweLAgAAAMXQrl27HH83xmj27NmaPXv2BfsBAAAAKDpmogMAAADFUJUqVSRJ8fHx8vJyflnv7e2ttm3bOvUDAAAAcGkI0QEAAIBiaPDgwfLx8dGaNWt07NgxTZ48WUOGDNHkyZOVmZmptWvXysfHR4MHD/Z0qQAAAECxRogOAAAAFEO+vr4aPny49u/fr8qVKysgIEBJSUkKCAhQ5cqVtX//fg0fPpw10QEAAIB/iDXRAQAAgGJq4sSJkqTJkyfrvvvuc7T7+Pho1KhRjv0AAAAALh0hOgAAAFCMTZw4UU899ZSmTp2q7du3q0qVKho8eDAz0AEAAAAXIUQHAAAAijlfX18NGzbM02UAAAAAVyVCdAAAAKCYy87OZiY6AAAA4CaE6AAAAEAxNnr0aE2ePFlnz551tI0aNUrDhw9nTXQAAADABbw8XQAAAACASzN69Gg999xzCgsL04wZM7R3717NmDFDYWFheu655zR69GhPlwgAAAAUe4ToAAAAQDGUnZ2tyZMnKzIyUjt37lTVqlW1dOlSVa1aVTt37lRkZKQmT56s7OxsT5cKAAAAFGuE6AAAAEAxNHXqVJ09e1Z33HGHYmNj1apVK911111q1aqVYmNj1a1bN509e1ZTp071dKkAAABAscaa6AAAAEAxtH37dknStGnT1KFDB3Xp0kWnTp2Sv7+/tm3bpldffdWpHwAAAIBLQ4gOAAAAFEMVK1aUJIWHh2vx4sXKyclx7PP29lZ4eLgOHjzo6AcAAADg0rh8OZcVK1aoU6dOioqKks1m04IFC1x9CgAAAOCaV7t2bUnSwYMHC/xg0YMHDzr1AwAAAHBpXB6inzhxQnXr1tWUKVNcfWgAAAAA/9/+/fudtnNzcx2PC/UDAAAAUDQuX86lffv2at++faH7Z2VlKSsry7GdmZnp6pIAAACAq86PP/4oSWrUqJHS0tJ03333Ofb5+Pjopptu0qpVq/Tjjz+qb9++nioTAAAAKPZcPhO9qJKTkxUSEuJ4REdHe7okAAAA4IpnjJEkBQcH69ixY5o8ebKGDBmiyZMn69ixYypVqpRTPwAAAACXxuMhelJSkjIyMhyP3bt3e7okAAAA4IpXrVo1SdKXX36pnj17qlGjRnrmmWfUqFEj9ezZU19++aVTPwAAAACXxuXLuRSV3W6X3W73dBkAAABAsTJ48GCNGjVKJUuW1Lp169S0aVPHvooVKyokJEQnTpzQ4MGDPVglAAAAUPx5fCY6AAAAgKLz9fXV8OHDlZGRodOnT2vEiBF65ZVXNGLECJ06dUoZGRkaPny4fH19PV0qAAAAUKx5fCY6AAAAgEszceJESdLkyZM1adIkR7uPj49GjRrl2A8AAADg0rk8RD9+/Li2bdvm2E5PT9eaNWsUGhqqmJgYV58OAAAAuKZNnDhRTz31lKZOnart27erSpUqGjx4MDPQAQAAABdxeYi+evVqtWrVyrE9YsQISVJCQoJmzZrl6tMBAAAA1zxfX18NGzbM02UAAAAAVyWXh+gtW7aUMcbVhwUAAAAAAAAA4LLjg0UBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAo5k6dOqUhQ4YoPj5eQ4YM0alTpzxdEgAAAHDVIEQHAAAAirGuXbsqICBAU6ZM0RdffKEpU6YoICBAXbt29XRpAAAAwFWBEB0AAAAoprp27aqPP/5Yvr6+evTRR7Vt2zY9+uij8vX11ccff0yQDgAAALiAj6cLAAAAAFB0p06dcgTox44dk6+vryQpOTlZ48aNU1BQkD7++GOdOnVK/v7+Hq4WAAAAKL6YiQ4AAAAUQ6NGjZIkjRgxwhGg5/H19dWwYcOc+gEAAAC4NIToAAAAQDH022+/SZLuvvvuAvcPGjTIqR8AAACAS0OIDgAAHFasWKFOnTopKipKNptNCxYscNpvjNETTzyhcuXKyd/fX7feeisBHeAh1apVkyTNnDmzwP2vv/66Uz8AAAAAl4YQHQAAOJw4cUJ169bVlClTCtw/ceJE/fe//9Wrr76qH3/8USVLllR8fLxOnz59mSsF8Nxzz0mSJk2apOzsbKd92dnZevHFF536AQAAALg0hOgAAMChffv2euqpp9StW7d8+4wxevHFF/XYY4+pS5cuqlOnjt566y3t2bMn34z1c2VlZSkzM9PpAeCf8/f3V5cuXZSdna2goCA98sgj+vXXX/XII48oKChI2dnZ6tKlCx8qCgAAAPxDhOgAAKBQ0tPTtW/fPt16662OtpCQEDVq1EipqamWz0tOTlZISIjjER0dfTnKBa4JCxYscATpEydO1A033KCJEyc6AvQL/QcXAAAAgMIhRAcAAIWyb98+SVJkZKRTe2RkpGNfQZKSkpSRkeF47N692611AteaBQsW6OTJk0pMTFTbtm2VmJiokydPEqADAAAALuLj6QIAAMDVzW63y263e7oM4Krm7++vV155xdNlAAAAAFclZqIDAIBCKVu2rCRp//79Tu379+937AMAAAAA4GpDiA4AAAqlUqVKKlu2rL7++mtHW2Zmpn788Uc1adLEg5UBAAAAAOA+LOcCAAAcjh8/rm3btjm209PTtWbNGoWGhiomJkbDhg3TU089pWrVqqlSpUp6/PHHFRUVpa5du3quaAAAAAAA3IgQHQAAOKxevVqtWrVybI8YMUKSlJCQoFmzZmn06NE6ceKE7r33Xh09elS33HKLFi9eLD8/P0+VDAAAAACAWxGiAwAAh5YtW8oYY7nfZrPpySef1JNPPnkZqwJwMTk5Ofr222+1d+9elStXTs2bN5e3t7enywIAAACuCqyJDgAAABRj8+bNU9WqVdWqVSvdddddatWqlapWrap58+Z5ujQAAADgquC2EH3KlCmqWLGi/Pz81KhRI/3000/uOhUAAABwTZo3b5569Oih2rVrKzU1VceOHVNqaqpq166tHj16EKQDAAAALuCWEP3999/XiBEjNGbMGP3888+qW7eu4uPjdeDAAXecDgAAALjm5OTk6OGHH1bHjh21YMECNW7cWIGBgWrcuLEWLFigjh07auTIkcrJyfF0qQAAAECx5pY10SdNmqR77rlHAwYMkCS9+uqr+uyzz/TGG2/o0UcfdeqblZWlrKwsx3ZmZqY7SgKKvZMnT2rLli2X/PzNmzc7/XmpYmNjFRAQ8I+OAQAA/rlvv/1WO3bs0LvvvisvL+e5MV5eXkpKSlLTpk317bffqmXLlp4pEgAAALgKuDxEz87OVlpampKSkhxtXl5euvXWW5Wampqvf3JyssaNG+fqMoCrzpYtW9SgQYN/fJw+ffr8o+enpaWpfv36/7gOAADwz+zdu1eSVKtWrQL357Xn9QMAAABwaVweoh86dEg5OTmKjIx0ao+MjCxwFm1SUpJGjBjh2M7MzFR0dLSrywKKvdjYWKWlpV3y80+dOqUdO3aoYsWK8vf3/0d1AAAAzytXrpwkacOGDWrcuHG+/Rs2bHDqBwAAAODSuGU5l6Kw2+2y2+2eLgO44gUEBPzjGeDNmjVzUTUAAMDTmjdvrooVK+qZZ57RggULnJZ0yc3NVXJysipVqqTmzZt7sEoAAACg+HP5B4uWKVNG3t7e2r9/v1P7/v37VbZsWVefDgAAALgmeXt764UXXtDChQvVtWtXpaam6tixY0pNTVXXrl21cOFCPf/88/L29vZ0qQAAAECx5vIQ3dfXVw0aNNDXX3/taMvNzdXXX3+tJk2auPp0AAAAwDXrjjvu0EcffaT169eradOmCg4OVtOmTbVhwwZ99NFHuuOOOzxdIgAAAFDsuWU5lxEjRighIUENGzbUzTffrBdffFEnTpzQgAED3HE6AAAA4Jp1xx13qEuXLvr222+1d+9elStXTs2bN2cGOgAAAOAibgnR//Wvf+ngwYN64okntG/fPt14441avHhxvg8bBQAAAPDPeXt7q2XLlp4uAwAAALgque2DRYcMGaIhQ4a46/AAAAAAAAAAALidy9dEBwAAAAAAAADgakGIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAUfTxdwPmOMJCkzM9PDlQAAcHF541Xe+IWLY6wHABQXjPMAAEC6AkP0Y8eOSZKio6M9XAkAAIV37NgxhYSEeLqMYoGxHgBQ3DDOAwBwbbOZK+y/1HNzc7Vnzx4FBQXJZrN5uhzgqpGZmano6Gjt3r1bwcHBni4HuGoYY3Ts2DFFRUXJy4tV0gqDsR5wD8Z6wPUY5wEAgHQFhugA3CMzM1MhISHKyMjgF2sAAK5CjPUAAACAe/Bf6QAAAAAAAAAAWCBEBwAAAAAAAADAAiE6cI2w2+0aM2aM7Ha7p0sBAABuwFgPAAAAuAdrogMAAAAAAAAAYIGZ6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA5c5VasWKFOnTopKipKNptNCxYs8HRJAADAhRjrAQAAAPciRAeucidOnFDdunU1ZcoUT5cCAADcgLEeAAAAcC8fTxcAwL3at2+v9u3be7oMAADgJoz1AAAAgHsxEx0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALDg4+kCALjX8ePHtW3bNsd2enq61qxZo9DQUMXExHiwMgAA4AqM9QAAAIB72YwxxtNFAHCfZcuWqVWrVvnaExISNGvWrMtfEAAAcCnGegAAAMC9CNEBAAAAAAAAALDAmugAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4TogJstW7ZMNptNR48evazn3bFjh2w2m9asWePROgAA8ITzx0F36N+/v7p27eq2418N3Pn643J8jQEAAACJEB1wu6ZNm2rv3r0KCQkpNnUQuAMA4B42m00LFizwdBmXzfmvP2bNmqVSpUp5tigAAACgiHw8XQBwtfP19VXZsmU9XcYVUwcAALh28PoDAAAAVwNmogNF1LJlSz344IMaNmyYSpcurcjISM2YMUMnTpzQgAEDFBQUpKpVq2rRokWS8s/q3rlzpzp16qTSpUurZMmSqlmzpj7//HNJ0pEjR9S7d2+Fh4fL399f1apVU0pKSqHq+umnn1SvXj35+fmpYcOG+uWXX5z2F7aOHTt2qFWrVpKk0qVLy2azqX///pKkxYsX65ZbblGpUqUUFhamjh07avv27Y5z5L2tet68eWrVqpUCAgJUt25dpaamOtXy/fffq2XLlgoICFDp0qUVHx+vI0eOSJJyc3OVnJysSpUqyd/fX3Xr1tVHH31U+C8QAOCacbFxSZK2bNmipk2bys/PT7Vq1dLy5csd+y427q5fv16tW7eWv7+/wsLCdO+99+r48eOW9VSsWFEvvviiU9uNN96osWPHOvZLUrdu3WSz2RzbkvTxxx+rfv368vPzU+XKlTVu3DidPXu2UPfBZrNp+vTp6tixowICAlS9enWlpqZq27ZtatmypUqWLKmmTZs63Zvt27erS5cuioyMVGBgoG666SZ99dVXTsfdu3evOnToIH9/f1WqVElz5szJd402m00zZ85Ut27dFBAQoGrVqumTTz5x7D/39ceyZcs0YMAAZWRkyGazyWazOe5NQTP0S5UqpVmzZjm2L/ZaR5I2bNig9u3bKzAwUJGRkerbt68OHTpUqPsIAAAAWCFEBy7Bm2++qTJlyuinn37Sgw8+qAceeEB33nmnmjZtqp9//llt27ZV3759dfLkyXzPTUxMVFZWllasWKH169drwoQJCgwMlCQ9/vjj2rRpkxYtWqTNmzdr2rRpKlOmzEXrOX78uDp27KgaNWooLS1NY8eO1ciRIy/4HKs6oqOjNXfuXEnS1q1btXfvXr300kuSpBMnTmjEiBFavXq1vv76a3l5ealbt27Kzc11Ovb//d//aeTIkVqzZo2uv/569erVyxEErFmzRm3atFGNGjWUmpqq7777Tp06dVJOTo4kKTk5WW+99ZZeffVVbdy4UcOHD1efPn2cQg8AAKTCjUujRo3Sww8/rF9++UVNmjRRp06ddPjwYUkXHndPnDih+Ph4lS5dWqtWrdKHH36or776SkOGDLnkeletWiVJSklJ0d69ex3b3377rfr166eHHnpImzZt0vTp0zVr1iw9/fTThT72+PHj1a9fP61Zs0axsbG66667dN999ykpKUmrV6+WMcap9uPHj+v222/X119/rV9++UXt2rVTp06dtGvXLkeffv36ac+ePVq2bJnmzp2r1157TQcOHMh37nHjxqlnz55at26dbr/9dvXu3Vt//fVXvn5NmzbViy++qODgYO3du1d79+696OuVc+u92Gudo0ePqnXr1qpXr55Wr16txYsXa//+/erZs2dhbyMAAABQMAOgSOLi4swtt9zi2D579qwpWbKk6du3r6Nt7969RpJJTU01S5cuNZLMkSNHjDHG1K5d24wdO7bAY3fq1MkMGDCgyDVNnz7dhIWFmVOnTjnapk2bZiSZX375xRhjilTH+X2tHDx40Egy69evN8YYk56ebiSZmTNnOvps3LjRSDKbN282xhjTq1cv06xZswKPd/r0aRMQEGB++OEHp/ZBgwaZXr16XbAWAADOHZfyxqRnn33Wsf/MmTOmfPnyZsKECcaYC4+7r732mildurQ5fvy4o+2zzz4zXl5eZt++fcYYYxISEkyXLl0c+ytUqGAmT57sdJy6deuaMWPGOLYlmfnz5zv1adOmjXnmmWec2t5++21Trly5Ql23JPPYY485tlNTU40k8/rrrzva3n33XePn53fB49SsWdO8/PLLxhhjNm/ebCSZVatWOfb/9ttvRpLTNZ5/7uPHjxtJZtGiRcaY/K8pUlJSTEhISIHXcP59CQkJMSkpKcaYwr3WGT9+vGnbtq3TMXbv3m0kma1bt17w2gEAAIALYSY6cAnq1Knj+Lu3t7fCwsJUu3ZtR1tkZKQkFThba+jQoXrqqafUrFkzjRkzRuvWrXPse+CBB/Tee+/pxhtv1OjRo/XDDz8Uqp7NmzerTp068vPzc7Q1adLkgs+5UB1WfvvtN/Xq1UuVK1dWcHCw423o585ak5zvT7ly5ST9717kzUQvyLZt23Ty5EnddtttCgwMdDzeeuutfG/PBwCgMOPSueOhj4+PGjZsqM2bN0u68Li7efNm1a1bVyVLlnS0NWvWTLm5udq6datLr2Pt2rV68sknnca+e+65R3v37i3wXW0FOXfszXsdcv5rk9OnTyszM1PS3zO7R44cqerVq6tUqVIKDAzU5s2bHfdu69at8vHxUf369R3HqFq1qkqXLn3Bc5csWVLBwcEFvgb6JwrzWmft2rVaunSp032MjY2VJF5HAAAA4B8hRAcuQYkSJZy2bTabU5vNZpOkfMucSNLdd9+t33//XX379tX69evVsGFDvfzyy5Kk9u3ba+fOnRo+fLj27NmjNm3aFPptzkV1oTqsdOrUSX/99ZdmzJihH3/8UT/++KMkKTs726nfhe6Fv7+/5fHz1pn97LPPtGbNGsdj06ZNrIsOAMinsOOSFVePu15eXjLGOLWdOXPmos87fvy4xo0b5zT2rV+//v+1d78hUS1hHMd/q2kpCkktRrJoZNpmaygYJWSgkUUJLQSREVagSBZoSWSZIIHZ/yArsFdaga8UywKt1cCEyPyfpa1iRGGRbVAbBCn3voi7uOmaSna53u8Hzos9c/bMnHnzzHmYMyO73e6WNJ7IeLF3onicm5urqqoqFRUVqbGxUe3t7bJYLJPuO091/1PXeGOgiRgMhmn13WhOp1MpKSlu/dje3i673a6EhIQp3QsAAAAYjSQ68C8wmUzKzMxUZWWlDh8+rOvXr7vKjEaj0tLSdPPmTV26dEmlpaW/vJ/ZbFZnZ6e+ffvmOvf48eNpt8PX11eSXOuUS9LHjx/V29ur/Px8JSUlyWw2uzYDnYro6GjZbLZxy1asWKG5c+fq9evXCg8PdztMJtOU6wIAzF6TjUuj4+Hw8LBaWlpkNptd5zzFXbPZrI6ODn39+tV1bVNTk7y8vBQZGTlum4xGowYHB12/P3/+rIGBAbdrfHx83OKrJMXGxqq3t3dM7AsPD5eX18wM15uamrRnzx5ZrVZZLBYtWrRIr169cpVHRkZqeHjYbfPOvr6+acX+0Xx9fcc8vzS27+x2u9ss/MmMdWJjY9Xd3a2wsLAx/Tj6iwIAAABgqkiiA39Ydna2amtrNTAwoNbWVjU0NLhe5gsKClRdXa2+vj51d3erpqbG7UXfk9TUVBkMBqWnp+v58+e6d++ezp07N+12hIaGymAwqKamRh8+fJDT6VRQUJAWLFig0tJS9fX1qb6+XocOHZry8+fl5am5uVn79+9XZ2enenp6dO3aNQ0NDSkwMFC5ubnKyclRWVmZ+vv71draqsuXL6usrGzKdQEAZq/JxqUrV66oqqpKPT09ysrK0qdPn7Rv3z5JE8fdXbt2ad68eUpLS9OzZ8/U0NCggwcPavfu3a7lUn6WmJioGzduqLGxUV1dXUpLS5O3t7fbNWFhYbLZbHr37p0rIV1QUKDy8nIVFhaqu7tbL168UEVFhfLz839nl7lZtmyZKisr1d7ero6ODqWmprrNHl++fLk2bNigjIwMPXnyRG1tbcrIyJCfn59rVvt0hIWFyel0ymazaWhoyJUoT0xMVElJidra2vT06VNlZma6zXCfzFgnKytLDodDO3fuVHNzs/r7+1VbW6u9e/eOm7gHAAAAJoskOvCHjYyMKCsrS2azWZs2bVJERISuXr0q6cfsrLy8PEVHRyshIUHe3t6qqKj45T0DAgJ0584ddXV1KSYmRsePH9fp06en3Y6QkBAVFhbq6NGjCg4O1oEDB+Tl5aWKigq1tLRo5cqVysnJ0dmzZ6f8/BEREaqrq1NHR4dWr16ttWvXqrq6WnPmzJEknTx5UidOnNCpU6dcbbt7966WLFky5boAALPXZONScXGxiouLtWrVKj169Ei3b9/WwoULJU0cd/39/VVbWyuHw6G4uDht375dSUlJKikp8dimvLw8rV+/Xlu3btWWLVu0bds2LV261O2a8+fP6/79+zKZTIqJiZEkJScnq6amRnV1dYqLi9OaNWt08eJFhYaG/q7uGuPChQsKCgpSfHy8UlJSlJyc7Lb+uSSVl5crODhYCQkJslqtSk9PV2Bg4KSXmBlPfHy8MjMztWPHDhmNRp05c0bSj34xmUxat26dUlNTlZubK39/f9f/JjPWWbx4sZqamjQyMqKNGzfKYrEoOztb8+fPn7EZ/QAAAPh/MPz18+KDAAAAAPCTN2/eyGQy6cGDBx43CQcAAABmI5LoAAAAAMaor6+X0+mUxWLR4OCgjhw5ordv3+rly5djNhMFAAAAZjO+awT+A4qKihQQEDDusXnz5n+7eQAAYIbcunXL4xggKipqRuv+/v27jh07pqioKFmtVhmNRj18+JAEOgAAAP53mIkO/Ac4HA45HI5xy/z8/BQSEvKHWwQAAP6EL1++6P379+OW+fj4zOi66QAAAAB+IIkOAAAAAAAAAIAHLOcCAAAAAAAAAIAHJNEBAAAAAAAAAPCAJDoAAAAAAAAAAB6QRAcAAAAAAAAAwAOS6AAAAAAAAAAAeEASHQAAAAAAAAAAD0iiAwAAAAAAAADgwd+DjSI9eiXhGQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Числовые столбцы DataFrame\n",
|
||
"numeric_columns: list[str] = [\n",
|
||
" 'est_diameter_min',\n",
|
||
" 'est_diameter_max', \n",
|
||
" 'relative_velocity', \n",
|
||
" 'miss_distance', \n",
|
||
" 'absolute_magnitude'\n",
|
||
"]\n",
|
||
"\n",
|
||
"# Проверка выбросов в DataFrame\n",
|
||
"def check_outliers(dataframe: DataFrame, columns: list[str]) -> None:\n",
|
||
" for column in columns:\n",
|
||
" if not pd.api.types.is_numeric_dtype(dataframe[column]): # Проверяем, является ли колонка числовой\n",
|
||
" continue\n",
|
||
" \n",
|
||
" Q1: float = dataframe[column].quantile(0.25) # 1-й квартиль (25%)\n",
|
||
" Q3: float = dataframe[column].quantile(0.75) # 3-й квартиль (75%)\n",
|
||
" IQR: float = Q3 - Q1 # Вычисляем межквартильный размах\n",
|
||
"\n",
|
||
" # Определяем границы для выбросов\n",
|
||
" lower_bound: float = Q1 - 1.5 * IQR # Нижняя граница\n",
|
||
" upper_bound: float = Q3 + 1.5 * IQR # Верхняя граница\n",
|
||
"\n",
|
||
" # Подсчитываем количество выбросов\n",
|
||
" outliers: DataFrame = dataframe[(dataframe[column] < lower_bound) | (dataframe[column] > upper_bound)]\n",
|
||
" outlier_count: int = outliers.shape[0]\n",
|
||
"\n",
|
||
" print(f\"Колонка {column}:\")\n",
|
||
" print(f\"\\tЕсть выбросы: {'Да' if outlier_count > 0 else 'Нет'}\")\n",
|
||
" print(f\"\\tКоличество выбросов: {outlier_count}\")\n",
|
||
" print(f\"\\tМинимальное значение: {dataframe[column].min()}\")\n",
|
||
" print(f\"\\tМаксимальное значение: {dataframe[column].max()}\")\n",
|
||
" print(f\"\\t1-й квартиль (Q1): {Q1}\")\n",
|
||
" print(f\"\\t3-й квартиль (Q3): {Q3}\\n\")\n",
|
||
"\n",
|
||
"# Визуализация выбросов\n",
|
||
"def visualize_outliers(dataframe: DataFrame, columns: list[str]) -> None:\n",
|
||
" # Диаграммы размахов\n",
|
||
" plt.figure(figsize=(15, 10))\n",
|
||
" rows: int = ceil(len(columns) / 3)\n",
|
||
" for index, column in enumerate(columns, 1):\n",
|
||
" plt.subplot(rows, 3, index)\n",
|
||
" plt.boxplot(dataframe[column], vert=True, patch_artist=True)\n",
|
||
" plt.title(f\"Диаграмма размахов для \\\"{column}\\\"\")\n",
|
||
" plt.xlabel(column)\n",
|
||
" \n",
|
||
" # Отображение графиков\n",
|
||
" plt.tight_layout()\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
"\n",
|
||
"# Проверка выбросов\n",
|
||
"check_outliers(df, numeric_columns)\n",
|
||
"visualize_outliers(df, numeric_columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Колонка est_diameter_min:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 0.0006089126\n",
|
||
"\tМаксимальное значение: 0.32962154705\n",
|
||
"\t1-й квартиль (Q1): 0.0192555078\n",
|
||
"\t3-й квартиль (Q3): 0.1434019235\n",
|
||
"\n",
|
||
"Колонка est_diameter_max:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 0.00136157\n",
|
||
"\tМаксимальное значение: 0.7370561859\n",
|
||
"\t1-й квартиль (Q1): 0.0430566244\n",
|
||
"\t3-й квартиль (Q3): 0.320656449\n",
|
||
"\n",
|
||
"Колонка relative_velocity:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 203.34643253\n",
|
||
"\tМаксимальное значение: 114380.48061454494\n",
|
||
"\t1-й квартиль (Q1): 28619.02064490995\n",
|
||
"\t3-й квартиль (Q3): 62923.60463276395\n",
|
||
"\n",
|
||
"Колонка miss_distance:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 6745.532515957\n",
|
||
"\tМаксимальное значение: 74798651.4521972\n",
|
||
"\t1-й квартиль (Q1): 17210820.23576468\n",
|
||
"\t3-й квартиль (Q3): 56548996.45139917\n",
|
||
"\n",
|
||
"Колонка absolute_magnitude:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 14.8\n",
|
||
"\tМаксимальное значение: 32.239999999999995\n",
|
||
"\t1-й квартиль (Q1): 21.34\n",
|
||
"\t3-й квартиль (Q3): 25.7\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPdCAYAAABlRyFLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADy8ElEQVR4nOzde1wV5dr/8S8HWaAkigiIG4XUUvNAQRKWh5JEswNlhmaJZNpTUhq7E23FY5HHUCMpy0OpRbbLp9QHM4zdQdLE3JqpWWqYtlA8QKKCwvz+6MfkEhYCoqB93q/XvHLdc80990zLdS2vNXOPg2EYhgAAAAAAAAAAQBmOtT0AAAAAAAAAAADqKoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAHARZGRkyMHBQRkZGWbb0KFDFRAQUGtj+jvYu3evHBwctHDhwtoeCgDgCkA+BwCg7ikvP9cEBwcHjR8/vkb7rG09e/ZUz549L1r/AQEBGjp06EXrvy6hiF6ODz/8UA4ODuUuHTp0qO3hAX8bPXv2ND+Mhw4detE++E+cOKHx48fXeAK+HK1bt07jx4/XsWPHansoteLsAnxAQMAV9wXq74Z8DtQN5PNL7++ez89V+iN76XuDH9yvXOR+oG64VLm/OlatWsW/8y6iH3/8UePHj9fevXur3cfZ/xY/+71U25xrewB12Ysvvqh27dqZr1966aVaHA2Ai+XEiROaMGGCJF3U5D5v3jyVlJRctP5rwrp16zRhwgQNHTpUjRo1qu3hVFnLli118uRJ1atXr7aHgjqEfA78PZDP/3K553PgQpH7AdizatUqJScnl1tIP3nypJydKZVWxc6dO+Xo+Nc12j/++KMmTJignj17XnF37vHOqMDtt99u8wX8rbfeUm5ubu0NCMBl7e9c2D1x4oTq169/0ffj4OAgV1fXi74fXF7I5wBqEvn84udz4EKR+4HLy5kzZ1RSUiIXF5daHQf/lqw6i8VS20O4ZJjOpRxFRUWSZPNLij0LFy6Ug4ODzW0KJSUl6tSpU5nbBLds2aKhQ4fq6quvlqurq3x9ffXII4/o8OHDNn2OHz++3NvPzv41rGfPnurQoYOysrLUtWtXubm5KTAwUCkpKWWOJSEhQcHBwfLw8FCDBg3UrVs3ffHFFzZxpbc4Ojg4aPny5TbrTp06pcaNG8vBwUHTp08vM05vb2+dPn3aZpv33nvP7O/sLyv/+7//q379+snPz08Wi0WtWrXSpEmTVFxcfN5zXbq/HTt26IEHHlDDhg3VpEkTjRo1SqdOnbKJXbBggW677TZ5e3vLYrGoffv2mjt3bpk+77nnHgUEBMjV1VXe3t66++67tXXrVpuY0uNISkoqs33btm3l4OCg2NhYs+3IkSN65pln1LFjR7m7u6thw4bq27ev/vvf/9psGx0dLVdXV23fvt2mPSIiQo0bN9aBAwfMtt27d2vAgAHy9PRU/fr1ddNNN2nlypU225XOCVa6WCwWXXPNNUpMTJRhGBWf3P/P3nuvvKu5zn7PnLuc7eDBgxo2bJhatGghJycnM8bd3b1SY6pISUmJkpKSdN1118nV1VU+Pj567LHHdPToUZu4jRs3KiIiQl5eXubflUceecQ8jqZNm0qSJkyYYI6vKrd3/fbbb4qMjFSDBg3k7e2tp59+WoWFhWXiyptDdfr06eratauaNGkiNzc3BQcH68MPPyyzben7bNmyZWrfvr3c3NwUFhZmvl/feOMNtW7dWq6ururZs2e5t06tX79effr0kYeHh+rXr68ePXrom2++MdePHz9ezz77rCQpMDDQPBdn97V48WIFBwfLzc1Nnp6eGjhwoPbt22ezn7M/n7p376769evrxRdfrNS5LH0P/vTTT3rooYfk4eGhpk2bauzYsTIMQ/v27dM999yjhg0bytfXVzNmzLDZvrw50YcOHSp3d3ft379fkZGRcnd3V9OmTfXMM89U6rMHly/y+XKbdeRz8jn5vGLk87qTzyv7mTdu3Dg5OjoqPT3dpn3EiBFycXEp8/cVVz5y/3KbdeR+cn9dzP2l+58+fbqSkpLUqlUrWSwW/fjjj5KkHTt26P7775enp6dcXV0VEhKiTz755Lz9fvXVVxowYIBatGghi8Uif39/Pf300zp58qQZM3ToUCUnJ0tSucd99neH0umh/vOf/5TZ1xtvvCEHBwf98MMPZlt1x322Dh066NZbby3TXlJSoubNm+v++++3aavM96fylP6/9fHxkaurqzp37qxFixaVu99Zs2apY8eOcnV1VdOmTdWnTx9t3LjRjDl7TvSFCxdqwIABkqRbb73VPL8ZGRmKjo6Wl5dXmc8cSerdu7euvfba8467tnElejlKE291f0159913y3x4S9KaNWu0e/duxcTEyNfXV9u2bdObb76pbdu26dtvvy3zgTV37lybD6dzvwgcPXpUd9xxhx544AENGjRIH3zwgR5//HG5uLiY/6DIz8/XW2+9pUGDBmn48OH6448/9PbbbysiIkIbNmxQUFCQTZ+urq5asGCBIiMjzbaPPvqoTGI72x9//KEVK1bo3nvvNdsWLFggV1fXMtstXLhQ7u7uiouLk7u7u9auXauEhATl5+dr2rRpdvdxtgceeEABAQFKTEzUt99+q9mzZ+vo0aN65513bM7dddddp7vvvlvOzs769NNP9cQTT6ikpEQjR4606W/EiBHy9fXVgQMH9Nprryk8PFx79uyxucqm9LyMHj3abFu3bp1+/fXXMuPbvXu3li9frgEDBigwMFA5OTl644031KNHD/3444/y8/OTJM2aNUtr165VdHS0MjMz5eTkpDfeeEOfffaZ3n33XTMuJydHXbt21YkTJ/TUU0+pSZMmWrRoke6++259+OGHNudd+uvWxZMnTyo1NVUvvviivL29NWzYsEqd39LzV/rei4+PrzB2xIgR6tatm6Q/3ysff/yxzfro6Gh9/vnnevLJJ9W5c2c5OTnpzTff1KZNmyo9Hnsee+wxLVy4UDExMXrqqae0Z88evfbaa/r+++/1zTffqF69ejp48KB69+6tpk2b6oUXXlCjRo20d+9effTRR5Kkpk2bau7cuXr88cd177336r777pMkderUqVJjOHnypHr16qXs7Gw99dRT8vPz07vvvqu1a9dWavtZs2bp7rvv1uDBg1VUVKT3339fAwYM0IoVK9SvXz+b2K+++kqffPKJ+R5OTEzUnXfeqeeee06vv/66nnjiCR09elRTp07VI488YjOGtWvXqm/fvgoODjb/wVn6BfWrr75Sly5ddN999+mnn37Se++9p1dffVVeXl7mOZL+vA127NixeuCBB/Too4/q0KFDmjNnjrp3767vv//e5nbxw4cPq2/fvho4cKAeeugh+fj4VOp8lIqKilK7du30yiuvaOXKlZo8ebI8PT31xhtv6LbbbtOUKVO0ZMkSPfPMM7rxxhvVvXv3CvsrLi5WRESEQkNDNX36dH3++eeaMWOGWrVqpccff7xKY8Plg3xOPiefk8/J55dnPq/sZ96YMWP06aefatiwYdq6dauuuuoqrV69WvPmzdOkSZPUuXPnKo0Xlz9yP7mf3H955H7pz/faqVOnNGLECFksFnl6emrbtm26+eab1bx5c73wwgtq0KCBPvjgA0VGRurf//53mXN2tmXLlunEiRN6/PHH1aRJE23YsEFz5szRb7/9pmXLlkn68zvHgQMHtGbNGr377rsVjq9fv35yd3fXBx98oB49etisS01N1XXXXWc+a+FCxn22qKgojR8/XlarVb6+vmb7119/rQMHDmjgwIFmW2W+P5Xn5MmT6tmzp37++WfFxsYqMDBQy5Yt09ChQ3Xs2DGNGjXKjB02bJgWLlyovn376tFHH9WZM2f01Vdf6dtvv1VISEiZvrt3766nnnpKs2fPtplWq127dnr44Yf1zjvvaPXq1brzzjvNbaxWq9auXatx48ZV6hzVKgNlJCUlGZKM//73vzbtPXr0MK677jqbtgULFhiSjD179hiGYRinTp0yWrRoYfTt29eQZCxYsMCMPXHiRJl9vffee4Yk48svvzTbxo0bZ0gyDh06ZHeMPXr0MCQZM2bMMNsKCwuNoKAgw9vb2ygqKjIMwzDOnDljFBYW2mx79OhRw8fHx3jkkUfMtj179hiSjEGDBhnOzs6G1Wo11/Xq1ct48MEHDUnGtGnTyoxz0KBBxp133mm2//rrr4ajo6MxaNCgMsdR3jl47LHHjPr16xunTp2ye7xn7+/uu++2aX/iiSfK/P8qbz8RERHG1VdfXeE+PvjgA0OSsXHjRrNNknH//fcbzs7ONu3Dhg0zz8vIkSPN9lOnThnFxcU2/e7Zs8ewWCzGxIkTbdpXr15tSDImT55s7N6923B3dzciIyNtYkaPHm1IMr766iuz7Y8//jACAwONgIAAc19ffPGFIcn44osvbMbi6OhoPPHEExUed6kXX3zRkGTk5uaabdddd53Ro0ePMrG7du0yJBmLFi0y20r/H5U6efKk4ejoaDz22GM220ZHRxsNGjSo1Jjs+eqrrwxJxpIlS2za09LSbNo//vhjQ5Lx3Xff2e3r0KFDhiRj3LhxVR5H6efFBx98YLYVFBQYrVu3LvP/Izo62mjZsqXN9ue+V4uKiowOHToYt912m027JMNisZifNYZhGG+88YYhyfD19TXy8/PN9vj4eJvPpZKSEqNNmzZGRESEUVJSYrPvwMBA4/bbbzfbpk2bZrNtqb179xpOTk7GSy+9ZNO+detWw9nZ2aa99PMpJSWl7Ak7j9L30IgRI8y2M2fOGP/4xz8MBwcH45VXXjHbjx49ari5uRnR0dFmW+ln2dmfvdHR0YakMn//rr/+eiM4OLjKY8Tlg3xOPiefk88ri3xet/J5ZT/zSsfu4uJiPProo8bRo0eN5s2bGyEhIcbp06erPG5c/sj95H5yf93P/aXv2YYNGxoHDx60WderVy+jY8eONu+pkpISo2vXrkabNm3MtvLOWXnvncTERMPBwcH49ddfzbaRI0faHOvZzv0eMWjQIMPb29s4c+aM2fb7778bjo6ONu+Jyo77fHbu3GlIMubMmWPT/sQTTxju7u7mMVb2+5Nh/PmZc/b7oPRzcvHixWZbUVGRERYWZri7u5vfRdauXWtIMp566qky4zz7e0jLli1tcviyZcvK/L8xDMMoLi42/vGPfxhRUVE27TNnzjQcHByM3bt3V3Bm6gamcylH6S1ZpVdrVEVycrIOHz5c7i8obm5u5p9PnTql3Nxc3XTTTZJUrV/ynJ2d9dhjj5mvXVxc9Nhjj+ngwYPKysqSJDk5OZlzSpWUlOjIkSM6c+aMQkJCyt3nDTfcoOuuu878Re7XX3/VF198UeGTcB955BGlpaXJarVKkhYtWqSwsDBdc801ZWLPPgd//PGHcnNz1a1bN504cUI7duyo1HGf++vzk08+KenPh0OUt5+8vDzl5uaqR48e2r17t/Ly8my2P3HihHJzc7V582bNmzdPPj4+Zcbu4+Ojfv36acGCBeY2H3zwgWJiYsqMz2KxmFcaFBcX6/Dhw3J3d9e1115b5pz37t1bjz32mCZOnKj77rtPrq6ueuONN2xiVq1apS5duuiWW24x29zd3TVixAjt3bvXvOXp3OPNzs7W1KlTVVJSottuu62cM1lW6dUGlZkHrDJXeRQUFKikpERNmjSp1P6rYtmyZfLw8NDtt9+u3NxccwkODpa7u7t5m2Pp1VQrVqwo97ahC7Vq1So1a9bM5raq+vXra8SIEZXa/uz36tGjR5WXl6du3bqV+/ezV69eNrePh4aGSpL69++vq666qkz77t27JUmbN2/Wrl279OCDD+rw4cPmuSooKFCvXr305ZdfnvcBaR999JFKSkr0wAMP2JxvX19ftWnTpsxtpRaLpdy/H5X16KOPmn92cnJSSEiIDMOwuQqjUaNGuvbaa83jPJ//+Z//sXndrVu3Sm+LyxP5nHxOPiefVxb5vG7l86p85nXo0EETJkzQW2+9pYiICOXm5mrRokU8GO5vitxP7if31/3cX6p///42f1ePHDmitWvX6oEHHjDfY7m5uTp8+LAiIiK0a9cu7d+/325/Z793CgoKlJubq65du8owDH3//ffVGmNUVJQOHjyojIwMs+3DDz9USUmJoqKiamTcZ7vmmmsUFBSk1NRUs624uFgffvih7rrrLvMYK/v9qTyrVq2Sr6+vBg0aZLbVq1dPTz31lI4fP25OX/Pvf/9bDg4O5X4mnnv3TWU4Ojpq8ODB+uSTT/THH3+Y7UuWLFHXrl0VGBhY5T4vNYro5fj111/l7Oxc5cSbl5enl19+WXFxceXe6njkyBGNGjVKPj4+cnNzU9OmTc03ybnJoDL8/PzUoEEDm7bShHH2vG6LFi1Sp06d5OrqqiZNmqhp06ZauXKl3X3GxMSYCWbhwoXq2rWr2rRpY3ccQUFB6tChg9555x0ZhmHeTlKebdu26d5775WHh4caNmyopk2b6qGHHpJU+XNw7lhatWolR0dHm2P+5ptvFB4ergYNGqhRo0Zq2rSpOYfjufuZOHGimjZtquuvv1579+5VRkaGzT9gSsXExGjp0qUqLCzUsmXL1Lhx43ITWklJiV599VW1adNGFotFXl5eatq0qbZs2VLuMU6fPl2enp7avHmzZs+eLW9vb5v1v/76a7lzQ5XeFnPubWiRkZFq2rSpWrZsqfHjx2vMmDHq379/me3Lk5ubq3r16lXqgVHHjh2TpArnQ2vSpInatGmjt956S5999pkOHjyo3NzccucXrapdu3YpLy9P3t7eatq0qc1y/PhxHTx4UJLUo0cP9e/fXxMmTJCXl5fuueceLViwoEbGIP15/lu3bl0miVR2Pq8VK1bopptukqurqzw9Pc3b0ct7r7Ro0cLmtYeHhyTJ39+/3PbSudB27dol6c/b8c49V2+99ZYKCwvP+/dv165dMgxDbdq0KdPH9u3bzfNdqnnz5hf0UJjyjtXV1dW8Jf3s9srM+VY6f9vZGjduXKltcfkin5PPyefk88oin9e9fF6Vz7xnn31WnTt31oYNGzRu3Di1b9++2mPG5Y3cT+4n99f93F/q3KLpzz//LMMwNHbs2DI5qrSQe26eOlt2draGDh0qT09P8zlYpdOwVOfvqSTzGSRnF7VTU1MVFBRk/p290HGfKyoqSt98841ZeM/IyNDBgwfNor1U+e9P5fn111/Vpk2bMtNMnfu+/OWXX+Tn5ydPT89Kj/18hgwZopMnT5pTB+3cuVNZWVl6+OGHa2wfFxM/z5dj586duvrqq6t89cKUKVPk6OioZ599tswDRqQ/5/9at26dnn32WQUFBcnd3V0lJSXq06fPea8aqa7Fixdr6NChioyM1LPPPitvb285OTkpMTFRv/zyS7nbPPTQQ3ruuef07bffatGiRRozZsx59/PII4/o9ddfV5cuXWS1WvXAAw+UeUDQsWPH1KNHDzVs2FATJ05Uq1at5Orqqk2bNun555+v9jk49x87v/zyi3r16qW2bdtq5syZ8vf3l4uLi1atWqVXX321zH4effRR9erVS7/99pteffVV9e/fX+vWrTP/4VKqX79+cnFx0fLly7VgwQJFR0eX+8Cal19+WWPHjtUjjzyiSZMmydPTU46Ojho9enS5x/j999+bH3Bbt261+TWwOqZPn67OnTvr9OnT+u677zR58mQ5OztXan6pvXv3qkWLFpX6VbH0aoWz5+kqT2pqqgYPHqyIiAib9nO/NFZVSUmJvL29tWTJknLXl35xdnBw0Icffqhvv/1Wn376qVavXq1HHnlEM2bM0LffflsjD0Srrq+++kp33323unfvrtdff13NmjVTvXr1tGDBAi1durRMvJOTU7n92Gs3/v9DaErfd9OmTSszd2Kp852HkpISOTg46P/+7//K3d+52599FUB1lLeP8x1nVfvDlY98Tj4nn5PPLwXyuX3VzedV/czbvXu3+SNDefNZ4++D3E/uJ/fX/dxf6twcU3qOn3nmmTL7LNW6dety24uLi3X77bfryJEjev7559W2bVs1aNBA+/fv19ChQ6v9HrVYLIqMjNTHH3+s119/XTk5Ofrmm2/08ssv18i4yxMVFaX4+HgtW7ZMo0eP1gcffCAPDw/16dPHZp+V+f5U17Rv317BwcFavHixhgwZosWLF8vFxUUPPPBAbQ+tUiiin6OwsFCbN2+2eRhHZRw4cECzZs1SYmKirrrqqjKJ9+jRo0pPT9eECROUkJBgtpd+2auOAwcOqKCgwOYD7KeffpIk8xbRDz/8UFdffbU++ugjmw/Tij6EmzRporvvvtu8naz0ds+KDB48WM8++6xGjRql+++/v9xffzMyMnT48GF99NFHNg8B3LNnT6WOt9SuXbtsfrH8+eefVVJSYh7zp59+qsLCQn3yySc2V7/Yu52ldevW5gdaeHi4WrRooaVLl5Z52KCzs7MefvhhvfTSS9q2bZvmz59fbn8ffvihbr31Vr399ts27ceOHStz1U1BQYFiYmLUvn17de3aVVOnTtW9996rG2+80Yxp2bKldu7cWWY/pbfMtWzZ0qY9ODjYfAJ33759tX//fk2ZMkVjx46t8Cn1Z86c0X//+1+bD+aK/Pjjj3JwcDjvFVrXX3+95s2bp27dumnixIm66aabNG3aNH3zzTeV2o89rVq10ueff66bb765Uv/Au+mmm3TTTTfppZde0tKlSzV48GC9//77evTRR6t1K1Kpli1b6ocffpBhGDb9lPf/7Fz//ve/5erqqtWrV9vcSld69UhNadWqlSSpYcOGCg8PrzDW3rlo1aqVDMNQYGBgubd3AnUN+Zx8Tj4nn1cF+bxuqcpnXklJiYYOHaqGDRtq9OjRevnll3X//febD5fF3we5n9xP7r88cr89V199taQ/pxY5X54719atW/XTTz9p0aJFGjJkiNm+Zs2aMrFV/b4QFRWlRYsWKT09Xdu3b5dhGDZXhV/IuMsTGBioLl26KDU1VbGxsfroo48UGRlp8x2jqt+fztayZUtt2bJFJSUlNu+rc9+XrVq10urVq3XkyJEqXY1+vvM7ZMgQxcXF6ffff9fSpUvVr18/NW7cuErHUFuYzuUcpbf49OrVq0rbTZgwQT4+PmXm3C1VesXFuVdMJiUlVWuc0p8flGfPuVVUVKQ33nhDTZs2VXBwsN39rl+/XpmZmRX2/cgjj2jLli0aMGBApa7s8fT01D333KMtW7aYTxM/V3ljKSoq0uuvv37e/s+WnJxs83rOnDmS/kwy9vaTl5dXqX/IlH7BsHeL0iOPPKKtW7eqe/fu5gfluZycnMr8f162bFm5c2A9//zzys7O1qJFizRz5kwFBAQoOjraZv933HGHNmzYYPP/rKCgQG+++aYCAgLOe7vqyZMndebMGZ05c6bCuM8++0x5eXm65557KoyT/nzv/fvf/1aXLl3O+/7Iz8/Xww8/rLvvvltjxoxReHi4mjVrdt59nM8DDzyg4uJiTZo0qdzxld6idvTo0TL/P0qv3io9z6W3vJVuUxV33HGHDhw4oA8//NBsO3HihN58883zbuvk5CQHBwcVFxebbXv37tXy5curPI6KBAcHq1WrVpo+fbqOHz9eZv2hQ4fMP5d+kT/3XNx3331ycnLShAkTypxPwzDKvWIHqE3k8z+Rz8nnFSGf/4V8XrfyeVU+82bOnKl169bpzTff1KRJk9S1a1c9/vjj5y0c4spD7v8TuZ/cX5G6kPvt8fb2Vs+ePfXGG2/o999/L7P+7Dx3rvLeO4ZhaNasWWVi7eVIe8LDw+Xp6anU1FSlpqaqS5cuNj8GXci47YmKitK3336r+fPnKzc316ZoL1X++1N57rjjDlmtVpspas6cOaM5c+bI3d3dnAKnf//+MgxDEyZMKNNHRXeDn+/8Dho0SA4ODho1apR2795tTgt1OeBK9P+voKBAc+bM0cSJE80PzsWLF9vE5OTk6Pjx41q8eLFuv/12m7nSPvvsMy1ZssTunIENGzZU9+7dNXXqVJ0+fVrNmzfXZ599VuVfbs/m5+enKVOmaO/evbrmmmuUmpqqzZs3680331S9evUkSXfeeac++ugj3XvvverXr5/27NmjlJQUtW/fvtwv36X69OmjQ4cOVenW2IULFyo5ObnML7SlunbtqsaNGys6OlpPPfWUHBwc9O6771ZqKoaz7dmzR3fffbf69OmjzMxMLV68WA8++KA6d+4s6c8HfLi4uOiuu+7SY489puPHj2vevHny9va2+UBbtWqV3nrrLXXt2lWenp7avXu35s2bpwYNGujee+8td9/t2rVTbm5uhb/03XnnnZo4caJiYmLUtWtXbd26VUuWLCmTqNeuXavXX39d48aN0w033CDpzyuWevbsqbFjx2rq1KmSpBdeeEHvvfee+vbtq6eeekqenp5atGiR9uzZo3//+99lfpFes2aNfvvtN/MWsCVLlujuu++ucD7L1NRUPfPMM7JYLDp58qTNez8vL0/FxcVavny5IiMj9fnnn2vs2LHasmWLPv30U7t9lho5cqROnjypt95667yxVdGjRw899thjSkxM1ObNm9W7d2/Vq1dPu3bt0rJlyzRr1izdf//9WrRokV5//XXde++9atWqlf744w/NmzdPDRs21B133CHpz9vI2rdvr9TUVF1zzTXy9PRUhw4d1KFDh/OOY/jw4Xrttdc0ZMgQZWVlqVmzZnr33XcrNRddv379NHPmTPXp00cPPvigDh48qOTkZLVu3Vpbtmy54HNUytHRUW+99Zb69u2r6667TjExMWrevLn279+vL774Qg0bNjT/X5Z+af/Xv/6lgQMHql69errrrrvUqlUrTZ48WfHx8dq7d68iIyN11VVXac+ePfr44481YsQIPfPMMzU2ZqC6yOe2yOfk81Lk84qRz+tWPq/sZ9727ds1duxYDR06VHfddZekPz/DgoKC9MQTT+iDDz6orUPAJUTut0XuJ/eXqqu5vyLJycm65ZZb1LFjRw0fPlxXX321cnJylJmZqd9++03//e9/y92ubdu2atWqlZ555hnt379fDRs21L///e9yn4FVmiOfeuopRUREyMnJSQMHDrQ7pnr16um+++7T+++/r4KCAk2fPr3Gxm3PAw88oGeeeUbPPPOMPD09y1zhXtnvT+UZMWKE3njjDQ0dOlRZWVkKCAjQhx9+qG+++UZJSUnm3Si33nqrHn74Yc2ePVu7du0yp6/66quvdOuttyo2Nrbc/oOCguTk5KQpU6YoLy9PFotFt912m/nMgKZNm6pPnz5atmyZGjVqpH79+lXp3NQqA4ZhGMaePXsMSZVevvjiC8MwDGPBggWGJCMoKMgoKSkp09+CBQvMtt9++8249957jUaNGhkeHh7GgAEDjAMHDhiSjHHjxplx48aNMyQZhw4dsjveHj16GNddd52xceNGIywszHB1dTVatmxpvPbaazZxJSUlxssvv2y0bNnSsFgsxvXXX2+sWLHCiI6ONlq2bFlmvNOmTavw/Jy9/nzjLG/9N998Y9x0002Gm5ub4efnZzz33HPG6tWrbc6pPaX9/fjjj8b9999vXHXVVUbjxo2N2NhY4+TJkzaxn3zyidGpUyfD1dXVCAgIMKZMmWLMnz/fkGTs2bPHMAzD+OGHH4zevXsbTZo0MVxcXAx/f39j4MCBxpYtW2z6kmSMHDnS7rjOXX/q1Cnjn//8p9GsWTPDzc3NuPnmm43MzEyjR48eRo8ePQzDMIz8/HyjZcuWxg033GCcPn3apr+nn37acHR0NDIzM822X375xbj//vuNRo0aGa6urkaXLl2MFStW2Gz3xRdf2LxHnZ2djZYtWxpPPfWUcfTo0QrPbcuWLc/7ni99vzz55JNG9+7djbS0tDL9lP4/KvXee+8ZDg4OZWKjo6ONBg0aVDimynrzzTeN4OBgw83NzbjqqquMjh07Gs8995xx4MABwzAMY9OmTcagQYOMFi1aGBaLxfD29jbuvPNOY+PGjTb9rFu3zggODjZcXFzK/J08n19//dW4++67jfr16xteXl7GqFGjjLS0tDLv63P/3hmGYbz99ttGmzZtDIvFYrRt29ZYsGBBmfNoGOW/D+39vS19Lyxbtsym/fvvvzfuu+8+o0mTJobFYjFatmxpPPDAA0Z6erpN3KRJk4zmzZsbjo6ONn9nDMMw/v3vfxu33HKL0aBBA6NBgwZG27ZtjZEjRxo7d+40Y0o/n6rD3ueKvffMufsq77PX3rblnWdc/sjn5HPyOfmcfP6nyzmfV+Yz78yZM8aNN95o/OMf/zCOHTtm09+sWbMMSUZqamq1xo/LC7mf3E/uv7xy//nes7/88osxZMgQw9fX16hXr57RvHlz48477zQ+/PBDM6b0nJ393vvxxx+N8PBww93d3fDy8jKGDx9u/Pe//y3z9/nMmTPGk08+aTRt2tRwcHCwOW573x3WrFljSDIcHByMffv2VXvcVXHzzTcbkoxHH33Ubsz5vj8ZhmHz/i2Vk5NjxMTEGF5eXoaLi4vRsWNHm3NU6syZM8a0adOMtm3bGi4uLkbTpk2Nvn37GllZWWZMy5YtjejoaJvt5s2bZ1x99dWGk5NTuZ8RH3zwgSHJGDFiRKXPR13gYBhV/OnwCrV3714FBgbqiy++MOegupC4i61nz57Kzc3VDz/8UGtjuNTGjx+vCRMm6NChQ3Z/IUf1BAQEaPz48Ro6dGi56zMyMjR06FCbp6YDQF1EPq/7yOcXD/kcwN8Rub/uI/dfPOR+XI7+93//V5GRkfryyy/VrVu32h5OpTEnOgAAAAAAAADgops3b56uvvpq3XLLLbU9lCphTvT/z93dXYMHD7aZG+1C4oDLSen8ovb4+PjYnVvuSlVUVKQjR45UGOPh4VHlJ2H/XR0/frzCuRulP+dGK30gDFBd5HP8nZHPyyKf1yzyOeoicj/+zsj9lw+r1Vrhejc3N3l4eFyi0dSO999/X1u2bNHKlSs1a9YsOTg41PaQqoTpXC5T3ALGLWC4uDIyMnTrrbdWGLNgwQK7t83BVunf34rs2bNHAQEBl2ZAQB1BPief4+Iin9cs8jlw4cj95H78PZ2vYBwdHa2FCxdemsHUEgcHB7m7uysqKkopKSlydr68ru2miA4A5Th69KiysrIqjLnuuuvUrFmzSzSiy9vu3bu1e/fuCmNuueUWubq6XqIRAQD+DsjnNYt8XnO+/PJLTZs2TVlZWfr999/18ccfKzIyUpJ0+vRpjRkzRqtWrdLu3bvl4eGh8PBwvfLKK/Lz8zP7OHLkiJ588kl9+umncnR0VP/+/TVr1iy5u7ubMVu2bNHIkSP13XffqWnTpnryySf13HPP2Yxl2bJlGjt2rPbu3as2bdpoypQpuuOOO8z1hmFo3Lhxmjdvno4dO6abb75Zc+fOVZs2bS7uSQKAK8jnn39e4Xo/Pz+1b9/+Eo0G1UERHQAAAACAS+j//u//9M033yg4OFj33XefTRE9Ly9P999/v4YPH67OnTvr6NGjGjVqlIqLi7Vx40azj759++r333/XG2+8odOnTysmJkY33nijli5dKknKz8/XNddco/DwcMXHx2vr1q165JFHlJSUpBEjRkiS1q1bp+7duysxMVF33nmnli5dqilTpmjTpk3q0KGDJGnKlClKTEzUokWLFBgYqLFjx2rr1q368ccf+cEEAPC3cUUU0UtKSnTgwAFdddVVl918OgCAK5thGPrjjz/k5+cnR0ee511Z5HYAQF1V07ndwcHBpohenu+++05dunTRr7/+qhYtWmj79u1q3769vvvuO4WEhEiS0tLSdMcdd+i3336Tn5+f5s6dq3/961+yWq1ycXGRJL3wwgtavny5duzYIUmKiopSQUGBVqxYYe7rpptuUlBQkFJSUmQYhvz8/PTPf/5TzzzzjKQ/i/w+Pj5auHChBg4cWKljJK8DAOqqyub1y2vyGTsOHDggf3//2h4GAAB27du3T//4xz9qexiXDXI7AKCuu5S5PS8vTw4ODmrUqJEkKTMzU40aNTIL6JIUHh4uR0dHrV+/Xvfee68yMzPVvXt3s4AuSREREZoyZYqOHj2qxo0bKzMzU3FxcTb7ioiI0PLlyyX9Oce91WpVeHi4ud7Dw0OhoaHKzMy0W0QvLCxUYWGh+Xr//v1MUwAAqNPOl9eviCL6VVddJenPg23YsGEtjwYAgL/k5+fL39/fzFWoHHI7AKCuutS5/dSpU3r++ec1aNAgMydarVZ5e3vbxDk7O8vT01NWq9WMCQwMtInx8fEx1zVu3FhWq9VsOzvm7D7O3q68mPIkJiaW+xBa8joAoK6pbF6/IoropbeDNWzYkIQMAKiTuHW5asjtAIC67lLk9tOnT+uBBx6QYRiaO3fuRd9fTYmPj7e5wr20QEFeBwDUVefL61dEER0AAAAAgCtJaQH9119/1dq1a22Kz76+vjp48KBN/JkzZ3TkyBH5+vqaMTk5OTYxpa/PF3P2+tK2Zs2a2cQEBQXZHbvFYpHFYqnK4QIAUKfxhDMAAAAAAOqQ0gL6rl279Pnnn6tJkyY268PCwnTs2DFlZWWZbWvXrlVJSYlCQ0PNmC+//FKnT582Y9asWaNrr71WjRs3NmPS09Nt+l6zZo3CwsIkSYGBgfL19bWJyc/P1/r1680YAAD+DiiiAwAAAABwCR0/flybN2/W5s2bJf35AM/NmzcrOztbp0+f1v3336+NGzdqyZIlKi4ultVqldVqVVFRkSSpXbt26tOnj4YPH64NGzbom2++UWxsrAYOHCg/Pz9J0oMPPigXFxcNGzZM27ZtU2pqqmbNmmUzzcqoUaOUlpamGTNmaMeOHRo/frw2btyo2NhYSX/e2j569GhNnjxZn3zyibZu3aohQ4bIz89PkZGRl/ScAQBQm5jOBQAAAACAS2jjxo269dZbzdelhe3o6GiNHz9en3zyiSSVmTLliy++UM+ePSVJS5YsUWxsrHr16iVHR0f1799fs2fPNmM9PDz02WefaeTIkQoODpaXl5cSEhI0YsQIM6Zr165aunSpxowZoxdffFFt2rTR8uXL1aFDBzPmueeeU0FBgUaMGKFjx47plltuUVpamlxdXWv6tAAAUGc5GIZh1PYgLlR+fr48PDyUl5fHQ0oAAHUKOap6OG8AgLqKHFV1nDMAQF1V2RzFdC4AAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADuca3sAAGreiRMntGPHjmpvf/LkSe3du1cBAQFyc3Ordj9t27ZV/fr1q709AAAgrwMAcKWpC7mdvA5UDUV04Aq0Y8cOBQcH1/YwlJWVpRtuuKG2hwEAwGWNvA4AwJWlLuR28jpQNRTRgStQ27ZtlZWVVe3tt2/froceekiLFy9Wu3btLmgcAADgwpDXAQC4stSF3E5eB6qGIjpwBapfv36N/KLcrl07fpkGAKCWkdcBALiykNuByw8PFgUAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AABwXsnJyQoICJCrq6tCQ0O1YcMGu7E9e/aUg4NDmaVfv36XcMQAAAAAANQMiugAAKBCqampiouL07hx47Rp0yZ17txZEREROnjwYLnxH330kX7//Xdz+eGHH+Tk5KQBAwZc4pEDAAAAAHDhKKIDAIAKzZw5U8OHD1dMTIzat2+vlJQU1a9fX/Pnzy833tPTU76+vuayZs0a1a9fv8IiemFhofLz820WAAAAAADqAoroAADArqKiImVlZSk8PNxsc3R0VHh4uDIzMyvVx9tvv62BAweqQYMGdmMSExPl4eFhLv7+/hc8dgAAAAAAagJFdAAAYFdubq6Ki4vl4+Nj0+7j4yOr1Xre7Tds2KAffvhBjz76aIVx8fHxysvLM5d9+/Zd0LgBAAAAAKgpzrU9AAAAcOV6++231bFjR3Xp0qXCOIvFIovFcolGBQAAAABA5XElOgAAsMvLy0tOTk7Kycmxac/JyZGvr2+F2xYUFOj999/XsGHDLuYQAQAAAAC4qCiiAwAAu1xcXBQcHKz09HSzraSkROnp6QoLC6tw22XLlqmwsFAPPfTQxR4mAAAAAAAXDdO5AACACsXFxSk6OlohISHq0qWLkpKSVFBQoJiYGEnSkCFD1Lx5cyUmJtps9/bbbysyMlJNmjSpjWEDAAAAAFAjKKIDAIAKRUVF6dChQ0pISJDValVQUJDS0tLMh41mZ2fL0dH25radO3fq66+/1meffVYbQwYAAAAAoMZQRAcAAOcVGxur2NjYctdlZGSUabv22mtlGMZFHhUAAAAAABcfc6IDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB3VKqInJycrICBArq6uCg0N1YYNG+zGfvTRRwoJCVGjRo3UoEEDBQUF6d1337WJMQxDCQkJatasmdzc3BQeHq5du3ZVZ2gAAAAAAAAAANSYKhfRU1NTFRcXp3HjxmnTpk3q3LmzIiIidPDgwXLjPT099a9//UuZmZnasmWLYmJiFBMTo9WrV5sxU6dO1ezZs5WSkqL169erQYMGioiI0KlTp6p/ZAAAAAAAAAAAXKAqF9Fnzpyp4cOHKyYmRu3bt1dKSorq16+v+fPnlxvfs2dP3XvvvWrXrp1atWqlUaNGqVOnTvr6668l/XkVelJSksaMGaN77rlHnTp10jvvvKMDBw5o+fLlF3RwAAAAAAAAAABciCoV0YuKipSVlaXw8PC/OnB0VHh4uDIzM8+7vWEYSk9P186dO9W9e3dJ0p49e2S1Wm369PDwUGhoqN0+CwsLlZ+fb7MAAAAAAAAAAFDTqlREz83NVXFxsXx8fGzafXx8ZLVa7W6Xl5cnd3d3ubi4qF+/fpozZ45uv/12STK3q0qfiYmJ8vDwMBd/f/+qHAYAAAAAAAAAAJVSrQeLVtVVV12lzZs367vvvtNLL72kuLg4ZWRkVLu/+Ph45eXlmcu+fftqbrAAAAAAAAAAAPx/zlUJ9vLykpOTk3Jycmzac3Jy5Ovra3c7R0dHtW7dWpIUFBSk7du3KzExUT179jS3y8nJUbNmzWz6DAoKKrc/i8Uii8VSlaEDAAAAAAAAAFBlVboS3cXFRcHBwUpPTzfbSkpKlJ6errCwsEr3U1JSosLCQklSYGCgfH19bfrMz8/X+vXrq9QnAAAAAAAAAAA1rUpXoktSXFycoqOjFRISoi5duigpKUkFBQWKiYmRJA0ZMkTNmzdXYmKipD/nLw8JCVGrVq1UWFioVatW6d1339XcuXMlSQ4ODho9erQmT56sNm3aKDAwUGPHjpWfn58iIyNr7kgBAAAAAAAAAKiiKhfRo6KidOjQISUkJMhqtSooKEhpaWnmg0Gzs7Pl6PjXBe4FBQV64okn9Ntvv8nNzU1t27bV4sWLFRUVZcY899xzKigo0IgRI3Ts2DHdcsstSktLk6uraw0cIgAAAAAAAAAA1VPlIrokxcbGKjY2ttx15z4wdPLkyZo8eXKF/Tk4OGjixImaOHFidYYDAAAAAAAAAMBFUaU50QEAAAAAAAAA+DuhiA4AAAAAAAAAgB0U0QEAAAAAuIS+/PJL3XXXXfLz85ODg4OWL19us94wDCUkJKhZs2Zyc3NTeHi4du3aZRNz5MgRDR48WA0bNlSjRo00bNgwHT9+3CZmy5Yt6tatm1xdXeXv76+pU6eWGcuyZcvUtm1bubq6qmPHjlq1alWVxwIAwJWOIjoAAAAAAJdQQUGBOnfurOTk5HLXT506VbNnz1ZKSorWr1+vBg0aKCIiQqdOnTJjBg8erG3btmnNmjVasWKFvvzyS40YMcJcn5+fr969e6tly5bKysrStGnTNH78eL355ptmzLp16zRo0CANGzZM33//vSIjIxUZGakffvihSmMBAOBKV60HiwIAAAAAgOrp27ev+vbtW+46wzCUlJSkMWPG6J577pEkvfPOO/Lx8dHy5cs1cOBAbd++XWlpafruu+8UEhIiSZozZ47uuOMOTZ8+XX5+flqyZImKioo0f/58ubi46LrrrtPmzZs1c+ZMs9g+a9Ys9enTR88++6wkadKkSVqzZo1ee+01paSkVGosAAD8HXAlOgAAAAAAdcSePXtktVoVHh5utnl4eCg0NFSZmZmSpMzMTDVq1MgsoEtSeHi4HB0dtX79ejOme/fucnFxMWMiIiK0c+dOHT161Iw5ez+lMaX7qcxYylNYWKj8/HybBQCAyxlFdAAAAAAA6gir1SpJ8vHxsWn38fEx11mtVnl7e9usd3Z2lqenp01MeX2cvQ97MWevP99YypOYmCgPDw9z8ff3P89RAwBQt1FEBwAAAAAANSY+Pl55eXnmsm/fvtoeEgAAF4QiOgAAAAAAdYSvr68kKScnx6Y9JyfHXOfr66uDBw/arD9z5oyOHDliE1NeH2fvw17M2evPN5byWCwWNWzY0GYBAOByRhEdAAAAAIA6IjAwUL6+vkpPTzfb8vPztX79eoWFhUmSwsLCdOzYMWVlZZkxa9euVUlJiUJDQ82YL7/8UqdPnzZj1qxZo2uvvVaNGzc2Y87eT2lM6X4qMxYAAP4OKKIDAAAAAHAJHT9+XJs3b9bmzZsl/fkAz82bNys7O1sODg4aPXq0Jk+erE8++URbt27VkCFD5Ofnp8jISElSu3bt1KdPHw0fPlwbNmzQN998o9jYWA0cOFB+fn6SpAcffFAuLi4aNmyYtm3bptTUVM2aNUtxcXHmOEaNGqW0tDTNmDFDO3bs0Pjx47Vx40bFxsZKUqXGAgDA34FzbQ8AAAAAAIC/k40bN+rWW281X5cWtqOjo7Vw4UI999xzKigo0IgRI3Ts2DHdcsstSktLk6urq7nNkiVLFBsbq169esnR0VH9+/fX7NmzzfUeHh767LPPNHLkSAUHB8vLy0sJCQkaMWKEGdO1a1ctXbpUY8aM0Ysvvqg2bdpo+fLl6tChgxlTmbEAAHClczAMw6jtQVyo/Px8eXh4KC8vj7nWgBqwadMmBQcHKysrSzfccENtDwe4rJGjqofzBtQc8jpQs8hRVcc5A2oWuR2oOZXNUUznAgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAOC8kpOTFRAQIFdXV4WGhmrDhg0Vxh87dkwjR45Us2bNZLFYdM0112jVqlWXaLQAAAAAANQc59oeAAAAqNtSU1MVFxenlJQUhYaGKikpSREREdq5c6e8vb3LxBcVFen222+Xt7e3PvzwQzVv3ly//vqrGjVqdOkHDwAAAADABaKIDgAAKjRz5kwNHz5cMTExkqSUlBStXLlS8+fP1wsvvFAmfv78+Tpy5IjWrVunevXqSZICAgIq3EdhYaEKCwvN1/n5+TV3AAAAAAAAXACmcwEAAHYVFRUpKytL4eHhZpujo6PCw8OVmZlZ7jaffPKJwsLCNHLkSPn4+KhDhw56+eWXVVxcbHc/iYmJ8vDwMBd/f/8aPxYAAAAAAKqDIjoAALArNzdXxcXF8vHxsWn38fGR1Wotd5vdu3frww8/VHFxsVatWqWxY8dqxowZmjx5st39xMfHKy8vz1z27dtXo8cBAAAAAEB1MZ0LAACoUSUlJfL29tabb74pJycnBQcHa//+/Zo2bZrGjRtX7jYWi0UWi+USjxQAAAAAgPOjiA4AAOzy8vKSk5OTcnJybNpzcnLk6+tb7jbNmjVTvXr15OTkZLa1a9dOVqtVRUVFcnFxuahjBgAAAACgJjGdCwAAsMvFxUXBwcFKT08320pKSpSenq6wsLByt7n55pv1888/q6SkxGz76aef1KxZMwroAAAAAIDLDkV0AABQobi4OM2bN0+LFi3S9u3b9fjjj6ugoEAxMTGSpCFDhig+Pt6Mf/zxx3XkyBGNGjVKP/30k1auXKmXX35ZI0eOrK1DAAAAAACg2pjOBQAAVCgqKkqHDh1SQkKCrFargoKClJaWZj5sNDs7W46Of/0u7+/vr9WrV+vpp59Wp06d1Lx5c40aNUrPP/98bR0CAAAAAADVRhEdAACcV2xsrGJjY8tdl5GRUaYtLCxM33777UUeFQAAAAAAFx/TuQAAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYEe1iujJyckKCAiQq6urQkNDtWHDBrux8+bNU7du3dS4cWM1btxY4eHhZeKHDh0qBwcHm6VPnz7VGRoAAAAAAAAAADWmykX01NRUxcXFady4cdq0aZM6d+6siIgIHTx4sNz4jIwMDRo0SF988YUyMzPl7++v3r17a//+/TZxffr00e+//24u7733XvWOCAAAAAAAAACAGlLlIvrMmTM1fPhwxcTEqH379kpJSVH9+vU1f/78cuOXLFmiJ554QkFBQWrbtq3eeustlZSUKD093SbOYrHI19fXXBo3bly9IwIAAAAAAAAAoIZUqYheVFSkrKwshYeH/9WBo6PCw8OVmZlZqT5OnDih06dPy9PT06Y9IyND3t7euvbaa/X444/r8OHDdvsoLCxUfn6+zQIAAAAAAAAAQE2rUhE9NzdXxcXF8vHxsWn38fGR1WqtVB/PP/+8/Pz8bArxffr00TvvvKP09HRNmTJF//nPf9S3b18VFxeX20diYqI8PDzMxd/fvyqHAQAAAAAAAABApThfyp298sorev/995WRkSFXV1ezfeDAgeafO3bsqE6dOqlVq1bKyMhQr169yvQTHx+vuLg483V+fj6FdAAAAAAAAABAjavSleheXl5ycnJSTk6OTXtOTo58fX0r3Hb69Ol65ZVX9Nlnn6lTp04Vxl599dXy8vLSzz//XO56i8Wihg0b2iwAAAAAAAAAANS0KhXRXVxcFBwcbPNQ0NKHhIaFhdndburUqZo0aZLS0tIUEhJy3v389ttvOnz4sJo1a1aV4QEAAAAAAAAAUKOqVESXpLi4OM2bN0+LFi3S9u3b9fjjj6ugoEAxMTGSpCFDhig+Pt6MnzJlisaOHav58+crICBAVqtVVqtVx48flyQdP35czz77rL799lvt3btX6enpuueee9S6dWtFRETU0GECAAAAAAAAAFB1VZ4TPSoqSocOHVJCQoKsVquCgoKUlpZmPmw0Oztbjo5/1ebnzp2roqIi3X///Tb9jBs3TuPHj5eTk5O2bNmiRYsW6dixY/Lz81Pv3r01adIkWSyWCzw8AAAAAAAAAACqr1oPFo2NjVVsbGy56zIyMmxe7927t8K+3NzctHr16uoMAwAAAAAAAACAi6rK07kAAAAAAAAAAPB3QREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAOqQ4uJijR07VoGBgXJzc1OrVq00adIkGYZhxhiGoYSEBDVr1kxubm4KDw/Xrl27bPo5cuSIBg8erIYNG6pRo0YaNmyYjh8/bhOzZcsWdevWTa6urvL399fUqVPLjGfZsmVq27atXF1d1bFjR61ateriHDgAAHUURXQAAAAAAOqQKVOmaO7cuXrttde0fft2TZkyRVOnTtWcOXPMmKlTp2r27NlKSUnR+vXr1aBBA0VEROjUqVNmzODBg7Vt2zatWbNGK1as0JdffqkRI0aY6/Pz89W7d2+1bNlSWVlZmjZtmsaPH68333zTjFm3bp0GDRqkYcOG6fvvv1dkZKQiIyP1ww8/XJqTAQBAHeBc2wMAAAAAAAB/Wbdune655x7169dPkhQQEKD33ntPGzZskPTnVehJSUkaM2aM7rnnHknSO++8Ix8fHy1fvlwDBw7U9u3blZaWpu+++04hISGSpDlz5uiOO+7Q9OnT5efnpyVLlqioqEjz58+Xi4uLrrvuOm3evFkzZ840i+2zZs1Snz599Oyzz0qSJk2apDVr1ui1115TSkpKueMvLCxUYWGh+To/P//inCgAAC4RrkQHAAAAAKAO6dq1q9LT0/XTTz9Jkv773//q66+/Vt++fSVJe/bskdVqVXh4uLmNh4eHQkNDlZmZKUnKzMxUo0aNzAK6JIWHh8vR0VHr1683Y7p37y4XFxczJiIiQjt37tTRo0fNmLP3UxpTup/yJCYmysPDw1z8/f0v5HQAAFDruBIdAAAAAIA65IUXXlB+fr7atm0rJycnFRcX66WXXtLgwYMlSVarVZLk4+Njs52Pj4+5zmq1ytvb22a9s7OzPD09bWICAwPL9FG6rnHjxrJarRXupzzx8fGKi4szX+fn51NIBwBc1iiiAwAAAABQh3zwwQdasmSJli5dak6xMnr0aPn5+Sk6Orq2h3deFotFFoultocBAECNoYgOAAAAAEAd8uyzz+qFF17QwIEDJUkdO3bUr7/+qsTEREVHR8vX11eSlJOTo2bNmpnb5eTkKCgoSJLk6+urgwcP2vR75swZHTlyxNze19dXOTk5NjGlr88XU7oeAIC/A+ZEBwAAAACgDjlx4oQcHW3/ue7k5KSSkhJJUmBgoHx9fZWenm6uz8/P1/r16xUWFiZJCgsL07Fjx5SVlWXGrF27ViUlJQoNDTVjvvzyS50+fdqMWbNmja699lo1btzYjDl7P6UxpfsBAODvgCI6AAA4r+TkZAUEBMjV1VWhoaHasGGD3diFCxfKwcHBZnF1db2EowUA4PJ211136aWXXtLKlSu1d+9effzxx5o5c6buvfdeSZKDg4NGjx6tyZMn65NPPtHWrVs1ZMgQ+fn5KTIyUpLUrl079enTR8OHD9eGDRv0zTffKDY2VgMHDpSfn58k6cEHH5SLi4uGDRumbdu2KTU1VbNmzbKZz3zUqFFKS0vTjBkztGPHDo0fP14bN25UbGzsJT8vAADUFqZzAQAAFUpNTVVcXJxSUlIUGhqqpKQkRUREaOfOnWUeWFaqYcOG2rlzp/nawcHhUg0XAIDL3pw5czR27Fg98cQTOnjwoPz8/PTYY48pISHBjHnuuedUUFCgESNG6NixY7rllluUlpZm88P1kiVLFBsbq169esnR0VH9+/fX7NmzzfUeHh767LPPNHLkSAUHB8vLy0sJCQkaMWKEGdO1a1ctXbpUY8aM0Ysvvqg2bdpo+fLl6tChw6U5GQAA1AEU0QEAQIVmzpyp4cOHKyYmRpKUkpKilStXav78+XrhhRfK3cbBwaFKc6UWFhaqsLDQfJ2fn39hgwYA4DJ21VVXKSkpSUlJSXZjHBwcNHHiRE2cONFujKenp5YuXVrhvjp16qSvvvqqwpgBAwZowIABFcYAAHAlYzoXAABgV1FRkbKyshQeHm62OTo6Kjw8XJmZmXa3O378uFq2bCl/f3/dc8892rZtW4X7SUxMlIeHh7n4+/vX2DEAAAAAAHAhKKIDAAC7cnNzVVxcLB8fH5t2Hx8fWa3Wcre59tprNX/+fP3v//6vFi9erJKSEnXt2lW//fab3f3Ex8crLy/PXPbt21ejxwEAAAAAQHUxnQsAAKhRYWFhCgsLM1937dpV7dq10xtvvKFJkyaVu43FYpHFYrlUQwQAAAAAoNK4Eh0AANjl5eUlJycn5eTk2LTn5ORUes7zevXq6frrr9fPP/98MYYIAAAAAMBFRREdAADY5eLiouDgYKWnp5ttJSUlSk9Pt7navCLFxcXaunWrmjVrdrGGCQAAAADARcN0LgAAoEJxcXGKjo5WSEiIunTpoqSkJBUUFCgmJkaSNGTIEDVv3lyJiYmSpIkTJ+qmm25S69atdezYMU2bNk2//vqrHn300do8DAAAAAAAqoUiOgAAqFBUVJQOHTqkhIQEWa1WBQUFKS0tzXzYaHZ2thwd/7q57ejRoxo+fLisVqsaN26s4OBgrVu3Tu3bt6+tQwAAAAAAoNooogMAgPOKjY1VbGxsuesyMjJsXr/66qt69dVXL8GoAAAAAAC4+JgTHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwI5qFdGTk5MVEBAgV1dXhYaGasOGDXZj582bp27duqlx48Zq3LixwsPDy8QbhqGEhAQ1a9ZMbm5uCg8P165du6ozNAAAAAAAAAAAakyVi+ipqamKi4vTuHHjtGnTJnXu3FkRERE6ePBgufEZGRkaNGiQvvjiC2VmZsrf31+9e/fW/v37zZipU6dq9uzZSklJ0fr169WgQQNFRETo1KlT1T8yAAAAAAAAAAAuUJWL6DNnztTw4cMVExOj9u3bKyUlRfXr19f8+fPLjV+yZImeeOIJBQUFqW3btnrrrbdUUlKi9PR0SX9ehZ6UlKQxY8bonnvuUadOnfTOO+/owIEDWr58ebl9FhYWKj8/32YBAAAAAAAAAKCmVamIXlRUpKysLIWHh//VgaOjwsPDlZmZWak+Tpw4odOnT8vT01OStGfPHlmtVps+PTw8FBoaarfPxMREeXh4mIu/v39VDgMAAAAAAAAAgEqpUhE9NzdXxcXF8vHxsWn38fGR1WqtVB/PP/+8/Pz8zKJ56XZV6TM+Pl55eXnmsm/fvqocBgAAAAAAAAAAleJ8KXf2yiuv6P3331dGRoZcXV2r3Y/FYpHFYqnBkQEAAAAAAAAAUFaVrkT38vKSk5OTcnJybNpzcnLk6+tb4bbTp0/XK6+8os8++0ydOnUy20u3q06fAAAAAAAAAABcTFUqoru4uCg4ONh8KKgk8yGhYWFhdrebOnWqJk2apLS0NIWEhNisCwwMlK+vr02f+fn5Wr9+fYV9AgAAAAAAAABwsVV5Ope4uDhFR0crJCREXbp0UVJSkgoKChQTEyNJGjJkiJo3b67ExERJ0pQpU5SQkKClS5cqICDAnOfc3d1d7u7ucnBw0OjRozV58mS1adNGgYGBGjt2rPz8/BQZGVlzRwoAAAAAAAAAQBVVuYgeFRWlQ4cOKSEhQVarVUFBQUpLSzMfDJqdnS1Hx78ucJ87d66Kiop0//332/Qzbtw4jR8/XpL03HPPqaCgQCNGjNCxY8d0yy23KC0t7YLmTQcAAAAAAAAA4EJV68GisbGxio2NLXddRkaGzeu9e/eetz8HBwdNnDhREydOrM5wAAAAAAAAAAC4KKo0JzoAAAAAAAAAAH8nFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA7n2h4AAAAAAAAAcDnJzs5Wbm5urex7+/btNv+91Ly8vNSiRYta2TdQWyiiAwCA80pOTta0adNktVrVuXNnzZkzR126dDnvdu+//74GDRqke+65R8uXL7/4AwUAAAAusuzsbF3btp1OnTxRq+N46KGHamW/rm71tXPHdgrp+FuhiA4AACqUmpqquLg4paSkKDQ0VElJSYqIiNDOnTvl7e1td7u9e/fqmWeeUbdu3S7haAEAAICLKzc3V6dOnlCTO/+pek38L/n+jTNFOpOXI2cPHzk4u1zSfZ8+vE+HV8xQbm4uRXT8rVBEBwAAFZo5c6aGDx+umJgYSVJKSopWrlyp+fPn64UXXih3m+LiYg0ePFgTJkzQV199pWPHjlW4j8LCQhUWFpqv8/Pza2z8AAAAwMVQr4m/LL6ta2fn/2hfO/sF/qZ4sCgAALCrqKhIWVlZCg8PN9scHR0VHh6uzMxMu9tNnDhR3t7eGjZsWKX2k5iYKA8PD3Px97/0V/QAAAAAAFAeiugAAMCu3NxcFRcXy8fHx6bdx8dHVqu13G2+/vprvf3225o3b16l9xMfH6+8vDxz2bdv3wWNGwAAAACAmsJ0LgAAoMb88ccfevjhhzVv3jx5eXlVejuLxSKLxXIRRwYAAAAAQPVwJToAALDLy8tLTk5OysnJsWnPycmRr69vmfhffvlFe/fu1V133SVnZ2c5OzvrnXfe0SeffCJnZ2f98ssvl2roAABc1vbv36+HHnpITZo0kZubmzp27KiNGzea6w3DUEJCgpo1ayY3NzeFh4dr165dNn0cOXJEgwcPVsOGDdWoUSMNGzZMx48ft4nZsmWLunXrJldXV/n7+2vq1KllxrJs2TK1bdtWrq6u6tixo1atWnVxDhoAgDqKIjoAALDLxcVFwcHBSk9PN9tKSkqUnp6usLCwMvFt27bV1q1btXnzZnO5++67deutt2rz5s3MdQ4AQCUcPXpUN998s+rVq6f/+7//048//qgZM2aocePGZszUqVM1e/ZspaSkaP369WrQoIEiIiJ06tQpM2bw4MHatm2b1qxZoxUrVujLL7/UiBEjzPX5+fnq3bu3WrZsqaysLE2bNk3jx4/Xm2++acasW7dOgwYN0rBhw/T9998rMjJSkZGR+uGHHy7NyQAAoA5gOhcAAFChuLg4RUdHKyQkRF26dFFSUpIKCgoUExMjSRoyZIiaN2+uxMREubq6qkOHDjbbN2rUSJLKtAMAgPJNmTJF/v7+WrBggdkWGBho/tkwDCUlJWnMmDG65557JEnvvPOOfHx8tHz5cg0cOFDbt29XWlqavvvuO4WEhEiS5syZozvuuEPTp0+Xn5+flixZoqKiIs2fP18uLi667rrrtHnzZs2cOdMsts+aNUt9+vTRs88+K0maNGmS1qxZo9dee00pKSmX6pQAAFCruBIdAABUKCoqStOnT1dCQoKCgoK0efNmpaWlmQ8bzc7O1u+//17LowQA4MrxySefKCQkRAMGDJC3t7euv/56mwd279mzR1arVeHh4Wabh4eHQkNDlZmZKUnKzMxUo0aNzAK6JIWHh8vR0VHr1683Y7p37y4XFxczJiIiQjt37tTRo0fNmLP3UxpTup/yFBYWKj8/32YBAOByxpXoAADgvGJjYxUbG1vuuoyMjAq3XbhwYc0PCACAK9ju3bs1d+5cxcXF6cUXX9R3332np556Si4uLoqOjpbVapUk8wftUj4+PuY6q9Uqb29vm/XOzs7y9PS0iTn7Cvez+7RarWrcuLGsVmuF+ylPYmKiJkyYUI0jBwCgbuJKdAAAAAAA6pCSkhLdcMMNevnll3X99ddrxIgRGj58+GUzfUp8fLzy8vLMZd++fbU9JAAALghFdAAAAAAA6pBmzZqpffv2Nm3t2rVTdna2JMnX11eSlJOTYxOTk5NjrvP19dXBgwdt1p85c0ZHjhyxiSmvj7P3YS+mdH15LBaLGjZsaLMAAHA5o4gOAAAAAEAdcvPNN2vnzp02bT/99JNatmwp6c+HjPr6+io9Pd1cn5+fr/Xr1yssLEySFBYWpmPHjikrK8uMWbt2rUpKShQaGmrGfPnllzp9+rQZs2bNGl177bVq3LixGXP2fkpjSvcDAMDfAUV0AAAAAADqkKefflrffvutXn75Zf38889aunSp3nzzTY0cOVKS5ODgoNGjR2vy5Mn65JNPtHXrVg0ZMkR+fn6KjIyU9OeV63369NHw4cO1YcMGffPNN4qNjdXAgQPl5+cnSXrwwQfl4uKiYcOGadu2bUpNTdWsWbMUFxdnjmXUqFFKS0vTjBkztGPHDo0fP14bN260+6wUAACuRDxYFAAAAACAOuTGG2/Uxx9/rPj4eE2cOFGBgYFKSkrS4MGDzZjnnntOBQUFGjFihI4dO6ZbbrlFaWlpcnV1NWOWLFmi2NhY9erVS46Ojurfv79mz55trvfw8NBnn32mkSNHKjg4WF5eXkpISNCIESPMmK5du2rp0qUaM2aMXnzxRbVp00bLly9Xhw4dLs3JAACgDqCIDgAAAABAHXPnnXfqzjvvtLvewcFBEydO1MSJE+3GeHp6aunSpRXup1OnTvrqq68qjBkwYIAGDBhQ8YABALiCMZ0LAAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHdUqoicnJysgIECurq4KDQ3Vhg0b7MZu27ZN/fv3V0BAgBwcHJSUlFQmZvz48XJwcLBZ2rZtW52hAQAAAAAAAABQY6pcRE9NTVVcXJzGjRunTZs2qXPnzoqIiNDBgwfLjT9x4oSuvvpqvfLKK/L19bXb73XXXafff//dXL7++uuqDg0AAAAAAAAAgBpV5SL6zJkzNXz4cMXExKh9+/ZKSUlR/fr1NX/+/HLjb7zxRk2bNk0DBw6UxWKx26+zs7N8fX3NxcvLy25sYWGh8vPzbRYAAAAAAAAAAGpalYroRUVFysrKUnh4+F8dODoqPDxcmZmZFzSQXbt2yc/PT1dffbUGDx6s7Oxsu7GJiYny8PAwF39//wvaNwAAAAAAAAAA5alSET03N1fFxcXy8fGxaffx8ZHVaq32IEJDQ7Vw4UKlpaVp7ty52rNnj7p166Y//vij3Pj4+Hjl5eWZy759+6q9bwAAAAAAAAAA7HGu7QFIUt++fc0/d+rUSaGhoWrZsqU++OADDRs2rEy8xWKpcGoYAAAAAAAAAABqQpWuRPfy8pKTk5NycnJs2nNycip8aGhVNWrUSNdcc41+/vnnGusTAAAAAAAAAICqqlIR3cXFRcHBwUpPTzfbSkpKlJ6errCwsBob1PHjx/XLL7+oWbNmNdYnAAAAAAAAAABVVeXpXOLi4hQdHa2QkBB16dJFSUlJKigoUExMjCRpyJAhat68uRITEyX9+TDSH3/80fzz/v37tXnzZrm7u6t169aSpGeeeUZ33XWXWrZsqQMHDmjcuHFycnLSoEGDauo4AQAAAAAAAACosioX0aOionTo0CElJCTIarUqKChIaWlp5sNGs7Oz5ej41wXuBw4c0PXXX2++nj59uqZPn64ePXooIyNDkvTbb79p0KBBOnz4sJo2bapbbrlF3377rZo2bXqBhwcAAAAAAAAAQPVV68GisbGxio2NLXddaWG8VEBAgAzDqLC/999/vzrDAK5o2dnZys3NrZV9b9++3ea/tcHLy0stWrSotf0DAFCTyOvkdQAAAFy+qlVEB3BxZWdn69q27XTq5IlaHcdDDz1Ua/t2dauvnTu28w9uAMBlj7xOXgcAAMDljSI6UAfl5ubq1MkTanLnP1Wvif8l379xpkhn8nLk7OEjB2eXS77/04f36fCKGcrNzeUf2wCAyx55nbwOAACAyxtFdKAOq9fEXxbf1rWz83+0r539AgBwhSKvAwAAAJcnx/OHAAAAAAAAAADw90QRHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AABwXsnJyQoICJCrq6tCQ0O1YcMGu7EfffSRQkJC1KhRIzVo0EBBQUF69913L+FoAQAAAACoORTRAQBAhVJTUxUXF6dx48Zp06ZN6ty5syIiInTw4MFy4z09PfWvf/1LmZmZ2rJli2JiYhQTE6PVq1df4pEDAAAAAHDhKKIDAIAKzZw5U8OHD1dMTIzat2+vlJQU1a9fX/Pnzy83vmfPnrr33nvVrl07tWrVSqNGjVKnTp309ddfX+KRAwAAAABw4SiiAwAAu4qKipSVlaXw8HCzzdHRUeHh4crMzDzv9oZhKD09XTt37lT37t3txhUWFio/P99mAQAAAACgLqCIDgAA7MrNzVVxcbF8fHxs2n18fGS1Wu1ul5eXJ3d3d7m4uKhfv36aM2eObr/9drvxiYmJ8vDwMBd/f/8aOwYAAAAAAC4ERXQAAFDjrrrqKm3evFnfffedXnrpJcXFxSkjI8NufHx8vPLy8sxl3759l26wAAAAAABUwLm2BwAAAOouLy8vOTk5KScnx6Y9JydHvr6+drdzdHRU69atJUlBQUHavn27EhMT1bNnz3LjLRaLLBZLjY0bAAAAAICawpXoAADALhcXFwUHBys9Pd1sKykpUXp6usLCwirdT0lJiQoLCy/GEAEAAAAAuKi4Eh0AAFQoLi5O0dHRCgkJUZcuXZSUlKSCggLFxMRIkoYMGaLmzZsrMTFR0p/zm4eEhKhVq1YqLCzUqlWr9O6772ru3Lm1eRgAAAAAAFQLRXQAAFChqKgoHTp0SAkJCbJarQoKClJaWpr5sNHs7Gw5Ov51c1tBQYGeeOIJ/fbbb3Jzc1Pbtm21ePFiRUVF1dYhAAAAAABQbRTRAQDAecXGxio2Nrbcdec+MHTy5MmaPHnyJRgVAAAAAAAXH0V0AAAAAAAAoAp83R3U0eWA6jk41fZQLqnTLgckd4faHgZwyVFEBwAAAAAAAKrgsWAXjfdLqe1hXHp+0vhgl9oeBXDJUUQHAAAAAAAAquCNrCKtu2aU6jXxr+2hXFKnD+/T1qxpuru2BwJcYhTRAQAAAAAAgCqwHjekIj9ZjMDaHsolVVhU/OexA38zjrU9AAAAAAAAAAAA6iqK6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAHXYK6+8IgcHB40ePdpsO3XqlEaOHKkmTZrI3d1d/fv3V05Ojs122dnZ6tevn+rXry9vb289++yzOnPmjE1MRkaGbrjhBlksFrVu3VoLFy4ss//k5GQFBATI1dVVoaGh2rBhw8U4TAAA6iyK6AAAAAAA1FHfffed3njjDXXq1Mmm/emnn9ann36qZcuW6T//+Y8OHDig++67z1xfXFysfv36qaioSOvWrdOiRYu0cOFCJSQkmDF79uxRv379dOutt2rz5s0aPXq0Hn30Ua1evdqMSU1NVVxcnMaNG6dNmzapc+fOioiI0MGDBy/+wQMAUEdQRAcAAAAAoA46fvy4Bg8erHnz5qlx48Zme15ent5++23NnDlTt912m4KDg7VgwQKtW7dO3377rSTps88+048//qjFixcrKChIffv21aRJk5ScnKyioiJJUkpKigIDAzVjxgy1a9dOsbGxuv/++/Xqq6+a+5o5c6aGDx+umJgYtW/fXikpKapfv77mz59vd9yFhYXKz8+3WQAAuJxRRAcAAAAAoA4aOXKk+vXrp/DwcJv2rKwsnT592qa9bdu2atGihTIzMyVJmZmZ6tixo3x8fMyYiIgI5efna9u2bWbMuX1HRESYfRQVFSkrK8smxtHRUeHh4WZMeRITE+Xh4WEu/v7+1TwDAADUDRTRAQAAAACoY95//31t2rRJiYmJZdZZrVa5uLioUaNGNu0+Pj6yWq1mzNkF9NL1pesqisnPz9fJkyeVm5ur4uLicmNK+yhPfHy88vLyzGXfvn2VO2gAAOoo59oeAAAAAAAA+Mu+ffs0atQorVmzRq6urrU9nCqzWCyyWCy1PQwAAGoMV6IDAAAAAFCHZGVl6eDBg7rhhhvk7OwsZ2dn/ec//9Hs2bPl7OwsHx8fFRUV6dixYzbb5eTkyNfXV5Lk6+urnJycMutL11UU07BhQ7m5ucnLy0tOTk7lxpT2AQDA3wFFdAAAAAAA6pBevXpp69at2rx5s7mEhIRo8ODB5p/r1aun9PR0c5udO3cqOztbYWFhkqSwsDBt3bpVBw8eNGPWrFmjhg0bqn379mbM2X2UxpT24eLiouDgYJuYkpISpaenmzEAAPwdMJ0LAAAAAAB1yFVXXaUOHTrYtDVo0EBNmjQx24cNG6a4uDh5enqqYcOGevLJJxUWFqabbrpJktS7d2+1b99eDz/8sKZOnSqr1aoxY8Zo5MiR5lQr//M//6PXXntNzz33nB555BGtXbtWH3zwgVauXGnuNy4uTtHR0QoJCVGXLl2UlJSkgoICxcTEXKKzAQBA7aOIDgAAAADAZebVV1+Vo6Oj+vfvr8LCQkVEROj111831zs5OWnFihV6/PHHFRYWpgYNGig6OloTJ040YwIDA7Vy5Uo9/fTTmjVrlv7xj3/orbfeUkREhBkTFRWlQ4cOKSEhQVarVUFBQUpLSyvzsFEAAK5kFNEBAAAAAKjjMjIybF67uroqOTlZycnJdrdp2bKlVq1aVWG/PXv21Pfff19hTGxsrGJjYys9VgAArjTMiQ4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7qlVET05OVkBAgFxdXRUaGqoNGzbYjd22bZv69++vgIAAOTg4KCkp6YL7BAAAAAAAAADgUqhyET01NVVxcXEaN26cNm3apM6dOysiIkIHDx4sN/7EiRO6+uqr9corr8jX17dG+gQAAAAAAAAA4FKochF95syZGj58uGJiYtS+fXulpKSofv36mj9/frnxN954o6ZNm6aBAwfKYrHUSJ+FhYXKz8+3WQAAAAAAAAAAqGlVKqIXFRUpKytL4eHhf3Xg6Kjw8HBlZmZWawDV6TMxMVEeHh7m4u/vX619AwAAAAAAAABQkSoV0XNzc1VcXCwfHx+bdh8fH1mt1moNoDp9xsfHKy8vz1z27dtXrX0DAAAAAAAAAFAR59oeQHVYLBa7U8MAAAAAAAAAAFBTqnQlupeXl5ycnJSTk2PTnpOTY/ehobXRJwAAAAAAAAAANaFKRXQXFxcFBwcrPT3dbCspKVF6errCwsKqNYCL0ScAAAAAAAAAADWhytO5xMXFKTo6WiEhIerSpYuSkpJUUFCgmJgYSdKQIUPUvHlzJSYmSvrzwaE//vij+ef9+/dr8+bNcnd3V+vWrSvVJwAAAAAAAAAAtaHKRfSoqCgdOnRICQkJslqtCgoKUlpamvlg0OzsbDk6/nWB+4EDB3T99debr6dPn67p06erR48eysjIqFSfAAAAAAAAAADUhmo9WDQ2NlaxsbHlristjJcKCAiQYRgX1CcAAAAAAAAAALWhSnOiAwCAv6fk5GQFBATI1dVVoaGh2rBhg93YefPmqVu3bmrcuLEaN26s8PDwCuMBAAAAAKjLKKIDAIAKpaamKi4uTuPGjdOmTZvUuXNnRURE6ODBg+XGZ2RkaNCgQfriiy+UmZkpf39/9e7dW/v377/EIwcAAAAA4MJRRAcAABWaOXOmhg8frpiYGLVv314pKSmqX7++5s+fX278kiVL9MQTTygoKEht27bVW2+9pZKSEqWnp1/ikQMAAAAAcOEoogMAALuKioqUlZWl8PBws83R0VHh4eHKzMysVB8nTpzQ6dOn5enpaTemsLBQ+fn5NgsAAAAAAHUBRXQAAGBXbm6uiouL5ePjY9Pu4+Mjq9VaqT6ef/55+fn52RTiz5WYmCgPDw9z8ff3v6BxAwAAAABQUyiiAwCAi+aVV17R+++/r48//liurq524+Lj45WXl2cu+/btu4SjBAAAAADAPufaHgAAAKi7vLy85OTkpJycHJv2nJwc+fr6Vrjt9OnT9corr+jzzz9Xp06dKoy1WCyyWCwXPF4AAAAAAGoaV6IDAAC7XFxcFBwcbPNQ0NKHhIaFhdndburUqZo0aZLS0tIUEhJyKYYKAAAAAMBFwZXoAACgQnFxcYqOjlZISIi6dOmipKQkFRQUKCYmRpI0ZMgQNW/eXImJiZKkKVOmKCEhQUuXLlVAQIA5d7q7u7vc3d1r7TgAAAAAAKgOiugAAKBCUVFROnTokBISEmS1WhUUFKS0tDTzYaPZ2dlydPzr5ra5c+eqqKhI999/v00/48aN0/jx4y/l0AEAAAAAuGAU0QEAwHnFxsYqNja23HUZGRk2r/fu3XvxBwQAAAAAwCVCER0AAAAAAACootOH99XKfo0zRTqTlyNnDx85OLtc0n3X1jEDtY0iOgAAAAAAAFBJXl5ecnWrr8MrZtT2UGqFq1t9eXl51fYwgEuKIjoAAAAAAABQSS1atNDOHduVm5tbK/vfvn27HnroIS1evFjt2rW75Pv38vJSixYtLvl+gdpEER0AAAAAAACoghYtWtR6Ibldu3a64YYbanUMwN+FY20PAAAAAAAAAACAuooiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAFDHJCYm6sYbb9RVV10lb29vRUZGaufOnTYxp06d0siRI9WkSRO5u7urf//+ysnJsYnJzs5Wv379VL9+fXl7e+vZZ5/VmTNnbGIyMjJ0ww03yGKxqHXr1lq4cGGZ8SQnJysgIECurq4KDQ3Vhg0bavyYAQCoqyiiAwAAAABQx/znP//RyJEj9e2332rNmjU6ffq0evfurYKCAjPm6aef1qeffqply5bpP//5jw4cOKD77rvPXF9cXKx+/fqpqKhI69at06JFi7Rw4UIlJCSYMXv27FG/fv106623avPmzRo9erQeffRRrV692oxJTU1VXFycxo0bp02bNqlz586KiIjQwYMHL83JAACgljnX9gAAAAAAAICttLQ0m9cLFy6Ut7e3srKy1L17d+Xl5entt9/W0qVLddttt0mSFixYoHbt2unbb7/VTTfdpM8++0w//vijPv/8c/n4+CgoKEiTJk3S888/r/Hjx8vFxUUpKSkKDAzUjBkzJEnt2rXT119/rVdffVURERGSpJkzZ2r48OGKiYmRJKWkpGjlypWaP3++XnjhhTJjLywsVGFhofk6Pz//opwjAAAuFa5EBwAAAACgjsvLy5MkeXp6SpKysrJ0+vRphYeHmzFt27ZVixYtlJmZKUnKzMxUx44d5ePjY8ZEREQoPz9f27ZtM2PO7qM0prSPoqIiZWVl2cQ4OjoqPDzcjDlXYmKiPDw8zMXf3/9CDx8AgFpFER0AAAAAgDqspKREo0eP1s0336wOHTpIkqxWq1xcXNSoUSObWB8fH1mtVjPm7AJ66frSdRXF5Ofn6+TJk8rNzVVxcXG5MaV9nCs+Pl55eXnmsm/fvuodOAAAdQTTuQAAAAAAUIeNHDlSP/zwg77++uvaHkqlWCwWWSyW2h4GAAA1hivRAQAAAACoo2JjY7VixQp98cUX+sc//mG2+/r6qqioSMeOHbOJz8nJka+vrxmTk5NTZn3puopiGjZsKDc3N3l5ecnJyancmNI+AAC40lFEBwAAAACgjjEMQ7Gxsfr444+1du1aBQYG2qwPDg5WvXr1lJ6ebrbt3LlT2dnZCgsLkySFhYVp69atOnjwoBmzZs0aNWzYUO3btzdjzu6jNKa0DxcXFwUHB9vElJSUKD093YwBAOBKV60ienJysgICAuTq6qrQ0FBt2LChwvhly5apbdu2cnV1VceOHbVq1Sqb9UOHDpWDg4PN0qdPn+oMDQAAAACAy97IkSO1ePFiLV26VFdddZWsVqusVqtOnjwpSfLw8NCwYcMUFxenL774QllZWYqJiVFYWJhuuukmSVLv3r3Vvn17Pfzww/rvf/+r1atXa8yYMRo5cqQ53cr//M//aPfu3Xruuee0Y8cOvf766/rggw/09NNPm2OJi4vTvHnztGjRIm3fvl2PP/64CgoKFBMTc+lPDAAAtaDKRfTU1FTFxcVp3Lhx2rRpkzp37qyIiAibX7bPtm7dOg0aNEjDhg3T999/r8jISEVGRuqHH36wievTp49+//13c3nvvfeqd0QAAAAAAFzm5s6dq7y8PPXs2VPNmjUzl9TUVDPm1Vdf1Z133qn+/fure/fu8vX11UcffWSud3Jy0ooVK+Tk5KSwsDA99NBDGjJkiCZOnGjGBAYGauXKlVqzZo06d+6sGTNm6K233lJERIQZExUVpenTpyshIUFBQUHavHmz0tLSyjxsFACAK1WVHyw6c+ZMDR8+3PzFOSUlRStXrtT8+fP1wgsvlImfNWuW+vTpo2effVaSNGnSJK1Zs0avvfaaUlJSzDiLxcJ8agAAAAAA6M/pXM7H1dVVycnJSk5OthvTsmXLMneDn6tnz576/vvvK4yJjY1VbGzseccEAMCVqEpXohcVFSkrK0vh4eF/deDoqPDwcGVmZpa7TWZmpk28JEVERJSJz8jIkLe3t6699lo9/vjjOnz4sN1xFBYWKj8/32YBAAAAAAAAAKCmVamInpubq+Li4jK3bPn4+MhqtZa7jdVqPW98nz599M477yg9PV1TpkzRf/7zH/Xt21fFxcXl9pmYmCgPDw9z8ff3r8phAAAAAAAAAABQKVWezuViGDhwoPnnjh07qlOnTmrVqpUyMjLUq1evMvHx8fGKi4szX+fn51NIxxXH191BHV0OqJ6DU20P5ZI77XJAcneo7WEAAFBjyOvkdQAAAFy+qlRE9/LykpOTk3Jycmzac3Jy7M5n7uvrW6V4Sbr66qvl5eWln3/+udwiusViMZ8kDlypHgt20Xi/lPMHXon8pPHBLrU9CgBnSU5O1rRp02S1WtW5c2fNmTNHXbp0KTd227ZtSkhIUFZWln799Ve9+uqrGj169KUdMFDHkNfJ6wAAALh8VamI7uLiouDgYKWnpysyMlKSVFJSovT0dLsPGAkLC1N6errNP57XrFmjsLAwu/v57bffdPjwYTVr1qwqwwOuKG9kFWndNaNUr8nf7y6L04f3aWvWNN1d2wMBIElKTU1VXFycUlJSFBoaqqSkJEVERGjnzp3y9vYuE3/ixAldffXVGjBggJ5++ulaGDFQ95DXyesAAAC4fFV5Ope4uDhFR0crJCREXbp0UVJSkgoKChQTEyNJGjJkiJo3b67ExERJ0qhRo9SjRw/NmDFD/fr10/vvv6+NGzfqzTfflCQdP35cEyZMUP/+/eXr66tffvlFzz33nFq3bq2IiIgaPFTg8mI9bkhFfrIYgbU9lEuusKj4z+MHUCfMnDlTw4cPN3N9SkqKVq5cqfnz5+uFF14oE3/jjTfqxhtvlKRy1wN/R+R18joAAAAuX1UuokdFRenQoUNKSEiQ1WpVUFCQ0tLSzIeHZmdny9Hxr+eVdu3aVUuXLtWYMWP04osvqk2bNlq+fLk6dOggSXJyctKWLVu0aNEiHTt2TH5+furdu7cmTZrElC0AANSyoqIiZWVlKT4+3mxzdHRUeHi4MjMza2w/hYWFKiwsNF/n5+fXWN8AAAAAAFyIaj1YNDY21u70LRkZGWXaBgwYoAEDBpQb7+bmptWrV1dnGAAA4CLLzc1VcXGx+WN5KR8fH+3YsaPG9pOYmKgJEybUWH8AAAAAANQUx/OHAAAAXFzx8fHKy8szl3379tX2kAAAAAAAkFTNK9EBAMDfg5eXl5ycnJSTk2PTnpOTI19f3xrbj8ViYRo3AAAAAECdxJXoAADALhcXFwUHBys9Pd1sKykpUXp6usLCwmpxZAAAAAAAXBpciQ4AACoUFxen6OhohYSEqEuXLkpKSlJBQYFiYmIkSUOGDFHz5s2VmJgo6c+Hkf7444/mn/fv36/NmzfL3d1drVu3rrXjAAAAAACgOiiiAwCACkVFRenQoUNKSEiQ1WpVUFCQ0tLSzIeNZmdny9Hxr5vbDhw4oOuvv958PX36dE2fPl09evQo9wHkAAAAAADUZRTRAQDAecXGxio2NrbcdecWxgMCAmQYxiUYFQAAAAAAFx9zogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACww7m2BwDAvtOH99XKfo0zRTqTlyNnDx85OLtc8v3X1nEDAHAxkdcBAACAyxNFdKAO8vLykqtbfR1eMaO2h1JrXN3qy8vLq7aHAQDABSOvk9cBAABweaOIDtRBLVq00M4d25Wbm1sr+9++fbseeughLV68WO3atauVMXh5ealFixa1sm8AAGoSeZ28DgAAgMsbRXSgjmrRokWt/2OzXbt2uuGGG2p1DAAAXAnI6wAAAMDliweLAgAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2FGtInpycrICAgLk6uqq0NBQbdiwocL4ZcuWqW3btnJ1dVXHjh21atUqm/WGYSghIUHNmjWTm5ubwsPDtWvXruoMDQAAXAQ1nfsBAMDlparfBQAAuJJUuYiempqquLg4jRs3Tps2bVLnzp0VERGhgwcPlhu/bt06DRo0SMOGDdP333+vyMhIRUZG6ocffjBjpk6dqtmzZyslJUXr169XgwYNFBERoVOnTlX/yAAAQI24GLkfAABcPqr6XQAAgCuNg2EYRlU2CA0N1Y033qjXXntNklRSUiJ/f389+eSTeuGFF8rER0VFqaCgQCtWrDDbbrrpJgUFBSklJUWGYcjPz0///Oc/9cwzz0iS8vLy5OPjo4ULF2rgwIHnHVN+fr48PDyUl5enhg0bVuVwgCvSiRMntGPHjmpvv337dj300ENavHix2rVrV+1+2rZtq/r161d7e+BKcCXkqJrO/ZVxJZw3oKaQ14G65e+Yo6r6XeBcf8dzBlSkLuR28jrwp8rmKOeqdFpUVKSsrCzFx8ebbY6OjgoPD1dmZma522RmZiouLs6mLSIiQsuXL5ck7dmzR1arVeHh4eZ6Dw8PhYaGKjMzs9wiemFhoQoLC83X+fn5VTkM4Iq3Y8cOBQcHX3A/Dz300AVtn5WVpRtuuOGCxwGg9lyM3F8ecjtgH3kdQG2qzncB8jpQsbqQ28nrQNVUqYiem5ur4uJi+fj42LT7+PjY/QXNarWWG2+1Ws31pW32Ys6VmJioCRMmVGXowN9K27ZtlZWVVe3tT548qb179yogIEBubm4XNA4Al7eLkfvLQ24H7COvA6hN1fkuQF4HKlYXcjt5HaiaKhXR64r4+HibK9zy8/8fe3ceV0XZ/3/8fQQ5oCyKskiC4pK4p1huuZvIbW5Zlmni0m0LZuZddtO3csvI9s1sM6jUbHG5zUorE70rtbJMLaU0XErRMAVFRYXr90c/zu0RhkWBc5TX8/GYR83MNTOfGQ5c57ydc02WwsPDXVgR4F6qVat2wf+i3Llz5zKqBgCKR98OWKNfB3CxoV8HikbfDlx8ShWi165dWx4eHjpw4IDT8gMHDig0NLTQbUJDQ4tsn//fAwcOqE6dOk5trrjiikL3abfbZbfbS1M6AAA4D+XR9xeGvh0AAPd0Pu8F6NcBAJeaKqVp7OXlpejoaK1atcqxLC8vT6tWrVLHjh0L3aZjx45O7SXps88+c7SPjIxUaGioU5usrCxt2LDBcp8AAKBilEffDwAALh7n814AAIBLTamHc5k0aZLi4uLUrl07XXXVVXr22WeVnZ2t0aNHS5JGjhypyy67TImJiZKku+++W926ddNTTz2lfv36aeHChfruu+/06quvSpJsNpsmTpyoRx55RI0bN1ZkZKQeeughhYWFadCgQWV3pgAA4LyUdd8PAAAuLsW9FwAA4FJX6hD9xhtv1J9//qmHH35Y6enpuuKKK7RixQrHQ0b27NmjKlX+d4N7p06dtGDBAj344IN64IEH1LhxYy1dulQtWrRwtJk8ebKys7M1btw4HTlyRFdffbVWrFghb2/vMjhFAABwIcqj7wcAABeP4t4LAABwqbMZY4yri7hQWVlZCggIUGZmpvz9/V1dDgAADvRR54frBgBwV/RRpcc1AwC4q5L2UaUaEx0AAAAAAAAAgMqEEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABgwdPVBZQFY4wkKSsry8WVAADgLL9vyu+rUDL07QAAd0XfXnr06wAAd1XSfv2SCNGPHj0qSQoPD3dxJQAAFO7o0aMKCAhwdRkXDfp2AIC7o28vOfp1AIC7K65ft5lL4J/P8/LytG/fPvn5+clms7m6HOCil5WVpfDwcO3du1f+/v6uLge4qBljdPToUYWFhalKFUZRKyn6dqDs0K8DZYu+vfTo14GyRd8OlJ2S9uuXRIgOoGxlZWUpICBAmZmZdMgAAFzk6NcBALi00LcDFY9/NgcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRARRgt9s1ZcoU2e12V5cCAAAuEP06AACXFvp2oOIxJjoAAAAAAAAAABa4Ex0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA7AYe3aterfv7/CwsJks9m0dOlSV5cEAADOE/06AACXFvp2wHUI0QE4ZGdnq3Xr1po9e7arSwEAABeIfh0AgEsLfTvgOp6uLgCA+4iNjVVsbKyrywAAAGWAfh0AgEsLfTvgOtyJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWPB0dQEA3MexY8e0Y8cOx3xaWpo2bdqkwMBARUREuLAyAABQWvTrAABcWujbAdexGWOMq4sA4B5SUlLUo0ePAsvj4uKUnJxc8QUBAIDzRr8OAMClhb4dcB1CdAAAAAAAAAAALDAmOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACITpwkRg1apQGDRrkmO/evbsmTpzosnouJjabTUuXLnV1GQAA0J8DAODGyqpfvtj69+TkZNWoUcNt9we4A0J0oJzt2rVLNptNmzZtKtP9Ll68WDNmzCjTfZ6PlJQU2Ww2HTlyxNWlWNq/f79iY2NdXQYA4CJGfw4AAM5l1X+6S//uKjfeeKN++eUXx/zUqVN1xRVXuK4goAx4uroAAOcnMDDQ1SWUKWOMcnNz5elZ9n+WQkNDy3yfAACUBfpzAAAqxqlTp+Tl5VUhx7rU+vfS8vHxkY+Pj6vLAMoUd6IDJZSXl6fExERFRkbKx8dHrVu31gcffCBJOnz4sIYPH66goCD5+PiocePGSkpKkiRFRkZKktq0aSObzabu3bsXe6zc3FxNmjRJNWrUUK1atTR58mQZY5zanPv1sLffflvt2rWTn5+fQkNDdfPNN+vgwYOO9fn/Qr5y5Uq1adNGPj4+6tmzpw4ePKhPPvlETZs2lb+/v26++WYdP368ROe9a9cu9ejRQ5JUs2ZN2Ww2jRo1qtjtzq7nk08+UXR0tOx2u7788ssir0v+v16/8cYbioiIkK+vr+68807l5ubq8ccfV2hoqIKDgzVz5kyn7c4eziX/TsLFixerR48eqlatmlq3bq1169YV+3MBAFz86M8v3v786aefVsuWLVW9enWFh4frzjvv1LFjxxzrx4wZo1atWiknJ0fS32FJmzZtNHLkyOJ+VACAS1D37t01fvx4TZw4UbVr11ZMTIy2bt2q2NhY+fr6KiQkRLfccosyMjIs91FUv1xU/3l2//7AAw+offv2BfbdunVrTZ8+3TH/+uuvq2nTpvL29lZUVJReeumlEp1np06ddP/99zst+/PPP1W1alWtXbtWkpSTk6N7771Xl112mapXr6727dsrJSWlyP3OmTNHDRs2lJeXl5o0aaK3337baf2RI0d02223KSQkRN7e3mrRooWWL18uyXk4l+TkZE2bNk0//vijbDabbDabkpOTNWbMGF177bVO+zx9+rSCg4M1d+7cEp07UKEMgBJ55JFHTFRUlFmxYoXZuXOnSUpKMna73aSkpJj4+HhzxRVXmG+//dakpaWZzz77zCxbtswYY8w333xjJJnPP//c7N+/3xw6dKjYY82aNcvUrFnTLFq0yPz8889m7Nixxs/PzwwcONDRplu3bubuu+92zM+dO9d8/PHHZufOnWbdunWmY8eOJjY21rF+9erVRpLp0KGD+fLLL833339vGjVqZLp162b69Oljvv/+e7N27VpTq1Yt89hjj5XovM+cOWMWLVpkJJnU1FSzf/9+c+TIkWK3O7ueVq1amU8//dTs2LGj2GszZcoU4+vra66//nrz008/mWXLlhkvLy8TExNj7rrrLrN9+3bzxhtvGElm/fr1ju0kmSVLlhhjjElLSzOSTFRUlFm+fLlJTU01119/valXr545ffp0sT8bAMDFjf784u3Pn3nmGfPFF1+YtLQ0s2rVKtOkSRNzxx13ONYfPXrUNGjQwEycONEYY8y9995r6tevbzIzM4v9WQEALj3dunUzvr6+5r777jPbt28369evN0FBQSYhIcFs27bNfP/99+aaa64xPXr0cNqmpP1yUf3n2fvZunWrkWR27Njh2G/+sl9//dUYY8y8efNMnTp1zKJFi8xvv/1mFi1aZAIDA01ycnKx5/niiy+aiIgIk5eX51j2wgsvOC279dZbTadOnczatWvNjh07zBNPPGHsdrv55ZdfjDHGJCUlmYCAAMf2ixcvNlWrVjWzZ882qamp5qmnnjIeHh7miy++MMYYk5ubazp06GCaN29uPv30U7Nz507z4Ycfmo8//rjA/o4fP27+9a9/mebNm5v9+/eb/fv3m+PHj5uvvvrKeHh4mH379jkdt3r16ubo0aPFnjdQ0QjRgRI4efKkqVatmvn666+dlo8dO9YMGzbM9O/f34wePbrQbfND2x9++KHEx6tTp455/PHHHfOnT582devWLfJD97m+/fZbI8nR+eR/yP38888dbRITE40ks3PnTsey2267zcTExBhjij/vs/d7+PBhx/rSbLd06dISXJG/TZkyxVSrVs1kZWU5lsXExJj69eub3Nxcx7ImTZqYxMREx3xhIfrrr7/uWP/TTz8ZSWbbtm0lrgUAcPGhP7+4+/Nzvf/++6ZWrVpOy77++mtTtWpV89BDDxlPT0/z3//+t8R1AQAuLd26dTNt2rRxzM+YMcP06dPHqc3evXsdIXj+NufTL5/dfxa2n9atW5vp06c75hMSEkz79u0d8w0bNjQLFixw2seMGTNMx44diz3PgwcPGk9PT7N27VrHso4dO5r777/fGGPM7t27jYeHh/njjz+ctuvVq5dJSEgwxhQM0Tt16mT++c9/OrW/4YYbzD/+8Q9jjDErV640VapUcVy3c527vylTppjWrVsXaNesWTMza9Ysx3z//v3NqFGjij1nwBUYrBAogR07duj48eO65pprnJbnf0146tSpGjJkiL7//nv16dNHgwYNUqdOnc7rWJmZmdq/f7/T1708PT3Vrl27Al8BP9vGjRs1depU/fjjjzp8+LDy8vIkSXv27FGzZs0c7Vq1auX4/5CQEFWrVk0NGjRwWvbNN9+U6LytlGa7du3aWe6nMPXr15efn59TvR4eHqpSpYrTsrO/+l6Ys69DnTp1JEkHDx5UVFRUqeoBAFw86M8v7v78888/V2JiorZv366srCydOXNGJ0+e1PHjx1WtWjVJUseOHXXvvfdqxowZuv/++3X11VeXqi4AwKUlOjra8f8//vijVq9eLV9f3wLtdu7cqcsvv7zA8pL2y8UZPny43njjDT300EMyxuidd97RpEmTJEnZ2dnauXOnxo4dq3/+85+Obc6cOaOAgIBi9x0UFKQ+ffpo/vz56tKli9LS0rRu3Tq98sorkqQtW7YoNze3wPnl5OSoVq1ahe5z27ZtGjdunNOyzp0767nnnpMkbdq0SXXr1i30mpXGrbfeqldffVWTJ0/WgQMH9Mknn+iLL764oH0C5YUQHSiB/PE2P/roI1122WVO6+x2u8LDw7V79259/PHH+uyzz9SrVy/Fx8frySefrJD6srOzFRMTo5iYGM2fP19BQUHas2ePYmJidOrUKae2VatWdfy/zWZzms9flv/GoLjztlKa7apXr16SUyy0/vx6izqHkuzHZrNJUrHbAAAubvTnF29/vmvXLl177bW64447NHPmTAUGBurLL7/U2LFjderUKUeInpeXp6+++koeHh7asWNHqWoCAFx6zu6fjh07pv79+2vWrFkF2uXfWHW20vTLxRk2bJjuv/9+ff/99zpx4oT27t2rG2+80VGXJL322msFxk738PAo0f6HDx+uCRMm6IUXXtCCBQvUsmVLtWzZ0rF/Dw8Pbdy4scD+CvsHhZIoq4eGjhw5Uv/+97+1bt06ff3114qMjFSXLl3KZN9AWSNEB0qgWbNmstvt2rNnj7p161Zom6CgIMXFxSkuLk5dunTRfffdpyeffNLx9O/c3NwSHSsgIEB16tTRhg0b1LVrV0l//wv0xo0b1bZt20K32b59uw4dOqTHHntM4eHhkqTvvvuutKdZQEnOu7DzK8l2AABUNPrzi7c/37hxo/Ly8vTUU0857lZ/7733CrR74okntH37dq1Zs0YxMTFKSkrS6NGjK7pcAIAbatu2rRYtWqT69evL07P4OKwk/XJJ3x/UrVtX3bp10/z583XixAldc801Cg4OlvT3N6/CwsL022+/afjw4edzaho4cKDGjRunFStWaMGCBU4P1W7Tpo1yc3N18ODBEgfUTZs21VdffaW4uDjHsq+++spx932rVq30+++/65dffinR3eheXl6FXqNatWpp0KBBSkpK0rp16+iz4dYI0YES8PPz07333qt77rlHeXl5uvrqq5WZmamvvvpK/v7+2rlzp6Kjo9W8eXPl5ORo+fLlatq0qSQpODhYPj4+WrFiherWrStvb+9iv5J1991367HHHlPjxo0VFRWlp59+WkeOHLFsHxERIS8vL73wwgu6/fbbtXXrVs2YMaPczzsuLk716tWTzWbT8uXL9Y9//EM+Pj4l2g4AgIpGf37x9ueNGjXS6dOn9cILL6h///766quv9PLLLzu1+eGHH/Twww/rgw8+UOfOnfX000/r7rvvVrdu3ZyGugEAVE7x8fF67bXXNGzYME2ePFmBgYHasWOHFi5cqNdff73AXdol6ZcL6z+t7u4ePny4pkyZolOnTumZZ55xWjdt2jRNmDBBAQEB6tu3r3JycvTdd9/p8OHDjmFfilK9enUNGjRIDz30kLZt26Zhw4Y51l1++eUaPny4Ro4cqaeeekpt2rTRn3/+qVWrVqlVq1bq169fgf3dd999Gjp0qNq0aaPevXvrww8/1OLFi/X5559Lkrp166auXbtqyJAhevrpp9WoUSNt375dNptNffv2LbC/+vXrKy0tzTEMjJ+fn+NbbbfeequuvfZa5ebmkhXArVUpvgkASZoxY4YeeughJSYmqmnTpurbt68++ugjRUZGysvLSwkJCWrVqpW6du0qDw8PLVy4UNLf458+//zzeuWVVxQWFqaBAwcWe6x//etfuuWWWxQXF6eOHTvKz89PgwcPtmwfFBSk5ORkvf/++2rWrJkee+yxMvvqeVHnLUmXXXaZpk2bpn//+98KCQnR+PHjS7QdAACuQH9+cfbnrVu31tNPP61Zs2apRYsWmj9/vhITEx3rT548qREjRmjUqFHq37+/JGncuHHq0aOHbrnllhJ/gwAAcOkKCwvTV199pdzcXPXp00ctW7bUxIkTVaNGDadncuQrSb9s1X8W5vrrr9ehQ4d0/PhxDRo0yGndrbfeqtdff11JSUlq2bKlunXrpuTk5FL1t8OHD9ePP/6oLl26KCIiwmldUlKSRo4cqX/9619q0qSJBg0apG+//bZAu3yDBg3Sc889pyeffFLNmzfXK6+8oqSkJHXv3t3RZtGiRbryyis1bNgwNWvWTJMnT7bsb4cMGaK+ffuqR48eCgoK0jvvvONY17t3b9WpU0cxMTEKCwsr8fkCFc1minqyEQAAAAAAAACUg2PHjumyyy5TUlKSrrvuOleXA1hiOBcAAAAAAAAAFSYvL08ZGRl66qmnVKNGDQ0YMMDVJQFFYjgXwAV8fX0tp//+97+uLs9lmjdvbnld5s+f7+ryAABwQn9eOPpzAADKzqOPPmrZr8bGxrq6vPO2Z88ehYSEaMGCBXrjjTdK9LBXwJUYzgVwgR07dliuu+yyy+Tj41OB1biP3bt36/Tp04WuCwkJkZ+fXwVXBACANfrzwtGfAwBQdv766y/99ddfha7z8fHRZZddVsEVAZUTIToAAAAAAAAAABYYzgUAAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEB4Dx1795d3bt3d3UZDsnJybLZbNq1a5djmbvVCACAFZvNpvHjx1foMadOnSqbzVahx6xM6tevr1GjRlXIsQp7HwQAAFBWCNHLwQcffCCbzVbo1KJFC1eXB1Qa3bt3d3xwGzVqFGFyCX399deaOnWqjhw54upSSq1+/fqaOnWqJOefPy5N9LeAe6is/e3F3F+6ys8//6ypU6e6XdA9depU1a9fX9L/wngAAICzebq6gEvZAw88oKZNmzrmZ86c6cJqAJS1Tz/91NUlFOt8avz66681bdo0jRo1SjVq1Cj7ooAyRn8LwBXoL4uXmpqqKlX+d9/Wzz//rGnTpql79+6O0BoAAOBiQIhejq655hqnO3Fef/11ZWRkuK4gAGXKy8vL1SUU62KoEbhQ9LcA4J7sdrurSwAAACgTDOdSDk6dOiVJTnddWCls7L68vDy1atVKNptNycnJjuWbN2/WqFGj1KBBA3l7eys0NFRjxozRoUOHnPaZP7bjuZOn5//+zaR79+5q0aKFNm7cqE6dOsnHx0eRkZF6+eWXC5zLww8/rOjoaAUEBKh69erq0qWLVq9e7dRu165djuMsXbrUad3JkydVs2ZN2Ww2PfnkkwXqDA4O1unTp522eeeddxz7OzsI+c9//qN+/fopLCxMdrtdDRs21IwZM5Sbm1vstc4/3vbt2zV06FD5+/urVq1auvvuu3Xy5EmntklJSerZs6eCg4Nlt9vVrFkzzZkzp8A+Bw4cqPr168vb21vBwcEaMGCAtmzZ4tQm/zyeffbZAttHRUUVGP/zr7/+0r333quWLVvK19dX/v7+io2N1Y8//ui0bVxcnLy9vbVt2zan5TExMapZs6b27dvnWPbbb7/phhtuUGBgoKpVq6YOHTroo48+ctouJSXF6fVit9t1+eWXKzExUcaYoi/u/2f12ivsa91nv2bOnc528OBBjR07VhEREfLw8HC08fX1LVFNVvKP/+STT2r27Nlq0KCBqlWrpj59+mjv3r0yxmjGjBmqW7eufHx8NHDgQP31119O+yhsvPEXXnhBzZs3V7Vq1VSzZk21a9dOCxYscKw/evSoJk6cqPr168tutys4OFjXXHONvv/++1LV/9NPP6lnz57y8fFR3bp19cgjjygvL69Au9LWOHXqVN13332SpMjISMf1zv8bVdLfjfr16+vaa6/Vl19+qauuukre3t5q0KCB3nrrrQJtjxw5onvuucdxTerWrauRI0c6/e7n5ORoypQpatSokex2u8LDwzV58mTl5OSU6rrh0kJ/u9RpHf0t/a079reS9OSTT6pTp06qVauWfHx8FB0drQ8++MCy/fz589WkSRN5e3srOjpaa9eudVpf0r70/fffV3R0tHx8fFS7dm2NGDFCf/zxR5G15l+vs/8m5LPZbI4hw4rrLyVp3rx5juMHBgbqpptu0t69e4s8/rny/3Z9+eWXmjBhgoKCglSjRg3ddtttOnXqlI4cOaKRI0eqZs2aqlmzpiZPnlzgdVTS63/ixAlNmDBBtWvXlp+fnwYMGKA//vjD6bzzz91ms2nHjh2Ou/ADAgI0evRoHT9+3GmfZ4+JnpycrBtuuEGS1KNHD8c1S0lJKXB9rfaRr6TvgyTpk08+UZcuXVS9enX5+fmpX79++umnn4q46gAAAAVxJ3o5yP9Qf753Xrz99tsFPhhK0meffabffvtNo0ePVmhoqH766Se9+uqr+umnn7R+/foCH4bmzJnj9MHn3JDh8OHD+sc//qGhQ4dq2LBheu+993THHXfIy8tLY8aMkSRlZWXp9ddf17Bhw/TPf/5TR48e1dy5cxUTE6NvvvlGV1xxhdM+vb29lZSUpEGDBjmWLV68uMCH5rMdPXpUy5cv1+DBgx3LkpKS5O3tXWC75ORk+fr6atKkSfL19dUXX3yhhx9+WFlZWXriiScsj3G2oUOHqn79+kpMTNT69ev1/PPP6/Dhw07h3pw5c9S8eXMNGDBAnp6e+vDDD3XnnXcqLy9P8fHxTvsbN26cQkNDtW/fPr344ovq3bu30tLSVK1atQLXZeLEiY5lX3/9tXbv3l2gvt9++01Lly7VDTfcoMjISB04cECvvPKKunXrpp9//llhYWGSpOeee05ffPGF4uLitG7dOnl4eOiVV17Rp59+qrffftvR7sCBA+rUqZOOHz+uCRMmqFatWnrzzTc1YMAAffDBB07XXfrfsAgnTpzQu+++qwceeEDBwcEaO3Zsia5v/vXLf+0lJCQU2XbcuHHq0qWLpL9fK0uWLHFaHxcXp88//1x33XWXWrduLQ8PD7366qulDp2tzJ8/X6dOndJdd92lv/76S48//riGDh2qnj17KiUlRffff7927NihF154Qffee6/eeOMNy3299tprmjBhgq6//npHWLR582Zt2LBBN998syTp9ttv1wcffKDx48erWbNmOnTokL788ktt27ZNbdu2LVHN6enp6tGjh86cOaN///vfql69ul599VX5+PgUu21xNV533XX65Zdf9M477+iZZ55R7dq1JUlBQUGSSve7sWPHDl1//fUaO3as4uLi9MYbb2jUqFGKjo5W8+bNJUnHjh1Tly5dtG3bNo0ZM0Zt27ZVRkaGli1bpt9//121a9dWXl6eBgwYoC+//FLjxo1T06ZNtWXLFj3zzDP65ZdfCgSJqDzob+lv6W8vjv72ueee04ABAzR8+HCdOnVKCxcu1A033KDly5erX79+Tm3XrFmjd999VxMmTJDdbtdLL72kvn376ptvvnE866AkfWlycrJGjx6tK6+8UomJiTpw4ICee+45ffXVV/rhhx8uePiV4vrLmTNn6qGHHtLQoUN166236s8//9QLL7ygrl27ntfx77rrLoWGhmratGlav369Xn31VdWoUUNff/21IiIi9Oijj+rjjz/WE088oRYtWmjkyJGObUt6/UeNGqX33ntPt9xyizp06KA1a9YU+PmcbejQoYqMjFRiYqK+//57vf766woODtasWbMKbd+1a1dNmDBBzz//vNMwXGcPx1USpXkf9PbbbysuLk4xMTGaNWuWjh8/rjlz5ujqq6/WDz/8wJAyAACg5AzK3LPPPmskmR9//NFpebdu3Uzz5s2dliUlJRlJJi0tzRhjzMmTJ01ERISJjY01kkxSUpKj7fHjxwsc65133jGSzNq1ax3LpkyZYiSZP//807LGbt26GUnmqaeecizLyckxV1xxhQkODjanTp0yxhhz5swZk5OT47Tt4cOHTUhIiBkzZoxjWVpampFkhg0bZjw9PU16erpjXa9evczNN99sJJknnniiQJ3Dhg0z1157rWP57t27TZUqVcywYcMKnEdh1+C2224z1apVMydPnrQ837OPN2DAAKfld955Z4GfV2HHiYmJMQ0aNCjyGO+9956RZL777jvHMknm+uuvN56enk7Lx44d67gu8fHxjuUnT540ubm5TvtNS0szdrvdTJ8+3Wn5ypUrjSTzyCOPmN9++834+vqaQYMGObWZOHGikWT++9//OpYdPXrUREZGmvr16zuOtXr1aiPJrF692qmWKlWqmDvvvLPI8873wAMPGEkmIyPDsax58+amW7duBdr++uuvRpJ58803Hcvyf0b5Tpw4YapUqWJuu+02p23j4uJM9erVS1STlfzXbFBQkDly5IhjeUJCgpFkWrdubU6fPu1YPmzYMOPl5eX0OuvWrZvTuQ0cOLDA7/i5AgICnH7e5yP/Z7phwwbHsoMHD5qAgACnvyfnW+MTTzxRYD/5Svq7Ua9evQJ/mw4ePGjsdrv517/+5Vj28MMPG0lm8eLFBfabl5dnjDHm7bffNlWqVHF6DRtjzMsvv2wkma+++qrI88Gli/6W/pb+1v37W2MK/pxPnTplWrRoYXr27Om0XFKBn+vu3buNt7e3GTx4sGNZcX3pqVOnTHBwsGnRooU5ceKEY/ny5cuNJPPwww87lp17LfJ/x87+m3B2fVOmTHHMW/WXu3btMh4eHmbmzJlOy7ds2WI8PT0LLC9K/t+umJgYR79ojDEdO3Y0NpvN3H777Y5lZ86cMXXr1i3wOijJ9d+4caORZCZOnOjUdtSoUQXOO/+anf23yRhjBg8ebGrVquW0rF69eiYuLs4x//777xd4/ec79zhW+yjp+6CjR4+aGjVqmH/+859O+0tPTzcBAQEFlgMAABSF4VzKQf7XvfPvRCmN2bNn69ChQ5oyZUqBdWffXXHy5EllZGSoQ4cOknRedwl5enrqtttuc8x7eXnptttu08GDB7Vx40ZJkoeHh2NM5by8PP311186c+aM2rVrV+gx27Ztq+bNm+vtt9+WJO3evVurV68u8BXMs40ZM0YrVqxQenq6JOnNN99Ux44ddfnllxdoe/Y1OHr0qDIyMtSlSxcdP35c27dvL9F5n3tn21133SVJ+vjjjws9TmZmpjIyMtStWzf99ttvyszMdNr++PHjysjI0KZNm/Taa68pJCSkQO0hISHq16+fkpKSHNu89957Gj16dIH67Ha74y7G3NxcHTp0SL6+vmrSpEmBa96nTx/ddtttmj59uq677jp5e3vrlVdecWrz8ccf66qrrtLVV1/tWObr66tx48Zp165d+vnnn53a55/vnj179PjjjysvL089e/Ys5EoWlH8no7e3d7FtS3IHaXZ2tvLy8lSrVq0SHf983HDDDQoICHDMt2/fXpI0YsQIpyEZ2rdvr1OnThX5NfAaNWro999/17fffltkmw0bNjh9/b+0Pv74Y3Xo0EFXXXWVY1lQUJCGDx9e7LYlqbEopfndaNasmeOux/wamzRpot9++82xbNGiRWrdunWBOzQlOe72ff/999W0aVNFRUUpIyPDMeW/Ls8d7gKVB/0t/S397cXR3579cz58+LAyMzPVpUuXQl/bHTt2VHR0tGM+IiJCAwcO1MqVKx3DCRXXl3733Xc6ePCg7rzzTqdr1K9fP0VFRRUYYqesLV68WHl5eRo6dKhTvxUaGqrGjRufV781duxYp2/BtG/fXsYYp28ueHh4qF27dk79rFSy679ixQpJ0p133um0bf7vbWFuv/12p/kuXbro0KFDysrKKsWZlV5J3wd99tlnOnLkiIYNG+b0c/Dw8FD79u15/wAAAErlkgvR165dq/79+yssLKzQ8UKLYzXGZPXq1Uu8j927d8vT07PUH+ozMzP16KOPatKkSQoJCSmw/q+//tLdd9+tkJAQ+fj4KCgoSJGRkY5tSyssLKzAeeV/GD17PMc333xTrVq1kre3t2rVqqWgoCB99NFHlsccPXq048NrcnKyOnXqpMaNG1vWccUVV6hFixZ66623ZIxxfP22MD/99JMGDx6sgIAA+fv7KygoSCNGjJBU8mtwbi0NGzZUlSpVnM75q6++Uu/evVW9enXVqFFDQUFBeuCBBwo9zvTp0xUUFKQ2bdpo165dSklJkZ+fX4Hjjh49WgsWLFBOTo7ef/991axZs9APy3l5eXrmmWfUuHFj2e121a5dW0FBQdq8eXOh5/jkk08qMDBQmzZt0vPPP6/g4GCn9bt371aTJk0KbJf/1dlzv+I+aNAgBQUFqV69epo6daoefPBBDRkypMD2hcnIyFDVqlWdvlpv5ciRI5JU5FirtWrVUuPGjfX666/r008/1cGDB5WRkVGm42BHREQ4zecH6uHh4YUuP3z4sOW+7r//fvn6+uqqq65S48aNFR8fr6+++sqpzeOPP66tW7cqPDxcV111laZOnVrgw25xdu/eXejvVGE/5/OpsSil+d0499pKUs2aNZ2u4c6dOx1fz7fy66+/6qefflJQUJDTlP/36uDBgyWuH5cW+lv6W/rbi6O/Xb58uTp06CBvb28FBgYqKChIc+bMKfQ6F/Yavvzyy3X8+HH9+eefkorvS/OvdWE/j6ioqEKH9ylLv/76q4wxaty4cYG+a9u2befVb5Xm/cq571VKcv13796tKlWqOP7W5WvUqFGJa6pZs6akot8rlYWSvg/69ddfJUk9e/Ys8HPIf50DAACU1CU3Jnp2drZat26tMWPG6Lrrriv19vfee2+Buyp69eqlK6+8ssT7SE1NVYMGDZzuYi2JWbNmqUqVKrrvvvsKPLxM+nvcwa+//lr33XefrrjiCvn6+iovL099+/a1fJDOhZo3b55GjRqlQYMG6b777lNwcLA8PDyUmJionTt3FrrNiBEjNHnyZK1fv15vvvmmHnzwwWKPM2bMGL300ku66qqrlJ6erqFDh+qpp55yanPkyBF169ZN/v7+mj59uho2bChvb299//33uv/++8/7Gpw7tu3OnTvVq1cvRUVF6emnn1Z4eLi8vLz08ccf65lnnilwnFtvvVW9evXS77//rmeeeUZDhgzR119/7XR3s/T33U9eXl5aunSpkpKSFBcXV+jD8B599FE99NBDGjNmjGbMmKHAwEBVqVJFEydOLPQcf/jhB8eHgC1btmjYsGHndR3yPfnkk2rdurVOnz6tb7/9Vo888og8PT0LvVvzXLt27VJERESBa1qY/DshQ0NDi2z37rvvavjw4YqJiXFaXpp/2CqKh4dHqZabIh761rRpU6Wmpmr58uVasWKFFi1apJdeekkPP/ywpk2bJunv3+MuXbpoyZIl+vTTT/XEE09o1qxZWrx4sWJjYy/8hIpRkhqtlPZ343yuYWHy8vLUsmVLPf3004WuPzdAQOVBf0t/S3/r/v3tf//7Xw0YMEBdu3bVSy+9pDp16qhq1apKSkpyevB2aZRnX2p1TUvyUN18eXl5stls+uSTTwrtC8/nYa2leb9ydj9bHte/uJpK288XpzTX/mz5v8dvv/12oa//0vYdAACgcrvk3jnExsYW+eY5JydH//d//6d33nlHR44cUYsWLTRr1ix1795d0t9vas9+Y/vjjz/q559/1ssvv1yi4+fk5GjTpk1OD/oqiX379um5555TYmKi/Pz8CnyoP3z4sFatWqVp06bp4YcfdizPv8PifOzbt0/Z2dlOH45++eUXSXI8ZOeDDz5QgwYNtHjxYqcPFUV9wKtVq5YGDBjg+Kp6/ldZizJ8+HDdd999uvvuu3X99dcXemdZSkqKDh06pMWLF6tr166O5WlpaSU633y//vqr0102O3bsUF5enuOcP/zwQ+Xk5GjZsmVOd9hYfeWzUaNGjrt0evfurYiICC1YsEB33HGHUztPT0/dcsstmjlzpn766SfLB1R+8MEH6tGjh+bOneu0/MiRI46HVuXLzs7W6NGj1axZM3Xq1EmPP/64Bg8e7PSPPvXq1VNqamqB4+R/Hb9evXpOy6Ojox2/D7Gxsfrjjz80a9YsPfTQQ4WGEPnOnDmjH3/8UX379rVsc7aff/5ZNput2Lun27Rpo9dee01dunTR9OnT1aFDBz3xxBOlunu6IlWvXl033nijbrzxRp06dUrXXXedZs6cqYSEBMdXyuvUqaM777xTd955pw4ePKi2bdtq5syZJf7gX69evUJ/9wv7OZ9PjVYBQml/N0qiYcOG2rp1a7FtfvzxR/Xq1atEgREqB/pb+lv624ujv120aJG8vb21cuVKpyFl8r9Fca7Cftd++eUXVatWzelbJ0X1pfnXOjU1tcC3EFJTUwv8LM6Wfzd1/h38+Qq7e92qT2rYsKGMMYqMjCx0uKSKVNLrX69ePeXl5SktLc3pLu8dO3aUaT1F9eM1a9YscN1PnTql/fv3F6i1JO+DGjZsKEkKDg5W7969z7NiAACAv11yw7kUZ/z48Vq3bp0WLlyozZs364YbblDfvn0tPxy//vrruvzyy53G9S1K/teHe/XqVaq6pk2bppCQkAJ3wefLv9Pj3Ds7nn322VId52xnzpxxGs/z1KlTeuWVVxQUFOQYi7Kw427YsEHr1q0rct9jxoxxXN+S3G0TGBiogQMHavPmzRozZkyhbQqr5dSpU3rppZeK3f/ZZs+e7TT/wgsvSJIjwCzsOJmZmZYf9s6WH15Yff15zJgx2rJli7p27aoGDRoU2sbDw6PAz/n9998vdCzu+++/X3v27NGbb76pp59+WvXr11dcXJzT8f/xj3/om2++cfqZZWdn69VXX1X9+vXVrFmzIs/pxIkTOnPmjM6cOVNku08//VSZmZkaOHBgke2kv197ixYt0lVXXVXs6yMrK0u33HKLBgwYoAcffFC9e/dWnTp1ij2GK5wbxnl5ealZs2Yyxuj06dPKzc0t8NX14OBghYWFleor8//4xz+0fv16ffPNN45lf/75p+bPn3/BNUr/u+vw3A+yF/K7YWXIkCH68ccftWTJkgLr8o8zdOhQ/fHHH3rttdcKtDlx4oSys7PP+/i4eNHf/o3+lv62KO7Q33p4eMhmszndTbxr1y7LIRfXrVvnNFb33r179Z///Ed9+vSRh4dHifrSdu3aKTg4WC+//LLTz+iTTz7Rtm3b1K9fP8t6/f39Vbt2ba1du9ZpeWGvf6v+8rrrrpOHh4emTZtW4DVmjCn0GzDlpaTXP/8bCOeeZ/7vbVmxumbS36H3udf91VdfLXAneknfB8XExMjf31+PPvqo4z3O2fKHBwIAACiJS+5O9KLs2bNHSUlJ2rNnj8LCwiT9PXzLihUrlJSUpEcffdSp/cmTJzV//nz9+9//Lnbf2dnZeuGFFzR9+nTHh7J58+Y5tTlw4ICOHTumefPm6ZprrnEah/XTTz/V/PnzHQ8VO5e/v7+6du2qxx9/XKdPn9Zll12mTz/9tNR3hZ0tLCxMs2bN0q5du3T55Zfr3Xff1aZNm/Tqq6+qatWqkqRrr71Wixcv1uDBg9WvXz+lpaXp5ZdfVrNmzXTs2DHLffft21d//vlnqb6umpycrNmzZxe4+ytfp06dVLNmTcXFxWnChAmy2Wx6++23S/2V0bS0NA0YMEB9+/bVunXrNG/ePN18881q3bq1pL8fHubl5aX+/fvrtttu07Fjx/Taa68pODjY6U6Yjz/+WK+//ro6deqkwMBA/fbbb3rttddUvXr1Qh+SKP09lEZGRobTA57Ode2112r69OkaPXq0OnXqpC1btmj+/PkFQoAvvvhCL730kqZMmaK2bdtK+vuuou7du+uhhx7S448/Lkn697//rXfeeUexsbGaMGGCAgMD9eabbyotLU2LFi0qcLfbZ599pt9//93x9fL58+drwIABlq9N6e+vgN97772y2+06ceKE02s/MzNTubm5Wrp0qQYNGqTPP/9cDz30kDZv3qwPP/zQcp/54uPjdeLECb3++uvFtnW1Pn36KDQ0VJ07d1ZISIi2bdumF198Uf369ZOfn5+OHDmiunXr6vrrr1fr1q3l6+urzz//XN9++22B4RSKMnnyZL399tvq27ev7r77blWvXl2vvvqq6tWrp82bN19QjZIcod7//d//6aabblLVqlXVv3//Ev9ulMZ9992nDz74QDfccIPGjBmj6Oho/fXXX1q2bJlefvlltW7dWrfccovee+893X777Vq9erU6d+6s3Nxcbd++Xe+9955Wrlypdu3andfxcfGhv3VGf0t/m89d+9t+/frp6aefVt++fXXzzTfr4MGDmj17tho1alRon9WiRQvFxMRowoQJstvtjlA3f8ixo0ePFtuXVq1aVbNmzdLo0aPVrVs3DRs2TAcOHNBzzz2n+vXr65577imy5ltvvVWPPfaYbr31VrVr105r1651fHvkbFb9ZcOGDfXII48oISFBu3bt0qBBg+Tn56e0tDQtWbJE48aN07333ntB17WkSnr9o6OjNWTIED377LM6dOiQOnTooDVr1jjOu6y+CXbFFVfIw8NDs2bNUmZmpux2u3r27Kng4GDdeuutuv322zVkyBBdc801+vHHH7Vy5coCf6tK+j7I399fc+bM0S233KK2bdvqpptuUlBQkPbs2aOPPvpInTt31osvvlgm5wUAACoBcwmTZJYsWeKYX758uZFkqlev7jR5enqaoUOHFth+wYIFxtPT06Snpxd7rLS0NCOpxNPq1auNMcYkJSUZSeaKK64weXl5BfaXlJTkWPb777+bwYMHmxo1apiAgABzww03mH379hlJZsqUKY52U6ZMMZLMn3/+aVlvt27dTPPmzc13331nOnbsaLy9vU29evXMiy++6NQuLy/PPProo6ZevXrGbrebNm3amOXLl5u4uDhTr169AvU+8cQTRV6fs9cXV2dh67/66ivToUMH4+PjY8LCwszkyZPNypUrna6plfz9/fzzz+b66683fn5+pmbNmmb8+PHmxIkTTm2XLVtmWrVqZby9vU39+vXNrFmzzBtvvGEkmbS0NGOMMVu3bjV9+vQxtWrVMl5eXiY8PNzcdNNNZvPmzU77kmTi4+Mt6zp3/cmTJ82//vUvU6dOHePj42M6d+5s1q1bZ7p162a6detmjDEmKyvL1KtXz7Rt29acPn3aaX/33HOPqVKlilm3bp1j2c6dO831119vatSoYby9vc1VV11lli9f7rTd6tWrnV6jnp6epl69embChAnm8OHDRV7bevXqFfuaz3+93HXXXaZr165mxYoVBfaT/zPK98477xibzVagbVxcnKlevXqRNRXH6jWbfx3ef/99p+X5v6vffvutY9nZPxNjjHnllVdM165dTa1atYzdbjcNGzY09913n8nMzDTGGJOTk2Puu+8+07p1a+Pn52eqV69uWrdubV566aVS179582bTrVs34+3tbS677DIzY8YMM3fuXKfX6PnUmG/GjBnmsssuM1WqVHHaZ0l+N4z5+zXRr1+/AnWfW48xxhw6dMiMHz/eXHbZZcbLy8vUrVvXxMXFmYyMDEebU6dOmVmzZpnmzZsbu91uatasaaKjo820adMK1I5LG/0t/S397cXV3xpjzNy5c03jxo2N3W43UVFRJikpqUANxvzvZzRv3jxH+zZt2ji95krTl7777rumTZs2xm63m8DAQDN8+HDz+++/F3ktjDHm+PHjZuzYsSYgIMD4+fmZoUOHmoMHDxb4G2CMdX9pjDGLFi0yV199teMzR1RUlImPjzepqaklvnaFvf84u+5zf68L+5mV9PpnZ2eb+Ph4ExgYaHx9fc2gQYNMamqqkWQee+yxYo+dX+u57wfi4uKc2r322mumQYMGxsPDw+lvSm5urrn//vtN7dq1TbVq1UxMTIzZsWNHofso6fsgY/7+nYuJiTEBAQHG29vbNGzY0IwaNcp89913hV1yAACAQtmMKeMnv7gRm82mJUuWOMZLzX9g0k8//VTgQTi+vr4FHjjTq1cv+fv7FzrMwLl27dqlyMhIrV692jG+5YW0K2/du3dXRkZGsWMRX0qmTp2qadOm6c8//7S8+w7np379+po6dapGjRpV6PqUlBSNGjVKu3btqtC6AFx66G/dH/1t+aG/RUXbtGmT2rRpo3nz5mn48OGuLgcAAMBlKtVwLm3atFFubq4OHjxY7BjnaWlpWr16tZYtW1ZB1QEAAACAa5w4caLAEEjPPvusqlSp4vSQYQAAgMrokgvRjx075vQU+bS0NG3atEmBgYG6/PLLNXz4cI0cOVJPPfWU2rRpoz///FOrVq1Sq1atnB4y9MYbb6hOnTqOh18Vx9fXV8OHD3cad/VC2gEXk8GDB6thw4aW60NCQizHrcX/nDhxosDD0s4VGBhY5Hi5wKWO/haVGf3tpcMd+/zHH39cGzduVI8ePeTp6alPPvlEn3zyicaNG6fw8PAKqwMAAMAdXXLDuaSkpKhHjx4FlsfFxSk5OVmnT5/WI488orfeekt//PGHateurQ4dOmjatGlq2bKlJCkvL0/16tXTyJEjNXPmzIo+hQrB18v5ejncT3JyskaPHl1kG1cPTQGgdOhv6W+Bwrhjn//ZZ59p2rRp+vnnn3Xs2DFFRETolltu0f/93//J0/OSu/cKAACgVC65EB0ALlb79+/XTz/9VGSb6Oho1axZs4IqAgAA5YE+HwAA4OJCiA4AAAAAAAAAgIVL4nt5eXl52rdvn/z8/GSz2VxdDgAADsYYHT16VGFhYapSpYqry7lo0LcDANwVfTsAAJXPJRGi79u3j4fdAADc2t69e1W3bl1Xl3HRoG8HALg7+nYAACqPSyJE9/Pzk/T3mxh/f38XVwMAwP9kZWUpPDzc0VehZOjbAQDuir4dAIDK55II0fO/5u3v788HbQCAW2JIktKhbwcAuDv6dgAAKg8GcAMAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAABUUnPmzFGrVq3k7+8vf39/dezYUZ988okk6a+//tJdd92lJk2ayMfHRxEREZowYYIyMzOL3OeoUaNks9mcpr59+1bE6QAAAAAAUC48XV0AAABwjbp16+qxxx5T48aNZYzRm2++qYEDB+qHH36QMUb79u3Tk08+qWbNmmn37t26/fbbtW/fPn3wwQdF7rdv375KSkpyzNvt9vI+FQAAAAAAyg0hOgAAlVT//v2d5mfOnKk5c+Zo/fr1Gjt2rBYtWuRY17BhQ82cOVMjRozQmTNn5Olp/RbCbrcrNDS0VLXk5OQoJyfHMZ+VlVWq7QEAAAAAKC8M5wIAAJSbm6uFCxcqOztbHTt2LLRNZmam/P39iwzQJSklJUXBwcFq0qSJ7rjjDh06dKjY4ycmJiogIMAxhYeHn9d5AAAAAABQ1mzGGOPqIi5UVlaWAgICHB/uAQBwF+7eR23ZskUdO3bUyZMn5evrqwULFugf//hHgXYZGRmKjo7WiBEjNHPmTMv9LVy4UNWqVVNkZKR27typBx54QL6+vlq3bp08PDwstyvsTvTw8HC3vW4AgMrL3ft2AABQ9gjRAQAoR+7eR506dUp79uxRZmamPvjgA73++utas2aNmjVr5miTlZWla665RoGBgVq2bJmqVq1a4v3/9ttvatiwoT7//HP16tWrxNu5+3UDAFRe9FEAAFQ+DOcCAEAl5uXlpUaNGik6OlqJiYlq3bq1nnvuOcf6o0ePqm/fvvLz89OSJUtKFaBLUoMGDVS7dm3t2LGjrEsHAAAAAKBCEKIDAACHvLw8x7AqWVlZ6tOnj7y8vLRs2TJ5e3uXen+///67Dh06pDp16pR1qQAAAAAAVIiinwwG4KJ0/Phxbd++/by3P3HihHbt2qX69evLx8fnvPcTFRWlatWqnff2AMpXQkKCYmNjFRERoaNHj2rBggVKSUnRypUrHQH68ePHNW/ePGVlZSkrK0uSFBQU5BjfPCoqSomJiRo8eLCOHTumadOmaciQIQoNDdXOnTs1efJkNWrUSDExMa48VeCiRr8OAAAAuBYhOnAJ2r59u6Kjo11dhjZu3Ki2bdu6ugwAFg4ePKiRI0dq//79CggIUKtWrbRy5Updc801SklJ0YYNGyRJjRo1ctouLS1N9evXlySlpqYqMzNTkuTh4aHNmzfrzTff1JEjRxQWFqY+ffpoxowZstvtFXpuwKWEfh0AAABwLR4sClyCLvSOtW3btmnEiBGaN2+emjZtet774Y41gD7qfHHdgP+hXwfcC30UAACVD3eiA5egatWqlcmdYk2bNuWOMwAAXIx+HQAAAHAtHiwKAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAW3CNHr168vm81WYIqPj3d1aQAAAAAAAACASszT1QVI0rfffqvc3FzH/NatW3XNNdfohhtucGFVAAAAAAAAAIDKzi1C9KCgIKf5xx57TA0bNlS3bt0KbZ+Tk6OcnBzHfFZWVrnWBwAAAAAAAAConNxiOJeznTp1SvPmzdOYMWNks9kKbZOYmKiAgADHFB4eXsFVAgAAAAAAAAAqA7cL0ZcuXaojR45o1KhRlm0SEhKUmZnpmPbu3VtxBQIAAAAAAAAAKg23GM7lbHPnzlVsbKzCwsIs29jtdtnt9gqsCgAAAAAAAABQGblViL579259/vnnWrx4satLAQAAAAAAAADAvYZzSUpKUnBwsPr16+fqUgAAAAAAAAAAcJ8QPS8vT0lJSYqLi5Onp1vdIA8AAAAAAAAAqKTcJkT//PPPtWfPHo0ZM8bVpQAAAAAAAAAAIMmNxkTv06ePjDGuLgMAAAAAAAAAAAe3uRMdAAAAAAAAAAB3Q4gOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AgEpqzpw5atWqlfz9/eXv76+OHTvqk08+caw/efKk4uPjVatWLfn6+mrIkCE6cOBAkfs0xujhhx9WnTp15OPjo969e+vXX38t71MBAAAAAKDcEKIDAFBJ1a1bV4899pg2btyo7777Tj179tTAgQP1008/SZLuueceffjhh3r//fe1Zs0a7du3T9ddd12R+3z88cf1/PPP6+WXX9aGDRtUvXp1xcTE6OTJkxVxSgAAAAAAlDlPVxcAAABco3///k7zM2fO1Jw5c7R+/XrVrVtXc+fO1YIFC9SzZ09JUlJSkpo2bar169erQ4cOBfZnjNGzzz6rBx98UAMHDpQkvfXWWwoJCdHSpUt10003lf9JAQAAAABQxrgTHQAAKDc3VwsXLlR2drY6duyojRs36vTp0+rdu7ejTVRUlCIiIrRu3bpC95GWlqb09HSnbQICAtS+fXvLbfLl5OQoKyvLaQIAAAAAwB0QogMAUIlt2bJFvr6+stvtuv3227VkyRI1a9ZM6enp8vLyUo0aNZzah4SEKD09vdB95S8PCQkp8Tb5EhMTFRAQ4JjCw8PP/6QAAAAAAChDhOgAAFRiTZo00aZNm7RhwwbdcccdiouL088//1zhdSQkJCgzM9Mx7d27t8JrAAAAAACgMIyJDgBAJebl5aVGjRpJkqKjo/Xtt9/queee04033qhTp07pyJEjTnejHzhwQKGhoYXuK3/5gQMHVKdOHadtrrjiiiLrsNvtstvtF3YyAAAAAACUA+5EBwAADnl5ecrJyVF0dLSqVq2qVatWOdalpqZqz5496tixY6HbRkZGKjQ01GmbrKwsbdiwwXIbAAAAAADcHXeiAwBQSSUkJCg2NlYRERE6evSoFixYoJSUFK1cuVIBAQEaO3asJk2apMDAQPn7++uuu+5Sx44d1aFDB8c+oqKilJiYqMGDB8tms2nixIl65JFH1LhxY0VGRuqhhx5SWFiYBg0a5LoTBQAAAADgAhCiAwBQSR08eFAjR47U/v37FRAQoFatWmnlypW65pprJEnPPPOMqlSpoiFDhignJ0cxMTF66aWXnPaRmpqqzMxMx/zkyZOVnZ2tcePG6ciRI7r66qu1YsUKeXt7V+i5AQAAAABQVgjRAQCopObOnVvkem9vb82ePVuzZ8+2bGOMcZq32WyaPn26pk+fXiY1AgAAAADgaoyJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFtwmRP/jjz80YsQI1apVSz4+PmrZsqW+++47V5cFAAAAAAAAAKjEPF1dgCQdPnxYnTt3Vo8ePfTJJ58oKChIv/76q2rWrOnq0gAAAAAAAAAAlZhbhOizZs1SeHi4kpKSHMsiIyMt2+fk5CgnJ8cxn5WVVa71AQAAAAAAAAAqJ7cYzmXZsmVq166dbrjhBgUHB6tNmzZ67bXXLNsnJiYqICDAMYWHh1dgtQAAAAAAAACAysItQvTffvtNc+bMUePGjbVy5UrdcccdmjBhgt58881C2yckJCgzM9Mx7d27t4IrBgAAAAAAAABUBm4xnEteXp7atWunRx99VJLUpk0bbd26VS+//LLi4uIKtLfb7bLb7RVdJgAAAAAAAACgknGLO9Hr1KmjZs2aOS1r2rSp9uzZ46KKAAAAAAAAAABwkxC9c+fOSk1NdVr2yy+/qF69ei6qCAAAAAAAAAAANwnR77nnHq1fv16PPvqoduzYoQULFujVV19VfHy8q0sDAAAAAAAAAFRibhGiX3nllVqyZIneeecdtWjRQjNmzNCzzz6r4cOHu7o0AAAAAAAAAEAl5hYPFpWka6+9Vtdee62rywAAAAAAAAAAwMEt7kQHAAAAAAAAAMAdEaIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVPVxcAoHB79uxRRkaGS469bds2p/+6Qu3atRUREeGy4wMAAAAAAAASITrglvbs2aMmUU118sRxl9YxYsQIlx3b26eaUrdvI0gHAAAAAACASxGiA24oIyNDJ08cV61r/6WqtcIr/PjmzCmdyTwgz4AQ2Ty9Kvz4pw/t1aHlTykjI4MQHQAAAAAAAC5FiA64saq1wmUPbeSag9dt5prjAgAAAAAAAG6EB4sCAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AACVVGJioq688kr5+fkpODhYgwYNUmpqqmP9rl27ZLPZCp3ef/99y/2OGjWqQPu+fftWxCkBAAAAAFDmCNEBAKik1qxZo/j4eK1fv16fffaZTp8+rT59+ig7O1uSFB4erv379ztN06ZNk6+vr2JjY4vcd9++fZ22e+eddyrilAAAAAAAKHOeri4AAAC4xooVK5zmk5OTFRwcrI0bN6pr167y8PBQaGioU5slS5Zo6NCh8vX1LXLfdru9wLYAAAAAAFyMuBMdAABIkjIzMyVJgYGBha7fuHGjNm3apLFjxxa7r5SUFAUHB6tJkya64447dOjQoSLb5+TkKCsry2kCAAAAAMAdEKIDAADl5eVp4sSJ6ty5s1q0aFFom7lz56pp06bq1KlTkfvq27ev3nrrLa1atUqzZs3SmjVrFBsbq9zcXMttEhMTFRAQ4JjCw8Mv6HwAAAAAACgrDOcCAAAUHx+vrVu36ssvvyx0/YkTJ7RgwQI99NBDxe7rpptucvx/y5Yt1apVKzVs2FApKSnq1atXodskJCRo0qRJjvmsrCyCdAAAAACAW+BOdAAAKrnx48dr+fLlWr16terWrVtomw8++EDHjx/XyJEjS73/Bg0aqHbt2tqxY4dlG7vdLn9/f6cJAAAAAAB3wJ3oAABUUsYY3XXXXVqyZIlSUlIUGRlp2Xbu3LkaMGCAgoKCSn2c33//XYcOHVKdOnUupFwAAAAAAFyCO9EBAKik4uPjNW/ePC1YsEB+fn5KT09Xenq6Tpw44dRux44dWrt2rW699dZC9xMVFaUlS5ZIko4dO6b77rtP69ev165du7Rq1SoNHDhQjRo1UkxMTLmfEwAAAAAAZY0QHQCASmrOnDnKzMxU9+7dVadOHcf07rvvOrV74403VLduXfXp06fQ/aSmpiozM1OS5OHhoc2bN2vAgAG6/PLLNXbsWEVHR+u///2v7HZ7uZ8TAAAAAABljeFcAACopIwxJWr36KOP6tFHHy3Rfnx8fLRy5coLrg0AAAAAAHfBnegAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABbcIkSfOnWqbDab0xQVFeXqsgAAAAAAAAAAlZynqwvI17x5c33++eeOeU9PtykNAAAAAAAAAFBJuU1S7enpqdDQUFeXAQAAAAAAAACAg1sM5yJJv/76q8LCwtSgQQMNHz5ce/bssWybk5OjrKwspwkAAAAAAAAAgLLmFiF6+/btlZycrBUrVmjOnDlKS0tTly5ddPTo0ULbJyYmKiAgwDGFh4dXcMUAAAAAAAAAgMrALUL02NhY3XDDDWrVqpViYmL08ccf68iRI3rvvfcKbZ+QkKDMzEzHtHfv3gquGAAAAAAAAABQGbjNmOhnq1Gjhi6//HLt2LGj0PV2u112u72CqwIAAAAAAAAAVDZucSf6uY4dO6adO3eqTp06ri4FAAAAAAAAAFCJuUWIfu+992rNmjXatWuXvv76aw0ePFgeHh4aNmyYq0sDAAAAAAAAAFRibjGcy++//65hw4bp0KFDCgoK0tVXX63169crKCjI1aUBAAAAAAAAACoxtwjRFy5c6OoSAAAAAAAAAAAowC2GcwEAAAAAAAAAwB0RogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABU9XFwAAAABc6vbs2aOMjAyXHHvbtm1O/3WF2rVrKyIiwmXHBwAAAC4EIToAAABQjvbs2aMmUU118sRxl9YxYsQIlx3b26eaUrdvI0gHAADARYkQHQAAAChHGRkZOnniuGpd+y9VrRVe4cc3Z07pTOYBeQaEyObpVeHHP31orw4tf0oZGRmE6AAAALgoEaIDAAAAFaBqrXDZQxu55uB1m7nmuAAAAMAlgAeLAgAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAUEklJibqyiuvlJ+fn4KDgzVo0CClpqY6tenevbtsNpvTdPvttxe5X2OMHn74YdWpU0c+Pj7q3bu3fv311/I8FQAAAAAAyg0hOgAAldSaNWsUHx+v9evX67PPPtPp06fVp08fZWdnO7X75z//qf379zumxx9/vMj9Pv7443r++ef18ssva8OGDapevbpiYmJ08uTJ8jwdAAAAAADKhaerCwAAAK6xYsUKp/nk5GQFBwdr48aN6tq1q2N5tWrVFBoaWqJ9GmP07LPP6sEHH9TAgQMlSW+99ZZCQkK0dOlS3XTTTYVul5OTo5ycHMd8VlZWaU8HAAAAAIBywZ3oAABAkpSZmSlJCgwMdFo+f/581a5dWy1atFBCQoKOHz9uuY+0tDSlp6erd+/ejmUBAQFq37691q1bZ7ldYmKiAgICHFN4ePgFng0AAAAAAGWDO9EBAIDy8vI0ceJEde7cWS1atHAsv/nmm1WvXj2FhYVp8+bNuv/++5WamqrFixcXup/09HRJUkhIiNPykJAQx7rCJCQkaNKkSY75rKwsgnQAAAAAgFsgRAcAAIqPj9fWrVv15ZdfOi0fN26c4/9btmypOnXqqFevXtq5c6caNmxYZse32+2y2+1ltj8AAAAAAMoKw7kAAFDJjR8/XsuXL9fq1atVt27dItu2b99ekrRjx45C1+ePnX7gwAGn5QcOHCjxuOoAAAAAALgTQnQAACopY4zGjx+vJUuW6IsvvlBkZGSx22zatEmSVKdOnULXR0ZGKjQ0VKtWrXIsy8rK0oYNG9SxY8cyqRsAAAAAgIpEiA4AQCUVHx+vefPmacGCBfLz81N6errS09N14sQJSdLOnTs1Y8YMbdy4Ubt27dKyZcs0cuRIde3aVa1atXLsJyoqSkuWLJEk2Ww2TZw4UY888oiWLVumLVu2aOTIkQoLC9OgQYNccZoAAAAAAFwQxkQHAKCSmjNnjiSpe/fuTsuTkpI0atQoeXl56fPPP9ezzz6r7OxshYeHa8iQIXrwwQed2qempiozM9MxP3nyZGVnZ2vcuHE6cuSIrr76aq1YsULe3t7lfk4AAAAAAJQ1QnQAACopY0yR68PDw7VmzZpS78dms2n69OmaPn36BdUHAAAAAIA7YDgXAAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALDgliH6Y489JpvNpokTJ7q6FAAAAAAAAABAJeZ2Ifq3336rV155Ra1atXJ1KQAAAAAAAACASs6tQvRjx45p+PDheu2111SzZk1XlwMAAAAAAAAAqOTcKkSPj49Xv3791Lt37yLb5eTkKCsry2kCAAAAAAAAAKCsebq6gHwLFy7U999/r2+//bbYtomJiZo2bVoFVAUAAAAAAAAAqMzc4k70vXv36u6779b8+fPl7e1dbPuEhARlZmY6pr1791ZAlQAAAAAAAACAysYt7kTfuHGjDh48qLZt2zqW5ebmau3atXrxxReVk5MjDw8Pxzq73S673e6KUgEAAAAAAAAAlYhbhOi9evXSli1bnJaNHj1aUVFRuv/++50CdAAAAAAAAAAAKopbhOh+fn5q0aKF07Lq1aurVq1aBZYDAAAAAAAAAFBR3GJMdAAAAAAAAAAA3JFb3IlemJSUFFeXAAAAAAAAAACo5LgTHQAAAAAAAAAAC257JzoAAABwqQj1taml1z5VtXm4upQKd9prn+Rrc3UZAAAAwHkjRAfcFB+2+bANALh03BbtpalhL7u6DNcIk6ZGe7m6CgAAAOC8EaIDbooP23zYBgBcOl7ZeEpfX363qtYKd3UpFe70ob3asvEJDXB1IQAAAMB5IkQH3BQftvmwDQC4dKQfM9KpMNlNpKtLqXA5p3L/Pn8AAADgIkWIDrgpPmzzYRsAAAAAAACuV8XVBQAAAAAAAAAA4K4I0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQCopBITE3XllVfKz89PwcHBGjRokFJTUx3r//rrL911111q0qSJfHx8FBERoQkTJigzM7PI/Y4aNUo2m81p6tu3b3mfDgAAAAAA5YIQHQCASmrNmjWKj4/X+vXr9dlnn+n06dPq06ePsrOzJUn79u3Tvn379OSTT2rr1q1KTk7WihUrNHbs2GL33bdvX+3fv98xvfPOO+V9OgAAAAAAlAtPVxcAAABcY8WKFU7zycnJCg4O1saNG9W1a1e1aNFCixYtcqxv2LChZs6cqREjRujMmTPy9LR+G2G32xUaGlputQMAAAAAUFG4Ex0AAEiSY5iWwMDAItv4+/sXGaBLUkpKioKDg9WkSRPdcccdOnToUJHtc3JylJWV5TQBAAAAAOAOCNEBAIDy8vI0ceJEde7cWS1atCi0TUZGhmbMmKFx48YVua++ffvqrbfe0qpVqzRr1iytWbNGsbGxys3NtdwmMTFRAQEBjik8PPyCzgcAAAAAgLLCcC4AAEDx8fHaunWrvvzyy0LXZ2VlqV+/fmrWrJmmTp1a5L5uuukmx/+3bNlSrVq1UsOGDZWSkqJevXoVuk1CQoImTZrkdDyCdAAAAACAO+BOdAAAKrnx48dr+fLlWr16terWrVtg/dGjR9W3b1/5+flpyZIlqlq1aqn236BBA9WuXVs7duywbGO32+Xv7+80AQAAAADgDgjRAQCopIwxGj9+vJYsWaIvvvhCkZGRBdpkZWWpT58+8vLy0rJly+Tt7V3q4/z+++86dOiQ6tSpUxZlAwAAAABQoQjRAQCopOLj4zVv3jwtWLBAfn5+Sk9PV3p6uk6cOCHpfwF6dna25s6dq6ysLEebs8c3j4qK0pIlSyRJx44d03333af169dr165dWrVqlQYOHKhGjRopJibGJecJAAAAAMCFYEx0AAAqqTlz5kiSunfv7rQ8KSlJo0aN0vfff68NGzZIkho1auTUJi0tTfXr15ckpaamKjMzU5Lk4eGhzZs3680339SRI0cUFhamPn36aMaMGbLb7eV7QgAAAAAAlANCdAAAKiljTJHru3fvXmybc/fj4+OjlStXXnBtAAAAAAC4C4ZzAQAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAW3CNHnzJmjVq1ayd/fX/7+/urYsaM++eQTV5cFAAAAAAAAAKjk3CJEr1u3rh577DFt3LhR3333nXr27KmBAwfqp59+cnVpAAAAAAAAAIBKzNPVBUhS//79neZnzpypOXPmaP369WrevLmLqgIAAAAAAAAAVHZuEaKfLTc3V++//76ys7PVsWPHQtvk5OQoJyfHMZ+VlVVR5QEAAAAAAAAAKhG3GM5FkrZs2SJfX1/Z7XbdfvvtWrJkiZo1a1Zo28TERAUEBDim8PDwCq4WAAAAAAAAAFAZuE2I3qRJE23atEkbNmzQHXfcobi4OP3888+Ftk1ISFBmZqZj2rt3bwVXCwAAAAAAAACoDNxmOBcvLy81atRIkhQdHa1vv/1Wzz33nF555ZUCbe12u+x2e0WXCAAAAAAAAACoZNzmTvRz5eXlOY17DgAAAAAAAABARXOLO9ETEhIUGxuriIgIHT16VAsWLFBKSopWrlzp6tIAAAAAAAAAAJWYW4ToBw8e1MiRI7V//34FBASoVatWWrlypa655hpXlwYAAAAAAAAAqMTcIkSfO3euq0sAAAAAAAAAAKAAtx0THQAAAAAAAAAAV3OLO9EBAACAS93pQ3tdclxz5pTOZB6QZ0CIbJ5eFX58V503AAAAUFYI0QEAAIByVLt2bXn7VNOh5U+5uhSX8fapptq1a7u6DAAAAOC8EKIDAAAA5SgiIkKp27cpIyPDJcfftm2bRowYoXnz5qlp06YuqaF27dqKiIhwybEBAACAC0WIDgAAAJSziIgIl4fITZs2Vdu2bV1aAwAAAHAx4sGiAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAUEklJibqyiuvlJ+fn4KDgzVo0CClpqY6tTl58qTi4+NVq1Yt+fr6asiQITpw4ECR+zXG6OGHH1adOnXk4+Oj3r1769dffy3PUwEAAAAAoNwQogMAUEmtWbNG8fHxWr9+vT777DOdPn1affr0UXZ2tqPNPffcow8//FDvv/++1qxZo3379um6664rcr+PP/64nn/+eb388svasGGDqlevrpiYGJ08ebK8TwkAAAAAgDLn6eoCAACAa6xYscJpPjk5WcHBwdq4caO6du2qzMxMzZ07VwsWLFDPnj0lSUlJSWratKnWr1+vDh06FNinMUbPPvusHnzwQQ0cOFCS9NZbbykkJERLly7VTTfdVP4nBgAAAABAGeJOdAAAIEnKzMyUJAUGBkqSNm7cqNOnT6t3796ONlFRUYqIiNC6desK3UdaWprS09OdtgkICFD79u0tt5GknJwcZWVlOU0AAAAAALgDQnQAAKC8vDxNnDhRnTt3VosWLSRJ6enp8vLyUo0aNZzahoSEKD09vdD95C8PCQkp8TbS3+OzBwQEOKbw8PALOBsAAAAAAMoOIToAAFB8fLy2bt2qhQsXuuT4CQkJyszMdEx79+51SR0AAAAAAJyLEB0AgEpu/PjxWr58uVavXq26des6loeGhurUqVM6cuSIU/sDBw4oNDS00H3lLz9w4ECJt5Eku90uf39/pwkAAAAAAHdAiA4AQCVljNH48eO1ZMkSffHFF4qMjHRaHx0drapVq2rVqlWOZampqdqzZ486duxY6D4jIyMVGhrqtE1WVpY2bNhguQ0AAAAAAO6MEB0AgEoqPj5e8+bN04IFC+Tn56f09HSlp6frxIkTkv5+IOjYsWM1adIkrV69Whs3btTo0aPVsWNHdejQwbGfqKgoLVmyRJJks9k0ceJEPfLII1q2bJm2bNmikSNHKiwsTIMGDXLFaQIAAAAAcEE8XV0AAABwjTlz5kiSunfv7rQ8KSlJo0aNkiQ988wzqlKlioYMGaKcnBzFxMTopZdecmqfmpqqzMxMx/zkyZOVnZ2tcePG6ciRI7r66qu1YsUKeXt7l+v5AAAAAABQHgjRAQCopIwxxbbx9vbW7NmzNXv27BLvx2azafr06Zo+ffoF1wgAAAAAgKu5xXAuiYmJuvLKK+Xn56fg4GANGjRIqampri4LAAAAAAAAAFDJuUWIvmbNGsXHx2v9+vX67LPPdPr0afXp00fZ2dmuLg0AAAAAAAAAUIm5xXAuK1ascJpPTk5WcHCwNm7cqK5du7qoKgAAAAAAAABAZecWIfq58h9OFhgYWOj6nJwc5eTkOOazsrIqpC4AAAAAAAAAQOXiFsO5nC0vL08TJ05U586d1aJFi0LbJCYmKiAgwDGFh4dXcJUAAAAAAAAAgMrA7UL0+Ph4bd26VQsXLrRsk5CQoMzMTMe0d+/eCqwQAAAAAAAAAFBZuNVwLuPHj9fy5cu1du1a1a1b17Kd3W6X3W6vwMoAAAAAAAAAAJWRW4ToxhjdddddWrJkiVJSUhQZGenqkgAAAAAAAAAAcI8QPT4+XgsWLNB//vMf+fn5KT09XZIUEBAgHx8fF1cHAAAAAAAAAKis3GJM9Dlz5igzM1Pdu3dXnTp1HNO7777r6tIAAAAAAAAAAJWYW9yJboxxdQkAAAAAAAAAABTgFneiAwAAAAAAAADgjgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC56uLgCAtdOH9rrkuObMKZ3JPCDPgBDZPL0q/PiuOm8AAAAAAADgXITogBuqXbu2vH2q6dDyp1xdist4+1RT7dq1XV0GAAAAAAAAKjlCdMANRUREKHX7NmVkZLjk+Nu2bdOIESM0b948NW3a1CU11K5dWxERES45NgAAAAAAAJCPEB1wUxERES4PkZs2baq2bdu6tAYAAAAAAADAlXiwKAAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAIBKbO3aterfv7/CwsJks9m0dOlSp/U2m63Q6YknnrDc59SpUwu0j4qKKuczAQAAAACgfBCiAwBQiWVnZ6t169aaPXt2oev379/vNL3xxhuy2WwaMmRIkftt3ry503ZffvlleZQPAAAAAEC583R1AQAAwHViY2MVGxtruT40NNRp/j//+Y969OihBg0aFLlfT0/PAtsWJScnRzk5OY75rKysEm8LAAAAAEB54k50AABQIgcOHNBHH32ksWPHFtv2119/VVhYmBo0aKDhw4drz549RbZPTExUQECAYwoPDy+rsgEAAAAAuCCE6AAAoETefPNN+fn56brrriuyXfv27ZWcnKwVK1Zozpw5SktLU5cuXXT06FHLbRISEpSZmemY9u7dW9blAwAAAABwXhjOBQAAlMgbb7yh4cOHy9vbu8h2Zw8P06pVK7Vv31716tXTe++9Z3kXu91ul91uL9N6AQAAAAAoC4ToAACgWP/973+Vmpqqd999t9Tb1qhRQ5dffrl27NhRDpUBAAAAAFC+GM4FAAAUa+7cuYqOjlbr1q1Lve2xY8e0c+dO1alTpxwqAwAAAACgfLlFiL527Vr1799fYWFhstlsWrp0qatLAgCgUjh27Jg2bdqkTZs2SZLS0tK0adMmpweBZmVl6f3339ett95a6D569eqlF1980TF/7733as2aNdq1a5e+/vprDR48WB4eHho2bFi5ngsAAAAAAOXBLUL07OxstW7dWrNnz3Z1KQAAVCrfffed2rRpozZt2kiSJk2apDZt2ujhhx92tFm4cKGMMZYh+M6dO5WRkeGY//333zVs2DA1adJEQ4cOVa1atbR+/XoFBQWV78kAAAAAAFAO3GJM9NjYWKeHkBUnJydHOTk5jvmsrKzyKAsAgEte9+7dZYwpss24ceM0btw4y/W7du1yml+4cGFZlAYAAAAAgFtwizvRSysxMVEBAQGOKTw83NUlAQAAAAAAAAAuQRdliJ6QkKDMzEzHtHfvXleXBAAAAAAAAAC4BLnFcC6lZbfbZbfbXV0GAAAAAAAAAOASd1HeiQ4AAAAAAAAAQEUgRAcAAAAAAAAAwIJbDOdy7Ngx7dixwzGflpamTZs2KTAwUBERES6sDAAAAAAAAABQmblFiP7dd9+pR48ejvlJkyZJkuLi4pScnOyiqgAAAAAAAAAAlZ1bhOjdu3eXMcbVZQAAAAAAAAAA4IQx0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AQCW2du1a9e/fX2FhYbLZbFq6dKnT+lGjRslmszlNffv2LXa/s2fPVv369eXt7a327dvrm2++KaczAAAAAACgfBGiAwBQiWVnZ6t169aaPXu2ZZu+fftq//79jumdd94pcp/vvvuuJk2apClTpuj7779X69atFRMTo4MHD5Z1+QAAAAAAlDtPVxcAAABcJzY2VrGxsUW2sdvtCg0NLfE+n376af3zn//U6NGjJUkvv/yyPvroI73xxhv697//fUH1AgAAAABQ0bgTHQAAFCklJUXBwcFq0qSJ7rjjDh06dMiy7alTp7Rx40b17t3bsaxKlSrq3bu31q1bZ7ldTk6OsrKynCYAAAAAANwBIToAALDUt29fvfXWW1q1apVmzZqlNWvWKDY2Vrm5uYW2z8jIUG5urkJCQpyWh4SEKD093fI4iYmJCggIcEzh4eFleh4AAAAAAJwvtwrReQgZAADu5aabbtKAAQPUsmVLDRo0SMuXL9e3336rlJSUMj1OQkKCMjMzHdPevXvLdP8AAAAAAJwvtwnReQgZAADur0GDBqpdu7Z27NhR6PratWvLw8NDBw4ccFp+4MCBIsdVt9vt8vf3d5oAAAAAAHAHbvNg0dI8hCwnJ0c5OTmOecZNBZwdP35c27dvP+/tt23b5vTf8xUVFaVq1apd0D4AuJfff/9dhw4dUp06dQpd7+XlpejoaK1atUqDBg2SJOXl5WnVqlUaP358BVYKXDro1wEAAADXcosQPf8hZAkJCY5lRT2ELDExUdOmTavIEoGLyvbt2xUdHX3B+xkxYsQFbb9x40a1bdv2gusAUH6OHTvmdFd5WlqaNm3apMDAQAUGBmratGkaMmSIQkNDtXPnTk2ePFmNGjVSTEyMY5tevXpp8ODBjpB80qRJiouLU7t27XTVVVfp2WefVXZ2tuMfygGUDv06AAAA4FpuEaIX9RCywu66SUhI0KRJkxzzWVlZPIAMOEtUVJQ2btx43tufOHFCu3btUv369eXj43NBdQBwb99995169OjhmM/vX+Pi4jRnzhxt3rxZb775po4cOaKwsDD16dNHM2bMkN1ud2yzc+dOZWRkOOZvvPFG/fnnn3r44YeVnp6uK664QitWrCjQzwMoGfp1AAAAwLXcIkQvLbvd7vThHYCzatWqXfCdYp07dy6jagC4s+7du8sYY7l+5cqVxe5j165dBZaNHz+e4VuAMkK/DgAAALiWWzxY9HwfQgYAAAAAAAAAQHlyixD97IeQ5ct/CFnHjh1dWBkAAAAAAAAAoDJzm+FceAgZAAAAAAAAAMDduE2IzkPIAAAAAAAAAADuxm1CdImHkAEAAAAAAAAA3ItbjIkOAAAAAAAAAIA7IkQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAgqerCygLxhhJUlZWlosrAQDAWX7flN9XoWTo2wEA7oq+HQCAyueSCNGPHj0qSQoPD3dxJQAAFO7o0aMKCAhwdRkXDfp2AIC7o28HAKDysJlL4J/P8/LytG/fPvn5+clms7m6HOCil5WVpfDwcO3du1f+/v6uLge4qBljdPToUYWFhalKFUZRKyn6dqDs0K8DZYu+HQCAyueSCNEBlK2srCwFBAQoMzOTD9sAAFzk6NcBAACAC8M/mwMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAqw2+2aMmWK7Ha7q0sBAAAXiH4dAAAAuDCMiQ4AAAAAAAAAgAXuRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQADmvXrlX//v0VFhYmm82mpUuXurokAABwnujXAQAAgLJBiA7AITs7W61bt9bs2bNdXQoAALhA9OsAAABA2fB0dQEA3EdsbKxiY2NdXQYAACgD9OsAAABA2eBOdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwIKnqwsA4D6OHTumHTt2OObT0tK0adMmBQYGKiIiwoWVAQCA0qJfBwAAAMqGzRhjXF0EAPeQkpKiHj16FFgeFxen5OTkii8IAACcN/p1AAAAoGwQogMAAAAAAAAAYIEx0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBN5GSkiKbzaYjR45U6HF37dolm82mTZs2ubQOAAAqwrn9XnkYNWqUBg0aVG77vxSU5/uNivgZAwAAoHIhRAfcRKdOnbR//34FBARcNHUQuAMAUDZsNpuWLl3q6jIqzLnvN5KTk1WjRg3XFgUAAABY8HR1AQD+5uXlpdDQUFeX4TZ1AACASxfvNwAAAHAx4U50oJx0795dd911lyZOnKiaNWsqJCREr732mrKzszV69Gj5+fmpUaNG+uSTTyQVvKt79+7d6t+/v2rWrKnq1aurefPm+vjjjyVJhw8f1vDhwxUUFCQfHx81btxYSUlJJarrm2++UZs2beTt7a127drphx9+cFpf0jp27dqlHj16SJJq1qwpm82mUaNGSZJWrFihq6++WjVq1FCtWrV07bXXaufOnY5j5H/NevHixerRo4eqVaum1q1ba926dU61fPXVV+revbuqVaummjVrKiYmRocPH5Yk5eXlKTExUZGRkfLx8VHr1q31wQcflPwHBAC4ZBXXD0nS9u3b1alTJ3l7e6tFixZas2aNY11x/eyWLVvUs2dP+fj4qFatWho3bpyOHTtmWU/9+vX17LPPOi274oorNHXqVMd6SRo8eLBsNptjXpL+85//qG3btvL29laDBg00bdo0nTlzpkTXwWaz6ZVXXtG1116ratWqqWnTplq3bp127Nih7t276/+1d+9BUVb/H8Dfy8W4rAgDDJntgIXIQkAw0gQUzkChqDvGTNmAAVFhGFqimxOJF6IQummDRaINgl2YaZTRIMNAmBBJuS2ssBIQZeVqIpYtRgGe7x+Nz48VFhd/8vv11fdrZmd4zjl7nvOcfz6Hz5znrL29PUJDQ43mpqenB0uXLoWbmxvkcjmCg4NRWVlp1K9er8fixYtha2uL2bNn49NPPx3zjDKZDLt370ZMTAzs7OwwZ84cHDx4UKofvd6oqalBUlISfv/9d8hkMshkMmluxtuh7+joiD179kjX11vbAMDJkycRHR0NuVwONzc3xMfHo6+vz6x5JCIiIiJiEp1oChUVFcHFxQUnTpzA6tWrsXLlSjzxxBMIDQ1Fc3MzoqKiEB8fj8uXL4/5bmpqKv766y9888030Gq1yM3NhVwuBwBs3LgRHR0dOHToEHQ6HfLz8+Hi4nLd8RgMBixZsgQ+Pj5oamrCli1boFarJ/yOqXEoFArs27cPANDZ2Qm9Xo/33nsPADAwMIC1a9eisbERVVVVsLCwQExMDK5cuWLU94YNG6BWq6HRaODl5YXY2FgpMaDRaBAZGQkfHx/U19fj6NGjUKlUGBkZAQBs3boVxcXF+PDDD9He3o60tDQ89dRTRkkQIiK6PZkTh15++WWsW7cOLS0tCAkJgUqlwoULFwBMHGcHBgawYMECODk5oaGhAZ9//jkqKyuxatWqGx5vQ0MDAKCwsBB6vV66rq2tRUJCAl566SV0dHRg586d2LNnD9544w2z+87KykJCQgI0Gg28vb0RFxeH559/Hunp6WhsbIQQwmjsBoMBixYtQlVVFVpaWrBw4UKoVCqcPn1aapOQkIAzZ86gpqYG+/btQ0FBAX799dcx987MzMSyZcvQ1taGRYsWYfny5ejv7x/TLjQ0FNu3b4eDgwP0ej30ev111yejx3u9tc1vv/2GiIgIBAYGorGxEV999RXOnTuHZcuWmTuNRERERHS7E0Q0JebPny8eeugh6Xp4eFjY29uL+Ph4qUyv1wsAor6+XlRXVwsA4uLFi0IIIfz8/MSWLVvG7VulUomkpKRJj2nnzp3C2dlZ/Pnnn1JZfn6+ACBaWlqEEGJS47i2rSnnz58XAIRWqxVCCNHb2ysAiN27d0tt2tvbBQCh0+mEEELExsaKsLCwcfsbHBwUdnZ24tixY0blzz77rIiNjZ1wLEREdPsZHYeuxqCcnBypfmhoSNx9990iNzdXCDFxnC0oKBBOTk7CYDBIZeXl5cLCwkKcPXtWCCFEYmKiWLp0qVTv7u4utm3bZtRPQECA2Lx5s3QNQJSWlhq1iYyMFNnZ2UZle/fuFTNnzjTruQGIjIwM6bq+vl4AEB999JFU9tlnnwkbG5sJ+/H19RV5eXlCCCF0Op0AIBoaGqT6rq4uAcDoGa+9t8FgEADEoUOHhBBj1xCFhYVixowZ4z7DtfMyY8YMUVhYKIQwb22TlZUloqKijPr46aefBADR2dk54bMTEREREQkhBHeiE00hf39/6W9LS0s4OzvDz89PKnNzcwOAcXdvvfjii3j99dcRFhaGzZs3o62tTapbuXIlSkpKcP/992P9+vU4duyYWePR6XTw9/eHjY2NVBYSEjLhdyYahyldXV2IjY3FPffcAwcHB+m19NG72ADj+Zk5cyaA/5mLqzvRx9Pd3Y3Lly/j0UcfhVwulz7FxcVjXtcnIqLbjzlxaHT8s7Kywrx586DT6QBMHGd1Oh0CAgJgb28vlYWFheHKlSvo7Oy8qc/R2tqK1157zSjWJScnQ6/Xj/sW23hGx9qr645r1yKDg4O4dOkSgH92dqvVaiiVSjg6OkIul0On00lz19nZCSsrKwQFBUl9eHp6wsnJacJ729vbw8HBYdw1z/+GOWub1tZWVFdXG82jt7c3AHDdQERERERmYRKdaApZW1sbXctkMqMymUwGAGOOOQGA5557Dt9//z3i4+Oh1Woxb9485OXlAQCio6Px448/Ii0tDWfOnEFkZKTZrz1P1kTjMEWlUqG/vx+7du3C8ePHcfz4cQDA33//bdRuormwtbU12f/Vc2fLy8uh0WikT0dHB89FJyIis+OQKTc7zlpYWEAIYVQ2NDR03e8ZDAZkZmYaxTqtVouuri6jpPFExou1E8VftVqN0tJSZGdno7a2FhqNBn5+fmbPnal7X73XeGueichkshuau9EMBgNUKpXRPGo0GnR1dSE8PHxSfRERERHR7YlJdKJ/MYVCgZSUFOzfvx/r1q3Drl27pDpXV1ckJibi448/xvbt21FQUHDd/pRKJdra2jA4OCiVffvttzc8jmnTpgGAdE45AFy4cAGdnZ3IyMhAZGQklEql9GOgk+Hv74+qqqpx63x8fHDHHXfg9OnT8PT0NPooFIpJ34uIiG4d5sah0fFveHgYTU1NUCqVUpmpOKtUKtHa2oqBgQGpbV1dHSwsLDB37txxx+Tq6gq9Xi9dX7p0Cb29vUZtrK2tjeIpAAQFBaGzs3NMrPP09ISFxdQs4+vq6vD0008jJiYGfn5+uPPOO/HDDz9I9XPnzsXw8LDRj3d2d3ffUKwfbdq0aWOeHxg7d11dXUa78M1Z2wQFBaG9vR0eHh5j5nH0GwVERERERKYwiU70L7VmzRpUVFSgt7cXzc3NqK6ulv6537RpEw4cOIDu7m60t7ejrKzM6B9/U+Li4iCTyZCcnIyOjg58+eWXePvtt294HO7u7pDJZCgrK8P58+dhMBjg5OQEZ2dnFBQUoLu7G0eOHMHatWsn/fzp6eloaGjACy+8gLa2Npw6dQr5+fno6+vD9OnToVarkZaWhqKiIvT09KC5uRl5eXkoKiqa9L2IiOjWYW4cev/991FaWopTp04hNTUVFy9exDPPPANg4ji7fPly2NjYIDExESdPnkR1dTVWr16N+Ph46biUa0VERGDv3r2ora2FVqtFYmIiLC0tjdp4eHigqqoKZ8+elRLSmzZtQnFxMTIzM9He3g6dToeSkhJkZGTczCkzMmfOHOzfvx8ajQatra2Ii4sz2j3u7e2NRx55BCtWrMCJEyfQ0tKCFStWwNbWVtrVfiM8PDxgMBhQVVWFvr4+KVEeERGBHTt2oKWlBY2NjUhJSTHa4W7O2iY1NRX9/f2IjY1FQ0MDenp6UFFRgaSkpHET90RERERE12ISnehfamRkBKmpqVAqlVi4cCG8vLzwwQcfAPhnt1Z6ejr8/f0RHh4OS0tLlJSUXLdPuVyOL774AlqtFoGBgdiwYQNyc3NveByzZs1CZmYmXnnlFbi5uWHVqlWwsLBASUkJmpqacN999yEtLQ1vvfXWpJ/fy8sLhw8fRmtrKx544AGEhITgwIEDsLKyAgBkZWVh48aN2Lp1qzS28vJyzJ49e9L3IiKiW4e5cSgnJwc5OTkICAjA0aNHcfDgQbi4uACYOM7a2dmhoqIC/f39CA4OxuOPP47IyEjs2LHD5JjS09Mxf/58LFmyBIsXL8Zjjz2Ge++916jNO++8g6+//hoKhQKBgYEAgAULFqCsrAyHDx9GcHAwHnzwQWzbtg3u7u43a7rGePfdd+Hk5ITQ0FCoVCosWLDA6PxzACguLoabmxvCw8MRExOD5ORkTJ8+3ewjZsYTGhqKlJQUPPnkk3B1dcWbb74J4J95USgUePjhhxEXFwe1Wg07Ozvpe+asbe666y7U1dVhZGQEUVFR8PPzw5o1a+Do6DhlO/qJiIiI6NYiE9ceMkhERERERGSmn3/+GQqFApWVlSZ/FJyIiIiI6L8Zk+hERERERGS2I0eOwGAwwM/PD3q9HuvXr8cvv/yC7777bsyPiRIRERER3Qr4/iLRLSQ7OxtyuXzcT3R09P/38IiIiOgm+eSTT0zGfF9f3ym999DQEF599VX4+voiJiYGrq6uqKmpYQKdiIiIiG5Z3IlOdAvp7+9Hf3//uHW2traYNWvW//GIiIiIaCr88ccfOHfu3Lh11tbWU3puOhERERHR7YZJdCIiIiIiIiIiIiIiE3icCxERERERERERERGRCUyiExERERERERERERGZwCQ6EREREREREREREZEJTKITEREREREREREREZnAJDoRERERERERERERkQlMohMRERERERERERERmcAkOhERERERERERERGRCf8B5Lpz/xu/ePEAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Устранить выборсы в DataFrame\n",
|
||
"def remove_outliers(dataframe: DataFrame, columns: list[str]) -> DataFrame:\n",
|
||
" for column in columns:\n",
|
||
" if not pd.api.types.is_numeric_dtype(dataframe[column]): # Проверяем, является ли колонка числовой\n",
|
||
" continue\n",
|
||
" \n",
|
||
" Q1: float = dataframe[column].quantile(0.25) # 1-й квартиль (25%)\n",
|
||
" Q3: float = dataframe[column].quantile(0.75) # 3-й квартиль (75%)\n",
|
||
" IQR: float = Q3 - Q1 # Вычисляем межквартильный размах\n",
|
||
"\n",
|
||
" # Определяем границы для выбросов\n",
|
||
" lower_bound: float = Q1 - 1.5 * IQR # Нижняя граница\n",
|
||
" upper_bound: float = Q3 + 1.5 * IQR # Верхняя граница\n",
|
||
"\n",
|
||
" # Устраняем выбросы:\n",
|
||
" # Заменяем значения ниже нижней границы на нижнюю границу\n",
|
||
" # А значения выше верхней границы – на верхнюю\n",
|
||
" dataframe[column] = dataframe[column].apply(lambda x: lower_bound if x < lower_bound else upper_bound if x > upper_bound else x)\n",
|
||
" \n",
|
||
" return dataframe\n",
|
||
"\n",
|
||
"\n",
|
||
"# Устраняем выборсы\n",
|
||
"df: DataFrame = remove_outliers(df, numeric_columns)\n",
|
||
"\n",
|
||
"# Проверка выбросов\n",
|
||
"check_outliers(df, numeric_columns)\n",
|
||
"visualize_outliers(df, numeric_columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Разбиение набора данных на выборки:\n",
|
||
"\n",
|
||
"**Групповое разбиение данных** – это метод разделения данных на несколько групп или подмножеств на основе определенного признака или характеристики. При этом наблюдения для одного объекта должны попасть только в одну выборку.\n",
|
||
"\n",
|
||
"**Основные виды выборки данных**:\n",
|
||
"1. Обучающая выборка (60-80%). Обучение модели (подбор коэффициентов некоторой математической функции для аппроксимации).\n",
|
||
"2. Контрольная выборка (10-20%). Выбор метода обучения, настройка гиперпараметров.\n",
|
||
"3. Тестовая выборка (10-20% или 20-30%). Оценка качества модели перед передачей заказчику.\n",
|
||
"\n",
|
||
"Разделим выборку данных на 3 группы и проанализируем качество распределения данных.\n",
|
||
"\n",
|
||
"Весь набор данных состоит из 90836 объектов, из которых 81996 (около 90.3%) неопасны (False), а 8840 (около 9.7%) опасны (True). Это говорит о том, что класс \"неопасные\" значительно преобладает.\n",
|
||
"\n",
|
||
"Все выборки показывают одинаковое распределение классов, что свидетельствует о том, что данные были отобраны случайным образом и не содержат явного смещения.\n",
|
||
"\n",
|
||
"Однако, несмотря на сбалансированность при разбиении данных, в целом данные обладают значительным дисбалансом между классами. Это может быть проблемой при обучении модели, так как она может иметь тенденцию игнорировать опасные объекты (True), что следует учитывать при дальнейшем анализе и выборе методов обработки данных.\n",
|
||
"\n",
|
||
"Для получения более сбалансированных выборок данных необходимо воспользоваться методами приращения (аугментации) данных, а именно методами oversampling и undersampling."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Функция для создания выборок\n",
|
||
"def split_stratified_into_train_val_test(\n",
|
||
" df_input,\n",
|
||
" stratify_colname=\"y\",\n",
|
||
" frac_train=0.6,\n",
|
||
" frac_val=0.15,\n",
|
||
" frac_test=0.25,\n",
|
||
" random_state=None,\n",
|
||
") -> tuple[Any, Any, Any]:\n",
|
||
" \"\"\"\n",
|
||
" Splits a Pandas dataframe into three subsets (train, val, and test)\n",
|
||
" following fractional ratios provided by the user, where each subset is\n",
|
||
" stratified by the values in a specific column (that is, each subset has\n",
|
||
" the same relative frequency of the values in the column). It performs this\n",
|
||
" splitting by running train_test_split() twice.\n",
|
||
"\n",
|
||
" Parameters\n",
|
||
" ----------\n",
|
||
" df_input : Pandas dataframe\n",
|
||
" Input dataframe to be split.\n",
|
||
" stratify_colname : str\n",
|
||
" The name of the column that will be used for stratification. Usually\n",
|
||
" this column would be for the label.\n",
|
||
" frac_train : float\n",
|
||
" frac_val : float\n",
|
||
" frac_test : float\n",
|
||
" The ratios with which the dataframe will be split into train, val, and\n",
|
||
" test data. The values should be expressed as float fractions and should\n",
|
||
" sum to 1.0.\n",
|
||
" random_state : int, None, or RandomStateInstance\n",
|
||
" Value to be passed to train_test_split().\n",
|
||
"\n",
|
||
" Returns\n",
|
||
" -------\n",
|
||
" df_train, df_val, df_test :\n",
|
||
" Dataframes containing the three splits.\n",
|
||
" \"\"\"\n",
|
||
"\n",
|
||
" if frac_train + frac_val + frac_test != 1.0:\n",
|
||
" raise ValueError(\n",
|
||
" \"fractions %f, %f, %f do not add up to 1.0\"\n",
|
||
" % (frac_train, frac_val, frac_test)\n",
|
||
" )\n",
|
||
"\n",
|
||
" if stratify_colname not in df_input.columns:\n",
|
||
" raise ValueError(\"%s is not a column in the dataframe\" % (stratify_colname))\n",
|
||
"\n",
|
||
" X: DataFrame = df_input # Contains all columns.\n",
|
||
" y: DataFrame = df_input[\n",
|
||
" [stratify_colname]\n",
|
||
" ] # Dataframe of just the column on which to stratify.\n",
|
||
"\n",
|
||
" # Split original dataframe into train and temp dataframes.\n",
|
||
" df_train, df_temp, y_train, y_temp = train_test_split(\n",
|
||
" X, y, \n",
|
||
" stratify=y, \n",
|
||
" test_size=(1.0 - frac_train), \n",
|
||
" random_state=random_state\n",
|
||
" )\n",
|
||
"\n",
|
||
" # Split the temp dataframe into val and test dataframes.\n",
|
||
" relative_frac_test: float = frac_test / (frac_val + frac_test)\n",
|
||
" df_val, df_test, y_val, y_test = train_test_split(\n",
|
||
" df_temp,\n",
|
||
" y_temp,\n",
|
||
" stratify=y_temp,\n",
|
||
" test_size=relative_frac_test,\n",
|
||
" random_state=random_state,\n",
|
||
" )\n",
|
||
"\n",
|
||
" assert len(df_input) == len(df_train) + len(df_val) + len(df_test)\n",
|
||
"\n",
|
||
" return df_train, df_val, df_test"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"hazardous\n",
|
||
"False 81996\n",
|
||
"True 8840\n",
|
||
"Name: count, dtype: int64 \n",
|
||
"\n",
|
||
"Обучающая выборка: (54501, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 49197\n",
|
||
"True 5304\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 90.27%\n",
|
||
"Процент объектов класса \"True\": 9.73%\n",
|
||
"\n",
|
||
"Контрольная выборка: (18167, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 16399\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 90.27%\n",
|
||
"Процент объектов класса \"True\": 9.73%\n",
|
||
"\n",
|
||
"Тестовая выборка: (18168, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 16400\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 90.27%\n",
|
||
"Процент объектов класса \"True\": 9.73%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных требуется\n",
|
||
"Для контрольной выборки аугментация данных требуется\n",
|
||
