1785 lines
755 KiB
Plaintext
1785 lines
755 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Датасет №1: [Объекты вокруг Земли](https://www.kaggle.com/datasets/sameepvani/nasa-nearest-earth-objects).\n",
|
||
"\n",
|
||
"### Описание датасета:\n",
|
||
"Данный набор данных представляет собой коллекцию сведений о ближайших к Земле объектах (астероидах), сертифицированных NASA. Он содержит данные, которые могут помочь идентифицировать потенциально опасные астероиды, которые могут оказать влияние на Землю или на космические миссии. Набор данных включает в себя такие ключевые характеристики астероидов, как их размер, скорость, расстояние до Земли и информация о возможной опасности столкновения.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Анализ сведений:\n",
|
||
"**Проблемная область:**\n",
|
||
"Основной проблемной областью является отслеживание и оценка рисков, связанных с приближением астероидов к Земле. С помощью данных о движении и характеристиках астероидов можно предсказать возможные столкновения и минимизировать угрозу для Земли, планируя превентивные действия.\n",
|
||
"\n",
|
||
"**Актуальность:**\n",
|
||
"Набор данных высокоактуален для задач оценки рисков от космических объектов, мониторинга космического пространства и разработки превентивных мер по защите Земли. Также он важен для научных исследований в области астрономии и планетарной безопасности.\n",
|
||
"\n",
|
||
"**Объекты наблюдения:**\n",
|
||
"Объектами наблюдения в данном наборе данных являются астероиды, классифицированные NASA как \"ближайшие к Земле объекты\" (Near-Earth Objects, NEO). Эти объекты могут проходить в непосредственной близости от Земли, что потенциально представляет опасность.\n",
|
||
"\n",
|
||
"**Атрибуты объектов:**\n",
|
||
"- id: Уникальный идентификатор астероида.\n",
|
||
"- name: Название, присвоенное астероиду NASA.\n",
|
||
"- est_diameter_min: Минимальный оценочные диаметры астероида в километрах.\n",
|
||
"- est_diameter_max: Максимальный оценочные диаметры астероида в километрах.\n",
|
||
"- relative_velocity: Скорость астероида относительно Земли (в км/с).\n",
|
||
"- miss_distance: Расстояние, на котором астероид пролетел мимо Земли, в километрах.\n",
|
||
"- orbiting_body: Планета, вокруг которой вращается астероид.\n",
|
||
"- sentry_object: Признак, указывающий на наличие астероида в системе автоматического мониторинга столкновений (система Sentry).\n",
|
||
"- absolute_magnitude: Абсолютная величина, описывающая яркость объекта.\n",
|
||
"- hazardous: Булев признак, указывающий, является ли астероид потенциально опасным.\n",
|
||
"\n",
|
||
"**Связь между объектами:**\n",
|
||
"В данном наборе данных отсутствует явная связь между астероидами, однако на основе орбитальных параметров можно исследовать группы объектов, имеющие схожие орбиты или величины риска столкновения с Землей.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Качество набора данных:\n",
|
||
"**Информативность:**\n",
|
||
"Датасет предоставляет важные сведения о ключевых характеристиках астероидов, такие как размер, скорость и расстояние от Земли, что позволяет проводить качественный анализ их потенциальной опасности.\n",
|
||
"\n",
|
||
"**Степень покрытия:**\n",
|
||
"Набор данных включает данные о большом количестве астероидов (>90000 записей), что позволяет охватить значительную часть ближайших к Земле объектов. Однако не все астероиды могут быть обнаружены, так как данные зависят от возможности их наблюдения.\n",
|
||
"\n",
|
||
"**Соответствие реальным данным:**\n",
|
||
"Данные в наборе предоставлены NASA, что указывает на высокую достоверность и актуальность информации. Тем не менее, параметры, такие как диаметр и расстояние, могут быть оценочными и подвергаться уточнению с новыми наблюдениями.\n",
|
||
"\n",
|
||
"**Согласованность меток:**\n",
|
||
"Метрики в датасете четко обозначены, а булевы признаки, такие как \"hazardous\" (опасен или нет), соответствуют конкретным параметрам астероидов и легко интерпретируются.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Бизес-цели:\n",
|
||
"1. **Мониторинг космических угроз:**\n",
|
||
"Создание системы, которая анализирует астероиды и предсказывает риски столкновения с Землей, помогая государственным агентствам и частным компаниям разрабатывать превентивные меры.\n",
|
||
"2. **Поддержка космических миссий:**\n",
|
||
"Предоставление точных данных для планирования и безопасного проведения космических миссий, минимизация рисков столкновения с космическими объектами.\n",
|
||
"3. **Образовательные и научные исследования:**\n",
|
||
"Использование данных для поддержки образовательных программ и научных исследований в области астрономии и космической безопасности.\n",
|
||
"\n",
|
||
"**Эффект для бизнеса:**\n",
|
||
"Набор данных способствует развитию технологий космической безопасности, минимизирует финансовые риски от потенциальных катастроф и поддерживает стратегическое планирование космических миссий.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Технические цели:\n",
|
||
"1. **Моделирование риска столкновения:**\n",
|
||
"Построение алгоритмов машинного обучения для прогнозирования вероятности столкновения астероидов с Землей.\n",
|
||
"2. **Анализ и кластеризация астероидов:**\n",
|
||
"Исследование взаимосвязей между астероидами, анализ орбитальных данных и выделение групп астероидов, имеющих схожие характеристики.\n",
|
||
"3. **Оптимизация системы предупреждения угроз:**\n",
|
||
"Создание системы раннего оповещения, которая будет автоматически анализировать данные и предупреждать о потенциальных угрозах в реальном времени.\n",
|
||
"\n",
|
||
"**Входные данные:**\n",
|
||
"Диаметр, скорость, расстояние, орбитальные параметры астероидов.\n",
|
||
"\n",
|
||
"**Целевой признак:**\n",
|
||
"Признак \"hazardous\" – бинарная метка, указывающая на потенциальную опасность астероида.\n",
|
||
"\n",
|
||
"---"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Выгрузка данных из файла в DataFrame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from typing import Any\n",
|
||
"from math import ceil\n",
|
||
"\n",
|
||
"import pandas as pd\n",
|
||
"from pandas import DataFrame, Series\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"from imblearn.over_sampling import ADASYN\n",
|
||
"from imblearn.under_sampling import RandomUnderSampler\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"\n",
|
||
"df: DataFrame = pd.read_csv('..//static//csv//neo.csv')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Краткая информация о DataFrame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 90836 entries, 0 to 90835\n",
|
||
"Data columns (total 10 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 id 90836 non-null int64 \n",
|
||
" 1 name 90836 non-null object \n",
|
||
" 2 est_diameter_min 90836 non-null float64\n",
|
||
" 3 est_diameter_max 90836 non-null float64\n",
|
||
" 4 relative_velocity 90836 non-null float64\n",
|
||
" 5 miss_distance 90836 non-null float64\n",
|
||
" 6 orbiting_body 90836 non-null object \n",
|
||
" 7 sentry_object 90836 non-null bool \n",
|
||
" 8 absolute_magnitude 90836 non-null float64\n",
|
||
" 9 hazardous 90836 non-null bool \n",
|
||
"dtypes: bool(2), float64(5), int64(1), object(2)\n",
|
||
"memory usage: 5.7+ MB\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>count</th>\n",
|
||
" <th>mean</th>\n",
|
||
" <th>std</th>\n",
|
||
" <th>min</th>\n",
|
||
" <th>25%</th>\n",
|
||
" <th>50%</th>\n",
|
||
" <th>75%</th>\n",
|
||
" <th>max</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>id</th>\n",
|
||
" <td>90836.0</td>\n",
|
||
" <td>1.438288e+07</td>\n",
|
||
" <td>2.087202e+07</td>\n",
|
||
" <td>2.000433e+06</td>\n",
|
||
" <td>3.448110e+06</td>\n",
|
||
" <td>3.748362e+06</td>\n",
|
||
" <td>3.884023e+06</td>\n",
|
||
" <td>5.427591e+07</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>est_diameter_min</th>\n",
|
||
" <td>90836.0</td>\n",
|
||
" <td>1.274321e-01</td>\n",
|
||
" <td>2.985112e-01</td>\n",
|
||
" <td>6.089126e-04</td>\n",
|
||
" <td>1.925551e-02</td>\n",
|
||
" <td>4.836765e-02</td>\n",
|
||
" <td>1.434019e-01</td>\n",
|
||
" <td>3.789265e+01</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>est_diameter_max</th>\n",
|
||
" <td>90836.0</td>\n",
|
||
" <td>2.849469e-01</td>\n",
|
||
" <td>6.674914e-01</td>\n",
|
||
" <td>1.361570e-03</td>\n",
|
||
" <td>4.305662e-02</td>\n",
|
||
" <td>1.081534e-01</td>\n",
|
||
" <td>3.206564e-01</td>\n",
|
||
" <td>8.473054e+01</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>relative_velocity</th>\n",
|
||
" <td>90836.0</td>\n",
|
||
" <td>4.806692e+04</td>\n",
|
||
" <td>2.529330e+04</td>\n",
|
||
" <td>2.033464e+02</td>\n",
|
||
" <td>2.861902e+04</td>\n",
|
||
" <td>4.419012e+04</td>\n",
|
||
" <td>6.292360e+04</td>\n",
|
||
" <td>2.369901e+05</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>miss_distance</th>\n",
|
||
" <td>90836.0</td>\n",
|
||
" <td>3.706655e+07</td>\n",
|
||
" <td>2.235204e+07</td>\n",
|
||
" <td>6.745533e+03</td>\n",
|
||
" <td>1.721082e+07</td>\n",
|
||
" <td>3.784658e+07</td>\n",
|
||
" <td>5.654900e+07</td>\n",
|
||
" <td>7.479865e+07</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>absolute_magnitude</th>\n",
|
||
" <td>90836.0</td>\n",
|
||
" <td>2.352710e+01</td>\n",
|
||
" <td>2.894086e+00</td>\n",
|
||
" <td>9.230000e+00</td>\n",
|
||
" <td>2.134000e+01</td>\n",
|
||
" <td>2.370000e+01</td>\n",
|
||
" <td>2.570000e+01</td>\n",
|
||
" <td>3.320000e+01</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" count mean std min \\\n",
|
||
"id 90836.0 1.438288e+07 2.087202e+07 2.000433e+06 \n",
|
||
"est_diameter_min 90836.0 1.274321e-01 2.985112e-01 6.089126e-04 \n",
|
||
"est_diameter_max 90836.0 2.849469e-01 6.674914e-01 1.361570e-03 \n",
|
||
"relative_velocity 90836.0 4.806692e+04 2.529330e+04 2.033464e+02 \n",
|
||
"miss_distance 90836.0 3.706655e+07 2.235204e+07 6.745533e+03 \n",
|
||
"absolute_magnitude 90836.0 2.352710e+01 2.894086e+00 9.230000e+00 \n",
|
||
"\n",
|
||
" 25% 50% 75% max \n",
|
||
"id 3.448110e+06 3.748362e+06 3.884023e+06 5.427591e+07 \n",
|
||
"est_diameter_min 1.925551e-02 4.836765e-02 1.434019e-01 3.789265e+01 \n",
|
||
"est_diameter_max 4.305662e-02 1.081534e-01 3.206564e-01 8.473054e+01 \n",
|
||
"relative_velocity 2.861902e+04 4.419012e+04 6.292360e+04 2.369901e+05 \n",
|
||
"miss_distance 1.721082e+07 3.784658e+07 5.654900e+07 7.479865e+07 \n",
|
||
"absolute_magnitude 2.134000e+01 2.370000e+01 2.570000e+01 3.320000e+01 "
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Краткая информация о DataFrame\n",
|
||
"df.info()\n",
|
||
"\n",
|
||
"# Статистическое описание числовых столбцов\n",
|
||
"df.describe().transpose()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Проблема пропущенных данных:\n",
|
||
"\n",
|
||
"**Проблема пропущенных данных** — это отсутствие значений в наборе данных, что может искажать результаты анализа и статистические выводы.\n",
|
||
"\n",
|
||
"Проверка на отсутствие значений, представленная ниже, показала, что DataFrame не имеет пустых значений признаков. Нет необходимости использовать методы заполнения пропущенных данных."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"id False\n",
|
||
"name False\n",
|
||
"est_diameter_min False\n",
|
||
"est_diameter_max False\n",
|
||
"relative_velocity False\n",
|
||
"miss_distance False\n",
|
||
"orbiting_body False\n",
|
||
"sentry_object False\n",
|
||
"absolute_magnitude False\n",
|
||
"hazardous False\n",
|
||
"dtype: bool \n",
|
||
"\n",
|
||
"id 0\n",
|
||
"name 0\n",
|
||
"est_diameter_min 0\n",
|
||
"est_diameter_max 0\n",
|
||
"relative_velocity 0\n",
|
||
"miss_distance 0\n",
|
||
"orbiting_body 0\n",
|
||
"sentry_object 0\n",
|
||
"absolute_magnitude 0\n",
|
||
"hazardous 0\n",
|
||
"dtype: int64\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Проверка пропущенных данных\n",
|
||
"def check_null_columns(dataframe: DataFrame) -> None:\n",
|
||
" # Присутствуют ли пустые значения признаков\n",
|
||
" print(dataframe.isnull().any(), '\\n')\n",
|
||
"\n",
|
||
" # Количество пустых значений признаков\n",
|
||
" print(dataframe.isnull().sum())\n",
|
||
"\n",
|
||
" # Процент пустых значений признаков\n",
|
||
" for i in dataframe.columns:\n",
|
||
" null_rate: float = dataframe[i].isnull().sum() / len(dataframe) * 100\n",
|
||
" if null_rate > 0:\n",
|
||
" print(f\"{i} процент пустых значений: %{null_rate:.2f}\")\n",
|
||
" \n",
|
||
"\n",
|
||
"# Проверка пропущенных данных\n",
|
||
"check_null_columns(df)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Проблема зашумленности данных:\n",
|
||
"\n",
|
||
"**Зашумленность** – это наличие случайных ошибок или вариаций в данных, которые могут затруднить выявление истинных закономерностей. Шум может возникать из-за ошибок измерений, неправильных записей или других факторов.\n",
|
||
"\n",
|
||
"**Выбросы** – это значения, которые значительно отличаются от остальных наблюдений в наборе данных. Выбросы могут указывать на ошибки в данных или на редкие, но важные события. Их наличие может повлиять на статистические методы анализа.\n",
|
||
"\n",
|
||
"Представленный ниже код помогает определить наличие выбросов в наборе данных и устранить их (при наличии), заменив значения ниже нижней границы (рассматриваемого минимума) на значения нижней границы, а значения выше верхней границы (рассматриваемого максимума) – на значения верхней границы."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Колонка est_diameter_min:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 8306\n",
|
||
"\tМинимальное значение: 0.0006089126\n",
|
||
"\tМаксимальное значение: 37.8926498379\n",
|
||
"\t1-й квартиль (Q1): 0.0192555078\n",
|
||
"\t3-й квартиль (Q3): 0.1434019235\n",
|
||
"\n",
|
||
"Колонка est_diameter_max:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 8306\n",
|
||
"\tМинимальное значение: 0.00136157\n",
|
||
"\tМаксимальное значение: 84.7305408852\n",
|
||
"\t1-й квартиль (Q1): 0.0430566244\n",
|
||
"\t3-й квартиль (Q3): 0.320656449\n",
|
||
"\n",
|
||
"Колонка relative_velocity:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 1574\n",
|
||
"\tМинимальное значение: 203.34643253\n",
|
||
"\tМаксимальное значение: 236990.1280878666\n",
|
||
"\t1-й квартиль (Q1): 28619.02064490995\n",
|
||
"\t3-й квартиль (Q3): 62923.60463276395\n",
|
||
"\n",
|
||
"Колонка miss_distance:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 6745.532515957\n",
|
||
"\tМаксимальное значение: 74798651.4521972\n",
|
||
"\t1-й квартиль (Q1): 17210820.23576468\n",
|
||
"\t3-й квартиль (Q3): 56548996.45139917\n",
|
||
"\n",
|
||
"Колонка absolute_magnitude:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 101\n",
|
||
"\tМинимальное значение: 9.23\n",
|
||
"\tМаксимальное значение: 33.2\n",
|
||
"\t1-й квартиль (Q1): 21.34\n",
|
||
"\t3-й квартиль (Q3): 25.7\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPdCAYAAABlRyFLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvLElEQVR4nOzdf3zN9f//8fvZZj+YHW32M8NC+Z2sYmoiMqIsFPqFSD9QCLXeElIrEio/Qm+UlB+hWkXyK++MspIfRWJCbH7EDjObba/vH333+uy0HTa2nf24XS+Xc7HzfD3O6/U4L2fn8drjvM7zZTEMwxAAAAAAAAAAAMjDxdkJAAAAAAAAAABQWtFEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEB4AC2rBhgywWizZs2GCO9e3bV7Vr13ZaThXBwYMHZbFYNH/+fGenAgAop6jxAACUfvnV66JgsVg0duzYIl2ns7Vp00Zt2rQptvXXrl1bffv2Lbb1l0YVpom+bNkyWSyWfG+NGzd2dnpAhdGmTRvzjbZv377F9qZ+/vx5jR07tsiLa1m0efNmjR07VmfOnHF2Kk6RuwFfu3btcndwBGo8UFpQ40teRa/x/5bzwXvOa4MP4SsOjgWA0qGkjgWuxFdffcXfgsXo119/1dixY3Xw4MErXkfuv9dzv5ZKCzdnJ1DSXnzxRTVo0MC8/+qrrzoxGwDF5fz58xo3bpwkFWvhnjNnjrKzs4tt/UVh8+bNGjdunPr27atq1ao5O51Cq1WrltLS0lSpUiVnp4JSjhoPVAzU+P9T1ms8UNQ4FgDgyFdffaXp06fn20hPS0uTm1uFa5Felb1798rF5f/Ozf711181btw4tWnTptx+k6/CvULuuusuu4PtuXPn6uTJk85LCECZVpEbu+fPn1flypWLfTsWi0Wenp7Fvh2UfdR4AEWJGl/8NR4oahwLAGVLZmamsrOz5e7u7tQ8+Huz8Dw8PJydQomrMNO5ZGRkSJLdpySOzJ8/XxaLxe4rCNnZ2WratGmerwTu2LFDffv21XXXXSdPT08FBQXpscce06lTp+zWOXbs2Hy/Wpb7k642bdqocePGSkhIUKtWreTl5aWwsDDNmjUrz3MZM2aMwsPDZbVaVaVKFUVGRmr9+vV2cTlfZ7RYLFq5cqXdsgsXLuiaa66RxWLRm2++mSfPgIAAXbx40e4xH3/8sbm+3Acin332mTp37qyQkBB5eHioTp06euWVV5SVlXXZfZ2zvT179uiBBx6Qj4+P/Pz89Oyzz+rChQt2sfPmzdOdd96pgIAAeXh4qGHDhpo5c2aedXbt2lW1a9eWp6enAgICdO+992rnzp12MTnPY+rUqXkeX79+fVksFg0ePNgc+/vvvzVixAg1adJE3t7e8vHxUadOnfTLL7/YPbZPnz7y9PTUb7/9ZjceFRWla665RkePHjXHDhw4oPvvv1++vr6qXLmyWrZsqS+//NLucTnzfeXcPDw8dP311ys2NlaGYVx65/5/jl57+Z25lfs18+9bbsePH1f//v1Vs2ZNubq6mjHe3t4FyulSsrOzNXXqVDVq1Eienp4KDAzUE088odOnT9vFbdu2TVFRUapevbr5u/LYY4+Zz8Pf31+SNG7cODO/wnx168iRI4qOjlaVKlUUEBCgYcOGKT09PU9cfvOlvvnmm2rVqpX8/Pzk5eWl8PBwLVu2LM9jc15nS5cuVcOGDeXl5aWIiAjz9free++pbt268vT0VJs2bfL9WtTWrVvVsWNHWa1WVa5cWXfccYe+//57c/nYsWM1cuRISVJYWJi5L3Kva+HChQoPD5eXl5d8fX3Vq1cvHT582G47ud+fWrdurcqVK+vFF18s0L7MeQ3+/vvvevjhh2W1WuXv76+XXnpJhmHo8OHD6tq1q3x8fBQUFKTJkyfbPT6/OdH79u0rb29v/fXXX4qOjpa3t7f8/f01YsSIAr33oHyhxq+0W0aNp8ZT4y+NGl96anxB3/Nefvllubi4aO3atXbjAwcOlLu7e57fV1Q8HAustFvGsQDHAqXxWCBn+2+++aamTp2qOnXqyMPDQ7/++qskac+ePerRo4d8fX3l6empm2++WZ9//vll17tp0ybdf//9qlmzpjw8PBQaGqphw4YpLS3NjOnbt6+mT58uSfk+79zHEjnTQ23cuDHPtt577z1ZLBbt2rXLHLvSvHNr3Lix2rZtm2c8Oztb1157rXr06GE3VpDjqfzk/N8GBgbK09NTN954oxYsWJDvdqdNm6YmTZrI09NT/v7+6tixo7Zt22bG5J4Tff78+br//vslSW3btjX374YNG9SnTx9Vr149z3uOJHXo0EE33HDDZfMuLSrMmeg5RfVKPyn58MMP87wxS9KaNWt04MAB9evXT0FBQdq9e7dmz56t3bt3a8uWLXnejGbOnGn3xvPvIn/69GndfffdeuCBB9S7d28tWbJETz31lNzd3c0/Hmw2m+bOnavevXvr8ccf19mzZ/X+++8rKipKP/zwg5o1a2a3Tk9PT82bN0/R0dHm2PLly/MUrdzOnj2ruLg43XfffebYvHnz5Onpmedx8+fPl7e3t4YPHy5vb2+tW7dOY8aMkc1m06RJkxxuI7cHHnhAtWvXVmxsrLZs2aK3335bp0+f1gcffGC37xo1aqR7771Xbm5u+uKLL/T0008rOztbgwYNslvfwIEDFRQUpKNHj+rdd99V+/btlZiYaHdGTc5+GTp0qDm2efNm/fnnn3nyO3DggFauXKn7779fYWFhSk5O1nvvvac77rhDv/76q0JCQiRJ06ZN07p169SnTx/Fx8fL1dVV7733nr755ht9+OGHZlxycrJatWql8+fP65lnnpGfn58WLFige++9V8uWLbPb79L/fS0xLS1Nixcv1osvvqiAgAD179+/QPs3Z//lvPZiYmIuGTtw4EBFRkZK+ue1smLFCrvlffr00bfffqshQ4boxhtvlKurq2bPnq2ffvqpwPk48sQTT2j+/Pnq16+fnnnmGSUmJurdd9/Vzz//rO+//16VKlXS8ePH1aFDB/n7++uFF15QtWrVdPDgQS1fvlyS5O/vr5kzZ+qpp57Sfffdp27dukmSmjZtWqAc0tLS1K5dOx06dEjPPPOMQkJC9OGHH2rdunUFevy0adN077336qGHHlJGRoY++eQT3X///YqLi1Pnzp3tYjdt2qTPP//cfA3HxsaqS5cuGjVqlGbMmKGnn35ap0+f1sSJE/XYY4/Z5bBu3Tp16tRJ4eHh5h+XOQefmzZt0q233qpu3brp999/18cff6wpU6aoevXq5j6S/vmK60svvaQHHnhAAwYM0IkTJ/TOO++odevW+vnnn+2+Gn7q1Cl16tRJvXr10sMPP6zAwMAC7Y8cPXv2VIMGDfT666/ryy+/1IQJE+Tr66v33ntPd955p9544w199NFHGjFihG655Ra1bt36kuvLyspSVFSUWrRooTfffFPffvutJk+erDp16uipp54qVG4o26jx1HhqPDWeGl82a3xB3/NGjx6tL774Qv3799fOnTtVtWpVrV69WnPmzNErr7yiG2+8sVD5ovzhWIBjAY4FysaxgPTPa+3ChQsaOHCgPDw85Ovrq927d+u2227TtddeqxdeeEFVqlTRkiVLFB0drU8//TTPPstt6dKlOn/+vJ566in5+fnphx9+0DvvvKMjR45o6dKlkv45Bjl69KjWrFmjDz/88JL5de7cWd7e3lqyZInuuOMOu2WLFy9Wo0aNzGstXE3eufXs2VNjx45VUlKSgoKCzPH//e9/Onr0qHr16mWOFeR4Kj9paWlq06aN/vjjDw0ePFhhYWFaunSp+vbtqzNnzujZZ581Y/v376/58+erU6dOGjBggDIzM7Vp0yZt2bJFN998c551t27dWs8884zefvttu2m1GjRooEceeUQffPCBVq9erS5dupiPSUpK0rp16/Tyyy8XaB+VCkYFMXXqVEOS8csvv9iN33HHHUajRo3sxubNm2dIMhITEw3DMIwLFy4YNWvWNDp16mRIMubNm2fGnj9/Ps+2Pv74Y0OS8d1335ljL7/8siHJOHHihMMc77jjDkOSMXnyZHMsPT3daNasmREQEGBkZGQYhmEYmZmZRnp6ut1jT58+bQQGBhqPPfaYOZaYmGhIMnr37m24ubkZSUlJ5rJ27doZDz74oCHJmDRpUp48e/fubXTp0sUc//PPPw0XFxejd+/eeZ5HfvvgiSeeMCpXrmxcuHDB4fPNvb17773Xbvzpp5/O8/+V33aioqKM66677pLbWLJkiSHJ2LZtmzkmyejRo4fh5uZmN96/f39zvwwaNMgcv3DhgpGVlWW33sTERMPDw8MYP3683fjq1asNScaECROMAwcOGN7e3kZ0dLRdzNChQw1JxqZNm8yxs2fPGmFhYUbt2rXNba1fv96QZKxfv94uFxcXF+Ppp5++5PPO8eKLLxqSjJMnT5pjjRo1Mu644448sfv27TMkGQsWLDDHcv6PcqSlpRkuLi7GE088YffYPn36GFWqVClQTo5s2rTJkGR89NFHduOrVq2yG1+xYoUhyfjxxx8druvEiROGJOPll18udB457xdLliwxx1JTU426devm+f/o06ePUatWLbvH//u1mpGRYTRu3Ni488477cYlGR4eHuZ7jWEYxnvvvWdIMoKCggybzWaOx8TE2L0vZWdnG/Xq1TOioqKM7Oxsu22HhYUZd911lzk2adIku8fmOHjwoOHq6mq8+uqrduM7d+403Nzc7MZz3p9mzZqVd4ddRs5raODAgeZYZmamUaNGDcNisRivv/66OX769GnDy8vL6NOnjzmW816W+723T58+hqQ8v3833XSTER4eXugcUbZR46nx1HhqfEFR40tXjS/oe15O7u7u7saAAQOM06dPG9dee61x8803GxcvXix03ih/OBbgWIBjgdJ/LJDzmvXx8TGOHz9ut6xdu3ZGkyZN7F5T2dnZRqtWrYx69eqZY/nts/xeO7GxsYbFYjH+/PNPc2zQoEF2zzW3fx9X9O7d2wgICDAyMzPNsWPHjhkuLi52r4mC5n05e/fuNSQZ77zzjt34008/bXh7e5vPsaDHU4bxz3tO7tdBzvvkwoULzbGMjAwjIiLC8Pb2No9N1q1bZ0gynnnmmTx55j4uqVWrll1NX7p0aZ7/G8MwjKysLKNGjRpGz5497cbfeustw2KxGAcOHLjEnildKsx0Ljlft8o5M6Mwpk+frlOnTuX76YiXl5f584ULF3Ty5Em1bNlSkq7oUzo3Nzc98cQT5n13d3c98cQTOn78uBISEiRJrq6u5nxR2dnZ+vvvv5WZmambb7453202b95cjRo1Mj9t+/PPP7V+/fpLXuX2scce06pVq5SUlCRJWrBggSIiInT99dfnic29D86ePauTJ08qMjJS58+f1549ewr0vP/9yfKQIUMk/XPhh/y2k5KSopMnT+qOO+7QgQMHlJKSYvf48+fP6+TJk9q+fbvmzJmjwMDAPLkHBgaqc+fOmjdvnvmYJUuWqF+/fnny8/DwMM8iyMrK0qlTp+Tt7a0bbrghzz7v0KGDnnjiCY0fP17dunWTp6en3nvvPbuYr776Srfeeqtuv/12c8zb21sDBw7UwYMHza8z/fv5Hjp0SBMnTlR2drbuvPPOfPZkXjlnEhRkjq+CnMGRmpqq7Oxs+fn5FWj7hbF06VJZrVbdddddOnnypHkLDw+Xt7e3+RXGnDOn4uLi8v1K0NX66quvFBwcbPeVqcqVK2vgwIEFenzu1+rp06eVkpKiyMjIfH8/27VrZ/dV8RYtWkiSunfvrqpVq+YZP3DggCRp+/bt2rdvnx588EGdOnXK3Fepqalq166dvvvuu8teDG358uXKzs7WAw88YLe/g4KCVK9evTxfGfXw8Mj396OgBgwYYP7s6uqqm2++WYZh2J1hUa1aNd1www3m87ycJ5980u5+ZGRkgR+L8oMaT42nxlPjC4oaX7pqfGHe8xo3bqxx48Zp7ty5ioqK0smTJ7VgwQIuBAdJHAtwLMCxQFk4FsjRvXt3u9/Vv//+W+vWrdMDDzxgvsZOnjypU6dOKSoqSvv27dNff/3lcH25Xzupqak6efKkWrVqJcMw9PPPP19Rjj179tTx48e1YcMGc2zZsmXKzs5Wz549iyTv3K6//no1a9ZMixcvNseysrK0bNky3XPPPeZzLOjxVH6++uorBQUFqXfv3uZYpUqV9Mwzz+jcuXPm9DWffvqpLBZLvu+J//72TUG4uLjooYce0ueff66zZ8+a4x999JFatWqlsLCwQq/TWSpME/3PP/+Um5tboYtqSkqKXnvtNQ0fPjzfrzX+/fffevbZZxUYGCgvLy/5+/ubL4B/v9EXREhIiKpUqWI3llMMcs/ZtmDBAjVt2lSenp7y8/OTv7+/vvzyS4fb7Nevn1k85s+fr1atWqlevXoO82jWrJkaN26sDz74QIZhmF8Vyc/u3bt13333yWq1ysfHR/7+/nr44YclFXwf/DuXOnXqyMXFxe45f//992rfvr2qVKmiatWqyd/f35yv8d/bGT9+vPz9/XXTTTfp4MGD2rBhg90fKzn69eunRYsWKT09XUuXLtU111yTb7HKzs7WlClTVK9ePXl4eKh69ery9/fXjh078n2Ob775pnx9fbV9+3a9/fbbCggIsFv+559/5jvvU85XXv79FbPo6Gj5+/urVq1aGjt2rEaPHq3u3bvneXx+Tp48qUqVKhXo4lBnzpyRpEvOdebn56d69epp7ty5+uabb3T8+HGdPHky37lEC2vfvn1KSUlRQECA/P397W7nzp3T8ePHJUl33HGHunfvrnHjxql69erq2rWr5s2bVyQ5SP/s/7p16+YpEAWdqysuLk4tW7aUp6enfH19za+e5/daqVmzpt19q9UqSQoNDc13PGees3379kn656t2/95Xc+fOVXp6+mV///bt2yfDMFSvXr086/jtt9/M/Z3j2muvvaoLvuT3XD09Pc2vn+ceL8h8bjlzs+V2zTXXFOixKF