"Для тестовой выборки аугментация данных требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABgcAAAH/CAYAAABzUQ1QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACenklEQVR4nOzdd3xT9f7H8Xe6S8sqZRZk7yGKgIAIKg7An1vEcRkuFATFdR1XARduRdxeBRSuA72CEwUVAQUBBWTILnu27O425/dHb2NDd5v0e5Lzej4ePJSQJp9mnFfa78mJy7IsSwAAAAAAAAAAwDFCTA8AAAAAAAAAAAAqF4sDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDABAAjhw5os2bNys7O9v0KPAhy7J06NAhbdq0yfQoAACggjIzM7Vv3z7t2bPH9CgAAMCHUlJStHPnTh0+fNj0KD7H4gAQAJo0aaKLL77Y9Bg+07dvX/Xt29f0GLaWlZWlZ599VqeeeqoiIyNVs2ZNtWzZUj/88IPp0QLCmjVrNGvWLM/fV65cqa+//trcQPkcP35c//rXv9S6dWtFRESoVq1aatWqlTZs2GB6NADlQKMB/5s+fbq2bdvm+fvUqVO1e/ducwPls3z5cl133XWKj49XZGSk6tevryuvvNL0WIDj0GMgMD311FNyu92SJLfbrYkTJxqe6G8zZ87Ueeedp6pVqyo2NlannHKKnn32WdNj+VyZFgemTp0ql8vl+RMVFaVWrVrpjjvu0P79+/01IxD0xo8fryZNmkj6+3kG/+vbt6+GDRsmSRo2bJhtXnxlZGSoX79+euSRR9S3b1/NnDlTc+fO1Y8//qgePXqYHi8gHD9+XCNGjNCSJUu0adMm3XnnnVq9erXpsZScnKwePXrolVde0VVXXaXZs2dr7ty5mj9/vmcbUF40GvAPGm2GXRsNMxYuXKj7779f27Zt03fffadRo0YpJMT8fm6zZ8/WWWedpXXr1unJJ5/U3Llzde+992rJkiX0GPAxemwGPYa/TZs2Tc8//7x27dqlF154QdOmTTM9kiTpgQce0KBBg1S1alW98847mjt3rubNm6eRI0eaHs3nwsrzRY899piaNm2q9PR0LVq0SG+88Ya++eYbrVmzRlWqVPH1jADgKM8884x+++03fffdd7z4KqcePXp4/khSq1atdMsttxieSrrvvvu0d+9eLV68WO3bt/fLddBoAECwGTt2rPr27aumTZtKku6++27Vr1/f6EyHDh3SzTffrAsvvFAzZ85URESEJGnXrl2S6DEAAKXx2GOPaciQIfrnP/+pyMhITZ8+3fRI+vnnn/XMM89o4sSJeuCBB0yP43flWhzo37+/zjjjDEnSzTffrFq1aunFF1/U7Nmzde211/p0QACBJyUlRTExMabHCEjZ2dl6+eWXdc8997AwUEGzZs3SunXrlJaWpo4dO3p+aDflwIEDmjZtmt58802/LQxINBpA8Wg0AlGbNm20ZcsWrVmzRvHx8WrevLnpkTRlyhSlp6dr6tSphb7GoMcAikOPgVzXXHONzjnnHG3evFktW7ZU7dq1TY+k559/Xj179nTEwoDko88cOPfccyVJiYmJknL3orj33nvVsWNHxcbGqlq1aurfv79WrVpV4GvT09M1fvx4tWrVSlFRUapfv76uuOIKbdmyRZK0bds2r8MknPwn/y/P5s+fL5fLpY8//lgPPfSQ6tWrp5iYGF1yySXauXNngev+7bffdNFFF6l69eqqUqWK+vTpo19++aXQ77Fv376FXv/48eMLnHf69Onq0qWLoqOjFRcXp8GDBxd6/cV9b/m53W69/PLLat++vaKiolS3bl2NGDGiwIdgFHWMvTvuuKPAZRY2+3PPPVfgNpVyD3Eybtw4tWjRQpGRkWrUqJHuv/9+ZWRkFHpb5VfYcfKefPJJhYSE6D//+U+5bo+8J2mtWrUUHR2tLl266NNPPy30+qdPn65u3bqpSpUqqlmzps4++2x9//33Xuf59ttv1adPH1WtWlXVqlVT165dC8w2c+ZMz30aHx+vG264ocBxTocNG+Y1c82aNdW3b18tXLiwxNuptBYtWqRu3bopKipKzZo10/vvv+/176V97jVp0qTI23r+/PmSpO3bt2vkyJFq3bq1oqOjVatWLV199dVex3uV/n5L588//6yRI0eqTp06atiwoeff3377bTVv3lzR0dHq1q1bkbfHgQMHdNNNN6lu3bqKiorSqaeeWuDtZHnP8bwZ8+Q9dqZOneo5bd++fRo+fLgaNmzoOf7rpZdeWmD+ssp/24WEhKhevXq65pprtGPHjlJ9/euvv6727dsrMjJSDRo00KhRo3TkyBHPv2/YsEGHDx9W1apV1adPH1WpUkXVq1fXxRdfrDVr1njO99NPP8nlcunzzz8vcB3/+c9/5HK5tHjxYs/MeW8FzVPYbblw4UJdffXVOuWUUzzP9bFjxyotLc3ra8ePH1/geTljxgx17txZUVFRqlWrlq699toCt8mwYcMUGxvrddqnn35a6H0aGxtbYGapdNvX/Nuddu3aqUuXLlq1alWh25PCnLy9j4+P18CBA71ufyl3O3rHHXcUeTl5z428x9yyZcvkdruVmZmpM844o9jbSpJ+/PFH9e7dWzExMapRo4YuvfRS/fXXX17nybsv1q9fr9dff12SdN555+nOO+9Uenq6pL8bfd1112n8+PGe7USHDh0UFhYml8ul3r17e20n8m7nqKgoRUdHq2rVqjSaRtPoEtDowG50Ya289dZbFRUVVeB7KqnlUu7zq0OHDgWu5/nnn/dqQ3H3t8vl8hxCI+92fP755/XSSy+pcePGio6OVp8+fQr0SSpdQwq73Qp7vOWdp6Rjeeef8WQdOnQosL0pzeMq/+MnJiZG3bt3V/PmzTVq1Ci5XK5CXysU9vV5f8LDw9WkSRPdd999yszM9Jwv77myfPnyIi/r5G3mkiVL1LlzZz311FNq1KiRIiMj1bJly0I/4yg7O9tzSKF//OMfatKkicaOHauxY8d6bROio6M928K811Xt2rXTRx995PUzc40aNTzP7cK+z5P/NGzY0DNjQkKCXC6XPvzwQ3qcDz2mx/TYfI/91cT169frqquuUlxcnKKionTGGWfoiy++8DpPUR1ISkoqsC0o7OfhEydOqF69egVu+7zXA7///rt69uyp6OhoNW3aVG+++WaBOcvSxZK6Jklbt27V1Vdfrbi4OFWpUkVnnnlmgUYV9r1IBV8XleX2kaQVK1aof//+qlatmmJjY3XeeedpyZIlXufJ//NynTp1PNusTp06FXisFubkw+pWqVJFHTt21L///W+v8xX2e4iTnfw9LFmyRB06dNDgwYMVFxen6Ohode3a1etzDfOU5X4rzWN22LBhBQ45PH36dIWEhOjpp5/2Or00j+3SKNc7B06W90uCWrVqScp9AM6aNUtXX321mjZtqv379+utt95Snz59tG7dOjVo0ECSlJOTo4svvlg//PCDBg8erDvvvFPHjx/X3LlztWbNGq89Qq699loNGDDA63offPDBQud58skn5XK59M9//lMHDhzQyy+/rH79+mnlypWKjo6WlPuCuX///urSpYvGjRunkJAQTZkyReeee64WLlyobt26Fbjchg0bej4Y48SJE7r99tsLve5HHnlEgwYN0s0336yDBw9q8uTJOvvss7VixQrVqFGjwNfceuut6t27tyTpv//9b4Ff9o0YMUJTp07V8OHDNWbMGCUmJurVV1/VihUr9Msvvyg8PLzQ26Esjhw5UuiHfrjdbl1yySVatGiRbr31VrVt21arV6/WSy+9pI0bNxb6xCjOlClT9K9//UsvvPCCrrvuukLPU9LtMWnSJF1yySW6/vrrlZmZqY8++khXX321vvrqKw0cONBzvgkTJmj8+PHq2bOnHnvsMUVEROi3337Tjz/+qAsuuEBS7sbkxhtvVPv27fXggw+qRo0aWrFihebMmeOZL++279q1qyZOnKj9+/dr0qRJ+uWXXwrcp/Hx8XrppZck5b6leNKkSRowYIB27txZ6H1fFps3b9ZVV12lm266SUOHDtV7772nYcOGqUuXLp69kEv73Hv55Zd14sQJr8t/6aWXtHLlSs/zeNmyZfr11181ePBgNWzYUNu2bdMbb7yhvn37at26dQXeDj1y5EjVrl1bjz76qFJSUiRJ7777rkaMGKGePXvqrrvu0tatW3XJJZcoLi5OjRo18nxtWlqa+vbtq82bN+uOO+5Q06ZNNXPmTA0bNkxHjhzRnXfeWebb68orr9TatWs1evRoNWnSRAcOHNDcuXO1Y8eOCh/bvXfv3rr11lvldru1Zs0avfzyy9qzZ0+JL2rHjx+vCRMmqF+/frr99tu1YcMGvfHGG1q2bJnnuZycnCwpd/vWsmVLTZgwQenp6XrttdfUq1cvLVu2TK1atVLfvn3VqFEjzZgxQ5dffrnX9cyYMUPNmzcv8+cTzJw5U6mpqbr99ttVq1YtLV26VJMnT9auXbs0c+bMIr/uP//5j2644QadeuqpmjhxopKTk/XKK69o0aJFWrFiheLj48s0R1HKs33N889//rNM19WmTRs9/PDDsixLW7Zs0YsvvqgBAwaUehGoMHn37R133KEuXbro6aef1sGDBwu9rebNm6f+/furWbNmGj9+vNLS0jR58mT16tVLf/zxR4HH8KBBgxQaGipJ6tWrl1555RUdPnxY77//vqfRefK2E9HR0QoJCdHw4cM9P/CtW7dOU6ZM0SOPPKKrrrpKKSkp2rBhgyIiIhQbG6tbb71VixYtotH50GgaLdHosrJjo082btw4vfvuu/r444+9fmlXmpaXRf77+6+//tJTTz2lhx56SG3btpWkAj/Mvv/++zp+/LhGjRql9PR0TZo0Seeee65Wr16tunXrSip7Q6S/b7f8c/hTRR5Xmzdv1jvvvFOm68vbdmVkZOi7777T888/r6ioKD3++OPl/h6Sk5O1aNEiLVq0SDfeeKO6dOmiH374odBfwN58882aMWOGJOnqq69WRESEXn75ZcXExGj06NGebcKECRP0yy+/6Oqrr9bIkSM925O8dxrk/cw8f/58ffrpp9qwYYP69OmjPXv2SMr9efyZZ55RZGSkpNxfWN9+++3av3+/7r//fp1yyin673//qz179mj06NFKSEigx2VAj+kxPS698vTYH01cu3atevXqpYSEBD3wwAOKiYnRJ598ossuu0yfffZZgZ+ly+uFF14o8nNlDh8+rAEDBmjQoEG69tpr9cknn+j2229XRESEbrzxRkllv39L6tr+/fvVs2dPpaamasyYMapVq5amTZumSy65RJ9++qnPvu/CrF27Vr1791a1atV0//33Kzw8XG+99Zb69u2rn3/+Wd27dy/yaz/44IMyf1bgSy+9pPj4eB07dkzvvfeebrnlFjVp0kT9+vUr9/eQnJyst99+W7GxsRozZoxq166t6dOn64orrtCMGTM8XS7r/Vaax+zJvv/+e91444264447vN7J4NPHtlUGU6ZMsSRZ8+bNsw4ePGjt3LnT+uijj6xatWpZ0dHR1q5duyzLsqz09HQrJyfH62sTExOtyMhI67HHHvOc9t5771mSrBdffLHAdbndbs/XSbKee+65Audp37691adPH8/ff/rpJ0uSlZCQYB07dsxz+ieffGJJsiZNmuS57JYtW1oXXnih53osy7JSU1Otpk2bWueff36B6+rZs6fVoUMHz98PHjxoSbLGjRvnOW3btm1WaGio9eSTT3p97erVq62wsLACp2/atMmSZE2bNs1z2rhx46z8d8vChQstSdaMGTO8vnbOnDkFTm/cuLE1cODAArOPGjXKOvmuPnn2+++/36pTp47VpUsXr9v0gw8+sEJCQqyFCxd6ff2bb75pSbJ++eWXAteXX58+fTyX9/XXX1thYWHWPffcU+h5S3N7WFbu/ZRfZmam1aFDB+vcc8/1uqyQkBDr8ssvL/BYzLvPjxw5YlWtWtXq3r27lZaWVuh5MjMzrTp16lgdOnTwOs9XX31lSbIeffRRz2lDhw61Gjdu7HU5b7/9tiXJWrp0aaHfc2k1btzYkmQtWLDAc9qBAwesyMhIr9uztM+9k+U9R/Kf5+Tb2bIsa/HixZYk6/333/eclrddOOuss6zs7GzP6Xm3XefOna2MjAzP6Xm3Sf7H2csvv2xJsqZPn+719T169LBiY2M9z+e85/hPP/1U4HuUZE2ZMsWyLMs6fPhwkduNimrcuLE1dOhQr9Ouu+46q0qVKsV+3YEDB6yIiAjrggsu8LqPXn31VUuS9d5771mW9ff3GB8fbyUlJXnOt3HjRis8PNy68sorPac9+OCDVmRkpHXkyBGv6wkLC/N6fjdt2tQaMmSI1zyF3ZaF3ecTJ060XC6XtX37ds9p+Z+X2dnZVt26da3mzZtbJ06c8Jxn/vz5liSvx+fQoUOtmJgYr8ufOXNmofdpTEyM1+1clu1r/u2OZVnWN998Y0myLrroogLbk8Kc/PWWZVkPPfSQJck6cOCA5zRJ1qhRo4q8nLznRmJiotff27Vr53Vb590X+W+rzp07W3Xq1LGSk5M9p61atcoKCQnxui/z7otLLrnEq9HDhw+3JFnPPPOMp9F52/309HTrgQcesEJDQ61Zs2ZZlvX3duLuu+/23M75G33y7Uyjc9FoGm1ZNDoYGn3y17711luWJGvy5Mle5yltyy0r9/nVvn37Atfz3HPPebUhv6JuQ8v6+3bM/zOXZVnWb7/9Zkmyxo4d6zmttA3Jk5CQYA0fPrzYOYrahhU2Y2maUNrH1cmPH8uyrEGDBlkdOnSwGjVqVOD+Lmqm/F9vWZbVoEEDa8CAAZ6/5z1Xli1bVuRlnfz6oE+fPpYka/z48V7n69WrlyXJeuedd6yDBw9a3333nSXJioyM9Lr/7rrrLkuS9eOPP3q+NiEhwZJkDR482HPaa6+95unnyfNu3brVOnTokNWiRYtCZ3n88cctl8tldevWzXNa3v0ryVq3bp3ndHpMj/OjxwXR49KrSI/z+KqJ5513ntWxY0crPT3dc5rb7bZ69uxptWzZ0nNaUR0obDt28nPuwIEDVtWqVa3+/fsXmDmvFS+88ILntIyMDE+rMzMzLcuqWBctq2DX8hqTf7t0/Phxq2nTplaTJk08z4EJEyZYkry285ZV8D4sy+1z2WWXWREREdaWLVs8p+3Zs8eqWrWqdfbZZxe4zLzXROnp6dYpp5ziuR1P/h5PdvLXW1bu700kWc8++6zntMJ+D3Gyk7+HvE7Onz/fc1pqaqrVtm1bq169euW+30rzmM2/nVy+fLkVGxtrXX311QW2W6V9bJdGuQ4r1K9fP9WuXVuNGjXS4MGDFRsbq88//1wJCQmSpMjISIWE5F50Tk6OkpOTFRsbq9atW+uPP/7wXM5nn32m+Ph4jR49usB1FPa2ltIaMmSIqlat6vn7VVddpfr16+ubb76RJK1cuVKbNm3Sddddp+TkZCUlJSkpKUkpKSk677zztGDBArndbq/LTE9PV1RUVLHX+9///ldut1uDBg3yXGZSUpLq1aunli1b6qeffvI6f95bfvL27CjMzJkzVb16dZ1//vlel9mlSxfFxsYWuMysrCyv8yUlJXkOLVGU3bt3a/LkyXrkkUcKrMTOnDlTbdu2VZs2bbwuM+8wFSdff1GWLl2qQYMG6corr9Rzzz1X6HlKc3tI8uzJIuWuwB49elS9e/f2emzNmjVLbrdbjz76qOexmCfvsTV37lwdP35cDzzwQIH7Nu88y5cv14EDBzRy5Eiv8wwcOFBt2rQp8JYst9vtuY1Wrlyp999/X/Xr1/esdFdEu3btPHuHSFLt2rXVunVrbd261XNaaZ97+a1bt0433nijLr30Uv3rX//ynJ7/ds7KylJycrJatGihGjVqFHpZt9xyi2fPZenv2+62227zOg7rsGHDVL16da+v/eabb1SvXj2v46+Gh4drzJgxOnHihOct06UVHR2tiIgIzZ8/v8BbiX0hIyNDSUlJnj0rfvzxR5133nnFfs28efOUmZmpu+66y+sxecstt6hatWoFHkvDhw/37JEiSS1bttQll1yiOXPmKCcnR1Luti4jI8NrD7WPP/5Y2dnZuuGGGzyn1alTx/PheMXJf5+npKQoKSlJPXv2lGVZWrFiRYHzJyUlaf78+dq/f79GjBjhdczMPn36qEuXLoW+tb48yrp9zWNZlh588EFdeeWVxe6hcLK8benBgwe1ePFiff755+rUqVOBd0Gkp6crKSlJycnJBbpRlFGjRnnd1n379vW6rfbu3auVK1dq2LBhiouL85yvU6dOOv/88z0tO/ky8/Tr109TpkyRlPuOibxG53nnnXf09NNP65VXXtHFF1/stZ34/vvvPbfzhx9+6Dns0cm3M43ORaMLotG5aHTR7Njo/GbPnq2RI0fqvvvuK3DouLK2PCcnp8BzPjU1tULf32WXXeb5mUuSunXrpu7du3u2oeVpSGZmZonPbenvbVhycrKys7OLPF9qamqB7zvvtUue8j6ufv/9d82cOVMTJ04ssP0ozokTJ5SUlKTdu3fr7bff1r59+wp9XBw9elRJSUk6fvx4qS43NDRUY8eO9TrtoosukpT7uKhdu7YuvPBCSbl79ef/mTnvXY1ff/21Z5vgcrkUFhbm1YZvvvlG0dHR2r17t/bt2+d1XRkZGbrkkkt06NAhSSpw/PKZM2cqJiZGYWFhnvvi6NGjnn/Pv72gx/Q4P3rsjR6XXUV7XBolNfHQoUP68ccfNWjQIB0/ftzzuEtOTtaFF16oTZs2FTj0VV4H8v7kbV+L8/jjj6t69eoaM2ZMof8eFhamESNGeP4eERGhESNG6MCBA/r9998llf3+Lalr33zzjbp166azzjrLc1reO8G3bdumdevWScr9XYGkUv2+QCr59snJydH333+vyy67TM2aNfOcXr9+fV133XVatGiRjh07Vuhlv/baa0pOTta4ceNKNUuew4cPKykpSVu3btVLL72k0NBQ9enTp8D5Sru9z9O1a1evy4mOjtbIkSO1b98+z/O7rPdbSY/Z/LZu3aqBAweqc+fO+uCDD7y20+V5bBenXIcVeu2119SqVSuFhYWpbt26at26tdeQbrdbkyZN0uuvv67ExESvF4P5f9m1ZcsWtW7dWmFhPjm6kUfLli29/u5yudSiRQvPcdM2bdokSRo6dGiRl3H06FHVrFnT8/ekpKQCl3uyTZs2ybKsIs938lsZ845NWtyxrzZt2qSjR496nrAnO3DggNffv//++zJ/eMe4cePUoEEDjRgxosDbYDdt2qS//vqryMs8+foLs3v3bg0cOFApKSmeF72FKc3tIUlfffWVnnjiCa1cudLrGI75L3fLli0KCQlRu3btirycvENtFHY82Dzbt2+XJLVu3brAv7Vp00aLFi3yOm3nzp1et1X9+vX12Weflfg9lcYpp5xS4LSaNWt6hby0z708x44d0xVXXKGEhAS9//77XrdhWlqaJk6cqClTpmj37t3KXTzNlf+HijxNmzb1+nvebXfy8yE8PNwrEnnnbdmyZYEXpXkvEPMuq7QiIyP1zDPP6J577lHdunV15pln6uKLL9aQIUNUr169Ml1WYT766CN99NFHnr937dq1wHHtTlbUYykiIkLNmjXz/HvefdCmTZsCl9G2bVt99tlnSkpKUt26ddWmTRt17dpVM2bM0E033SQp95BCZ555plq0aOH5up49e+qVV17RRx99pHPPPVchISGF3oc7duzQo48+qi+++KLAC8TCzp//sV7Yc6Rt27ZFHtu0rMq6fc0zY8YMrV27Vp988kmB46IW59dff/X6/lq2bKlZs2YV2H69++67evfddyXl3pfdu3fXiy++6PkAwvxKum/zbqvitjtt27bVd999V+ADzFq2bOk5pMBrr72mZs2aacCAAbr66qv14Ycfep5b3377rZYtWyZJeuSRRzRmzBiv7USDBg0K3M7169f3/L8v3pJPo2k0jabRdmt0npUrV+qTTz5RTk5Oob8MKG3L86xfv97nH6pX2DasVatW+uSTT4qdUSq6IUePHi3V8yD/Niw0NFSdOnXS008/7Tn0SJ5x48YV+oN9/rfLl/dx9cADD6h37966+OKLi/3cn5ONHj3aa4e04cOHF/ilviSvQxDUqFFD1157rZ577rlCPzTU5XKpQYMGqlatmtfped0866yzNG7cOL3yyiv66quvtHXrVq9f6NapU0dRUVF666239PLLL3ttE/I/j7ds2aKEhARt3rxZ27Zt83qeDB8+XEuWLCn0A5Gl3E6kpaUVeF2TJ38n6HHx6DE9psdlU5Eel1ZJTdy8ebMsy9IjjzyiRx55pNDLOHDggNcva8t6KJrExES99dZbeuONN4pcHG3QoEGBjrRq1UpS7rHozzzzzDLfvyV1bfv27YXuHJf/8jp06KAePXrI5XLpwQcf1BNPPOF5Hha141tJt8/BgweVmppa5OsQt9utnTt3eg7zlefo0aN66qmndPfddxd5eJ2inH766Z7/j4yM1KuvvlrgsHcpKSle251GjRrpnnvuKfZwXEX93C7l3m/du3cv8/1W0mM2/7wXXnih9u/fr1q1ahVoQnke28Up12/lu3XrVugvPvI89dRTeuSRR3TjjTfq8ccfV1xcnEJCQnTXXXeVes9Kf8qb4bnnnlPnzp0LPU/+MGVmZmrv3r06//zzS7xcl8ulb7/91ms1uLDLlOTZ86O4Da/b7VadOnU8x6g82ckvQLp3764nnnjC67RXX31Vs2fPLvTr//rrL02dOlXTp08v9Jc+brdbHTt21Isvvljo1+c/Bl5RNm/erNNPP10vvfSS/vGPf2jatGmFvsgsze2xcOFCXXLJJTr77LP1+uuvq379+goPD9eUKVPK9Is/f6lbt66mT58uKXfj9t577+miiy7SokWL1LFjxwpddmGPKUleL0DK+twbNmyY9uzZo6VLlxb4wWb06NGaMmWK7rrrLvXo0UPVq1eXy+XS4MGDC72s/HtN+EtRL5JP3htNku666y793//9n2bNmqXvvvtOjzzyiCZOnKgff/xRp512WoXmuOCCC3TfffdJyl1hf+aZZ3TOOedo+fLlFb4dyvr1Q4YM0Z133qldu3YpIyNDS5Ys0auvvup1noceeki//PKL12r2yXJycnT++efr0KFD+uc//6k2bdooJiZGu3fv1rBhwwq9z+fOnavFixfr0UcfLdPM5VHW7auUu+1+5JFHdNNNN3lefJVWp06d9MILL0iS53MB+vbtqz/++MNrG3XppZfqjjvukGVZSkxM1GOPPaaLL77Y8wN1fpXxHJFyG925c2fPh7zlf6GydOlSdenSRb///ruOHDmi5557Th06dPBsJw4dOuS5nfP2hH355Zc9X++LH9pKQqP/RqN9i0b7VzA0etWqVerfv7/OO+883XfffbrhhhsKfEhoWTRp0qTAsfFnzpypt99+u9yX6WuHDh1SZmZmqX4RlH8btmfPHj3zzDO6/PLLtXbtWq9jU9966626+uqrvb72lltuqfCs33//vebNm6fFixeX+Wvvu+8+XXDBBcrJydHatWv12GOPybIszzvt8uTtBJeRkaH58+d7Plz59ddfL3CZJT2e6tSpo379+unTTz+Vy+UqsJ146qmnlJ6eriZNmmjixImKi4vTP/7xD504caLUPzP/8ccfmj17tm677Tbt3bu3wL+73W7FxMSoefPmntc1q1at0r333qt77rlHV155ZZGXTY//Ro99ix77VzD02Ffy7oN7773X8y6uk+XfqU76uwN5jh07Vuy28uGHH1bLli01dOhQn36wdklK27WSnHrqqRo3bpwmTJhQ5DY0v7LePqX1zDPPKCQkRPfdd5/ns/pKa/r06apbt67S09P1448/atSoUYqKivL6QOWoqCh9+eWXkqTjx4/rvffe01133aX69etr0KBBBS6zsh6jRUlKSlJMTIy+/PJLXXbZZZo4caLXjhfleWwXx7e77P/Pp59+qnPOOcezN2WeI0eOeB2SoXnz5vrtt9+UlZXlk70R85z8SxnLsrR582Z16tTJc72SVK1atVKtCq5atUpZWVnFLojkXa5lWWratGmpfhG1bt06uVyuQlfU8l/mvHnz1KtXr1I9OOPj4wt8T8V9ANKDDz6ozp0765prriny+letWqXzzjuv3IeRyHt7at26dTV79mzdc889GjBgQIEXaaW5PT777DNFRUXpu+++89rz5uQNYPPmzeV2u7Vu3boiX8zmPQ7WrFlT5JOmcePGkqQNGzZ43haaZ8OGDZ5/zxMVFeV1++d9kNCrr76qt956q8jvy1dK+9yTpKefflqzZs3Sf//730JXRD/99FMNHTrU84OElPtW4by9VUqSd9ts2rTJ67bLyspSYmKiTj31VK/z/vnnn3K73V6/yFy/fr3XZeXtmXTyDEXtJdG8eXPdc889uueee7Rp0yZ17txZL7zwgufFaHnVr1/f635u3bq1evbsqVmzZhX5C/j8j6X8e4FkZmYqMTHRc3l5e5Ns2LChwGWsX79eMTExXvfl4MGDdffdd+vDDz9UWlqawsPDCzyf4+PjtXjxYq1bt87zA0XeD4Z5Vq9erY0bN2ratGkaMmSI5/S5c+cWeTv069dP1atX16OPPlrkvBX9IKs8Zd2+Srk/yB84cEDjx48v8/XVrFnT6z7u27evGjRooClTpnh90G7Dhg29zhcbG6vrr7++0MMw5b9vT96e5L+t8j9WTrZ+/XrFx8cX2PPk5O5t3rxZbre7wO1//vnn68CBAzr77LO1Y8cOzZ49W2PHjpXL5dKRI0cUHR3tuZ07deqk3377TX369KHRxVwmjf4bjS4ejfZmp0bn6dixo2bOnKno6GjNnDlTt956q/7880/PnoClbXmemJiYAqetXLmyIt9eoYvPGzduLHdD8g4rUJrDeZy8DWvRooV69eqlBQsWePWmZcuWhd4W+ZX2cZXHsiw98MADuvzyy3XmmWeWOOvJ2rVr55npwgsvVEZGhh566CE9+eSTng8flbx3ghs4cKBWrVqlOXPmFHqZTZs21ffff6/jx497HS4v77VW3uU2btxYbrdbmzZt8rqd8/aovfLKKzV48GBJub+MSEpK8rqe5s2b68cff5SkAl3/97//rUsuuURJSUm66aabtHTp0gJfm5iY6PW6Ju9d+xEREV57WdPjWUWenx7TY3pcdhXpcWmV1MS8VoeHh5f6HQEn7wx98jY5vxUrVuijjz7SrFmzilyYknIX1E9+197GjRslyavfZeliSV1r3Lhxka8FTr68cePG6dZbb9X69es9i0j5D1OcX0m3T+3atVWlSpUirzskJKTAgumePXs0adIkTZw4UVWrVi3z4kCvXr08t+PFF1+stWvXauLEiV6LA6GhoV6PgYEDByouLk5z5swpdHGgadOmxd5+5b3fSnrM5qlSpYrmzJmjNm3aaOzYsXrqqac0aNAgz+uI8jy2i1OuzxwoSWhoqNfKrJS7l8zJxzu68sorlZSUVGAvV0kFvr4s8j79Oc+nn36qvXv3qn///pKkLl26qHnz5nr++ecLfPq8lLuX6Mmzh4aG6uKLLy72eq+44gqFhoZqwoQJBea3LMvrAZ6dna3PPvtM3bp1K3ZPzEGDBiknJ8fzieP5ZWdnlzo6hVm8eLFmz56tp59+usgXMYMGDdLu3bsL7PUk5b6FLiUlpcTradWqledtQZMnT5bb7S7w1p3S3h6hoaFyuVxeq97btm0r8GLusssuU0hIiB577LECK/Z5980FF1ygqlWrauLEiQWOOZZ3njPOOEN16tTRm2++6fV2zG+//VZ//fWXBg4cWOz3npmZqezsbK+v9afSPvfmzZunf/3rX3r44Yd12WWXlfqyJk+eXOgeB4U544wzVLt2bb355pueY2NK0tSpUws8bgcMGKB9+/bp448/9pyWnZ2tyZMnKzY21nOct8aNGys0NFQLFizw+vqT9+ZKTU0tcJ82b95cVatW9ct9kZaWJknFXna/fv0UERGhV155xet2fffdd3X06FHPY6l27do644wzNG3aNK+3v27ZskVffPGF+vfv7/XCIz4+Xv3799f06dM1Y8YMXXTRRQVe1EpSSEiIOnTooH79+qlfv37q0qWL17/nXWb+2SzL0qRJk4r93jt37qy6devqnXfe8TqO8sKFC7V8+fISt5ulVZbtq5S7N8CTTz6psWPH+uRtsaW5j6W/V/ALe3F42mmnqV69egW2JyffVvXr11fnzp01bdo0r+fKmjVr9P3332vAgAEFLvu1117z+vvkyZMlydO9PD179lRoaKhCQkL05ptvasGCBXrnnXc824n4+HjP7XzFFVd4NTr/7Uyjc9FobzS6eDQ6lx0bnef0009XTEyMQkJC9O9//1vbtm3TY4895vn30rbcn2bNmuX1mFm6dKl+++03zza0rA356KOPFBER4XVM4tIqrnklKe3jKv+cf/75pyZOnFjm6ypM3uMi/+O/MG63u8jvb8CAAcrJySnws+x3330nSZ7bNO82z/9OPOnvX6jkf9ykpKR4jsee/3rS0tLUoEGDAq9p8q4j75eKX331lfbv3+/590GDBiktLa3Qw2Sd/FqTHheOHtNjeuwbZelxaZXUxDp16qhv37566623Cn131cnbsbJ64IEH1KtXL11yySXFni87O9tr4SszM1NvvfWWateu7fm5vKxdPNnJXRswYICWLl3q9W67lJQUvf3222rSpEmBw4nVr19f55xzjuf3BSV9fkxRQkNDdcEFF2j27Nmew9RJ0v79+/Wf//xHZ511VoF34EyYMEF169bVbbfdVq7rPFlaWlqJj7O8521xjV+6dKl+/fVXz2np6el64403VK9evXLfbyU9ZvPUrl3bsyD52GOPqWHDhrrllls8c/v6se2Xdw5cfPHFeuyxxzR8+HD17NlTq1ev1owZMwocM23IkCF6//33dffdd2vp0qXq3bu3UlJSNG/ePI0cOVKXXnppua4/Li5OZ511loYPH679+/fr5ZdfVosWLTxvZ817wd+/f3+1b99ew4cPV0JCgnbv3q2ffvpJ1apV05dffqmUlBS99tpreuWVV9SqVSvNnz/fcx15L5D+/PNPLV68WD169FDz5s31xBNP6MEHH9S2bdt02WWXqWrVqkpMTNTnn3+uW2+9Vffee6/mzZunRx55RH/++afnbS1F6dOnj0aMGKGJEydq5cqVuuCCCxQeHq5NmzZp5syZmjRpkq666qpy3U7ff/+9zj///GJXmf7xj3/ok08+0W233aaffvpJvXr1Uk5OjtavX69PPvlE3333XYl7h+RXr149Pffcc7r55pt1ww03aMCAAWW6PQYOHKgXX3xRF110ka677jodOHBAr732mlq0aKE///zTc74WLVro4Ycf1uOPP67evXvriiuuUGRkpJYtW6YGDRpo4sSJqlatml566SXdfPPN6tq1q6677jrVrFlTq1atUmpqqqZNm6bw8HA988wzGj58uPr06aNrr71W+/fv16RJk9SkSZMCxypNSUnxeovkBx98oPT0dF1++eWlvo0qorTPvWuvvVa1a9dWy5YtC+wRcP7556tu3bq6+OKL9cEHH6h69epq166dFi9erHnz5hV6HMbChIeH64knntCIESN07rnn6pprrlFiYqKmTJlSYJ5bb71Vb731loYNG6bff/9dTZo00aeffqpffvlFL7/8smdvrOrVq+vqq6/W5MmT5XK51Lx5c3311VcFjuO5ceNGnXfeeRo0aJDatWunsLAwff7559q/f79nz6yK2Lp1q+d22717t1599VVVq1at2A9Yql27th588EFNmDBBF110kS655BJt2LBBr7/+urp27eq1Mv/ss8/qggsuUI8ePXTzzTcrPT1dr732mqKiovTkk08WuOwhQ4Z4tgOF/VBUGm3atFHz5s117733avfu3apWrZo+++yzEj+cKu85MmzYMPXq1UtDhw7VoUOHNGnSJCUkJHg+bC9PTk6O1x54eXtQLl261OvFaU5Ojnbv3q2lS5eqW7dupd6+5vnjjz8UHx+v+++/v1y3x/79+z33cVJSkt566y2FhYUV+IF3x44dmjNnjuewQk8++aQaN26s0047rcBeAWFhYXr22Wc1ZMgQ9e7dW9dff73nkEUNGzb0uq2ee+459e/fXz169NBNN92ktLQ0TZ48WdWrVy/0nRCJiYmehZxHH31U3377ra677jqvvY3y5G0nmjRpou7du2v06NGKiYlRs2bNFB0d7bmdExMT1axZM9199916++23lZycrG7duikrK4tG/w+N9kaji0ejc9mx0YXp0KGD/vnPf+rpp5/W4MGD1alTpzK13F9atGihs846S7fffrsyMjL08ssvq1atWl69K01DNm3apHHjxunDDz/UAw88UOAH9cIcPHjQ0/C9e/fqmWeeUfXq1XXOOeeU+fso7eMqz/fff69bbrml2L2li7N48WKFhYV5Dr8wefJknXbaaQX21Fu8eLGSkpI8hxX64YcfvF5f5DdgwAD169dPDz/8sBITE9W5c2f9+OOPnsNK5O1xfeqpp2ro0KF6++23deTIEfXp00dLly71/BL//fff1+bNm7V69WodOnRI4eHhWr9+vR588EHVrVvXs3fznj17dO2116p3796eDzicO3eubr31Vq+5Ro8e7Tl28X333aenn35aq1ev1i233KIuXbpo1apVknLvw969e+vmm2+mx8Wgx/SYHpePr3pcnNI08bXXXtNZZ52ljh076pZbblGzZs20f/9+LV68WLt27fJsE8vj+++/1y+//FLi+Ro0aKBnnnlG27ZtU6tWrfTxxx9r5cqVevvttz3v0C5rF0vq2gMPPKAPP/xQ/fv315gxYxQXF6dp06YpMTFRn332WYFj5PvSE088oblz5+qss87SyJEjFRYWprfeeksZGRl69tlnC5z/+++/14wZM4r8/JySzJo1S/Hx8Z7DCi1cuFB33XWX13ny/x7i+PHjmjJlilJSUopc+Lv//vs1Y8YMz+0XHx+v6dOna926dZoxY4bnXXhlvd9K85g9WXR0tN5++23169dPb7zxhkaOHCnJx49tqwymTJliSbKWLVtW7PnS09Ote+65x6pfv74VHR1t9erVy1q8eLHVp08fq0+fPl7nTU1NtR5++GGradOmVnh4uFWvXj3rqquusrZs2WJZlmUlJiZakqznnnuuwPW0b9/e6/J++uknS5L14YcfWg8++KBVp04dKzo62ho4cKC1ffv2Al+/YsUK64orrrBq1aplRUZGWo0bN7YGDRpk/fDDD17XXdKfoUOHel3uZ599Zp111llWTEyMFRMTY7Vp08YaNWqUtWHDBsuyLGv06NHW2Wefbc2ZM6fATOPGjbMKu1vefvttq0uXLlZ0dLRVtWpVq2PHjtb9999v7dmzx3Oexo0bWwMHDizwtaNGjSpwmZIsl8tl/f77716nF3YfZWZmWs8884zVvn17KzIy0qpZs6bVpUsXa8KECdbRo0cLXF9Jl2dZlnXuuedap5xyinX8+PEy3x7vvvuu1bJlSysyMtJq06aNNWXKlCJvt/fee8867bTTPHP36dPHmjt3rtd5vvjiC6tnz55WdHS0Va1aNatbt27Whx9+6HWejz/+2HM5cXFx1vXXX2/t2rXL6zxDhw71elzExsZap59+uvXBBx8UexuVRlH37cm3b2mfe8U9nn/66SfLsizr8OHD1vDhw634+HgrNjbWuvDCC63169dbjRs39nrMl7RdeP31162mTZtakZGR1hlnnGEtWLCg0MfF/v37PdcXERFhdezY0ZoyZUqByzt48KB15ZVXWlWqVLFq1qxpjRgxwlqzZo0lyXP+pKQka9SoUVabNm2smJgYq3r16lb37t2tTz75pDQ3d7EaN27sdXvFx8dbF1xwgbV48eJSff2rr75qtWnTxgoPD7fq1q1r3X777dbhw4cLnO+HH36wevXq5XlcDhw40Fq9enWhl5mRkWHVrFnTql69upWWllaqOfK2l3n3t2VZ1rp166x+/fpZsbGxVnx8vHXLLbdYq1at8rptLavw5+VHH31kde7c2fNcu+aaa6xt27Z5nefk50hp/pz8OClp+2pZuc8LSdZLL73k9bVFbSdOlvf1eX9q1Khh9erVy/rmm2+8zpf/PC6Xy6pXr551xRVXWH/99ZdlWX8/NxITE72+7pNPPvHanlx77bWFNmrevHlej4H/+7//s9atW1fo97Ru3TrrjDPOsCRZVatWte64444CjwVJ1rhx4wpsJ8LCwjzPybzbO+92rlKlihUeHm6Fh4dbISEhVu3atWk0jfag0blo9N8CudEn33aWlXuftWnTxuratauVnZ3tOb00Le/Tp4/Vvn37Atfz3HPPFdoGyyq8zXnyb29feOEFq1GjRlZkZKTVu3dva9WqVQXOX1JDPvzwQ6tDhw7WpEmTLLfbXeIcRd22S5YsKXTGk53cBMsq3eMq7zKjo6Ot3bt3e/1bYfdZUbdb3p+QkBCrYcOG1tChQ722E3nPlbw/ERERVosWLaxHH33UysjIsCyr8G3miRMnrLFjx1oNGjSwwsPDrRYtWlhXXXVVgeddVlaWNWHCBM/PvI0aNbLuu+8+66677vLaJtSrV8+Ki4uzOnXqZHXq1MmzLZ0+fbrXz8zVq1e3JFk///yz1/d5zTXXWJKsL774wnPdbdu2tU455RSrRYsWVkREhFWtWjVLknX99ddb999/Pz3+H3pMj+mxPXqcx5dN3LJlizVkyBCrXr16Vnh4uJWQkGBdfPHF1qeffuo5T1H30cGDBz0/R+XJey5deumlJc6c93pg+fLlVo8ePayoqCircePG1quvvlpgzrJ0saSu5X3fV111lVWjRg0rKirK6tatm/XVV18VuN7ClPYxXNjtY1mW9ccff1gXXnihFRsba1WpUsU655xzrF9//dXrPHmX2blzZ6/XInnfY2GP7cK+vrB2p6ene85Xmu1OYd9D3u1XvXp1Kyoqyuratas1a9asAnOU5X4rzWN26NChVuPGjQtcz/Dhw61q1ap53c+leWyXhut/N0JQmD9/vs455xzNnDmz3HsG5Ldt2zY1bdpUiYmJRR43e/z48dq2bZumTp1a4esDgPLIzs5WgwYN9H//938Fjp0ZyKZOnaqpU6d67YEGb+PHj9eECRN08ODBQg8nZSc0GgDKL2+b99xzzxW5JzsCX5MmTdShQwd99dVXfrsOegwg0AVSE/v27aukpCStWbPG9CgwyO6PWf+9jwQAUClmzZqlgwcPen2QMAAAAAAAAFAcv3zmQLCIjY3V9ddfX+yH/XTq1EkNGjSoxKkAINdvv/2mP//8U48//rhOO+20Ej+kKNAkJCSoW7dupseATdFoAADMo8cAAAQ2FgeKkfeBE8W54oorKmkaAPD2xhtvaPr06ercuXNQvk37/PPP1/nnn296DNgUjQYAwDx6DABAYAuqzxwAAAAAAAAAAAAl4zMHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAKAELper2D/jx483PSIAAMiHdgMAEFhoN2BGmOkBAMDu9u7d6/n/jz/+WI8++qg2bNjgOS02Ntbz/5ZlKScnR2FhbF4BADCFdgMAEFhoN2AG7xwAgBLUq1fP86d69epyuVyev69fv15Vq1bVt99+qy5duigyMlKLFi3SsGHDdNlll3ldzl133aW+fft6/u52uzVx4kQ1bdpU0dHROvXUU/Xpp59W7jcHAEAQot0AAAQW2g2YwRIbAPjAAw88oOeff17NmjVTzZo1S/U1EydO1PTp0/Xmm2+qZcuWWrBggW644QbVrl1bffr08fPEAAA4G+0GACCw0G7A91gcAAAfeOyxx3T++eeX+vwZGRl66qmnNG/ePPXo0UOS1KxZMy1atEhvvfUWL1IAAPAz2g0AQGCh3YDvsTgAAD5wxhlnlOn8mzdvVmpqaoEXNpmZmTrttNN8ORoAACgE7QYAILDQbsD3WBwAAB+IiYnx+ntISIgsy/I6LSsry/P/J06ckCR9/fXXSkhI8DpfZGSkn6YEAAB5aDcAAIGFdgO+x+IAAPhB7dq1tWbNGq/TVq5cqfDwcElSu3btFBkZqR07dvBWRgAAbIB2AwAQWGg3UHEsDgCAH5x77rl67rnn9P7776tHjx6aPn261qxZ43nrYtWqVXXvvfdq7NixcrvdOuuss3T06FH98ssvqlatmoYOHWr4OwAAwFloNwAAgYV2AxXH4gAA+MGFF16oRx55RPfff7/S09N14403asiQIVq9erXnPI8//rhq166tiRMnauvWrapRo4ZOP/10PfTQQwYnBwDAmWg3AACBhXYDFeeyTj44FwAAAAAAAAAACGohpgcAAAAAAAAAAACVi8UBAAAAAAAAAAAchsUBAAAAAAAAAAAchg8kBlAot9tStttSjttSjmUpJ8dSlNIU6XJLIaGSK/Tv/4ayKQEAwDTaDQBAYKHdAExjywIEucxst5JTMpR0PFNJKRlKOp6hpBOZSjqRoeQTf/9/0okMncjIVnZO7ouSwj6qfH6Lj9Vk1+zCrygkTIqqLlWplfsnOk6qEve/v8eddPr/TouuKblc/r0BAAAIMLQbAIDAQrsBBCoWB4AAZlmWdh1O0197j2nTgRM6cCxdSScydTDfC5CjaVmVM4w7W0pNzv1TWq7Q3BcqNU6R4ltKtVrm/je+pVSrhRQW6b95AQAwgHYDABBYaDeAYMbiABAgjqdnaf2+47l/9h7T+n3HtXHfcR3PyDY9WvlZOVJqUu6fPX94/5srRKreSIpv9feLlrz/r1rPzLwAAJQB7abdAIDAQrtpN+A0LA4ANpPjtpSYlKL1+45p/d7jWr/vmP7ae1y7j6SZHq1yWW7pyPbcP5vnev9bZLXcFy31T5VOOTP3T80mRsYEAIB2/w/tBgAECNr9P7QbcDwWBwDD9h5N08JNSVqWeEh/7TumTftPKCPbbXose8s4lrvHw54/pN+n5J5Wtb7UqLt0So/cFy31OuZ+cBMAAD5Gu8uBdgMADKLd5UC7AUdgcQCoZKmZ2VqyNVkLNyVp4aYkbT5wwvRIweH4XmndrNw/khRRVWrY5e8XLQ27ShExJicEAAQo2u0ntBsA4Ce0209oNxB0WBwA/MzttrRmz9H/vSg5qD+2H1FmDnso+F3mcWnr/Nw/khQSJtXtIDXuKTXrKzXtI4VHGRwQAGBXtNsQ2g0AKCfabUix7T5Hano27QZsjsUBwA/2HEnTwk0HtWBTkn7dnKTDqVmmR4I7W9q7MvfPktel8Cq5L1ZaXyS1ukiKrWN6QgCAQbTbhmg3AKAYtNuGCrQ7JneBn3YDtsXiAOAD6Vk5+nVLkhZsTNKCTQe19WCK6ZFQkqxUacPXuX/kkhK65L5gaXuJVLu16ekAAH5GuwMQ7QYAR6PdASgrhXYDNueyLMsyPQQQiHLcln7dkqTZK/fouzX7dDwj2/RIfje/xcdqsmu26TH8r3Ybqd2lUrvLpLrtTE8DAPAR2h3EaDcABCXaHcRqt8ntdrtLaTdgEIsDQBmt2nlEs1bu1ld/7tXB4xmmx6lUjnmRkl98q9wXK+0vl+q2Nz0NAKAcaDftBgAEFtrtwHa3vSS33fU6mJ4GcBQWB4BS2HkoVZ/9sUtfrNyjrUnOfeuiI1+k5NfgNKnLcKnjVVJEjOlpAADFoN25aDftBoBAQbtz0W7aDVQmPnMAKEJGdo7mrNmnT5bv1K9bksUyGrRnRe6f7/8ldbxaOmO4VK+j6akAAP9Du1EA7QYAW6PdKIB2A5WKxQHgJGv3HNUny3Zq1so9OpqWZXoc2FHGMWn5u7l/Es7IfbHS/gopoorpyQDAkWg3SkS7AcBWaDdKRLuBSsFhhQBJ6Vk5+uyPXfpw6Q6t2X3M9Di25fi3NxYnsrrUaVDuCxaObwwAfke7S4d2F4N2A0Clot2lQ7uLEVldOvWa3MMO8SHGgE+wOABHO56epQ+WbNd7i7Yp6YSzPuSoPHiRUkoNu/1vr4bLpfBo09MAQFCh3WVDu0uJdgOA39DusqHdpdSou9RlGO0GKojFAThS8okMTfllm95fvE3H0rNNjxMweJFSRlE1pK43ST3ukKrEmZ4GAAIa7S4f2l1GtBsAfIZ2lw/tLqOoGlLXm6Ueo2g3UA4sDsBR9hxJ09sLturjZTuVlpVjepyAw4uUcoqIzX2x0nOMFFPL9DQAEFBod8XQ7nKi3QBQbrS7Ymh3OUVUlbrdLPUYTbuBMmBxAI6w9eAJvTF/i2at3K2sHB7y5cWLlAoKj5G63ij1vFOKrW16GgCwNdrtG7S7gmg3AJQa7fYN2l1B4TG57wLsOYZ2A6UQZnoAwJ/W7D6q1+dv1pw1++TmtQlMy0qRfp0sLXs39wOUet0pVa1reioAsBXaDVuh3QBQItoNW8lKkX59RVr2b9oNlAKLAwhKv21N1mvzt2jBxoOmRwEKykqVlrwmLX839wOUet0lVatveioAMIp2w9ZoNwAUQLtha7QbKBUWBxBUft54UJN/2KTl2w+bHgUoWXa69Nub0vIp0ulDpLPGStUTTE8FAJWKdiOg0G4AoN0ILLQbKBaLAwgKiUkpeuzLtfppA3ssIADlZEjL3pH+mCaddoPU9yGOjQgg6NFuBDTaDcCBaDcCGu0GCsXiAAJaSka2Jv+4We8tSlRmjtv0OEDF5GRKy9+TVn8m9X1A6narFMpmGkBwod0IKrQbgAPQbgQV2g144dGPgDVrxW49/e167TuWbnoUwLcyjkrfPSit+EDq/6zUtLfpiQDAJ2g3ghbtBhCkaDeCFu0GJLE4gAC0ds9Rjf9irZZt4/iGCHIH1knTLpbaXy5d8CTHRQQQsGg3HIN2AwgStBuOQbvhcCwOIGAcTsnU899v0IdLd8htmZ4GqERrP5c2fi+dfY/UY7QUFmF6IgAoFdoNx6LdAAIU7YZj0W44FIsDsL0ct6X//LZdL8zdqCOpWabHAczISpF+eExaMUPq/4zU8nzTEwFAkWg3INoNIKDQbkC0G47E4gBsbWniIY3/Yq3W7T1mehTAHg5tkWZcJbXqL100UYpranoiAPBCu4GT0G4ANke7gZPQbjgIiwOwpX1H0/XUN3/pi1V7TI8C2NPGb6WtP0k9R0u975HCo01PBMDhaDdQAtoNwGZoN1AC2g0HCDE9AHCyj5ft0HkvzOcFClCS7HRpwXPSm72lXctNTwPAwWg3UEq0G4BN0G6glGg3ghyLA7CNo6lZun367/rnZ6uVkpljehwgcCRvkt69IPfYiNmZpqcB4CC0Gygn2g3AENoNlBPtRpBicQC2sHhLsi6atEDfrtlnehQgMFk50sIXpHfOlfatMT0NAAeg3UAF0W4AlezXLUm0G6gI2o0gxOIAjMrKcevpb9fr+n8v0d6j6abHAQLf/tXSO+dIC1+Q5XabngZAEKLdgI/RbgB+ltfuG/79G+0GfCFfu905tBuBjcUBGJOYlKIr3/hVb/68RW7L9DRAEMnJ1K4Ny3XN279pz5E009MACCK0G/AT2g3AT2g34Cc5mdq54XcNfod2I7CxOAAjPl62QwNfWag/dx01PQoQdLKrJuiaXVdr6bZD6j9pob5dvdf0SACCAO0G/Id2A/AH2g34T3bVBA3edRXtRsBjcQCV6mhqlkbOyP3wo1Q+/AjwOUsuPR05RrvTIyVJR9OydPuMP/Tgf/9UGs85AOVAuwH/ot0AfC3/hw7TbsD3LFeInoqg3QgOLA6g0uR9cOE3q/nwI8BfVje6Xv/e1ajA6R8u3an/e3WR1u05ZmAqAIGKdgP+R7sB+BIfOgz4358Nr9d7u2k3ggOLA/C7rBy3npnDBxcC/pYe10bXJl5Y5L9vPnBCl73+i6b8kliJUwEIRLQbqBy0G4Cv8KHDQOVIr9VO122l3QgeYaYHQHDblpSiMR+t4BiHgJ9ZoZG6K2uUUrJDiz1fZrZbE75cpzW7j2niFR0VEcYaMQBvtBuoHLQbgK/QbqByWKGRGpMxUik5xbeYdiOQ8OiE3yzalKRLX/uFFyhAJZhXf4TmHKxV6vN/9scu3fDv33QoJdOPUwEINLQbqDy0G4AvLNx0UJe8uoh2A5Xg+/oj9H1SXKnPn9fuw7QbNsbiAPzi/cXbNGzKUh1NyzI9ChD0jtTroVu3dC/z1y3ddkiXvfaLNh847oepAAQa2g1UHtoNwBem/bpNw6cs07H0bNOjAEHvcL1euq2c7b6UdsPGWByAT2XnuPWvWav16Oy1ynZbpscBgp47qoaGHBouy3KV6+t3HErV5a//qgUbD/p4MgCBgnYDlYt2A6iovHaP+4J2A5XBHVVDQ5KH0W4EJRYH4DNHU7M0dMpSTV+yw/QogGNMrTlafx6LrdBlHE/P1o1Tl+mDxdt8MxSAgEG7gcpHuwFUBO0GKt+UmmO0+nhMhS6DdsOuWByAT2w5mPtp7L9sTjY9CuAYOxterMcS2/rksrLdlh6ZvVbjZq9RDnsfAY5Au4HKR7sBVATtBirfjob/p8cT2/jksmg37IjFAVTYkq3JuuL1X5WYlGJ6FMAxsqsmaNCuq3x+udMWb9eNU5fpeDrHHAeCGe0GKh/tBlARS7Ym6/LXfqHdQCXKrtpQg3Ze6fPLpd2wExYHUCFfrtqjIe/x4YVAZbJcIXoi/E7tTY/wy+X/vPGgrnzjV+08lOqXywdgFu0GKh/tBlARX67aoyHvLuWDh4FKZLlC9Hj4ndqXQbsR3FgcQLm9s2Crxny0QpnZbtOjAI6yquENmrqnoV+vY+P+E7rstV+0fNshv14PgMpFuwEzaDeA8np7wZbcdufQbqAyrWg4RNP2JPj1Omg37IDFAZSZ221pwpdr9eQ3f8niEGlApUqr1V7Xb72gUq4rOSVT1/37N32+YlelXB8A/6HdgDm0G0B5uN2Wxn+xVk99s552A5UsrVYH/WNrv0q5LtoN01gcQJmkZ+Vo1H/+0JRftpkeBXAcKyxKYzJuV0pO5W26M7PdGvvxKr08b2OlXScA36LdgDm0G0B55LV76q/bTI8COI4VFqU70m+j3XCMMNMDIHAcS8/SjVOWafn2w6ZHARzpu3ojNHdznJHrfnneJuW4Ld1zQWsj1w+gfGg3YBbtBlBWtBswa0692/QD7YaDsDiAUjmRka0h7y7Vyp1HTI8CONLher10+5ZuRmeY/ONmuVwu3X1+K6NzACgd2g2YRbsBlBXtBsw6VO8sjdzS1egMtBuVjcMKoUSpmdka9h4vUABT3FE1dUPyMFmWy/QoeuWHTbzVEQgAtBswi3YDKCvaDZjljo7T9Um0G87D4gCKlZaZo+G8pREw6t0aY7T2eIzpMTxenrdJk+ZtMj0GgCLQbsA82g2gLGg3YN6/q4/RXyeqmB7Dg3ajsrA4gCKlZ+XolveX67fEQ6ZHARxre8NL9OQ2+x1v8KV5GzX5B16oAHZDuwHzaDeAsqDdgHnbGl6qp7bZ7zA+tBuVgcUBFCoz263bpv+uRZuTTI8COFZ2tUa6ZucVpsco0gtzN+q1nzabHgPA/9BuwDzaDaAsaDdgXna1UzSIdsPBWBxAAVk5bo2c8YfmbzhoehTAsSxXiCaEjdG+jAjToxTrue826PX5vFABTKPdgHm0G0BZ0G7APMsVqglho3UgI9z0KMWi3fAnFgfgJTvHrdH/WaF5f+03PQrgaH80HKIP9iSYHqNUnp2zQW/M32J6DMCxaDdgD7QbQGnRbsAefm80lHbD8VgcgEeO29LYT1Zpztp9pkcBHC0tvoNu2Hqe6THK5Jk56/XWz7xQASob7QbsgXYDKC3aDdhDanxH/WPLOabHKBPaDX9gcQCSJLfb0n2frtKXq/aYHgVwNCssWqPSbldaTqjpUcps4rfr9c6CrabHAByDdgP2QLsBlBbtBuzBCovWyNTbaDcgFgcgybIsPfjf1frvH7tNjwI43jf1btOPyTVNj1FuT37zl/69kBcqgL/RbsA+aDeA0qDdgH18Vfd2zT9EuwGJxQFI+tesNfp4+U7TYwCOl1z/bN2x5QzTY1TYE1//pQ+X7jA9BhDUaDdgD7QbQGnRbsAekuv30WjaDXiwOOBwT3y1TjN+Y2MCmOaOjtMNB4fIslymR/GJR2ev0eItyabHAIIS7QbsgXYDKC3aDdiDO7qWrj/4D9Nj+Azthi+wOOBgHy3doX8vSjQ9BgBJb1W7U3+dqGJ6DJ/JyrF0+4zftT05xfQoQFCh3YB90G4ApUG7Aft4q9oYrafdgBcWBxxq+bZDenT2WtNjAJCU2OgyPbO9pekxfO5IapZumrZcx9KzTI8CBAXaDdgH7QZQGrQbsI+tDS+n3UAhWBxwoD1H0nTb9N+VmeM2PQrgeFnVGuuaHZebHsNvNh84odH/WaEct2V6FCCg0W7APmg3gNKg3YB95Lb7MtNj+A3tRkWwOOAw6Vk5uvWD5Uo6kWl6FMDxLFeoxoWO0YGMcNOj+NXPGw/qya//Mj0GELBoN2AftBtAadBuwD4sV6geCR2jg5m0GygMiwMOc9+nf2rN7mOmxwAgaXnDofrP3vqmx6gU7/2SqI+W8iFsQHnQbsA+aDeA0qDdgH0sazhMHzmo3R8vo90oGxYHHOS1nzbry1V7TI8BQFJqfCfdsOVc02NUqkdmr9FvW5NNjwEEFNoN2AftBlAar8+n3YBdpMafqn9sOcf0GJXqX7NoN8qGxQGH+OGv/Xrh+w2mxwAgyQqvotvTRijD7axNcFaOpdtn/KGdh1JNjwIEBNoN2Aftpt1Aafzw1349/x3tBuzACq+i21JpN1ASZz1DHGrzgeO666OV4nNJAHv4su7t+jm5pukxjDiUkqmbpi3TiYxs06MAtka7AXuh3bQbKAntBuzlizojteBQDdNjGEG7URYsDgS5o6lZunnach1ngwDYQnL9PhqzuYvpMYzauP+Exny4Qm5+cgIKRbsBe6HdtBsoydG0LN3y/u+0G7CJpAZ9deeW002PYRTtRmmxOBDEctyW7vjwD21L5q1EgB24o+N17YEhpsewhR/XH9DEb/8yPQZgO7QbsBfa/TfaDRQux23pjv/8ocSkFNOjAFBuu6/b/w/TY9jCj+sP6Ok5602PAZtjcSCIPfXNX1q4Kcn0GAD+5/VqY7QxJdr0GLbxzsJEzVy+0/QYgK3QbsBeaLc32g0UNJF2A7byWtU7aXc+by/YSrtRLBYHgtSnv+/Su4sSTY8B4H+2NLxCz29vYXoM23n48zVat+eY6TEAW6DdgL3Q7sLRbuBvn/2+S/+m3YBtbG50pV7Y0dz0GLbz8CzajaKFmR4Avrdm91E99Plq02MAxTqeYemRnzL0+fosHUixdFq9UE26KEpdE0ILPf+wWWmatiqrwOntaodo7chYSdKMP7P0wA/pOpFpaXjnCL14YZTnfNuOuHXBB6lafmuMqkW6/PNNFSGrehMN3nFppV5noMjMcWvMRyv01eizFBVe+H0POAHtRiCg3ZBoN5Bn7Z6jepB2w+ac1e6mumb7JZV6nYEiM9utOz9aoS9pNwrBOweCTGa2W/d8skqZ2W7TowDFuvnLNM3dmq0PLo/W6ttjdUHzUPX7IEW7jxX+2J10UZT23hPr+bNzbKziol26ul3uGmdSqls3f5mm58+P0vc3xGj6n1n6auPfL2pGfp2up/tFVvoLFMsVqn+FjNHBzPBKvd5AsvnACT3x9TrTYwDG0G4ECtqNPLQbTpeZ7dbdH9Nu2J9j2h0Spodco5VMu4u06cAJPfk1nx2EglgcCDIvzt2oDfuPmx4DKFZalqXP1mXr2X6ROrtxmFrEhWh83yi1iAvRG8szC/2a6lEu1YsN8fxZvidHh9Ny91SQpK2HLVWPdOmaDuHqmhCqc5qG6q+DuS94PlydpfBQ6Yq2lf9CYWnDG/Xx3nqVfr2BZvqSHZq3br/pMQAjaDcCAe3GyWg3nIx2IxA4qd1LEoZr5j7aXZIPlmyn3SiAxYEg8seOw3pn4VbTYwAlynZLOZYUFea9N0F0mEuLduSU6jLeXZGlfs1C1bhG7masZVyIUrMsrdibo0NplpbtzlGnuqE6nGbpkZ/S9Wr/qBIu0fdSanfWkC19Kv16A9U/P/tTB46nmx4DqFS0G4GCdqMwtBtORLsRKJzU7mG0u9RoN07G4kCQSM/K0b2frFKO2zI9ClCiqpEu9WgYqscXZGjPcbdy3Jam/5mpxbtytPdEyY/hPcfd+nZTtm4+PcJzWs1ol6ZdFq0hs9LU7Z0TGnJquC5sEaZ7v0/XHd0ilHjErdPeOqEOr5/Qp+sKHkPR16zwGI1IGaEMN5vZ0kpOydS9M/+UZbEdgzPQbgQS2o3C0G44De1GIHFKu289QbvLIjklU/d8sop2w4MPJA4ST3+7XluTUkyPAZTaB5dH68Yv0pTw4gmFuqTT64fo2g7h+n1vyXswTFuZpRpRLl3WxnsTdnnbcF2e7y2MP2/L1p8HcjR5QJRavHJCH14ZrXqxLnX7d4rObhyqOjH+ewExq87tWrSlut8uP1gt2HhQ7/2yTTed1dT0KIDf0W4EGtqNwtBuOAntRqAJ9nZ/XmekfqHdZbZwU5LeXZSom3s3Mz0KbIDFgSCweEuypi3eZnoMoEyax4Xo52ExSsm0dCzDUv2qIbrm01Q1q1n8CwfLsvTeyiz9o1O4IkKL/pCjjGxLI79J1weXR2vzIbey3VKfJrmbvFa1QvTbrhz9X2v/vEg52OBcjd1yul8u2wmenbNefVrVVos6saZHAfyGdiMQ0W4UhXbDCWg3AlEwt/tAg/N095bT/HLZTvDcdxvUt3Ud2g0OKxToUjKydd+nq8S7gRCoYiJcql81RIfTLH23OVuXti5+zfLn7TnafMitm04v/kOOnliQoYuah+n0+qHKcUvZ+d76m5WTe+xFf3BXidd1+6/3z4U7REa2W/fO5O3aCF60G4GOduNktBvBjnYj0AVfu2vr2n3X+efCHYJ2Iw+LAwHuia/XadfhNNNjAGX23eZszdmcrcTDbs3dkq1zpqWoTXyohnfOffHx4Lx0Dfm84GP73RVZ6p4Qqg51Qou87HUHc/Tx2mw9dk6kJKlNfIhCXC69+0emvt6YpfVJbnVtUPTXV8Tk2Lu0KSXaL5ftJCt3HtHbC/igNwQn2o1ARbtRHNqNYEa7EaiCtd2vxN6pLam0u6JoNyQOKxTQ5m84oA+X7jQ9BlAuRzMsPfhDunYdsxQX7dKVbcP05LlRCv/fWxb3nrC046jb+2vSLX22LkuTLooq8nIty9KtX6brxQsjFRORe1nR4S5NvSxKo75JV0a29OqAKCVU8/3a6KZGV+mlTRyzz1demrdR/drWUcu6VU2PAvgM7UYgo90oCe1GMKLdCGTB2O6Nja7Wy7TbZ2g3XBYfTx2QjqZl6cKXFmjfsXTTo8BB5rf4WE12zTY9hi1lVW+mMw+PU3Jm8W+7RNmc2rC6/juyl0JDij7OJRAoaDdMoN1Fo93+QbsRTGg3TKDdRcus0Uzdk8frcBb7OvsS7XY2DisUoCZ8sZYXKIBNWCFhetA1ml8u+MGqXUf15s9bTI8B+ATtBuyDdvsP7UYwGU+7AduwQsL0oDWahQE/oN3OxuJAAPpu7T79d8Vu02MA+J/FCTfq0311TY8RtCbN26SN+4+bHgOoENoN2Avt9i/ajWAwZ80+fU67Adv4NeEmfbafdvvLpHmbtIl2OxKLAwHmUEqmHv58tekxAPzPidqnaeiWPqbHCGqZOW5N+HKt6TGAcqPdgL3Qbv+j3Qh0yScy9K9ZtBuwixO1T9ewLWebHiOoZea4NZ52OxKLAwHmia/XKelEpukxAEiyImJ0y4lbleXmuHz+9svmZM1dt9/0GEC50G7APmh35aHdCGRPfv0X7QZswoqI0c3Hb6HdleCXzcmaR7sdh8WBALJix2He1gjYyGfxo7T4cHXTYzjGU9/8pawct+kxgDKh3YC90O7KRbsRiFbsOKzPV9JuwC4+jR+lJUdod2Wh3c7D4kCAsCxLj321TpZlehIAknSgwXm6d2tn02M4SmJSit5fvN30GECp0W7AXmh35aPdCDSWZWnCl7QbsIt9Dc7XfbS7Um2l3Y7D4kCAmLVyt1bsOGJ6DACScmLqaPC+602P4Uiv/LBJR1J5izcCA+0G7IN2m0O7EUhmrdytlTuPmB4DgHLbfd2+a02P4Ui021lYHAgAqZnZeubbDabHAPA/r8SM0dbUKNNjONLRtCy9NHej6TGAEtFuwF5otzm0G4GCdgP28nLMnbTbkKNpWXp53ibTY6CSsDgQAN6Yv0X7jqWbHgOApA2NBmnSjmamx3C0Gb/t0OYDx02PARSLdgP2QbvNo90IBLQbsI/1ja7R5B1NTY/haNOXbNfmAydMj4FKwOKAze06nKq3F2w1PQYASZk1mmvQtotNj+F42W5LT379l+kxgCLRbsA+aLc90G7YHe0G7COzRgtds22g6TEcL7fd60yPgUrA4oDNPTNngzKy+ZRwwDQrJFz3W6N1NCvM9CiQ9NOGg1qw8aDpMYBC0W7AHmi3vdBu2BntBuwht9130G6boN3OwOKAja3edVRf/bnH9BgAJC1KuEmz9tcxPQbyeeLrdcpxW6bHALzQbsA+aLf90G7Y0ZrdtBuwi4UJN9Num6HdwY/FARt7Zs56WTz/AOOO1zlDN27pbXoMnGTj/hP6z9IdpscAvNBuwB5otz3RbtjR09/SbsAOjtc5Q8M39zI9Bk5Cu4MfiwM2tWhTkhZtTjI9BuB4VkSsbjp2s7LcLtOjoBAvzd2oY+lZpscAJNFuwC5ot73RbtgJ7QbswYqI1fCjtyjH4teUdkS7gxvPOhuyLEvPzFlvegwAkj6Jv0NLj1QzPQaKcCglU6/+uNn0GADtBmyEdtsb7YZd0G7APj6OH63lR6uaHgNFOJSSqck/bDI9BvyExQEb+urPvVq9+6jpMQDH25dwvv65tZPpMVCCqb9s0/bkFNNjwOFoN2APtDsw0G7YAe0G7GFfwgV6YGtH02OgBNN+3a5tSbQ7GLE4YDNZOW698P0G02MAjpcTU1eD91xregyUQmaOWy98v9H0GHAw2g3YA+0OHLQbptFuwB5yYupp8J7BpsdAKWTmuPXiXNodjFgcsJmPl+3UtuRU02MAjmbJpRer3KltaVGmR0EpfbN6r3YdZtsJM2g3YB7tDjy0GybRbsA8Sy49X2UM7Q4gtDs4sThgI263pbcWbDE9BuB46xtdo9d2NjE9Bsog223pvUXbTI8BB6LdgD3Q7sBDu2EK7Qbs4a9Gg/UG7Q4otDs4sThgI9+t3aedh9JMjwE4WmbNlhq8bYDpMVAOHy/boaNpWabHgMPQbsA82h24aDdMoN2AeRk1W+maxP6mx0A50O7gw+KAjfx7UaLpEQBHs0LCdU/OHTqaFWZ6FJRDSmaOpi/ZbnoMOAztBsyi3YGNdsME2g2YZYWE696cUTqeTbsDEe0OPiwO2MSKHYf1+/bDpscAHO3nhFv05YHapsdABUz7dZsys92mx4BD0G7APNod+Gg3KhPtBsyj3YGPdgcXFgdsgr0XALOO1emqmzb3ND0GKujA8QzNWrHb9BhwCNoNmEW7gwPtRmV6l3YDRh2r2412BwHaHVxYHLCBXYdTNWfNPtNjAI5lRVbVsKM3K8dikxgM3lm4VZZlmR4DQY52A2bR7uBCu1EZdh9Jo92AQVZkVQ07chPtDhK0O3jwjLSBab9uU46bJxRgyodxd+iPo1VNjwEf2XTghH7acMD0GAhytBswi3YHF9qNyjD1l0Rl027AmP/UGk27gwjtDh4sDhh2IiNbHy3baXoMwLH2JFykhxI7mh4DPvbWz1tNj4AgRrsBs2h3cKLd8CfaDZi1J+EiPby1g+kx4GO0OziwOGDYx8t26nh6tukxAEfKia2vwXsGmR4DfvBb4iH9ueuI6TEQpGg3YA7tDl60G/5EuwFzcmLra9Dua0yPAT/4LfGQVu08YnoMVBCLAwbluC1N/ZUPRAJMsOTSs1F3akdalOlR4CdvLWAvBvge7QbMod3Bj3bDH2g3YE5eu3elR5oeBX7y9kLaHehYHDDou7X7tPNQmukxAEda1+havbXrFNNjwI/mrNmnnYdSTY+BIEO7AXNod/Cj3fAH2g2Ys7bRdbQ7yNHuwMfigEH/ZnUNMCKjZmsNTrzI9Bjwsxy3pXcXsZcYfIt2A2bQbmeg3fAH2g2YkRHXWtcmXmh6DPhZjttiOxvgWBww5I8dh/XHjiOmxwAcxwqN0NjsUTqeHWZ6FFSCT5bv1JHUTNNjIEjQbsAM2u0stBu+RLsBM6zQCN2VRbudYubvu2h3AGNxwJB3F7JHDGDCTw1u0TcH402PgUqSmpmjj5btND0GggTtBsyg3c5Cu+FLtBsw48cGt+pb2u0YtDuwsThgwK7DqZqzdp/pMQDHOVa3u27Z3MP0GKhks1bsNj0CggDtBsyg3c5Eu+ELtBsw42jdM3Xr5jNNj4FKRrsDF4sDBnz2+27luC3TYwCOYkVW07AjNynHYrPnNOv3HdeGfcdNj4EAR7uByke7nYt2wxdoN1D5rMjqGnr4RtrtQLQ7cPFsNeCrP/eYHgFwnOlxo/XH0VjTY8CQ2SvZiwEVQ7uByke7nY12o6JoN1D5PogbrZXHaLdT0e7AxOJAJVu/75g2HThhegzAUXY1HKBHEtubHgMGfbFqjyyLPcdQPrQbqHy0G7QbFUG7gcq3q+FAPZrYzvQYMIh2ByYWByrZl6vYewGoTDmxDXTNrqtNjwHDdh1O0+/bD5seAwGKdgOVi3ZDot2oGNoNVK7sqgm6ZtdVpseAYbQ7MLE4UMm++nOv6REAx7Dk0sSoO7U7PdL0KLCB2Sv5IRHlQ7uBykO7kR/tRnnRbqDyWHJpYsQY2g1JtDsQsThQif7cdUTbk1NNjwE4xppTrte/dzUyPQZs4pvVe5Wd4zY9BgIM7QYqF+1GfrQb5UG7gcq1utENenc37Uaur2l3wGFxoBLx1kag8qTHtdHgrReaHgM2kpySqYWbk0yPgQBDu4HKQ7txMtqN8qDdQOVJj2uraxMvMD0GbORQSqYWbqLdgYTFgUpiWZa+5q2NQKWwQiN1V9YopWSHmh4FNjN7xW7TIyCA0G6g8tBuFIV2oyxoN1B5rNBIjcmk3Sho9kraHUhYHKgkv28/rD1H002PATjCvPq3as7BWqbHgA3NXbdfaZk5psdAgKDdQOWh3SgK7UZZLKfdQKWZV3+Evk+KMz0GbIh2BxYWByoJb20EKseRej1065YzTY8Bm0rJzNHcv/abHgMBgnYDlYN2ozi0G2XxFe0GKkVuu7ubHgM2lZKZo+/X7TM9BkqJxYFK4HZb+mYNTwrA36zI6hpyaLgsy2V6FNjYF7zFEaVAu4HKQbtRGrQbpZHjtvT1atoN+Js7qgbtRom+WMlibaBgcaASLNmarIPHM0yPAQS9qXFj9OexWNNjwOZ+3nhQR1IzTY8Bm6PdQOWg3SgN2o3SWLI1WUknaDfgb1NrjqbdKNGCTQd1OIV2BwIWByrBl3+yWgb4286GAzUhsa3pMRAAsnIsfb2aD6pD8Wg34H+0G6VFu1EaHA4Q8L+dDS/WY7QbpUC7AweLA36WnePWHA5LAPhVdtUEDdp1tekxEEBm8xZHFIN2A/5Hu1FWtBvFycpxa85a2g34U267rzI9BgIIhxYKDCwO+NnCzUk6nJplegwgaFmuED0VMUZ70yNMj4IAsnzbId7iiCLRbsC/aDfKg3ajOIs2JekI7Qb8xnKF6InwO2k3ymT59kM6RLttj8UBP/vmT95CA/jTqoY36L3djUyPgQDjtqRFm5NMjwGbot2Af9FulAftRnE4dAXgX6sa3qCpexqaHgMBxm1Jv9Bu22NxwM94EgD+k16rna7feoHpMRCgFm1i+4zC0W7Af2g3KoJ2oyi0G/CftFrtaTfKbeGmg6ZHQAlYHPCjnYdStedouukxgKBkhUVpdMZIpeSwGUP5sPchCkO7Af+h3ago2o3C7EhO1V7aDfiFFRalMRm3026UGwv79sez24+WbE02PQIQtL6rN0Jzk+JMj4EAtvtImrYcPGF6DNgM7Qb8h3ajomg3CrMkkXYD/kK7UVF7jqZr8wHabWcsDvjRb4mHTI8ABKXD9Xrp9i3dTI+BILBwI29xhDfaDfgH7Yav0G6c7LettBvwB9oNX1nEoYVsjcUBP/qNPRgAn3NH1dSQ5GGyLJfpURAEODwBTka7Ad+j3fAl2o2T0W7A99xRNXUD7YaPLOTQQrbG4oCf7DmSpp2H0kyPAQSd92qM0erjMabHQJBYsvWQsnLcpseATdBuwD9oN3yJdiO/3UfStOsw7QZ87d0aY7SWdsNHlmxNpt02xuKAn7D3AuB72xteoie2tTY9BoLIiYxs/bnriOkxYBO0G/A92g1fo93I7zc+Kwjwue0NL9GTtBs+lJKZQ7ttjMUBP1myheMeAr6UXa2Rrtl5hekxEISWJh42PQJsgnYDvkW74S+0G3n4vAHAt2g3/IV22xeLA37C3oeA71iuED0Wdqf2ZUSYHgVBaCnba/wP7QZ8h3bDn2g38tBuwHcsV4gmhI2h3fAL2m1fLA74wf5j6dqWnGp6DCBorGg0RO/vaWB6DASp5dsPy+22TI8Bw2g34Fu0G/5EuyHRbsDX/mg4RB/sSTA9BoIU7bYvFgf8YAnHPQR8Jq1WB12/5TzTYyCIHU/P1l/7jpkeA4bRbsB3aDf8jXZDot2AL6XFd9ANW2k3/Od4erbW7ztuegwUgsUBP/gtkeMeAr5ghUVrVPrtSssJNT0KgtwyttuOR7sB36DdqCy0G7Qb8A0rLFqj0mg3/I9DC9kTiwN+8Bt7MAA+8W29EfoxuabpMeAAS7fxw6XT0W7AN2g3KgvtBu0GfOOberfRblSKZdv4UGI7YnHAxw4ez9CWgymmxwAC3qH6vTVqS1fTY8AhlibyIsXJaDfgG7QblYl2OxvtBnwjuf7ZumPLGabHgEOwsG9PLA742FLe2ghUmDs6TtcfHCrLcpkeBQ6RdCJDu4+kmR4DhtBuoOJoNyob7XY22g1UnDs6TjccHEK7UWkOHqfddsTigI9x/Cyg4t6uNkZ/nahiegw4zKb9fDiSU9FuoOJoN0yg3c5Fu4GKo90wgXbbD4sDPrZ2zzHTIwABLbHhZXp6eyvTY8CBNh84YXoEGEK7gYqh3TCFdjsX7QYqhnbDFNptPywO+NhGVsCAcsuudoqu2Xm56THgUJv28yLFqWg3UH60GybRbuei3UD50W6YxOKA/bA44EP7jqbrWHq26TGAgGS5QjUudIwOZISbHgUOtfkgL1KciHYD5Ue7YRrtdibaDZQf7YZpm1gcsB0WB3yIvReA8lvecKhm7G1gegw4GHswOBPtBsqPdsM02u1MtBsoP9oN02i3/bA44EO8SAHKJzW+k4ZsPcf0GHC4o2lZOnAs3fQYqGS0Gygf2g07oN3ORLuB8qHdsIOjaVk6cJx22wmLAz7EixSg7KzwKro9bYTSckJNjwKwF4MD0W6g7Gg37IR2Ow/tBsqOdsNONvOZQbbC4oAPbeDBDZTZV3Vv18/JNU2PAUji+IdORLuBsqPdsBPa7TwbaTdQZl/WvY12wzZot72wOOAjlmVpM3swAGWSXL+PRm/uYnoMwGPTAbbjTkK7gbKj3bAb2u08vFsEKJvk+n00ZvMZpscAPGi3vbA44CP7j2UoJTPH9BhAwHBH19L1B/9hegzAyyb2RHMU2g2UDe2GHdFuZ9l3NF0nMrJNjwEEDHd0vK49MMT0GIAX2m0vLA74yLbkFNMjAAHlzWpjtP5EFdNjAF62HORFipPQbqBsaDfsiHY7C+0Gyub1amO0MSXa9BiAF9ptLywO+MiO5FTTIwABY2ujK/Ts9pamxwAKSDqRqcMpmabHQCWh3UDp0W7YFe12FtoNlN6Whlfo+e0tTI8BFEC77YXFAR9hDwagdLKqN9E12y81PQZQJD4cyTloN1A6tBt2R7udg3YDpZNVvYkG76DdsC/abR8sDvjIdvZgAEpkuUL1r5AxOpgZbnoUoEh8yJ1z0G6gZLQbgYB2O8f2Q7QbKAntRiDgQ4ntg8UBH9l+iD0YgJIsbThcH++tZ3oMoFi8SHEO2g2UjHYjENBu59jOOweAEi1teCPthu2xsG8fLA74CHsfAsVLqd1ZQ7b0NT0GUKKtB/mh0yloN1A82o1AQbudg3YDxcttdx/TYwAlot32weKADySfyNDx9GzTYwC2ZYXHaETKCGW42eTA/pJTMkyPgEpAu4Hi0W4EEtrtDIdSMmk3UAzajUBCu+2DLYYP7D2abnoEwNZm171diw5VNz0GUCqHU7JMj4BKQLuB4tFuBBLa7Qx7jqSZHgGwtVl1aDcCB+22DxYHfOBoGg9ooCgHG5yjuzafbnoMoNSOpGaaHgGVgHYDRaPdCDS02xloN1C0gw3O1dgttBuBg3bbB4sDPnCMFylAodxV4nXd/htMjwGUSUpmjjKz3abHgJ/RbqBwtBuBiHY7A+0GCpfb7utNjwGUCe22DxYHfOBYOi9SgMK8VvVObUqJNj0GUGZH0tiLIdjRbqBwtBuBinYHP9oNFG5y7F20GwGJdtsDiwM+wNsbgYI2NbpKL2xvbnoMoFyOpLJdD3a0GyiIdiOQ0e7gR7uBgjY1ukov7WhmegygXGi3PbA44APH0rJNjwDYSlb1Zhq8/f9MjwGU2+EU9mAIdrQb8Ea7Eehod/Cj3YA32o1AR7vtgcUBH2APBuBvVkiYHnSNVnJmuOlRgHI7zB4MQY92A3+j3QgGtDv40W7gb7QbwYB22wOLAz7AsQ+Bvy1OuFGf7qtregygQo5y7MOgR7uBv9FuBAPaHfxoN/A32o1gcCSVdtsBiwM+cIw9GABJ0onap2nolj6mxwAqjD0Ygh/tBnLRbgQL2h38aDeQi3YjWBxhu24LLA74AG9vBCQrIkYjTtyqLLfL9ChAhR1mD4agR7sB2o3gQruDH+0GaDeCC+22BxYHfOBYOh+MBPy39ij9cri66TEAnziSwg+fwY52A7QbwYV2Bz/aDdBuBBfabQ8sDvgAezDA6Q40OE/3bOlsegzAZ9iDIfjRbjgd7Uawod3Bj3bD6Wg3gg3ttgcWB3yAYx/CydxVauvafdeZHgPwKY59GPxoN5yMdiMY0e7gR7vhZLQbwYh22wOLAxWUkZ2jjGy36TEAYybF3qktqdGmxwB86gh7MAQ12g2no90IRrQ7uNFuOB3tRjCi3fbA4kAF8dZGONmGRoM0aUcz02MAPnc4lW17MKPdcDLajWBFu4Mb7YaT0W4EK9ptDywOVNCxND4UCc6UWaO5Bm+72PQYgF+kZ+aYHgF+RLvhVLQbwYx2BzfaDaei3QhmtNseWByooGPprHLBeayQcD1gjdbhrDDTowB+ERrqMj0C/Ih2w4loN4Id7Q5utBtORLsR7Gi3PbA4UEGWZXoCoPL9knCj/ru/jukxAL8JC+FFSjCj3XAi2o1gR7uDG+2GE9FuBDvabQ8sDlRQRCg3IZzlRJ0uGr7lbNNjAH4VyouUoEa74TS0G05Au4Mb7YbT0G44Ae22BwpbQeFhPJDhHKmuKrrp2C3KcvO4R3ALCyGPwYx2w0loN5yCdgc32g0nod1wCtptDxy4rILYgwFOcteeftqYEm16DMDv2IMhuNFuOAnthlPQ7uBGu+EktBtOQbvtgcJWUDgvUuAgvECBU3Dsw+BGu+EktBtOQbuDG+2Gk9BuOAXttgcKW0ERYdyEABBs2IMhuNFuAAg+tDu40W4ACD602x4obAWxBwMABB9epAQ32g0AwYd2BzfaDQDBh3bbA4WtIPZgAIDgExbKi5RgRrsBIPjQ7uAWzv0LAEGHdtsDPx1XEC9SACD4hIaQx2BGuwEg+NDu4MbCPgAEH9ptD9wLFRTB2xsBIOjwwUjBjXYDQPCh3cGNdgNA8KHd9kBhK8jlcvFgBoAgw7EPgxvtBoDgQ7uDG+0GgOBDu+2BxQEf4MORACC48MNn8KPdABBcaHfwo90AEFxotz1QVx/g+IcAEFzYgyH40W4ACC60O/jRbgAILrTbHqirD7AHAwAEF/ZgCH60GwCCC+0OfrQbAIIL7bYH6uoDEaE8mAEgmITxw2fQo90AEFxod/Cj3QAQXGi3PXAv+EA4b28EgKBSIzrc9AjwM9oNAMGFdgc/2g0AwYV22wN19YEqEWGmRwAA+FB81UjTI8DPaDcABBfaHfyiw0NNjwAA8CHabQ8sDvhAvWo8mAEgmMTHsl0PdrQbAIIL7Q5+9apHmR4BAOBDtNseWBzwgfo1ok2PAADwofjYCNMjwM9oNwAEF9od/BrQbgAIKrTbHlgc8IEG7MEAAEGlNnswBD3aDQDBhXYHP9oNAMGFdtsDiwM+UL86ezAAQDCpxYuUoEe7ASC40O7gR7sBILjwmQP2wOKAD9SvwR4MABBMeHtj8KPdABBcaHfwo90AEFz4zAF7YHHABxqwBwMABI3QEJdqVuEXDMGOdgNA8KDdzkC7ASB45LY73PQYEIsDPlGPYx8CQNCoUzVSISEu02PAz2g3AAQP2u0MtBsAgkedqpFyuWi3HbA44ANR4aGqFcOeKgAQDBrUYK80J6DdABA8aLcz0G4ACB4JtNs2WBzwEY5/CADBgRcpzkG7ASA40G7noN0AEBxY2LcPFgd8pD7HPwSAoJBQk+25U9BuAAgOtNs5aDcABAfabR8sDvhIA45/CABBgT0YnIN2A0BwoN3OQbsBIDjQbvtgccBH6vOgBoCg0JDtuWPQbgAIDrTbOWg3AAQH2m0fLA74SH32YACAoMAeDM5BuwEgONBu56DdABAcOKyQfbA44CO8IAWA4MCLFOeg3QAQHGi3c9BuAAgObM/tg8UBH+FBDQCBr1ZMhGIjw0yPgUpCuwEg8NFuZ+GdAwAQ+OJjabedsDjgI3WrRio0xGV6DABABbRrUM30CKhEtBsAAh/tdpZ61aJEugEgsLVrUN30CMiHxQEfCQsNUeO4KqbHAABUQIcEXqQ4Ce0GgMBHu50lLDRETWrFmB4DAFABHVjYtxUWB3yIvVYAILB1YA8Gx6HdABDYaLfztKXdABDQWNi3FxYHfIhfMABAYOuQwHbcaWg3AAQ22u087Wk3AAQ0FvbthcUBH2pXnxcpABCoqkWFqTFvU3cc2g0AgYt2OxPtBoDAVS0qTKfU4tCudsLigA+1Z+ULAAIWe5A7E+0GgMBFu52JdgNA4GIbbj8sDvhQ7aqRql010vQYAIBy4K2NzkS7ASBw0W5not0AELg4HKD9sDjgY7zFEQACEx+K5Fy0GwACE+12LtoNAIGJdtsPiwM+xocjAUBgYg8G56LdABCYaLdz0W4ACExsv+2HxQEf69SQFTAACDRVIkLVLD7W9BgwhHYDQOCh3c5GuwEg8NBue2JxwMdOO6Wm6REAAGXUtn41hYS4TI8BQ2g3AAQe2u1stBsAAg/tticWB3ysbrUoNageZXoMAEAZdOCtjY5GuwEg8NBuZ6PdABB4aLc9sTjgB+zFAACBpT0fiuR4tBsAAgvtBu0GgMBCu+2JxQE/OO2UGqZHAACUQYcGvEhxOtoNAIGFdoN2A0Bgod32xOKAH/AiBQACR0RYiFrV5UORnI52A0DgoN2QeOcAAAQS2m1fLA74QfsG1RURyk0LAIGgbf1qCmOb7Xi0GwACB+2GJHVIqEa7ASBA0G774l7xg6jwULXlQzYAICCc3TLe9AiwAdoNAIGDdkOSIsNoNwAECtptXywO+MmZTeNMjwAAKIW+reuYHgE2QbsBIDDQbuQ5sxntBoBAQLvti8UBPzmnDQ96ALC7mlXCdVqjGqbHgE3QbgCwP9qN/M7ll00AYHu0295YHPCTMxrXVPXocNNjAACKcXar2goJcZkeAzZBuwHA/mg38jujSRztBgCbo932xuKAn4SFhqhPq9qmxwAAFOMc9jZDPrQbAOyPdiO/0BCX+ram3QBgZ7Tb3lgc8KPz2vLgBwC7CnGJXwSjANoNAPZFu1GYczksIADYFu22PxYH/KhvqzoK420zAGBLpzaqoZoxEabHgM3QbgCwL9qNwvRtTbsBwK5ot/2xOOBH1auEq0vjmqbHAAAUgrc2ojC0GwDsi3ajMNWjaTcA2BXttj8WB/yMwxMAgD3xIgVFod0AYE+0G0Xp17au6REAAIWg3fbH4oCfnceLFACwndpVI9UhoZrpMWBTtBsA7Id2ozjnsrAPALZDuwMDiwN+1rx2rJrGx5geAwCQT59WteVycWxaFI52A4D90G4Uh3YDgP3Q7sDA4kAlOLcNezEAgJ3w1kaUhHYDgL3QbpSEdgOAvdDuwMDiQCU4jxcpAGAbYSEu9W4Vb3oM2BztBgD7oN0oDdoNAPZBuwMHiwOVoGvTOFWNCjM9BgBA0umNa6paVLjpMWBztBsA7IN2ozRoNwDYB+0OHCwOVILw0BCd3aq26TEAAOKtjSgd2g0A9kG7URq0GwDsg3YHDhYHKkm/tjwpAMAO2B6jtHisAIA9sD1GafFYAQB7YHscOFgcqCR9W9VRaAif0A0AJnVqWF0t61Y1PQYCBO0GAPNoN8qCdgOAeafS7oDC4kAlqRkToZ7Na5keAwAc7ZqujUyPgABCuwHAPNqNsqDdAGDeINodUFgcqESDu55iegQAcKzo8FBdcmoD02MgwNBuADCHdqM8ru1GuwHAFNodeFgcqEQXtK+r+NgI02MAgCP171hPVaPCTY+BAEO7AcAc2o3yOL8d7QYAU2h34GFxoBKFh4boyi4NTY8BAI7EHuAoD9oNAObQbpQH7QYAc2h34GFxoJJd2/UUufh8JACoVM3iY9StaZzpMRCgaDcAVD7ajYqg3QBQ+Wh3YGJxoJI1iY9Rj2Z8QBIAVKarz+ADkVB+tBsAKh/tRkXQbgCofLQ7MLE4YAAfkAQAlScsxKUruySYHgMBjnYDQOWh3fAF2g0AlYd2By4WBwy4sH091YrhA5IAoDKc06aO6lSNMj0GAhztBoDKQ7vhC7QbACoP7Q5cLA4YEBHGByQBQGW5hrc2wgdoNwBUHtoNX6DdAFB5aHfgYnHAEN7iCAD+V7dapM5pU8f0GAgStBsA/I92w5doNwD4X52qtDuQsThgSNP4GJ3ZjE/wBgB/uvL0hgoNcZkeA0GCdgOA/9Fu+BLtBgD/u7IL7Q5kLA4YxF4MAOA/Lpc0iLc2wsdoNwD4D+2GP9BuAPAfl4tDCgU6FgcMuqhDPdWsEm56DAAISt2axKlJfIzpMRBkaDcA+A/thj9c1KGe4vhgYgDwC9od+FgcMCgyLFRXnM4HJAGAPwzuxt4L8D3aDQD+Q7vhD5FhobritATTYwBAULqmK+0OdCwOGMZbHAHA92pXjdSAjvVNj4EgRbsBwPdoN/zp2u60GwB8jXYHBxYHDGtRJ5YPSAIAH7v5rKaKDAs1PQaCFO0GAN+j3fCn5rVj1aNZLdNjAEBQuemspooKp92BjsUBGxhzbkvTIwBA0KgeHa7rz2xsegwEOdoNAL5Du1EZRp/XwvQIABA0qkeH6wbaHRRYHLCBni3i1a0peyACgC8M7dFYsZFhpsdAkKPdAOA7tBuVoWfzeHWn3QDgE7Q7eLA4YBN3n9/K9AgAEPCqRIRqeK+mpseAQ9BuAKg42o3KNJZ2A0CF0e7gwuKATZzZrBbHQASAChrc9RTVjIkwPQYcgnYDQMXRblQm2g0AFUe7gwuLAzbCXgwAUH4RoSG69exmpseAw9BuACg/2g0T7r6AdgNAeUWEhuiWs3nXQDBhccBGujWNU68W7MUAAOVxZZcE1aseZXoMOAztBoDyo90woWuTOJ3VIt70GAAQkK44PUH1q0ebHgM+xOKAzYztx14MAFBWEaEhGnVOC9NjwKFoNwCUHe2GSWPPb2l6BAAIOBGhIbrjXNodbFgcsJkzmsSpd0v2YgCAshjUtaEa1qxiegw4FO0GgLKj3TCpS2PaDQBlRbuDE4sDNsTxiwGg9CLDQjT6XPb+glm0GwBKj3bDDmg3AJReZFiI7jiHdgcjFgds6PRTaqpPq9qmxwCAgHB998aqW43jFcMs2g0ApUe7YQe0GwBK7/rujfmcoCDF4oBNsRcDAJQsOjxUt/dtbnoMQBLtBoDSoN2wE9oNACWj3cGNxQGb6tyohs5pzV4MAFCcIT0bq3bVSNNjAJJoNwCUBu2GnXRuVEPntqljegwAsDXaHdxYHLAx9mIAgKLFRobptrPZewH2QrsBoGi0G3Z0Vz+OoQ0ARaHdwY/FARvr1LCG+rVlLwYAKMwd57ZQzZgI02MAXmg3ABSNdsOOaDcAFI12Bz8WB2zu7vNbK8RlegoAsJdWdWN101lNTY8BFIp2A0BBtBt2RrsBoCDa7QwsDthcuwbVdH33xqbHAABbefzSDgoPJWGwJ9oNAAXRbtgZ7QaAgmi3M3APB4B7L2ytWryFBwAkSVeclqDuzWqZHgMoFu0GgL/RbgQC2g0Af6PdzsHiQACoHh2uf/ZvY3oMADCuWlSYHhrY1vQYQIloNwDkot0IFLQbAHLRbmdhcSBAXN2lobo0rml6DAAw6r4LWys+NtL0GECp0G4AoN0ILLQbAGi307A4ECBcLpceu7S9QvmUJAAO1alhdY4Fi4BCuwE4He1GoKHdAJyOdjsPiwMBpH2D6rqh+ymmxwCAShfikp64rINC+EENAYZ2A3Aq2o1ARbsBOBXtdiYWBwLMPRe2Vu2qvLUHgLNc1/0UdWpYw/QYQLnQbgBORLsRyO7hkBoAHIh2OxOLAwGmWlS4xv9fe9NjAECliY+N0H0X8uFwCFy0G4DT0G4EumpR4ZpwCe0G4By027lYHAhAAzvV1/nt6poeAwAqxYP926p6dLjpMYAKod0AnIR2IxjQbgBOQrudK8z0ACifJy7roCVbk3U8Pdv0KCiEOyNVRxZOV+qmxXKnHlVEnWaq2e9WRdZvJUmyLEtHF83QiVXfyZ2RosiEtoq7YKTC4xKKvMzjK77R8RXfKPvofklSePwpqtHzWkU3P8NznkM/vKOUNT/IFR6lGn2GKrb9OZ5/S1m/SClrflCdq8b56bsGfK9b0zhd2aWh6TEAn6Dd9ka7Ad+g3Qgmj1/aQUu2JOt4Bu22I9oN+AbtdjbeORCg6laL0j8v4u0+dpU8Z7LSt61U/MX3qP6Nryqq6Wna/9G/lH08SZJ07LfPdOz3LxV34SjV+8cLcoVH6cAnj8rKzizyMkOr1lLNPkNVf+jLqj/0ZUU1PlUH/vuEMg9ulySlbv5NKX/9rDqDHlfNvsN1aM5k5aQelSS5M1J0ZMH7irvgdv9/84CPhIe69MRlHUyPAfgM7bY32g1UHO1GsKlXPUr/7E+77Yp2AxUXHurSk7Tb0VgcCGDXdz9F3ZrGmR4DJ3FnZSh1wy+qcc5wRTXqoPCaDVTjrOsVXrO+jq/4VpZl6fjy2are4xpVaXmmIuo0VfzFdyv7xCGlblxc5OVWadFd0c27KjwuQeFxCap59hCFREQpY88GSVJW8k5FNeqoyPotFdOuj1wRVTx7Oxz+aYqqnjZAYdXqVMptAPjCjb2aqlXdqqbHAHyKdtsT7QZ8g3YjGF3f/RR1a0K77YZ2A75x41lN1ZJ2OxqLAwHM5XLp6Ss6KiKMu9FW3DmS5ZYr1PtYba6wSGXsWqvso/uVk3JY0U06e/4tJDJGkQ1aK2PP+lJdheXOUcq6n+XOSldkQu6eLBG1mypz32blpJ9Qxr7NsrIzFFazgdJ3rVXm/i2q2uX/fPYtAv7WvHaM7uzX0vQYgM/Rbpui3UCF0W4EK5fLpYlX0m7bod1AhTWvHaO7zmtlegwYxmcOBLhmtWM1tl8rPTOndHGD/4VEVlFkgzY6+utHCq/VSKExNZTy1wJl7FmvsJr1lXPicO75Ymp4fV1olRrKSTlS7GVnHtymfR/cKys7U66IaNW5/GFFxJ8iSYpu1kUx7ftq37SxcoVFKH7gWIWER+rQd6+r1sCxucdO/OMrhUZXU9yFdyiidmN/fPtAhUWGhejV605XlQgSheBEu+2HdgMVQ7sR7JrTbtuh3UDFRIaF6LXrT1d0RKjpUWAYr96CwIizm+nXLUlauCnJ9Cj4n1oX36Pkbydp9+tDJVeIIuo1V0zbs5Wxb3OFLjc8LkH1h78id0aqUjcsUtLXL6nudU97XqjUOOt61Tjres/5jyz6j6KadJYrJFRHF3+sBje+prTNS5X89YuqP2xShWYB/OVfF7dT2/rVTI8B+BXtth/aDZQf7YYT0G77od1A+T1ycTu1qUe7wWGFgkJIiEsvX9NZdatFmh4F/xNes77qXfe0Go39VAkjp6r+kJdkuXMUXqOeQmNrSpLcJ+2tkJN6RKEn7dVwMldouMJrNlBkvRaq2WeYIuo01fHlXxR63qzknUpZ95Nq9L5B6TtWK6phB4VWqa4qbXorc/8WuTNSffGtAj41oGM9/eNM9q5B8KPd9kO7gfKh3XAK2m0/tBsonwEd6+kG2o3/YXEgSNSKjdQrg09TaIjL9CjIJyQiSmGxccpJP6G0xD8U3fJMhVWvq9CYmkrfvtJzPndGqjL2bFBkgzZlunzLsmTlZBV6evJ3r6nmuTcrJCJastyy3Nn/u7L//ddyl/fbAvyiYc1oPX1lJ9NjAJWGdtsT7QZKj3bDaWi3PdFuoPQaxdFueGNxIIh0b1ZLd5/PB4nYQdrW35W29XdlHdmntMQV2v/hgwqPa6jYjv3kcrlU9YxLdfTXj5W66TdlHtympK9fVFhsnKq06uG5jP0fPaRjv3/p+fvhn6cqfecaZR/dr8yD23T456nK2LFaMe36Frj+E6u+U2h0NVVp0V2SFJnQVunb/1TG7vU6tmy2wmudopCoWL/fDkBphYe6NPna01QtKrzkMwNBhHbbB+0GyoZ2w6lot33QbqBsctt9Ou2GFz5zIMiM7NtcSxMP6eeNB02P4mjujFQdWTBN2ceTFBpVVVVa91SNs4fIFZr7lKvW/UpZWelK/m6y3OkpimrYTnUGPSZXWITnMrIO71Nk2jHP33NSjirpqxeVk3JIIZExiqjdRHUGPabopqd5XXdOymEdXfyJ6t3wnOe0yAatVa3b5Trw6QSFVKmu+IFj/XwLAGVz7wWtddopNU2PARhBu+2BdgNlQ7vhZLTbHmg3UDb3XdhanRvVMD0GbMZlWZZlegj41qGUTA2YtFD7jqWbHgUAStSnVW1NHd5VLhdvz4Zz0W4AgYR2A7QbQGA5p3VtvTeMdqMgDisUhOJiIjT5utMUxnEQAdhc3WqRenHQqbxAgePRbgCBgnYDuWg3gEBRt1qkXhjUmXajUCwOBKmuTeJ09wUcBxGAfYW4pJeu6axasZGmRwFsgXYDsDvaDXjr2iRO91zQ2vQYAFCkEJf08jWnKS4mouQzw5FYHAhit/dprnNa1zY9BgAU6o5zW6pn83jTYwC2QrsB2BntBgq6rU8z2g3Atkaf21I9mtcyPQZsjMWBIOZyufTioM6qXz3K9CgA4KVb0zjdeV5L02MAtkO7AdgV7QYKl9fuBrQbgM10bxqnMbQbJWBxIMjVjInQqxwHEYCNxMVE6JXBpymU7RJQKNoNwG5oN1C8mnz+AACbiYuJ0CvX0m6UjMUBB+jSOE73XshxEAGYFxri0guDTlU99qwCikW7AdgF7QZKp0vjON1HuwHYQGiISy8OOlV1q9FulIzFAYcYcXYzndemjukxADjchEva65zWbIuA0qDdAOyAdgOld+vZzdSvLc8XAGY9dml79aXdKCUWBxzC5XJp0rWnqUNCNdOjAHCoUec01w1nNjY9BhAwaDcA02g3UDYul0svD6bdAMwZdU5zXd+ddqP0WBxwkNjIME0Z1k2nxFUxPQoAh7ni9ATdd2Eb02MAAYd2AzCFdgPlExsZpqnDu6lxLdoNoHLRbpQHiwMOU7tqpN6/sZviYyNMjwLAIXq3jNczV3YyPQYQsGg3gMpGu4GKiY+l3QAqF+1GebE44EBN4mM0ZVg3xUSEmh4FQJBrW7+a3rihi8JDyQ1QEbQbQGWh3YBvNK5FuwFUDtqNiuBR41AdG1bXm//oovBQl+lRAASphBrRmja8q2Ijw0yPAgQF2g3A32g34Fu0G4C/0W5UFIsDDta7ZW09d9WpcvE6BYCPVY8O17Qbu6pOtSjTowBBhXYD8BfaDfhH75a19fzVtBuA71WPDtfU4bQbFcPigMNddlqCHurf1vQYAIJIRFiI3hlyhlrUqWp6FCAo0W4Avka7Af+6tHOCHh5AuwH4TkRYiN7+Rxe1rEu7UTEsDkC3nN1Mt/RuanoMAEHA5ZJeGtRZ3ZrGmR4FCGq0G4Cv0G6gctzcm3YD8I28dndvVsv0KAgCLA5AkvTQgLa6rHMD02MACHAPD2irgZ3qmx4DcATaDcAXaDdQeR4a0FaXn5ZgegwAAY52w5dYHIAkyeVy6bmrT1XvlvGmRwEQoG46q6lu7t3M9BiAY9BuABVFu4HK5XK59OxVnWg3gHK7sRfthm+xOACP8NAQvXlDF3VqWN30KAACzMBO9fWvgRxHFahstBtAedFuwAzaDaC8Bnasr0cupt3wLRYH4CUmMkxThnVVk1pVTI8CIEBc0K6uXhrUWS6Xy/QogCPRbgBlRbsBs2g3gLI6v11dvXQN7YbvsTiAAmrFRmr6zd15oQKgRAM71tfr15+uiDByAphEuwGUFu0G7IF2AyitAR3r0W74jcuyLMv0ELCng8czNOS9pfpr7zHTowCwocs6N9ALgzorNIQ9FwC7oN0AikO7Afuh3QCKc2nnBnqRdsOPWBxAsY6mZemmqcu0fPth06MAsJGrujTUs1d2UggvUADbod0ACkO7Afui3QAKQ7tRGVgcQInSMnN02/Tf9fPGg6ZHAWAD13ZrpKcu78ixDgEbo90A8qPdgP2lZebo9hm/a/4G2g2AdqPysDiAUsnKcWvsxyv11Z97TY8CwKAhPRprwiXteYECBADaDUCi3UAgycpx6+5PVunLVXtMjwLAoKE9Gms87UYlYXEApeZ2W/rX7DX6z287TI8CwIAx57bQ3Re0Nj0GgDKg3YCz0W4g8Ljdlh6ZvUYzaDfgSLQblY3FAZTZs3PW6/X5W0yPAaCSuFzSuIvbaVivpqZHAVBOtBtwFtoNBD7aDTgL7YYpLA6gXN76eYsmfrve9BgA/Cw81KXnrz5Vl3ZOMD0KgAqi3YAz0G4geLy9YIue+oZ2A8GOdsMkFgdQbh8v26GHPl+jHDcPISAYRYeH6vUbTtc5reuYHgWAj9BuILjRbiD40G4guNFumMbiACrk29V7dedHK5WZ4zY9CgAf+v/27jw468LO4/j3yUESQhCCSAQhWmlURBCh1rW1lm6rUO1huzrraqvb2upYttParke327G707L2ctTpaE9rwa1aj7qzbaVVtgfXSEEOQeSURMohgXDlPvYPNC1VkCPJ73me3+s1kwlixG9mknk/wyd5clxZcfz42kkxsboy6VOAHqbdkJ+0G/KXdkN+0m6ygXGAY/bHNa/E9TMWRWNrR9KnAD1gZGVZ/Oiat0XNsIqkTwF6iXZDftFuyH9z1myPT8/4k3ZDnhhV2T9+eM0k7SZxxgF6xOLanfHpny6K7Xtbkj4FOAYX1gyNu/9xQhzXvzjpU4Bept2QH7Qb0uO52p3xKe2GnKfdZBPjAD1m866muGHm4lha15D0KcARymQiPvPu0XHT+2qioCCT9DlAH9FuyF3aDem0ZVdzXD9zkXZDDtJuspFxgB7V0t4RX37i+fj5opeTPgU4TBUlRfGtK8bHxWdWJX0KkADthtyj3ZBu2g25R7vJVsYBesWM+S/Ff/zvymjr8OEF2Wz0CQPiex+bGKcOHZD0KUDCtBtyg3YDr/np/JfiP7Ubsp52k82MA/SaZzfsiBsfXOz5ECFLTTmzKr51xfgYUFKU9ClAltBuyG7aDfyt/e1eFNv3tiZ9CvAGpo6tim9dPj7KtZssZRygV23Z1Rw3zFwUSzwfImSNgkzEFy8+LW589+ikTwGykHZD9tFu4FD8DCHIPtpNrjAO0Ota2ztj+q9fiPvnvpT0KZB6g/sXx91XTogL3jo06VOALKbdkD20Gzgc2g3ZQ7vJJcYB+sxTz2+Jmx9dGrub25M+BVLpzOED476rJ8bIyv5JnwLkCO2GZGk3cKSeen5z/Oujy2KPdkMitJtcYxygT9XtaIzP/PfiWPbyrqRPgVT5yIQR8fWPnBWlxYVJnwLkGO2GZGg3cLRq6/e3e/km7Ya+9JFzRsTXL9NucotxgD7X2t4ZX/vlynhg/sakT4G816+oIP7t/WfENeefnPQpQA7Tbug72g30BO2GvqPd5DLjAIn51fLNcdvjy2NXU1vSp0BeOmfUoPjGP4yP0ScMSPoUIE9oN/Qu7QZ62i+XbY4vPaHd0Fu0m1xnHCBR2/Y0x+3/syJ+tXxL0qdA3igrLowvXFQTn3jHKVFQkEn6HCDPaDf0PO0GepN2Q88rKy6ML158Wvzz+SdrNznNOEBW+M2KLfHvTz4fW3e3JH0K5LTz3lIZd3x0XFQPKU/6FCDPaTf0DO0G+sqsFVviK9oNx0y7ySfGAbLG7ua2+K9fr4qfPVsbPirhyAwoKYpbpp4eV799VGQyvmoB6BvaDUdPu4Ek7G5ui+m/WhUPLdRuOFIDSori1qmnx1XaTR4xDpB1Fqyvjy89vjzWb9+X9CmQE95VMzSmf+SsGDGoLOlTgJTSbjgy2g0kbcH6+rjt8eWxQbvhsFz4aruHazd5xjhAVmpu64i7n1kT3//D+mjv9CEKb+S4suL48iVnxOWTRiZ9CoB2w2HQbiCbNLd1xF3PrIkfaDcclHaT74wDZLUVf94Vtz62PJZv2pX0KZBV3jdmWHztw2PjhIGlSZ8CcADthjem3UC20m54Y9pNGhgHyHodnV3xoznr487frommto6kz4FEVZb3i9s/eGZ8cPzwpE8BOCjthr/QbiAXdHR2xQ//uD7ufHp1NLd1Jn0OJEq7SRPjADmjtr4xbntiWcxdW5/0KZCID4wfHrd/YEwMGVCS9CkAh0W7STvtBnLNxvp9cdvjy2PeOu0mnbSbtDEOkHMeWVgXdzy1Kur3tSZ9CvSJc0+ujFumnh4TqwcnfQrAUdFu0ka7gVz38MLa+MZTL2o3qXHuKZVxyxTtJn2MA+SkfS3t8eM5G+L7f1wfe5rbkz4HesXpVRVx85TT4j2nD0v6FIBjpt2kgXYD+WRfS3v8aM6G+MEf1seeFu0mP2k3aWccIKc1NLbGvb9fFw/Me8nzIpI3Rgwqiy9cVBMfPntEFBRkkj4HoEdpN/lIu4F81tDYGvf+bl08MF+7yR/aDfsZB8gL23Y3xz2z18ZDC2ujrcOHNLmpsrxffGby6PjYedXRr6gg6XMAepV2kw+0G0iTbbub4+7Za+LhhXXaTc7SbjiQcYC8UrejMe787er4xZJN0ekjmxzRv19hXPfOU+JT73pLVJQWJ30OQJ/SbnKRdgNpVlvfGHc+vTqe1G5yiHbDGzMOkJdWb90T3/7NizFrxdakT4GDKi7MxJXnjop/ec9bY2hFSdLnACRKu8kF2g3wF6u37olvzXoxfrNSu8le2g2HZhwgry2ta4hvznox5qzdnvQp0C2TifjAuOHxhYtqonpIedLnAGQV7SYbaTfAwS2pa4hvzloVc9fWJ30KdMtkIi4dNzy+qN1wSMYBUmHeuu3xzVkvxnO1DUmfQoplMhHvrhkaX7jotBg74rikzwHIatpNNtBugMM3b+32+MasF2NJXUPSp5Bi2g1HxjhAqsxetTV+NGeDr2igT5UUFcRlE0bEJ995Srx1WEXS5wDkFO0mCdoNcPSeXrk1fjx3Q8xbp930He2Go2McIJXWbtsbMxdsjMcWvxx7mtuTPoc8dfyAkvjYedVx9XmjYsgAz20IcCy0m76g3QA9Z+22PTFj/sZ4fPGm2NOi3fQO7YZjYxwg1Rpb2+OJ5zbFjPkbY9WWPUmfQ544bVhFfPKdp8SHJgyPkqLCpM8ByCvaTW/QboDes69lf7tnLtBues7pVRXxiXeeEh86W7vhWBgH4FULX9oRP52/MZ56fnO0dfi04MgUF2biojOr4qq3j4rzTz0+6XMAUkG7ORbaDdD3nt2wI2Ys0G6Ozmvtvvrt1fF3pw5J+hzIC8YB+Buv7GmJh56tjZ89Wxt/3tWc9DlkuRGDyuLKc0fGFW8bGSdUlCZ9DkAqaTdHQrsBkrdtT3M89Gxd/OzZ2tis3byJEYPK4p/ePiqumDQyhlZ46iDoScYBOIiOzq747cqtMXPBxpi7bnv4TOE1BZmIC2uGxtXnVcfk006IgoJM0icBENrNwWk3QHba3+4tMWPBxpi71g8w5i+0G/qGcQAOw7pX9saM+RvjySWbYmdjW9LnkIBMJmLcSYPi/WOr4pJxJ8ZJg/snfRIAh6DdaDdAblm7bW/MXLAxfrFkUzRod2qNHzkopo6tiku1G/qEcQCOQHtHZ8xfXx+/Wr45Zq3YGjv2tSZ9Er2oIBMxqboypoytiiljq2L4oLKkTwLgCGl3umg3QO5r7+iMeetea/cWI3+eK8hETKweHFPHnqjdkADjAByl9o7OWLB+R/zy1Qcs/rIhPxQWZOK8t1TGlLEnxsVnDvNcxAB5RLvzk3YD5C/tzk/aDdnDOAA9oKOzKxasr4/frNgST7+wLTY1NCV9EkegX2FBnD96SEwdWxUXjamKweX9kj4JgF6m3blNuwHSR7tzW3FhJt4x+viYOrYq3jemKiq1G7KCcQB6waotu+OZF7bFMy9sjSV1DdHpsyzrlBQVxLtqhsb7z6qKvz9jWAwsLU76JAASpN3ZT7sB+Gvanf1ea/fUsfvbfVyZdkO2MQ5AL6vf2xKzV22L2au2xYL19Z4vMSGFBZk448SKmFRdGeeeUhkX1gyN8pKipM8CIAtpd3bQbgAOV/3elvi/F1+JZ17Yqt0J0m7IPcYB6GMbtu+LxRt3xnN1O2PxxoZ4ceue6PAlDj2uoqQoJlQPjomjBsekkwfH2SMHeVACwFHR7r6h3QD0lA3b98VztTtjce3OeK62IVZt0e7eUFFSFGePGhSTqiu1G3KUcQAS1tjaHste3tX9oOW52p2xfa8fsnSkThpcFpOqB8fEkytjUvXgOG1YRRQUZJI+C4A8pN09Q7sB6Cuvb3dDbN/bkvRZOUe7If8YByAL1e1oPOAvHFZu3h1tHT5VX1NUkIkxwwfGxOrB3V+hMGxgadJnAZBi2n1o2g1AttHuQ9NuSAfjAOSA5raOeH7Trli5eXfU7WiMuh1NUbezMep2NMbu5vakz+sVhQWZOPG40qge0j+qh5RHdWX/7l+fcnx5lBYXJn0iAByUdms3ALlFuw9s98lDyqOsn3ZDvjMOQI7b1dQWdTsa4+Wd+x+81O5o7H4A8/LOpmhp70z6xIPqV1QQIweX7X8QMqT//gcix+9/QHLS4P7Rr6gg6RMBoMdpNwDklrxr96u/1m7AOAB5rKurK17Z0/Lqg5am2NTQFLub26K5tSOa2jqiqa0zmlo7oqmt/dXXndHc1hFNrR3R2NoezW2d0drx5g9yigszUVJUGKXFBVFSVBgDy4pjYGnRq6+L47iy4hhYVtT96xMHlUb1kPI4cWCp5ycEgL+i3QCQW46l3U2vvu6Vdh9XGtXHazdwaMYB4JA6Oru6H7A0t3VEe2dXlBQVRGlxYffrQg80ACBraDcA5BbtBpJiHAAAAAAAgJTxxGIAAAAAAJAyxgFS4yc/+UkMGjQo6TMAgMOk3QCQW7QbILcYB8g51157bWQymde9rF27NunTAIA3oN0AkFu0GyAdipI+AI7GlClT4v777z/g94YOHZrQNQDAm9FuAMgt2g2Q/3znADmppKQkqqqqDni566674qyzzory8vIYOXJk3HjjjbF3796D/hlLly6NyZMnR0VFRQwcODAmTpwYf/rTn7r//Zw5c+KCCy6IsrKyGDlyZHz2s5+Nffv29cW7BwB5R7sBILdoN0D+Mw6QNwoKCuLuu++OFStWxAMPPBCzZ8+Om2+++aBvf9VVV8VJJ50UCxcujEWLFsWtt94axcXFERGxbt26mDJlSnz0ox+NZcuWxcMPPxxz5syJadOm9dW7AwB5T7sBILdoN0B+yXR1dXUlfQQciWuvvTZmzpwZpaWl3b83derU+PnPf37A2z366KNxww03xPbt2yNi/w9G+tznPhcNDQ0RETFw4MC455574pprrnnd/+O6666LwsLC+N73vtf9e3PmzIkLL7ww9u3bd8D/GwA4NO0GgNyi3QDp4GcOkJMmT54c9957b/c/l5eXx9NPPx3Tp0+PVatWxe7du6O9vT2am5ujsbEx+vfv/7o/46abborrrrsuZsyYEe9973vj8ssvj1NPPTUi9n/r47Jly+LBBx/sfvuurq7o7OyMDRs2xBlnnNH77yQA5BHtBoDcot0A+c/TCpGTysvLY/To0d0vLS0tcemll8a4cePisccei0WLFsV3v/vdiIhobW19wz/j9ttvjxUrVsQll1wSs2fPjjFjxsQTTzwRERF79+6N66+/PpYsWdL9snTp0lizZk33AxkA4PBpNwDkFu0GyH++c4C8sGjRoujs7Ixvf/vbUVCwf/N65JFH3vS/q6mpiZqamvj85z8fV155Zdx///1x2WWXxTnnnBMrV66M0aNH9/bpAJBK2g0AuUW7AfKP7xwgL4wePTra2trinnvuifXr18eMGTPivvvuO+jbNzU1xbRp0+J3v/tdbNy4MebOnRsLFy7s/rbFW265JebNmxfTpk2LJUuWxJo1a+LJJ5/0g5EAoIdoNwDkFu0GyD/GAfLC+PHj4zvf+U7ccccdMXbs2HjwwQdj+vTpB337wsLCqK+vj49//ONRU1MTV1xxRUydOjW++tWvRkTEuHHj4ve//32sXr06LrjggpgwYUJ85StfieHDh/fVuwQAeU27ASC3aDdA/sl0dXV1JX0EAAAAAADQd3znAAAAAAAApIxxAAAAAAAAUsY4AAAAAAAAKWMcAAAAAACAlDEOAAAAAABAyhgHAAAAAAAgZYwDAAAAAACQMsYBAAAAAABIGeMAAAAAAACkjHEAAAAAAABSxjgAAAAAAAApYxwAAAAAAICUMQ4AAAAAAEDKGAcAAAAAACBljAMAAAAAAJAyxgEAAAAAAEgZ4wAAAAAAAKSMcQAAAAAAAFLGOAAAAAAAACljHAAAAAAAgJQxDgAAAAAAQMoYBwAAAAAAIGWMAwAAAAAAkDLGAQAAAAAASBnjAAAAAAAApIxxAAAAAAAAUsY4AAAAAAAAKWMcAAAAAACAlDEOAAAAAABAyhgHAAAAAAAgZYwDAAAAAACQMsYBAAAAAABIGeMAAAAAAACkjHEAAAAAAABSxjgAAAAAAAApYxwAAAAAAICUMQ4AAAAAAEDKGAcAAAAAACBljAMAAAAAAJAyxgEAAAAAAEgZ4wAAAAAAAKSMcQAAAAAAAFLm/wHB8oWceQdV3gAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Вывод распределения количества наблюдений по меткам (классам)\n",
|
||
"print(df.hazardous.value_counts(), '\\n')\n",
|
||
"\n",
|
||
"data: DataFrame = df[[\n",
|
||
" 'est_diameter_min', \n",
|
||
" 'est_diameter_max', \n",
|
||
" 'relative_velocity', \n",
|
||
" 'miss_distance', \n",
|
||
" 'absolute_magnitude', \n",
|
||
" 'hazardous'\n",
|
||
"]].copy()\n",
|
||
"\n",
|
||
"df_train, df_val, df_test = split_stratified_into_train_val_test(\n",
|
||
" data, \n",
|
||
" stratify_colname=\"hazardous\", \n",
|
||
" frac_train=0.60, \n",
|
||
" frac_val=0.20, \n",
|
||
" frac_test=0.20\n",
|
||
")\n",
|
||
"\n",
|
||
"# Оценка сбалансированности\n",
|
||
"def check_balance(dataframe: DataFrame, dataframe_name: str, column: str) -> None:\n",
|
||
" counts: Series[int] = dataframe[column].value_counts()\n",
|
||
" print(dataframe_name + \": \", dataframe.shape)\n",
|
||
" print(f\"Распределение выборки данных по классам \\\"{column}\\\":\\n\", counts)\n",
|
||
" total_count: int = len(dataframe)\n",
|
||
" for value in counts.index:\n",
|
||
" percentage: float = counts[value] / total_count * 100\n",
|
||
" print(f\"Процент объектов класса \\\"{value}\\\": {percentage:.2f}%\")\n",
|
||
" print()\n",
|
||
" \n",
|
||
"# Определение необходимости аугментации данных\n",
|
||
"def need_augmentation(dataframe: DataFrame,\n",
|
||
" column: str, \n",
|
||
" first_value: Any, second_value: Any) -> bool:\n",
|
||
" counts: Series[int] = dataframe[column].value_counts()\n",
|
||
" ratio: float = counts[first_value] / counts[second_value]\n",
|
||
" return ratio > 1.5 or ratio < 0.67\n",
|
||
" \n",
|
||
" # Визуализация сбалансированности классов\n",
|
||
"def visualize_balance(dataframe_train: DataFrame,\n",
|
||
" dataframe_val: DataFrame,\n",
|
||
" dataframe_test: DataFrame, \n",
|
||
" column: str) -> None:\n",
|
||
" fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n",
|
||
"\n",
|
||
" # Обучающая выборка\n",
|
||
" counts_train: Series[int] = dataframe_train[column].value_counts()\n",
|
||
" axes[0].pie(counts_train, labels=counts_train.index, autopct='%1.1f%%', startangle=90)\n",
|
||
" axes[0].set_title(f\"Распределение классов \\\"{column}\\\" в обучающей выборке\")\n",
|
||
"\n",
|
||
" # Контрольная выборка\n",
|
||
" counts_val: Series[int] = dataframe_val[column].value_counts()\n",
|
||
" axes[1].pie(counts_val, labels=counts_val.index, autopct='%1.1f%%', startangle=90)\n",
|
||
" axes[1].set_title(f\"Распределение классов \\\"{column}\\\" в контрольной выборке\")\n",
|
||
"\n",
|
||
" # Тестовая выборка\n",
|
||
" counts_test: Series[int] = dataframe_test[column].value_counts()\n",
|
||
" axes[2].pie(counts_test, labels=counts_test.index, autopct='%1.1f%%', startangle=90)\n",
|
||
" axes[2].set_title(f\"Распределение классов \\\"{column}\\\" в тренировочной выборке\")\n",
|
||
"\n",
|
||
" # Отображение графиков\n",
|
||
" plt.tight_layout()\n",
|
||
" plt.show()\n",
|
||
" \n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"check_balance(df_train, 'Обучающая выборка', 'hazardous')\n",
|
||
"check_balance(df_val, 'Контрольная выборка', 'hazardous')\n",
|
||
"check_balance(df_test, 'Тестовая выборка', 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test, 'hazardous', True, False) else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train, df_val, df_test, 'hazardous')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Приращение данных:\n",
|
||
"\n",
|
||
"**Аугментация данных** может быть полезна в том случае, когда имеется недостаточное количество данных и мы хотим сгенерировать новые данные на основе имеющихся, слегка модифицировав их.\n",
|
||
"\n",
|
||
"**Методы решения:**\n",
|
||
"1. **Выборка с избытком (oversampling).** Копирование наблюдений или генерация новых наблюдений на основе существующих с помощью алгоритмов SMOTE и ADASYN (нахождение k-ближайших соседей).\n",
|
||
"2. **Выборка с недостатком (undersampling).** Исключение некоторых наблюдений для меток с большим количеством наблюдений. Наблюдения можно исключать случайным образом или на основе определения связей Томека для наблюдений разных меток."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"После применения метода oversampling:\n",
|
||
"Обучающая выборка: (100699, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"True 51502\n",
|
||
"False 49197\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"True\": 51.14%\n",
|
||
"Процент объектов класса \"False\": 48.86%\n",
|
||
"\n",
|
||
"Контрольная выборка: (32759, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 16399\n",
|
||
"True 16360\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.06%\n",
|
||
"Процент объектов класса \"True\": 49.94%\n",
|
||
"\n",
|
||
"Тестовая выборка: (33556, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"True 17156\n",
|
||
"False 16400\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"True\": 51.13%\n",
|
||
"Процент объектов класса \"False\": 48.87%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных не требуется\n",
|
||
"Для контрольной выборки аугментация данных не требуется\n",
|
||
"Для тестовой выборки аугментация данных не требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABgsAAAHvCAYAAABqu+9FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEcElEQVR4nOzdd3hTZf8G8Lu7pYPVspGNiIAogrIEBWSKKIiivgxfEAVeBQeC/pChUhGVLYJKmbKXyt5Q9ipQSqGT0kL3Htnn90dMaJp0kvTJuD/X1QuaniR3Tk7Oc06+z/McJ0mSJBARERERERERERERkcNyFh2AiIiIiIiIiIiIiIjEYrGAiIiIiIiIiIiIiMjBsVhAREREREREREREROTgWCwgIiIiIiIiIiIiInJwLBYQERERERERERERETk4FguIiIiIiIiIiIiIiBwciwVERERERERERERERA6OxQIiIiIiIiIiIiIiIgfHYgERkQ3IzMxEZGQkVCqV6ChkRpIkIT09HREREaKjEBERkZkoFAokJibi/v37oqMQERGRBeTl5eHevXvIyMgQHcXsWCwgsgGNGzfGoEGDRMcwm549e6Jnz56iY1g1pVKJH374AU899RQ8PDxQvXp1tGjRAkeOHBEdzSaEhoZi165d+t9DQkKwZ88ecYEKycnJwf/93//h8ccfh7u7O2rWrImWLVvi9u3boqMR0SNgW01keevXr0dsbKz+99WrVyMhIUFcoEIuXbqEt99+G/7+/vDw8EDdunUxdOhQ0bGIHBbbZSLbNHfuXGg0GgCARqNBYGCg4EQPbd26Fb169YKvry98fHzw2GOP4YcffhAdy+zKVSxYvXo1nJyc9D+enp5o2bIlJk2ahKSkJEtlJLJ7s2bNQuPGjQE8/JyR5fXs2ROjR48GAIwePdpqDr7kcjl69+6NGTNmoGfPnti6dSsOHTqEo0ePonPnzqLj2YScnByMHz8e586dQ0REBD7++GPcuHFDdCykpaWhc+fOWLx4MYYNG4bdu3fj0KFDOH78uH4f8KjYVhNZBttqMay1rSYxTp06halTpyI2NhYHDhzAxIkT4ewsvv/b7t270a1bN4SFheG7777DoUOHcOjQIaxYsYLtMpGFsF0Wg+0yWdqaNWvw448/Ij4+Hj/99BPWrFkjOhIAYNq0aRg+fDh8fX3x22+/4dChQzh8+DAmTJggOprZuVbkTnPmzEGTJk0gk8kQHByM5cuXY+/evQgNDUWVKlXMnZGIyKHMmzcP58+fx4EDB3jwVUGdO3fW/wBAy5YtMW7cOMGpgM8//xwPHjzA2bNn8eSTT1r0udhWExGRvZkyZQp69uyJJk2aAAA++eQT1K1bV2im9PR0jB07Fn379sXWrVvh7u5u8PcrV64AYLtMRERUFnPmzMHIkSPxxRdfwMPDA+vXrxcdCSdOnMC8efMQGBiIadOmiY5jcRUqFvTv3x/PPvssAGDs2LGoWbMmfv75Z+zevRsjRowwa0Aisj15eXnw9vYWHcMmqVQqLFy4EJ9++ikLBY9o165dCAsLQ0FBAdq2bWt08l7ZkpOTsWbNGvz6668WLxQAbKuJqGRsq8kWtWrVClFRUQgNDYW/vz+aNWsmOhKCgoIgk8mwevXqEo812C4TUUnYLhNpvfnmm3jxxRcRGRmJFi1aICAgQHQk/Pjjj+jSpYtDFAoAM12z4KWXXgIAxMTEAND2rvjss8/Qtm1b+Pj4wM/PD/3798e1a9eM7iuTyTBr1iy0bNkSnp6eqFu3Ll5//XVERUUBAGJjYw2GbRb9Kfxl2vHjx+Hk5ITNmzfjyy+/RJ06deDt7Y3Bgwfj3r17Rs99/vx59OvXD1WrVkWVKlXQo0cPnD592uRr7Nmzp8nnnzVrltGy69evR4cOHeDl5YUaNWrgrbfeMvn8Jb22wjQaDRYuXIgnn3wSnp6eqF27NsaPH290EY3i5uSbNGmS0WOayj5//nyjdQpop0SZOXMmmjdvDg8PDzRs2BBTp06FXC43ua4KMzWv3nfffQdnZ2f8+eefFVofug9pzZo14eXlhQ4dOmDbtm0mn3/9+vXo1KkTqlSpgurVq+OFF17AwYMHDZbZt28fevToAV9fX/j5+aFjx45G2bZu3ap/T/39/fHuu+8azY86evRog8zVq1dHz549cerUqVLXU1kFBwejU6dO8PT0RNOmTbF27VqDv5f1s9e4ceNi1/Xx48cBAHfv3sWECRPw+OOPw8vLCzVr1sQbb7xhME8s8HDI54kTJzBhwgTUqlULDRo00P995cqVaNasGby8vNCpU6di10dycjL++9//onbt2vD09MRTTz1lNNxM9xnXZdTRbTurV6/W35aYmIgxY8agQYMG+nljX331VaP85VV43Tk7O6NOnTp48803ERcXV6b7//LLL3jyySfh4eGBevXqYeLEicjMzNT//fbt28jIyICvry969OiBKlWqoGrVqhg0aBBCQ0P1yx07dgxOTk7YuXOn0XP8+eefcHJywtmzZ/WZdUNFdUyty1OnTuGNN97AY489pv+sT5kyBQUFBQb3nTVrltHncsOGDWjfvj08PT1Rs2ZNjBgxwmidjB49Gj4+Pga3bdu2zeR76uPjY5QZKNv+tfB+p3Xr1ujQoQOuXbtmcn9iStH9vb+/PwYOHGiw/gHtfnTSpEnFPo7us6Hb5i5evAiNRgOFQoFnn322xHUFAEePHkX37t3h7e2NatWq4dVXX8WtW7cMltG9F+Hh4Rg+fDj8/Pz0mYruo3/++WcAD9vq5ORkNG3aFC4uLqhSpYrB/qLoen7jjTcwZcoUttVsq9lWlwHbattuq021me+//z48PT2NXlNpbTqg/Xy1adPG6Hl+/PFHgzaipPfbyclJP9WGbj3++OOPWLBgARo1agQvLy/06NHDqJ0CytaWmFpvprY33TKlzQFeOGNRbdq0MdrflGW7Krz9eHt747nnnkOzZs0wceJEODk5mTxmMHV/3Y+bmxsaN26Mzz//HAqFQr+c7rNy6dKlYh+r6D7z3LlzaN++PebOnYuGDRvCw8MDLVq0wPfff6+fc1lHpVLhm2++QbNmzbB48WIAwIoVKyCXyw32Dc7OznBzc0PHjh3x+OOPw9PTE61bt8aOHTsAPDyHrlOnDpycnFCrVi19u3zz5k34+fmVuD05OzujefPmmDdvHo4ePcp2me2yAbbLbJetpV22VNsYHh6OYcOGoUaNGvD09MSzzz6Lv/76y2CZ4tqD1NRUo32BqfPj3Nxc/T668LrXHRdcvnwZXbp0gZeXF5o0aYJff/3VKGd52sfS2jcAiI6OxhtvvIEaNWqgSpUqeP75542u62fqtQDGx0flWT8AcPXqVfTv3x9+fn7w8fFBr169cO7cOYNlCp8/16pVS7/PateundG2akrRaf+qVKmCtm3b4vfffzdYztT3EkUVfQ3nzp1DmzZt8NZbb6FGjRrw8vJCx44dDa6TqFOe960s2+zo0aONpixev349nJ2d8f333xvcXpZtuywqNLKgKN2XBTVr1gSg3QB37dqFN954A02aNEFSUhJWrFiBHj16ICwsDPXq1QMAqNVqDBo0CEeOHMFbb72Fjz/+GDk5OTh06BBCQ0MNeoqMGDECAwYMMHje6dOnm8zz3XffwcnJCV988QWSk5OxcOFC9O7dGyEhIfDy8gKgPXDu378/OnTogJkzZ8LZ2RlBQUF46aWXcOrUKXTq1MnocRs0aKC/sEZubi4+/PBDk889Y8YMDB8+HGPHjkVKSgqWLFmCF154AVevXkW1atWM7vP++++je/fuAIAdO3YYffk3fvx4rF69GmPGjMFHH32EmJgYLF26FFevXsXp06fh5uZmcj2UR2ZmpsmLhmg0GgwePBjBwcF4//338cQTT+DGjRtYsGAB7ty5Y/KDUZKgoCD83//9H3766Se8/fbbJpcpbX0sWrQIgwcPxjvvvAOFQoFNmzbhjTfewD///IOBAwfql5s9ezZmzZqFLl26YM6cOXB3d8f58+dx9OhRvPzyywC0O5P33nsPTz75JKZPn45q1arh6tWr2L9/vz6fbt137NgRgYGBSEpKwqJFi3D69Gmj99Tf3x8LFiwAAMTHx2PRokUYMGAA7t27Z/K9L4/IyEgMGzYM//3vfzFq1CisWrUKo0ePRocOHfS9lMv62Vu4cCFyc3MNHn/BggUICQnRf44vXryIM2fO4K233kKDBg0QGxuL5cuXo2fPnggLCzMaLj1hwgQEBATg66+/Rl5eHgDgjz/+wPjx49GlSxdMnjwZ0dHRGDx4MGrUqIGGDRvq71tQUICePXsiMjISkyZNQpMmTbB161aMHj0amZmZ+Pjjj8u9voYOHYqbN2/if//7Hxo3bozk5GQcOnQIcXFxjzw3fPfu3fH+++9Do9EgNDQUCxcuxP3790s9qJ01axZmz56N3r1748MPP8Tt27exfPlyXLx4Uf9ZTktLA6Ddv7Vo0QKzZ8+GTCbDsmXL0LVrV1y8eBEtW7ZEz5490bBhQ2zYsAGvvfaawfNs2LABzZo1K/f1DbZu3Yr8/Hx8+OGHqFmzJi5cuIAlS5YgPj4eW7duLfZ+f/75J95991089dRTCAwMRFpaGhYvXozg4GBcvXoV/v7+5cpRnIrsX3W++OKLcj1Xq1at8NVXX0GSJERFReHnn3/GgAEDylwUMkX33k6aNAkdOnTA999/j5SUFJPr6vDhw+jfvz+aNm2KWbNmoaCgAEuWLEHXrl1x5coVo214+PDhaNy4MQIDA7FhwwacPXsWc+fONXlRZ91n/L333kNsbCzeeecddO/eXb+/eP755yGTyfDmm29i7NixSEpKwty5c6FUKvH666+zrQbbaoBtdXHYVpePNbbVRc2cORN//PEHNm/ebPDlXVna9PIo/H7funULc+fOxZdffoknnngCAIxOateuXYucnBxMnDgRMpkMixYtwksvvYQbN26gdu3aAMrflgAP11vhHJb0KNtVZGQkfvvtt3I9n27fJZfLceDAAfz444/w9PTEN998U+HXkJaWhuDgYAQHB+O9995Dhw4dcOTIEUyfPh2xsbF4/vnn9cuOHTsWa9aswbBhw/DMM89g27ZtOHHiBN566y189dVX+n3D/fv34eTkhMuXL8Pd3R3Tpk3Djh078MYbb2DPnj348ccfceTIETz33HNISkrCmDFjcOnSJRw/fhyzZs1Cs2bNEBISom+X5XI5Zs+ejYyMDDg5OaFOnTro3Lkzpk+fjtdffx0A2+WKYLvMdpntctlVpF22RNt48+ZNdO3aFfXr18e0adPg7e2NLVu2YMiQIdi+fbvRuXVF/fTTT8VelyYjIwMDBgzA8OHDMWLECGzZsgUffvgh3N3d8d577wEo//tbWvuWlJSELl26ID8/Hx999BFq1qyJNWvWYPDgwdi2bZvZXrcpN2/eRPfu3eHn54epU6fCzc0NK1asQM+ePXHixAk899xzxd533bp15b724IIFC+Dv74/s7GysWrUK48aNQ+PGjdG7d+8Kv4a0tDSsXLkSPj4++OijjxAQEID169fj9ddfx4YNG/QjBMv7vpVlmy3q4MGDeO+99zBp0iSDkQ5m3balcggKCpIASIcPH5ZSUlKke/fuSZs2bZJq1qwpeXl5SfHx8ZIkSZJMJpPUarXBfWNiYiQPDw9pzpw5+ttWrVolAZB+/vlno+fSaDT6+wGQ5s+fb7TMk08+KfXo0UP/+7FjxyQAUv369aXs7Gz97Vu2bJEASIsWLdI/dosWLaS+ffvqn0eSJCk/P19q0qSJ1KdPH6Pn6tKli9SmTRv97ykpKRIAaebMmfrbYmNjJRcXF+m7774zuO+NGzckV1dXo9sjIiIkANKaNWv0t82cOVMq/LacOnVKAiBt2LDB4L779+83ur1Ro0bSwIEDjbJPnDhRKvpWF80+depUqVatWlKHDh0M1um6deskZ2dn6dSpUwb3//XXXyUA0unTp42er7AePXroH2/Pnj2Sq6ur9Omnn5pctizrQ5K071NhCoVCatOmjfTSSy8ZPJazs7P02muvGW2Luvc8MzNT8vX1lZ577jmpoKDA5DIKhUKqVauW1KZNG4Nl/vnnHwmA9PXXX+tvGzVqlNSoUSODx1m5cqUEQLpw4YLJ11xWjRo1kgBIJ0+e1N+WnJwseXh4GKzPsn72itJ9RgovU3Q9S5IknT17VgIgrV27Vn+bbr/QrVs3SaVS6W/Xrbv27dtLcrlcf7tunRTezhYuXCgBkNavX29w/86dO0s+Pj76z7PuM37s2DGj1whACgoKkiRJkjIyMordbzyqRo0aSaNGjTK47e2335aqVKlS4v2Sk5Mld3d36eWXXzZ4j5YuXSoBkFatWiVJ0sPX6O/vL6WmpuqXu3PnjuTm5iYNHTpUf9v06dMlDw8PKTMz0+B5XF1dDT7fTZo0kUaOHGmQx9S6NPWeBwYGSk5OTtLdu3f1txX+XKpUKql27dpSs2bNpNzcXP0yx48flwAYbJ+jRo2SvL29DR5/69atJt9Tb29vg/Vcnv1r4f2OJEnS3r17JQBSv379jPYnphS9vyRJ0pdffikBkJKTk/W3AZAmTpxY7OPoPhsxMTEGv7du3dpgXevei8Lrqn379lKtWrWktLQ0/W3Xrl2TnJ2dDd5L3XsxePBgo+cFIB0/flzfVgOQXF1dpfj4eGn69OmSs7OztGPHDoPMujanV69e+tt0bbWzs7PR+mdbbbje2FY/xLZai2214Wu09ra66H1XrFghAZCWLFlisExZ23RJ0n6+nnzySaPnmT9/vkEbUVhx61CSHq7HwudekiRJ58+flwBIU6ZM0d9W1rZEp379+tKYMWNKzFHcPsxUxrK0CWXdropuP5IkScOHD5fatGkjNWzY0Oj9Li5T4ftLkiTVq1dPGjBggP533Wfl4sWLxT5W0eOEHj16SACkWbNmGSw3evRoCYD0zTffSAD029OIESMMzqHHjx8vAZD279+v3550+5Ply5fr9w1ZWVlS3bp1pccee0x/Dl34WCM9PV164oknpMcff1y6cuWKwXvwzTffSN7e3tKdO3cM3oNp06ZJzs7ObJfZLusfi+2yFttl83qUdlnHXG1jr169pLZt20oymUx/m0ajkbp06SK1aNFCf1tx7YGp/VjRz1xycrLk6+sr9e/f3yizrs346aef9LfJ5XJ9m61QKCRJerT2UZKM27fJkydLAAz2Szk5OVKTJk2kxo0b6z8Ds2fPlgAY7Oclyfg9LM/6GTJkiOTu7i5FRUXpb7t//77k6+srvfDCC0aPqTs2kslk0mOPPaZfj0VfY1FF7y9J2u9RAEg//PCD/jZT30sUVfQ1FD6/1snPz5eeeOIJqU6dOhV+38qyzRbeT166dEny8fGR3njjDaP9Vlm37bKo0DREvXv3RkBAABo2bIi33noLPj4+2LlzJ+rXrw8A8PDwgLOz9qHVajXS0tLg4+ODxx9/XH+BJwDYvn07/P398b///c/oOUwNeymrkSNHwtfXV//7sGHDULduXezduxcAEBISgoiICLz99ttIS0tDamoqUlNTkZeXh169euHkyZNGQ0ZlMhk8PT1LfN4dO3ZAo9Fg+PDh+sdMTU1FnTp10KJFCxw7dsxged2QIA8Pj2Ifc+vWrahatSr69Olj8JgdOnSAj4+P0WMqlUqD5VJTUyGTyUrMnZCQgCVLlmDGjBlGldmtW7fiiSeeQKtWrQweUzf1VNHnL86FCxcwfPhwDB06FPPnzze5TFnWBwB9zxZAW5HNyspC9+7dDbatXbt2QaPR4Ouvv9Zvizq6bevQoUPIycnBtGnTjN5b3TKXLl1CcnIyJkyYYLDMwIED0apVK6NeuxqNRr+OQkJCsHbtWtStW1df+X4UrVu31vcWAYCAgAA8/vjjiI6O1t9W1s9eYWFhYXjvvffw6quv4v/+7//0txdez0qlEmlpaWjevDmqVatm8rHGjRsHFxcX/e+6dffBBx8YzN86evRoVK1a1eC+e/fuRZ06dQzma3Vzc8NHH32E3NxcnDhxotT1U5iXlxfc3d1x/Phxo6HG5iCXy5GamqrvaXH06FH06tWrxPscPnwYCoUCkydPNtgmx40bBz8/P6NtacyYMfoeKgDQokULDB48GPv374darQag3dfJ5XKDIcSbN2+GSqXCu+++q7+tVq1aiI+PL/V1FX7P8/LykJqaii5dukCSJFy9etVo+dTUVBw/fhxJSUkYP368wRybPXr0QIcOHUz2bK+I8u5fdSRJwvTp0zF06NASeywUpduXpqSk4OzZs9i5cyfatWtnNEpCJpMhNTUVaWlpRu1GcSZOnGiwrnv27Gmwrh48eICQkBCMHj0aNWrU0C/Xrl079OnTR9+WFX1MU3QjUN566y0A2vkfd+7cicDAQCxZskTfu0C3v9CtR2dnZ/063rhxI2rWrImWLVsarWe21Vpsq42xrdZiW108a2yrC9u9ezcmTJiAzz//3GjKufK26Wq12ugzn5+f/0ivb8iQIfpzLwDo1KkTnnvuOf0+tCJtiUKhKPWzDTzch6WlpUGlUhW7XH5+vtHr1h3D6FR0u7p8+TK2bt2KwMBAo/1HSXJzc5GamoqEhASsXLkSiYmJJreLrKwspKamIicnp0yP6+LigilTphjc9umnnwKAfiqT8ePHAwA2btxocA6tm+bg0KFD+tciSRLq1KmDoUOH6vcNfn5+GDlyJOLi4lCjRg2Dc2iZTIbBgwcjNTUV+/fvR/Xq1Q2ybN26Fd27d0f16tWhVqv172Hv3r31bSnbZbbLbJfZLltzu1wWpbWN6enpOHr0KIYPH46cnBz9dpeWloa+ffsiIiLCaKosXXug+0lPTy81xzfffIOqVavio48+Mvl3V1dXfZsAAO7u7hg/fjySk5Nx+fJlAOV/f0tr3/bu3YtOnTqhW7du+tt8fHzw/vvvIzY2FmFhYQC03x0AKNP3B0Dp60etVuPgwYMYMmQImjZtqr+9bt26ePvttxEcHIzs7GyTj71s2TKkpaVh5syZZcqik5GRgdTUVERHR2PBggVwcXFBjx49jJYr6/5ep2PHjgaP4+XlhQkTJiAxMVH/+S7v+1baNltYdHQ0Bg4ciPbt22PdunUG++mKbNslqdA0RMuWLUPLli3h6uqK2rVr4/HHHzcIqdFosGjRIvzyyy+IiYkxOCgs/OVXVFQUHn/8cbi6mmU2JL0WLVoY/O7k5ITmzZvr51mLiIgAAIwaNarYx8jKyjI4yEpNTTV63KIiIiIgSVKxyxUd6qib07SkubIiIiKQlZWl/8AWlZycbPD7wYMHy33xj5kzZ6JevXoYP3680byFERERuHXrVrGPWfT5TUlISMDAgQORl5eHtLS0Yr9cKsv6AIB//vkH3377LUJCQgzmfCz8uFFRUXB2dkbr1q2LfRzd9Fmm5pHVuXv3LgDg8ccfN/pbq1atEBwcbHDbvXv3DNZV3bp1sX379lJfU1k89thjRrdVr17doCEv62dPJzs7G6+//jrq16+PtWvXGqzDgoICBAYGIigoCAkJCdAWU7WysrKMHqtJkyYGv+vWXdHPg5ubm0EjoVu2RYsWRgelugNE3WOVlYeHB+bNm4dPP/0UtWvXxvPPP49BgwZh5MiRqFOnTrkey5RNmzZh06ZN+t87duxoNA9eUcVtS+7u7mjatKn+77r3oFWrVkaP8cQTT2D79u1ITU1F7dq10apVK3Ts2BEbNmzAf//7XwDaKYief/55NG/eXH+/Ll26YPHixdi0aRNeeuklODs7m3wP4+Li8PXXX+Ovv/4yOkA0tXzhbd3UZ+SJJ54odi7U8irv/lVnw4YNuHnzJrZs2WI0j2pJzpw5Y/D6WrRogV27dhntv/744w/88ccfALTv5XPPPYeff/5ZfwHDwkp7b3XrqqT9zhNPPIEDBw4YXQDN1HpxcnLCgAED8Nlnn6F27dpo3bo1IiIisHHjRgDadm3BggUm9xeHDh0y2u+npaWZ9SLRbKvZVrOtZlttbW21TkhICLZs2QK1Wm3yS4Gytuk64eHhZr84n6l9WMuWLbFly5YSMwLFtyVZWVll+hwU3oe5uLigXbt2+P777/VTlOjMnDnT5Al+4WH1Fd2upk2bhu7du2PQoEElXj+oqP/9738GX7KPGTPG6Et+AAZTFVSrVg0jRozA/PnzTV581MnJCfXq1YOfn5/B7bpz5NTUVABAt27dcPr0aRw8eBD169c3OIeuVq0aYmNj9e2ybtpDXbui2ze0bNkSgHZqn8Ln0GPGjMG5c+fg6ekJlUpldH4dERGB69evG2yHRbdJtstsl9kus1221na5rEprGyMjIyFJEmbMmIEZM2aYfIzk5GSDL2/LO3VNTEwMVqxYgeXLlxdbLK1Xr55Re6Lbv+umryvv+1ta+3b37l2TnecKP16bNm3QuXNnODk5Yfr06fj222/1n8PiOsaVtn5SUlKQn59f7PGIRqPBvXv39NOC6WRlZWHu3Ln45JNPip2OpzjPPPOM/v8eHh5YunSp0TR5eXl5Bvudhg0b4tNPPy1x+q7izuMB7fv23HPPlft9K22bLZy3b9++SEpKQs2aNY3ahIps2yWp0Lf0nTp1MvlFiM7cuXMxY8YMvPfee/jmm29Qo0YNODs7Y/LkyWXueWlJugzz589H+/btTS5TuGFSKBR48OAB+vTpU+rjOjk5Yd++fQbVYVOPCWgvHgOgxB2vRqNBrVq1sGHDBpN/L3oA8txzz+Hbb781uG3p0qXYvXu3yfvfunULq1evxvr1601+2abRaNC2bVv9hTGLKjxnXnEiIyPxzDPPYMGCBfjPf/6DNWvWmDzILMv6OHXqFAYPHowXXngBv/zyC+rWrQs3NzcEBQWV64tAS6lduzbWr18PQLtzW7VqFfr164fg4GC0bdv2kR7b1DYFwOAApLyfvdGjR+P+/fu4cOGC0QnO//73PwQFBWHy5Mno3LkzqlatCicnJ7z11lsmH6twLwpLKe4guWgvNQCYPHkyXnnlFezatQsHDhzAjBkzEBgYiKNHj+Lpp59+pBwvv/wyPv/8cwDaivu8efPw4osv4tKlS4+8Hsp7/5EjR+Ljjz9GfHw85HI5zp07h6VLlxos8+WXX+L06dMG1e2i1Go1+vTpg/T0dHzxxRdo1aoVvL29kZCQgNGjR5t8zw8dOoSzZ8/i66+/Llfmiijv/hXQ7rtnzJiB//73v/qDr7Jq164dfvrpJwDQX1egZ8+euHLlisE+6tVXX8WkSZMgSRJiYmIwZ84cDBo0SH9CXVhlfEaKatCggcEc2xcuXMC4cePg7e2NOXPmQK1WG+wvFi9ejD179hjs99977z34+flh4cKFZjlpKyu21Q+xrTYvttWWZQ9t9bVr19C/f3/06tULn3/+Od59912ji42WR+PGjY3m1t+6dStWrlxZ4cc0t/T0dCgUijJ9IVR4H3b//n3MmzcPr732Gm7evGkwp/X777+PN954w+C+48aNe+SsBw8exOHDh3H27Nly3/fzzz/Hyy+/DLVajZs3b2LOnDmQJAlBQUEGy+k6x8nlchw/flx/seZffvnF6DHL+rmqVauW/kK4pjrLhYeHY/v27XjvvfeQmZmJOnXqYMGCBWU6h75y5Qp2796NSZMm4f3338eqVasM/q7RaNCnTx9MnTpVPwJGd5xz7do1fPbZZ6XmZ7v8ENtl82K7bFn20C6bi+49+Oyzz9C3b1+TyxTudAc8bA90srOzMXTo0GKf46uvvkKLFi0watQos16ouzRlbd9K89RTT2HmzJmYPXt2sfvQwsq7fspq3rx5cHZ2xueff66/9l9ZrV+/HrVr14ZMJsPRo0cxceJEeHp6Glyg2dPTE3///TcAICcnB6tWrcLkyZNRt25dDB8+3OgxRZzLF5aamgpvb2/8/fffGDJkCAIDAw06ZFRk2y6Jebv0/2vbtm148cUX9b0tdTIzMw2mcGjWrBnOnz8PpVJplgsM6RT9kkaSJERGRqJdu3b65wUAPz+/MlUJr127BqVSWWKBRPe4kiShSZMmZfpiKiwsDE5OTiYrbIUf8/Dhw+jatWuZNk5/f3+j11TSBZSmT5+O9u3b48033yz2+a9du4ZevXpVeLoJ3fDV2rVrY/fu3fj0008xYMAAo4O0sqyP7du3w9PTEwcOHDAYall0B9isWTNoNBqEhYUVezCr2w5CQ0OL/dA0atQIAHD79m39sFGd27dv6/+u4+npabD+dRciWrp0KVasWFHs6zKXsn72AOD777/Hrl27sGPHDpMV0m3btmHUqFH6EwlAO5RY13ulNLp1ExERYbDulEolYmJi8NRTTxkse/36dWg0GoMKbHh4uMFj6XoqFc1QXK+JZs2a4dNPP8Wnn36KiIgItG/fHj/99JP+YLSi6tata/A+P/744+jSpQt27dpV7Bfyhbelwr1CFAoFYmJi9I+n611y+/Zto8cIDw+Ht7e3wXv51ltv4ZNPPsHGjRtRUFAANzc3o8+zv78/zp49i7CwMP0JRdETwxs3buDOnTtYs2YNRo4cqb/90KFDxa6H3r17o2rVqvj666+LzfuoF8LSKe/+FdCe0CcnJ+uH95dH9erVDd7jnj17ol69eggKCjK4YG+DBg0MlvPx8cE777xjctqmwu9t0f1J4XVVeFspKjw8HP7+/kY9USIiIox6JkmSZLT++/Tpg+XLl+svmu3j44Pff/9dv3+/du0a9uzZAy8vL/3rateuHc6fP48ePXqwrS7hMdlWP8S2umRsqw1ZU1ut07ZtW2zduhVeXl7YunUr3n//fVy/fl3fQ7CsbbqOt7e30W0hISGP8vJMFqXv3LlT4bZEN/1AWab9KLoPa968Obp27YqTJ08atDstWrQwuS4KK+t2pSNJEqZNm4bXXnvN4MLBZdW6dWt9pr59+0Iul+PLL7/Ed999p7+IKWDYOW7gwIG4du0a9u/fb/IxmzRpgoMHDyInJ8dgGp87d+5Ao9HoP9d16tSBRqNBRESEwXpOSkpCZmYm3Nzc9PuGxo0bIz09Hb169TLYN9y5cweA9os2pVKpf4zff/8dgwcPhouLCwYNGoTNmzcbZGzWrBlyc3PRu3dveHt7Gxzn6AoXbJfZLrNdZrsMWGe7XFaltY26NtvNza3MIwaKdpbWjRYz5erVq9i0aRN27dpVbKEK0Bbai47u0+3fC7fj5WkfS2vfGjVqVOwxQdHHmzlzJt5//32Eh4fri0qFpzkurLT1ExAQgCpVqhT73M7OzkYF1Pv372PRokUIDAyEr69vuYsFXbt21a/HQYMG4ebNmwgMDDQoFri4uBhsAwMHDkSNGjWwf/9+k8WCJk2alLj+Kvq+lbbN6lSpUgX79+9Hq1atMGXKFMydOxfDhw/XH09UZNsuSYWuWVAaFxcXg0otoO09U3R+pKFDhyI1NdWoFywAo/uXh+5q0jrbtm3DgwcP0L9/fwBAhw4d0KxZM/z4449GV7MHtL1Ii2bXHXiV5PXXX4eLiwtmz55tlF+SJIMNXKVSYfv27ejUqVOJPTWHDx8OtVqtv4J5YSqVqsyNjilnz57F7t278f333xd7EDN8+HAkJCQY9YYCtEPs8vLySn2eli1b6ocNLVmyBBqNxmhoT1nXh4uLC5ycnAyq4LGxsUYHc0OGDIGzszPmzJljVMHXvTcvv/wyfH19ERgYaDRHmW6ZZ599FrVq1cKvv/5qMFxz3759uHXrFgYOHFjia1coFFCpVAb3taSyfvYOHz6M//u//8NXX32FIUOGlPmxlixZYrIHginPPvssAgIC8Ouvv+rn0gSA1atXG223AwYMQGJiosGJjUqlwpIlS+Dj46OfF65Ro0ZwcXHByZMnDe5ftJdXfn6+0XvarFkz+Pr6WuS9KCgoAIASH7t3795wd3fH4sWLDdbrH3/8gaysLP22FBAQgGeffRZr1qwxGB4bFRWFv/76C/379zc48PD390f//v2xfv16bNiwAf369TM6qAW0c9C3adMGvXv3Ru/evdGhQweDv+ses3A2SZKwaNGiEl97+/btUbt2bfz2228G8y+fOnUKly5dKnW/WVbl2b8C2t4B3333HaZMmWKWYbNleY+BhxV9UweHTz/9NOrUqWO0