+o8dR4ajw1vqCo8aWvxhfmPW/kyJG68cYb9cMPP+jll19Ww4YNrzhnlC8cC3AswLFA6T8WyPHvpukff/whwzD00ksv5alZOY3cf9et3A4dOqS+ffvK19fXvFZWzjQsV/J7Ksm8JknupvbixYvVrFkz83f2avP+t549e+r77783G+8bNmzQ8ePHzaa9VPDjqfz8+eefqlevXp5ppv79uty/f79CQkLk6+tb4Nwv59FHH1VaWpo5ddDevXuVkJCgRx55pMi2URIqzMf2e/fu1XXXXVfoMxXeeOMNubi4aOTIkXkuHiL9M7fX5s2bNXLkSDVr1kze3t7Kzs5Wx44dL3uGyJVauHCh+vbtq+joaI0cOVIBAQFydXVVbGys9u/fn+9jHn74YY0aNUpbtmzRggULNHr06Mtu57HHHtOMGTN06623KikpSQ888ECeiwGdOXNGd9xxh3x8fDR+/HjVqVNHnp6e+umnn/T8889f8T749x82+/fvV7t27VS/fn299dZbCg0Nlbu7u7766itNmTIlz3YGDBigdu3a6ciRI5oyZYq6d++uzZs3m3+k5OjcubPc3d21cuVKzZs3T3369Mn3YjSvvfaaXnrpJT322GN65ZVX5OvrKxcXFw0dOjTf5/jzzz+bb147d+60+6TvSrz55pu68cYbdfHiRf3444+aMGGC3NzcCjR31MGDB1WzZs0CfWKYcyZC7jm48rN48WI99NBDioqKshv/9wFhYWVnZysgIEAfffRRvstzDootFouWLVumLVu26IsvvtDq1av12GOPafLkydqyZUuRXPzsSm3atEn33nuvWrdurRkzZig4OFiVKlXSvHnztGjRojzxrq6u+a7H0bjx/y8wk/O6mzRpUp55EXNcbj9kZ2fLYrHo66+/znd7/3587k/4r0R+27jc8yzs+lAxUeOp8dR4anxJoMY7dqU1vrDveQcOHDA/ZMhv/mpUXBwLcCzAsUDpPxbI8e+ak7OPR4wYkWebOerWrZvveFZWlu666y79/fffev7551W/fn1VqVJFf/31l/r27XvFr1EPDw9FR0drxYoVmjFjhpKTk/X999/rtddeK5K889OzZ0/FxMRo6dKlGjp0qJYsWSKr1aqOHTvabbMgx1OlTcOGDRUeHq6FCxfq0Ucf1cKFC+Xu7q4HHnjA2akVSoVooqenp2v79u12F9ooiKNHj2ratGmKjY1V1apV8xTV06dPa+3atRo3bpzGjBljjucc2F2Jo0ePKjU11e7N6ffff5ck8+ugy5Yt03XXXafly5fbvVFe6g3Wz89P9957r/lVsZyvdl7KQw89pJEjR+rZZ59Vjx498v1kd8OGDTp16pSWL19udxHAxMTEAj3fHPv27bP7NPKPP/5Qdna2+Zy/+OILpaen6/PPP7c708XRV1Xq1q1rvlm1b99eNWvW1KJFi/JcbNDNzU2PPPKIXn31Ve3evVv//e9/813fsmXL1LZtW73//vt242fOnMlzhk1qaqr69eunhg0bqlWrVpo4caLuu+8+3XLLLWZMrVq1tHfv3jzbyfk6XK1atezGw8PDzatrd+rUSX/99ZfeeOMNvfTSS5e8An1mZqZ++eUXuzfdS/n1119lsVguezbWTTfdpDlz5igyMlLjx49Xy5YtNWnSJH3//fcF2o4jderU0bfffqvbbrutQH/MtWzZUi1bttSrr76qRYsW6aGHHtInn3yiAQMGXNHXjHLUqlVLu3btkmEYduvJ7//s3z799FN5enpq9erVdl+TyzkzpKjUqVNHkuTj46P27dtfMtbRvqhTp44Mw1BYWFi+X90EygJqPDWeGk+NLwxqfOlSmPe87Oxs9e3bVz4+Pho6dKhee+019ejRw7y4LCoujgU4FuBYoGwcCzhy3XXXSfpnapHL1b1/27lzp37//XctWLBAjz76qDm+Zs2aPLGFPX7o2bOnFixYoLVr1+q3336TYRh2Z4VfTd75CQsL06233qrFixdr8ODBWr58uaKjo+2OOQp7PJVbrVq1tGPHDmVnZ9u9rv79uqxTp45Wr16tv//+u1Bno19u/z766KMaPny4jh07pkWLFqlz58665pprCvUcnK1CTOeS8/Wddu3aFepx48aNU2BgYJ45d3PknF3x7zMmp06dekV5Sv+8CeaeTysjI0Pvvfee/P39FR4e7nC7W7duVXx8/CXX/dhjj2nHjh26//77C3QWj6+vr7p27aodO3aYVwr/t/xyycjI0IwZMy67/tymT59ud/+dd96R9E8BcbSdlJSUAv3RknPw4OjrR4899ph27typ1q1bm2+C/+bq6prn/3np0qX5zm/1/PPP69ChQ1qwYIHeeust1a5dW3369LHb/t13360ffvjB7v8sNTVVs2fPVu3atS/71dS0tDRlZmYqMzPzknHffPONUlJS1LVr10vGSf+89j799FPdeuutl3192Gw2PfLII7r33ns1evRotW/fXsHBwZfdxuU88MADysrK0iuvvJJvfjlfPzt9+nSe/4+cM7Vy9nPO19lyHlMYd999t44ePaply5aZY+fPn9fs2bMv+1hXV1dZLBZlZWWZYwcPHtTKlSsLncelhIeHq06dOnrzzTd17ty5PMtPnDhh/pxzkP7vfdGtWze5urpq3LhxefanYRj5no0DlDbU+H9Q46nxl0KN/z/U+NJV4wvznvfWW29p8+bNmj17tl555RW1atVKTz311GUbhSj/OBb4B8cCHAtcSmk4FnAkICBAbdq00Xvvvadjx47lWZ677v1bfq8dwzA0bdq0PLGOaqYj7du3l6+vrxYvXqzFixfr1ltvtfsw6GrydqRnz57asmWL/vvf/+rkyZN2TXup4MdT+bn77ruVlJRkN0VNZmam3nnnHXl7e5tT4HTv3l2GYWjcuHF51nGpb4xfbv/27t1bFotFzz77rA4cOGBOC1WWlOsz0VNTU/XOO+9o/Pjx5pviwoUL7WKSk5N17tw5LVy4UHfddZfdPGjffPONPvroI4fzA/r4+Kh169aaOHGiLl68qGuvvVbffPNNoT+VzS0kJERvvPGGDh48qOuvv16LFy/W9u3bNXv2bFWqVEmS1KVLFy1fvlz33XefOnfurMTERM2aNUsNGzbM90A7R8eOHXXixIlCfQ12/vz5mj59ep5PX3O0atVK11xzjfr06aNnnnlGFotFH374YYGmYsgtMTFR9957rzp27Kj4+HgtXLhQDz74oG688UZJ/1y8w93dXffcc4+eeOIJnTt3TnPmzFFAQIDdm9VXX32luXPnqlWrVvL19dWBAwc0Z84cValSRffdd1++227QoIFOnjx5yU/xunTpovHjx6tfv35q1aqVdu7cqY8++ihPEV63bp1mzJihl19+Wc2bN5f0z9lJbdq00UsvvaSJEydKkl544QV9/PHH6tSpk5555hn5+vpqwYIFSkxM1Keffprn0+Y1a9boyJEj5te7PvroI917772XnLty8eLFGjFihDw8PJSWlmb32k9JSVFWVpZWrlyp6Ohoffvtt3rppZe0Y8cOffHFFw7XmWPQoEFKS0vT3LlzLxtbGHfccYeeeOIJxcbGavv27erQoYMqVaqkffv2aenSpZo2bZp69OihBQsWaMaMGbrvvvtUp04dnT17VnPmzJGPj4/uvvtuSf98Raxhw4ZavHixrr/+evn6+qpx48Zq3LjxZfN4/PHH9e677+rRRx9VQkKCgoOD9eGHHxZonrnOnTvrrbfeUseOHfXggw/q+PHjmj59uurWrasdO3Zc9T7K4eLiorlz56pTp05q1KiR+vXrp2uvvVZ//fWX1q9fLx8fH/P/MueA/D//+Y969eqlSpUq6Z577lGdOnU0YcIExcTE6ODBg4qOjlbVqlWVmJioFStWaODAgRoxYkSR5QwUJWq8PWo8NT4HNf7SqPGlq8YX9D3vt99+00svvaS+ffvqnnvukfTPe1izZs309NNPa8mSJc56CnAijgXscSzAsUCO0noscCnTp0/X7bffriZNmujxxx/Xddddp+TkZMXHx+vIkSP65Zdf8n1c/fr1VadOHY0YMUJ//fWXfHx89Omnn+Z7naycmvnMM88oKipKrq6u6tWrl8OcKlWqpG7duumTTz5Ramqq3nzzzSLL25EHHnhAI0aM0IgRI+Tr65vnDPeCHk/lZ+DAgXrvvffUt29fJSQkqHbt2lq2bJm+//57TZ061fw2Stu2bfXII4/o7bff1r59+8zpqzZt2qS2bdtq8ODB+a6/WbNmcnV11RtvvKGUlBR5eHjozjvvNK8Z4O/vr44dO2rp0qWqVq2aOnfuXKh9UyoY5VhiYqIhqcC39evXG4ZhGPPmzTMkGc2aNTOys7PzrG/evHnm2JEjR4z77rvPqFatmmG1Wo3777/fOHr0qCHJePnll824l19+2ZBknDhxwmG+d9xxh9GoUSNj27ZtRkREhOHp6WnUqlXLePfdd+3isrOzjddee82oVauW4eHhYdx0001GXFyc0adPH6NWrVp58p00adIl90/u5ZfLM7/l33//vdGyZUvDy8vLCAkJMUaNGmWsXr3abp86krO+X3/91ejRo4dRtWpV45prrjEGDx5spKWl2cV+/vnnRtOmTQ1PT0+jdu3axhtvvGH897//NSQZiYmJhmEYxq5du4wOHToYfn5+hru7uxEaGmr06tXL2LFjh926JBmDBg1ymNe/l1+4cMF47rnnjODgYMPLy8u47bbbjPj4eOOOO+4w7rjjDsMwDMNmsxm1atUymjdvbly8eNFufcOGDTNcXFyM+Ph4c2z//v1Gjx49jGrVqhmenp7GrbfeasTFxdk9bv369XavUTc3N6NWrVrGM888Y5w+ffqS+7ZWrVqXfc3nvF6GDBlitG7d2li1alWe9eT8H+X4+OOPDYvFkie2T58+RpUqVS6ZU0HNnj3bCA8PN7y8vIyqVasaTZo0MUaNGmUcPXrUMAzD+Omnn4zevXsbNWvWNDw8PIyAgACjS5cuxrZt2+zWs3nzZiM8PNxwd3fP8zt5OX/++adx7733GpUrVzaqV69uPPvss8aqVavyvK7//XtnGIbx/vvvG/Xq1TM8PDyM+vXrG/PmzcuzHw0j/9eho9/bnNfC0qVL7cZ//vlno1u3boafn5/h4eFh1KpVy3jggQeMtWvX2sW98sorxrXXXmu4uLjY/c4YhmF8+umnxu23325UqVLFqFKlilG/fn1j0KBBxt69e82YnPenK+HofcXRa+bf28rvvdfRY/PbzyifqPHUeGo8NZ4a/4+yXOML8p6XmZlp3HLLLUaNGjWMM2fO2K1v2rRphiRj8eLFV5Q/yjaOBTgW4FigbB0LXO41u3//fuPRRx81goKCjEqVKhnXXnut0aVLF2PZsmVmTM4+y/3a+/XXX4327dsb3t7eRvXq1Y3HH3/c+OWXX/L8PmdmZhpDhgwx/P39DYvFYve8HR1LrFmzxpBkWCwW4/Dhw1ecd2HcdttthiRjwIABDmMudzxlGIbd6zdHcnKy0a9fP6N69eqGu7u70aRJE7t9lCMzM9OYNGmSUb9+fcPd3d3w9/c3OnXqZCQkJJgxtWrVMvr06WP3uDlz5hjXXXed4erqmu97xJIlSwxJxsCBAwu8P0oTi2EU8iPEMuTgwYMKCwvT+vXrzfmlriauuLVp00YnT57Url27nJZDSRs7dqzGjRunEydOOPz0G1emdu3aGjt2rPr27Zvv8g0bNqhv3752V0QHgLKCGl/6UeOLDzUeADgWKAs4Fig+HAugLPrss88UHR2t7777TpGRkc5Op9AqxJzoAAAAAAAAAADnmDNnjq677jrdfvvtzk7lipTrOdG9vb310EMP2c17djVxQFmSM5eoI4GBgQ7njSuvMjIy9Pfff18yxmq1Fvoq1xXVuXPnLjkvo/TPvGc5F3sBihI1HhUZNT4vanzRosajLOBYABUZxwJlR1JS0iWXe3l5yWq1llA2zvHJJ59ox44d+vLLLzVt2jRZLBZnp3RFyvV0LmUNX+/i610oXhs2bFDbtm0vGTNv3jyHX4mDvZzf30tJTExU7dq1SyYhoBSjxlPjUbyo8UWLGg8UPY4FOBZAxXS5hnGfPn00f/78kknGSSwWi7y9vdWzZ0/NmjVLbm5l85xumugAKozTp08rISHhkjGNGjVScHBwCWVUth04cEAHDhy4ZMztt98uT0/PEsoIAFBRUeOLFjUeAICi8e23315yeUhIiBo2bFhC2eBq0EQHAAAAAAAAAMCBUnf+fHZ2to4ePaqqVauW2TlyAAAVh2EYOnv2rEJCQuTiwvW6C4JaDwAoK6jzV4ZaDwAoKwpa60tdE/3o0aMKDQ11dhoAABTK4cOHVaNGDWenUSZQ6wEAZQ11vnCo9QCAsuZytb7UNdGrVq0q6Z/EfXx8nJwNAACXZrPZFBoaatYvXB61HgBQVlDnrwy1HgBQVhS01pe6JnrOV718fHwotgCAMoOvKhcctR4AUNZQ5wuHWg8AKGsuV+uZ1A0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHHBzdgIAil9WVpY2bdqkY8eOKTg4WJGRkXJ1dXV2WgAAoIhQ6wEAKL+o84DzcSY6UM4tX75cdevWVdu2bfXggw+qbdu2qlu3rpYvX+7s1AAAQBGg1gMAUH5R54HSgSY6UI4tX75cPXr0UJMmTRQfH6+zZ88qPj5eTZo0UY8ePSi6AACUcdR6AADKL+o8UHpYDMMwnJ1EbjabTVarVSkpKfLx8XF2OkCZlZWVpbp166pJkyZauXKlXFz+7zOz7OxsRUdHa9euXdq3bx9fAwOuAnWr8NhnQNGg1gPFj5p1ZdhvwNWjzgMlo6A1izPRgXJq06ZNOnjwoF588UW7YitJLi4uiomJUWJiojZt2uSkDAEAwNWg1gMAUH5R54HShSY6UE4dO3ZMktS4ceN8l+eM58QBAICyhVoPAED5RZ0HShea6EA5FRwcLEnatWtXvstzxnPiAABA2UKtBwCg/KLOA6ULTXSgnIqMjFTt2rX12muvKTs7225Zdna2YmNjFRYWpsjISCdlCAAArga1HgCA8os6D5QuNNGBcsrV1VWTJ09WXFycoqOj7a7kHR0drbi4OL355ptcgAQAgDKKWg8AQPlFnQdKFzdnJwCg+HTr1k3Lli3Tc889p1atWpnjYWFhWrZsmbp16+bE7AAAwNWi1gMAUH5R54HSw2IYhuHsJHKz2WyyWq1KSUmRj4+Ps9MByoWsrCxt2rRJx44dU3BwsCIjI/m0Gigi1K3CY58BRY9aDxQPataVYb8BRYs6DxSfgtYszkQHKgBXV1e1adPG2WkAAIBiQq0HAKD8os4Dzsec6AAAAAAAAAAAOMCZ6AAAAAAAAEApxXQugPNxJjoAAAAAAABQCi1fvlx169ZV27Zt9eCDD6pt27aqW7euli9f7uzUgAqFJjoAAAAAAABQyixfvlw9evRQkyZNFB8fr7Nnzyo+Pl5NmjRRjx49aKQDJYgmOgAAAAAAAFCKZGVl6bnnnlOXLl20cuVKtWzZUt7e3mrZsqVWrlypLl26aMSIEcrKynJ2qkCFQBMdAAAAAAAAKEU2bdqkgwcP6sUXX5SLi337zsXFRTExMUpMTNSmTZuclCFQsdBEBwAAAAAAAEqRY8eOSZIaN26c7/Kc8Zw4AMWLJjoAAAAAAABQigQHB0uSdu3ale/ynPGcOADFiyY6AAAAAAAAUIpERkaqdu3aeu2115SdnW23LDs7W7GxsQoLC1NkZKSTMgQqFproAAAAAAAAQCni6uqqyZMnKy4uTtHR0YqPj9fZs2cVHx+v6OhoxcXF6c0335Srq6uzUwUqBJroAADAlJWVpZdeeklhYWHy8vJSnTp19Morr8gwDDPGMAyNGTNGwcHB8vLyUvv27bVv3z4nZg0AAACUP926ddOyZcu0c+dOtWrVSj4+PmrVqpV27dqlZcuWqVu3bs5OEagw3JydAAAAKD3eeOMNzZw5UwsWLFCjRo20bds29evXT1arVc8884wkaeLEiXr77be1YMEChYWF6aWXXlJUVJR+/fVXeXp6OvkZAAAAAOVHt27d1LVrV23atEnHjh1TcHCwIiMjOQMdKGE00QEAgGnz5s3q2rWrOnfuLEmqXbu2Pv74Y/3www+S/jkLferUqRo9erS6du0qSfrggw8UGBiolStXqlevXnnWmZ6ervT0dPO+zWYrgWcCAAAAlA+urq5q06aNs9MAKjSmcwEAAKZWrVpp7dq1+v333yVJv/zyi/73v/+pU6dOkqTExEQlJSWpffv25mOsVqtatGih+Pj4fNcZGxsrq9Vq3kJDQ4v/iQAAAAAAUEQ4Ex0AAJheeOEF2Ww21a9fX66ursrKytKrr76qhx56SJKUlJQkSQoMDLR7XGBgoLns32JiYjR8+HDzvs1mo5EOAAAAACgzaKIDAADTkiVL9NFHH2nRokVq1KiRtm/frqFDhyokJER9+vS5onV6eHjIw8OjiDMFAAAAAKBk0EQHAACmkSNH6oUXXjDnNm/SpIn+/PNPxcbGqk+fPgoKCpIkJScnKzg42HxccnKymjVr5oyUAQAAAAAoVoWaE33mzJlq2rSpfHx85OPjo4iICH399dfm8jZt2shisdjdnnzyySJPGgAAFI/z58/LxcX+8MDV1VXZ2dmSpLCwMAUFBWnt2rXmcpvNpq1btyoiIqJEcwUAAAAAoCQU6kz0GjVq6PXXX1e9evVkGIYWLFigrl276ueff1ajRo0kSY8//rjGjx9vPqZy5cpFmzEAACg299xzj1599VXVrFlTjRo10s8//6y33npLjz32mCTJYrFo6NChmjBhgurVq6ewsDC99NJLCgkJUXR0tHOTBwAAAACgGBSqiX7PPffY3X/11Vc1c+ZMbdmyxWyiV65c2fyqNwAAKFveeecdvfTSS3r66ad1/PhxhYSE6IknntCYMWPMmFGjRik1NVUDBw7UmTNndPvtt2vVqlXy9PR0YuYAAAAAABQPi2EYxpU8MCsrS0uXLlWfPn30888/q2HDhmrTpo12794twzAUFBSke+65Ry+99NIlz0ZPT09Xenq6ed9msyk0NFQpKSny8fG5ktQAACgxNptNVquVulUI7DMAQFlBzboy7DcAQFlR0JpV6AuL7ty5UxEREbpw4YK8vb21YsUKNWzYUJL04IMPqlatWgoJCdGOHTv0/PPPa+/evVq+fLnD9cXGxmrcuHGFTQMAAAAAAAAAgGJX6DPRMzIydOjQIaWkpGjZsmWaO3euNm7caDbSc1u3bp3atWunP/74Q3Xq1Ml3fZyJDgAoyzjTqvDYZwCAsoKadWXYbwCAsqLYzkR3d3dX3bp1JUnh4eH68ccfNW3aNL333nt5Ylu0aCFJl2yie3h4yMPDo7BpAAAAAAAAAABQ7FyudgXZ2dl2Z5Lntn37dklScHDw1W4GAAAAAAAAAIASV6gz0WNiYtSpUyfVrFlTZ8+e1aJFi7RhwwatXr1a+/fv16JFi3T33XfLz89PO3bs0LBhw9S6dWs1bdq0uPIHAAAAAAAAAKDYFKqJfvz4cT366KM6duyYrFarmjZtqtWrV+uuu+7S4cOH9e2332rq1KlKTU1VaGiounfvrtGjRxdX7gAAAAAAAAAAFKtCNdHff/99h8tCQ0O1cePGq04IAAAAAAAAAIDS4qrnRAcAAAAAAAAAoLyiiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA44ObsBAAAAAAAAADkLysrS5s2bdKxY8cUHBysyMhIubq6OjstoELhTHQAAAAAAACgFFq+fLnq1q2rtm3b6sEHH1Tbtm1Vt25dLV++3NmpARUKTXQAAAAAAACglFm+fLl69OihJk2aKD4+XmfPnlV8fLyaNGmiHj160EgHShBNdAAAAAAAAKAUycrK0nPPPacuXbpo5cqVatmypby9vdWyZUutXLlSXbp00YgRI5SVleXsVIEKgSY6AAAAAAAAUIps2rRJBw8e1IsvvigXF/v2nYuLi2JiYpSYmKhNmzY5KUOgYqGJDgAAAAAAAJQix44dkyQ1btw43+U54zlxAIoXTXQAAAAAAACgFAkODpYk7dq1K9/lOeM5cQCKF010AAAAAAAAoBSJjIxU7dq19dprryk7O9tuWXZ2tmJjYxUWFqbIyEgnZQhULDTRAQAAAAAAgFLE1dVVkydPVlxcnKKjoxUfH6+zZ88qPj5e0dHRiouL05tvvilXV1dnpwpUCG7OTgAAAAAAAACAvW7dumnZsmV67rnn1KpVK3M8LCxMy5YtU7du3ZyYHVCx0EQHAAAAAAAASqFu3bqpa9eu2rRpk44dO6bg4GBFRkZyBjpQwmiiAwAAAAAAAKWUq6ur2rRp4+w0gAqNOdEBAAAAAAAAAHCAJjoAAAAAAMUkNjZWt9xyi6pWraqAgABFR0dr7969djEXLlzQoEGD5OfnJ29vb3Xv3l3Jycl2MYcOHVLnzp1VuXJlBQQEaOTIkcrMzLSL2bBhg5o3by4PDw/VrVtX8+fPz5PP9OnTVbt2bXl6eqpFixb64YcfCp0LAAAVDU10AAAAAACKycaNGzVo0CBt2bJFa9as0cWLF9WhQwelpqaaMcOGDdMXX3yhpUuXauPGjTp69KjdBQOzsrLUuXNnZWRkaPPmzVqwYIHmz5+vMWPGmDGJiYnq3Lmz2rZtq+3bt2vo0KEaMGCAVq9ebcYsXrxYw4cP18svv6yffvpJN954o6KionT8+PEC5wIAQEVkMQzDcHYSudlsNlmtVqWkpMjHx8fZ6QAAcEnUrcJjnwEAyoriqFknTpxQQECANm7cqNatWyslJUX+/v5atGiRevToIUnas2ePGjRooPj4eLVs2VJff/21unTpoqNHjyowMFCSNGvWLD3//PM6ceKE3N3d9fzzz+vLL7/Url27zG316tVLZ86c0apVqyRJLVq00C233KJ3331XkpSdna3Q0FANGTJEL7zwQoFyyU96errS09Pt9ltoaCi1HgBQ6hW01nMmOgAAAAAAJSQlJUWS5OvrK0lKSEjQxYsX1b59ezOmfv36qlmzpuLj4yVJ8fHxatKkidlAl6SoqCjZbDbt3r3bjMm9jpyYnHVkZGQoISHBLsbFxUXt27c3YwqSS35iY2NltVrNW2hoaOF3DAAApRhNdAAAAAAASkB2draGDh2q2267TY0bN5YkJSUlyd3dXdWqVbOLDQwMVFJSkhmTu4Geszxn2aVibDab0tLSdPLkSWVlZeUbk3sdl8slPzExMUpJSTFvhw8fLsDeAACg7HBzdgIAAAAAAFQEgwYN0q5du/S///3P2akUKQ8PD3l4eDg7DQAAig1nogMAAAAAUMwGDx6suLg4rV+/XjVq1DDHg4KClJGRoTNnztjFJycnKygoyIxJTk7Oszxn2aVifHx85OXlperVq8vV1TXfmNzruFwuAABURDTRAQAAAAAoJoZhaPDgwVqxYoXWrVunsLAwu+Xh4eGqVKmS1q5da47t3btXhw4dUkREhCQpIiJCO3fu1PHjx82YNWvWyMfHRw0bNjRjcq8jJyZnHe7u7goPD7eLyc7O1tq1a82YguQCoORlZWVpw4YN+vjjj7VhwwZlZWU5OyWgwmE6FwAAAAAAismgQYO0aNEiffbZZ6patao5t7jVapWXl5esVqv69++v4cOHy9fXVz4+PhoyZIgiIiLUsmVLSVKHDh3UsGFDPfLII5o4caKSkpI0evRoDRo0yJxG5cknn9S7776rUaNG6bHHHtO6deu0ZMkSffnll2Yuw4cPV58+fXTzzTfr1ltv1dSpU5Wamqp+/fqZOV0uFwAla/ny5Xruued08OBBc6x27dqaPHmyunXr5rzEgAqGJjoAAAAAAMVk5syZkqQ2bdrYjc+bN099+/aVJE2ZMkUuLi7q3r270tPTFRUVpRkzZpixrq6uiouL01NPPaWIiAhVqVJFffr00fjx482YsLAwffnllxo2bJimTZumGjVqaO7cuYqKijJjevbsqRMnTmjMmDFKSkpSs2bNtGrVKruLjV4uFwAlZ/ny5erRo4c8PT3txpOTk9WjRw8tW7aMRjpQQiyGYRjOTiI3m80mq9WqlJQU+fj4ODsdAAAuibpVeOwzAEBZQc26Muw34OplZWUpJCREx48fV5cuXfSf//xHjRs31q5du/Tqq68qLi5OAQEBOnr0qFxdXZ2dLlBmFbRmMSc6AAAAAAAAUIps2LBBx48f1+23367PPvtMLVu2lLe3t1q2bKnPPvtMt912m44fP64NGzY4O1WgQqCJDgAAAAAAAJQiOc3xcePGyTAMuwuLGoahsWPH2sUBKF7MiQ4AAAAAAACUQps2bVL//v3zXFi0T58+zksKqIA4Ex0AAAAAAAAoRXIuRjx27Fg1btxY8fHxOnv2rOLj49W4cWONGzfOLg5A8aKJDgAAAAAAAJQikZGRcnH5v7adYRjmLYeLi4siIyOdkR5Q4TCdCwAAAAAAAFCKbN68WdnZ2ZKktWvXKi4uzlxWuXJlSVJ2drY2b97M2ehACeBMdAAAAAAAAKAUOXbsmCRp4cKFCggIsFsWEBCghQsX2sUBKF6ciQ4AAAAAAACUIsHBwZKkOnXq6Pfff9eMGTO0f/9+1alTR08//bQSEhLs4gAUr0KdiT5z5kw1bdpUPj4+8vHxUUREhL7++mtz+YULFzRo0CD5+fnJ29tb3bt3V3JycpEnDQAAAAAAAJRXkZGRql27toYMGaIbbrhBw4YN07vvvqthw4bphhtu0DPPPKOwsDDmRAdKSKGa6DVq1NDrr7+uhIQEbdu2TXfeeae6du2q3bt3S5KGDRumL774QkuXLtXGjRt19OhRdevWrVgSBwAAAAAAAMojV1dX3X///dq2bZvS0tI0e/ZsHT16VLNnz1ZaWpq2bdumHj16yNXV1dmpAhWCxch9Wd8r4Ovrq0mTJqlHjx7y9/fXokWL1KNHD0nSnj171KBBA8XHx6tly5b5Pj49PV3p6enmfZvNptDQUKWkpMjHx+dqUgMAoNjZbDZZrVbqViGwzwAAZQU168qw34Crl5WVpbp166p69eo6ceKE/vzzT3NZ7dq1Vb16dZ06dUr79u2jkQ5chYLWrCu+sGhWVpY++eQTpaamKiIiQgkJCbp48aLat29vxtSvX181a9ZUfHy8w/XExsbKarWat9DQ0CtNCQAAAAAAACjzNm3apIMHD+qdd97R/v37tX79ei1atEjr16/XH3/8obfffluJiYnatGmTs1MFKoRCN9F37twpb29veXh46Mknn9SKFSvUsGFDJSUlyd3dXdWqVbOLDwwMVFJSksP1xcTEKCUlxbwdPny40E8CAAAAAAAAKC+OHTsmSWrcuLGysrK0fft2bd68Wdu3b1dWVpYaN25sFwegeLkV9gE33HCDtm/frpSUFC1btkx9+vTRxo0brzgBDw8PeXh4XPHjAQAAAAAAgPIkODhYkvTkk09q8eLFyszMNJeNHDlSDzzwgF0cgOJV6Ca6u7u76tatK0kKDw/Xjz/+qGnTpqlnz57KyMjQmTNn7M5GT05OVlBQUJElDAAAAAAAAJRnkZGRslqt+uijj2SxWOyWZWVladGiRbJarYqMjHRShkDFcsVzoufIzs5Wenq6wsPDValSJa1du9ZctnfvXh06dEgRERFXuxkAAAAAAACgQsjKypLNZpMk+fv767nnntP06dP13HPPyd/fX9I/F0TMyspyZppAhVGoM9FjYmLUqVMn1axZU2fPntWiRYu0YcMGrV69WlarVf3799fw4cPl6+srHx8fDRkyRBEREWrZsmVx5Q8AAAAAAACUK++8844Mw5C/v79OnTqlyZMnm8vc3Nzk7++vEydO6J133tFzzz3nxEyBiqFQTfTjx4/r0Ucf1bFjx2S1WtW0aVOtXr1ad911lyRpypQpcnFxUffu3ZWenq6oqCjNmDGjWBIHAAAAAAAAyqP//e9/kqQTJ06oc+fOqlu3rtLS0uTl5aU//vhDX375pRlHEx0ofoVqor///vuXXO7p6anp06dr+vTpV5UUAAAAAAAAUFFVqVJFkhQaGqrdu3ebTXNJql27tkJDQ3X48GEzDkDxuuo50QEAAAAAAAAUnWbNmkmSDh8+rMaNGys+Pl5nz55VfHy8GjdurMOHD9vFAShehToTHQAAAAAAAEDxCgwMNH/eunWrli5dqoSEBB04cEBbt27NNw5A8aGJDgAAAAAAAJQip06dMn8+ceKE3nrrrcvGASg+TOcCAAAAAAAAlCL+/v5FGgfg6tBEBwAAAAAAAEqRoKAg82cXF/v2Xe77ueMAFB+a6AAAAAAAAEApkpWVZf6cnZ1ttyz3/dxxAIoPc6IDAAAAAAAApcjGjRvNn/39/dW2bVtVqVJFqampWr9+vU6cOGHGdejQwVlpAhUGTXQAAAAAAACgFPnzzz8lSdWrV9fff/+tJUuWmMtcXV3l5+enU6dOmXEAihfTuQAAAAAAAACl0MmTJ1WpUiW7sUqVKunUqVNOygiomDgTHQAAAAAAAChFatasaf7s7e2tQYMG6brrrtOBAwe0YMECXbhwIU8cgOJDEx0AAAAAAAAoRa655hrz55MnT2ry5MmXjQNQfJjOBQAAAAAAAChFzpw5Y/7s4mLfvst9P3ccgOJDEx0AAAAAAAAopbKzsy95H0Dxo4kOAAAAAAAAlCK+vr7mzxaLxW5Z7vu54wAUH5roAAAAAAAAQClSvXp182c3N/tLGua+nzsOQPGhiQ4AAAAAAACUIj/++KP588WLF+2W5b6fOw5A8aGJDgAAAAAAAJQiuec99/T0tFvm5eWVbxyA4kMTHQAAAAAAACgjDMNwdgpAhUMTHQAAAAAAAChFrFZrkcYBuDo00QEAgJ2//vpLDz/8sPz8/OTl5aUmTZpo27Zt5nLDMDRmzBgFBwfLy8tL7du31759+5yYMQAAAFC+uLj8X8vO29tbfn5+qly5svz8/OTt7Z1vHIDiw28aAAAwnT59WrfddpsqVaqkr7/+Wr/++qsmT56sa665xoyZOHGi3n77bc2aNUtbt25VlSpVFBUVpQsXLjgxcwAAAKD88PX1lSRZLBadPHlSp06d0vnz53Xq1CmdPHlSFovFLg5A8XJzdgIAAKD0eOONNxQaGqp58+aZY2FhYebPhmFo6tSpGj16tLp27SpJ+uCDDxQYGKiVK1eqV69eJZ4zAAAAUN4EBQVJcjz/ec54ThyA4sWZ6AAAwPT555/r5ptv1v3336+AgADddNNNmjNnjrk8MTFRSUlJat++vTlmtVrVokULxcfH57vO9PR02Ww2uxsAAAAAx3JP2VIUcQCuDk10AABgOnDggGbOnKl69epp9erVeuqpp/TMM89owYIFkqSkpCRJUmBgoN3jAgMDzWX/FhsbK6vVat5CQ0OL90kAAAAAZVxMTIz5s7u7u92y3PdzxwEoPjTRAQCAKTs7W82bN9drr72mm266SQMHDtTjjz+uWbNmXfE6Y2JilJKSYt4OHz5chBkDAAAA5c+BAwfMny9evGi3LPf93HEAig9NdAAAYAoODlbDhg3txho0aKBDhw5J+r85F5OTk+1ikpOTHc7H6OHhIR8fH7sbAAAAAMdyLhwq5Z0XPff93HEAig9NdAAAYLrtttu0d+9eu7Hff/9dtWrVkvTPRUaDgoK0du1ac7nNZtPWrVsVERFRorkCAAAA5dUtt9xSpHEArg5NdAAAYBo2bJi2bNmi1157TX/88YcWLVqk2bNna9CgQZL+OdNl6NChmjBhgj7//HPt3LlTjz76qEJCQhQdHe3c5AEAAIBy4rrrrivSOABXx83ZCQAAgNLjlltu0YoVKxQTE6Px48crLCxMU6dO1UMPPWTGjBo1SqmpqRo4cKDOnDmj22+/XatWrZKnp6cTMwcAAADKj/Xr1xdpHICrYzH+PbGSk9lsNlmtVqWkpDBnKgCg1KNuFR77DABQVlCzrgz7Dbh6lStXVlpa2mXjvLy8dP78+RLICCifClqzmM4FAAAAAAAAKEXc3Ao2eURB4wBcHZroAAAAAAAAQCly0003FWkcgKtDEx0AAAAAAAAoRTp06FCkcQCuDk10AAAAAAAAoBTZvXt3kcYBuDo00QEAAAAAAIBS5KeffirSOABXhyY6AAAAAAAAUIocPny4SOMAXB2a6AAAAAAAAEApkp6eXqRxAK5OoZrosbGxuuWWW1S1alUFBAQoOjpae/futYtp06aNLBaL3e3JJ58s0qQBAAAAAACA8io7O7tI4wBcnUI10Tdu3KhBgwZpy5YtWrNmjS5evKgOHTooNTXVLu7xxx/XsWPHzNvEiROLNGkAAAAAAAAAAEqCW2GCV61aZXd//vz5CggIUEJCglq3bm2OV65cWUFBQUWTIQAAAAAAAFCBGIZRpHEArs5VzYmekpIiSfL19bUb/+ijj1S9enU1btxYMTExOn/+vMN1pKeny2az2d0AAAAAAAAAACgNCnUmem7Z2dkaOnSobrvtNjVu3Ngcf/DBB1WrVi2FhIRox44dev7557V3714tX7483/XExsZq3LhxV5oGAAAAAAAAAADF5oqb6IMGDdKuXbv0v//9z2584MCB5s9NmjRRcHCw2rVrp/3796tOnTp51hMTE6Phw4eb9202m0JDQ680LQAAAAAAAKBMc3FxKdBFQ11crmqSCQAFdEVN9MGDBysuLk7fffedatSoccnYFi1aSJL++OOPfJvoHh4e8vDwuJI0AAAAAAAAgHKnIA30wsQBuDqFaqIbhqEhQ4ZoxYoV2rBhg8LCwi77mO3bt0uSgoODryhBAAAAAAAAAACcpVBN9EGDBmnRokX67LPPVLVqVSUlJUmSrFarvLy8tH//fi1atEh33323/Pz8tGPHDg0bNkytW7dW06ZNi+UJAAAAAAAAAABQXArVRJ85c6YkqU2bNnbj8+bNU9++feXu7q5vv/1WU6dOVWpqqkJDQ9W9e3eNHj26yBIGAAAAAAAAAKCkFOrqA4Zh5Hvr27evJCk0NFQbN27UqVOndOHCBe3bt08TJ06Uj49PceQOAAAAAECp99133+mee+5RSEiILBaLVq5cabe8b9++slgsdreOHTvaxfz999966KGH5OPjo2rVqql///46d+6cXcyOHTsUGRkpT09PhYaGauLEiXlyWbp0qerXry9PT081adJEX331ld1ywzA0ZswYBQcHy8vLS+3bt9e+ffuKZkcAAFBGcQlfAAAAAACKUWpqqm688UZNnz7dYUzHjh117Ngx8/bxxx/bLX/ooYe0e/durVmzRnFxcfruu+80cOBAc7nNZlOHDh1Uq1YtJSQkaNKkSRo7dqxmz55txmzevFm9e/dW//799fPPPys6OlrR0dHatWuXGTNx4kS9/fbbmjVrlrZu3aoqVaooKipKFy5cKMI9AgBA2WIxDMNwdhK52Ww2Wa1WpaSkcAY7AKDUo24VHvsMAFBWFEfNslgsWrFihaKjo82xvn376syZM3nOUM/x22+/qWHDhvrxxx918803S5JWrVqlu+++W0eOHFFISIhmzpyp//znP0pKSpK7u7sk6YUXXtDKlSu1Z88eSVLPnj2VmpqquLg4c90tW7ZUs2bNNGvWLBmGoZCQED333HMaMWKEJCklJUWBgYGaP3++evXqVaDnSK0Hrp7FYilwbClr7QFlSkFrFmeiAwAAAADgZBs2bFBAQIBuuOEGPfXUUzp16pS5LD4+XtWqVTMb6JLUvn17ubi4aOvWrWZM69atzQa6JEVFRWnv3r06ffq0GdO+fXu77UZFRSk+Pl6SlJiYqKSkJLsYq9WqFi1amDH5SU9Pl81ms7sBAFCe0EQHAAAAAMCJOnbsqA8++EBr167VG2+8oY0bN6pTp07KysqSJCUlJSkgIMDuMW5ubvL19VVSUpIZExgYaBeTc/9yMbmX535cfjH5iY2NldVqNW+hoaGFev4AAJR2bs5OAAAAAACAiiz3NClNmjRR06ZNVadOHW3YsEHt2rVzYmYFExMTo+HDh5v3bTYbjXQAQLnCmegAAAAAAJQi1113napXr64//vhDkhQUFKTjx4/bxWRmZurvv/9WUFCQGZOcnGwXk3P/cjG5l+d+XH4x+fHw8JCPj4/dDQCA8oQmOgAAAAAApciRI0d06tQpBQcHS5IiIiJ05swZJSQkmDHr1q1Tdna2WrRoYcZ89913unjxohmzZs0a3XDDDbrmmmvMmLVr19pta82aNYqIiJAkhYWFKSgoyC7GZrNp69atZgwAABURTXSgAkhLS9PgwYMVFRWlwYMHKy0tzdkpAQCAIkStB0q3c+fOafv27dq+fbukfy7guX37dh06dEjnzp3TyJEjtWXLFh08eFBr165V165dVbduXUVFRUmSGjRooI4dO+rxxx/XDz/8oO+//16DBw9Wr169FBISIkl68MEH5e7urv79+2v37t1avHixpk2bZjfNyrPPPqtVq1Zp8uTJ2rNnj8aOHatt27Zp8ODBkiSLxaKhQ4dqwoQJ+vzzz7Vz5049+uijCgkJUXR0dInuMwAAShOLYRiGs5PIzWazyWq1KiUlha+AAUUgOjpan332WZ7xrl27auXKlSWfEFDOULcKj30GFC1qPVB8iqpmbdiwQW3bts0z3qdPH82cOVPR0dH6+eefdebMGYWEhKhDhw565ZVX7C7w+ffff2vw4MH64osv5OLiou7du+vtt9+Wt7e3GbNjxw4NGjRIP/74o6pXr64hQ4bo+eeft9vm0qVLNXr0aB08eFD16tXTxIkTdffdd5vLDcPQyy+/rNmzZ+vMmTO6/fbbNWPGDF1//fUFfr7UeuDqWSyWAseWstYeUKYUtGbRRAfKsZw/qt3d3TV8+HANGDBAc+fO1VtvvaWMjAz+uAaKAHWr8NhnQNGh1gPFi5p1ZdhvwNWjiQ6UDJroQAWXlpamypUry93dXWfPnpW7u7u5LCMjQ1WrVlVGRobOnz8vLy8vJ2YKlG3UrcJjnwFFg1oPFD9q1pVhvwFXjyY6UDIKWrOYEx0op0aOHClJGj58uN0f1ZLk7u6uoUOH2sUBAICyhVoPAAAAlAya6EA5tW/fPknSgAED8l3ev39/uzgAAFC2UOsBAACAkkETHSin6tWrJ0maO3duvsvff/99uzgAAFC2UOsBAACAksGc6EA5xTypQMmgbhUe+wwoGtR6oPhRs64M+w24esyJDpQM5kQHKjgvLy917drV/CP6+eef1++//67nn3/e/KO6a9eu/FENAEAZRa0HAAAASgZnogPlXHR0tD777LM84127dtXKlStLPiGgnKFuFR77DCha1Hqg+FCzrgz7Dbh6nIkOlIyC1iy3EswJgBOsXLlSaWlpGjlypPbt26d69epp0qRJnJUGAEA5Qa0HAAAAihdNdKAC8PLy0rvvvuvsNAAAQDGh1gMAAADFhznRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMCBQjXRY2Njdcstt6hq1aoKCAhQdHS09u7daxdz4cIFDRo0SH5+fvL29lb37t2VnJxcpEkDAAAAAAAAAFASCtVE37hxowYNGqQtW7ZozZo1unjxojp06KDU1FQzZtiwYfriiy+0dOlSbdy4UUePHlW3bt2KPHEAAAAAAAAAAIqbW2GCV61aZXd//vz5CggIUEJCglq3bq2UlBS9//77WrRoke68805J0rx589SgQQNt2bJFLVu2zLPO9PR0paenm/dtNtuVPA8AAAAAAAAAAIrcVc2JnpKSIkny9fWVJCUkJOjixYtq3769GVO/fn3VrFlT8fHx+a4jNjZWVqvVvIWGhl5NSgAAAAAAAAAAFJkrbqJnZ2dr6NChuu2229S4cWNJUlJSktzd3VWtWjW72MDAQCUlJeW7npiYGKWkpJi3w4cPX2lKAAAAAAAAAAAUqUJN55LboEGDtGvXLv3vf/+7qgQ8PDzk4eFxVesAAAAAAAAAAKA4XNGZ6IMHD1ZcXJzWr1+vGjVqmONBQUHKyMjQmTNn7OKTk5MVFBR0VYkCAAAAAAAAAFDSCtVENwxDgwcP1ooVK7Ru3TqFhYXZLQ8PD1elSpW0du1ac2zv3r06dOiQIiIiiiZjAAAAAAAAAABKSKGmcxk0aJAWLVqkzz77TFWrVjXnObdarfLy8pLValX//v01fPhw+fr6ysfHR0OGDFFERIRatmxZLE8AAAAAAAAAAIDiUqgm+syZMyVJbdq0sRufN2+e+vbtK0maMmWKXFxc1L17d6WnpysqKkozZswokmQBAAAAAAAAAChJhWqiG4Zx2RhPT09Nnz5d06dPv+KkAAAAAAAAAAAoDa7owqIAAAAAAAAAAFQENNEBAAAAAAAAAHCAJjoAAAAAAAAAAA7QRAcAAAAAAAAAwAGa6AAAAAAAAAAAOEATHQAAAAAAAAAAB2iiAwAAAAAAAADgAE10AAAAAAAAAAAccHN2AgAAAAAAAEB5dv78ee3Zs6dY1v3TTz8VOLZ+/fqqXLlyseQBlGc00QEAQL5ef/11xcTE6Nlnn9XUqVMlSRcuXNBzzz2nTz75ROnp6YqKitKMGTMUGBjo3GQBAACAUmzPnj0KDw8vlnUXZr0JCQlq3rx5seQBlGc00QEAQB4//vij3nvvPTVt2tRufNiwYfryyy+1dOlSWa1WDR48WN26ddP333/vpEwBAACA0q9+/fpKSEgocHxhG+OFyQNA4dFEBwAAds6dO6eHHnpIc+bM0YQJE8zxlJQUvf/++1q0aJHuvPNOSdK8efPUoEEDbdmyRS1btnRWygAAAECpVrly5UKdAb506VLdf//9BYrjzHKg+HFhUQAAYGfQoEHq3Lmz2rdvbzeekJCgixcv2o3Xr19fNWvWVHx8vMP1paeny2az2d0AAAAAONajR48ijQNwdTgTHQAAmD755BP99NNP+vHHH/MsS0pKkru7u6pVq2Y3HhgYqKSkJIfrjI2N1bhx44o6VQAAAKBcMwxDFovlkssBlAzORAcAAJKkw4cP69lnn9VHH30kT0/PIltvTEyMUlJSzNvhw4eLbN0AAABAeWYYhpYuXWo3tnTpUhroQAmjiQ4AACT9M13L8ePH1bx5c7m5ucnNzU0bN27U22+/LTc3NwUGBiojI0Nnzpyxe1xycrKCgoIcrtfDw0M+Pj52NwAAAAAF06NHD/PioQkJCUzhAjgB07kAAABJUrt27bRz5067sX79+ql+/fp6/vnnFRoaqkqVKmnt2rXq3r27JGnv3r06dOiQIiIinJEyAAAAAADFjiY6AACQJFWtWlWNGze2G6tSpYr8/PzM8f79+2v48OHy9fWVj4+PhgwZooiICLVs2dIZKQMAAAAAUOxoogMAgAKbMmWKXFxc1L17d6WnpysqKkozZsxwdloAAAAAABQbmugAAMChDRs22N339PTU9OnTNX36dOckBAAAAABACePCogAAAAAAAAAAOEATHQAAAAAAAAAAB2iiAwAAAAAAAADgAE10AAAAAAAAAAAcoIkOAAAAAAAAAIADNNEBAAAAAAAAAHCAJjoAAAAAAAAAAA7QRAcAAAAAAAAAwAGa6AAAAAAAFKPvvvtO99xzj0JCQmSxWLRy5Uq75YZhaMyYMQoODpaXl5fat2+vffv22cX8/fffeuihh+Tj46Nq1aqpf//+OnfunF3Mjh07FBkZKU9PT4WGhmrixIl5clm6dKnq168vT09PNWnSRF999VWhcwEAoKKhiQ4AAAAAQDFKTU3VjTfeqOnTp+e7fOLEiXr77