Pym6rurWrYv27dtjzZo1Bp+V0NBQHDx4EAMGDDB67GXLlpnMo2v3dLp06QIXFxd4e3ujUaNGyMrKMti/674Ii42N1a9nXVu9ZMkSo/XMtlqLbbUhttUlY1utZY1ttc4zzzwDb29vODs74/fff0dsbCzmzJmj/3tZ23RL2rVrl8E2c+HCBZw/f16/Dy1vW7Jp0ya4u7sbzGVcViW1faUp63ZVOOf169cRGBhY7ucyRbddFN7+TdFoNMW+vgEDBkCtVhud0+p6leu+3OvatSsAYOHChSaXq1atmsH2dP/+fXz++ef69zk7Oxtr165Fw4YNkZ6ebvB8ujnZBwwYgLfeegtz5841eI7hw4fj7NmzOHDggFF+XRvLdrls2C6zXWa7bB7laZfLqrS2sVatWujZsydWrFiBBw8eGN2/6H6svKZNm4auXbti8ODBJS6nUqkMCmEKhQIrVqxAQECA/jy9vO1jUUXbtwEDBuDChQsGo/Ly8vKwcuVKNG7c2Gj6sbp16+LFF1/Uf39Q2vVniuPi4oKXX34Zu3fv1k9rB2gL5X/++Se6detmNEJn9uzZqF27Nj744IMKPWdRBQUFpW5nus9tSW39hQsXcObMGf1tMpkMy5cvR506dSr8vpW2zeoEBAToC5Rz5sxBgwYNMG7cOH1uc2/bFhlZMGjQIMyZMwdjxoxBly5dcOPGDWzYsMFojrWRI0di7dq1+OSTT3DhwgV0794deXl5OHz4MCZMmIBXX321Qs9fo0YNdOvWDWPGjEFSUhIWLlyI5s2b64e96g78+/fvjyeffBJjxoxB/fr1kZCQgGPHjsHPzw9///038vLysGzZMixevBgtW7bE8ePH9c+hO0C6fv06zp49i86dO6NZs2b49ttvMX36dMTGxmLIkCHw9fVFTEwMdu7ciffffx+fffYZDh8+jBkzZuD69ev6YS/F6dGjB8aPH4/AwECEhITg5ZdfhpubGyIiIrB161YsWrQIw4YNq9B6OnjwIPr06VNi1ek///kPtmzZgg8++ADHjh1D165doVarER4eji1btuDAgQOl9hYprE6dOpg/fz7Gjh2Ld999FwMGDCjX+hg4cCB+/vln9OvXD2+//TaSk5OxbNkyNG/eHNevX9cv17x5c3z11Vf45ptv0L17d7z++uvw8PDAxYsXUa9ePQQGBsLPzw8LFizA2LFj0bFjR7z99tuoXr06rl27hvz8fKxZswZubm6YN28exowZgx49emDEiBFISkrCokWL0LhxY6M5TvPy8gyGUK5btw4ymUx/EVFLK+tnb8SIEQgICECLFi2Megj06dMHtWvXxqBBg7Bu3TpUrVoVrVu3xtmzZ3H48GGT8zaa4ubmhm+//Rbjx4/HSy+9hDfffBMxMTEICgoyyvP+++9jxYoVGD16NC5fvozGjRtj27ZtOH36NBYuXKjvpVW1alW88cYbWLJkCZycnNCsWTP8888/RvN+3rlzB7169cLw4cPRunVruLq6YufOnUhKStJf6PVRREdH69dbQkICli5dCj8/vxIv0BQQEIDp06dj9uzZ6NevHwYPHozbt2/jl19+QceOHQ0q9T/88ANefvlldO7cGWPHjtX3Avf09MR3331n9NgjR47U7wdMnRSVRatWrdCsWTN89tlnSEhIgJ+fH7Zv317qxa10n5HRo0eja9euGDVqFNLT07Fo0SLUr18fX3zxhcHyarXaoGeermflhQsXDA5O1Wo1EhIScOHCBXTq1KnM+1edK1euwN/fH1OnTq3Q+khKStK/x6mpqVixYgVcXV2NTnjj4uKwf/9+/TRE3333HRo1aoSnn37aqJeAq6srfvjhB4wcORLdu3fHO++8o5/iqEGDBgbrav78+ejfvz86d+6M//73vygoKMCSJUtQtWpVkyMlYmJiMHjwYPTr10+fu2/fvga9j4p6++23MWfOHEyaNAnZ2dmIi4vDhg0bUKNGDSQnJ6Nbt24YMmQIvL299XM4rlu3DuPGjWNbXQTbakNsq0vGtlrLGttqU9q0aYMvvvgC33//Pd566y20a9euXG26pTRv3hzdunXDhx9+CLlcjoULF6JmzZoG7V5Z2pKIiAjMnDkTGzduxLRp04xO2E1JSUnRt+UPHjzAvHnzULVqVbz44ovlfh1l3a50Dh48iHHjxpXYi7okZ8+ehaurq36ahiVLluDpp5826sF39uxZpKam6qchOnLkSLFT9QwYMAC9e/fGV199hZiYGLRv3x5Hjx7F9u3b8cEHH6BBgwYAtF/+jho1CitXrkRmZiZ69OiBCxcuYM2aNRgyZAjatWun3zfk5OSgWrVq+Pnnn1GtWjXEx8ejW7duSEpKwt9//4358+fjk08+0c8/vWLFCly5cgUTJkzAokWLsG/fPoOMn3/+Of766y8MGjQIvr6+UCgU+Omnn3Djxg39Fxpsl8uG7TLbZbbLFWOudrkkZWkbly1bhm7duqFt27YYN24cmjZtiqSkJJw9exbx8fH6i9JXxMGDB3H69OlSl6tXrx7mzZuH2NhYtGzZEps3b0ZISAhWrlypH8ld3vaxtPZt2rRp2LhxI/r374+PPvoINWrUwJo1axATE4Pt27cbzbFvTt9++y0OHTqEbt26YcKECXB1dcWKFSsgl8vxww8/GC1/8OBBbNiwocLXy9u1axf8/f310xCdOnUKkydPNlim8PcSOTk5CAoKQl5eXrGFwKlTp2LDhg369efv74/169cjLCwMGzZs0I/SK+/7VpZttigvLy+sXLkSvXv3xvLlyzFhwgQAZt62pXIICgqSAEgXL14scTmZTCZ9+umnUt26dSUvLy+pa9eu0tmzZ6UePXpIPXr0MFg2Pz9f+uqrr6QmTZpIbm5uUp06daRhw4ZJUVFRkiRJUkxMjARAmj9/vtHzPPnkkwaPd+zYMQmAtHHjRmn69OlSrVq1JC8vL2ngwIHS3bt3je5/9epV6fXXX5dq1qwpeXh4SI0aNZKGDx8uHTlyxOC5S/sZNWqUweNu375d6tatm+Tt7S15e3tLrVq1kiZOnCjdvn1bkiRJ+t///ie98MIL0v79+40yzZw5UzL1tqxcuVLq0KGD5OXlJfn6+kpt27aVpk6dKt2/f1+/TKNGjaSBAwca3XfixIlGjwlAcnJyki5fvmxwu6n3SKFQSPPmzZOefPJJycPDQ6pevbrUoUMHafbs2VJWVpbR85X2eJIkSS+99JL02GOPSTk5OeVeH3/88YfUokULycPDQ2rVqpUUFBRU7HpbtWqV9PTTT+tz9+jRQzp06JDBMn/99ZfUpUsXycvLS/Lz85M6deokbdy40WCZzZs36x+nRo0a0jvvvCPFx8cbLDNq1CiD7cLHx0d65plnpHXr1pW4jsqiuPe26Pot62evpO352LFjkiRJUkZGhjRmzBjJ399f8vHxkfr27SuFh4dLjRo1MtjmS9sv/PLLL1KTJk0kDw8P6dlnn5VOnjxpcrtISkrSP5+7u7vUtm1bKSgoyOjxUlJSpKFDh0pVqlSRqlevLo0fP14KDQ2VAOiXT01NlSZOnCi1atVK8vb2lqpWrSo999xz0pYtW8qyukvUqFEjg/Xl7+8vvfzyy9LZs2fLdP+lS5dKrVq1ktzc3KTatWtLH374oZSRkWG03JEjR6SuXbvqt8uBAwdKN27cMPmYcrlcql69ulS1alWpoKCgTDl0+0vd+y1JkhQWFib17t1b8vHxkfz9/aVx48ZJ165dM1i3kmT6c7lp0yapffv2+s/am2++KcXGxhosU/QzUpafottJaftXSdJ+LgBICxYsMLhvcfuJonT31/1Uq1ZN6tq1q7R3716D5Qov4+TkJNWpU0d6/fXXpVu3bkmS9PCzERMTY3C/LVu2GOxPRowYYbKNOnz4sME28Morr0hhYWEmX1NYWJg0bNgwydfXV6pSpYoEQAoODjbKO3PmTP3vMplMmjBhguTs7Cy5uLgY7C+efPJJg/XcsmVLqUOHDlKDBg3YVktsq4tiW63FtvohW26ri647SdK+Z61atZI6duwoqVQq/e1ladN1+9Si5s+fb7KNkCTTbbRO4f3tTz/9JDVs2FDy8PCQunfvLl27ds1o+dLako0bN0pt2rSRFi1aJGk0mlJzFLduz507ZzJjUUXbBEkq23ale0wvLy8pISHB4G+m3rPi1pvux9nZWWrQoIE0atQog/2E7rOi+3F3d5eaN28uff3115JcLpckyfQ+Mzc3V5oyZYpUr149yc3NTWrevLn0/fffS2q12uDzp1QqpdmzZ+vPfRs2bChNnz5dkslkBvsGJycnqXr16tLChQslb29vycnJSWrVqpW0detWSZIenkMHBARIAKSAgACDdvnHH3+UAEhjxozRZ8zJyZGmT58uubu7S05OTpK/v7/UpUsX6YMPPmC7zHbZANtltsvW1C7rmLNtjIqKkkaOHCnVqVNHcnNzk+rXry8NGjRI2rZtm36Z4t6jlJQUo/Mq3Wfp1VdfLTWz7rjg0qVLUufOnSVPT0+pUaNG0tKlS41ylqd9LK19073uYcOGSdWqVZM8PT2lTp06Sf/884/R85pS1m3Y1PqRJEm6cuWK1LdvX8nHx0eqUqWK9OKLL0pnzpwxWEb3mO3btzc4JtG9RlPbtqn7m2rDZTKZfrmy7HdMvQbd+qtatark6ekpdezYUdq1a5dRjvK8b2XZZkeNGiU1atTI6HnGjBkj+fn5GbzPZdm2y8Lp35VgF44fP44XX3wRW7durXBPgcJiY2PRpEkTxMTEFDvv9qxZsxAbG4vVq1c/8vMREVWESqVCvXr18MorrxjNtWnLVq9ejdWrVxv0SCNDs2bNwuzZs5GSkmJy+ilrxLaaiKjidPu8+fPnl+mitGSbGjdujDZt2uCff/6x+HOxXSYiW2dLbWPPnj2RmpqK0NBQ0VFIIGvfZi03zoSIiCrFrl27kJKSYnBhYiIiIiIiIiIiovKwyDUL7IWPjw/eeeedEi8W1K5dO9SrV68SUxERaZ0/fx7Xr1/HN998g6effrrUixzZmvr166NTp06iY5CVY1tNRERkPdguExER2TYWC0qgu2BFSV5//fVKSkNEZGj58uVYv3492rdvb5fDuPv06YM+ffqIjkFWjm01ERGR9WC7TEREZNvs6poFRERERERERERERERUfrxmARERERERERERERGRg2OxgIiIiIiIiIiIiIjIwbFYQERERERERERERETk4FgsICIiIiIiIiIiIiJycCwWEBERERERERERERE5OBYLiIiIiIiIiIiIiIgcHIsFREREREREREREREQOjsUCIiIiIiIiIiIiIiIHx2IBEREREREREREREZGDY7GAiIiIiIiIiIiIiMjBsVhAREREREREREREROTgWCwgIiIiIiIiIiIiInJwLBYQERERERERERERETk4FguIiIiIiIiIiIiIiBwciwVERERERERERERERA6OxQIiIiIiIiIiIiIiIgfHYgERERERERERERERkYNjsYCIiIiIiIiIiIiIyMGxWEBERERERERERERE5OBYLCAiIiIiIiIiIiIicnAsFhAREREREREREREROTgWC4iIiIiIiIiIiIiIHByLBUREREREREREREREDo7FAiIiIiIiIiIiIiIiB8diARERERERERERERGRg2OxgIiIiIiIiIiIiIjIwbFYQERERERERERERETk4FgsICIiIiIiIiIiIiJycCwWEBERERERERERERE5OBYLiIiIiIiIiIiIiIgcHIsFREREREREREREREQOjsUCIiIiIiIiIiIiIiIHx2IBEREREREREREREZGDY7GAiIiIiIiIiIiIiMjBsVhAREREREREREREROTgWCwgIiIiIiIiIiIiInJwLBYQERERERERERERETk4FguIiIiIiIiIiIiIiBwciwVERERERERERERERA6OxQIiIiIiIiIiIiIiIgfHYgERERERERERERERkYNjsYCIiIiIiIiIiIiIyMGxWEBERERERERERERE5OBYLCAiIiIiIiIiIiIicnAsFhAREREREREREREROTgWC4iIiIiIiIiIiIiIHByLBUREREREREREREREDo7FAiIiIiIiIiIiIiIiB+cqOgARVY5smRLJ2TIkZcuRnCNDdoEKuXIV8v79yZWrka8ofJsaSrUGGkmCRgI0koS1Df5C05QjgJPzvz8ugJsn4O4DuHv/+++///fQ/esHeAcAvnUAn9raf928RK8OIiIim5GRp0ByjhxJ2TIk58iRVaBEvlyFXIW2zc6Xq7Xtt0LbnhcoVFCqpX/bcAkaDXCg9jL4ZN0p0oZ7AR6+Rdpu30JtuC/gXUvbduvacRc30auDiIjIJmg0ElJz5fpz8NRcOXJk2nPtwufeuXK19hxcoUK+Qg21xrAND67yKZw06odtuLMr4F7l4fm3h4nzca/q/55/1wZ86mjPyZ3ZX5iISsdiAZEdUGsk3EvPR3RqLqJT8vAgS6b9QiFbjqQc7b8FSvUjP49zzXQgM+7RA3tU/feg5d+fqvWBGs2Ams2Ams21X0gQERE5AIVKg7tpeYhOzUNsah7iMwqQnKMtCiRny5GSI4dCrXnk53HxTjRDG+4EVKkB+Nb99wuIuoBfXaBGU237XbO59u9EREQOIE+uQnRKHqJTc3E3LR+J2TKDDnqpuQqoNdKjP5EiDtCoHu0xnFwAb/+HHfh8agPVGz08D6/RTFt0ICKHx2IBkQ3JzFcgMllbEIj6tzAQnZKLe+kFZvkiodLIs7Q/qXdM/93d598vHv49aKnZHKjdGqjVmj0aiYjIJqXkyBGemI3olDzEpGqLAzGpubifKTPPFwmVQgLy07Q/SaGmF/Gq8bBwoOsEENAK8G8BOLtUblwiIiIzuJeej8iUh+ffugJBUrZcdLSyk9RAbpL2J/G66WV86vx7Dv7vubh/S6BOW6DaY5WblYiEYrGAyEply5QIjc/C9YQs3IjPwvWETNxLLxAdq3IocrUHMEUPYlw8gFqtgLpP/fvTHqjdRjsVEhERkZVIzpEhNCELN+KzcSMhCzcSMm3rC4VHUZAOxF/Q/hTmVkX7hUPd9kC99tp/Ax5nAYGIiKzKvfR83EjIwvV4bft9Iz4L2bJH7NVvK3ITtT93Txve7lUDqNvO8Dy8RlPAyUlITCKyLBYLiKyASq3BtfgsXI3L+PegJAuxaXmQbKWjYWVRy4EH17Q/Os6u2h4P9Z8BHusCNO4KVG8sLCIRETkWuUqNK3czcSEmXfulQkKW4xQGykOZD9w7r/3RcauiLfrXaw80fA5o3I1TERIRUaXJylfiQmw6rt3LxPWELIQmZCE9TyE6lvUpSAeij2t/dDz8tJ0AGnTUtt+PPa+91hER2TwnSeLXkUSVTaORcPN+Ns5EpeJMVBouxaYjT/Ho1xSwtOPNN6Nx/G7RMUrn10BbNGj0749/c9GJiIjITuiKA+ei03AuOg0h9zIhV1n/VIC36s+FV1oxUwdZk5rNgcbdtV88NO6uvcYRERGRGeTKVbgQk4azUWk4E5WGWw+yYQszAcZUGQmnR71mgaU5uWhHH+jOwRt11l5kmYhsDosFRJUkPDFbf1ByPjrNJocy2kyxoCifOkCjLkDz3kDLvtoLOxEREZWBRiPh6r0MnIpIxbnoNFyNs43iQFE2Uywoyr+ltnDQ5AWg2UuAZ1XRiYiIyEbIlGpcis3AmahUnI1Ow434LKhsoTpQhE0UC4pycgZqPQk06Q60eFnblvP6g0Q2gcUCIgtRqjU4G5WGQ2FJOHwrCQ+yZKIjPTKbLRYU5uQM1HsGaNlPWzio2050IiIisjL5ChVO3knB4VvJOBaejDQ7mJLAZosFhTm7aXsqPj4AeLw/px0kIiIjablyHLmVjINhSQiOTIFMaXsF/qJsslhQlLsv0Kyn9jy8RV/AJ0B0IiIqBosFRGaUI1Pi+O0UHAxLwvHbycixwdEDJbGLYkFRfvW1PR1a9gWavsiLJRMROajELBkO3UrCkVtJOBOVBoUNjh4oiV0UC4qq1VpbNGjZH2jwLC+0SETkoGJT83AoLAkHwxJx+W6GTUwtVB52USww4KS95mDLftofduAjsiosFhA9oow8BfbceICDYUk4F5UGhdq+vlwozC6LBYV5+AGtBgJthwFNegIuvAY8EZE9S8yS4a9rCfj72gPcSMgSHcei7LJYUJhPbaDVIKDdcO1FFomIyK7depCNf67fx6GwJNxJyhUdx6Lsr1hQRI1m2nPwtm8A/i1EpyFyeCwWEFWAQqXBkVtJ2HE1AcdvJ0OpdoyPkd0XCwqr4g88OUR7wNLwOfZWJCKyEzkyJfaFJmLX1QSci06zu96HxbH7YkFh1Rpp2+92bwIBLUWnISIiM0nOlmFXSAJ2XElAeGKO6DiVxu6LBYXVaadtw9sMBarWF52GyCGxWEBUDpfvZmDHlXjsufEAmflK0XEqnUMVCwqr+hjQ5nXgqRFArVai0xARUTkp1Rocv52CXVcTcPhWkk1eoPhROVSxoLC6T2mLBm2GAr51RKchIqJykinVOHAzEduvJOB0ZCrUjlLlL8ShigV6TkCjLtoRB22GAp5VRQcichgsFhCVIiGzANsvx2Pn1QTEpOaJjiOUwxYLCmv4PPDse9pRB64eotMQEVEJ7iTl4M/zcdgdkoAMByzyF+awxQIdJxeg2YvaNrxlP8DZRXQiIiIqwbnoNGy/HI99oYnIlTvaF+WGHLNYUIhbFeDJ14Fnx2ivUUREFsViAZEJkiThxJ0UrD93F0fDkx1mioLSsFhQiFcNoP3bQIcxgH9z0WmIiOhfcpUa+24kYsP5u7gYmyE6jtVw+GJBYVUbAh1GAc+MAnxqiU5DRET/ypYpsf1yPDacj0Nksn1fh6A8HL5YUFidttpz8HbDAQ9f0WmI7BKLBUSFZBUosfXSPaw7dxd30/JFx7E6LBYUo3F3bS+HVq8Aru6i0xAROaQHWQVYf+4uNl24h7Q8heg4VofFAhNc3IEnXgE6jtVOdUBERELcTszB6jOx2B2SgHyFWnQcq8NigQnuPtopip59TzvlIBGZDYsFRACiUnKx+nQstl+J58FJCVgsKIVvXeC5D7QHLJ5+otMQETmECzHpCDodg4NhSQ45j3FZsVhQilqttUWD9u8Abp6i0xAR2T2NRsLR8GSsOh2DM1FpouNYNRYLSvFYF6Drx0DLvoCTk+g0RDaPxQJyaBdj0/HLsUgcv5MCfhJKx2JBGXn4aac3eH4i4FdXdBoiIrt05FYSfjkehct3OdVQWbBYUEbetYDnP9QWDlj4JyIyO7lKjW2X4/HbyWjEcjR/mbBYUEYBTwBd/qedosjFTXQaIpvFYgE5pOCIVCw5GoHzMemio9gUFgvKycUdaPsG0OUjoFYr0WmIiGyeWiPhn+v3sfx4FMITc0THsSksFpSTR1Wg43vA8xN4XQMiIjOQKdXYcD4Ov52MRmK2THQcm8JiQTn51gOe/0B7bQMW/onKjcUCcihHbiVh6bFIXI3LFB3FJrFYUFFO2iGRL3wONHhWdBgiIpsjV6mx/XICVpyM4jWFKojFggpy9dROTdT1I6B6Y9FpiIhsTq5chbVnY7EqOAapubymUEWwWFBBHlW11xbs8hHgXVN0GiKbwWIB2T1JkrA/NBFLj0Xi5v1s0XFsGosFZtCyP/DS/wF12ohOQkRk9eQqNdafi8PKk1FIypaLjmPTWCx4RM6uQJthQM9pQI0motMQEVm9rAIlgk7HYPWZWGTmK0XHsWksFjwid1/tFINdJgGeVUWnIbJ6LBaQXTtwMxE/HbyNO0m5oqPYBRYLzMUJePI14MWvAP/mosMQEVkdjUbC9ivxWHg4AgmZBaLj2AUWC8zE2Q3oMBroMZXTExERmZAnV2HFyWgEBccgR84vuM2BxQIz8aymvRDycx8A7lVEpyGyWiwWkF26EpeBwL23cDGWFz00JxYLzMzJBXhqBNDzC6DaY6LTEBFZhUNhSZh/IJyFfjNjscDM3LyBzhO0UxtwPmQiIqjUGmy8eA+LDkcgNZejAc2JxQIz864FdP9UO0WRq4foNERWh8UCsit30/Lww/7b2HPjgegodonFAgtxcQeeGQX0nM65FInIYV2MTce8feG4dJeFfktgscBCvGpov3DoNI5fOBCRwzpwMxHz9ocjOiVPdBS7xGKBhfg1AF6cDjz1NuDsLDoNkdVgsYDsQkaeAouORGDD+btQqrlJWwqLBRbmWVVbMOg4DnBxFZ2GiKhSRCTl4Pt94TgSniw6il1jscDC/BoAvWYA7d4EnJxEpyEiqhRX4zIQuDccF2LTRUexaywWWFjd9kD/H4DHnhOdhMgqsFhANk2h0uCP4Bj8cjwSOTI2npbGYkElCWgF9AsEmr0kOgkRkcXkylVYeOgOVp+JhUrDw1FLY7GgkjR8HhgwH6jbTnQSIiKLuZeej+/3hXNEfyVhsaCStB0O9JkN+NUTnYRIKHZdJZt1OjIVM3aFIjqVQx3JzqSEA+teAx4fCPT9DqjRRHQiIiKz2h2SgLl7byEpm3Mak525dw5Y2RN49j3gpf8DvKqJTkREZDYKlQYrT0Zh6bFIyJQa0XGIzOvGFiB8D9D9E6DL/zi9IDksjiwgm5OSI8e3e8KwO+S+6CgOhyMLBHDxADpPBF74DHD3Fp2GiOiRRCTlYMbuUJyL5nQFlY0jCwSo4g/0ngU8/S6nJiIim3cuOg3/tysUkcm5oqM4HI4sEKB6Y+Dl74AnBolOQlTpWCwgm6HRSNhwIQ7z94cjm1MOCcFigUBVHwNeWQA07y06CRFRuXHKIfFYLBCoQUdgwI9AvfaikxARlVtarhzf7b2FHVcSREdxWCwWCNSyPzDoZ05NRA6Fl/smmxCakIXXlp/BjF2hLBSQY8qKA9YPBXZ+AOSzRy4R2Y5DYUno9dNx/B4cw0IBOab4i8BvLwIHvgKUBaLTEBGViSRJ+PN8HHr9fIKFAnJcd/YBy54DLq0C2NeaHASvWUBWTaZUY/6B21h9JhZqfsFABFzbCEQeAfrPA9q8LjoNEVGxsvKVmPX3Tey8yi8YiCBpgLNLgTv7gVd/AR57TnQiIqJiRSbn4ovt13H5boboKETiybOBf6YAoTuAVxYBNZuJTkRkURxZQFbr2r1MDFh8Cn8Ex7BQQFRYXjKwbQyw6R0gJ1F0GiIiI4fDktBnwQkWCoiKSosEgvoB+7/kKAMisjqSJOGP4BgMWnKKhQKiomJPAcu7AsELAY1adBoii2GxgKyOSq3BzwdvY+jyM4hOyRMdh8h6hf8DLOsEXFknOgkREQAgq0CJT7aEYOzaS0jOkYuOQ2SdJA1wbhnwazcg7pzoNEREAICEzAK8/dt5fPNPGGRKjeg4RNZJVQAcngn89hKQFCY6DZFFsFhAViUyOQev/XIGi49Gcl5jorKQZQF/TQI2v8trGRCRUMfCk/HyAs5rTFRmaZFAUH9g/3SOMiAiobZeuod+C07ibHSa6ChEtuFBiPZ6ROdXiE5CZHa8ZgFZBd1wx/kHbkOuYi8GonK79TeQcAV4bQXQpLvoNETkQGRKNWb/HYaNF+JERyGyPZIGOPeL9npEbwQBtZ8UnYiIHEhqrhxf7riBg2FJoqMQ2R6VDNg3VduGD/kF8PYXnYjILDiygIR7kFWAEb+dw7d7brFQQPQoshOAtYOBw7MBtUp0GiJyAJHJOXh16WkWCogeVept7ZQGl1aJTkJEDuJwWBL6LjjJQgHRo4o4ACzvoi0aENkBFgtIqBN3UjBwcTDORXP6FCKzkDRA8M/AqpeB9GjRaYjIjm25dA+vLDmN20k5oqMQ2QeVDPhnCrB1tHaaQSIiC1CpNZi79xbGrr2EtDyF6DhE9iE3CVg/FNj/JaDi54psG4sFJIRGI+HnQ3cwJugC0nmAQmR+CZeBX18Arm0SnYSI7EyeXIVPNodg6rbrKFCqRcchsj83dwK/dte25UREZpSULcPbv53HypPsVERkfhJwbhnw+0tAaoToMEQVxmIBVbq0XDlGrrqAxUciwGsYE1mQIgfYOR745xNArRSdhojsQNj9bLyyNBg7rvIixkQWlXkX+KMvcGYJIPGAmYge3ZnIVAxcfAoXYjmqn8iiEm9opxYM3yM6CVGFsFhAlepSbDoGLg5GcGSq6ChEjuPSH8DqQUBOougkRGTDNl2Iw2u/nEZ0Sp7oKESOQaMEDv4fsHEEIMsWnYaIbJQkSVhyJALv/nEeqbkc1U9UKeTZwKZ3gKPfAhpem5NsC4sFVGl+OxmNt1aeQ2K2THQUIsdz7xywogcQd150EiKyMSq1BjN2hWLajhuQq3iyQ1Tp7uwDfu8NpEWJTkJENiYjT4Exqy/ip0N3OKqfqNJJwMn5wJ/DgYJM0WGIyozFArI4mVKNiX9ewXd7b0HFIxQicXITgdUDgYu/i05CRDYiM1+BkasuYN25u6KjEDm21NvaKQ2ijopOQkQ24nZiDgYtCcbx2ymioxA5tshDwMqeQNJN0UmIyoTFArKolBw53lx5DnuuPxAdhYgA7ZQGez4Fdk0EVHLRaYjIikUk5WDw0tM4E5UmOgoRAYAsE1g/DDj7i+gkRGTljt1OxtDlZ5CQWSA6ChEBQEYM8HsfIHS76CREpWKxgCwmPDEbQ5adxrV7maKjEFFRIeuBoAFAHq8fQkTGjtxKwmu/nEFcer7oKERUmKQGDkz/t+jPuceJyNjq0zEYu+YScuUq0VGIqDBlHrDtPe11DIisGIsFZBHHwpMxbPlZ9mQgsmYJl7RzIKdGik5CRFbkl+ORGLeWXzIQWbWQ9dqpBXOSRCchIiuh1kj4encoZv0dBjWn/yWyXifnAzvGA2ql6CREJrFYQGYXdDoGY/klA5FtyIgB/ujDCx8TEVRqDT7beg0/7L/NiyAS2YL4C/8W/SNEJyEiwXJkSry3+iLWnuU1hohswvVNwPrXAVmW6CRERlgsILNRayTM2BWK2ezJQGRbCtKBtYOBm7tEJyEiQQoUary/7jK2XY4XHYWIyiMrDljVF4i/JDoJEQlyLz0fQ5efwYk7vJAxkU2JOQms6gdk8fibrAuLBWQWMqUa49ddxrpz7MlAZJNUMmDraODMUtFJiKiSZeYr8Pbv53A0PFl0FCKqiPw0YM1gIOKw6CREVMnCE7Px+vIzuJOUKzoKEVVEcph2lGDiDdFJiPRYLKBHlidXYUzQRRy+xTlTiWybBBz8Ctg7FdBoRIchokpwP7MAw349i6txmaKjENGjUOYBG98Erm0SnYSIKsmVuAy8ueIcUnLkoqMQ0aPIeQCs6g9EsuhP1oHFAnok2t6I53E2Ok10FCIylwsrgB1jATWvO0JkzyKScjB0+RlEJrM3IpFd0KiAnR8ApxeJTkJEFnY6MhXv/n4eWQW8QCqRXVDkAH++BYTuEJ2EiMUCqrjkbBmGrziLa/cyRUchInML3Q5s+Q+gYk8lInt0+W46hv16Fg+yZKKjEJFZScChr4H9XwISryFGZI8O3EzEmNUXka9Qi45CROakUQLb/wtcXS86CTk4FguoQu6l52PYr2c5NyKRPbu9F/hzOKDIE52EiMzoVEQK3v39AnsjEtmzc8uAv/7HaQWJ7Mz2y/GYsOEKFCp+tonskqQBdk8Czq8QnYQcGIsFVG4RSTkY9usZxKXni45CRJYWfRxYPwyQszBIZA9O3EnB2DWXUKBkb0Qiu3d1HbB7IgsGRHZi9ekYfLbtGtQajhoism8SsG8qELxQdBByUCwWULmE3c/G8BVnkZTNqUmIHEbcGWDda4AsW3QSInoEx8KTMW7tJcjZG5HIcVz7E9g5HtCwQEhky349EYVZf4dxdjEiR3J4JnByvugU5IBYLKAyu52Yg3f/OI+MfE5bQORw4i8A64YABZmikxBRBRwLT8b4dZc5bQGRI7qx5d+CAT//RLbo91PR+H5fuOgYRCTC0W+BY4GiU5CDYbGAyiQyOQfv/H4O6XkK0VGISJSEy8D6oZySiMjGnLiTgvHrL0Oh5heFRA7rxlZg14csGBDZmKDTMfh2zy3RMYhIpBPfc4QBVSoWC6hU0Sm5GPHbeaTmslBA5PASLgEb3wKUMtFJiKgMgiNS8f7aSxxRQETA9U3AX5NYMCCyEevP3cXsv8NExyAia3D0W170mCoNiwVUoviMfLz7+3mk5PAaBUT0r9hTwNbRgFolOgkRleB8dBrGrr3IaxQQ0UMhG4A9n4hOQUSl2HElHjN2h4qOQUTWZN8XQMhG0SnIAbBYQMVKzpHh3d/P434WexATURF39nH+YyIrdutBNsauvQSZkp9RIirichBw9DvRKYioGPtDH+Dzbdd5MWMiKkICdk8Ebv0tOgjZORYLyKTMfAXe/f08YtPyRUchImsVuo29E4ms0L30fIxadQE5Mo7+IaJinPwBuPCb6BREVMSJOyn4aGMI1BpWCojIBEkNbHsPiDoqOgnZMRYLyIhMqcZ/11zCnSRexJSISnE5CDj0tegURPSv9DwFRq26gGROH0hEpdk3Fbi5S3QKIvrXjfgsfLj+MhRqjgokohKoFcCmd4G486KTkJ1isYAMSJKET7aE4PLdDNFRiMhWnF4EBC8UnYLI4eUrVBgTdAHRqXmioxCRLZA0wI73gZiTopMQObz4jHy8t+Yi8hVq0VGIyBYo84A/3wCSeBF0Mj8WC8hA4L5w7L2RKDoGEdmaw7PYO5FIIKVagw/WX8G1+CzRUYjIlqjlwKZ3gAfXRCchclhZBUqMCbqIFI4KJKLykGUBf74J5CaLTkJ2hsUC0lt3NhYrT0aLjkFENkkCdn4AxF8SHYTI4UiShKnbruPknRTRUYjIFsmzgfXDgPQY0UmIHI5CpcH4dZcQkcwpgImoArLigI1vAcoC0UnIjrBYQACAI7eSMOtvDl8iokegKgA2jgAy40QnIXIoPx28g51XE0THICJblpcM/Dlc20uRiCrN1G3XcC46XXQMIrJlCZeBneMBiRdGJ/NgsYBwIz4L/9t4FWoNdyxE9IjykoENwwFZtugkRA7hn+v3sfRYpOgYRGQPUu8A2/4LaHhxVaLK8OOB29gVcl90DCKyB2G7gSOzRacgO8FigYNLyCzghZSIyLxSbgFbRwFqlegkRHYtNCELn2+9LjoGEdmTyEPA4a9FpyCye5svxrHYT0TmFbwAuLJOdAqyAywWODCZUo3x6y7xQkpEZH5RR4F9n4tOQWS3UnLkeH/tJRQoWewnIjM7swS4tkl0CiK7dSUuAzN23RQdg4js0T9TgJiTolOQjWOxwIF9tTMUoQmcKoSILOTSKuDiH6JTENkdhUqDD9dfxv0smegoRGSv/voIiL8kOgWR3UnNlWPC+itQqDndFxFZgEYJbBkJZNwVnYRsGIsFDmrdubvYfiVedAwisnf7p2svuEREZjNjVygu3c0QHYOI7JlaDmx6B8jmfOpE5qJSazBxwxUkZrPYT0QWVJChLRioOIsIVQyLBQ7o8t0MfPN3mOgYROQI1HJgy2ggP110EiK7EHQ6Bpsv3RMdg4gcQW4isOltQMkvNonMIXBfOM7H8JiYiCrBgxBgL6cFpophscDBpOTIMWHDZQ57JKLKkxUHbB8LaLjfIXoUl++m47s9t0THICJHcv8qsH+a6BRENu+va/fxR3CM6BhE5EiurAGubhCdgmwQiwUORKXWYOKfV5CUzaFIRFTJoo4AJ+aJTkFks7LylfhoYwhUGkl0FCJyNJeDgNAdolMQ2azbiTmYtv266BhE5Ij2fAok3hCdgmwMiwUOZO7ecFzgsEciEuXkD0DEYdEpiGzSZ9uuISGzQHQMInJUf38MpLNXNFF55ciU+GD9ZeQr1KKjEJEjUhUAm/8DyLJEJyEbwmKBgzgcloRVp3mAT0QCSRpgx1ggM050EiKbEnQ6BofCkkTHICJHJs8Gto0BVArRSYhsylc7QxGTmic6BhE5sowYYOcHgMQRylQ2LBY4gJQcOb7gsEcisgYFGcD2cYCGvauIyiI0IQuBe8NFxyAi0l6/4NDXolMQ2YydV+Px17X7omMQEQG39wIXVopOQTaCxQI7J0kSPtt6DWl57AVERFbi3jkgeIHoFERWL1euwqQ/r0Ch5sXBichKnF8OhO8RnYLI6t1Lz8fXu26KjkFE9NChmUDKbdEpyAawWGDn1pyJxYk7KaJjEBEZOv69tociERXryx03EJuWLzoGEZGhXROAzHuiUxBZLbVGwidbQpAjV4mOQkT0kKoA2D4WUCtFJyErx2KBHbuTlIPAfZy6gIiskEYJ7HgfUPKCrUSm7LjCqQuIyErJMoFdH3LuY6JiLDsWiYuxGaJjEBEZS7wOHJsrOgVZORYL7JRcpcZHG69CruLUBURkpVLvcO5jIhOSs2WY/XeY6BhERMWLPQVc/F10CiKrczUuA4uPRIiOQURUvNMLgbtnRacgK8ZigZ36Yf9thCfmiI5BRFSyC78BEYdFpyCyKtN33EBWAYcHE5GVOzQTSI8RnYLIauTJVZiyOQQqDUfdEJEVkzTAzvcBOb8zJNNYLLBDZ6PSsOo0D9yJyBZIwO6JQH666CBEVmHHlXgcCU8WHYOIqHTKPGD3JE5HRPSvuXtv8VpDRGQbMuOAfV+ITkFWisUCOyNTqvHlzhs8Zici25GbCOybKjoFkXCcfoiIbM7dYO0oQSIHdyEmHX9eiBMdg4io7EI2AHcOiE5BVojFAjuz5GgEYlLzRMcgIiqfG1uBSE5HRI6N0w8RkU06PIvTEZFDk6vUmL7jOjvsEZHt2fMZoOB3iGSIxQI7Ep6YjZUno0XHICKqmD2fAsoC0SmIhOD0Q0RkszgdETm4ZceiEJXCL9uIyAZlxQHH5opOQVaGxQI7odFImLb9BpRqHqQTkY3KiAWOB4pOQVTpknM4/RAR2bi7wcClP0SnIKp0d5Jy8OvxKNExiIgq7txy4H6I6BRkRVgssBNrz8Yi5F6m6BhERI/m7DIg8YboFESV6vu94Zx+iIhs35FvgLxU0SmIKo22w951KNQa0VGIiCpOUgN/fwRo1KKTkJVgscAO3M8swPwDt0XHICJ6dBoV8PfHgIYnXeQYLsamY8fVBNExiIgenSwTODRTdAqiSrP+/F1cicsUHYOI6NE9uAac/1V0CrISLBbYga93hyJPwQogEdmJhMvAxd9EpyCyOLVGwoxdoaJjEBGZT8gG4N5F0SmILC4xS4Yf9rPDHhHZkaPfAZlxolOQFWCxwMYduZWEw7d4QUQisjNHvgFyEkWnILKodWdjEZ6YIzoGEZEZScCeTzhCkOze3L23kCtXiY5BRGQ+yjxg3xeiU5AVYLHAhinVGny395boGERE5qfIAY5+IzoFkcWk5srx06E7omMQEZlf4nVe7Jjs2uW7Gfjr2n3RMYiIzO/2XiD6uOgUJBiLBTZs3dm7iE7JEx2DiMgyQv7Uzp1IZIe+3xeOHBl7JBKRnTr6LS92THZJkiR880+Y6BhERJZz4CuOEHRwLBbYqMx8BRYdiRAdg4jIciSN9kCFyM5cvpuB7VfiRccgIrIcWSZwmBc7JvuzO+Q+Qu5lio5BRGQ5SaHA1bWiU5BALBbYqIWHI5BVoBQdg4jIsmJPAbf+EZ2CyGwkScLsv29CkkQnISKysKsbgAfXRacgMhuZUo0f9oeLjkFEZHlHvwPkvLaao2KxwAZFJudi/bm7omMQEVWOQzMAlUJ0CiKz2HsjEdfjs0THICKqBBJwZLboEERms+JENO5nyUTHICKyvLxk4NTPolOQICwW2KC5e29BpWGXRCJyEOnRwIWVolMQPTKVWoOfDt4WHYOIqPJEHgZiTolOQfTIErNkWHEySnQMIqLKc+4XIDNOdAoSgMUCG3MqIgVHw5NFxyAiqlwnfwDy0kSnIHokWy7FIzo1T3QMIqLKdXiW6AREj2z+gdvIV6hFxyAiqjwqGXCI1x9yRCwW2Jj5B9gjkYgckCwLOL1QdAqiCpMp1Vh05I7oGERElS/hEhD2l+gURBUWkZSDnVfjRccgIqp8N3cAD66JTkGVjMUCG3I4LInzHBOR47r4O5CbIjoFUYUEnY5FUrZcdAwiIjGOfgNo2CubbNOiIxHgLMBE5LCOfy86AVUyFgtsyEL2SCQiR6bM5+gCsklZ+UosPx4pOgYRkTipd4Cr60WnICq3O0k52HvjgegYRETi3N4L3L8qOgVVIhYLbMTBm4kITcgWHYOISKyLfwA5SaJTEJXL8hNRyJapRMcgIhLr+PeAUiY6BVG5cFQBERE4usDBsFhgAyRJwqIjEaJjEBGJpyrg6AKyKel5Cqw5Eys6BhGReDn3gavrRKcgKrPbiRxVQEQEALizH0i4LDoFVRIWC2zAwbAk3LzPUQVERACAS6uAnETRKYjKJOh0DAqUnKebiAgAcHoxoOZIK7INi47cgcRRBUREWhxd4DBYLLBykiRh4WGOKiAi0lPJgOAFolMQlSpXrsLas3dFxyAish5ZcUDoNtEpiEp160E29oWycwoRkV7EQSD+kugUVAlYLLByB24m4tYDjiogIjJweTWQzWHhZN3+PH8XWQVK0TGIiKxL8AKwuzZZu0WHI7iZEhEVxdEFDoHFAiu3/HiU6AhERNZHJQMurBCdgqhYCpUGfwTHiI5BRGR9UsKB8D2iUxAVKyolFwfCOKqAiMhI5CEgKUx0CrIwFgus2MXYdFyLzxIdg4jIOl0KAhR5olMQmbT9SjySsuWiYxARWafgn0UnICpW0OkYjiogIirO2WWiE5CFsVhgxf44xR6JRETFkmUCIX+KTkFkRKORsPJktOgYRETWK+EyEH1cdAoiI5n5Cmy/nCA6BhGR9bqxFchNFp2CLIjFAit1Lz0fBzn0kYioZOeWAxqN6BREBvaGPkBMKke9EBGV6BRHF5D12XA+DgVKtegYRETWSy0HLqwUnYIsiMUCKxV0OhYaDn0kIipZehRwZ5/oFEQGfuOoAiKi0sWcAJJviU5BpKdUa7D2bKzoGERE1u/SKkBZIDoFWQiLBVYoR6bElkv3RMcgIrINnDORrMjVuAxeb4iIqKwu/i46AZHeP9fv83pDRERlkZ8GXNsoOgVZCIsFVmjzxXvIlatExyAisg13TwP3r4pOQQQAWHv2rugIRES249pmQJ4rOgURAOCPYF4zkIiozM4tB68Gb59YLLAyao2E1WdiRccgIrIt55aLTkCE1Fw59tx4IDoGEZHtUOQA1zeJTkGE89FpCE3IFh2DiMh2pN4BIg6JTkEWwGKBlTl8KwnxGZz3i4ioXMJ2AwUZolOQg9t88R4UKl5wm4ioXC7+IToBETvsERFVxOXVohOQBbBYYGU2XogTHYGIyPaoZMD1LaJTkAPTaCS24UREFZEcBsSeFp2CHFhqrhyHbyWJjkFEZHsiDgA53H/aGxYLrMj9zAKcvJMiOgYRkW26slZ0AnJgJyNSODKQiKiiLv4mOgE5sO2X46FUc95tIqJy06iAkA2iU5CZsVhgRbZcugcNj1GIiComKRRIuCw6BTmoDec5qoCIqMJu/cOeiSTM5ov3REcgIrJdV9eLTkBmxmKBldBoJGy9FC86BhGRbePoAhIgOUeGo+HJomMQEdkujZIXOiYhzkenITo1T3QMIiLblR4FxAaLTkFmxGKBlTgTlYaETE5fQET0SG5sBxQ84aPK9VfIfag5NJCI6NHw2kMkwLbL7LBHRPTI2GnPrrBYYCW2X+FBChHRI1PkADd3ik5BDmZ3yH3REYiIbF9SKJB0U3QKciD5ChX23nggOgYRke0L+wuQZYlOQWbCYoEVyJWrsD80UXQMIiL7wDkTqRJFpeTiRgIPjImIzOL6ZtEJyIHsu5GIPIVadAwiItunKgBubBWdgsyExQIrsPf6AxQoeZBCRGQWceeALI7Wosqx+2qC6AhERPbjxjZA4rRuVDk4up+IyIxubBedgMyExQIr8Pd1Tl9ARGQ+EnBzl+gQ5CB2X2MbTkRkNtkJQOwp0SnIAaTkyHEuOk10DCIi+3HvHJDNqd3sAYsFgmXmK3A2igcpRERmxesWUCW4fDcDd9PyRccgIrIv1zgVEVnegZuJ0HAQCxGR+UgaIGy36BRkBiwWCHYwLAkqHqUQEZlXwiUgM050CrJzu0M4BRERkdnd+gtQykSnIDu3L5S9X4mIzI6d9uwCiwWC7bvBgxQiIovgVERkQSq1Bnuusw0nIjI7eTYQeUh0CrJjGXkKnI9OFx2DiMj+3DsPZHOaVlvHYoFA2TIlTkdyCiIiIotgrwayoIuxGUjLU4iOQURkn8L3ik5AduxgWCJH9xMRWYTEqYjsAIsFAh25lQSFWiM6BhGRfbp/Bci4KzoF2anDt5JERyAisl8RBwANz5PIMvaFJoqOQERkv9hpz+axWCDQ3hs8SCEisigeqJCFHGGxgIjIcvLTtFMZEJlZVoESZzi6n4jIcu5dALJ4bTdbxmKBIHlyFU7eSREdg4jIvt05IDoB2aHI5FzEpuWLjkFEZN9u7xGdgOzQ4TCO7icisiwJuLNfdAh6BCwWCHLiTgrkKh6kEBFZVPwFQJYlOgXZGY4qICKqBLf3iU5AduhgGEf3ExFZXORh0QnoEbBYIMiJ2xxVQERkcRoVEHVMdAqyM0duJYuOQERk/9IigdQI0SnIjqjUGk5BRERUGWJOAiqF6BRUQSwWCBIcmSo6AhGRY2CvBjKjzHwFLsdliI5BROQYwjkVEZnP1XuZyJGrRMcgIrJ/ilwg7qzoFFRBLBYIEJWSi4TMAtExiIgcQ+QR0QnIjhwNT4ZaI4mOQUTkGDjnMZnRqQh22CMiqjTstGezWCwQ4BQvbExEVHly7gOJoaJTkJ04xmkEiYgqT/xFQJEnOgXZiVMRbMOJiCoNiwU2i8UCATgFERFRJeOBCpnJuWjOdUxEVGk0Kk5jQGaRVaDE9fgs0TGIiBxHchiQlSA6BVUAiwWVTKXW4Fx0uugYRESOhcUCMoOolFyk5MhFxyAiciwxp0QnIDtwJjKV0wgSEVU2nofbJBYLKtmVuEzk8qJKRESVK+4coOS1YujRcFQBEZEAsSwW0KM7xdH9RESVL/q46ARUASwWVLJgzpNIRFT5NEog4YroFGTjODKQiEiA+yGAPEd0CrJxvF4BEZEAcedEJ6AKYLGgkp2JYq9EIiIhOOcxPaLzHFlARFT5JDVwl204VVx8Rj7upXOEKRFRpcu5D2TGiU5B5cRiQSVSqjW4kcCLKhERCXHvvOgEZMOiU3KRzOsVEBGJEXtSdAKyYVfiMkVHICJyXBxdYHNYLKhEYfezIVdpRMcgInJM984DEi9sRxXDKYiIiATiRY7pEVyNyxAdgYjIcbFYYHNYLKhEPEghIhJIlgUkh4lOQTbqfAynICIiEibxOiDPFZ2CbNRVjiwgIhKHxQKbw2JBJbp6L1N0BCIix8YDFaqgKyz4ExGJI2m0BQOicpKr1Ai7ny06BhGR40q5pe24RzaDxYJKxB4NRESCsVhAFZCVr+SFEYmIRLt/VXQCskE372dDoeZUwEREwkga4N4F0SmoHFgsqCRpuXLEpeeLjkFE5Nh4kWOqgND77AlDRCQciwVUAeywR0RkBXgeblNYLKgkPEghIrICmXc5BJLKLTSB2wwRkXAsFlAF8LqBRERW4AGnErQlLBZUkqv3eJBCRGQVkm6KTkA25gaLBURE4qVFATLOPU/lw057RERWIClUdAIqBxYLKsmNBB7YEhFZhUQeqFD53OSFEYmIrIAEPLgmOgTZkMx8BRIyec0hIiLhshOA/HTRKaiMWCyoJBFJOaIjEBERACTdEJ2AbEiOTInYtDzRMYiICOBURFQud5JyRUcgIiIdji6wGSwWVIIcmRIPsmSiYxAREcCRBVQuN+9nQ5JEpyAiIgDAgxDRCciGRCSzwx4RkdXgdMA2g8WCShCRzB4NRERWIyUc0GhEpyAbwSmIiIisSFKY6ARkQyI4soCIyHqw057NYLGgEnAKIiIiK6LMB9KjRKcgGxHJXolERNYjI4YFfyqzOzwPJyKyHpwO2GawWFAJ2KOBiMjKJPJAhcomJpXXKyAishoqGZAVJzoF2Qhes4CIyIqk3AY0atEpqAxYLKgEdzgNERGRdUm5LToB2QgWC4iIrExqpOgEZAMy8xVIzZWLjkFERDoqGZAeIzoFlQGLBZWA0xAREVmZjFjRCcgG5CtUSMrmFw1ERFYljcUCKh1HFRARWaEMFgtsAYsFFpYjU+JBlkx0DCIiKozFAioDjiogIrJCaRGiE5AN4PUKiIisEM/DbQKLBRZ2Ny1fdAQiIiqKBylUBiwWEBFZoVQWC6h0d9PYhhMRWR2eh9sEFgssLCGzQHQEIiIqKjcRUHL/TCWLZbGAiMj6pEWJTkA24H4mR/cTEVkdFgtsAosFFnafxQIiIuvEAxUqRTSLBURE1ic7AVBw9DaVjJ32iIisUMZd0QmoDFgssDBer4CIyEqxWECliONUgkREVkgCsu+LDkFWjp32iIisUCaLBbaAxQILY48GIiIrxWIBlSIxmwV/IiKrlPNAdAKyYkq1Bqm5ctExiIioKHk2kJcmOgWVgsUCC3vAYgERkXVisYBKkZzDLxqIiKxSTqLoBGTFErNk0EiiUxARkUk8D7d6LBZYGC+sRERkpfhFA5UgK18JhUojOgYREZnCkQVUAk5BRERkxdiGWz0WCyxIpdYgOYfFAiIiq5SXKjoBWbGUXLbfRERWiwV/KsH9LBYLiIisVl6K6ARUChYLLCgxm8MfiYisFg9SqATJ2ZyCiIjIarFXIpWAo/uJiKxYPjvtWTsWCywohXMdExFZLx6kUAl4vQIiIivGkQVUAp6HExFZMY7wt3osFlhQVoFSdAQiIipOQQagUYtOQVaK0wgSEVkxjiygEmTzPJyIyHqxWGD1WCywIBYLiIismKQB8tNEpyArxWmIiIisWG6S6ARkxXgeTkRkxTgdsNVjscCCsmUq0RGIiKgkVtKrYfXq1ahWrZroGFRIep5CdAQiIiqOMh9Q81yLTGOxgIjIillRhz2eh5vGYoEFcfgjEZGVM3OvhtGjR8PJycnoJzIy0qzPQ5aXI+eXUEREVk2RIzoBWalsGc/DiYislgVGFvA83LxcRQewZywWEBFZOQv0aujXrx+CgoIMbgsICDD785Bl5StYLCAismryXMCruugUZIU4soCIyIpZaGQBz8PNhyMLLIgHKUREVk6Ra/aH9PDwQJ06dQx+Fi1ahLZt28Lb2xsNGzbEhAkTkJtb/HNfu3YNL774Inx9feHn54cOHTrg0qVL+r8HBweje/fu8PLyQsOGDfHRRx8hLy/P7K/FkeXJefFrIiKrZoE2nOwDz8OJiKyYRgUoZWZ/WJ6Hmw+LBRbE4Y9E9Ci+D5bDaXY2Ju9/2JAm5mrwn50FqPNjDrznZuOZFbnYHlbyviZHLmHyfhkaLcyB13fZ6PJHHi4mGH4R+uMZOWrNz0Gt+Tn46YzhhV3Px6vQYWUuVBrJfC/OWijyK+VpnJ2dsXjxYty8eRNr1qzB0aNHMXXq1GKXf+edd9CgQQNcvHgRly9fxrRp0+Dm5gYAiIqKQr9+/TB06FBcv34dmzdvRnBwMCZNmlQpr8VR5HEaIiIi6yZnsYCMyVVqyJQa0TGIyEbxHLySKHkebs04DZEFsUcDEVXUxQQ1VlxWoF1tw5ruyJ0FyJRJ+GtEFfhXccKfN5QYvq0Al8Y54+m6LiYfa+zfBQhN1mDda16o5+uM9dcV6L0uD2ETfFDfzxnXk9T4+pgc/7xdBZIEDNqYj5ebuaJtbReoNBI+2CPDykFecHV2qoyXXrmU5u8F8M8//8DHx0f/e//+/bF161b9740bN8a3336LDz74AL/88ovJx4iLi8Pnn3+OVq1aAQBatGih/1tgYCDeeecdTJ48Wf+3xYsXo0ePHli+fDk8PT3N/pocUb6CIwuIiKyaPFt0ArJC2QUs9hNRxfAcvBIpcoEqNcz6kDwPNx+OLLAgTmFARBWRq5Dwzo4C/PaKF6p7Gh4cnLmnxv86uaNTfRc0re6M/3vBA9U8nXD5gen9TYFSwvYwFX7o7YEXGrmieQ1nzOrpieY1nLH8kgIAEJ6qQbvaLnipiSt6NXVFu9rOCE/V9siaf1qBFx5zRcf6pg+CbJ7C/MWCF198ESEhIfqfxYsX4/Dhw+jVqxfq168PX19f/Oc//0FaWhry8033qPjkk08wduxY9O7dG99//z2ioqL0f7t27RpWr14NHx8f/U/fvn2h0WgQExNj9tfjqPJ4zQIiIuvGaYjIBF5ziIgqgufglcwCI/x5Hm4+LBZYkErD4Y9EVH4T98owsIUrejc1HvzVpaELNt9UIb1AgkaSsClUCZlKQs/GpgeKqTSAWgI8XQ0PeLxcnRAcpz24aVvLGXfS1IjL0uBupgZ30jRoU8sZUekaBIUo8e1LHuZ/kdZCJS99mXLy9vZG8+bN9T9yuRyDBg1Cu3btsH37dly+fBnLli0DACgUCpOPMWvWLNy8eRMDBw7E0aNH0bp1a+zcuRMAkJubi/HjxxscCF27dg0RERFo1qyZ2V+Po8pnwZ+IyLpxGiIyQam20yk7iMiieA5eyVQFZn9InoebD6chsiAVD1SIqJw2hSpx5YEaF8d5m/z7ljeq4M1t+aj5Qw5cnYEqbsDON6ugeQ3TtV9fDyd0buCCb07K8USAM2p7O2FjqBJn49X6+zwR4IK5vTzRZ522uh7YyxNPBLig99o8/NDHAweiVJh1XA43F2BRP0+80MiOmg4LFAuKunz5MjQaDX766Sc4O2vX+ZYtW0q9X8uWLdGyZUtMmTIFI0aMQFBQEF577TU888wzCAsLQ/PmzS0dvVKsXr0akydPRmZmpugoekq1Bgq1fRX8M4M3IOv0RoPbXGs0QP1xvwIAJJUC6Uf/QP6tk5DUSng1eQY1Xv4QLt7Vi33M/NtnkBOyD4rESGhkOag7ejHcazc1WCb9yG/ICz0CJzdPVOsxCj5Pvqj/W154MPJCj6DWsJlmfKVE1uH7YDmmH5Hj4+fcsbCfdlh6VLoGnx2SIThODblKQr/mrljS3xO1fYrvv5UjlzDjmBw7w5VIzpPwdB0XLOrnadDb8MczcvxwWnvS+0VXd3za5eEXDOfjVZiwV4bzY73tbyoDM44OdHIqed3MnDkTs2bNMtvzkeVoJJ6DE1H58BxcAJXpL+vNiefhFWdnW5t1UdvrhUiIyCLuZWnw8X4ZDv2nilEvBJ0ZR2XIlEk4/B/tfIm7wlUYvjUfp8Z4o21t08MU173mhff+KkD9n3Ph4gQ8U9cZI9q4GQyb/OBZd3zwrLv+9zUhCv1BzuNLc3FxnDfisyW8ta0AMR/7wKOYfDZHbfliQfPmzaFUKrFkyRK88sorOH36NH799ddily8oKMDnn3+OYcOGoUmTJoiPj8fFixcxdOhQAMAXX3yB559/HpMmTcLYsWPh7e2NsLAwHDp0CEuXLrX46ynO6NGjsWbNGqPbIyIibO6ASqa0z1EFbv6Pofab3z28wfnhCU76kd9QEHUJ/kOmwdnDG+mHliNl51zUeXd+sY+nUcrg0aA1qrTqhvT9S4z+nh95Hnm3TqDW8G+gyriPtH2L4NXkGbhUqQqNPA+ZJ9ei9lvfmvU1ElkDU3Me5ykkvLw+D0/VdsHRkVUAADOOyfHKxnycG+sN52K+rOacxyXQmO/6cA8ePND/f/Pmzfj6669x+/Zt/W2F50CWJAlqtRqurjyVtkbssEdE5cFzcEF4Hm7VOA2RBanZq4GIyuHyAzWS8yQ8syIPrnOy4TonGyfuqrH4vAKuc7IRla7B0otKrBrshV5NXfFUHRfM7OmBZ+u5YNnF4ivzzWo448Rob+RO98W9KT64MM4HSo2EptVNNwGp+RrMPiHHkv6eOJ+gRsuazmhR0wUvNnGFUgPcSbOjHteVMLLgqaeews8//4x58+ahTZs22LBhAwIDA4td3sXFBWlpaRg5ciRatmyJ4cOHo3///pg9ezYAoF27djhx4gTu3LmD7t274+mnn8bXX3+NevXqWfy1lKZfv3548OCBwU+TJk1Exyo3u631O7vAxaf6w58qVQEAGnkecq8fQvWX/guvRk/Bo05z+A+YDHnCLcgTwot9OJ82L6Fa1xHwatze5N+Vaffg2bAtPOq2gHfrHnByrwJVVhIAIONYEHyfHgBXv1pmf5lEIhU35/Hpe2rEZkpYPcQLbWu7oG1tF6wZ4oVL9zU4GsM5jytEMt/xSJ06dfQ/VatWhZOTk/738PBw+Pr6Yt++fejQoQM8PDwQHByM0aNHY8iQIQaPM3nyZPTs2VP/u0ajQWBgIJo0aQIvLy889dRT2LZtm9lykzF22COi8uA5uCCVMLLAkc7DzY3dISyIBypEVB69mrjixoeGQx/H7C5AK38XfNHVHflK7T6laOdAF+eyfbnp7e4Eb3cnZBRIOBCpwg99PE0uN+WAHFOe90ADP2dcTFBDWei4RKWRYFcdtjTmvQje6tWrTd4+ZcoUTJkyxeC2//znP/r/jx49GqNHjwYAuLu7Y+NGw+liiurYsSMOHjz4SFktwcPDA3Xq1DG47eeff0ZQUBCio6NRo0YNvPLKK/jhhx8MemkWdu3aNUyePBmXLl2Ck5MTWrRogRUrVuDZZ58FAAQHB2P69Om4dOkS/P398dprryEwMBDe3qaHDVeEZKfFflXGfcQvGwknFze412+F6j1GwdWvFuSJkYBGZfClv1vNhnDxC4D8fjg86req0PO5BzRBbsgBqGW5UGUmQlLJ4Vq9HmTxN6FIikKNlz800ysjsh6F5zz+9uTDgrRcJcEJgEeh7+09XbVtenCcyuQcyeWd81iSYDTn8eX3zbdvtDpmLBaUxbRp0/Djjz+iadOmqF69+CnaCgsMDMT69evx66+/okWLFjh58iTeffddBAQEoEePHhZO7Jh43UAiKg+egwtixtGBAM/DzY3FAguytyGQpc13nBOyH3lhx6FIioKkKEDDjzfB2dP0l0E6snuhyD6/HYqkKKhz0xHw2leo0rKzwTJZ53cg+8J2AEDV54bCr9Pr+r/J799G+sFfUGfkz3ByttNeU+QwfD2c0KaW4Xbs7eaEml7a25VqCc1rOGP8PzL8+LInano5YVe4Eoei1Pjn7YfDF3utzcNrrdwwqZP2tgORKkgAHq/pjMh0DT4/JEMrfxeMae9mlOFQlAp30tRYM0R7ENOxvgvCUzXYF6HEvWwJLk5OeLymHQ1Kc+J+w9KcnZ2xePFiNGnSBNHR0ZgwYQKmTp2KX375xeTy77zzDp5++mksX74cLi4uCAkJgZubdluNiopCv3798O2332LVqlVISUnBpEmTMGnSJAQFBZktsz3WCjzqPo6aA6bArUZ9qHPTkXV6IxI3fIF67y2DJi8DcHE1arNdvKtBnZdR4ef0atoB3k/2ROKaKXBydYf/wClwdvNA+oFfUHPgFORc3YucK//AxcsPNfpOgntAo0d9mURClTTn8fMNXODtDnxxWI65vTwgScC0wzKoJeBBjumdDuc8LoWmcqeMmzNnDvr06VPm5eVyOebOnYvDhw+jc2ft+U3Tpk0RHByMFStWsFhgIfbWYY/n4ESWxXNwQXgebtXs6GjR+tjjxZVKmu9YUsrh1bQDvJp2QOYJ43mrTZEUMrjVagqfdn2QsnOu0d8VyTHICt6AgGFfA5KElO1z4NnkGbgHNIakUSPtwDLU7DeJBymVRMMdulBuLk7Y+7YXph3RznGcq9AeuKwZ4okBLR4edESla5Ca/7ArQpZcwvQjMsRnS6jh5YShT7jiu5c84eZi2D2iQClh0j4ZNg/z0s+d3MDPGUv6e2LMbhk8XIE1Qzzh5WZHcyVy32FW//zzj8GIgf79+2Pr1q363xs3boxvv/0WH3zwQbHFgri4OHz++edo1Urbm71Fixb6vwUGBuKdd97B5MmT9X9bvHgxevTogeXLl8PT03RPnfKyv9Yb8Gr27MNfajWBR73HEb/8PeSFB8PZzb34Oz6iat3eQbVu7+h/zwz+E56N28PJ2QVZZzej3nvLUBB5AWl7fkbd0YssloPI0kqb8zjA2xlb36iCD/cUYPF5BZydgBFt3fBMXWej3oqFcc7jklTu3lo3wq2sIiMjkZ+fb1RgUCgUePrpp80ZjQpR2VmxAOA5OAFwdjX7iGgqG56DW4iznRU/7AyLBRZkjwcquvmOTfHr+CoAQBZ3vcwP59XsWcMvMIpQpsXDLaAxvBo9BQBwC2gMZVo83AMaI/v8dng2fBIedVuW4wXQo8iBHQ9lt1LHRxuu8xY1XbB9eJUS7xM72dfg9+FPumH4k8Y9GIrycnPC7UnGPZHGPuOOsc9Y7stEoVgAM6sXX3wRy5cv1//u7e2Nw4cPIzAwEOHh4cjOzoZKpYJMJkN+fj6qVDHelj/55BOMHTsW69atQ+/evfHGG2+gWbNmALRTFF2/fh0bNmzQLy9JEjQaDWJiYvDEE0+Y5XXY2aG4Sc6ePnCrUR+qzPvwbPw0oFZBI8s16I2ozsuEi3fZptooC2XaPeSFHUPd0YuRe/0QPBu0gUuVqqjSqjvS9i2CRp4PZ4+S929UcVIxF9Al8yg857GOWgJO3lVj6QUF5P/ni5ebuSLqI1+k5mvg6uyEap5OqPNjDpo+WfwJs27O4zyFhGy5hLq+znhzW36pcx6fHONtMOdxi5rQz3lc3MUYbY5T5X7RUHS6O2dnZ6Np65TKh9Mq5ObmAgD27NmD+vXrGyzn4eFhoZRkbyMLAPAcnKDx8IOLSiY6hsPgOXgl4Hm4VbP6Uo6Tk1OJP7NmzRIdsVh2OLBAP99xwq//Rcrf86HKTrbo87kHNIYqIwGq7GSospKhSk+Au38jKDMeIPfGYVTr/p/SH4TMJgslD2klsjns0WBW3t7eaN68uf5HLpdj0KBBaNeuHbZv347Lly9j2bJlALQ9K02ZNWsWbt68iYEDB+Lo0aNo3bo1du7cCUD7xcv48eMREhKi/7l27RoiIiL0BQVzcC6pm6+d0CgKoMp8ABfvGvCo0xxwdkXB3Wv6vyvT4qHOToFHvYpdr6AoSZKQdmAZqr80Fs7uXoCkgaTrIaf7t5LnH3c89r9di6Sb8zjkg4c/z9Zzxjvt3BDygTdcCu1X/Ks4o5qnE47GqJCcJ2Hw46X33/J2d0JdX2f9nMevFnOfwnMeqzWw7zmPK7lYUFRAQAAePHhgcFtISIj+/61bt4aHhwfi4uIM2sbmzZujYcOGlZy2fGz5HNwe8RycVO7VREcgMi9n9l23Zlb/7hQ+ANu8eTO+/vpr3L59W39b4ekOJEmCWq2Gq6t1vCx3F/s6KStpvmNL9QR082+Iai+MRNLmGQCAaj1Gwc2/IZI2fYXqPcegIOYKsk7/CTi7okbv9+HZsI1FcpBWusSRBWRneJBiUZcvX4ZGo8FPP/0E538LM1u2bCn1fi1btkTLli0xZcoUjBgxAkFBQXjttdfwzDPPICwsDM2bN7dobnusFWQc/QNezTvBtWotqHLSkRW8AXByhnfrHnD28IZPuz7IOPo7XDx94eRRBRmHfoVHvVYGFzdO+O0DVO8xElVadgEAqAtyoM5OgTo3DQCgTI8HALh4VzfqAZl77QBcvPxQpflzAACP+k8gM/hPyBPCURB9GW41Hyt1jmV6VHa4YVuR0uY8BoCgqwo8EeCMgCrOOBuvwsf75ZjyvDse9394P855XB5it+mXXnoJ8+fPx9q1a9G5c2esX78eoaGh+imGfH198dlnn2HKlCnQaDTo1q0bsrKycPr0afj5+WHUqFFC85fEps/BXe1pG+c5OGkp3PzA8UhkVziNmVWz+pa0Tp06+p+qVavCyclJ/3t4eDh8fX2xb98+dOjQAR4eHggODsbo0aMxZMgQg8eZPHkyevbsqf9do9EgMDAQTZo0gZeXF5566ils27bNrNnt7UDFq9mz8G7VDe61msCraQfUemMWNLI85IUHW/R5fZ8egPrjVqD+uBXwfXoAcm8cgZO7Fzzqt0La/iUIeO0r1HhpLFL/+gGSyrxXVCdDKSpOD0F2hsMfLap58+ZQKpVYsmQJoqOjsW7dOvz666/FLl9QUIBJkybh+PHjuHv3Lk6fPo2LFy/qpxf64osvcObMGUyaNAkhISGIiIjA7t27MWnSJLPmdrHDaoEqJxWpf89Hwm/jkbr7ezh7+aLOf36CS5WqAIAavcbBq1knpOyai6Q/v4CzT3UEvPaV4WOkx0Mjz9f/XhB5Hg9Wf4TkbbMBAKl//YAHqz9CTsheg/up8zKQdXYLqvcer7/No97j8Ov0GpK3zUZe+CnUHPCxpV46/YvTEIl3O02DIZsK8MSyXMw5ocBX3d3x48uGX/+YmvN44t4CtFqWi5G7CtDtMRcceLdKsXMerxhkes7j707J7W/OY8FfNPTt2xczZszA1KlT0bFjR+Tk5GDkyJEGy3zzzTeYMWMGAgMD8cQTT6Bfv37Ys2cPmjRpIih12dj0ObgLz8HNgefg1qXA1U90BCLzYqc9q2YX7860adPw448/omnTpqhevWxz6wYGBmL9+vX49ddf0aJFC5w8eRLvvvsuAgIC0KNHD7PksrdiQVGF5zuuLOr8LGSd/hO1354H+f07cKtRD2416sOtRn1IahWUGQlwD2hcaXkcTZKKIwvIzrBHg0U99dRT+PnnnzFv3jxMnz4dL7zwAgIDA42+TNFxcXFBWloaRo4ciaSkJPj7++P111/H7NnaL6PbtWuHEydO4KuvvkL37t0hSRKaNWuGN99806y53ezsiwYACHj1ixL/7uTqjpovf4iaL39Y7DKNvvjH4Heftr3h07Z3qc/t4l0dDT5cZXR7ta4jUK3riFLvT2Sris55/H1vT3zfu+QLsXPO43Jw87LIw44ePRqjR4/W/96zZ0+jaxPozJ49W99GmeLk5ISPP/4YH39sfwVRnoOLwXNwx5TnzGIB2Rl22rNqdlEsmDNnDvr06VPm5eVyOebOnYvDhw+jc+fOAICmTZsiODgYK1as4IFKGT2c7/jFSnvOjKO/w7fjELj6+UOReAeSWl0okBrQcL5jS3ogt8xJGZEwPEgxm9WrV5u8fcqUKZgyZYrBbf/5z8O5bgt/KePu7o6NGzeW+DwdO3bEwYMHHylradxcnOHu6gyFim0K2Q+J0xCRvXHn1GUi8RxcDJ6DO6YcJ+7vyM6w055Vs4tiwbPPPluu5SMjI5Gfn290cKNQKPRzTJqDp6t9bfwlzXcMAOrcDKjzMqDM0M5xqUiJhbN7Fbj4BcDFS9tLKmnTl/Bq0Rl+HV4B8O/BTsbDOTFVWUlQJEXD2csHrn61DJ6/IOYqlOkJqDlQ+6WTe52WUKXHoyDqElQ5qYCzC1xr1Lf4enBkCfKSe8MR2Rw3btNkmo+HK9JVpi/CTGSbWCwgO+POEa8iWes5uJcbz8F5Dm5/ssBiAdkZV16Fw5rZRbHA29vwQNHZ2dloqKhS+XAevdzcXADAnj17UL++YcPm4WG+DbaKh12sXj3dfMfqgmy4eFWFR4PWBvMd54TsRdbphz1Ck/6cBgCoOWCyfpoCZUYiPAqy9csoEiOQtPFL/e8ZR38HAHi36QX/gQ97omqUcqQf/hUBg7+Ak5O2t4irnz+q9x6P1H0L4eTihpoDp8DZjTscS4or8ADs6/ibHJ0Hh/SSad4eLkjPE52CyIx4zQKyNxxZIJTVnoO729fJCs/BCQDSNdzfkZ3xrCo6AZXAvr7N/ldAQABCQ0MNbgsJCYGbm3a+z9atW8PDwwNxcXFmG+5oShU769VQ2nzH1bq9g2rd3ilxmaJzFns+1s5oDmRTnN08UH/cCqPbfZ/qC9+n+pZ6fzKPdKUbJHcPOKnloqMQmQcPUqgY3u52eYhEDozTEJHdYbHAqljLObiXnRULeA5OAJCqriI6ApF58TzcqtnlmfBLL72E+fPnY+3atejcuTPWr1+P0NBQ/fBGX19ffPbZZ5gyZQo0Gg26deuGrKwsnD59Gn5+fhg1apRZclTxsK8DFSIA0HhWg0tekugYRObBgxQqho+djQ4kIrI7nIbIqljLObiHqwtcnJ2g1pi+KDWRLUpS8dqBZEecXdmGWzm7PBPu27cvZsyYgalTp0Imk+G9997DyJEjcePGDf0y33zzDQICAhAYGIjo6GhUq1YNzzzzDL788ssSHrl8+EUD2SOVO4sFZEc8OQ0RmebNNpzsDEcWkN3hFw1WxVrOwQHteXhWgbL0BYlsRKKCxQKyI5wK2Oo5SUUnFiSzWXDoDhYdiRAdg8isrjdaCL+kC6JjEJnH2CNAg/JdoI8cw8QNV7DnxoPSFySyEWy/ye5MjQGq1BCdgqzQiz8eR0wqLzxE9qODXw62K8aLjkFkHtWbAB+HiE5BJXAWHcCe+fu4i45AZHYFLqwCkx3hNERUDG9OJUhEZN08fEUnICtV05vn4WRf4uW8iDTZEY7ut3osFliQvw936GR/8lgsIHvCIZBUjGpV+EUD2RtOQ0R2xKsG4OImOgVZqZrstEd2JknuDsmZ+zyyE+ywZ/VYLLCgmiwWkB3Kho/oCETmwwMVKkYtX7bhZF94zQKyK751RCcgK8bzcLJHEs9byF5wW7Z6LBZYEHs0kD3KAId8k53wqAq4eYpOQVaqlh+3DSIiq+VTW3QCsmL+nIaI7JDKvZroCETm4V1LdAIqBYsFFuTvzR4NZH/SNVVERyAyD796ohOQFavNkQVkZyQnjiwgO8KRBVQCjiwge6RwZ29sshNV64tOQKVgscCCqlZxg5sLT8zIvqSqvEVHIDIPFguoBLU5soDsDo9JyY5wZAGVgCP8yR4V8NqBZC/8WCywdiwWWFgNDoEkO5Ok8hIdgcg8WCygErBYQPaG1ywgu8KRBVSCmhzhT3Yoz4XTAZOd4Hm41WOxwMICOI0B2ZkHChYLyE6wRwOVwMvdBb6erqJjEBGRKRxZQCXgOTjZoxwnFgvITvA83OqxWGBhDatzfneyL/EyFgvITrBHA5WCowvInnBkAdkVjiygEjSo7gVepoXsTRZ8REcgMg+eh1s9Fgss7LGaLBaQfblbwJ46ZCfYo4FKUduP+zuyI/zmjOyJb13RCciKebq5oA4L/mRn0iVeO5DsgFd1wI0dUK0diwUW1qgGd+hkX7JVrpBcuXMnO8AeDVSKBtVY8Cf7wZEFZDec3YBqj4lOQVbusRpsw8m+pKn43RLZAXbYswksFlhYY44sIDuk8awmOgLRo6vaQHQCsnJNA3hSRvaExQKyE9UbA84uolOQlWvE83CyM8lqdtgjO8BzcJvAYoGFcRoiskdK92qiIxA9Gp86gKef6BRk5Zr4s1hARGR1ajYXnYBsQKOabMPJviQq+N0S2QG24TaBxQILq1fVC+7/3959h9ldl+kfv08/Z3qfTGYm05OZ9D7pHUggCb0m1BB6EXsXd3/YUHRFFwvq2sDCusq6rtix7Yq6i6vSFEHS26TOZPr5/XFCBEnClHPO8y3v13XlIvCHuZXxlO/9+TxPiP+Z4S09ER6ywuXKx1sngAs0lrNIDt6RZGcBvKK0yToBXIAxRPCabT3s0oIHlE+wToAh4Cl2hgWDAdUUc10M3nI0RFkAlyujLMCrqyvNUSjIA1Z4AzsL4BmUBRgCxhDBa7Z2s7QbHsD3cFegLMgCRhHBa45QFsDtyjjRgFcXCQVVS+EPz6AsgEcwwgBDUFfCGCJ4y46eqJIB9rXA5SgLXIGyIAvqmZcIjzkkRnPA5cparBPAJdhbAK/gZgE8g7IAQ1CYE1FxTsQ6BpA2yWRAyXiRdQxg5HLLpZwS6xQYAsqCLGiryreOAKTVAfEzDZdjViKGiL0FAOAgkVypYKx1CrhEWxW3oeEt/bFC6wjAyHGrwDUoC7JgYhUv6PCWfQOM1oKLRfN50IAhayznZgG8gZsF8ARuBmIYJlIWwGN6IzxbgotRFrgGZUEWjB+TpzALEuEhewZ4eAYXK2N8AYaOU4nwCsoCeMLY6dYJ4CITx/IeDm/pDvMzDRfjdr9rUBZkQSwcUnMFYwzgHbv6uFkAFxszxToBXGRiVQGFP7yBH2N4QdU06wRwEcoCeE1XiJ9puFjlJOsEGCLKgizhCiS8ZHtvwjoCMHJjZ1ongIvEIxT+8AraAnhA1XTrBHCR5vI8RcM88oB3HA6wOxBuFeA93EV458wSTjXAS7Z0x60jACNXTVmA4ZlSzXxYuF/SOgAwWsEIpxIxLOFQUOMrKfzhHQfFzzNcqqxFivNc1C0oC7KEsgBesqU7Zh0BGJlwXKrgQQOGZ2oNZQG8gJsFcLmKVinMZ1AMz6Qq3sPhHR1JdgfCpapnWSfAMFAWZAkfUuAlnf0hJSN8UIELjZkihcLWKeAyk7lZAA9gwTFcj/EFGAEO7cFL9g3wHRwuxShgV6EsyJLCnIhqS5jzDu8YiBdZRwCGjxMNGIE2lhwDgD2WG2MEKPzhJbv7c6wjACPDKGBXoSzIotl1JdYRgLTpixZZRwCGjxMNGIF4JKSWShbKwd24WQDXGzvDOgFcaEp1oeIRHnvAG3b1sjsQLhSMpG74wzV418yiuQ2UBfCOnghXeuFCnGjACE1jbwFcLhmgLICLhRPSmKnWKeBC0XBQ02uLrGMAabG9l2kVcKHKSewcchnKgiyiLICXdIV4cAaXiRdKpc3WKeBS7Y28h8PtKAvgYrVzpHDUOgVcam497+HwhheOcrMALlQz2zoBhomyIIuayvNUlkebBm84EmQkB1ymbpHEyVqM0PzGMusIwKgkrQMAo1G/2DoBXGxuQ6l1BCAttvVElQzwGA8uU7fQOgGGiVeZLJvbUGwdAUiLw8qzjgAMT8MS6wRwsTGFcTWU5VrHAEaBshQuVr/IOgFcbGZdkcJBXgPhfslkQMkYN/zhJgGpYal1CAwTZUGWzeEKJDxiP2UB3IayAKM0r5GTiXAvFhzDtcIJqXqWdQq4WE40rEnVPGCFNwzEiqwjAENXOUnK5TuU21AWZBl7C+AV+wY4YQsXyS2XKidap4DLzWNvAVyMsgCuVTObxYgYtXa+h8MjeiMF1hGAoePAnitRFmRZ25gCFcTD1jGAUdvdT1kAF2HWMdJgfhOnYgAg63gPRxpwwx9e0R3hlgxchLLAlSgLsiwYDKidMQbwgF19cesIwNDxIQVpUJEfV1M5RSnciZsFcC32FSAN5jaUsLcAntAVyreOAAxNIMRyY5eiLDCwfEKFdQRg1Lb35lhHAIaOsgBpwu0CuBVlAVwpkpMaQwSMUmEiopl1xdYxgFE7HGAMEVxi7HQpzs+rG1EWGFjRSlkA99vazexYuERhrVTaZJ0CHrG4pdw6AjAydAVwo8Zl7CtA2vA9HF5wUHnWEYCh4cCea1EWGBhTGNfEKto1uNsWygK4Rctp1gngIYtbyhQL8/EJ7pNM0hbAhcavtk4AD1lJWQAPOJBkJCZcouV06wQYIb7tGuFUA9zu6EBIySinGuACE86yTgAPyYmGtbC5zDoGMHwBygK4TYCyAGnVUpmv2pKEdQxgVPYOMA4YLpBTJtW2W6fACFEWGFlOWQAPGIgVWUcATi1WwPVHpN2qtkrrCMCwsbMArlM9U8rn9RbptYL9gXC5PZQFcIPxq6VgyDoFRoiywMiM2iKV5EatYwCj0kdZAKdrXimFea1Feq1qq+CQNlwnaR0AGK7xa6wTwIM4tAe329lLWQAXaD3TOgFGgbLASDAY0LLxLEmEu3WHC60jAKfGCCJkQEVBXFOref2Du3CzAK4zgRFESL/5TaXKiXLaFe61vZdRWnC4SI7UtMI6BUaBssDQijZONcDdukIs6oaDBSPSeJYqITMYRQT3oSyAixTWSmOmWKeAB8XCIS1oYvcQ3GvL0Zh1BODUGpdLEUotN6MsMLRsQoXiEf4VwL2OBPOtIwAnV79QinP6G5lx2iTKArgLY4jgKiw2RgatmTzGOgIwYlu7o9wWhLO1crvf7XhSbSgvFtYKZibCxQ6KsgAOxggiZFDrmAKNK2FmLNyDsgCuMukc6wTwsDMmj+HQHlxrIBmUYtzwh0MFQhT+HsA7pLH106qtIwAjtj+Zax0BOLFAUGpbZ50CHrduWpV1BGAYOIUIlyiokeoWWqeAh3FoD27XHyuyjgCcWP1CKbfUOgVGibLA2PLWchXEw9YxgBHZN0hZAIdqWCoV8CAXmXXujBrrCMAwUBbAJaacLwX4eUVmcWgPbtYXZdQqHGrqJdYJkAaUBcZi4ZBWMzMRLrWnn7IADjX1YusE8IHmijxNqebLGtyBMURwjSkXWSeADyxvLVc+h/bgUt1hxhDBgcIJaeJ66xRIA8oCBzh7Oqca4E47++LWEYBXiuQwgghZc84M3sPhDixDhCtUTJTGTLZOAR+IhUNaPYlDe3CnrjCHVeBArWdJMfZaegFlgQPMbyxVeX7MOgYwbNt7E9YRgFdqXSvF8qxTwCfWTxurUJCHsHA+ygK4wpQLrRPAR9ZPH2sdARiRIwG+68CBuN3vGZQFDhAMBrR2KrO14T5bjnKzAA40jQ8pyJ7y/JgWNpdZxwAADwhQFiCrFjSVcWgPrnRQnN6Gw+SWS00rrFMgTSgLHOJcxhjAhbZ0xzmpCGfJq5Qal1ungM+cx3s4XID3azjeuPlSUa11CvhIKBjQuqncLoD77E+yOxAOM/kCKcQeGK+gLHCIqTVFmljFkhq4S99ggJl0cJbJF0jBkHUK+MwZk8YoN8rPHZyNsgCON+0S6wTwoUvnUlDBfToGcqwjAC/H7X5PoSxwkA3zxllHAIatP1ZsHQH4mxkbrBPAhxLRkNZyMhEOl7QOAJxKrJARRDDRUpmvuQ0l1jGAYdkzwM0COEjFRGnsDOsUSCPKAgc5Z3q18mJc24G79EULrSMAKeMWSJWTrFPApy5rp/CHwwW4WQAHm36pFOWkLGxs4D0cLrOzj92BcJA5m6wTIM0oCxwkNxbWOTM4mQh36Q4zPgsOMfda6wTwsWm1RZpSTXkK50omKQvgYLOvsU4AH1szuUqluVHrGMCQbe9NWEcAUmIF0lTGCHoNZYHDbGivs44ADEtXmIdjcIC8SqltvXUK+By3C+BkdAVwrPrFUvkE6xTwsWg4qAtm11jHAIZsy1FuFsAhpl0qxfKsUyDNKAscpq2qQLPqmAEP9zgS4I0BDjDzSikUsU4BnztnerUK4owThDNxswCOxfgCOMCGuXVMa4NrbOmOKyl+YOEAc7jd70WUBQ7EzES4yUExhgjGgmFp9tXWKQAloiFdNLvWOgZwQkmegsGJ8sZIrWutUwAaV5qjRc1l1jGAIekbDHCaG/Yalkrl461TIAMoCxzozClVKs7hhCzcoSPJMjoYm3CmVMC+FzjDFfPrFeSZLByImwVwpJlXcDMQjrFxHiOB4R4DsSLrCPC7uZutEyBDKAscKB4J6dK53C6AO+wb5EQDjHH1EQ4yrjRHyydUWMcAXomuAE4TjEizrrJOARy3qq1StSUsjoU79EXYHQhDBTWpQ3vwJMoCh7pqYb2iYf71wPl29/OBGoYqJkmNS61TAC+zaVGDdQTgFbhZAMeZcqFUWG2dAjguFAzo2kWN1jGAIemmLIClOZukYMg6BTKEp9EOVZEf17nT+fAM59vRyxgiGFr8WusEwCssaC7T9Noi6xjAy7CzAM4SkBa9xjoE8AoXza5lJDBcoSvE7kAYiRVyu9/jKAscbPOSRvG9Dk63vSduHQF+VdwgTTrXOgVwQjcta7KOALxMMmmdAHiJCWdK5ROsUwCvkIiGdDm7C+ACR4L51hHgV3OvleKUVV5GWeBgzRV5WtVWaR0DOKWt3ZQFMLLwdq4+wrFOm1ipCZV8iYNzJFlaACfhZiAc7MoF9UpE+IwJZzskdgfCQDghzbvJOgUyjLLA4W5e3mwdATilrd1RJQO8lCDL8quk6ZdZpwBOKhAI6EZuF8BBKAvgGHWLpJrZ1imAkyrNi+niObXWMYBT2p+kLICBmVdIuWXWKZBhPOFzuOm1RVrYXGodAzipgWRQyRhX0JBl82+WwjHrFMAprZs2VrUlLIEHgJdZdId1AuBVXb+0UZEQJSucq2Mw1zoC/CYYkRbeZp0CWUBZ4AI3L+N2AZxtIFZsHQF+kiiWZl1tnQJ4VaFgQNcv4XYBnIKHXnCAMVOlllXWKYBXVVWY0Lkzqq1jACe1p58DKciyqRdJhTXWKZAFlAUusKC5TLPreBgL5+qNcLMAWTT3einGtVu4w4Wza1SRzy0Y2GO/MRyBXQVwkZuXN3O7AI61sy/HOgL8JBDkZqCPUBa4xJvWtFpHAE6qO1JkHQF+ES+S5t1gnQIYslg4pOuXcrsA9thZAHNV06SJ51inAIasrjRXF81mdwGcaXtP3DoC/GTSeVJZi3UKZAllgUvMqS/R8gnl1jGAE+oM5VtHgF8suiM1hghwkY3zxqm6iKvisMXNAphb+U4pQGkFd7l9ZYsSkZB1DOAVtlEWIFuCEWnF26xTIIsoC1zkDWe08vkajnQkQFmALMgfK7Vfb50CGLZYOKTXnjbeOgZ8jpsFMFW/WGpmVwHcp6IgrisX1FvHAF5hSzdjLpEls66SShqtUyCLKAtcZOLYAq2bOtY6BvAKB0VZgCxY9iYpwulsuNO5M6rVOobXStjhZgFMrbrTOgEwYjcubVJBPGwdA3iZowMhJaO51jHgddE8aembrFMgyygLXOZ1p49nyRIcZ3+S5UrIsNIWacbl1imAEQsGA3rTavYPwQ43C2Cmda1UM9s6BTBihTkR3bCM/UNwnoFYkXUEeN38m6U8RqL7DWWBy9SV5uriOSxZgrPsHcizjgCvW/kOKci8WLjb8tYKtTeUWMeAT1EWwEQgJK14h3UKYNSuXtCginzGvsBZ+qJF1hHgZTll0oJbrVPAAGWBC93GkiU4zK5+bhYgg6pnSRPPtk4BpMWb13C7ADYYQwQT0y6RKnjdg/sloiHdurLFOgbwMj2RQusI8LIlr5dijFH1I8oCF6rIj2vz4gbrGMBxO3uZI48MYs4xPGTGuGKtnjTGOgZ8iJsFyLpIjrT8rdYpgLS5dE6tmsqZEQ/n6AoVWEeAVxWNk2Zvsk4BI5QFLnXjsmZVF/GAFs6wrSduHQFeNfFsqWGJdQogrd68plXRMB/BkF2UBci6xa+VCmusUwBpEw4Fdef6SdYxgOOOBDn1jQw54z1SOGqdAkb4pupSiWhI71jbZh0DkCRt6aYsQAZEclMfUgCPqS/L1XWLG61jwGcYQ4SsKmmUFtxmnQJIu8Ut5VozmRuCcIbDYncgMqBppdS2zjoFDFEWuNjqyVVa3FJmHQPQ9p6okgH2aCDNlryOE4nwrFtWNKummBuCyCZuFiCLVr9fCrMMFt709rUT2SEIR9ifZCwW0iwUlc682zoFjFEWuNy7109SNMS/RthKJgNKxlmuhDQqbZbm32qdAsiYeCSkd66daB0DPsIYImTN+NXS+NOtUwAZU12U0M3Lm6xjAOoYpCxAms2/RSrl9c3veMrsco3lebpmEcuOYa8/VmQdAV6y5v3MSITnnT5pjFa0VljHgE8whghZEYpJq99nnQLIuM1LGlVfmmMdAz63e4CyAGlUWCsteYN1CjgAZYEH3LayWVWFzIyHrd4INwuQJq1rpeZV1imArLhz3STFWHaMLEgmuVmALFh4m1TCQSZ4Xywc0rtYdgxju/oYaYk0OuMuKUoJCsoCT8iJhvW2s1h2DFvdlAVIh3BCWv1e6xRA1owrzdENS7nqi8zjZgEyrnCctPh11imArFk+oUKr2iqtY8DHdvRQFiBNGpdLE8+2TgGHoCzwiLVTx2rp+HLrGPCxzmCBdQR4wbI3S0XjrFMAWXXjsibVMcoAGcbOAmTcug9LER5cwV/effYk5cXC1jHgU1t7mDCBNAgnpLM+ZJ0CDkJZ4CHvO3+K8uN8UIGNw4F86whwu+rZ0gKWGsN/4pGQ3nfeVAV4losM4mYBMmrGRkYIwpeqixJ6y5mt1jHgU1u6Y9YR4AUr3s5SY7wMZYGHVBUm9HbGEcHIQeVZR4CbhWLSOf8sBUPWSQAT85tKdcW8OusY8DBuFiBj8sdKZ7zHOgVgZkN7nRY1l1nHgA919oeUjHA7FaNQO0+ad5N1CjgMZYHHXDxnHOOIYKJjMNc6Atxs+Vuk8gnWKQBTb17TxjgiZAxlATJm3T9JcXZXwd/ed/4UxhHBxGCsyDoC3CqckM7+uBTk0TBejp8ID2IcESzspSzASFXPkhbcZp0CMJeIhvTBC6cpyDNdZASDiJAB0y6Txp9unQIwV1OcozevYRwRsq+PsgAjteJtUlmzdQo4EGWBBzGOCBZ297PQDiMQiklnM34IeNGc+hJdtaDBOgY8iJsFSLv8Kmn1e61TAI6xoX2cFjaXWseAz/SEC6wjwI1q26V5N1ungENRFngU44iQbTt6GZ2BEVj2JqmCU1jAS71x9QQ1lnFbC+lFWYC0W/sRKVFknQJwjEAgoPefP1W5UQ7BIHu6KAswXOH4sQN7PBLGifGT4WGMI0I2beuOW0eA29TMkRa+xjoF4DjxSEh3M44IaUZZgLSasVGasNo6BeA4NcU5eiu3/JFFncF86whwm5XvZPwQTomywMOqChN633lTrWPAJ7ZQFmA44oXS+Z9h/BBwErPqinXTMj7EI33YWIC0KZsgrbnbOgXgWBva67R60hjrGPCJQ8qzjgA3aTldmneTdQo4HGWBx501tUob2sdZx4AP7OyJKhnkJguGaP29UnGddQrA0e44bbzmNpRYx4BHJJPcLEAahOPShZ+TooyfBE7l/RdMVU0xO92QeQcoCzBU+WOlcz4hBfhMiFOjLPCBd6ydqLYq5tgh85LxIusIcIPZ10gTz7ZOATheKBjQRy+ZoZLcqHUUeABdAdLijLukyknWKQDHK0xEdO+lMxQJ8eKLzOoYYM8VhiAQks7/tJTLEna8OsoCH4hHQvr4ZTNYtISM648WWUeA01VOls54r3UKwDXGFMb1oYumcQAIozZIW4DRmni2NOda6xSAa8wYV6w3nDHBOgY8bg9lAYZiyRuk+kXWKeASlAU+0Viep7vOnWIdAx7XGy20jgAni+RKF3xOirDfAhiO5RMqdN2SRusYAPysaJy07qPWKQDX2by4UcsnlFvHgIft7GPcFV5F3SJp6RutU8BFKAt85JwZ1bpwVo11DHjY0TBlAU7hzA9I5eOtUwCu9IbTJ2hWXbF1DLhYUtwswAgFw9L5n5USRdZJANcJBAL60EXTNaaAwzLIjJ29lAU4hZxS6fz7pSCTRjB0lAU+8w9nT1ZLBQtwkBmdwXzrCHCqaZdKMzZapwBcKxwK6t5LZ6goJ2IdBS7FgmOM2Ko7pdo51ikA1yrJjeqfLpmuUJDXYaTftp6YdQQ4VSAonftJqaDKOglchrLAZxLRkO7bOEv58bB1FHjQYcoCnEj1LGntR6xTAK43tiihD188XTxrwEgM8nODkZhykbTgVusUgOu1N5bqLWtarWPAg144yq0VnMSKt0stp1mngAtRFvhQc0WePnrpDB42IO0OJLm1gr+TN0a6+MvsKQDSZPmECr1pNQ8bMHzcLMCwjZ0hrb/XOgXgGdcubtQFjAVGmh3qDysZ5rsW/s7k86XFr7NOAZeiLPCp5RMq9JY1bdYx4DEdg5QFeIlQTLr4S1x7BNLs+qVNOm9mtXUMuAw7CzAseZXSJQ9Q9gNpdte5kzVzXJF1DHjMYKzIOgKcpGqadPbHrVPAxSgLfGzzkkadP5OTDUifvQM51hHgJGs/zIxjIEPee94UHjZgWJLWAeAeoah00RelgrHWSQDPiYVD+sTls1RVSBGH9OmjLMCLciuOlf0svsbIURb43HvO42QD0mdXP2UBjmm/QZqxwToF4Fk8bMBwURZgyM66RxrXbp0C8KyK/Lg+dflsxSM8jkF69EQKrSPACUJR6eIvSoUcCsbo8O7kczxsQDpt76G9hqSGpdLpd1mnADyvIj+uT18xW4lIyDoKXIAxRBiSuddLMy+3TgF43pSaQt19wTTrGPCIo6EC6whwgjPvlsbNs04BD6AswPGHDZxswGht76V08r3SFunCf5FCYeskgC9Mri7U3RdOtY4BF6AswKtqWimd8R7rFIBvrJs2Vrcsb7aOAQ/oDOZbR4C19hulWVdZp4BH8HQYklIPGz56yQyFgnyRxMhtOUpZ4Gu5FdLGf5VySqyTAL6ydupYveGMCdYx4HBJ5hDhVMbOkC76AmU/kGWvO328zpnOfhCMzuFAnnUEWGpbT9mPtKIswHGnTxqj95w72ToGXGxPb0TJUNQ6BixE86QNX5OK66yTAL508/JmXbWg3joGHIybBTipkkZpw0NSjIdNQLYFAgHdfeE0LR1fbh0FLnZAvH771rj50nmfloI83kX68NOEl7l4zjhOJ2JUBuNF1hGQbcGwdOHnU6cSAZh517qJWj+N04k4sUHKApxIboW08RtSbpl1EsC3IqGg7ts4U9Nqi6yjwKU6BnOtI8BC2QTpkgekCBMekF6UBXgFTidiNPqjRdYRkFUB6ex/llpWWQcBfC8QCOhDF03T4hYe+uGVmEKEV4jmSxsfkkoarJMAvpcTDetzV81RYzkPfTF8e/r5ufGdgmrp8m8wAhgZQVmAE3rXuok6m9mJGIGeSKF1BGTTGXdJ0y62TgHgmEgoqE9snMXpRLwSbQFeKhSVLv6iVDXNOgmAY0pyo/ripnaNKeCUMIZnV3/COgKyKVEsXf5vUmGNdRJ4FGUBTigQCOiDF07TEmYnYpiOhgusIyBbFt0hzb/ZOgWAv5Mb43QiXinJFCIcF5DOuU9qWm4dBMDfqS5K6Aub5qowEbGOAhfZ0UtZ4BuRXOmyr0vljA9H5lAW4KRSpxNnajqnEzEMXcF86wjIhnk3SavutE4B4CRePJ1YVcjpRKSw4BjHnfUhacoF1ikAnMT4ynx95srZSkRC1lHgEtt7+LznC5Ec6bKvSrVzrJPA4ygLcEo50bA+f81cTathtAyG5hBlgfe13yCtfq91CgCvoroooQc2z1NlQcw6ChwgydUCSNKaD0hzNlmnAPAqZteX6LNXzaEwwJBsOcpnPc8LJ6RLvyI1LLZOAh+gLMCrKkxE9MVr25l/jCE5kMyzjoBMmrNZWvN+6xQAhqihLFcPbJ6n8ny+RPodKwug0++S2q+3TgFgiOY3lepzV89RTpTCAKfW0RdRMsRnPc8KJ6TLviI1LrVOAp+gLMCQFMQj+uKmuYwkwqvaN0hZ4Fmzr5HOvNs6BYBhairP04Ob56ksjy+RfsYYIp877R+kBbdYpwAwTPMaS/W5qygM8OoG40XWEZAJ4bh06QNS4zLrJPARygIM2YuFwYxxRdZR4GB7B3KsIyATZl4pnXWPFOBhE+BGzRV5+sp181TBDQPfGuRqgX+dfpe08HbrFABGqL2xVP9y9VzlUhjgFPqjRdYRkG6hmHTJl6WmFdZJ4DOUBRiW/HhEX9zUrpkUBjiJXX2UBZ4z43Jp3T9RFAAu11yRp69eP5+lxz7FzQKfOuO93CgAPGBuQ4n+5RoKA5xcT6TAOgLS6cWioHmVdRL4EGUBhi0vFtYXNrVrVl2xdRQ40PbehHUEpFP7DdL6eykKAI9oKMvVV6+br+oiXqv9hosFPhMISmd+UJp/k3USAGkyp75En79mrvJiYesocKCjYcoCz4jmpXYUtJxmnQQ+RVmAEcmLhfWFa+ZqYXOpdRQ4zLYeTqx6xvK3p5YZUxQAnjKuNEdfv2G+mivYMeMng9ws8I9QVDr/fmnuZuskANJsdn2JvnRtu4pzItZR4DBdwXzrCEiHnFLpiocZPQRTlAUYsdxYWJ+7aq7OmlJlHQUO8sJR5mG7XiCY2k+w9A3WSQBkyNiihB66YT63BH0kmaQs8IVonnTZ16TJ51snAZAh02uL9PUbFmgsYwXxEocClAWuV1AjXf1dqWaWdRL4HGUBRiUaDureS2do47xx1lHgEAf6IkqG+eDqWqGodMFnpTmbrJMAyLCinKi+fG27VrVVWkdBNtAVeF9OmXTlv0tNy62TAMiw5oo8PXTjAm4J4riD4mfB1comSJu+J5WPt04CUBZg9ILBgP7fOVN0xype1JAyGCuyjoCRiOZJG74uTTrXOgmALIlHQvrk5bN0yZxa6yjIsEFuFnhb0Tjpmkek6pnWSQBkydiihL5+PbcEkdKRzLWOgJGqmSNd812psNo6CSCJsgBpdPuqFn3ggqkKB/ky6nd9sULrCBiunNLUacTGZdZJAGRZKBjQ+86fqttWNFtHQQax4NjDKiZJ13xPKuP/w4DfFOembgmeMYlbgn63pz/HOgJGommldMW3pJwS6yTAcZQFSKuLZtfqM1fNUW40ZB0FhnojRdYRMBzlbdLmH3EaEfC5154+Qf94zmTR+XsTZYFH1S+Wrv6OVMAOMcCv4pGQ7tswS1fOr7OOAkO7+ygLXGf2Nak9Q1FuhcBZKAuQdkvHl+trN8xXdVHCOgqMdIUKrCNgqFpOl679vlRcb50EgANcPq9O9185W/mxsHUUpNkgSwu8Z/Ym6fJvSoki6yQAjAWDAb377Ml659qJCtH6+9KOXp6/uEYgJK25W1r7YSnEZ244D2UBMmLS2EI9fMtCza3nKpUfdVIWuMP8W6RLvyrF8q2TAHCQFa2V+rebF6qhjFNOXpJkZ4F3BMPSWR+S1t7DQwYAL3PNogZ9/uq5KsqJWEdBlm3vjVtHwFDEC6WND0nt11knAU6KsgAZU5oX05c3t2tD+zjrKMiyQ8qzjoBTCUWl9R+TzrhLCvI2AOCVmivy9M2bF2rJ+HLrKEgTxhB5RKIkdZtgzrXWSQA41KKWMj188yJNqORAkJ9sORqzjoBXU9IkXftDqWmFdRLglHhKhIyKhIK669wpes+5UxQJcaLNLw6I06iOlVOaWqA083LrJAAcrjAR0eeumqPNixusoyANBq0DYPRe3DHUsNg6CQCHG1eao2/ctIDFxz6ypzeqZJAbJY7VsFTa/EOprMU6CfCqKAuQFZe1j9ODm+epLI+22w86BrlZ4EhjpqQeMtQtsE4CwCVCwYDedtZE3XPRNMXCfGx0Nw5tuNr4NakdQyWUdwCGJjcW1ic2ztLtK1sU4C3AFwbjRdYRcCJzr5c2fkNKFFsnAYaEb33Imtn1Jfr3WxdqSnWhdRRk2J7+HOsI+HuzrpY2/YBFxgBG5LyZNfrq9fNVVcg8XLcaZGeBOwVC0vK3SZc8wI4hAMMWCAR0x2njdd+GWcqNhqzjIMP6Y0XWEfBSsQLpgs9JZ36AHUNwFcoCZFVVYUJfv2G+Lp9XZx0FGbSzj7LAMaJ50nn3S+s+IkV4yAdg5KbXFuk7ty3WqrYK6ygYgSRbC9wnv0q68mFp6RvZMQRgVFZPHqOHb12ktqoC6yjIoN4IBzMdY8xU6bqfSJPPs04CDBufOpF18UhI/3jOZH1i4ywVJpip50U7ehPWESBJFRNTH1CmXmidBIBHFOdGdf+Vc/SOtRMVDfEx0l24WeAqzaukG34u1S+yTgLAI5rK8/TNmxfoqgX11lGQId1hyiBHmH2NdO0PpNIm6yTAiPAtD2ZWTx6j/7x9sebUM7fNa7b2cILd3PSNqf0ELFACkAGbFjXoX29coPpSbpK5xSBlgTsEw9KqO6UND0m5ZdZpAHhMLBzSnesn6dNXzFZxDgf3vKYzyLg6U9E86fzPSGs/LIXZ1wn3oiyAqbFFCX3luvm6bWWLgnyH9YwXjvLGaCaaJ51zn3TOx6UINzwAZM6UmkJ9+7bFWj9trHUUDEGSKUTOV1AjXfUdadEdYhspgEw6bWKlvnP7Ys1tKLGOgjQ6HMizjuBflVOk6x6VplxgnQQYNcoCmAsFA3rtaeP1wOZ5GlPAiXQvONwfVjLCadOsq1so3fgLafpl1kkA+EReLKyPXjpD7z9/ihIRFic6GV2Bw7Wtl274mTSu3ToJAJ+oKkzowc3z9JpVLQpxcs8TDoibBVkXCEmLXnvsVn+zdRogLSgL4BjzGkv1n7cv1prJY6yjIA0GY0XWEfwjHJdOv0u68ttScb11GgA+dPGccYwWdLjBJA+CHClRkhpZcPEXpRxO+ALIrlAwoNesGq8HN89THaMFXa9jMNc6gr+UNkvXPCKtepcUjlqnAdKGsgCOUpwb1X0bZ+mfN8xUWR4vtm7WFy20juAPY2dI1/9UWnCLFOQlHYCd+rJcffW6+Xrn2oncMnCgJDsLnKd1rXTzrxhZAMDc3IYSfff2Jdq0qIHxwC62d5DCJzsC0tzrpet/JtXOsQ4DpB1PluBIZ06p0vfvWKpzpjMH2a16IpQFGRWMSMveKm36gVQ+wToNAEiSgsGArlnUoO++hjnITkNZ4CCJYum8T0uXfFnKq7BOAwCSpEQ0pHesnaiv37BATeWcUHejPX2UBRlXOE668mHpzA9IUf73hjdRFsCxinOj+sglM/SZK2ezy8CFusIF1hG8q3KKdO0PpGVvkkJh6zQA8Ap1pbn66nXz9O71k5QT5ZaBEyTZWuAM49dIN/23NPUi6yQAcEKz6or1ndsX68ZlTewycJkdfQnrCB4WkGZekdoR2LDEOgyQUZQFcLyVbZX63muX6OLZtdZRMAxHgpQFaRfNk854j3T9o9LY6dZpAOCUAoGArlxQr0des0TzG0ut4/geOwuM5VZI535KuuwrUj77uQA4Wywc0ptWt+qbNy1U6xiW5rrF9m4OWWZExSTpmu9K6++V4jzngPdRFsAVCuIRvf+CqfrSpnY1ciXSFQ4pzzqCt7Stl275tTT/ZinIKV0A7lFbkqMHr5unD188TRX5Mes4vsUYIiOBUGqu8a2/kaZdbJ0GAIZlSk2h/v3WRXr96ePZR+QCWykL0iuaJ53+/1I7AsfNs04DZA1lAVxlUUuZHnnNEr1lTavyYoxfcbID4gRKWhTXSxseki7+olTADg8A7nXujBr96PXLtHlxg8KMNci6QesAflTbLl33k9Rc4zi7nAC4UyQU1C0rWvTD1y3VWVOrrOPgFHb0RJUM8pwkLdrWSTc/Ji24ldG/8B3KArhOJBTU9Uub9KPXL9V5M6sV4HmDI+0bYNnPqISi0uLXp+Yat5xmnQYA0iIvFtbbzpqo/7x9sRY0MZoom7hZkEU5ZdLZH5eueUSqmmqdBgDSYmxRQh+/bKYe3DyP0UQOlowVWUdwt6I66bKvSRd/SSqstk4DmKAsgGtV5Md1z0XT9a83LtDUGk5rOc3uAcZFjVjb+lRJsPIdUoQlVQC8p6UyXw9snqePXTZDVYVcmc+GQfYbZ14gKM3elBo5NGOjONECwIvmN5XqP25brDvXTVRhImIdB3+nP8azkRGJ5ksr3i7d/Ctp/BnWaQBT3KWB680cV6xv3rRQX/vNFt39yNPa19lrHQmSdvXxkHvYauamZiKOa7dOAgBZsXbqWK1ordAnfvKs7v/5c+rqHbCO5FncLMiw8WukVe+SKtqskwBAxoWCAV21sEHrp1fr7kee1ld//QKltEP0RgoVtQ7hJsGwNOtqadmbpdwy6zSAIwSSySQv6fCMw919uv9nz+kzP39OR3r6reP42qrSDt3feYt1DHcoaZRW3SlNPNs6CQCY2XO4Rx/70Z/04GNb1DvAhP10O79ylz508A7rGN5T2y6terdUN986CQCYeWbXYX3wkaf1vSd2WUfxvd80fEplO35iHcMd2tZJK++UypqtkwCOQlkAT9rf2av7Hn1WX/iv59XdxwMHC615Xfpu/7XWMZwtp1Ra+iZp9jVSiCu8ACBJWzq6dM/3n9G3Ht/GKcU0Oq9yt+45+BrrGN5R3iqtfKfUepZ1EgBwjN9tOaAPfu9p/exPe62j+NajzV9R3daHrWM4Gzf6gVOiLICn7TrUrXt/9Cd99ddb1DfAj3o25YYG9cfIRusYzhQvkubdmPoVZ6YkAJzIUzsP6YOPPK0fPLnbOoonnFO5Wx+hLBi9gmpp2Vuk6ZdJwZB1GgBwpP96dp8++L2n9du/7reO4jvfbvkPTd7yZesYzjRmSuqwXts66ySAo1EWwBe2dHTpwz94Rt/8X04pZtNzBZsV6O20juEcOaXSvJukuddJ8QLrNADgCr/9a4fu+f4z+sWf91lHcbWzK3frnygLRq5wnLTwNmnG5VKEpdwAMBQ/emqXPvjIM3pixyHrKL7x5ZZHtXDLJ61jOMvYmdLSN0oT1lgnAVyBsgC+8ufdh/XJR/+ibz2+nXnIWfDn8jcofHibdQx7uRXSglulOZukaK51GgBwpd9tOaD7fvKsvvfETor/EVhXsUf3HrrdOob7lI2XFt0hTblICoWt0wCA6ySTST3yx1365E+f1f++cMA6jufd2/Qbrdt2j3UMZ6htl5a8UWpZZZ0EcBXKAvjSrkPd+uwvntMDv3pBh7tZhJwpT1a/R4l9f7COYSe/Slp4uzTrKimSsE4DAJ7w591H9MlHn9U3H9/GiMFhWFu+Vx87fJt1DPeomi4tfq3Uuk4KBq3TAIAnPPZchz756LP60dO7xZOozLiz4UldteMfrWPYql8sLXmD1LjUOgngSpQF8LXD3X168LEX9NmfP6+dh7qt43jO4/UfU9HOX1rHyL4xU1P7CCafL4Vj1mkAwJN2HDyq+3/2nL7y2Avq7B2wjuN4Z5bv1T9TFry6uoWpkqCZU4gAkCnc+M+cm2qe1xv3vtU6RvYFw1Lb+tT38Nq51mkAV6MsACT1DQzqW49v16d/+hc9veuwdRzP+GXTFzR223etY2RHICS1rZXab5Tq5lunAQDfONDVqy//6gV9+b//qu0HKf5PZk35Xt1HWXBi4YQ05QJp7mapapp1GgDwjV2HuvXZnx+78d/Djf90OK9yl+45eId1jOzJKZVmXZ0a+Vsw1joN4AmUBcDf+eWze/XgY1v0yB92csphlL7X8m8av+Xr1jEyK1Eszbwy9YChsMY6DQD41sBgUt9/Ype+8F/P65fPsgz571EWnEBxgzTnWmnGhtT7OQDARGdPvx7+3XY9+NgL+r+tB63juNq8ooP6SveN1jEyb8wUqf0GafIFUiRunQbwFMoC4CQ6Onv10G+36CuPbdFf9nZax3Glh1q+r9lbPmcdIzOqZ0kzr5CmXsw+AgBwmD/vPqIHH3tB//o/W3Wgq886jiOsLt+nTxy+1TqGvUBQajldmrNZal4pBQLWiQAAL/GHbQf1wGMv6OHHt+sItw2GrTreo1/oausYmRGKSa1npYr++oXWaQDPoiwAhoDbBiPz6eb/1mlbP2odI33yxkhTL5Kmb5AqWq3TAABeRU//gP7z9zv1wGMv6NfPd/h6meLpZR361JFbrGPYKapLFfwzNkjF9dZpAACv4sXbBg/86gX9fhu3DYYqEEjqL/ErFEh6aJ9T9Sxp+mWpWwSJIus0gOdRFgDD0NHZq2/8z1Z96/HtfGAZgvc1/l6XbH+vdYzRCUWlCWtSBUHzKikYsk4EABiBrfu79PDvtuvhx7frqZ3+2090WlmHPu23siBeJE06V5p2iTRunnUaAMAI/WHbQT3026369v/t0N4jPdZxHO8vxbcoeLTDOsbo5Ff97aBe+QTrNICvUBYAI/SXPUdSDx1+t11/2cOYohN5Xd2zunXXO6xjDF8gKNW2S5POSy08zCmxTgQASKOndh7Stx5PFQfbDhy1jpMVK0s79JlOH5QFoWhqzNC0S6SWM6Rw1DoRACBNBgaT+uWze/Wtx7frkT/u1OFuxhSdyDOVb1P04HPWMYYvmi+NPyP1Ht60goN6gBHKAiANnth+SN/5/Q595/c72G/wEpdVbdd79r/eOsbQBMNS/SKpbb3UulbKr7ROBADIsGQyqV8/v1/fenybHvnjLk+fVlxRul+f7bzZOkZmhONS4zJpwpnSxPUsKwYAH+jpH9DPntmr//j9Dv3giV06zH6D4/5Y+wHl7nncOsbQJEpS799t66Sm5VI4Zp0I8D3KAiDNnth+SN9/Ypd+/PRu/d/WAxr08f/DlpXs1790OfjBRCiW+kDStj41aogbBADgW8lkUo9vOaAfPbVbP3hyt57cccg6Ulo5/j15uHJKpfGrU+/fTSukaK51IgCAkReLgx89vVuPPr3HN7cGT+a3DZ9U6Y5HrWOcXH5ValFx2zqpbpEUClsnAvASlAVABnV09uqnz+zRT57erZ/+aa86OnutI2VVc85R/WBwk3WMlyuulxqXpx4sNC2XYvnWiQAADrT9wFH98Knd+uGTu/TLZ/ept3/QOtKoLC3dr8+7/WZBSVOqHGg9KzUukPEEAIATeGbXYf34qd368dO79du/7lffgL8ee/20+QGN2/pt6xh/EwynlhQ3LpeaV0o1c6RAwDoVgJOgLACyZHAwqd9tPaAfP71Hjz69W3/YfkgDHr92EAsO6unoRuMQhVLD4r+VAyWNtnkAAK7T1duvX/55n/7rL/v0q+f26Ynth1x3c3BJyQF9oesm6xjDU1At1S+WGpak3suLxlknAgC4zOHuPv3iz3v146f26Gd/2qPtB7utI2Xcd1r+XRO3PGgborT52CG95an38niBbR4AQ0ZZABg50tOv/31hv379/H795vkOPb7lgLp6B6xjpd1zhdcr0HM4e39gojh1UqFmrtS4NHWCgZOHAIA0OtTdp98836Ff/aVD//1ch/647aD6Hd4eLCo5qC913Wgd49TyKo+VA4tTfy1tsk4EAPCYbQeO6jfPd+jXz3foN8/v1zO7DrvuAMCreaDlJ1qw5VPZ/UNLmlLfw+sXpkqCotrs/vkA0obBYICRvFhYi1vKtbilXJLUPzCoJ3Yc0q+f36/f/jX1wWX3YfcvWhyIFSmcqbIgEJIqJ/6tHKiZI5U1Z+bPAgDgmIJ4RCtaK7WitVKS1NnTr9/8db9++9f9+sO2g/rDtoOOew933PGgSK5UNVUaO+PYr5m8hwMAMq66KKHq6dU6e3q1JOng0T79z1/3Hy8Pfr/toI72ufsQ34FkTmb/gFihVD3z2PfwOVLNbPb/AR7CzQLAwfYc7tGTOw7pqZ2H9NSOw3pixyH9ZU+negfcMzf5iZr3Kmfv70f/HxTNl8onSBVtqV9jpqY+oLDQEADgQLsPd+uP2w6lyoPtB/WHbYdMFy7OLz6oB48a3SyI5Kbeu18sBqpnSmUTpGDQJg8AACcxOJjU8/s69eSOw8e/iz+547Crlib/Q8MfdcWOu9LzH5Y/9m/fwSvapOrZqe/l7BwAPIubBYCDlefHVJ5friXjy4//s76BQf1595FUgbDzsF7Y16Ut+7v0wr4uHeruN0x7Yj3hAg3rXEOiJDWTuLz15R9KCmv5QAIAcI2K/LgqWuNa3lpx/J8d6OrVn3cf0XN7O/X8vk49v7fr+O8zPYpwMJnp99CAVFgjlbVIpS3H/toslY2XCsbyHg4AcIVgMKDG8jw1lufprKlVx//5waN9emrHIT2545Ce3dOpFzpS38O37j+q3n5nHebb0z/MmwWBkJRflRr/V9F27Lv4xFQpkCjKSEYAzkVZALhMJBRUW1WB2qpeuSDo4NE+beno0tb9XdrScfT4h5e9R3rU0dmr/Z296szyXoTOcKGKX/ybcELKLUs9NCisTc0xLKxNlQOFtamHDLG8rOYDACBbinKiml1fotn1r7yqv/tQt57b26m/7uvSzkPd2n24W3sO92j34R7tOfarZxQPI0Z9lThRknr/zh9z7NeLv69KvZ+XNEnRDI89AADASGEiovbGUrU3lr7snyeTSe061JMqDzq6jpcIOw92q6OzN/U9vKtXfQPZG+qxsy/xkr8LpJYL51b87fv3S7+LF9ZIBdVSiMeDAFIYQwT4THffgPZ3HfvQ0tmnjq5UiXC0b0C9/YPq7R9UT/+x3w8MqqdvUD0DqX8eDKTKitSvgMKhoKIv+X0kFFRuNKTCREQFiYgK4hFNzDuskkRIyinjIQIAAKNw8Gif9hzu0d4jPers6Vdn74CO9vars2dAXb396uodUFfvgDp7+tXdP6jBZFJKSoPJpGqjnXqr7k+dHgyGUn8NhVNj/mL5qbI+li/FCqToi7/Pl+KFqVIgHLP+rw8AgGsd6u7T/mPlwYu/Dnf3q+cl3797XvJ9/MXfDwwmFQkFFQ4FFA6++N07cPx7eTgYUCwcUn48fOw7eFhjcqSpOR1STmnqF0UAgGGgLAAAAAAAAAAAwOfYKgYAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc/8fOQLtnWBoGR8AAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Метод приращения с избытком (oversampling)\n",
|
||
"def oversample(df: DataFrame, column: str) -> DataFrame:\n",
|
||
" X: DataFrame = df.drop(column, axis=1)\n",
|
||
" y: DataFrame = df[column] # type: ignore\n",
|
||
" \n",
|
||
" adasyn = ADASYN()\n",
|
||
" X_resampled, y_resampled = adasyn.fit_resample(X, y) # type: ignore\n",
|
||
" \n",
|
||
" df_resampled: DataFrame = pd.concat([X_resampled, y_resampled], axis=1)\n",
|
||
" return df_resampled\n",
|
||
"\n",
|
||
"\n",
|
||
"# Приращение данных (oversampling)\n",
|
||
"df_train_oversampled: DataFrame = oversample(df_train, 'hazardous')\n",
|
||
"df_val_oversampled: DataFrame = oversample(df_val, 'hazardous')\n",
|
||
"df_test_oversampled: DataFrame = oversample(df_test, 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"print('После применения метода oversampling:')\n",
|
||
"check_balance(df_train_oversampled, 'Обучающая выборка', 'hazardous')\n",
|
||
"check_balance(df_val_oversampled, 'Контрольная выборка', 'hazardous')\n",
|
||
"check_balance(df_test_oversampled, 'Тестовая выборка', 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_oversampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_oversampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_oversampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train_oversampled, df_val_oversampled, df_test_oversampled, 'hazardous')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"После применения метода undersampling:\n",
|
||
"Обучающая выборка: (10608, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 5304\n",
|
||
"True 5304\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.00%\n",
|
||
"Процент объектов класса \"True\": 50.00%\n",
|
||
"\n",
|
||
"Контрольная выборка: (3536, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 1768\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.00%\n",
|
||
"Процент объектов класса \"True\": 50.00%\n",
|
||
"\n",
|
||
"Тестовая выборка: (3536, 6)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 1768\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.00%\n",
|
||
"Процент объектов класса \"True\": 50.00%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных не требуется\n",
|
||
"Для контрольной выборки аугментация данных не требуется\n",
|
||
"Для тестовой выборки аугментация данных не требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABgcAAAHzCAYAAAAEk80rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIjUlEQVR4nOzdd3gU9d6G8WfTQxJqIPTepInSpAkqqJRXsYD1UGwoYsHu8ShgQ8QCYkOPIgo25Ah2AQEVREEUpEsJICAldEL6zvtHyJrNbvruzszu/bmuXErYbL7Zdk/4zcw6DMMwBAAAAAAAAAAAQkaY2QMAAAAAAAAAAIDAYnEAAAAAAAAAAIAQw+IAAAAAAAAAAAAhhsUBAAAAAAAAAABCDIsDAAAAAAAAAACEGBYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQYlgcAAAAAAAAAAAgxLA4AAA2cPToUW3dulXZ2dlmjwIfMgxDhw8f1pYtW8weBQAAlFNmZqb27dunvXv3mj0KAADwodTUVP311186cuSI2aP4HIsDgA00bNhQAwcONHsMn+ndu7d69+5t9hiWlpWVpWeffVZnnnmmoqOjVaVKFTVr1kzfffed2aPZwrp16zR37lzXn1evXq0vv/zSvIHyOXHihP7zn/+oRYsWioqKUrVq1dS8eXNt3rzZ7NEAlAGNBvxv5syZ2rFjh+vP77zzjvbs2WPeQPn8+uuvuvbaa5WYmKjo6GjVqlVLV1xxhdljASGHHgP29PTTT8vpdEqSnE6nJkyYYPJE/5g9e7YuuOACJSQkKD4+XvXr19ezzz5r9lg+V6rFgXfeeUcOh8P1ERMTo+bNm2v06NHav3+/v2YEgt64cePUsGFDSf88z+B/vXv31vDhwyVJw4cPt8zGV0ZGhvr06aNHH31UvXv31uzZs7VgwQItWrRIXbt2NXs8Wzhx4oRGjhypn3/+WVu2bNFdd92ltWvXmj2WDh06pK5du+qll17SlVdeqXnz5mnBggVasmSJ6zWgrGg04B802hxWbTTM8eOPP+qBBx7Qjh079O233+r2229XWJj5+7nNmzdPPXr00IYNG/TUU09pwYIFuu+++/Tzzz/TY8DH6LE56DH8bcaMGXruuee0e/duPf/885oxY4bZI0mSHnroIQ0ZMkQJCQl68803tWDBAi1cuFCjRo0yezSfiyjLFz3++ONq1KiR0tPTtXTpUr322mv66quvtG7dOlWoUMHXMwJASJk4caJ++eUXffvtt2x8lVHXrl1dH5LUvHlz3XzzzSZPJd1///36+++/tXz5crVu3dov34NGAwCCzZgxY9S7d281atRIknTPPfeoVq1aps50+PBh3XTTTbrooos0e/ZsRUVFSZJ2794tiR4DAFASjz/+uIYOHaoHH3xQ0dHRmjlzptkj6fvvv9fEiRM1YcIEPfTQQ2aP43dlWhzo16+fOnbsKEm66aabVK1aNb3wwguaN2+errnmGp8OCMB+UlNTFRcXZ/YYtpSdna3Jkyfr3nvvZWGgnObOnasNGzYoLS1Nbdu2df3SbpYDBw5oxowZev311/22MCDRaABFo9Gwo5YtW2rbtm1at26dEhMT1aRJE7NH0vTp05Wenq533nnH6zYGPQZQFHoM5Lrqqqt03nnnaevWrWrWrJmqV69u9kh67rnn1K1bt5BYGJB89J4D559/viQpOTlZUu5eFPfdd5/atm2r+Ph4VaxYUf369dOaNWs8vjY9PV3jxo1T8+bNFRMTo1q1aunyyy/Xtm3bJEk7duxwO01CwY/8/3i2ZMkSORwOffTRR/r3v/+tmjVrKi4uTpdccon++usvj+/9yy+/6OKLL1alSpVUoUIF9erVS8uWLfP6M/bu3dvr9x83bpzHZWfOnKkOHTooNjZWVatW1dVXX+31+xf1s+XndDo1efJktW7dWjExMUpKStLIkSM93gSjsHPsjR492uM6vc0+adIkj9tUyj3FydixY9W0aVNFR0erXr16euCBB5SRkeH1tsrP23nynnrqKYWFhen9998v0+2R9yStVq2aYmNj1aFDB33yySdev//MmTPVuXNnVahQQVWqVNG5556r+fPnu13m66+/Vq9evZSQkKCKFSuqU6dOHrPNnj3bdZ8mJibq+uuv9zjP6fDhw91mrlKlinr37q0ff/yx2NuppJYuXarOnTsrJiZGjRs31rvvvuv29yV97jVs2LDQ23rJkiWSpJ07d2rUqFFq0aKFYmNjVa1aNQ0ePNjtfK/SP4d0fv/99xo1apRq1KihunXruv7+jTfeUJMmTRQbG6vOnTsXenscOHBAN954o5KSkhQTE6MzzzzT43CyvOd43ox58h4777zzjutz+/bt04gRI1S3bl3X+V8vvfRSj/lLK/9tFxYWppo1a+qqq67Srl27SvT1r776qlq3bq3o6GjVrl1bt99+u44ePer6+82bN+vIkSNKSEhQr169VKFCBVWqVEkDBw7UunXrXJdbvHixHA6HPv30U4/v8f7778vhcGj58uWumfMOBc3j7bb88ccfNXjwYNWvX9/1XB8zZozS0tLcvnbcuHEez8tZs2apffv2iomJUbVq1XTNNdd43CbDhw9XfHy82+c++eQTr/dpfHy8x8xSyV5f87/utGrVSh06dNCaNWu8vp54U/D1PjExUQMGDHC7/aXc19HRo0cXej15z428x9zKlSvldDqVmZmpjh07FnlbSdKiRYvUs2dPxcXFqXLlyrr00ku1ceNGt8vk3RebNm3Sq6++Kkm64IILdNdddyk9PV3SP42+9tprNW7cONfrRJs2bRQRESGHw6GePXu6vU7k3c4xMTGKjY1VQkICjabRNLoYNNrejfbWyltuuUUxMTEeP1NxLZdyn19t2rTx+D7PPfecWxuKur8dDofrFBp5t+Nzzz2nF198UQ0aNFBsbKx69erl0SepZA3xdrt5e7zlXaa4c3nnn7GgNm3aeLzelORxlf/xExcXpy5duqhJkya6/fbb5XA4vG4rePv6vI/IyEg1bNhQ999/vzIzM12Xy3uu/Prrr4VeV8HXzJ9//lnt27fX008/rXr16ik6OlrNmjXz+h5H2dnZrlMK/etf/1LDhg01ZswYjRkzxu01ITY21vVamLdd1apVK3344YduvzNXrlzZ9dz29nMW/Khbt65rxjp16sjhcOiDDz6gx/nQY3pMj83vsb+auGnTJl155ZWqWrWqYmJi1LFjR3322WdulymsAykpKR6vBd5+Hz558qRq1qzpcdvnbQ+sWrVK3bp1U2xsrBo1aqTXX3/dY87SdLG4rknS9u3bNXjwYFWtWlUVKlTQOeec49Eobz+L5LldVJrbR5J+//139evXTxUrVlR8fLwuuOAC/fzzz26Xyf/7co0aNVyvWe3atfN4rHpT8LS6FSpUUNu2bfXf//7X7XLe/h2ioII/w88//6w2bdro6quvVtWqVRUbG6tOnTq5va9hntLcbyV5zA4fPtzjlMMzZ85UWFiYnnnmGbfPl+SxXRJlOnKgoLx/JKhWrZqk3Afg3LlzNXjwYDVq1Ej79+/XtGnT1KtXL23YsEG1a9eWJOXk5GjgwIH67rvvdPXVV+uuu+7SiRMntGDBAq1bt85tj5BrrrlG/fv3d/u+Dz/8sNd5nnrqKTkcDj344IM6cOCAJk+erD59+mj16tWKjY2VlLvB3K9fP3Xo0EFjx45VWFiYpk+frvPPP18//vijOnfu7HG9devWdb0xxsmTJ3Xbbbd5/d6PPvqohgwZoptuukkHDx7U1KlTde655+r3339X5cqVPb7mlltuUc+ePSVJ//vf/zz+sW/kyJF65513NGLECN15551KTk7Wyy+/rN9//13Lli1TZGSk19uhNI4ePer1TT+cTqcuueQSLV26VLfccovOOOMMrV27Vi+++KL+/PNPr0+MokyfPl3/+c9/9Pzzz+vaa6/1epnibo8pU6bokksu0XXXXafMzEx9+OGHGjx4sL744gsNGDDAdbnx48dr3Lhx6tatmx5//HFFRUXpl19+0aJFi3ThhRdKyn0xueGGG9S6dWs9/PDDqly5sn7//Xd98803rvnybvtOnTppwoQJ2r9/v6ZMmaJly5Z53KeJiYl68cUXJeUeUjxlyhT1799ff/31l9f7vjS2bt2qK6+8UjfeeKOGDRumt99+W8OHD1eHDh1ceyGX9Lk3efJknTx50u36X3zxRa1evdr1PF65cqV++uknXX311apbt6527Nih1157Tb1799aGDRs8DoceNWqUqlevrscee0ypqamSpLfeeksjR45Ut27ddPfdd2v79u265JJLVLVqVdWrV8/1tWlpaerdu7e2bt2q0aNHq1GjRpo9e7aGDx+uo0eP6q677ir17XXFFVdo/fr1uuOOO9SwYUMdOHBACxYs0K5du8p9bveePXvqlltukdPp1Lp16zR58mTt3bu32I3acePGafz48erTp49uu+02bd68Wa+99ppWrlzpei4fOnRIUu7rW7NmzTR+/Hilp6frlVdeUffu3bVy5Uo1b95cvXv3Vr169TRr1ixddtllbt9n1qxZatKkSanfn2D27Nk6deqUbrvtNlWrVk0rVqzQ1KlTtXv3bs2ePbvQr3v//fd1/fXX68wzz9SECRN06NAhvfTSS1q6dKl+//13JSYmlmqOwpTl9TXPgw8+WKrv1bJlSz3yyCMyDEPbtm3TCy+8oP79+5d4EcibvPt29OjR6tChg5555hkdPHjQ6221cOFC9evXT40bN9a4ceOUlpamqVOnqnv37vrtt988HsNDhgxReHi4JKl79+566aWXdOTIEb377ruuRufJe52IjY1VWFiYRowY4fqFb8OGDZo+fboeffRRXXnllUpNTdXmzZsVFRWl+Ph43XLLLVq6dCmNzodG02iJRpeWFRtd0NixY/XWW2/po48+cvtHu5K0vDTy398bN27U008/rX//+98644wzJMnjl9l3331XJ06c0O2336709HRNmTJF559/vtauXaukpCRJpW+I9M/tln8OfyrP42rr1q168803S/X98l67MjIy9O233+q5555TTEyMnnjiiTL/DIcOHdLSpUu1dOlS3XDDDerQoYO+++47r/8Ae9NNN2nWrFmSpMGDBysqKkqTJ09WXFyc7rjjDtdrwvjx47Vs2TINHjxYo0aNcr2e5B1pkPc785IlS/TJJ59o8+bN6tWrl/bu3Ssp9/fxiRMnKjo6WlLuP1jfdttt2r9/vx544AHVr19f//vf/7R3717dcccdqlOnDj0uBXpMj+lxyZWlx/5o4vr169W9e3fVqVNHDz30kOLi4vTxxx9r0KBBmjNnjsfv0mX1/PPPF/q+MkeOHFH//v01ZMgQXXPNNfr444912223KSoqSjfccIOk0t+/xXVt//796tatm06dOqU777xT1apV04wZM3TJJZfok08+8dnP7c369evVs2dPVaxYUQ888IAiIyM1bdo09e7dW99//726dOlS6Ne+9957pX6vwBdffFGJiYk6fvy43n77bd18881q2LCh+vTpU+af4dChQ3rjjTcUHx+vO++8U9WrV9fMmTN1+eWXa9asWa4ul/Z+K8ljtqD58+frhhtu0OjRo92OZPDpY9sohenTpxuSjIULFxoHDx40/vrrL+PDDz80qlWrZsTGxhq7d+82DMMw0tPTjZycHLevTU5ONqKjo43HH3/c9bm3337bkGS88MILHt/L6XS6vk6SMWnSJI/LtG7d2ujVq5frz4sXLzYkGXXq1DGOHz/u+vzHH39sSDKmTJniuu5mzZoZF110kev7GIZhnDp1ymjUqJHRt29fj+/VrVs3o02bNq4/Hzx40JBkjB071vW5HTt2GOHh4cZTTz3l9rVr1641IiIiPD6/ZcsWQ5IxY8YM1+fGjh1r5L9bfvzxR0OSMWvWLLev/eabbzw+36BBA2PAgAEes99+++1Gwbu64OwPPPCAUaNGDaNDhw5ut+l7771nhIWFGT/++KPb17/++uuGJGPZsmUe3y+/Xr16ua7vyy+/NCIiIox7773X62VLcnsYRu79lF9mZqbRpk0b4/zzz3e7rrCwMOOyyy7zeCzm3edHjx41EhISjC5duhhpaWleL5OZmWnUqFHDaNOmjdtlvvjiC0OS8dhjj7k+N2zYMKNBgwZu1/PGG28YkowVK1Z4/ZlLqkGDBoYk44cffnB97sCBA0Z0dLTb7VnS515Bec+R/JcpeDsbhmEsX77ckGS8++67rs/lvS706NHDyM7Odn0+77Zr3769kZGR4fp83m2S/3E2efJkQ5Ixc+ZMt6/v2rWrER8f73o+5z3HFy9e7PEzSjKmT59uGIZhHDlypNDXjfJq0KCBMWzYMLfPXXvttUaFChWK/LoDBw4YUVFRxoUXXuh2H7388suGJOPtt982DOOfnzExMdFISUlxXe7PP/80IiMjjSuuuML1uYcfftiIjo42jh496vZ9IiIi3J7fjRo1MoYOHeo2j7fb0tt9PmHCBMPhcBg7d+50fS7/8zI7O9tISkoymjRpYpw8edJ1mSVLlhiS3B6fw4YNM+Li4tyuf/bs2V7v07i4OLfbuTSvr/lfdwzDML766itDknHxxRd7vJ54U/DrDcMw/v3vfxuSjAMHDrg+J8m4/fbbC72evOdGcnKy259btWrldlvn3Rf5b6v27dsbNWrUMA4dOuT63Jo1a4ywsDC3+zLvvrjkkkvcGj1ixAhDkjFx4kRXo/Ne99PT042HHnrICA8PN+bOnWsYxj+vE/fcc4/rds7f6IK3M43ORaNptGHQ6GBodMGvnTZtmiHJmDp1qttlStpyw8h9frVu3drj+0yaNMmtDfkVdhsaxj+3Y/7fuQzDMH755RdDkjFmzBjX50rakDx16tQxRowYUeQchb2GeZuxJE0o6eOq4OPHMAxjyJAhRps2bYx69ep53N+FzZT/6w3DMGrXrm3079/f9ee858rKlSsLva6C2we9evUyJBnjxo1zu1z37t0NScabb75pHDx40Pj2228NSUZ0dLTb/Xf33XcbkoxFixa5vrZOnTqGJOPqq692fe6VV15x9bPgvNu3bzcOHz5sNG3a1OssTzzxhOFwOIzOnTu7Ppd3/0oyNmzY4Po8PabH+dFjT/S45MrT4zy+auIFF1xgtG3b1khPT3d9zul0Gt26dTOaNWvm+lxhHfD2OlbwOXfgwAEjISHB6Nevn8fMea14/vnnXZ/LyMhwtTozM9MwjPJ10TA8u5bXmPyvSydOnDAaNWpkNGzY0PUcGD9+vCHJ7XXeMDzvw9LcPoMGDTKioqKMbdu2uT63d+9eIyEhwTj33HM9rjNvmyg9Pd2oX7++63Ys+DMWVPDrDSP3300kGc8++6zrc97+HaKggj9DXieXLFni+typU6eMM844w6hZs2aZ77eSPGbzv07++uuvRnx8vDF48GCP162SPrZLokynFerTp4+qV6+uevXq6eqrr1Z8fLw+/fRT1alTR5IUHR2tsLDcq87JydGhQ4cUHx+vFi1a6LfffnNdz5w5c5SYmKg77rjD43t4O6ylpIYOHaqEhATXn6+88krVqlVLX331lSRp9erV2rJli6699lodOnRIKSkpSklJUWpqqi644AL98MMPcjqdbteZnp6umJiYIr/v//73PzmdTg0ZMsR1nSkpKapZs6aaNWumxYsXu10+75CfvD07vJk9e7YqVaqkvn37ul1nhw4dFB8f73GdWVlZbpdLSUlxnVqiMHv27NHUqVP16KOPeqzEzp49W2eccYZatmzpdp15p6ko+P0Ls2LFCg0ZMkRXXHGFJk2a5PUyJbk9JLn2ZJFyV2CPHTumnj17uj225s6dK6fTqccee8z1WMyT99hasGCBTpw4oYceesjjvs27zK+//qoDBw5o1KhRbpcZMGCAWrZs6XFIltPpdN1Gq1ev1rvvvqtatWq5VrrLo1WrVq69QySpevXqatGihbZv3+76XEmfe/lt2LBBN9xwgy699FL95z//cX0+/+2clZWlQ4cOqWnTpqpcubLX67r55ptdey5L/9x2t956q9t5WIcPH65KlSq5fe1XX32lmjVrup1/NTIyUnfeeadOnjzpOmS6pGJjYxUVFaUlS5Z4HErsCxkZGUpJSXHtWbFo0SJdcMEFRX7NwoULlZmZqbvvvtvtMXnzzTerYsWKHo+lESNGuPZIkaRmzZrpkksu0TfffKOcnBxJua91GRkZbnuoffTRR8rOztb111/v+lyNGjVcb45XlPz3eWpqqlJSUtStWzcZhqHff//d4/IpKSlasmSJ9u/fr5EjR7qdM7NXr17q0KGD10Pry6K0r695DMPQww8/rCuuuKLIPRQKynstPXjwoJYvX65PP/1U7dq18zgKIj09XSkpKTp06JBHNwpz++23u93WvXv3drut/v77b61evVrDhw9X1apVXZdr166d+vbt62pZwevM06dPH02fPl1S7hETeY3O8+abb+qZZ57RSy+9pIEDB7q9TsyfP991O3/wwQeu0x4VvJ1pdC4a7YlG56LRhbNio/ObN2+eRo0apfvvv9/j1HGlbXlOTo7Hc/7UqVPl+vkGDRrk+p1Lkjp37qwuXbq4XkPL0pDMzMxin9vSP69hhw4dUnZ2dqGXO3XqlMfPnbftkqesj6tVq1Zp9uzZmjBhgsfrR1FOnjyplJQU7dmzR2+88Yb27dvn9XFx7NgxpaSk6MSJEyW63vDwcI0ZM8btcxdffLGk3MdF9erVddFFF0nK3as//+/MeUc1fvnll67XBIfDoYiICLc2fPXVV4qNjdWePXu0b98+t++VkZGhSy65RIcPH5Ykj/OXz549W3FxcYqIiHDdF8eOHXP9ff7XC3pMj/Ojx+7ocemVt8clUVwTDx8+rEWLFmnIkCE6ceKE63F36NAhXXTRRdqyZYvHqa/yOpD3kff6WpQnnnhClSpV0p133un17yMiIjRy5EjXn6OiojRy5EgdOHBAq1atklT6+7e4rn311Vfq3LmzevTo4fpc3pHgO3bs0IYNGyTl/luBpBL9e4FU/O2Tk5Oj+fPna9CgQWrcuLHr87Vq1dK1116rpUuX6vjx416v+5VXXtGhQ4c0duzYEs2S58iRI0pJSdH27dv14osvKjw8XL169fK4XElf7/N06tTJ7XpiY2M1atQo7du3z/X8Lu39VtxjNr/t27drwIABat++vd577z231+myPLaLUqbTCr3yyitq3ry5IiIilJSUpBYtWrgN6XQ6NWXKFL366qtKTk522xjM/49d27ZtU4sWLRQR4ZOzG7k0a9bM7c8Oh0NNmzZ1nTdty5YtkqRhw4YVeh3Hjh1TlSpVXH9OSUnxuN6CtmzZIsMwCr1cwUMZ885NWtS5r7Zs2aJjx465nrAFHThwwO3P8+fPL/Wbd4wdO1a1a9fWyJEjPQ6D3bJlizZu3FjodRb8/t7s2bNHAwYMUGpqqmuj15uS3B6S9MUXX+jJJ5/U6tWr3c7hmP96t23bprCwMLVq1arQ68k71Ya388Hm2blzpySpRYsWHn/XsmVLLV261O1zf/31l9ttVatWLc2ZM6fYn6kk6tev7/G5KlWquIW8pM+9PMePH9fll1+uOnXq6N1333W7DdPS0jRhwgRNnz5de/bsUe7iaa78v1TkadSokduf8267gs+HyMhIt0jkXbZZs2YeG6V5G4h511VS0dHRmjhxou69914lJSXpnHPO0cCBAzV06FDVrFmzVNflzYcffqgPP/zQ9edOnTp5nNeuoMIeS1FRUWrcuLHr7/Pug5YtW3pcxxlnnKE5c+YoJSVFSUlJatmypTp16qRZs2bpxhtvlJR7SqFzzjlHTZs2dX1dt27d9NJLL+nDDz/U+eefr7CwMK/34a5du/TYY4/ps88+89hA9Hb5/I91b8+RM844o9Bzm5ZWaV9f88yaNUvr16/Xxx9/7HFe1KL89NNPbj9fs2bNNHfuXI/Xr7feektvvfWWpNz7skuXLnrhhRdcb0CYX3H3bd5tVdTrzhlnnKFvv/3W4w3MmjVr5jqlwCuvvKLGjRurf//+Gjx4sD744APXc+vrr7/WypUrJUmPPvqo7rzzTrfXidq1a3vczrVq1XL9vy8OyafRNJpG02irNTrP6tWr9fHHHysnJ8frPwaUtOV5Nm3a5PM31fP2Gta8eXN9/PHHRc4oFd6QY8eOleh5kP81LDw8XO3atdMzzzzjOvVInrFjx3r9xT7/4fJlfVw99NBD6tmzpwYOHFjk+/4UdMcdd7jtkDZixAiPf9SX5HYKgsqVK+uaa67RpEmTvL5pqMPhUO3atVWxYkW3z+d1s0ePHho7dqxeeuklffHFF9q+fbvbP+jWqFFDMTExmjZtmiZPnuz2mpD/ebxt2zbVqVNHW7du1Y4dO9yeJyNGjNDPP//s9Q2RpdxOpKWleWzX5MnfCXpcNHpMj+lx6ZSnxyVVXBO3bt0qwzD06KOP6tFHH/V6HQcOHHD7x9rSnoomOTlZ06ZN02uvvVbo4mjt2rU9OtK8eXNJueeiP+ecc0p9/xbXtZ07d3rdOS7/9bVp00Zdu3aVw+HQww8/rCeffNL1PCxsx7fibp+DBw/q1KlThW6HOJ1O/fXXX67TfOU5duyYnn76ad1zzz2Fnl6nMGeffbbr/6Ojo/Xyyy97nPYuNTXV7XWnXr16uvfee4s8HVdhv7dLufdbly5dSn2/FfeYzT/vRRddpP3796tatWoeTSjLY7soZfpX+c6dO3v9h488Tz/9tB599FHdcMMNeuKJJ1S1alWFhYXp7rvvLvGelf6UN8OkSZPUvn17r5fJH6bMzEz9/fff6tu3b7HX63A49PXXX7utBnu7TkmuPT+KeuF1Op2qUaOG6xyVBRXcAOnSpYuefPJJt8+9/PLLmjdvntev37hxo9555x3NnDnT6z/6OJ1OtW3bVi+88ILXr89/DrzCbN26VWeffbZefPFF/etf/9KMGTO8bmSW5Pb48ccfdckll+jcc8/Vq6++qlq1aikyMlLTp08v1T/8+UtSUpJmzpwpKffF7e2339bFF1+spUuXqm3btuW6bm+PKUluGyClfe4NHz5ce/fu1YoVKzx+sbnjjjs0ffp03X333eratasqVaokh8Ohq6++2ut15d9rwl8K20guuDeaJN199936v//7P82dO1fffvutHn30UU2YMEGLFi3SWWedVa45LrzwQt1///2SclfYJ06cqPPOO0+//vpruW+H0n790KFDddddd2n37t3KyMjQzz//rJdfftntMv/+97+1bNkyt9XsgnJyctS3b18dPnxYDz74oFq2bKm4uDjt2bNHw4cP93qfL1iwQMuXL9djjz1WqpnLorSvr1Lua/ejjz6qG2+80bXxVVLt2rXT888/L0mu9wXo3bu3fvvtN7fXqEsvvVSjR4+WYRhKTk7W448/roEDB7p+oc4vEM8RKbfR7du3d73JW/4NlRUrVqhDhw5atWqVjh49qkmTJqlNmzau14nDhw+7bue8PWEnT57s+npf/NJWHBr9DxrtWzTav4Kh0WvWrFG/fv10wQUX6P7779f111/v8SahpdGwYUOPc+PPnj1bb7zxRpmv09cOHz6szMzMEv1DUP7XsL1792rixIm67LLLtH79erdzU99yyy0aPHiw29fefPPN5Z51/vz5WrhwoZYvX17qr73//vt14YUXKicnR+vXr9fjjz8uwzBcR9rlydsJLiMjQ0uWLHG9ufKrr77qcZ3FPZ5q1KihPn366JNPPpHD4fB4nXj66aeVnp6uhg0basKECapatar+9a9/6eTJkyX+nfm3337TvHnzdOutt+rvv//2+Hun06m4uDg1adLEtV2zZs0a3Xfffbr33nt1xRVXFHrd9Pgf9Ni36LF/BUOPfSXvPrjvvvtcR3EVlH+nOumfDuQ5fvx4ka+VjzzyiJo1a6Zhw4b59I21i1PSrhXnzDPP1NixYzV+/PhCX0PzK+3tU1ITJ05UWFiY7r//ftd79ZXUzJkzlZSUpPT0dC1atEi33367YmJi3N5QOSYmRp9//rkk6cSJE3r77bd19913q1atWhoyZIjHdQbqMVqYlJQUxcXF6fPPP9egQYM0YcIEtx0vyvLYLopvd9k/7ZNPPtF5553n2psyz9GjR91OydCkSRP98ssvysrK8sneiHkK/qOMYRjaunWr2rVr5/q+klSxYsUSrQquWbNGWVlZRS6I5F2vYRhq1KhRif4hasOGDXI4HF5X1PJf58KFC9W9e/cSPTgTExM9fqai3gDp4YcfVvv27XXVVVcV+v3XrFmjCy64oMynkcg7PDUpKUnz5s3Tvffeq/79+3tspJXk9pgzZ45iYmL07bffuu15U/AFsEmTJnI6ndqwYUOhG7N5j4N169YV+qRp0KCBJGnz5s2uw0LzbN682fX3eWJiYtxu/7w3Enr55Zc1bdq0Qn8uXynpc0+SnnnmGc2dO1f/+9//vK6IfvLJJxo2bJjrFwkp91DhvL1VipN322zZssXttsvKylJycrLOPPNMt8v+8ccfcjqdbv+QuWnTJrfrytszqeAMhe0l0aRJE91777269957tWXLFrVv317PP/+8a2O0rGrVquV2P7do0ULdunXT3LlzC/0H+PyPpfx7gWRmZio5Odl1fXl7k2zevNnjOjZt2qS4uDi3+/Lqq6/WPffcow8++EBpaWmKjIz0eD4nJiZq+fLl2rBhg+sXirxfDPOsXbtWf/75p2bMmKGhQ4e6Pr9gwYJCb4c+ffqoUqVKeuyxxwqdt7xvZJWntK+vUu4v8gcOHNC4ceNK/f2qVKnidh/37t1btWvX1vTp093eaLdu3bpul4uPj9d1113n9TRM+e/bgq8n+W+r/I+VgjZt2qTExESPPU8Kdm/r1q1yOp0et3/fvn114MABnXvuudq1a5fmzZunMWPGyOFw6OjRo4qNjXXdzu3atdMvv/yiXr160egirpNG/4NGF41Gu7NSo/O0bdtWs2fPVmxsrGbPnq1bbrlFf/zxh2tPwJK2PE9cXJzH51avXl2eH8/r4vOff/5Z5obknVagJKfzKPga1rRpU3Xv3l0//PCDW2+aNWvm9bbIr6SPqzyGYeihhx7SZZddpnPOOafYWQtq1aqVa6aLLrpIGRkZ+ve//62nnnrK9eajkvtOcAMGDNCaNWv0zTffeL3ORo0aaf78+Tpx4oTb6fLytrXyrrdBgwZyOp3asmWL2+2ct0ftFVdcoauvvlpS7j9GpKSkuH2fJk2aaNGiRZLk0fX//ve/uuSSS5SSkqIbb7xRK1as8Pja5ORkt+2avKP2o6Ki3PaypsdzC708PabH9Lj0ytPjkiquiXmtjoyMLPERAQV3hi74mpzf77//rg8//FBz584tdGFKyl1QL3jU3p9//ilJbv0uTReL61qDBg0K3RYoeH1jx47VLbfcok2bNrkWkfKfpji/4m6f6tWrq0KFCoV+77CwMI8F071792rKlCmaMGGCEhISSr040L17d9ftOHDgQK1fv14TJkxwWxwIDw93ewwMGDBAVatW1TfffON1caBRo0ZF3n5lvd+Ke8zmqVChgr755hu1bNlSY8aM0dNPP60hQ4a4tiPK8tguSpnec6A44eHhbiuzUu5eMgXPd3TFFVcoJSXFYy9XSR5fXxp57/6c55NPPtHff/+tfv36SZI6dOigJk2a6LnnnvN493kpdy/RgrOHh4dr4MCBRX7fyy+/XOHh4Ro/frzH/IZhuD3As7OzNWfOHHXu3LnIPTGHDBminJwc1zuO55ednV3i6HizfPlyzZs3T88880yhGzFDhgzRnj17PPZ6knIPoUtNTS32+zRv3tx1WNDUqVPldDo9Dt0p6e0RHh4uh8Phtuq9Y8cOj425QYMGKSwsTI8//rjHin3efXPhhRcqISFBEyZM8DjnWN5lOnbsqBo1auj11193Oxzz66+/1saNGzVgwIAif/bMzExlZ2e7fa0/lfS5t3DhQv3nP//RI488okGDBpX4uqZOnep1jwNvOnbsqOrVq+v11193nRtTkt555x2Px23//v21b98+ffTRR67PZWdna+rUqYqPj3ed561BgwYKDw/XDz/84Pb1BffmOnXqlMd92qRJEyUkJPjlvkhLS5OkIq+7T58+ioqK0ksvveR2u7711ls6duyY67FUvXp1dezYUTNmzHA7/HXbtm367LPP1K9fP7cNj8TERPXr108zZ87UrFmzdPHFF3ts1EpSWFiY2rRpoz59+qhPnz7q0KGD29/nXWf+2QzD0JQpU4r82du3b6+kpCS9+eabbudR/vHHH/Xrr78W+7pZUqV5fZVy9wZ46qmnNGbMGJ8cFluS+1j6ZwXf28bhWWedpZo1a3q8nhS8rWrVqqX27dtrxowZbs+VdevWaf78+erfv7/Hdb/yyituf546daokubqXp1u3bgoPD1dYWJhef/11/fDDD3rzzTddrxOJiYmu2/nyyy93a3T+25lG56LR7mh00Wh0Lis2Os/ZZ5+tuLg4hYWF6b///a927Nihxx9/3PX3JW25P82dO9ftMbNixQr98ssvrtfQ0jbkww8/VFRUlNs5iUuqqOYVp6SPq/xz/vHHH5owYUKpv5c3eY+L/I9/b5xOZ6E/X//+/ZWTk+Pxu+y3334rSa7bNO82z38knvTPP6jkf9ykpqa6zsee//ukpaWpdu3aHts0ed8j7x8Vv/jiC+3fv9/190OGDFFaWprX02QV3Nakx97RY3pMj32jND0uqeKaWKNGDfXu3VvTpk3zenRVwdex0nrooYfUvXt3XXLJJUVeLjs7223hKzMzU9OmTVP16tVdv5eXtosFFexa//79tWLFCrej7VJTU/XGG2+oYcOGHqcTq1Wrls477zzXvxcU9/4xhQkPD9eFF16oefPmuU5TJ0n79+/X+++/rx49engcgTN+/HglJSXp1ltvLdP3LCgtLa3Yx1ne87aoxq9YsUI//fST63Pp6el67bXXVLNmzTLfb8U9ZvNUr17dtSD5+OOPq27durr55ptdc/v6se2XIwcGDhyoxx9/XCNGjFC3bt20du1azZo1y+OcaUOHDtW7776re+65RytWrFDPnj2VmpqqhQsXatSoUbr00kvL9P2rVq2qHj16aMSIEdq/f78mT56spk2bug5nzdvg79evn1q3bq0RI0aoTp062rNnjxYvXqyKFSvq888/V2pqql555RW99NJLat68uZYsWeL6HnkbSH/88YeWL1+url27qkmTJnryySf18MMPa8eOHRo0aJASEhKUnJysTz/9VLfccovuu+8+LVy4UI8++qj++OMP12EthenVq5dGjhypCRMmaPXq1brwwgsVGRmpLVu2aPbs2ZoyZYquvPLKMt1O8+fPV9++fYtcZfrXv/6ljz/+WLfeeqsWL16s7t27KycnR5s2bdLHH3+sb7/9tti9Q/KrWbOmJk2apJtuuknXX3+9+vfvX6rbY8CAAXrhhRd08cUX69prr9WBAwf0yiuvqGnTpvrjjz9cl2vatKkeeeQRPfHEE+rZs6cuv/xyRUdHa+XKlapdu7YmTJigihUr6sUXX9RNN92kTp066dprr1WVKlW0Zs0anTp1SjNmzFBkZKQmTpyoESNGqFevXrrmmmu0f/9+TZkyRQ0bNvQ4V2lqaqrbIZLvvfee0tPTddlll5X4NiqPkj73rrnmGlWvXl3NmjXz2COgb9++SkpK0sCBA/Xee++pUqVKatWqlZYvX66FCxd6PQ+jN5GRkXryySc1cuRInX/++brqqquUnJys6dOne8xzyy23aNq0aRo+fLhWrVqlhg0b6pNPPtGyZcs0efJk195YlSpV0uDBgzV16lQ5HA41adJEX3zxhcd5PP/8809dcMEFGjJkiFq1aqWIiAh9+umn2r9/v2vPrPLYvn2763bbs2ePXn75ZVWsWLHIN1iqXr26Hn74YY0fP14XX3yxLrnkEm3evFmvvvqqOnXq5LYy/+yzz+rCCy9U165dddNNNyk9PV2vvPKKYmJi9NRTT3lc99ChQ12vA95+KSqJli1bqkmTJrrvvvu0Z88eVaxYUXPmzCn2zanyniPDhw9X9+7dNWzYMB0+fFhTpkxRnTp1XG+2lycnJ8dtD7y8PShXrFjhtnGak5OjPXv2aMWKFercuXOJX1/z/Pbbb0pMTNQDDzxQpttj//79rvs4JSVF06ZNU0REhMcvvLt27dI333zjOq3QU089pQYNGuiss87y2CsgIiJCzz77rIYOHaqePXvquuuuc52yqG7dum631aRJk9SvXz917dpVN954o9LS0jR16lRVqlTJ65EQycnJroWcxx57TF9//bWuvfZat72N8uS9TjRs2FBdunTRHXfcobi4ODVu3FixsbGu2zk5OVmNGzfWPffcozfeeEOHDh1S586dlZWVRaNPo9HuaHTRaHQuKzbamzZt2ujBBx/UM888o6uvvlrt2rUrVcv9pWnTpurRo4duu+02ZWRkaPLkyapWrZpb70rSkC1btmjs2LH64IMP9NBDD3n8ou7NwYMHXQ3/+++/NXHiRFWqVEnnnXdeqX+Okj6u8syfP18333xzkXtLF2X58uWKiIhwnX5h6tSpOuusszz21Fu+fLlSUlJcpxX67rvv3LYv8uvfv7/69OmjRx55RMnJyWrfvr0WLVrkOq1E3h7XZ555poYNG6Y33nhDR48eVa9evbRixQrXP+K/++672rp1q9auXavDhw8rMjJSmzZt0sMPP6ykpCTX3s179+7VNddco549e7re4HDBggW65ZZb3Oa64447XOcuvv/++/XMM89o7dq1uvnmm9WhQwetWbNGUu592LNnT9100030uAj0mB7T47LxVY+LUpImvvLKK+rRo4fatm2rm2++WY0bN9b+/fu1fPly7d692/WaWBbz58/XsmXLir1c7dq1NXHiRO3YsUPNmzfXRx99pNWrV+uNN95wHaFd2i4W17WHHnpIH3zwgfr166c777xTVatW1YwZM5ScnKw5c+Z4nCPfl5588kktWLBAPXr00KhRoxQREaFp06YpIyNDzz77rMfl58+fr1mzZhX6/jnFmTt3rhITE12nFfrxxx919913u10m/79DnDhxQtOnT1dqamqhC38PPPCAZs2a5br9EhMTNXPmTG3YsEGzZs1yHYVX2vutJI/ZgmJjY/XGG2+oT58+eu211zRq1ChJPn5sG6Uwffp0Q5KxcuXKIi+Xnp5u3HvvvUatWrWM2NhYo3v37sby5cuNXr16Gb169XK77KlTp4xHHnnEaNSokREZGWnUrFnTuPLKK41t27YZhmEYycnJhiRj0qRJHt+ndevWbte3ePFiQ5LxwQcfGA8//LBRo0YNIzY21hgwYICxc+dOj6///fffjcsvv9yoVq2aER0dbTRo0MAYMmSI8d1337l97+I+hg0b5na9c+bMMXr06GHExcUZcXFxRsuWLY3bb7/d2Lx5s2EYhnHHHXcY5557rvHNN994zDR27FjD293yxhtvGB06dDBiY2ONhIQEo23btsYDDzxg7N2713WZBg0aGAMGDPD42ttvv93jOiUZDofDWLVqldvnvd1HmZmZxsSJE43WrVsb0dHRRpUqVYwOHToY48ePN44dO+bx/Yq7PsMwjPPPP9+oX7++ceLEiVLfHm+99ZbRrFkzIzo62mjZsqUxffr0Qm+3t99+2zjrrLNcc/fq1ctYsGCB22U+++wzo1u3bkZsbKxRsWJFo3PnzsYHH3zgdpmPPvrIdT1Vq1Y1rrvuOmP37t1ulxk2bJjb4yI+Pt44++yzjffee6/I26gkCrtvC96+JX3uFfV4Xrx4sWEYhnHkyBFjxIgRRmJiohEfH29cdNFFxqZNm4wGDRq4PeaLe1149dVXjUaNGhnR0dFGx44djR9++MHr42L//v2u7xcVFWW0bdvWmD59usf1HTx40LjiiiuMChUqGFWqVDFGjhxprFu3zpDkunxKSopx++23Gy1btjTi4uKMSpUqGV26dDE+/vjjktzcRWrQoIHb7ZWYmGhceOGFxvLly0v09S+//LLRsmVLIzIy0khKSjJuu+0248iRIx6X++6774zu3bu7HpcDBgww1q5d6/U6MzIyjCpVqhiVKlUy0tLSSjRH3utl3v1tGIaxYcMGo0+fPkZ8fLyRmJho3HzzzcaaNWvcblvD8P68/PDDD4327du7nmtXXXWVsWPHDrfLFHyOlOSj4OOkuNdXw8h9XkgyXnzxRbevLex1oqC8r8/7qFy5stG9e3fjq6++crtc/ss4HA6jZs2axuWXX25s3LjRMIx/nhvJycluX/fxxx+7vZ5cc801Xhu1cOFCt8fA//3f/xkbNmzw+jNt2LDB6NixoyHJSEhIMEaPHu3xWJBkjB071uN1IiIiwvWczLu9827nChUqGJGRkUZkZKQRFhZmVK9enUbTaBcanYtG/8POjS542xlG7n3WsmVLo1OnTkZ2drbr8yVpea9evYzWrVt7fJ9JkyZ5bYNheG9znvyvt88//7xRr149Izo62ujZs6exZs0aj8sX15APPvjAaNOmjTFlyhTD6XQWO0dht+3PP//sdcaCCjbBMEr2uMq7ztjYWGPPnj1uf+ftPivsdsv7CAsLM+rWrWsMGzbM7XUi77mS9xEVFWU0bdrUeOyxx4yMjAzDMLy/Zp48edIYM2aMUbt2bSMyMtJo2rSpceWVV3o877Kysozx48e7fuetV6+ecf/99xt3332322tCzZo1japVqxrt2rUz2rVr53otnTlzptvvzJUqVTIkGd9//73bz3nVVVcZkozPPvvM9b3POOMMo379+kbTpk2NqKgoo2LFioYk47rrrjMeeOABenwaPabH9NgaPc7jyyZu27bNGDp0qFGzZk0jMjLSqFOnjjFw4EDjk08+cV2msPvo4MGDrt+j8uQ9ly699NJiZ87bHvj111+Nrl27GjExMUaDBg2Ml19+2WPO0nSxuK7l/dxXXnmlUblyZSMmJsbo3Lmz8cUXX3h8X29K+hj2dvsYhmH89ttvxkUXXWTEx8cbFSpUMM477zzjp59+crtM3nW2b9/ebVsk72f09tj29vXe2p2enu66XEled7z9DHm3X6VKlYyYmBijU6dOxty5cz3mKM39VpLH7LBhw4wGDRp4fJ8RI0YYFStWdLufS/LYLgnH6RshKCxZskTnnXeeZs+eXeY9A/LbsWOHGjVqpOTk5ELPmz1u3Djt2LFD77zzTrm/HwCURXZ2tmrXrq3/+7//8zh3pp298847euedd9z2QIO7cePGafz48Tp48KDX00lZCY0GgLLLe82bNGlSoXuyw/4aNmyoNm3a6IsvvvDb96DHAOzOTk3s3bu3UlJStG7dOrNHgYms/pj133EkAICAmDt3rg4ePOj2RsIAAAAAAABAUfzyngPBIj4+Xtddd12Rb/bTrl071a5dO4BTAUCuX375RX/88YeeeOIJnXXWWcW+SZHd1KlTR507dzZ7DFgUjQYAwHz0GAAAe2NxoAh5bzhRlMsvvzxA0wCAu9dee00zZ85U+/btg/Iw7b59+6pv375mjwGLotEAAJiPHgMAYG9B9Z4DAAAAAAAAAACgeLznAAAAAAAAAAAAIYbFAQAAAAAAAAAAQgyLAwAAAAAAAAAAhBgWBwAAAAAAAAAACDEsDgAAAAAAAAAAEGJYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQIhhcQAAAAAAAAAAgBDD4gAAAAAAAAAAACGGxQEAAAAAAAAAAEIMiwMAAAAAAAAAAIQYFgcAAAAAAAAAAAgxLA4AAAAAAAAAABBiWBwAAAAAAAAAACDEsDgAAAAAAAAAAECIYXEAAAAAAAAAAIAQw+IAAAAAAAAAAAAhhsUBAAAAAAAAAABCDIsDAAAAAAAAAACEGBYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQYlgcAAAAAAAAAAAgxLA4AAAAAAAAAABAiGFxAAAAAAAAAACAEMPiAAAAAAAAAAAAIYbFAQAAAAAAAAAAQgyLAwAAAAAAAAAAhBgWBwAAAAAAAAAACDEsDgAAAAAAAAAAEGJYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQIhhcQAAAAAAAAAAgBDD4gAAAAAAAAAAACGGxQEAAAAAAAAAAEIMiwMAAAAAAAAAAIQYFgcAAAAAAAAAAAgxLA4AAAAAAAAAABBiWBwAAAAAAAAAACDEsDgAAAAAAAAAAECIYXEAAAAAAAAAAIAQw+IAAAAAAAAAAAAhhsUBAAAAAAAAAABCDIsDAAAAAAAAAACEGBYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQYlgcAAAAAAAAAAAgxLA4AAAAAAAAAABAiGFxAAAAAAAAAACAEMPiAAAAAAAAAAAAISbC7AEA+N/h1EwdOJGuA8cztP94ug6cyNDxtCydzMjWqcwcnczIVmreR2aO6/8zc5xyGpJhGHIa0sIms9Voz2eSI+z0R7gUESVFJUjR8VJUvBQVd/r/832uQlUpoZYUnyQl1Mz9iE4w+2YBAMCyaDcAAPZCuwHYEYsDgM0ZhqG/j6UrOSVV2w+eVHLKKe05ekoHTmTowPEMHTyRocwcp0++l8PIkZzZ7p/MSpXSjpT+yqLi3TdaKjeQqjXN/UhslrthAwBAEKLdAADYC+0GEKxYHABsIivHqc37TujP/Se0/WBq7kZJSqp2pKQqLSvH7PFKL/OkdPikdHib97+PrXJ6o6WZVK1J7oZLUhupamPJ4QjsrAAAlAHtpt0AAHuh3bQbCDUsDgAWlLdBsm7PMa09/bFp3wllZvtmTwRbSDsi7V6Z+5FfTCWpZjup9llS7fZSrfZsuAAATEe7RbsBALZCu0W7AbA4AFjB/uPpWr7tkFbuOByaGySlkX5M2vFj7kee6EpSrXZSnbOlBt2l+l2lmIrmzQgACHq0uxRoNwDAAmh3KdBuIGQ4DMMwzB4CCDUHjqdr+fZD+nn7IS3fdkg7Dp0ye6QSWdL0IzXcPc/sMYrnCJdqnSk17CE1Oleqfw5vxAQAKBfa7We0GwDgY7Tbz2g3EBQ4cgAIgOPpWfrhz4P6adsh/bztkLanpJo9UnAzcqS9v+V+/PSSFBZxeqOlp9TkvNy9HMIjzZ4SAGBhtDvAaDcAoJxod4DRbiAocOQA4Cd/HT6lhRv3a+HG/VqRfFhZOfZ/qtlmD4biRFeSmp4vtegvNeub+yZMAICQR7stjHYDALyg3RZGuwFb4MgBwEcMw9Dqv47mbphsOKDN+0+YPRIKk3FMWv9p7kdYRO65Elv0y/2o2tjs6QAAAUK7bYR2AwBEu22FdgO2wJEDQDmt2nlE81bv0dfr9ungiQyzx/GroNmDoSjVW0qtL5faDZGqNjJ7GgCAH9DuIEO7ASDo0e4gQ7sBy2BxACiD7QdPau7qvZq3eo922uRNjXwhJDZS8qvbOXdjpc0VUoWqZk8DACgH2h0iaDcABA3aHSJoN2AqFgeAEko5maHP1+zV3N/3aM3uY2aPY4qQ20jJExYpNb0gd4OlRX8pMtbsiQAAJUC7aTftBgB7od20m3YDgcV7DgBFcDoNLfnzgGb9vEvf/3lQ2U7W0kKSM0v685vcj6gEqc3lUqebpFrtzJ4MAFAA7YYk2g0ANkK7IYl2AyZhcQDw4nBqpj5a+ZfeX7FTfx1OM3scWEnmCem3GbkfdTvnbqy0HiRFRJs9GQCENNqNQtFuALAk2o1C0W4gYFgcAPJZtfOIZv68U1+u/VuZ2U6zx4HV7V6R+/Htv6Wzrpc63iBVaWD2VAAQUmg3SoV2A4DpaDdKhXYDfsV7DiDkZWTnaO7ve/Tu8p1av/e42eNYWsie+7CkHGFS075Sl1ukpn3MngYAghbtLjnaXQzaDQABQbtLjnYXg3YDPsWRAwhZJzOyNevnnXprabIOnMgwexwEA8Mpbfk296NmO6nHGKnVICkszOzJACAo0G74HO0GAL+i3fA52g34FEcOIOQcTs3U9GXJenf5Th1LyzJ7HFthD4YyqNpE6n6XdOY1UkSU2dMAgC3R7rKj3WVAuwGg3Gh32dHuMqDdQJmxOICQsfdomt74Ybs+WvmX0rJyzB7HlthIKYeE2lLX26UOw6XoeLOnAQBboN3lR7vLgXYDQKnR7vKj3eVAu4FSY3EAQe+vw6f00ndbNHf1HmXl8HAvDzZSfCC2inTOqNwPNlYAwCva7Tu02wdoNwAUi3b7Du32AdoNlBiLAwhah05maOqirXr/l13KzHGaPU5QYCPFhyokSufeL3W8gcMeAeA02u17tNuHaDcAeKDdvke7fYh2A8VicQBB52RGtt78YbveWpqskxnZZo8TVNhI8YPK9aXzHpHaDuENlACELNrtP7TbD2g3ANBuP6LdfkC7gUKxOICgkZnt1Myfd+qVxVt1KDXT7HGCEhspflSjtXTBY1KLi82eBAAChnb7H+32I9oNIATRbv+j3X5EuwEPEWYPAJSXYRiat3qvnpu/WbuPpJk9DlA2B9ZLH1wl1e8q9X1CqtfJ7IkAwG9oN4IC7QYQQmg3ggLtBjywOABb27D3uB6bt06/7jxi9iiAb+xaLr3VV2p/rdT3cSku0eyJAMCnaDeCDu0GEORoN4IO7QZcWByALR1Ly9IL8zdr5i+7lOPkzFgINoa0epa06QvpvP9InW6UwsLNHgoAyoV2I7jRbgDBh3YjuNFuQGJxADZjGIZmr9qtZ7/ZpJSTnN8QQS79mPT1/dJv70oDnpPqn2P2RABQarQbIYV2AwgCtBshhXYjxLE4ANtYt+eYHpu3Tr/tOmr2KEBg7V8rvX2xdObVuYc8xtcweyIAKBHajZBFuwHYFO1GyKLdCFEsDsDy0jJz9Oy3mzTjpx3iSEaELkNa84G06Sup73ip4wizBwKAQtFuQKLdAOyEdgMS7UYoCjN7AKAoK5IPq9+UHzR9GRsogCQp45j0xd3Su4Oko3+ZPQ0AeKDdQAG0G4DF0W6gANqNEMLiACwpLTNH4z5br6veWK4dh06ZPQ5gPdsXS691k1a9Y/YkACCJdgPFot0ALIZ2A8Wg3QgBLA7AcvL2Wnjnpx0y2GsBKFzGcenzu9ibAYDpaDdQQrQbgEXQbqCEaDeCHIsDsAz2WgDKiL0ZAJiEdgNlRLsBmIR2A2VEuxGkWByAJazdfUz9X/qRvRaAssrbm2HmFdLJg2ZPAyAE0G6gnGg3gACj3UA50W4EIRYHYLq3lybritd+UnJKqtmjAPa3daH0eg8p+QezJwEQxGg34EO0G0AA0G7Ah2g3ggiLAzDNsVNZuvndX/X4FxuUmeM0exwgeJzcJ717qbT4acmZY/Y0AIII7Qb8hHYD8BPaDfgJ7UaQYHEApli187D6v/SjFmzYb/YoQHAynNL3E6UZl0jH/zZ7GgBBgHYDfka7AfgY7Qb8jHYjCLA4gIAyDEOvLN6qq6b9rD1H08weBwh+O5dKr3eXtiwwexIANkW7gQCj3QDKiXYDAUa7YWMsDiBgjqRmatj0lZr07WZlO3n3IyBgTh2SZg2WFjzG4Y4ASoV2Ayah3QDKiHYDJqHdsCkWBxAQm/ed0KWvLNMPf/Ju7oA5DGnZlNyNlbSjZg8DwAZoN2A22g2gdGg3YDbaDfthcQB+N3/9Pl3+6jLtOnzK7FEAbPtO+u8FUsoWsycBYGG0G7AQ2g2gBGg3YCG0GzbC4gD8aup3WzRy5iqlZnJIFWAZh7ZKb17A+RABeEW7AQui3QCKQLsBC6LdsAkWB+AXaZk5uv393/T8gj9lcJpDwHoyjknvD8k95BEARLsBy6PdAAqg3YDF0W7YAIsD8Lm9R9N05es/6cs//jZ7FABFMZy5b5b0v5FSVrrZ0wAwEe0GbIJ2AziNdgM2QbthcSwOwKfW7j6mS15epvV7j5s9CoCS+uNDacZA6dRhsycBYALaDdgQ7QZCGu0GbIh2w6JYHIDPLN2SoqvfWK6UkxlmjwKgtHavlN6+SDr6l9mTAAgg2g3YGO0GQhLtBmyMdsOCWByAT3y2Zq9ueGclb4AE2FnKn9JbF0r7N5g9CYAAoN1AEKDdQEih3UAQoN2wGBYHUG7TlyXrrg9/V2aO0+xRAJTXib3S9IulncvNngSAH9FuIIjQbiAk0G4giNBuWAiLAyiXid9s0vjPN8gwzJ4EgM+kH5PeGyRt+tLsSQD4Ae0GghDtBoIa7QaCEO2GRbA4gDLJznHq/tlr9NqSbWaPAsAfstOlj/4lrXrH7EkA+AjtBoIc7QaCDu0GghzthgVEmD0A7Ccz26nb3/9NCzbsN3sUAP5k5Eif3yWlHZF6jDF7GgDlQLuBEEG7gaBBu4EQQbthMhYHUCoZ2Tm69b1VWrz5oNmjAAiUheOknCyp1wNmTwKgDGg3EIJoN2BrtBsIQbQbJmFxACWWnpWjm9/9VT9uSTF7FACBtvgpyZktnfdvsycBUAq0GwhhtBuwJdoNhDDaDRPwngMokfSsHN00gw0UIKR9P1H67gmzpwBQQrQbAO0G7IV2A6DdCDQWB1CsvD0Xlm5lAwUIeT8+Jy16yuwpABSDdgNwod2ALdBuAC60GwHE4gCKlJGdo5HvrWLPBQD/+OFZ6ftnzZ4CQCFoNwAPtBuwNNoNwAPtRoCwOIBCZeU4NWrmb/r+T94ECUABi5+SfnzB7CkAFEC7ARSKdgOWRLsBFIp2IwBYHIBXhmHovtlr9N2mA2aPAsCqvhsv/Trd7CkAnEa7ARSLdgOWQrsBFIt2w89YHIBXT3yxUfNW7zV7DABW9+W90sbPzZ4CgGg3gBKi3YBl0G4AJUK74UcsDsDDa0u26e1lyWaPAcAOjBxpzk3SjmVmTwKENNoNoMRoN2AJtBtAidFu+BGLA3Az+9e/NPGbTWaPAcBOstOlD66R9q0zexIgJNFuAKVGuwFT0W4ApUa74ScsDsBl0ab9evh/a80eA4AdZRyTZl4hHd1l9iRASKHdAMqMdgOmoN0Ayox2ww9YHIAk6bddR3T7rN+V7TTMHgWAXZ3cJ713uZR6yOxJgJBAuwGUG+0GAop2Ayg32g0fY3EASk5J1Y3vrFRaVo7ZowCwu0NbpPcHS1npZk8CBDXaDcBnaDcQELQbgM/QbvgQiwMh7kR6lm6asVJHTmWZPQqAYLFnlfTZaLOnAIIW7Qbgc7Qb8CvaDcDnaDd8hMWBEOZ0Grrzg9+17WCq2aMACDZrZ0tLXzR7CiDo0G4AfkO7Ab+g3QD8hnbDB1gcCGETv9mkxZsPmj0GgGD13ePSn9+aPQUQVGg3AL+i3YDP0W4AfkW7UU4sDoSoT3/frWk/bDd7DADBzHBKc26SDm42exIgKNBuAH5HuwGfot0A/I52o5xYHAhBa/46qofmrDV7DAChIOO49ME1UtoRsycBbI12AwgY2g34BO0GEDC0G+XA4kCIOXA8Xbe896sysp1mjwIgVBzeJs0eITlzzJ4EsCXaDSDgaDdQLrQbQMDRbpQRiwMhJCvHqZEzV2n/8QyzRwEQarYvlhY8ZvYUgO3QbgCmod1AmdBuAKah3SgDFgdCyLPfbNLvu46aPQaAULX8FWnzN2ZPAdgK7QZgKtoNlBrtBmAq2o1SYnEgRCzedED/XZps9hgAQpohzb1NOrbH7EEAW6DdAMxHu4HSoN0AzEe7UTosDoSAfcfSde/sNTIMsycBEPLSDktzbuI8iEAxaDcAy6DdQInQbgCWQbtRCiwOBLkcp6E7P/xdh1MzzR4FAHLt+klaMsHsKQDLot0ALId2A0Wi3QAsh3ajhFgcCHJTFv6pFcmHzR4DANz9+Ly0fYnZUwCWRLsBWBLtBgpFuwFYEu1GCbA4EMR+2pqilxdvNXsMAPBkOKX/3SKdPGj2JICl0G4AlkW7Aa9oNwDLot0oARYHgtTh1Ezd/dFqOTnfIQCrOrlf+vQWcWJWIBftBmB5tBtwQ7sBWB7tRjFYHAhSj85dpwMnMsweAwCKtm2R9OtbZk8BWALtBmALtBtwod0AbIF2owgsDgShr9b+rS/X/m32GABQMgvGSkd2mj0FYCraDcBWaDdAuwHYC+1GIVgcCDKHTmbo0bnrzB4DAEou86T02WgOc0TIot0AbId2I8TRbgC2Q7tRCBYHgsxj89brUGqm2WMAQOkk/8BhjghZtBuALdFuhDDaDcCWaDe8YHEgiHBYIwBb4zBHhCDaDcDWaDdCEO0GYGu0GwWwOBAkOKwRgO1xmCNCDO0GYHu0GyGGdgOwPdqNAlgcCBIc1gggKHCYI0II7QYQFGg3QgjtBhAUaDfyYXEgCCzcsJ/DGgEEjwXjpOO8piG40W4AQYV2IwTQbgBBhXbjNBYHbC49K0fjv1hv9hgA4DuZJ6QFj5o9BeA3tBtA0KHdCHK0G0DQod04jcUBm3v9+23663Ca2WMAgG+tnS3tWGr2FIBf0G4AQYl2I4jRbgBBiXZDLA7Y2l+HT+m1JdvMHgMA/OOr+6WcbLOnAHyKdgMIarQbQYh2AwhqtDvksThgY+M/36CMbKfZYwCAfxzYIK14w+wpAJ+i3QCCGu1GEKLdAIIa7Q55LA7Y1OJNB7Rw436zxwAA/1oyQTrBax2CA+0GEBJoN4II7QYQEmh3SGNxwIYysnM07nPeDAlACMg4Li14zOwpgHKj3QBCBu1GkKDdAEIG7Q5pLA7Y0Js/bNfOQ6fMHgMAAuOPD6Wdy82eAigX2g0gpNBuBAHaDSCk0O6QxeKAzaSczODNkACEnvn/MXsCoMxoN4CQRLthY7QbQEii3SGJxQGbeXnRVqVm5pg9BgAE1p5fpY2fmz0FUCa0G0BIot2wMdoNICTR7pDE4oCN/HX4lN7/ZZfZYwCAOb57QnLySxrshXYDCGm0GzZEuwGENNodclgcsJEXFvypzByn2WMAgDlSNkur3zd7CqBUaDeAkEa7YUO0G0BIo90hh8UBm9j493HNW73H7DEAwFxLJkhZ6WZPAZQI7QYA0W7YCu0GANHuEMPigE08+80mOQ2zpwAAkx3fI614w+wpgBKh3QAg2g1bod0AINodYlgcsIEVyYe1ePNBs8cAAGtY+oKUfszsKYAi0W4AyId2wwZoNwDkQ7tDBosDNjDxm01mjwAA1pF2RFr2ktlTAEWi3QCQD+2GDdBuAMiHdocMFgcs7qdtKVq184jZYwCAtax4g70YYFm0GwC8oN2wMNoNAF7Q7pDA4oDFvbZkm9kjAID1ZByXVv7X7CkAr2g3AHhBu2FhtBsAvKDdIYHFAQtbu/uYftySYvYYAGBNP78mZaWZPQXghnYDQBFoNyyIdgNAEWh30GNxwMJeXbLV7BEAwLpSD0q/zzR7CsAN7QaAItBuWBDtBoAi0O6gx+KARW07eFLfrt9n9hgAYG0/vSTlZJs9BSCJdgNAidBuWAjtBoASoN1BjcUBi5r2/TY5DbOnAACLO7pLWjfH7CkASbQbAEqEdsNCaDcAlADtDmosDljQ38fS9Onve8weAwDsYemLksFvdTAX7QaAUqDdsADaDQClQLuDFosDFvTfH5OVlcMTDgBK5OBGafPXZk+BEEe7AaAUaDcsgHYDQCnQ7qDF4oDFnMrM1se//mX2GABgLyummT0BQhjtBoAyoN0wEe0GgDKg3UGJxQGLmfv7Xp1I500+AKBUtn8vpWw1ewqEKNoNAGVAu2Ei2g0AZUC7gxKLAxbz3s87zR4BAGzIkH59y+whEKJoNwCUBe2GeWg3AJQF7Q5GLA5YyK87Dmvj38fNHgMA7Gn1LCnzlNlTIMTQbgAoB9oNE9BuACgH2h10WBywEPZeAIBySD8mrZ1t9hQIMbQbAMqBdsMEtBsAyoF2Bx0WByzi0MkMfb12n9ljAIC9rfyv2RMghNBuAPAB2o0Aot0A4AO0O6iwOGARH678S5k5TrPHAAB72/eH9NdKs6dAiKDdAOADtBsBRLsBwAdod1BhccACnE5D7/+yy+wxACA4sBcDAoB2A4AP0W4EAO0GAB+i3UGDxQEL+GnbIe05mmb2GAAQHDbMkzJOmD0FghztBgAfot0IANoNAD5Eu4MGiwMW8Onve8weAQCCR3aatPFzs6dAkKPdAOBDtBsBQLsBwIdod9BgccBk6Vk5+nY9b4gEAD71x8dmT4AgRrsBwA9oN/yIdgOAH9DuoMDigMkWbNivkxnZZo8BAMEl+QfpBL8Awj9oNwD4Ae2GH9FuAPAD2h0UWBww2bzVHNoIAD5n5Ejr5pg9BYIU7QYAP6Dd8CPaDQB+QLuDAosDJjqSmqnv/zxo9hgAEJz++MjsCRCEaDcA+BHthh/QbgDwI9pteywOmOiLP/YqK8cwewwACE5/r5EObjZ7CgQZ2g0AfkS74Qe0GwD8iHbbHosDJpq7eq/ZIwBAcOMNkuBjtBsA/Ix2w8doNwD4Ge22NRYHTLLnaJpW7Txi9hgAENw4/yF8iHYDQADQbvgQ7QaAAKDdtsbigEkWbthv9ggAEPyOJEsHNpo9BYIE7QaAAKDd8CHaDQABQLttjcUBkyzcyEYKAATE5q/MngBBgnYDQIDQbvgI7QaAAKHdtsXigAlOpGfpl+2HzR4DAELD5q/NngBBgHYDQADRbvgA7QaAAKLdtsXigAm+//OgMnOcZo8BAKFhzyrp5AGzp4DN0W4ACCDaDR+g3QAQQLTbtlgcMAHnPQSAADKc0p/fmD0FbI52A0AA0W74AO0GgACi3bbF4kCAZec4tXjzQbPHAIDQwiGOKAfaDQAmoN0oB9oNACag3bbE4kCArdxxRMfSssweAwBCy/YlUlaa2VPApmg3AJiAdqMcaDcAmIB22xKLAwH23UYObQSAgMs6JW3/3uwpYFO0GwBMQLtRDrQbAExAu22JxYEAW7o1xewRACA0bV9s9gSwKdoNACah3Sgj2g0AJqHdtsPiQAAdTs3U5v0nzB4DAEJT8o9mTwAbot0AYCLajTKg3QBgItptOywOBNAv2w/JMMyeAgBC1IEN0qnDZk8Bm6HdAGAi2o0yoN0AYCLabTssDgTQz9sPmT0CAIQwQ9qx1OwhYDO0GwDMRLtRerQbAMxEu+2GxYEA+nk7K2cAYCo2UlBKtBsATEa7UUq0GwBMRrtthcWBADl0MkN/HuC8hwBgqh2c/xAlR7sBwAJoN0qBdgOABdBuW2FxIEB+ST7MeQ8BwGwHNkqpHGqOkqHdAGABtBulQLsBwAJot62wOBAgnPcQAKzAkHZyiCNKhnYDgBXQbpQc7QYAK6DddsLiQICsSOa8hwBgCTuWmT0BbIJ2A4BF0G6UEO0GAIug3bbB4kAAnMrM1pYDJ80eAwAgSXt/M3sC2ADtBgALod0oAdoNABZCu22DxYEA2LD3uHKcnPgQACxh3zrJmWP2FLA42g0AFkK7UQK0GwAshHbbBosDAbB2zzGzRwAA5MlOkw5uMnsKWBztBgALod0oAdoNABZCu22DxYEAYCMFACxm72qzJ4DF0W4AsBjajWLQbgCwGNptCywOBMDa3WykAICl7P3d7AlgcbQbACyGdqMYtBsALIZ22wKLA352KjNb2w7ypkgAYCl/rzZ7AlgY7QYAC6LdKALtBgALot22wOKAn23Ye1y8JxIAWAxvjoQi0G4AsCDajSLQbgCwINptCywO+BnnPQQAC+LNkVAE2g0AFkS7UQTaDQAWRLttgcUBP9uw97jZIwAAvNm31uwJYFG0GwAsinajELQbACyKdlseiwN+tj0l1ewRAADepGwxewJYFO0GAIui3SgE7QYAi6LdlsfigJ8ls5ECANZ0aKvZE8CiaDcAWBTtRiFoNwBYFO22PBYH/OjoqUwdTs00ewwAgDdspMAL2g0AFka74QXtBgALo92Wx+KAH3FoIwBY2OHtkmGYPQUshnYDgIXRbnhBuwHAwmi35bE44EfJB9lIAQDLyjolHd9j9hSwGNoNABZGu+EF7QYAC6PdlsfigB9x3kMAsDgOcUQBtBsALI52owDaDQAWR7stjcUBP2IjBQAsjo0UFEC7AcDiaDcKoN0AYHG029JYHPCjbQdPmj0CAKAoKWykwB3tBgCLo90ogHYDgMXRbktjccCP9hxJM3sEAEBRju40ewJYDO0GAIuj3SiAdgOAxdFuS2NxwE9SM7J1IiPb7DEAAEU58bfZE8BCaDcA2ADtRj60GwBsgHZbGosDfnLgRIbZIwAAinNiv9kTwEJoNwDYAO1GPrQbAGyAdlsaiwN+cuB4utkjAACKk3pAcjrNngIWQbsBwAZoN/Kh3QBgA7Tb0lgc8JP97MEAANbnzJZOpZg9BSyCdgOADdBu5EO7AcAGaLelsTjgJ+zBAAA2cWKf2RPAImg3ANgE7cZptBsAbIJ2WxaLA37CuQ8BwCbYSMFptBsAbIJ24zTaDQA2Qbsti8UBP2EPBgCwiZNspCAX7QYAm6DdOI12A4BN0G7LYnHAT/YfZw8GALAF9mDAabQbAGyCduM02g0ANkG7LYvFAT85cirT7BEAACVx6pDZE8AiaDcA2ATtxmm0GwBsgnZbFosDfnIyI9vsEQAAJZFx0uwJYBG0GwBsgnbjNNoNADZBuy2LxQE/SWUjBQDsIfOE2RPAImg3ANgE7cZptBsAbIJ2WxaLA36Smplj9ggAgJLITDV7AlgE7QYAm6DdOI12A4BN0G7LYnHAD7JynMrMdpo9BgCgJDi8EaLdAGArtBui3QBgK7Tbslgc8AMObQQAG8lkIwW0GwBshXZDtBsAbIV2WxaLA37AmyIBgI1kcO5D0G4AsBXaDdFuALAV2m1Ztl8ceOedd1S5cmWzx3BzivMeAoB9cO7DgKPdAIByod0BR7sBAOVCuy0rwuwB8gwfPlwzZszw+PyWLVvUtGlTEyYqu2Dcg+Ho0lk6tuwDt89FVK2rOje/LkkysjN1eNFbOrXxBxk5WYptdLaqXnibwuOqFHqdhmHo2NJZOrnmWzkzUhVd5wxVvXCUIqvWOX2dWTr0zUs6teVnhcdVUdULRym2YXvX1x/7ZY5yjh9U1b63+v4HBkwybkm6xn+f6fa5FtXCtGl0vCQpPdvQvd+m68P12crINnRR0wi92j9GSfGFr/UahqGxSzL05m9ZOppuqHu9cL02IEbNqoVLkjKyDd30ebrmbcpSzfgwvTogRn0a/5OHScsytOuYU1P7x/rhJ7YAHx7e6HA4ivz7sWPHaty4cT77fmaj3dZGu4HAoN0moN1lRrutjXYDgUG7TUC7LcsyiwOSdPHFF2v69Olun6tevbpJ05RdRlZwvilSZGJ9JV311D+fCPvnRfHwd28qbduvShz0kMKi43R4wWs6+OnTqnn9pEKv7/gvc3R81edKHDBGEZWSdPTHmTrw8WOqfdNrckRE6cSab5S5b6tqXv+c0ravUsrnk1R39Ew5HA5lHd2nk2u+Va1hk/34EwPmaF09TAuHVnD9OSLf9seYb9L15ZZszR4cq0rRDo3+Ol2Xf5ymZTfEFXp9zy7L1Eu/ZGrGoFg1qhKmRxdn6KKZp7Th9njFRDj0xqosrdqbo+U3xunrrdm6dk6a9t8XL4fDoeQjTr35W5Z+vaXw67e97HSfXdXff//t+v+PPvpIjz32mDZv3uz6XHx8vOv/DcNQTk6OIiIsleJSo93WRruBwKDdAUa7y4V2WxvtBgKDdgcY7bYsS51WKDo6WjVr1nT7mDJlitq2bau4uDjVq1dPo0aN0smTha82rVmzRuedd54SEhJUsWJFdejQQb/++qvr75cuXaqePXsqNjZW9erV05133qnUVN8e2uI0DJ9en2WEhSs8vso/HxUqSZKcGak6+ccCVTn/RsU2OFPRNZsqsf/dytizURl7Nnm9KsMwdOLXearU9SpVaHaOomo0UuLAe5R98rBO/blckpR16C/FNu2iqOoNlHD2ADlPHZMz7bgk6fD8V1Wl93CFRVfwev2AnUWESTXjw1wfiRVyX6qPpRt66/csvXBRjM5vFKEOtcM1/dIY/fRXjn7e7X3PKcMwNPmXTP3n3Ghd2jJS7ZLC9e6gWO09YWjuptyv2ZiSo0taRKh1jXDd3ilKB08ZSjmV+zp225dpmtgnWhWji16Ztz2nb365zN+vSpUqyeFwuP68adMmJSQk6Ouvv1aHDh0UHR2tpUuXavjw4Ro0aJDb9dx9993q3bt3vvGcmjBhgho1aqTY2FideeaZ+uSTT3wyc3nRbouj3UBA0G4T0O4yo90WR7uBgKDdJqDdlmSpxQFvwsLC9NJLL2n9+vWaMWOGFi1apAceeKDQy1933XWqW7euVq5cqVWrVumhhx5SZGSkJGnbtm26+OKLdcUVV+iPP/7QRx99pKVLl2r06NE+nTlYN1Kyj+zV7leGas/rN+rg55OUffyAJClj31bJme126GFktXoKr1hdGXu9b6RkH9uvnNQjbl8TFh2n6NotXF8TVaORMnZvkDMrQ+nJvyk8vqrCYivq5PrFckREqULzbn77WQEzbTnsVO3nT6jxlBO67n+ntOtYbkBX/Z2jLKfcDj1smRiu+pUcWv6X93OuJh81tO+k4fY1lWIc6lI33PU1ZyaFa+muHKVlGfp2W7ZqxTuUWMGhWX9kKSbCocvOiPTjT2sRRuD2PHvooYf0zDPPaOPGjWrXrl2JvmbChAl699139frrr2v9+vUaM2aMrr/+en3//fd+nrZsaLd10G4gMGi3CWi3T9Fu66DdQGDQbhPQbkuy1DEVX3zxhduhH/369dPs2bNdf27YsKGefPJJ3XrrrXr11Ve9XseuXbt0//33q2XLlpKkZs2auf5uwoQJuu6663T33Xe7/u6ll15Sr1699NprrykmJsYnP4czCLdRomu1ULX+YxRZtY5yTh7WsWUfaN+sB1X7hlfkTD0ihUcoLCbe7WvC4yorJ/WI1+vLOZn7+bC4yu5fU6GyclKPSpLi2/ZV5oEd2vvWKIXHVlTipQ/KmX5Sx5bOUtI1E3Tkh/d0auMPiqhcU9X636WIhESf/9xAoHWpE653Lo1Vi8Qw/X3C0PjvM9RzeqrW3RavfScNRYVLlWPc9yZIinNo30nvLzz7Tjpdl/H4mtTcv7vhrEj9sT9HrV49qcQKDn08OFZH0qXHlqRrybA4/WdRuj5cl6UmVcP09iWxqlPR8uvKpRfAjZTHH39cffv2LfHlMzIy9PTTT2vhwoXq2rWrJKlx48ZaunSppk2bpl69evlr1BKh3dZFu4HAoN0mod1lRruti3YDgUG7TUK7LclSiwPnnXeeXnvtNdef4+LitHDhQk2YMEGbNm3S8ePHlZ2drfT0dJ06dUoVKnge2nbPPffopptu0nvvvac+ffpo8ODBatKkiaTcQx//+OMPzZo1y3V5wzDkdDqVnJysM844wyc/hxGEezDENun4zx9qNFJ07Rba/doNSt20VGGRUX75no7wCFW78Da3z6V8OVkJHf5Pmfu3K23LctUaMVXHf5mjIwvfUPXL/u2XOYBA6tfsn70F2iVJXeqGq8HkE/p4fZZiI/1ziGFkuEOvDHB/06MR89J0Z+co/b4vR3M3ZWvNrfF6dlmG7vwmXXOGBOFhxQHcSOnYsWPxF8pn69atOnXqlMeGTWZmps466yxfjlYmtNu6aDcQGLTbJLS7zGi3ddFuIDBot0lotyVZahkqLi5OTZs2dX1kZGRo4MCBateunebMmaNVq1bplVdekZR753gzbtw4rV+/XgMGDNCiRYvUqlUrffrpp5KkkydPauTIkVq9erXrY82aNdqyZYtrQwYlExYTr8iqdZR9dK/C4qpIOdlyprufkzIn9ajC46p4/frw+NzPO0/vreD6mlNHFV5gr4Y86Tv/UNahnUo4e6DSd/2h2MYdFRYVowoteyh919py/0yAFVWOcah5tTBtPexUzXiHMnOko+nuvwjtTzVUM977BkzN+DDXZTy+Js57AhYnZ2v9gRyN7hylJTty1L9ZhOKiHBrSOlJLdng/jNL2HIE7t2NcnPubTIWFhXn8cpuVleX6/7zz/X755Zdu/dqwYYMlzn9Iu+2DdgOBQbsDhHaXGe22D9oNBAbtDhDabUmWWhwoaNWqVXI6nXr++ed1zjnnqHnz5tq7d2+xX9e8eXONGTNG8+fP1+WXX67p06dLks4++2xt2LDBbUMo7yMqyner8GEBfLCbxZmZpuyjfys8rqqiazaVwiKUtnON6++zDu1WzvGDiq7d0uvXR1RKUnhcFaXvXP3PdWacUsbezV6/xsjO1OEFr6naRaPlCAuXDKcM5+kXS2eOjACuPgKBdDLT0LbDTtVKcKhDrXBFhknfbf/nTZA2p+Ro1zFDXeuFe/36RpUdqhnvcPua4xmGftmd4/Vr0rMN3f5VuqYNjFV4mEM5Tinr9FMtyynlBOPx25LkMC+H1atX199//+32udWrV7v+v1WrVoqOjtauXbs82lWvXr0AT1s82m1dtBsIDNodILTbZ2i3ddFuIDBod4DQbkuy9OJA06ZNlZWVpalTp2r79u1677339Prrrxd6+bS0NI0ePVpLlizRzp07tWzZMq1cudJ12OKDDz6on376SaNHj9bq1au1ZcsWzZs3z+dvjBSMGylHFr2l9F1rlX1sv9J3b9TB/z0lOcIU16qXwqLjFN+ur44s+q/Sd/6hjH1bdeiryYqu3VLRdf7Z4Njz5q069edPkiSHw6GEjpfq2E8f6dSWX5R5cIdSvnxBEfFVVaF5V4/vf/SnDxXbuKOiknL3NImu00qn/vxJmQeSdeK3LxRTxzeHpgJmu29+ur7fka0dR5366a9sXfbRKYWHOXRNm0hVinHoxrMidc/8dC1OztaqvTkaMS9dXeuG65y6+d4s6eWT+nRj7gq4w+HQ3V2i9OSPGfpsc5bW7s/R0E/TVDvBoUEtPc8s98T3GerfLEJn1crdgOleP1z/25SlP/bn6OUVmepe31Jno/MdEzdSzj//fP3666969913tWXLFo0dO1br1q1z/X1CQoLuu+8+jRkzRjNmzNC2bdv022+/aerUqZoxY4ZpcxeGdlsH7QYCg3abhHb7DO22DtoNBAbtNgnttiRLP9rOPPNMvfDCC5o4caIefvhhnXvuuZowYYKGDh3q9fLh4eE6dOiQhg4dqv379ysxMVGXX365xo8fL0lq166dvv/+ez3yyCPq2bOnDMNQkyZNdNVVV/l07rDg20ZR9okUpXw+STlpxxUeW0nRdVup5r+eV3iFSpKkqhfcrMOOMB2c+7SMnCzFNDpb1fqOcr+Ow7vlzDjl+nPFLlfIyErXoW+nypmeqpi6rVRjyONyRLjvTZJ5cIdObfpRtYZPdX2uQsvuSv9rrfbNelCR1eoo8f/u9+NPDwTO7uNOXTMnTYfSDFWv4FCP+uH6+cY4VT99KOKLF8co7Nt0XfHxKWXkSBc1idCrA9zf1G3zIaeOZfyzp8ED3aOUmmXols/TdTTdUI/64frm+gqKiXB/sVp3IEcfb8jW6pH/HH53ZasILdkRoZ7TU9WiWpjevyIIz3sombqRctFFF+nRRx/VAw88oPT0dN1www0aOnSo1q7957DtJ554QtWrV9eECRO0fft2Va5cWWeffbb+/W/rnfOVdlsH7QYCg3abhHb7DO22DtoNBAbtNgnttiSHEYzv4mOylTsOa/Dry80eA/C5JU0/UsPd88weA/CtsAjpsUNmTwGT0W4EK9qNoES7IdqN4EW7EZRot2VZ+rRCdlUhyvs5yAAAFhQVV/xlEPRoNwDYCO2GaDcA2ArttiwWB/wgPtrSZ2sCAOQXlWD2BLAA2g0ANkK7IdoNALZCuy2LxQE/iGMjBQDsIzre7AlgAbQbAGyEdkO0GwBshXZbFosDfsAeDABgI1FspIB2A4Ct0G6IdgOArdBuy2JxwA9iIsMVHuYo/oIAAPNx7kOIdgOArdBuiHYDgK3QbsticcBPeHMkALCJaM59iFy0GwBsgnbjNNoNADZBuy2LxQE/4RBHALAJDm/EabQbAGyCduM02g0ANkG7LYvFAT/hzZEAwCZ4YyScRrsBwCZoN06j3QBgE7Tbslgc8JOKMWykAIAtxFQyewJYBO0GAJug3TiNdgOATdBuy2JxwE9qJMSYPQIAoCTia5o9ASyCdgOATdBunEa7AcAmaLdlsTjgJzUqRps9AgCgJBKSzJ4AFkG7AcAmaDdOo90AYBO027JYHPCTpIrswQAAtpBQy+wJYBG0GwBsgnbjNNoNADZBuy2LxQE/qZ7AHgwAYAvx7MGAXLQbAGyCduM02g0ANkG7LYvFAT9hDwYAsIkEzn2IXLQbAGyCduM02g0ANkG7LYvFAT+pwR4MAGB9sVWkCF6vkYt2A4AN0G7kQ7sBwAZot6WxOOAn7MEAADbAeQ+RD+0GABug3ciHdgOADdBuS2NxwE+qVIhUVDg3LwBYGuc9RD60GwBsgHYjH9oNADZAuy2NivqJw+FQzUrsxQAAllaprtkTwEJoNwDYAO1GPrQbAGyAdlsaiwN+1DAxzuwRAABFqdbE7AlgMbQbACyOdqMA2g0AFke7LY3FAT9qzEYKAFhbtWZmTwCLod0AYHG0GwXQbgCwONptaSwO+FHj6mykAIClVWtq9gSwGNoNABZHu1EA7QYAi6PdlsbigB81Yg8GALAuR5hUtbHZU8BiaDcAWBjthhe0GwAsjHZbHosDfsRGCgBYWKV6UkSU2VPAYmg3AFgY7YYXtBsALIx2Wx6LA35Up3KsoiO4iQHAkji0EV7QbgCwMNoNL2g3AFgY7bY8CupHDoeDvRgAwKoSeVMkeKLdAGBhtBte0G4AsDDabXksDvgZGykAYFHswYBC0G4AsCjajULQbgCwKNpteSwO+FnzpASzRwAAeFPjDLMngEXRbgCwKNqNQtBuALAo2m15LA74Wds6lcweAQDgwSHVbGf2ELAo2g0AVkS7UTjaDQBWRLvtgMUBP2tbl40UALCcak2kmIpmTwGLot0AYEG0G0Wg3QBgQbTbFlgc8LOkijGqkRBt9hgAgPxqn2X2BLAw2g0AFkS7UQTaDQAWRLttgcWBAOAQRwCwmFrtzZ4AFke7AcBiaDeKQbsBwGJoty2wOBAAbdhIAQBrqd3e7AlgcbQbACyGdqMYtBsALIZ22wKLAwHQjvMfAoCFOKRaZ5o9BCyOdgOAldBuFI92A4CV0G67YHEgADi8EQAspFpTKTrB7ClgcbQbACyEdqMEaDcAWAjttg0WBwKgRsUYJVXkzZEAwBI4tBElQLsBwEJoN0qAdgOAhdBu22BxIEA6Nqhq9ggAAEmqf47ZE8AmaDcAWATtRgnRbgCwCNptGywOBMg5jdlIAQBLaNjT7AlgE7QbACyCdqOEaDcAWATttg0WBwLknMbVzB4BABBXQ6rewuwpYBO0GwAsgHajFGg3AFgA7bYVFgcCpFlSghLjo8weAwBCW8PuZk8AG6HdAGABtBulQLsBwAJot62wOBBAXdiLAQDMxaGNKCXaDQAmo90oJdoNACaj3bbC4kAAcYgjAJiMjRSUEu0GAJPRbpQS7QYAk9FuW2FxIIC68uZIAGCe+CSpenOzp4DN0G4AMBHtRhnQbgAwEe22HRYHAqhpjQRVT4g2ewwACE0Ne5g9AWyIdgOAiWg3yoB2A4CJaLftsDgQYF05xBEAzNHoXLMngE3RbgAwCe1GGdFuADAJ7bYdFgcC7IIzapg9AgCEIIfU7CKzh4BN0W4AMAPtRtnRbgAwA+22IxYHAqx38xqKCHOYPQYAhJZaZ0oVa5k9BWyKdgOACWg3yoF2A4AJaLctsTgQYJUqRKpjwypmjwEAoaVFf7MngI3RbgAwAe1GOdBuADAB7bYlFgdM0OeMJLNHAIDQ0qKf2RPA5mg3AAQY7UY50W4ACDDabUssDpjgwlY1zR4BAEJHpXpSrXZmTwGbo90AEEC0Gz5AuwEggGi3bbE4YIL61SqoWY14s8cAgNDQ/GKzJ0AQoN0AEEC0Gz5AuwEggGi3bbE4YJI+rTjEEQACgkMb4SO0GwAChHbDR2g3AAQI7bYtFgdMwvkPASAAoitKDXuaPQWCBO0GgACg3fAh2g0AAUC7bY3FAZOcXb+yalWKMXsMAAhuzS+WIqLMngJBgnYDQADQbvgQ7QaAAKDdtsbigEkcDocuObO22WMAQHBrN8TsCRBEaDcABADthg/RbgAIANptaywOmGjQWXXMHgEAgldcdanJ+WZPgSBDuwHAj2g3/IB2A4Af0W7bY3HARGfUqqiWNRPMHgMAglObK6SwcLOnQJCh3QDgR7QbfkC7AcCPaLftsThgskvbsxcDAPhFWw5thH/QbgDwE9oNP6HdAOAntNv2WBww2aCzasvhMHsKAAgy1ZpKdTuYPQWCFO0GAD+g3fAj2g0AfkC7gwKLAyarVSlWXRpVNXsMAAgu7L0AP6LdAOAHtBt+RLsBwA9od1BgccACBnGIIwD4VrvBZk+AIEe7AcDHaDf8jHYDgI/R7qDA4oAF9G9XS7GRvHkHAPhEvS5S1cZmT4EgR7sBwIdoNwKAdgOAD9HuoMHigAVUjInU/51Zy+wxACA4dLzR7AkQAmg3APgQ7UYA0G4A8CHaHTRYHLCIoV0bmj0CANhfhUSp9SCzp0CIoN0A4AO0GwFEuwHAB2h3UGFxwCLa1KmkM+tVNnsMALC3s66XIqLNngIhgnYDgA/QbgQQ7QYAH6DdQYXFAQv51zkNzB4BAOzLESZ1vMHsKRBiaDcAlAPthgloNwCUA+0OOiwOWMjAdrVUpUKk2WMAgD017StV4Zc9BBbtBoByoN0wAe0GgHKg3UGHxQELiYkM1+CO9cweAwDsqdNNZk+AEES7AaAcaDdMQLsBoBxod9BhccBiru/SQA6H2VMAgM1UaSg17WP2FAhRtBsAyoB2w0S0GwDKgHYHJRYHLKZ+tQrq1by62WMAgL10vEEKI2kwB+0GgDKg3TAR7QaAMqDdQYl71IJGntvE7BEAwD6iK0kdRpg9BUIc7QaAUqDdsADaDQClQLuDFosDFtS1STWdVb+y2WMAgD10ulGKqWj2FAhxtBsASoF2wwJoNwCUAu0OWiwOWNSo3k3NHgEArC8iVjpnlNlTAJJoNwCUCO2GhdBuACgB2h3UWBywqD5n1FDzpHizxwAAazvreime88XCGmg3AJQA7YaF0G4AKAHaHdRYHLAoh8Oh23pzDkQAKFRYhNT9TrOnAFxoNwAUg3bDYmg3ABSDdgc9Fgcs7P/a1VbdKrFmjwEA1tTmSqlyfbOnANzQbgAoAu2GBdFuACgC7Q56LA5YWER4mEae29jsMQDAghxSjzFmDwF4oN0AUBjaDWui3QBQGNodClgcsLjBHespMT7a7DEAwFpa9JdqtDR7CsAr2g0AXtBuWBjtBgAvaHdIYHHA4mIiw3XH+U3NHgMArMMRJp3/iNlTAIWi3QBQAO2GxdFuACiAdocMFgds4Nou9VWvKudABABJUtvBUlJrs6cAikS7ASAf2g0boN0AkA/tDhksDthAZHiY7u3bwuwxAMB84VHSeey9AOuj3QBwGu2GTdBuADiNdocUFgds4tL2tXVGrYpmjwEA5up4g1SlgdlTACVCuwFAtBu2QrsBQLQ7xLA4YBMOh0MPXMReDABCWFS8dO79Zk8BlBjtBhDyaDdshnYDCHm0O+SwOGAj57Wsoc6Nqpo9BgCYo+toKS7R7CmAUqHdAEIa7YYN0W4AIY12hxwWB2zmoX4tzR4BAAKvQqLUbbTZUwBlQrsBhCTaDRuj3QBCEu0OSSwO2MzZ9avootZJZo8BAIHV6wEpOsHsKYAyod0AQhLtho3RbgAhiXaHJBYHbOg/A1opOoK7DkCIqNFK6nij2VMA5UK7AYQU2o0gQLsBhBTaHbIonQ3Vq1pBt/VuYvYYABAY/Z+TwiPMngIoF9oNIKTQbgQB2g0gpNDukMXigE3d2quJ6letYPYYAOBfbQdLDbubPQXgE7QbQEig3QgitBtASKDdIY3FAZuKiQzXYwNbmT0GAPhPVIJ04ZNmTwH4DO0GEPRoN4IM7QYQ9Gh3yGNxwMb6tErS+S1rmD0GAPhH7welhJpmTwH4FO0GENRoN4IQ7QYQ1Gh3yGNxwObG/V9r3iQJQPCpfobU5TazpwD8gnYDCEq0G0GMdgMISrQbYnHA9upXq6CRvXiTJABBpv8k3gwJQYt2AwhKtBtBjHYDCEq0G2JxICiM6t1EjRLjzB4DAHyj3VVSo55mTwH4Fe0GEFRoN0IA7QYQVGg3TmNxIAjERIbr2SvbKcxh9iQAUE7xSdLFz5g9BeB3tBtA0KDdCBG0G0DQoN3Ih8WBINGpYVUN79bI7DEAoHwGTpYqVDV7CiAgaDeAoEC7EUJoN4CgQLuRD4sDQeSBi1uoYbUKZo8BAGXTdojUsr/ZUwABRbsB2BrtRgii3QBsjXajABYHgkhMZLgmDT6TwxwB2E98ktRvotlTAAFHuwHYFu1GiKLdAGyLdsMLFgeCDIc5ArAlDmtECKPdAGyJdiOE0W4AtkS74QWLA0GIwxwB2AqHNQK0G4C90G6AdgOwF9qNQrA4EIQ4zBGAbcTX5LBGQLQbgI3QbkAS7QZgI7QbRWBxIEh1alhVo89vZvYYAFA4R5h0+Rsc1gicRrsBWB7tBtzQbgCWR7tRDBYHgthdFzRTl0Y8+QFYVM/7pMa9zJ4CsBTaDcDSaDfggXYDsDTajWKwOBDEwsMceumas1Q1LsrsUQDAXYPuUu+HzJ4CsBzaDcCyaDfgFe0GYFm0GyXA4kCQS6oYo+eHnCkH50EEYBUVqklX/FcKCzd7EsCSaDcAy6HdQJFoNwDLod0oIRYHQsB5LWro5p6NzR4DACQ5pEGvSxVrmz0IYGm0G4B10G6gJGg3AOug3Sg5FgdCxP0XtdBZ9SubPQaAUNf1dqn5hWZPAdgC7QZgCbQbKDHaDcASaDdKgcWBEBEZHqap15ylijERZo8CIFTV6SD1GWf2FIBt0G4ApqPdQKnQbgCmo90oJRYHQkjdKhU05ZqzFMZ5EAEEWlwNaci7Unik2ZMAtkK7AZiGdgNlQrsBmIZ2owxYHAgx57WooQcvbmn2GABCSXiUdNVMqVJdsycBbIl2Awg42g2UC+0GEHC0G2XE4kAIGtmriS4/q47ZYwAIFQNekOp3MXsKwNZoN4CAot1AudFuAAFFu1FGLA6EqKcvb6sz61U2ewwAwa7LrdLZ/zJ7CiAo0G4AAUG7AZ+h3QACgnajHFgcCFExkeF6418dlFQx2uxRAASrxudJFz1t9hRA0KDdAPyOdgM+RbsB+B3tRjmxOBDCkirGaNq/Oio6gocBAB+r2lgaPF0KCzd7EiCo0G4AfkO7Ab+g3QD8hnbDB6hTiGtfr7ImXN7W7DEABJPoitLVH0ixVcyeBAhKtBuAz9FuwK9oNwCfo93wERYHoMvPrqsxfZqbPQaAYBAeJV31nlSjpdmTAEGNdgPwGdoNBATtBuAztBs+xOIAJEl39Wmm68+pb/YYAGzNIV32utS4t9mDACGBdgMoP9oNBBLtBlB+tBu+xeIAXB6/pI36talp9hgA7KrfRKnNFWZPAYQU2g2gXGg3EHC0G0C50G74GIsDcAkLc2jy1e11TuOqZo8CwG563CN1GWn2FEDIod0Ayox2A6ag3QDKjHbDD1gcgJvoiHC9ObSjzqhV0exRANjFWddLfcaaPQUQsmg3gFKj3YCpaDeAUqPd8BMWB+AhISZSM0Z0Ur2qsWaPAsDqmveT/u8ls6cAQh7tBlBitBuwBNoNoMRoN/yIxQF4VaNijN69oYsS46PNHgWAVdXvKg2eLoWFmz0JANFuACVAuwFLod0AikW74WcsDqBQjRLj9P7NXVQtLsrsUQBYTd1O0nWzpUj2dAKshHYDKBTtBiyJdgMoFO1GALA4gCI1T0rQrJu7qEqFSLNHAWAVdTpI1/9Pik4wexIAXtBuAB5oN2BptBuAB9qNAGFxAMVqWbOiZt7URZXZUAFQq33uBkoMb54GWBntBuBCuwFboN0AXGg3AojFAZRI69qVNOumLqrKoY5A6Kp9tjR0nhRb2exJAJQA7QZAuwF7od0AaDcCjcUBlFjr2pU4FyIQqup2kobOZQMFsBnaDYQw2g3YEu0GQhjthglYHECptKxZUR/cco4S46PNHgVAoNQ7R/rXp1JMJbMnAVAGtBsIQbQbsDXaDYQg2g2TsDiAUmuelKDZt3ZVvaq8WzoQ9Jr2kf7FmyABdke7gRBCu4GgQLuBEEK7YSIWB1AmjRLjNOfWbjqjFm+OAgStdldJ13woRcWZPQkAH6DdQAig3UBQod1ACKDdMBmLAyizGhVj9NHIc9SlUVWzRwHga11HS5dNk8IjzZ4EgA/RbiCI0W4gKNFuIIjRblgAiwMol4oxkXr3xs7q16am2aMA8AmH1PcJ6aKnJIfD7GEA+AHtBoIN7QaCHe0Ggg3thnWwOIByi44I1yvXnq3rz6lv9igAyiMsQrrsdan7nWZPAsDPaDcQJGg3EDJoNxAkaDcshsUB+ERYmENPDmqrMX2amz0KgLKIjJOu+Ug682qzJwEQILQbsDnaDYQc2g3YHO2GBbE4AJ+6q08zPTf4TEVF8NACbKNiHWnEl1KzPmZPAsAEtBuwIdoNhDTaDdgQ7YZFURL43JUd6urDW85RjYRos0cBUJy6naWbF0u1zzJ7EgAmot2AjdBuAKLdgK3QblgYiwPwi7PrV9Fno3uoXd1KZo8CoDDtr5eGfyklJJk9CQALoN2ADdBuAPnQbsAGaDcsjsUB+E3NSjH6eGRXDWpf2+xRAOTnCJcumiANekWKiDJ7GgAWQrsBi6LdAApBuwGLot2wCRYH4FcxkeGafPVZevDilgpzmD0NAMVUlq7/ROo6yuxJAFgU7QYshnYDKAbtBiyGdsNGWBxAQNzWu4n+O6yjEmIizB4FCF3VW0o3L5KanG/2JABsgHYDFkC7AZQC7QYsgHbDZlgcQMCc3zJJX93ZU2dyPkQg8M68NncDpVoTsycBYCO0GzAR7QZQBrQbMBHthg2xOICAqle1gj65rZtu6tFIDg53BPwvKl66bJp02WtSVJzZ0wCwIdoNBBjtBlBOtBsIMNoNG2NxAAEXGR6m/wxspf8O7agqFSLNHgcIXkltpVuWSGdebfYkAGyOdgMBQrsB+AjtBgKEdsPmWByAaS44I0lf3dVTnRtWNXsUIPh0ukm6aaGU2MzsSQAEEdoN+BHtBuAHtBvwI9qNIMDiAExVq1KsPrjlHI0+r6nCONwRKL/oStKQd6UBz0uRMWZPAyAI0W7Ax2g3AD+j3YCP0W4EERYHYLrwMIfuu6iF3r/5HNWvWsHscQD7atRLum2p1OpSsycBEORoN+AjtBtAgNBuwEdoN4IMiwOwjHMaV9M3d/fUsK4NeNMkoDSiEqSBL0rDPpMq1zd7GgAhhHYDZUS7AZiEdgNlRLsRpFgcgKVUiIrQ+Evb6AP2ZgBKplEvadRPUscbzJ4EQIii3UAp0W4AJqPdQCnRbgQxFgdgSezNABSDvRYAWAztBopBuwFYDO0GikG7EQJYHIBlsTcDUAj2WgBgUbQbKATtBmBRtBsoBO1GiGBxAJZ3TuNq+vbuczWqdxNFhfOQRQiLqy4Neo29FgBYHu0GTqPdAGyCdgOn0W6EGF7xYQuxUeF64OKW+ubunjq3eXWzxwECyxEudblVumOV1P5as6cBgBKh3QhptBuADdFuhDTajRDF4gBspXH1eL17Q2e9fn0H1akca/Y4gP/V7yaN/EHqN1GKqWT2NABQarQbIYd2A7A52o2QQ7sRwiLMHgAoi4vb1FTvFtX1yuKtmvbDdmVmO80eCfCt+CSp7xPSmVeZPQkA+ATtRtCj3QCCDO1G0KPdAEcOwL5iIsN174UtNP/uc3VByxpmjwP4RniUdM7t0uhf2UABEHRoN4IS7QYQxGg3ghLtBlw4cgC21zAxTm8N76QVyYf1zNcb9duuo2aPBJSeI0xqO1g6799SlYZmTwMAfkW7ERRoN4AQQrsRFGg34MFhGIZh9hCAL81fv0/Pzd+sP/efNHuUoLOk6UdquHue2WMEn2YXSheMlWq2MXsSADAF7fYf2u0ntBtAiKPd/kO7/YR2A15x5ACCzoWta6rPGUma89tuTV64RXuOppk9EuBd3c5S3/FSg25mTwIApqLdsA3aDQCSaDdshHYDRWJxAEEpLMyhwR3r6ZL2tfXe8p16dck2HU7NNHssIFf1M6QLHpVaDjB7EgCwDNoNS6PdAOCBdsPSaDdQIpxWCCHhVGa2Pljxl/7743b9fSzd7HFsi8Mby6n22VLPe6SWAyWHw+xpAMDSaLdv0O5yot0AUGK02zdodznRbqBUWBxASMnMdmru73v0+vfbtD0l1exxbIeNlDJq1Ct346Rxb7MnAQDbod3lQ7vLiHYDQJnR7vKh3WVEu4EyYXEAIcnpNPTN+n16dclWrdtz3OxxbIONlNJw5B6+2OMeqW4Hs4cBANuj3WVDu0uDdgOAL9HusqHdpUG7gfLiPQcQksLCHOrftpb6t62lH/48qGk/bNOyrYfMHgvBIDxaanul1P0uqXoLs6cBgKBBu+E3tBsA/IJ2w29oN+AzLA4g5J3bvLrObV5dWw+c1Myfd2rOb7t1Ij3b7LFgN5UbSB1vkM76lxRXzexpACCo0W74BO0GgICh3fAJ2g34HKcVAgo4lZmteav36r3lO7Xhbw59zI/DGwtwhElN+0idbs79b1iY2RMBQEii3YWj3QXQbgCwBNpdONpdAO0G/IrFAaAIq3Ye0XvLd+irdfuUme00exzTsZFyWoVq0lnX5+6xUKWh2dMAAPKh3e5o92m0GwAsi3a7o92n0W4gIDitEFCEDg2qqEODKhqbmqkv/tirT3/fo992HTV7LJghPEpqdqHUbojU/GIpItrsiQAAXtBuuNBuALAF2g0X2g0EHEcOAKW081Cq5q3eq7mr92j7wVSzxwmo0NuDwSHV75q7YdJ6kBRbxeyBAABlQLtpNwDAXmg37QYQGCwOAOWw5q+jmrt6jz5f87dSTmaYPY7fhcxGSvUzpHaDpbaDpcr1zZ4GAOBDtDtI0W4ACFq0O0jRbsASWBwAfCDHaWhF8mEt3LhfCzfu185Dp8weyS+CdyPFIdU5W2rRT2oxQEpqZfZAAAA/o912R7sBINTQbruj3YAVsTgA+MGW/Se0YON+LdywX6v/OipnkDzLgmojJSJWatxbanGx1LyflJBk9kQAABPRbhug3QCAfGi3DdBuwPJYHAD8LOVkhhZtPKDvNu3Xz9sP61haltkjlZntN1Iq1Zca95Ja9JeanCdFxpo9EQDAgmi3hdBuAEAJ0G4Lod2ArbA4AASQ02low9/H9fP2Q/p5+yGtSD6s4+nZZo9VYrbbSKlYV2rUU2rYI/ejSkOzJwIA2AztDjDaDQAoJ9odYLQbsDUWBwATOZ2G1u/9Z6Nl5Q5rb7RYfiOlYl2pYffTGyU9paqNzJ4IABBkaLeP0W4AgJ/Rbh+j3UBQYXEAsJidh1K1ds8xrd1zTOv2HNPa3ccss+FiqY2UinWl2u2lWu3/+W98dXNnAgCEJNpdQrQbAGARtLuEaDcQ9CLMHgCAuwbV4tSgWpwGtqvt+tyuQ6f0x56jWrvnmP7cd0LbU1K1+0iacoLlHZeKEhErVW0sJTaVktqyQQIAsBzaXQDtBgBYHO0ugHYDIYvFAcAG6leroPrVKrhtuGTlOLXz0Cklp6QqOeWkth9M1faUVCWnpCrlZIZsdUyQI1yqXE+q1jTfRxOpWjOpUl3J4TB7QgAASoV2024AgL3QbtoNhCIWBwCbigwPU9Ma8WpaI15SktvfZWY7dfBkhvYfT9eB4xk6cOKf/+4/nqEDJzJ0PC1LJzOydSozW1k5ftiiiYiRouKlqDipQjUpoZaUkCTF15QS8n3E15TiqkthYb6fAQAAC6HdAADYC+0GEOx4zwEAysjOUWpGjlIzspWama3UjGydzMhRVrZTTsOQ05AMw9DZEclKMg5KjrDTH+FSRLQUnZC7QRJ9eqMkKkEKZ+0RAAB/od0AANgL7QZgRSwOAAAAAAAAAAAQYjieCAAAAAAAAACAEMPiAAAAAAAAAAAAIYbFAQAAAAAAAAAAQgyLAwAAAAAAAAAAhBgWBwAAAAAAAAAACDEsDgAAAAAAAAAAEGJYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQIhhcQAAAAAAAAAAgBDD4gAAAAAAAAAAACGGxQEAAAAAAAAAAEIMiwMAAAAAAAAAAIQYFgcAAAAAAAAAAAgxLA4AAAAAAAAAABBiWBwAAAAAAAAAACDEsDgAAADw/+3ZgQAAAACAIH/rQS6NAAAAYEYOAAAAAADAjBwAAAAAAIAZOQAAAAAAADNyAAAAAAAAZuQAAAAAAADMyAEAAAAAAJiRAwAAAAAAMCMHAAAAAABgRg4AAAAAAMCMHAAAAAAAgBk5AAAAAAAAM3IAAAAAAABm5AAAAAAAAMzIAQAAAAAAmJEDAAAAAAAwIwcAAAAAAGBGDgAAAAAAwIwcAAAAAACAGTkAAAAAAAAzcgAAAAAAAGbkAAAAAAAAzMgBAAAAAACYkQMAAAAAADAjBwAAAAAAYEYOAAAAAADAjBwAAAAAAIAZOQAAAAAAADNyAAAAAAAAZuQAAAAAAADMyAEAAAAAAJiRAwAAAAAAMCMHAAAAAABgRg4AAAAAAMCMHAAAAAAAgBk5AAAAAAAAM3IAAAAAAABm5AAAAAAAAMzIAQAAAAAAmAkGLBWo3GzrLQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Метод приращения с недостатком (undersampling)\n",
|
||
"def undersample(df: DataFrame, column: str) -> DataFrame:\n",
|
||
" X: DataFrame = df.drop(column, axis=1)\n",
|
||
" y: DataFrame = df[column] # type: ignore\n",
|
||
" \n",
|
||
" undersampler = RandomUnderSampler()\n",
|
||
" X_resampled, y_resampled = undersampler.fit_resample(X, y) # type: ignore\n",
|
||
" \n",
|
||
" df_resampled: DataFrame = pd.concat([X_resampled, y_resampled], axis=1)\n",
|
||
" return df_resampled\n",
|
||
"\n",
|
||
"\n",
|
||
"# Приращение данных (undersampling)\n",
|
||
"df_train_undersampled: DataFrame = undersample(df_train, 'hazardous')\n",
|
||
"df_val_undersampled: DataFrame = undersample(df_val, 'hazardous')\n",
|
||
"df_test_undersampled: DataFrame = undersample(df_test, 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"print('После применения метода undersampling:')\n",
|
||
"check_balance(df_train_undersampled, 'Обучающая выборка', 'hazardous')\n",
|
||
"check_balance(df_val_undersampled, 'Контрольная выборка', 'hazardous')\n",
|
||
"check_balance(df_test_undersampled, 'Тестовая выборка', 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_undersampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_undersampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_undersampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train_undersampled, df_val_undersampled, df_test_undersampled, 'hazardous')"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "aimenv",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.5"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|