bc1a9Ysbd26VVWqVFFUVJQuXLhgxjz00EPavXu31qxZo7i4OH333XcaOHCgudxms6lDhw6qVauWEhISNGnSJI0dO1azZ882YzZv3qzevXurf//++vnnnxUdHa3o6Gjt2rWrULkAAFDRWAzDMJydRG42m01Wq1UpKSny8fFxdjoAAFwSdavw2GcAgLKiOGqWxWLRihUrFB0dLemfM79DQkL03HPPacSIEZKklJQUBQYGav78+erVq5d+++03NWzYUD/++KNuvvlmSdKqVat0991368iRIwoJCdHMmTP1n//8R0lJSXJ3d5ckvfDCC1q5cqX27NkjSerZs6dSU1MVFxdn5tOyZUs1a9ZMs2bNKlAu+UlPT1d6errdfgsNDaXWA0Xop59+Unh4uBISEtS8eXNnpwOUGwWt9ZyJDgAAAACAkyQmJiopKUnt27c3x6xWq1q0aKH4+HhJUnx8vKpVq2Y20CWpffv2cnFx0datW82Y1q1bmw10SYqKitLevXt1+vRpMyb3dnJicrZTkFzyExsbK6vVat5CQ0OvdHcAAFAq0UQHAAAAAMBJkpKSJEmBgYF244GBgeaypKQkBQQE2C13c3OTr6+vXUx+68i9DUcxuZdfLpf8xMTEKCUlxbwdPnz4Ms8aAICyxc3ZCQAAAAAAgLLLw8NDHh4ezk4DAIBiw5noAAAAAAA4SVBQkCQpOTnZbjw5OdlcFhQUpOPHj9stz8zM1N9//20Xk986cm/DUUzu5ZfLBQCAiogmOgAAAAAAThIWFqagoCCtXbvWHLPZbNq6dasiIiIkSRERETpz5owSEhLMmHXr1ik7O1stWrQwY7777jtdvHjRjFmzZo1uuOEGXXPNNWZM7u3kxORspyC5AABQEdFEBwAAAACgGJ07d07bt2/X9u3bJf1zAc/t27fr0KFDslgsGjp0qCZMmKDPP/9cO3fu1KOPPqqQkBBFR0dLkho0aKCOHTvq8ccf1w8//KDvv/9egwcPVq9evRQSEiJJevDBB+Xu7q7+/ftr9+7dWrx4saZNm6bhw4ebeTz77LNatWqVJk+erD179mjs2LHatm2bBg8eLEkFygUAgIqo0E307777Tvfcc49CQkJksVi0cuVKu+V9+/aVxWKxu3Xs2LGo8gUAAAAAoEzZtm2bbrrpJt10002SpOHDh+umm27SmDFjJEmjRo3SkCFDNHDgQN1yyy06d+6cVq1aJU9PT3MdH330kerXr6927drp7rvv1u23367Zs2eby61Wq7755hslJiYqPDxczz33nMaMGaOBAweaMa1atdKiRYs0e/Zs3XjjjVq2bJlWrlypxo0bmzEFyQUAgIrGYhiGUZgHfP311/r+++8VHh6ubt26acWKFXafSPft21fJycmaN2+eOebh4WF+fexybDabrFarUlJS5OPjU5jUAAAocdStwmOfAQDKCmrWlWG/AUXvp59+Unh4uBISEtS8eXNnpwOUGwWtWW6FXXGnTp3UqVOnS8Z4eHhw0REAAAAAAAAAQJlXLHOib9iwQQEBAbrhhhv01FNP6dSpUw5j09PTZbPZ7G4AAAAAAAAAAJQGRd5E79ixoz744AOtXbtWb7zxhjZu3KhOnTopKysr3/jY2FhZrVbzFhoaWtQpAQAAAAAAAABwRQo9ncvl9OrVy/y5SZMmatq0qerUqaMNGzaoXbt2eeJjYmLsrhZus9lopAMAAAAAAAAASoVimc4lt+uuu07Vq1fXH3/8ke9yDw8P+fj42N0AAAAAAAAAACgNir2JfuTIEZ06dUrBwcHFvSkAAAAAAAAAAIpUoadzOXfunN1Z5YmJidq+fbt8fX3l6+urcePGqXv37goKCtL+/fs1atQo1a1bV1FRUUWaOAAAAAAAAAAAxa3QTfRt27apbdu25v2c+cz79OmjmTNnaseOHVqwYIHOnDmjkJAQdejQQa+88oo8PDyKLmsAAAAAAAAAAEpAoZvobdq0kWEYDpevXr36qhICAAAAAAAAAKC0KPY50QEAAAAAAAAAKKtoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAOFLqJ/t133+mee+5RSEiILBaLVq5cabfcMAyNGTNGwcHB8vLyUvv27bVv376iyhcAAAAAAAAAgBJT6CZ6amqqbrzxRk2fPj3f5RMnTtTbb7+tWbNmaevWrapSpYqioqJ04cKFq04WAAAAAAAAAICS5FbYB3Tq1EmdOnXKd5lhGJo6dapGjx6trl27SpI++OADBQYGauXKlerVq1eex6Snpys9Pd28b7PZCpsSAAAAAAAAUKwOHTqkkydPOmXbv/32m92/zlK9enXVrFnTqTkAzlDoJvqlJCYmKikpSe3btzfHrFarWrRoofj4+Hyb6LGxsRo3blxRpgEAAAAAAAAUmUOHDumG+g10Ie28U/N4+OGHnbp9T6/K2rvnNxrpqHCKtImelJQkSQoMDLQbDwwMNJf9W0xMjIYPH27et9lsCg0NLcq0AAAAAAAAgCt28uRJXUg7L78uz6mSX8n3rYzMDGWmJMvNGiiLm3uJb1+SLp46rFNxk3Xy5Ema6KhwirSJfiU8PDzk4eHh7DQAAAAAAACAS6rkFyqPoLrO2XiNhs7ZLoDCX1j0UoKCgiRJycnJduPJycnmMgAAAAAAAAAAyooibaKHhYUpKChIa9euNcdsNpu2bt2qiIiIotwUAAAAAAAAAADFrtDTuZw7d05//PGHeT8xMVHbt2+Xr6+vatasqaFDh2rChAmqV6+ewsLC9NJLLykkJETR0dFFmTcAAAAAAAAAAMWu0E30bdu2qW3btub9nIuC9unTR/Pnz9eoUaOUmpqqgQMH6syZM7r99tu1atUqeXp6Fl3WAAAAAAAAAACUgEJP59KmTRsZhpHnNn/+fEmSxWLR+PHjlZSUpAsXLujbb7/V9ddfX9R5AwCAYhAbG6tbbrlFVatWVUBAgKKjo7V37167mAsXLmjQoEHy8/OTt7e3unfvnud6KAAAAAAAlBdFOic6gNIpIyNDU6dO1ZAhQzR16lRlZGQ4OyUApdTGjRs1aNAgbdmyRWvWrNHFixfVoUMHpaammjHDhg3TF198oaVLl2rjxo06evSounXr5sSsAVDrAQAAgOJT6OlcAJQto0aN0pQpU5SZmWmOjRw5UsOGDdPEiROdmBmA0mjVqlV29+fPn6+AgAAlJCSodevWSklJ0fvvv69FixbpzjvvlCTNmzdPDRo00JYtW9SyZcs860xPT1d6erp532azFe+TACoYaj0AAABQvDgTHSjHRo0apUmTJsnPz09z5szRsWPHNGfOHPn5+WnSpEkaNWqUs1MEUMqlpKRIknx9fSVJCQkJunjxotq3b2/G1K9fXzVr1lR8fHy+64iNjZXVajVvoaGhxZ84UEFQ6wEAAIDiRxMdKKcyMjI0ZcoUBQYG6siRIxowYICCgoI0YMAAHTlyRIGBgZoyZQpf9wbgUHZ2toYOHarbbrtNjRs3liQlJSXJ3d1d1apVs4sNDAxUUlJSvuuJiYlRSkqKeTt8+HBxpw5UCNR6AAAAoGTQRAfKqRkzZigzM1MTJkyQm5v9zE1ubm4aP368MjMzNWPGDCdlCKC0GzRokHbt2qVPPvnkqtbj4eEhHx8fuxuAq0etBwAAAEoGTXSgnNq/f78kqUuXLvkuzxnPiQOA3AYPHqy4uDitX79eNWrUMMeDgoKUkZGhM2fO2MUnJycrKCiohLMEKjZqPQAAAFAyaKID5VSdOnUkSXFxccrKytKGDRv08ccfa8OGDcrKylJcXJxdHABIkmEYGjx4sFasWKF169YpLCzMbnl4eLgqVaqktWvXmmN79+7VoUOHFBERUdLpAhUatR4AAAAoGRbDMAxnJ5GbzWaT1WpVSkoKX/cGrkJGRoaqVKmiKlWqqFq1avrzzz/NZbVq1dKZM2eUmpqq1NRUubu7OzFToGwrb3Xr6aef1qJFi/TZZ5/phhtuMMetVqu8vLwkSU899ZS++uorzZ8/Xz4+PhoyZIgkafPmzQXaRnnbZ4CzUOuB4kfNujLsN5RHP/30k8LDwxXUZ6o8guo6Ox2nSE/6Q0kLhiohIUHNmzd3djpAkShozeJMdKCccnd3V+fOnZWSkqJjx47p+eef1++//67nn39ex44dU0pKijp37swf1QDszJw5UykpKWrTpo2Cg4PN2+LFi82YKVOmqEuXLurevbtat26toKAgLV++3IlZAxUTtR4oP8aOHSuLxWJ3q1+/vrn8woULGjRokPz8/OTt7a3u3bsrOTnZbh2HDh1S586dVblyZQUEBGjkyJHKzMy0i9mwYYOaN28uDw8P1a1bV/Pnz8+Ty/Tp01W7dm15enqqRYsW+uGHH4rlOQMAUJa4XT4EQFmUlZWlX375RXXq1NHBgwf1xhtv6I033pD0z8XG6tSpox07digrK0uurq5OzhZAaVGQL6h5enpq+vTpmj59eglkBMARaj1QvjRq1EjffvuteT/3BYOHDRumL7/8UkuXLpXVatXgwYPVrVs3ff/995L+eT/o3LmzgoKCtHnzZh07dkyPPvqoKlWqpNdee02SlJiYqM6dO+vJJ5/URx99pLVr12rAgAEKDg5WVFSUJGnx4sUaPny4Zs2apRYtWmjq1KmKiorS3r17FRAQUIJ7AwCA0oUz0YFyatOmTTp48KAWLlyo8+fPa8qUKRo8eLCmTJmi1NRUffjhh0pMTNSmTZucnSoAALgC1HqgfHFzc1NQUJB5q169uiQpJSVF77//vt566y3deeedCg8P17x587R582Zt2bJFkvTNN9/o119/1cKFC9WsWTN16tRJr7zyiqZPn66MjAxJ0qxZsxQWFqbJkyerQYMGGjx4sHr06KEpU6aYObz11lt6/PHH1a9fPzVs2FCzZs1S5cqV9d///rfkdwgAAKUIZ6ID5dSxY8ckSY0bN5a7u7uGDh1qt7xx48Z2cQAAoGyh1gPly759+xQSEiJPT09FREQoNjZWNWvWVEJCgi5evKj27dubsfXr11fNmjUVHx+vli1bKj4+Xk2aNFFgYKAZExUVpaeeekq7d+/WTTfdpPj4eLt15MTkvHdkZGQoISFBMTEx5nIXFxe1b99e8fHxl8w9PT1d6enp5n2bzXY1uwIAgFKHM9GBcio4OFiStGvXLmVkZGjq1KkaMmSIpk6dqoyMDO3atcsuDgAAlC3UeqD8aNGihebPn69Vq1Zp5syZSkxMVGRkpM6ePaukpCS5u7urWrVqdo8JDAxUUlKSJCkpKcmugZ6zPGfZpWJsNpvS0tJ08uRJZWVl5RuTsw5HYmNjZbVazVtoaGih9wEAAKUZZ6ID5VRkZKRq166thx9+WH/++afdRYVGjhypWrVqKSwsTJGRkU7MEgAAXClqPVB+dOrUyfy5adOmatGihWrVqqUlS5bIy8vLiZkVTExMjIYPH27et9lsNNIBAOUKZ6ID5ZSrq6tuvPFG7d+/Xy4uLnrhhRe0b98+vfDCC3JxcdH+/fvVtGlTLjQGAEAZRa0Hyq9q1arp+uuv1x9//KGgoCBlZGTozJkzdjHJyckKCgqSJAUFBSk5OTnP8pxll4rx8fGRl5eXqlevLldX13xjctbhiIeHh3x8fOxuAACUJzTRgXIqIyNDX375paxWq4KCgvT666+rXr16ev311xUcHCyr1aovv/zSvNAQAAAoW6j1QPl17tw57d+/X8HBwQoPD1elSpW0du1ac/nevXt16NAhRURESJIiIiK0c+dOHT9+3IxZs2aNfHx81LBhQzMm9zpyYnLW4e7urvDwcLuY7OxsrV271owBAKCiookOlFMzZsxQZmam3nzzTR04cEDr16/XokWLtH79eu3fv18TJ05UZmamZsyY4exUAQDAFaDWA+XHiBEjtHHjRh08eFCbN2/WfffdJ1dXV/Xu3VtWq1X9+/fX8OHDtX79eiUkJKhfv36KiIhQy5YtJUkdOnRQw4YN9cgjj+iXX37R6tWrNXr0aA0aNEgeHh6SpCeffFIHDhzQqFGjtGfPHs2YMUNLlizRsGHDzDyGDx+uOXPmaMGCBfrtt9/01FNPKTU1Vf369XPKfgEAoLRgTnSgnNq/f78kqUuXLnJ1dVWbNm3slnfp0sUuDgAAlC3UeqD8OHLkiHr37q1Tp07J399ft99+u7Zs2SJ/f39J0pQpU+Ti4qLu3bsrPT1dUVFRdh+Qubq6Ki4uTk899ZQiIiJUpUoV9enTR+PHjzdjwsLC9OWXX2rYsGGaNm2aatSooblz5yoqKsqM6dmzp06cOKExY8YoKSlJzZo106pVq/JcbBQAgIqGJjpQTtWpU0eSFBcXpwEDBuRZHhcXZxcHAADKFmo9UH588sknl1zu6emp6dOna/r06Q5jatWqpa+++uqS62nTpo1+/vnnS8YMHjxYgwcPvmQMAAAVDdO5AOXU008/LTc3N40ePVqZmZl2yzIzMzVmzBi5ubnp6aefdlKGAADgalDrAQAAgJLBmehAOeXu7q5hw4Zp0qRJqlGjhsaPH68uXbooLi5OY8aMUXJyskaOHCl3d3dnpwoAAK4AtR4AgJIV5G1RE/ejqmRxdXYqTnHR/ajkbXF2GoBT0EQHyrGJEydK+mcOxSeeeMIcd3Nz08iRI83lAACgbKLWAwBQcp4Id9fYkFnOTsN5QqSx4Xw4j4qJJjpQzk2cOFETJkzQjBkztH//ftWpU0dPP/00Z6UBAFBOUOsBACgZ7yVkaPP1z6qSX6izU3GKi6cOa2fCJN3r7EQAJ6CJDlQA7u7uGjp0qLPTAAAAxYRaDwBA8Us6Z0gZIfIwwpydilOkZ2T9sw+ACogLiwIAAAAAAAAA4ABNdAAAAAAAAAAAHKCJDgAAAAAAAACAAzTRAQAAAAAAAABwgCY6AAAAAAAAAAAO0EQHAAAAAAAAAMABmugAAAAAAAAAADhAEx0AAAAAAAAAAAdoogMAAAAAAAAA4ICbsxMAUPwyMjI0Y8YM7d+/X3Xq1NHTTz8td3d3Z6cFAACKCLUeAAAAKD400YFybtSoUZoyZYoyMzPNsZEjR2rYsGGaOHGiEzMDAABFgVoPAAAAFC+mcwHKsVGjRmnSpEny8/PTnDlzdOzYMc2ZM0d+fn6aNGmSRo0a5ewUAQDAVaDWAwAAAMXPYhiG4ewkcrPZbLJarUpJSZGPj4+z0wHKrIyMDFWpUkV+fn46cuSI3Nz+74snmZmZqlGjhk6dOqXU1FS+7g1cBepW4bHPgKJBrQeKHzXryrDfUB799NNPCg8PV1CfqfIIquvsdJwiPekPJS0YqoSEBDVv3tzZ6QBFoqA1q8jPRB87dqwsFovdrX79+kW9GQCXMWPGDGVmZmrChAl2f1RLkpubm8aPH6/MzEzNmDHDSRkCAICrQa0HAAAASkaxzIneqFEjffvtt/+3ETemXgdK2v79+yVJXbp0yXd5znhOHAAAKFuo9QAAAEDJKJY50d3c3BQUFGTeqlevXhybAXAJderUkSTFxcUpLS1NgwcPVlRUlAYPHqy0tDTFxcXZxQEAgLKFWg8AAACUjCKfE33s2LGaNGmSrFarPD09FRERodjYWNWsWTPf+PT0dKWnp5v3bTabQkNDmTsNuEo586S6uLgoIyMjz3J3d3dlZ2czTypwlZjzs/DYZ0DRoNYDxY+adWXYbyiPmBOdOdFRPjltTvQWLVpo/vz5WrVqlWbOnKnExERFRkbq7Nmz+cbHxsbKarWat9DQ0KJOCaiQ3N3dVatWrXz/qJb++cO7Vq1a/FENAEAZRa0HAAAASkaRN9E7deqk+++/X02bNlVUVJS++uornTlzRkuWLMk3PiYmRikpKebt8OHDRZ0SUCGlpaVddg7U/fv3Ky0trYQyAgAARYlaDwAAAJSMYpkTPbdq1arp+uuv1x9//JHvcg8PD/n4+NjdAFy9oUOHSpJcXV119uxZTZkyRYMHD9aUKVN09uxZubq62sUBAICyhVoPAAAAlAy34t7AuXPntH//fj3yyCPFvSkAuXz99deSpAEDBigrK0vLli3ToUOHVLNmTfXr10/9+vXT3LlzzTgAAFC2UOsBACh5F085ZwYFIzNDmSnJcrMGyuLmnKnanPXcgdKgyJvoI0aM0D333KNatWrp6NGjevnll+Xq6qrevXsX9aYAXELONYMXLVqk9957zxw/fPiwqlWrJm9vb7s4AABQtlDrAQAoOdWrV5enV2Wdipvs7FScytOrsqpXr+7sNIASV+RN9CNHjqh37946deqU/P39dfvtt2vLli3y9/cv6k0BuIS7775bs2fPNi/qW6VKFbm6uiorK0upqak6d+6cGQcAAMoeaj0AACWnZs2a2rvnN508edIp2//tt9/08MMPa+HChWrQoIFTcpD++TChZs2aTts+4CwWo5SdmmKz2WS1WpWSksL86MBVSEpKUnBw8GXjjh07pqCgoBLICCifqFuFxz4Diga1Hih+1Kwrw34Dit5PP/2k8PBwJSQkqHnz5s5OByg3Clqziv3CogCco0ePHkUaBwAAShdqPQAAAFAyaKID5dSBAweKNA4AAJQu1HoAAACgZNBEB8qp06dPF2kcAAAoXaj1AAAAQMmgiQ6UU56enkUaBwAAShdqPQAAAFAyaKID5ZS3t3eRxgEAgNKFWg8AAACUDJroQDl17ty5Io0DAAClC7UeAAAAKBk00YFy6syZM0UaBwAAShdqPQAAAFAyaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAATdnJwCgYM6fP689e/YUy7p/+umnAsfWr19flStXLpY8AACoyKj1AAAAQOlUbE306dOna9KkSUpKStKNN96od955R7feemtxbQ4o9/bs2aPw8PBiWXdh1puQkKDmzZsXSx4Ayg7qPFD0qPUAShNqPQAA/6dYmuiLFy/W8OHDNWvWLLVo0UJTp05VVFSU9u7dq4CAgOLYJFAmHDp0SCdPnryix6alpWnhwoUFjn/44YcLHFuY9aalpRXqbLbcqlevrpo1a17RYwGUHtR5IH9XU+claj2A0oNaDwCAPYthGEZRr7RFixa65ZZb9O6770qSsrOzFRoaqiFDhuiFF16wi01PT1d6erp532azKTQ0VCkpKfLx8Snq1ACnOXTokO4Ib6Br3C44OxWnOZ3pqY0Jv/HHNcoVm80mq9VaoepWYeq8RK1HxUCd/we1HuVNRazzErUeKA5XO23bb7/9pocfflgLFy5UgwYNrng9TNsG2CtorS/yM9EzMjKUkJCgmJgYc8zFxUXt27dXfHx8nvjY2FiNGzeuqNMASqX+zVw0+jZvZ6fhNBO+z3Z2CgCuUmHrvEStR8VR0eu8RK0HygNqPVA8imratsJ8Ey0/TNsGXJkib6KfPHlSWVlZCgwMtBsPDAzM9xO3mJgYDR8+3Lyf84k1UN7UrFlTfd/ZoN+O7ruix6enp+vo0aOFftzo0aMdLpswYUKh1xcSEiIPD49CP06S+vaqpxqcmQaUaYWt8xK1HhXD1dZ5iVoPoHSg1gPFo379+kpISLjix6elpengwYOqXbu2vLy8rioPAIVXbBcWLSgPD48rPkgHypoa9cOl+lf+yXOzK3jM3f1jZLFY8owXw0xOAJAvaj0qiqut8xK1HkDZRK0HLq9y5cpXfQb4bbfdVkTZACisIm+iV69eXa6urkpOTrYbT05OVlBQUFFvDkAB8Ec0gKJCnQdKJ2o9gKJCrQcAIC+Xol6hu7u7wsPDtXbtWnMsOztba9euVURERFFvDgAAlCDqPAAA5Ru1HgCAvIplOpfhw4erT58+uvnmm3Xrrbdq6tSpSk1NVb9+/YpjcwAAoARR5wEAKN+o9QAA2CuWJnrPnj114sQJjRkzRklJSWrWrJlWrVqV58IkAACg7KHOAwBQvlHrAQCwZzFK2QSKNptNVqtVKSkp8vHxcXY6AABcEnWr8NhnAICygpp1ZdhvAICyoqA1q8jnRAcAAAAAAAAAoLygiQ4AAAAAAAAAgAM00QEAAAAAAAAAcIAmOgAAAAAAAAAADtBEBwAAAAAAAADAAZroAAAAAAAAAAA4QBMdAAAAAAAAAAAHaKIDAAAAAAAAAOAATXQAAAAAAAAAABxwc3YC/2YYhiTJZrM5ORMAAC4vp17l1C9cHrUeAFBWUOevDLUeAFBWFLTWl7om+tmzZyVJoaGhTs4EAICCO3v2rKxWq7PTKBOo9QCAsoY6XzjUegBAWXO5Wm8xStlH6tnZ2Tp69KiqVq0qi8Xi7HSAcsNmsyk0NFSHDx+Wj4+Ps9MByg3DMHT27FmFhITIxYVZ0gqCWg8UD2o9UPSo81eGWg8UPeo8UDwKWutLXRMdQPGw2WyyWq1KSUmh4AIAUA5R6wEAKL+o84Bz8VE6AAAAAAAAAAAO0EQHAAAAAAAAAMABmuhABeHh4aGXX35ZHh4ezk4FAAAUA2o9AADlF3UecC7mRAcAAAAAAAAAwAHORAcAAAAAAAAAwAGa6AAAAAAAAAAAOEATHQAAAAAAAAAAB2iiAwAAAAAAAADgAE10AAAAAAAAAP+PvTuPi6rs/z/+HkAGkEVBQElwL9xzKbcUlxLNPc37NhdcWsVMTS3ub6VmRVpp3aVmWtiirS6Vpba5tGAp5b6Uhku5m4IrKFy/P/oxtyMcBZtxRF/Px2Meeq5zzTmfcwCv4e011wCwQIgOXOVWrFihTp06KSoqSjabTQsWLPB0SQAAwIUY6wEAuHoxzgNXBkJ04Cp34sQJ1a1bV1OmTPF0KQAAwA0Y6wEAuHoxzgNXBh9PFwDAvdq3b6/27dt7ugwAAOAmjPUAAFy9GOeBKwMz0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAs+ni4AgHsdP35c27Ztc2ynp6drzZo1Cg0NVUxMjAcrAwAArsBYDwDA1YtxHrgy2IwxxtNFAHCfZcuWqVWrVvnaExISNGvWrMtfEAAAcCnGegAArl6M88CVgRAdAAAAAAAAAAALrIkOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDnhQ//791bVrV8d2y5YtNWzYMI/VU5zYbDYtWLDA02UAAJAP4zsAAMWLq8bq4jbmz5o1S6VKlbpijwdcSQjRgUuwY8cO2Ww2rVmzxqXHnTdvnsaPH+/SY16KZcuWyWaz6ejRo54uxdLevXvVvn17T5cBALiKML4DAIDCsBpTr5Qx31P+9a9/6ddff3Vsjx07VjfeeKPnCgJcyMfTBQD4n9DQUE+X4FLGGOXk5MjHx/X/1JQtW9blxwQAwB0Y3wEA8Jzs7Gz5+vpelnNdbWN+Ufn7+8vf39/TZQBuwUx0XNNyc3OVnJysSpUqyd/fX3Xr1tVHH30kSTpy5Ih69+6t8PBw+fv7q1q1akpJSZEkVapUSZJUr1492Ww2tWzZ8qLnysnJ0YgRI1SqVCmFhYVp9OjRMsY49Tn/rV9vv/22GjZsqKCgIJUtW1Z33XWXDhw44Nif97/fS5YsUb169eTv76/WrVvrwIEDWrRokapXr67g4GDdddddOnnyZKGue8eOHWrVqpUkqXTp0rLZbOrfv/9Fn3duPYsWLVKDBg1kt9v13XffXfC+5P3P9BtvvKGYmBgFBgZq8ODBysnJ0cSJE1W2bFlFRETo6aefdnreucu55M0cnDdvnlq1aqWAgADVrVtXqampF/26AACuPozvxXd8nzRpkmrXrq2SJUsqOjpagwcP1vHjxx37Bw4cqDp16igrK0vS38FIvXr11K9fv4t9qQAA14iWLVtqyJAhGjZsmMqUKaP4+Hht2LBB7du3V2BgoCIjI9W3b18dOnTI8hgXGqsvNKaeO+b/5z//UaNGjfIdu27dunryyScd2zNnzlT16tXl5+en2NhYTZ06tVDX2bRpUz3yyCNObQcPHlSJEiW0YsUKSVJWVpZGjhyp6667TiVLllSjRo20bNmyCx532rRpqlKlinx9fXXDDTfo7bffdtp/9OhR3XfffYqMjJSfn59q1aqlhQsXSnJezmXWrFkaN26c1q5dK5vNJpvNplmzZmngwIHq2LGj0zHPnDmjiIgIvf7664W6dsAjDHANe+qpp0xsbKxZvHix2b59u0lJSTF2u90sW7bMJCYmmhtvvNGsWrXKpKenmy+//NJ88sknxhhjfvrpJyPJfPXVV2bv3r3m8OHDFz3XhAkTTOnSpc3cuXPNpk2bzKBBg0xQUJDp0qWLo09cXJx56KGHHNuvv/66+fzzz8327dtNamqqadKkiWnfvr1j/9KlS40k07hxY/Pdd9+Zn3/+2VStWtXExcWZtm3bmp9//tmsWLHChIWFmWeffbZQ13327Fkzd+5cI8ls3brV7N271xw9evSizzu3njp16pgvvvjCbNu27aL3ZsyYMSYwMND06NHDbNy40XzyySfG19fXxMfHmwcffNBs2bLFvPHGG0aSWblypeN5ksz8+fONMcakp6cbSSY2NtYsXLjQbN261fTo0cNUqFDBnDlz5qJfGwDA1YXxvfiO75MnTzbffPONSU9PN19//bW54YYbzAMPPODYf+zYMVO5cmUzbNgwY4wxI0eONBUrVjQZGRkX/VoBAK4NcXFxJjAw0IwaNcps2bLFrFy50oSHh5ukpCSzefNm8/PPP5vbbrvNtGrVyuk5hR2rLzSmnnucDRs2GElm27ZtjuPmtf3222/GGGPeeecdU65cOTN37lzz+++/m7lz55rQ0FAza9asi17nK6+8YmJiYkxubq6j7eWXX3Zqu/vuu03Tpk3NihUrzLZt28xzzz1n7Ha7+fXXX40xxqSkpJiQkBDH8+fNm2dKlChhpkyZYrZu3WpeeOEF4+3tbb755htjjDE5OTmmcePGpmbNmuaLL74w27dvN59++qn5/PPP8x3v5MmT5uGHHzY1a9Y0e/fuNXv37jUnT54033//vfH29jZ79uxxOm/JkiXNsWPHLnrdgKcQouOadfr0aRMQEGB++OEHp/ZBgwaZXr16mU6dOpkBAwYU+Ny80PaXX34p9PnKlStnJk6c6Ng+c+aMKV++/AV/yT7fqlWrjCTHwJL3S+1XX33l6JOcnGwkme3btzva7rvvPhMfH2+Mufh1n3vcI0eOOPYX5XkLFiwoxB3525gxY0xAQIDJzMx0tMXHx5uKFSuanJwcR9sNN9xgkpOTHdsFhegzZ8507N+4caORZDZv3lzoWgAAxR/je/Ee38/34YcfmrCwMKe2H374wZQoUcI8/vjjxsfHx3z77beFrgsAcPWLi4sz9erVc2yPHz/etG3b1qnP7t27HSF43nMuZaw+d0wt6Dh169Y1Tz75pGM7KSnJNGrUyLFdpUoVM2fOHKdjjB8/3jRp0uSi13ngwAHj4+NjVqxY4Whr0qSJeeSRR4wxxuzcudN4e3ubP//80+l5bdq0MUlJScaY/CF606ZNzT333OPU/8477zS33367McaYJUuWGC8vL8d9O9/5xxszZoypW7duvn41atQwEyZMcGx36tTJ9O/f/6LXDHgSCxnimrVt2zadPHlSt912m1N73tuCx44dq+7du+vnn39W27Zt1bVrVzVt2vSSzpWRkaG9e/c6vZXLx8dHDRs2zPeW73OlpaVp7NixWrt2rY4cOaLc3FxJ0q5du1SjRg1Hvzp16jj+HhkZqYCAAFWuXNmp7aeffirUdVspyvMaNmxoeZyCVKxYUUFBQU71ent7y8vLy6nt3Le6F+Tc+1CuXDlJ0oEDBxQbG1ukegAAxRfje/Ee37/66islJydry5YtyszM1NmzZ3X69GmdPHlSAQEBkqQmTZpo5MiRGj9+vB555BHdcsstRaoLAHD1a9CggePva9eu1dKlSxUYGJiv3/bt23X99dfnay/sWH0xvXv31htvvKHHH39cxhi9++67GjFihCTpxIkT2r59uwYNGqR77rnH8ZyzZ88qJCTkoscODw9X27ZtNXv2bDVv3lzp6elKTU3V9OnTJUnr169XTk5OvuvLyspSWFhYgcfcvHmz7r33Xqe2Zs2a6aWXXpIkrVmzRuXLly/wnhXF3Xffrddee02jR4/W/v37tWjRIn3zzTf/6JiAuxGi45qVt77mZ599puuuu85pn91uV3R0tHbu3KnPP/9cX375pdq0aaPExEQ9//zzl6W+EydOKD4+XvHx8Zo9e7bCw8O1a9cuxcfHKzs726lviRIlHH+32WxO23lteYP+xa7bSlGeV7JkycJcYoH159V7oWsozHFsNpskXfQ5AICrC+N78R3fd+zYoY4dO+qBBx7Q008/rdDQUH333XcaNGiQsrOzHSF6bm6uvv/+e3l7e2vbtm1FqgkAcG04d8w6fvy4OnXqpAkTJuTrlzf56lxFGasvplevXnrkkUf0888/69SpU9q9e7f+9a9/OeqSpBkzZuRbO93b27tQx+/du7eGDh2ql19+WXPmzFHt2rVVu3Ztx/G9vb2VlpaW73gF/YdCYbjqQ0P79eunRx99VKmpqfrhhx9UqVIlNW/e3CXHBtyFEB3XrBo1ashut2vXrl2Ki4srsE94eLgSEhKUkJCg5s2ba9SoUXr++ecdn+ydk5NTqHOFhISoXLly+vHHH9WiRQtJf//vclpamurXr1/gc7Zs2aLDhw/r2WefVXR0tCRp9erVRb3MfApz3QVdX2GeBwCApzG+F9/xPS0tTbm5uXrhhRccs9U/+OCDfP2ee+45bdmyRcuXL1d8fLxSUlI0YMCAy10uAKCYqF+/vubOnauKFSvKx+fiMVhhxurCvmYoX7684uLiNHv2bJ06dUq33XabIiIiJP39bqyoqCj9/vvv6t2796Vcmrp06aJ7771Xixcv1pw5c5w+aLtevXrKycnRgQMHCh1QV69eXd9//70SEhIcbd9//71j9n2dOnX0xx9/6Ndffy3UbHRfX98C71FYWJi6du2qlJQUpaamMo6jWCBExzUrKChII0eO1PDhw5Wbm6tbbrlFGRkZ+v777xUcHKzt27erQYMGqlmzprKysrRw4UJVr15dkhQRESF/f38tXrxY5cuXl5+f30XfbvXQQw/p2WefVbVq1RQbG6tJkybp6NGjlv1jYmLk6+url19+Wffff782bNig8ePHu/26ExISVKFCBdlsNi1cuFC33367/P39C/U8AAA8jfG9+I7vVatW1ZkzZ/Tyyy+rU6dO+v777/Xqq6869fnll1/0xBNP6KOPPlKzZs00adIkPfTQQ4qLi3Na6gYAgDyJiYmaMWOGevXqpdGjRys0NFTbtm3Te++9p5kzZ+abpV2YsbqgMdVqdnfv3r01ZswYZWdna/LkyU77xo0bp6FDhyokJETt2rVTVlaWVq9erSNHjjiWfbmQkiVLqmvXrnr88ce1efNm9erVy7Hv+uuvV+/evdWvXz+98MILqlevng4ePKivv/5aderUUYcOHfIdb9SoUerZs6fq1aunW2+9VZ9++qnmzZunr776SpIUFxenFi1aqHv37po0aZKqVq2qLVu2yGazqV27dvmOV7FiRaWnpzuWgQkKCnK80+3uu+9Wx44dlZOTQ56AYsHr4l2Aq9f48eP1+OOPKzk5WdWrV1e7du302WefqVKlSvL19VVSUpLq1KmjFi1ayNvbW++9956kv9c7/e9//6vp06crKipKXbp0uei5Hn74YfXt21cJCQlq0qSJgoKC1K1bN8v+4eHhmjVrlj788EPVqFFDzz77rMvean6h65ak6667TuPGjdOjjz6qyMhIDRkypFDPAwDgSsD4XjzH97p162rSpEmaMGGCatWqpdmzZys5Odmx//Tp0+rTp4/69++vTp06SZLuvfdetWrVSn379i30OwgAANeWqKgoff/998rJyVHbtm1Vu3ZtDRs2TKVKlXL6nI48hRmrrcbUgvTo0UOHDx/WyZMn1bVrV6d9d999t2bOnKmUlBTVrl1bcXFxmjVrVpHG4N69e2vt2rVq3ry5YmJinPalpKSoX79+evjhh3XDDTeoa9euWrVqVb5+ebp27aqXXnpJzz//vGrWrKnp06crJSVFLVu2dPSZO3eubrrpJvXq1Us1atTQ6NGjLcfg7t27q127dmrVqpXCw8P17rvvOvbdeuutKleunOLj4xUVFVXo6wU8xWYu9KlHAAAAAAAAAOBCx48f13XXXaeUlBTdcccdni4HuCiWcwEAAAAAAADgdrm5uTp06JBeeOEFlSpVSp07d/Z0SUChsJwL4CKBgYGWj2+//dbT5XlMzZo1Le/L7NmzPV0eAAAXxPheMMZ3AADc65lnnrEca9u3b+/p8i7Zrl27FBkZqTlz5uiNN94o1Ie9AlcClnMBXGTbtm2W+6677jr5+/tfxmquHDt37tSZM2cK3BcZGamgoKDLXBEAAIXH+F4wxncAANzrr7/+0l9//VXgPn9/f1133XWXuSLg2kaIDgAAAAAAAACABZZzAQAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAA4R8uWLdWyZUtPl+Ewa9Ys2Ww27dixw9F2pdUIAEBR2Gw2DRky5LKec+zYsbLZbJf1nNeSihUrqn///pflXAW9NgIAAHA3QvRC+uijj2Sz2Qp81KpVy9PlAdeMli1bOn5J69+/P2FyIf3www8aO3asjh496ulSiqxixYoaO3asJOevP64djMHAleFaHYOL8xjqKZs2bdLYsWOvuKB77NixqlixoqT/hfEAAACF4ePpAoqb//znP6pevbpj++mnn/ZgNQBc7YsvvvB0CRd1KTX+8MMPGjdunPr3769SpUq5vijgMmAMBuAJjKEXt3XrVnl5/W9+1qZNmzRu3Di1bNnSEVoDAAAUZ4ToRXTbbbc5zbqZOXOmDh065LmCALiUr6+vp0u4qOJQI+AOjMEAcGWy2+2eLgEAAMCtWM6lkLKzsyXJaYaFlYLW6cvNzVWdOnVks9k0a9YsR/u6devUv39/Va5cWX5+fipbtqwGDhyow4cPOx0zbx3H8x8+Pv/7f5CWLVuqVq1aSktLU9OmTeXv769KlSrp1VdfzXctTzzxhBo0aKCQkBCVLFlSzZs319KlS5367dixw3GeBQsWOO07ffq0SpcuLZvNpueffz5fnRERETpz5ozTc959913H8c4NPT7++GN16NBBUVFRstvtqlKlisaPH6+cnJyL3uu8823ZskU9e/ZUcHCwwsLC9NBDD+n06dNOfVNSUtS6dWtFRETIbrerRo0amjZtWr5jdunSRRUrVpSfn58iIiLUuXNnrV+/3qlP3nW8+OKL+Z4fGxubb63Pv/76SyNHjlTt2rUVGBio4OBgtW/fXmvXrnV6bkJCgvz8/LR582an9vj4eJUuXVp79uxxtP3++++68847FRoaqoCAADVu3FifffaZ0/OWLVvm9P1it9t1/fXXKzk5WcaYC9/c/8/qe6+gt3Cf+z1z/uNcBw4c0KBBgxQTEyNvb29Hn8DAwELVZCXv/M8//7ymTJmiypUrKyAgQG3bttXu3btljNH48eNVvnx5+fv7q0uXLvrrr7+cjlHQeuMvv/yyatasqYCAAJUuXVoNGzbUnDlzHPuPHTumYcOGqWLFirLb7YqIiNBtt92mn3/+uUj1b9y4Ua1bt5a/v7/Kly+vp556Srm5ufn6FbXGsWPHatSoUZKkSpUqOe533r9Rhf3ZqFixojp27KjvvvtON998s/z8/FS5cmW99dZb+foePXpUw4cPd9yT8uXLq1+/fk4/+1lZWRozZoyqVq0qu92u6OhojR49WllZWUW6b7j6MQYvcNrHGMwYfCWOwZL0/PPPq2nTpgoLC5O/v78aNGigjz76yLL/7NmzdcMNN8jPz08NGjTQihUrnPYXdnz98MMP1aBBA/n7+6tMmTLq06eP/vzzzwvWmne/zv03IY/NZnMsI3axMVSS3nnnHcf5Q0ND9e9//1u7d+++4PnPl/dv13fffaehQ4cqPDxcpUqV0n333afs7GwdPXpU/fr1U+nSpVW6dGmNHj063/dRYe//qVOnNHToUJUpU0ZBQUHq3Lmz/vzzT6frzrt2m82mbdu2OWbhh4SEaMCAATp58qTTMc9dE33WrFm68847JUmtWrVy3LNly5blu79Wx8hT2NdGkrRo0SI1b95cJUuWVFBQkDp06KCNGzde4K4DAAAUHjPRCynvF/hLnWXx9ttv5/slUJK+/PJL/f777xowYIDKli2rjRs36rXXXtPGjRu1cuXKfL/4TJs2zemXnPMDhSNHjuj2229Xz5491atXL33wwQd64IEH5Ovrq4EDB0qSMjMzNXPmTPXq1Uv33HOPjh07ptdff13x8fH66aefdOONNzod08/PTykpKerataujbd68efl+QT7XsWPHtHDhQnXr1s3RlpKSIj8/v3zPmzVrlgIDAzVixAgFBgbqm2++0RNPPKHMzEw999xzluc4V8+ePVWxYkUlJydr5cqV+u9//6sjR444hXvTpk1TzZo11blzZ/n4+OjTTz/V4MGDlZubq8TERKfj3XvvvSpbtqz27NmjV155RbfeeqvS09MVEBCQ774MGzbM0fbDDz9o586d+er7/ffftWDBAt15552qVKmS9u/fr+nTpysuLk6bNm1SVFSUJOmll17SN998o4SEBKWmpsrb21vTp0/XF198obffftvRb//+/WratKlOnjypoUOHKiwsTG+++aY6d+6sjz76yOm+S/9bAuHUqVN6//339Z///EcREREaNGhQoe5v3v3L+95LSkq6YN97771XzZs3l/T398r8+fOd9ickJOirr77Sgw8+qLp168rb21uvvfZakUNnK7Nnz1Z2drYefPBB/fXXX5o4caJ69uyp1q1ba9myZXrkkUe0bds2vfzyyxo5cqTeeOMNy2PNmDFDQ4cOVY8ePRzB0Lp16/Tjjz/qrrvukiTdf//9+uijjzRkyBDVqFFDhw8f1nfffafNmzerfv36hap53759atWqlc6ePatHH31UJUuW1GuvvSZ/f/+LPvdiNd5xxx369ddf9e6772ry5MkqU6aMJCk8PFxS0X42tm3bph49emjQoEFKSEjQG2+8of79+6tBgwaqWbOmJOn48eNq3ry5Nm/erIEDB6p+/fo6dOiQPvnkE/3xxx8qU6aMcnNz1blzZ3333Xe69957Vb16da1fv16TJ0/Wr7/+mi80xLWNMZgxmDG4eIzBL730kjp37qzevXsrOztb7733nu68804tXLhQHTp0cOq7fPlyvf/++xo6dKjsdrumTp2qdu3a6aeffnJ81kFhxtdZs2ZpwIABuummm5ScnKz9+/frpZde0vfff69ffvnlHy+/crEx9Omnn9bjjz+unj176u6779bBgwf18ssvq0WLFpd0/gcffFBly5bVuHHjtHLlSr322msqVaqUfvjhB8XExOiZZ57R559/rueee061atVSv379HM8t7P3v37+/PvjgA/Xt21eNGzfW8uXL8319ztWzZ09VqlRJycnJ+vnnnzVz5kxFRERowoQJBfZv0aKFhg4dqv/+979Oy3CduxxXYRTltdHbb7+thIQExcfHa8KECTp58qSmTZumW265Rb/88gtLygAAgH/OoFBefPFFI8msXbvWqT0uLs7UrFnTqS0lJcVIMunp6cYYY06fPm1iYmJM+/btjSSTkpLi6Hvy5Ml853r33XeNJLNixQpH25gxY4wkc/DgQcsa4+LijCTzwgsvONqysrLMjTfeaCIiIkx2drYxxpizZ8+arKwsp+ceOXLEREZGmoEDBzra0tPTjSTTq1cv4+PjY/bt2+fY16ZNG3PXXXcZSea5557LV2evXr1Mx44dHe07d+40Xl5eplevXvmuo6B7cN9995mAgABz+vRpy+s993ydO3d2ah88eHC+r1dB54mPjzeVK1e+4Dk++OADI8msXr3a0SbJ9OjRw/j4+Di1Dxo0yHFfEhMTHe2nT582OTk5TsdNT083drvdPPnkk07tS5YsMZLMU089ZX7//XcTGBhounbt6tRn2LBhRpL59ttvHW3Hjh0zlSpVMhUrVnSca+nSpUaSWbp0qVMtXl5eZvDgwRe87jz/+c9/jCRz6NAhR1vNmjVNXFxcvr6//fabkWTefPNNR1ve1yjPqVOnjJeXl7nvvvucnpuQkGBKlixZqJqs5H3PhoeHm6NHjzrak5KSjCRTt25dc+bMGUd7r169jK+vr9P3WVxcnNO1denSJd/P+PlCQkKcvt6XIu9r+uOPPzraDhw4YEJCQpz+PbnUGp977rl8x8lT2J+NChUq5Pu36cCBA8Zut5uHH37Y0fbEE08YSWbevHn5jpubm2uMMebtt982Xl5eTt/Dxhjz6quvGknm+++/v+D14NrCGMwYzBh85Y/BxuT/OmdnZ5tatWqZ1q1bO7VLyvd13blzp/Hz8zPdunVztF1sfM3OzjYRERGmVq1a5tSpU472hQsXGknmiSeecLSdfy/yfsbO/Tfh3PrGjBnj2LYaQ3fs2GG8vb3N008/7dS+fv164+Pjk6/9QvL+7YqPj3eMlcYY06RJE2Oz2cz999/vaDt79qwpX758vu+Dwtz/tLQ0I8kMGzbMqW///v3zXXfePTv33yZjjOnWrZsJCwtzaqtQoYJJSEhwbH/44Yf5vv/znH8eq2MU9rXRsWPHTKlSpcw999zjdLx9+/aZkJCQfO0AAACXguVcCinvrd15s06KYsqUKTp8+LDGjBmTb9+5MylOnz6tQ4cOqXHjxpJ0STOCfHx8dN999zm2fX19dd999+nAgQNKS0uTJHl7ezvWVM7NzdVff/2ls2fPqmHDhgWes379+qpZs6befvttSdLOnTu1dOnSfG+3PNfAgQO1ePFi7du3T5L05ptvqkmTJrr++uvz9T33Hhw7dkyHDh1S8+bNdfLkSW3ZsqVQ133+LLYHH3xQkvT5558XeJ6MjAwdOnRIcXFx+v3335WRkeH0/JMnT+rQoUNas2aNZsyYocjIyHy1R0ZGqkOHDkpJSXE854MPPtCAAQPy1We32x0zFnNycnT48GEFBgbqhhtuyHfP27Ztq/vuu09PPvmk7rjjDvn5+Wn69OlOfT7//HPdfPPNuuWWWxxtgYGBuvfee7Vjxw5t2rTJqX/e9e7atUsTJ05Ubm6uWrduXcCdzC9v1qKfn99F+xZmtuiJEyeUm5ursLCwQp3/Utx5550KCQlxbDdq1EiS1KdPH6flFxo1aqTs7OwLvuW7VKlS+uOPP7Rq1aoL9vnxxx+d3upfVJ9//rkaN26sm2++2dEWHh6u3r17X/S5hanxQorys1GjRg3HDMe8Gm+44Qb9/vvvjra5c+eqbt26+WZjSnLM7P3www9VvXp1xcbG6tChQ45H3vfl+Utb4NrGGMwYzBhcPMbgc7/OR44cUUZGhpo3b17g93aTJk3UoEEDx3ZMTIy6dOmiJUuWOJYTutj4unr1ah04cECDBw92ukcdOnRQbGxsviV2XG3evHnKzc1Vz549ncaysmXLqlq1apc0lg0aNMjpXTCNGjWSMcbpnQve3t5q2LCh09grFe7+L168WJI0ePBgp+fm/dwW5P7773fabt68uQ4fPqzMzMwiXFnRFfa10ZdffqmjR4+qV69eTl8Hb29vNWrUiNcUAADAJa7oEH3FihXq1KmToqKiClwT9GKs1pEsWbJkkWvZuXOnfHx8ivwLfEZGhp555hmNGDFCkZGR+fb/9ddfeuihhxQZGSl/f3+Fh4erUqVKjucWVVRUVL7ry/vF89y1G998803VqVNHfn5+CgsLU3h4uD777DPLcw4YMMDxi+qsWbPUtGlTVatWzbKOG2+8UbVq1dJbb70lY4zjrbYF2bhxo7p166aQkBAFBwcrPDxcffr0kVT4e3B+LVWqVJGXl5fTNX///fe69dZbVbJkSZUqVUrh4eH6z3/+U+B5nnzySYWHh6tevXrasWOHli1bpqCgoHznHTBggObMmaOsrCx9+OGHKl26dIG/GOfm5mry5MmqVq2a7Ha7ypQpo/DwcK1bt67Aa3z++ecVGhqqNWvW6L///a8iIiKc9u/cuVM33HBDvuflvU32/Lezd+3aVeHh4apQoYLGjh2rxx57TN27d8/3/IIcOnRIJUqUcHobvZWjR49K0gXXVQ0LC1O1atU0c+ZMffHFFzpw4IAOHTrk0nWwY2JinLbzAvXo6OgC248cOWJ5rEceeUSBgYG6+eabVa1aNSUmJur777936jNx4kRt2LBB0dHRuvnmmzV27Nh8v9hezM6dOwv8mSro63wpNV5IUX42zr+3klS6dGmne7h9+3bHW/Gt/Pbbb9q4caPCw8OdHnn/Xh04cKDQ9ePqxxjMGMwYXDzG4IULF6px48by8/NTaGiowsPDNW3atALvc0Hfw9dff71OnjypgwcPSrr4+Jp3rwv6esTGxha4vI8r/fbbbzLGqFq1avnGs82bN1/SWFaU1zDnv34pzP3fuXOnvLy8HP/W5alatWqhaypdurSkC79+coXCvjb67bffJEmtW7fO93XI+z4HAAD4p67oNdFPnDihunXrauDAgbrjjjuK/PyRI0fmmznRpk0b3XTTTUU+1tatW1W5cmWnWayFMWHCBHl5eWnUqFH5PqhM+nuNwR9++EGjRo3SjTfeqMDAQOXm5qpdu3aWH5rzT73zzjvq37+/unbtqlGjRikiIkLe3t5KTk7W9u3bC3xOnz59NHr0aK1cuVJvvvmmHnvssYueZ+DAgZo6dapuvvlm7du3Tz179tQLL7zg1Ofo0aOKi4tTcHCwnnzySVWpUkV+fn76+eef9cgjj1zyPTh/Hdvt27erTZs2io2N1aRJkxQdHS1fX199/vnnmjx5cr7z3H333WrTpo3++OMPTZ48Wd27d9cPP/zgNLtZ+numk6+vrxYsWKCUlBQlJCQU+MF3zzzzjB5//HENHDhQ48ePV2hoqLy8vDRs2LACr/GXX35xvOBfv369evXqdUn3Ic/zzz+vunXr6syZM1q1apWeeuop+fj4FDgz83w7duxQTExMvntakLxZj2XLlr1gv/fff1+9e/dWfHy8U/ul/AdXQby9vYvUbi7wAW/Vq1fX1q1btXDhQi1evFhz587V1KlT9cQTT2jcuHGS/v45bt68uebPn68vvvhCzz33nCZMmKB58+apffv2//yCLqIwNVop6s/GpdzDguTm5qp27dqaNGlSgfvPDwtwbWMMZgxmDL7yx+Bvv/1WnTt3VosWLTR16lSVK1dOJUqUUEpKitOHcReFO8dXq3tamA/VzZObmyubzaZFixYVOD5eyoe1FuU1zLljrzvu/8VqKurYfzFFuffnyvs5fvvttwv8/i/q2AEAAFCQK/oVRfv27S/4AjkrK0v/93//p3fffVdHjx5VrVq1NGHCBLVs2VLS3y9cz33xunbtWm3atEmvvvpqkerIysrSmjVrnD7UqzD27Nmjl156ScnJyQoKCsr3C/yRI0f09ddfa9y4cXriiScc7XmzKS7Fnj17dOLECadfhH799VdJcnygzkcffaTKlStr3rx5Tr9AXOiXubCwMHXu3NnxtvS8t61eSO/evTVq1Cg99NBD6tGjR4GzyJYtW6bDhw9r3rx5atGihaM9PT29UNeb57fffnOaUbNt2zbl5uY6rvnTTz9VVlaWPvnkE6fZNFZv76xatapjRs6tt96qmJgYzZkzRw888IBTPx8fH/Xt21dPP/20Nm7caPkBlR999JFatWql119/3an96NGjjg+oynPixAkNGDBANWrUUNOmTTVx4kR169bN6T9/KlSooK1bt+Y7T95b7ytUqODU3qBBA8fPRfv27fXnn39qwoQJevzxxwsMHPKcPXtWa9euVbt27Sz7nGvTpk2y2WwXnT1dr149zZgxQ82bN9eTTz6pxo0b67nnnivS7OnLqWTJkvrXv/6lf/3rX8rOztYdd9yhp59+WklJSY63j5crV06DBw/W4MGDdeDAAdWvX19PP/10oX/Jr1ChQoE/+wV9nS+lRquwoKg/G4VRpUoVbdiw4aJ91q5dqzZt2hQqHMK1izGYMZgxuHiMwXPnzpWfn5+WLFnitKRM3rsozlfQz9qvv/6qgIAAp3edXGh8zbvXW7duzfcuhK1bt+b7WpwrbzZ13gz+PAXNXrcap6pUqSJjjCpVqlTgckmXU2Hvf4UKFZSbm6v09HSnWd7btm1zaT0XGttLly6d775nZ2dr7969+WotzGujKlWqSJIiIiJ06623XmLFAAAAF3ZFL+dyMUOGDFFqaqree+89rVu3TnfeeafatWtn+QvwzJkzdf311zut51sYeW8VbtOmTZGeN27cOEVGRuabDZ8nb1bH+bM4XnzxxSKd51xnz551WrszOztb06dPV3h4uGPdyYLO++OPPyo1NfWCxx44cKDjPhdmZk1oaKi6dOmidevWaeDAgQX2KaiW7OxsTZ069aLHP9eUKVOctl9++WVJcgSYBZ0nIyPD8he7c+UFFVZvdR44cKDWr1+vFi1aqHLlygX28fb2zvd1/vDDDwtci/uRRx7Rrl279Oabb2rSpEmqWLGiEhISnM5/++2366effnL6mp04cUKvvfaaKlasqBo1alzwmk6dOqWzZ8/q7NmzF+z3xRdfKCMjQ126dLlgP+nv7725c+fq5ptvvuj3R2Zmpvr27avOnTvrscce06233qpy5cpd9ByecH7w5uvrqxo1asgYozNnzignJyff29QjIiIUFRVVpLfH33777Vq5cqV++uknR9vBgwc1e/bsf1yj9L8Zhuf/0vpPfjasdO/eXWvXrtX8+fPz7cs7T8+ePfXnn39qxowZ+fqcOnVKJ06cuOTz4+rCGPw3xmDG4Au5EsZgb29v2Ww2p9nEO3bssFyOMTU11Wmt7t27d+vjjz9W27Zt5e3tXajxtWHDhoqIiNCrr77q9DVatGiRNm/erA4dOljWGxwcrDJlymjFihVO7QV9/1uNoXfccYe8vb01bty4fN9jxpgC3wHjLoW9/3nvQDj/OvN+bl3F6p5Jf4fe59/31157Ld9M9MK+NoqPj1dwcLCeeeYZx+uec+UtDwQAAPBPXNEz0S9k165dSklJ0a5duxQVFSXp7+VbFi9erJSUFD3zzDNO/U+fPq3Zs2fr0UcfLfQ5Tpw4oZdffllPPvmk4xewd955x6nP/v37dfz4cb3zzju67bbbnNZc/eKLLzR79mzHB4idLzg4WC1atNDEiRN15swZXXfddfriiy+KPAPsXFFRUZowYYJ27Nih66+/Xu+//77WrFmj1157TSVKlJAkdezYUfPmzVO3bt3UoUMHpaen69VXX1WNGjV0/Phxy2O3a9dOBw8eLNJbU2fNmqUpU6bkm+mVp2nTpipdurQSEhI0dOhQ2Ww2vf3220V+e2h6ero6d+6sdu3aKTU1Ve+8847uuusu1a1bV9LfHxTm6+urTp066b777tPx48c1Y8YMRUREOM16+fzzzzVz5kw1bdpUoaGh+v333zVjxgyVLFmywA9JlP5eSuPQoUNOH+Z0vo4dO+rJJ5/UgAED1LRpU61fv16zZ8/O9wv/N998o6lTp2rMmDGqX7++pL9nELVs2VKPP/64Jk6cKEl69NFH9e6776p9+/YaOnSoQkND9eabbyo9PV1z587NN7Ptyy+/1B9//OF4K/ns2bPVuXNny+9N6e+3e48cOVJ2u12nTp1y+t7PyMhQTk6OFixYoK5du+qrr77S448/rnXr1unTTz+1PGaexMREnTp1SjNnzrxoX09r27atypYtq2bNmikyMlKbN2/WK6+8og4dOigoKEhHjx5V+fLl1aNHD9WtW1eBgYH66quvtGrVqnxLJ1zI6NGj9fbbb6tdu3Z66KGHVLJkSb322muqUKGC1q1b949qlOQI8P7v//5P//73v1WiRAl16tSp0D8bRTFq1Ch99NFHuvPOOzVw4EA1aNBAf/31lz755BO9+uqrqlu3rvr27asPPvhA999/v5YuXapmzZopJydHW7Zs0QcffKAlS5aoYcOGl3R+XB0Yg50xBjMG57lSx+AOHTpo0qRJateune666y4dOHBAU6ZMUdWqVQscx2rVqqX4+HgNHTpUdrvdEermLUN27Nixi46vJUqU0IQJEzRgwADFxcWpV69e2r9/v1566SVVrFhRw4cPv2DNd999t5599lndfffdatiwoVasWOF498i5rMbQKlWq6KmnnlJSUpJ27Nihrl27KigoSOnp6Zo/f77uvfdejRw58h/d18Iq7P1v0KCBunfvrhdffFGHDx9W48aNtXz5csd1u+rdYTfeeKO8vb01YcIEZWRkyG63q3Xr1oqIiNDdd9+t+++/X927d9dtt92mtWvXasmSJfn+rSrsa6Pg4GBNmzZNffv2Vf369fXvf/9b4eHh2rVrlz777DM1a9ZMr7zyikuuCwAAXMNMMSHJzJ8/37G9cOFCI8mULFnS6eHj42N69uyZ7/lz5swxPj4+Zt++fYU+Z3p6upFU6MfSpUuNMcakpKQYSebGG280ubm5+Y6XkpLiaPvjjz9Mt27dTKlSpUxISIi58847zZ49e4wkM2bMGEe/MWPGGEnm4MGDlvXGxcWZmjVrmtWrV5smTZoYPz8/U6FCBfPKK6849cvNzTXPPPOMqVChgrHb7aZevXpm4cKFJiEhwVSoUCFfvc8999wF78+5+y9WZ0H7v//+e9O4cWPj7+9voqKizOjRo82SJUuc7qmVvONt2rTJ9OjRwwQFBZnSpUubIUOGmFOnTjn1/eSTT0ydOnWMn5+fqVixopkwYYJ54403jCSTnp5ujDFmw4YNpm3btiYsLMz4+vqa6Oho8+9//9usW7fO6ViSTGJiomVd5+8/ffq0efjhh025cuWMv7+/adasmUlNTTVxcXEmLi7OGGNMZmamqVChgqlfv745c+aM0/GGDx9uvLy8TGpqqqNt+/btpkePHqZUqVLGz8/P3HzzzWbhwoVOz1u6dKnT96iPj4+pUKGCGTp0qDly5MgF722FChUu+j2f9/3y4IMPmhYtWpjFixfnO07e1yjPu+++a2w2W76+CQkJpmTJkhes6WKsvmfz7sOHH37o1J73s7pq1SpH27lfE2OMmT59umnRooUJCwszdrvdVKlSxYwaNcpkZGQYY4zJysoyo0aNMnXr1jVBQUGmZMmSpm7dumbq1KlFrn/dunUmLi7O+Pn5meuuu86MHz/evP76607fo5dSY57x48eb6667znh5eTkdszA/G8b8/T3RoUOHfHWfX48xxhw+fNgMGTLEXHfddcbX19eUL1/eJCQkmEOHDjn6ZGdnmwkTJpiaNWsau91uSpcubRo0aGDGjRuXr3ZcexiDGYMZg4vXGGyMMa+//rqpVq2asdvtJjY21qSkpOSrwZj/fY3eeecdR/969eo5fc8VZXx9//33Tb169YzdbjehoaGmd+/e5o8//rjgvTDGmJMnT5pBgwaZkJAQExQUZHr27GkOHDiQ798AY6zHUGOMmTt3rrnlllscv4/ExsaaxMREs3Xr1kLfu4Jek5xb9/k/1wV9zQp7/0+cOGESExNNaGioCQwMNF27djVbt241ksyzzz570XPn1Xr+a4SEhASnfjNmzDCVK1c23t7eTv+m5OTkmEceecSUKVPGBAQEmPj4eLNt27YCj1HY10bG/P0zFx8fb0JCQoyfn5+pUqWK6d+/v1m9enVBtxwAAKBIbMa4+BNh3MRms2n+/PmONVHzPhRp48aN+T7sJjAwMN+HyrRp00bBwcEFLi9gZceOHapUqZKWLl3qWMvyn/Rzt5YtW+rQoUMXXYv4ajJ27FiNGzdOBw8etJxph0tTsWJFjR07Vv379y9w/7Jly9S/f3/t2LHjstYF4NrAGHzlYwx2H8ZgXG5r1qxRvXr19M4776h3796eLgcAAOCKU2yXc6lXr55ycnJ04MCBi65xnp6erqVLl+qTTz65TNUBAAAAwJXn1KlT+ZZAevHFF+Xl5eX0IcMAAAD4nys6RD9+/LjTJ8Wnp6drzZo1Cg0N1fXXX6/evXurX79+euGFF1SvXj0dPHhQX3/9terUqeP0QUJvvPGGypUr5/iAq8IKDAxU7969ndZY/Sf9gOKkW7duqlKliuX+yMhIyzVq8T+nTp3K98Fo5wsNDb3g2rjAtYgxGNcyxuCrx5X4OmDixIlKS0tTq1at5OPjo0WLFmnRokW69957FR0dfdnqAAAAKE6u6OVcli1bplatWuVrT0hI0KxZs3TmzBk99dRTeuutt/Tnn3+qTJkyaty4scaNG6fatWtLknJzc1WhQgX169dPTz/99OW+hMuKt5LzVnJceWbNmqUBAwZcsI+nl6EA8M8xBjMGAwW5El8HfPnllxo3bpw2bdqk48ePKyYmRn379tX//d//ycfnip5jBQAA4DFXdIgOAMXd3r17tXHjxgv2adCggUqXLn2ZKgIAAJcLrwMAAACuDoToAAAAAAAAAABYuOLer5ebm6s9e/YoKChINpvN0+UAAHBBxhgdO3ZMUVFR8vLy8nQ5xQJjPQCguGCcBwAA0hUYou/Zs4cPtAEAFDu7d+9W+fLlPV1GscBYDwAobhjnAQC4tl1xIXpQUJCkv1+kBAcHe7gaAAAuLDMzU9HR0Y7xCxfHWA8AKC4Y5wEAgHQFhuh5b+sODg7mF2sAQLHBsiSFx1gPAChuGOcBALi2sagbAAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFH08XAAAAAOCfycnJ0bfffqu9e/eqXLlyat68uby9vT1dFgAAAHBVYCY6AAAAUIzNmzdPVatWVatWrXTXXXepVatWqlq1qubNm+fp0gAAAICrAiE6AAAAUEzNmzdPPXr0UO3atZWamqpjx44pNTVVtWvXVo8ePQjSAQAAABewGWOMp4s4V2ZmpkJCQpSRkaHg4GBPlwMAwAUxbhUd9wxwjZycHFWtWlW1a9fWggUL5OX1v/kxubm56tq1qzZs2KDffvuNpV2AS8SYBQAAJNZEB4qNkydPasuWLZf8/FOnTmnHjh2qWLGi/P39L/k4sbGxCggIuOTnAwAA1/j222+1Y8cOvfvuuzp69Kji4uK0Z88eRUVFafny5UpKSlLTpk317bffqmXLlp4uFwAAACi2CNGBYmLLli1q0KCBp8tQWlqa6tev7+kyAAC45u3du1eS1KVLFx04cMDR/tdffyksLEwRERFO/QAAAABcGkJ0oJiIjY1VWlraJT9/8+bN6tOnj9555x1Vr179H9UBAAA8r1y5cpLkCNAbN26sp59+Wv/3f/+nlStXOtrz+gEAAAC4NIToQDEREBDgkhng1atXZyY5AABXgZo1azr+fu56zampqY51nM/vBwAAAKDovC7eBQAAAMCVpnXr1o6/9+nTR6mpqTp27JhSU1PVp0+fAvsBAAAAKDpCdAAAAKAY2rNnjyRpzJgxWr9+vZo2barg4GA1bdpUGzZs0GOPPebUDwAAAMClIUQHAAAAiqGoqChJ0pIlS5SWlqZatWopNDRUtWrV0urVq/XFF1849QMAAABwaVgTHQAAACiGli9frrCwMK1cuVJhYWGO9r/++stpe/ny5Z4oDwAAALhqMBMdAAAAKIZCQ0Pl5fW/l/NBQUGaNGmSgoKCHG1eXl4KDQ31RHkAAADAVYMQHQAAACiGMjIylJub69g+duyYRowYoWPHjjnacnNzlZGR4YnyAAAAgKsGIToAAABQDHXo0EGS1K5dO+3cuVOBgYHy8vJSYGCgdu7cqbZt2zr1AwAAAHBpWBMdAAAAKIZ27dolSdqxY4cqVKjgaD9+/LgqVKigG264wakfAAAAgEvDTHQAAACgGIqJiZEkbdmyRTabTX379tXatWvVt29f2Ww2bd261akfAAAAgEtDiA4AAAAUQ++//77j74cOHdJbb72lOnXq6K233tKhQ4cK7AcAAACg6AjRAQAAgGJoyJAhjr+HhYUpPj5e3377reLj4xUWFlZgPwAAAABFx5roAAAAQDG0fft2SVL58uX1xx9/6IsvvtAXX3zh2J/XntcPAAAAwKVhJjoAAABQDFWpUkWS1KpVKx09elTNmjVTdHS0mjVrpqNHjyouLs6pHwAAAIBLYzPGGE8Xca7MzEyFhIQoIyNDwcHBni4HuGr8/PPPatCggdLS0lS/fn1PlwNcNRi3io57BhTs5MmT2rJlS6H7Hz9+XHFxcbLZbPruu+9kjNGOHTtUsWJF2Ww23XLLLTLGaPny5QoMDCz0cWNjYxUQEHAplwBcdRizAACAxHIuAAAAwBVhy5YtatCgQZGfZ4xRs2bNLPfnzUgvLP7DHQAAAHBGiA4AAABcAWJjY5WWllbk5/Xt21ebNm3K116jRg29/fbbl1QHAAAAgP8hRAcAAACuAAEBAZc0A3zjxo06fvy4OnbsqOXLlysuLk4LFy4s0hIuAAAAAKy5/INF89ZgPP+RmJjo6lMBAAAAkBQYGKhJkyZJkiZNmkSADgAAALiQy2eir1q1Sjk5OY7tDRs26LbbbtOdd97p6lMBAAAAAAAAAOBWLg/Rw8PDnbafffZZValSxfIDjbKyspSVleXYzszMdHVJAAAAAAAAAABcEpcv53Ku7OxsvfPOOxo4cKBsNluBfZKTkxUSEuJ4REdHu7MkAAAAAAAAAAAKza0h+oIFC3T06FH179/fsk9SUpIyMjIcj927d7uzJAAAAAAAAAAACs3ly7mc6/XXX1f79u0VFRVl2cdut8tut7uzDAAAAAAAAAAALonbQvSdO3fqq6++0rx589x1CgAAAAAAAAAA3Mpty7mkpKQoIiJCHTp0cNcpAAAAAAAAAABwK7eE6Lm5uUpJSVFCQoJ8fNy6YgwAAAAAAAAAAG7jlhD9q6++0q5duzRw4EB3HB4AAAAAAAAAgMvCLdPE27ZtK2OMOw4NAAAAAAAAAMBl47Y10QEAAAAAAAAAKO4I0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAMBh2rRpqlOnjoKDgxUcHKwmTZpo0aJFjv2nT59WYmKiwsLCFBgYqO7du2v//v0erBgAAAAAAPciRAcAAA7ly5fXs88+q7S0NK1evVqtW7dWly5dtHHjRknS8OHD9emnn+rDDz/U8uXLtWfPHt1xxx0erhoAAAAAAPfx8XQBAADgytGpUyen7aefflrTpk3TypUrVb58eb3++uuaM2eOWrduLUlKSUlR9erVtXLlSjVu3NgTJQMAAAAA4FbMRAcAAAXKycnRe++9pxMnTqhJkyZKS0vTmTNndOuttzr6xMbGKiYmRqmpqZbHycrKUmZmptMDAAAAAIDighAdAAA4Wb9+vQIDA2W323X//fdr/vz5qlGjhvbt2ydfX1+VKlXKqX9kZKT27dtnebzk5GSFhIQ4HtHR0W6+AgAAAAAAXIcQHQAAOLnhhhu0Zs0a/fjjj3rggQeUkJCgTZs2XfLxkpKSlJGR4Xjs3r3bhdUCAAAAAOBerIkOAACc+Pr6qmrVqpKkBg0aaNWqVXrppZf0r3/9S9nZ2Tp69KjTbPT9+/erbNmylsez2+2y2+3uLhsAAAAAALdgJjoAALig3NxcZWVlqUGDBipRooS+/vprx76tW7dq165datKkiQcrBAAAAADAfZiJDgAAHJKSktS+fXvFxMTo2LFjmjNnjpYtW6YlS5YoJCREgwYN0ogRIxQaGqrg4GA9+OCDatKkiRo3buzp0gEAAAAAcAtCdAAA4HDgwAH169dPe/fuVUhIiOrUqaMlS5botttukyRNnjxZXl5e6t69u7KyshQfH6+pU6d6uGoAAAAAANyHEB0AADi8/vrrF9zv5+enKVOmaMqUKZepIgAAAAAAPIs10QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALbgnR//zzT/Xp00dhYWHy9/dX7dq1tXr1anecCgAAAAAAAAAAt/Fx9QGPHDmiZs2aqVWrVlq0aJHCw8P122+/qXTp0q4+FQAAAAAAAAAAbuXyEH3ChAmKjo5WSkqKo61SpUqW/bOyspSVleXYzszMdHVJAAAAAAAAAABcEpcv5/LJJ5+oYcOGuvPOOxUREaF69eppxowZlv2Tk5MVEhLieERHR7u6JAAAAAAAAAAALonLQ/Tff/9d06ZNU7Vq1bRkyRI98MADGjp0qN58880C+yclJSkjI8Px2L17t6tLAgAAAAAAAADgkrh8OZfc3Fw1bNhQzzzzjCSpXr162rBhg1599VUlJCTk62+322W3211dBgAAAAAAAAAA/5jLZ6KXK1dONWrUcGqrXr26du3a5epTAQAAAAAAAADgVi4P0Zs1a6atW7c6tf3666+qUKGCq08FAAAAAAAAAIBbuTxEHz58uFauXKlnnnlG27Zt05w5c/Taa68pMTHR1acCAAAAAAAAAMCtXB6i33TTTZo/f77effdd1apVS+PHj9eLL76o3r17u/pUAAAAAAAAAAC4lcs/WFSSOnbsqI4dO7rj0AAAAAAAAAAAXDYun4kOAAAAAAAAAMDVghAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACz4eLoA4Fqya9cuHTp0yCPn3rx5s9OfnlCmTBnFxMR47PwAAAAAAABAURGiA5fJrl27dENsdZ0+ddKjdfTp08dj5/bzD9DWLZsJ0gEAAAAAAFBsEKIDl8mhQ4d0+tRJhXV8WCXCoi/7+c3ZbJ3N2C+fkEjZfHwv+/nPHN6twwtf0KFDhwjRAQAAAAAAUGwQogOXWYmwaNnLVvXMycvX8Mx5AQAAAAAAgGKKDxYFAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYMHH0wUAAAAAV4Ndu3bp0KFDHjv/5s2bnf70hDJlyigmJsZj5wcAAADcgRAdAAAA+Id27dqlG2Kr6/Spk54uRX369PHYuf38A7R1y2aCdAAAAFxVCNEBAACAf+jQoUM6feqkwjo+rBJh0R6pwZzN1tmM/fIJiZTNx/eyn//M4d06vPAFHTp0iBAdAAAAVxVCdAAAAMBFSoRFy162qucKKF/Dc+cGAAAArlIu/2DRsWPHymazOT1iY2NdfRoAAAAAAAAAANzOLTPRa9asqa+++up/J/FhwjsAAAAAAAAAoPhxS7rt4+OjsmXLuuPQAAAAAAAAAABcNi5fzkWSfvvtN0VFRaly5crq3bu3du3aZdk3KytLmZmZTg8AAAAAAAAAAK4ELg/RGzVqpFmzZmnx4sWaNm2a0tPT1bx5cx07dqzA/snJyQoJCXE8oqOjXV0SAAAopOTkZN10000KCgpSRESEunbtqq1btzr1admyZb7PP7n//vs9VDEAAAAAAO7l8hC9ffv2uvPOO1WnTh3Fx8fr888/19GjR/XBBx8U2D8pKUkZGRmOx+7du11dEgAAKKTly5crMTFRK1eu1JdffqkzZ86obdu2OnHihFO/e+65R3v37nU8Jk6c6KGKAQAAAABwL7d/4mepUqV0/fXXa9u2bQXut9vtstvt7i4DAAAUwuLFi522Z82apYiICKWlpalFixaO9oCAgEJ//klWVpaysrIc2yzdBgAAAAAoTtyyJvq5jh8/ru3bt6tcuXLuPhUAAHCxjIwMSVJoaKhT++zZs1WmTBnVqlVLSUlJOnnypOUxWLoNAAAAAFCcuXwm+siRI9WpUydVqFBBe/bs0ZgxY+Tt7a1evXq5+lQAAMCNcnNzNWzYMDVr1ky1atVytN91112qUKGCoqKitG7dOj3yyCPaunWr5s2bV+BxkpKSNGLECMd2ZmYmQToAAAAAoNhweYj+xx9/qFevXjp8+LDCw8N1yy23aOXKlQoPD3f1qQAAgBslJiZqw4YN+u6775za7733Xsffa9eurXLlyqlNmzbavn27qlSpku84LN0GAAAAACjOXB6iv/fee64+JAAAuMyGDBmihQsXasWKFSpfvvwF+zZq1EiStG3btgJDdAAAAAAAijO3f7AoAAAoPowxevDBBzV//nwtW7ZMlSpVuuhz1qxZI0l8/gkAAAAA4KpEiA4AABwSExM1Z84cffzxxwoKCtK+ffskSSEhIfL399f27ds1Z84c3X777QoLC9O6des0fPhwtWjRQnXq1PFw9QAAAAAAuB4hOgAAcJg2bZokqWXLlk7tKSkp6t+/v3x9ffXVV1/pxRdf1IkTJxQdHa3u3bvrscce80C1AAAAAAC4HyE6AABwMMZccH90dLSWL19+maoBAAAAAMDzvDxdAAAAAAAAAAAAVypCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYMHH0wUAAAAAV4OygTbV9t2jEjZvT5fiEWd890iBNk+XAQAAALgcIToAAADgAvc18NXYqFc9XYbnREljG/h6ugoAAADA5QjRAQAAABeYnpatH65/SCXCoj1dikecObxb69OeU2dPFwIAAAC4GCE6AAAA4AL7jhspO0p2U8nTpXhEVnbO3/cAAAAAuMrwwaIAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAW3B6iP/vss7LZbBo2bJi7TwUAAAAAAAAAgEu5NURftWqVpk+frjp16rjzNAAAAAAAAAAAuIXbQvTjx4+rd+/emjFjhkqXLu2u0wAAAAAAAAAA4DZuC9ETExPVoUMH3XrrrRfsl5WVpczMTKcHAAAAAAAAAABXAh93HPS9997Tzz//rFWrVl20b3JyssaNG+eOMgAAAAAAAAAA+EdcPhN99+7deuihhzR79mz5+fldtH9SUpIyMjIcj927d7u6JAAAAAAAAAAALonLZ6KnpaXpwIEDql+/vqMtJydHK1as0CuvvKKsrCx5e3s79tntdtntdleXAQAAAAAAAADAP+byEL1NmzZav369U9uAAQMUGxurRx55xClABwAAAAAAAADgSubyED0oKEi1atVyaitZsqTCwsLytQMAAAAAAAAAcCVz+ZroAAAAAAAAAABcLVw+E70gy5YtuxynAQAAAAAAAADApZiJDgAAAAAAAACABUJ0AAAAAAAAAAAsXJblXAD8rWygTbV996iEzdvTpVx2Z3z3SIE2T5cBAAAAAAAAFAkhOnAZ3dfAV2OjXvV0GZ4RJY1t4OvpKgAAcKszh3d77NzmbLbOZuyXT0ikbD6Xf8z15LUDAAAA7kSIDlxG09Oy9cP1D6lEWLSnS7nszhzerfVpz6mzpwsBAMANypQpIz//AB1e+IKnS/EoP/8AlSlTxtNlAAAAAC5FiA5cRvuOGyk7SnZTydOlXHZZ2Tl/Xz8AAFehmJgYbd2yWYcOHfJYDZs3b1afPn30zjvvqHr16h6poUyZMoqJifHIuQEAAAB3IUQHAAAAXCAmJuaKCJCrV6+u+vXre7oMAAAA4Krh5ekCAAAAAAAAAAC4UhGiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAgENycrJuuukmBQUFKSIiQl27dtXWrVud+pw+fVqJiYkKCwtTYGCgunfvrv3793uoYgAAAAAA3IsQHQAAOCxfvlyJiYlauXKlvvzyS505c0Zt27bViRMnHH2GDx+uTz/9VB9++KGWL1+uPXv26I477vBg1QAAAAAAuI+PpwsAAABXjsWLFzttz5o1SxEREUpLS1OLFi2UkZGh119/XXPmzFHr1q0lSSkpKapevbpWrlypxo0b5ztmVlaWsrKyHNuZmZnuvQgAAAAAAFyImegAAMBSRkaGJCk0NFSSlJaWpjNnzujWW2919ImNjVVMTIxSU1MLPEZycrJCQkIcj+joaPcXDgAAAACAixCiAwCAAuXm5mrYsGFq1qyZatWqJUnat2+ffH19VapUKae+kZGR2rdvX4HHSUpKUkZGhuOxe/dud5cOAAAAAIDLsJwLAAAoUGJiojZs2KDvvvvuHx3HbrfLbre7qCoAAAAAAC4vZqIDAIB8hgwZooULF2rp0qUqX768o71s2bLKzs7W0aNHnfrv379fZcuWvcxVAgAAAADgfoToAADAwRijIUOGaP78+frmm29UqVIlp/0NGjRQiRIl9PXXXzvatm7dql27dqlJkyaXu1wAAAAAANyO5VwAAIBDYmKi5syZo48//lhBQUGOdc5DQkLk7++vkJAQDRo0SCNGjFBoaKiCg4P14IMPqkmTJmrcuLGHqwcAAAAAwPUI0QEAgMO0adMkSS1btnRqT0lJUf/+/SVJkydPlpeXl7p3766srCzFx8dr6tSpl7lSAAAAAAAuD0J0AADgYIy5aB8/Pz9NmTJFU6ZMuQwVAQAAAADgWayJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAgstD9GnTpqlOnToKDg5WcHCwmjRpokWLFrn6NAAAAAAAAAAAuJ3LQ/Ty5cvr2WefVVpamlavXq3WrVurS5cu2rhxo6tPBQAAAAAAAACAW/m4+oCdOnVy2n766ac1bdo0rVy5UjVr1nT16QAAAAAAAAAAcBuXh+jnysnJ0YcffqgTJ06oSZMmBfbJyspSVlaWYzszM9OdJQEAAAAAAAAAUGhu+WDR9evXKzAwUHa7Xffff7/mz5+vGjVqFNg3OTlZISEhjkd0dLQ7SgIAAAAAAAAAoMjcEqLfcMMNWrNmjX788Uc98MADSkhI0KZNmwrsm5SUpIyMDMdj9+7d7igJAAAAAAAAAIAic8tyLr6+vqpataokqUGDBlq1apVeeuklTZ8+PV9fu90uu93ujjIAAAAAAAAAAPhH3DIT/Xy5ublO654DAAAAAAAAAFAcuHwmelJSktq3b6+YmBgdO3ZMc+bM0bJly7RkyRJXnwoAAAAAAAAAALdyeYh+4MAB9evXT3v37lVISIjq1KmjJUuW6LbbbnP1qQAAAAAAAAAAcCuXh+ivv/66qw8JAAAAAAAAAIBHXJY10QEAAAAAAAAAKI4I0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALLg/Rk5OTddNNNykoKEgRERHq2rWrtm7d6urTAAAAAAAAAADgdi4P0ZcvX67ExEStXLlSX375pc6cOaO2bdvqxIkTrj4VAAAAAAAAAABu5ePqAy5evNhpe9asWYqIiFBaWppatGjh6tMBAAAAAAAAAOA2Lg/Rz5eRkSFJCg0NLXB/VlaWsrKyHNuZmZnuLgkAAAAAAAAAgEJx6weL5ubmatiwYWrWrJlq1apVYJ/k5GSFhIQ4HtHR0e4sCQAAAAAAAACAQnNriJ6YmKgNGzbovffes+yTlJSkjIwMx2P37t3uLAkAAAAAAAAAgEJz23IuQ4YM0cKFC7VixQqVL1/esp/dbpfdbndXGQAAAAAAAAAAXDKXh+jGGD344IOaP3++li1bpkqVKrn6FAAAAAAAAAAAXBYuD9ETExM1Z84cffzxxwoKCtK+ffskSSEhIfL393f16QAAAAAAAAAAcBuXr4k+bdo0ZWRkqGXLlipXrpzj8f7777v6VAAAAAAAAAAAuJXLQ3RjTIGP/v37u/pUAADAxVasWKFOnTopKipKNptNCxYscNrfv39/2Ww2p0e7du08UywAAAAAAJeBy0N0AABQfJ04cUJ169bVlClTLPu0a9dOe/fudTzefffdy1ghAAAAAACXl8vXRAcAAMVX+/bt1b59+wv2sdvtKlu27GWqCEBhrF+/Xg0bNpQkNWzYUGvXrlXt2rU9XBUAAABwdSBEBwAARbJs2TJFRESodOnSat26tZ566imFhYVZ9s/KylJWVpZjOzMz83KUCVwzbDab07YxRnXq1HH8HQAAAMA/w3IuAACg0Nq1a6e33npLX3/9tSZMmKDly5erffv2ysnJsXxOcnKyQkJCHI/o6OjLWDFwdTs/QC/qfgAAAAAXx0x0AABQaP/+978df69du7bq1KmjKlWqaNmyZWrTpk2Bz0lKStKIESMc25mZmQTpgAusX7++0P1Y2gUAAAC4dIToAADgklWuXFllypTRtm3bLEN0u90uu91+mSsDip+TJ09qy5Ythe7foEGDQvWrU6eO0tLSCn3c2NhYBQQEFLo/AAAAcLUjRAcuszOHd3vkvOZsts5m7JdPSKRsPr6X/fyeum4A7vXHH3/o8OHDKleunKdLAYq9LVu2FDoYL6qiHDctLU3169d3Sx0AAABAcUSIDlwmZcqUkZ9/gA4vfMHTpXiMn3+AypQp4+kyAFzA8ePHtW3bNsd2enq61qxZo9DQUIWGhmrcuHHq3r27ypYtq+3bt2v06NGqWrWq4uPjPVg1cHWIjY0t0ozxogbjRakDAAAAwP/YjDHG00WcKzMzUyEhIcrIyFBwcLCnywFcateuXTp06JBHzr1582b16dNH77zzjqpXr+6RGsqUKaOYmBiPnBtwl6tt3Fq2bJlatWqVrz0hIUHTpk1T165d9csvv+jo0aOKiopS27ZtNX78eEVGRhb6HFfbPQM8pSgfGnqFveQHig3GLAAAIDETHbisYmJiPB4iV69enbdoA7DUsmXLC4ZtS5YsuYzVAAAAAADgeV6eLgAAAAAAAAAAgCsVIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAoBgqVaqUS/sBAAAAKBghOgAAAFAMBQQEuLQfAAAAgIIRogMAAADF0JEjR1zaDwAAAEDBCNEBAACAYignJ8el/QAAAAAUjBAdAAAAKIbKly/v0n4AAAAACkaIDgAAABRDcXFxTttly5bV4MGDVbZs2Qv2AwAAAFA0Pp4uAAAAAEDR7du3L9/21KlTL9oPAAAAQNEwEx0AAAAohn755ReX9gMAAABQMEJ0AAAAoBjy8/NzaT8AAAAABSNEBwAAAIqhu+++2/H3AwcOKDExUW3btlViYqIOHDhQYD8AAAAARUeIDgAAABRDvr6+jr9HRkbq6NGjSk5O1tGjRxUZGVlgPwAAAABFxweLAgAAAMXQrl27HH83xmj27NmaPXv2BfsBAAAAKDpmogMAAADFUJUqVSRJ8fHx8vJyflnv7e2ttm3bOvUDAAAAcGkI0QEAAIBiaPDgwfLx8dGaNWt07NgxTZ48WUOGDNHkyZOVmZmptWvXysfHR4MHD/Z0qQAAAECxRogOAAAAFEO+vr4aPny49u/fr8qVKysgIEBJSUkKCAhQ5cqVtX//fg0fPpw10QEAAIB/iDXRAQAAgGJq4sSJkqTJkyfrvvvuc7T7+Pho1KhRjv0AAAAALh0hOgAAAFCMTZw4UU899ZSmTp2q7du3q0qVKho8eDAz0AEAAAAXIUQHAAAAijlfX18NGzbM02UAAAAAVyVCdAAAAKCYy87OZiY6AAAA4CaE6AAAAEAxNnr0aE2ePFlnz551tI0aNUrDhw9nTXQAAADABbw8XQAAAACASzN69Gg999xzCgsL04wZM7R3717NmDFDYWFheu655zR69GhPlwgAAAAUe4ToAAAAQDGUnZ2tyZMnKzIyUjt37lTVqlW1dOlSVa1aVTt37lRkZKQmT56s7OxsT5cKAAAAFGuE6AAAAEAxNHXqVJ09e1Z33HGHYmNj1apVK911111q1aqVYmNj1a1bN509e1ZTp071dKkAAABAscaa6AAAAEAxtH37dknStGnT1KFDB3Xp0kWnTp2Sv7+/tm3bpldffdWpHwAAAIBLQ4gOAAAAFEMVK1aUJIWHh2vx4sXKyclx7PP29lZ4eLgOHjzo6AcAAADg0rh8OZcVK1aoU6dOioqKks1m04IFC1x9CgAAAOCaV7t2bUnSwYMHC/xg0YMHDzr1AwAAAHBpXB6inzhxQnXr1tWUKVNcfWgAAAAA/9/+/fudtnNzcx2PC/UDAAAAUDQuX86lffv2at++faH7Z2VlKSsry7GdmZnp6pIAAACAq86PP/4oSWrUqJHS0tJ03333Ofb5+Pjopptu0qpVq/Tjjz+qb9++nioTAAAAKPZcPhO9qJKTkxUSEuJ4REdHe7okAAAA4IpnjJEkBQcH69ixY5o8ebKGDBmiyZMn69ixYypVqpRTPwAAAACXxuMhelJSkjIyMhyP3bt3e7okAAAA4IpXrVo1SdKXX36pnj17qlGjRnrmmWfUqFEj9ezZU19++aVTPwAAAACXxuXLuRSV3W6X3W73dBkAAABAsTJ48GCNGjVKJUuW1Lp169S0aVPHvooVKyokJEQnTpzQ4MGDPVglAAAAUPx5fCY6AAAAgKLz9fXV8OHDlZGRodOnT2vEiBF65ZVXNGLECJ06dUoZGRkaPny4fH19PV0qAAAAUKx5fCY6AAAAgEszceJESdLkyZM1adIkR7uPj49GjRrl2A8AAADg0rk8RD9+/Li2bdvm2E5PT9eaNWsUGhqqmJgYV58OAAAAuKZNnDhRTz31lKZOnart27erSpUqGjx4MDPQAQAAABdxeYi+evVqtWrVyrE9YsQISVJCQoJmzZrl6tMBAAAA1zxfX18NGzbM02UAAAAAVyWXh+gtW7aUMcbVhwUAAAAAAAAA4LLjg0UBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAo5k6dOqUhQ4YoPj5eQ4YM0alTpzxdEgAAAHDVIEQHAAAAirGuXbsqICBAU6ZM0RdffKEpU6YoICBAXbt29XRpAAAAwFWBEB0AAAAoprp27aqPP/5Yvr6+evTRR7Vt2zY9+uij8vX11ccff0yQDgAAALiAj6cLAAAAAFB0p06dcgTox44dk6+vryQpOTlZ48aNU1BQkD7++GOdOnVK/v7+Hq4WAAAAKL6YiQ4AAAAUQ6NGjZIkjRgxwhGg5/H19dWwYcOc+gEAAAC4NIToAAAAQDH022+/SZLuvvvuAvcPGjTIqR8AAACAS0OIDgAAHFasWKFOnTopKipKNptNCxYscNpvjNETTzyhcuXKyd/fX7feeisBHeAh1apVkyTNnDmzwP2vv/66Uz8AAAAAl4YQHQAAOJw4cUJ169bVlClTCtw/ceJE/fe//9Wrr76qH3/8USVLllR8fLxOnz59mSsF8Nxzz0mSJk2apOzsbKd92dnZevHFF536AQAAALg0hOgAAMChffv2euqpp9StW7d8+4wxevHFF/XYY4+pS5cuqlOnjt566y3t2bMn34z1c2VlZSkzM9PpAeCf8/f3V5cuXZSdna2goCA98sgj+vXXX/XII48oKChI2dnZ6tKlCx8qCgAAAPxDhOgAAKBQ0tPTtW/fPt16662OtpCQEDVq1EipqamWz0tOTlZISIjjER0dfTnKBa4JCxYscATpEydO1A033KCJEyc6AvQL/QcXAAAAgMIhRAcAAIWyb98+SVJkZKRTe2RkpGNfQZKSkpSRkeF47N692611AteaBQsW6OTJk0pMTFTbtm2VmJiokydPEqADAAAALuLj6QIAAMDVzW63y263e7oM4Krm7++vV155xdNlAAAAAFclZqIDAIBCKVu2rCRp//79Tu379+937AMAAAAA4GpDiA4AAAqlUqVKKlu2rL7++mtHW2Zmpn788Uc1adLEg5UBAAAAAOA+LOcCAAAcjh8/rm3btjm209PTtWbNGoWGhiomJkbDhg3TU089pWrVqqlSpUp6/PHHFRUVpa5du3quaAAAAAAA3IgQHQAAOKxevVqtWrVybI8YMUKSlJCQoFmzZmn06NE6ceKE7r33Xh09elS33HKLFi9eLD8/P0+VDAAAAACAWxGiAwAAh5YtW8oYY7nfZrPpySef1JNPPnkZqwJwMTk5Ofr222+1d+9elStXTs2bN5e3t7enywIAAACuCqyJDgAAABRj8+bNU9WqVdWqVSvdddddatWqlapWrap58+Z5ujQAAADgquC2EH3KlCmqWLGi/Pz81KhRI/3000/uOhUAAABwTZo3b5569Oih2rVrKzU1VceOHVNqaqpq166tHj16EKQDAAAALuCWEP3999/XiBEjNGbMGP3888+qW7eu4uPjdeDAAXecDgAAALjm5OTk6OGHH1bHjh21YMECNW7cWIGBgWrcuLEWLFigjh07auTIkcrJyfF0qQAAAECx5pY10SdNmqR77rlHAwYMkCS9+uqr+uyzz/TGG2/o0UcfdeqblZWlrKwsx3ZmZqY7SgKKvZMnT2rLli2X/PzNmzc7/XmpYmNjFRAQ8I+OAQAA/rlvv/1WO3bs0LvvvisvL+e5MV5eXkpKSlLTpk317bffqmXLlp4pEgAAALgKuDxEz87OVlpampKSkhxtXl5euvXWW5Wampqvf3JyssaNG+fqMoCrzpYtW9SgQYN/fJw+ffr8o+enpaWpfv36/7gOAADwz+zdu1eSVKtWrQL357Xn9QMAAABwaVweoh86dEg5OTmKjIx0ao+MjCxwFm1SUpJGjBjh2M7MzFR0dLSrywKKvdjYWKWlpV3y80+dOqUdO3aoYsWK8vf3/0d1AAAAzytXrpwkacOGDWrcuHG+/Rs2bHDqBwAAAODSuGU5l6Kw2+2y2+2eLgO44gUEBPzjGeDNmjVzUTUAAMDTmjdvrooVK+qZZ57RggULnJZ0yc3NVXJysipVqqTmzZt7sEoAAACg+HP5B4uWKVNG3t7e2r9/v1P7/v37VbZsWVefDgAAALgmeXt764UXXtDChQvVtWtXpaam6tixY0pNTVXXrl21cOFCPf/88/L29vZ0qQAAAECx5vIQ3dfXVw0aNNDXX3/taMvNzdXXX3+tJk2auPp0AAAAwDXrjjvu0EcffaT169eradOmCg4OVtOmTbVhwwZ99NFHuuOOOzxdIgAAAFDsuWU5lxEjRighIUENGzbUzTffrBdffFEnTpzQgAED3HE6AAAA4Jp1xx13qEuXLvr222+1d+9elStXTs2bN2cGOgAAAOAibgnR//Wvf+ngwYN64okntG/fPt14441avHhxvg8bBQAAAPDPeXt7q2XLlp4uAwAAALgque2DRYcMGaIhQ4a46/AAAAAAAAAAALidy9dEBwAAAAAAAADgakGIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAUfTxdwPmOMJCkzM9PDlQAAcHF541Xe+IWLY6wHABQXjPMAAEC6AkP0Y8eOSZKio6M9XAkAAIV37NgxhYSEeLqMYoGxHgBQ3DDOAwBwbbOZK+y/1HNzc7Vnzx4FBQXJZrN5uhzgqpGZmano6Gjt3r1bwcHBni4HuGoYY3Ts2DFFRUXJy4tV0gqDsR5wD8Z6wPUY5wEAgHQFhugA3CMzM1MhISHKyMjgF2sAAK5CjPUAAACAe/Bf6QAAAAAAAAAAWCBEBwAAAAAAAADAAiE6cI2w2+0aM2aM7Ha7p0sBAABuwFgPAAAAuAdrogMAAAAAAAAAYIGZ6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA5c5VasWKFOnTopKipKNptNCxYs8HRJAADAhRjrAQAAAPciRAeucidOnFDdunU1ZcoUT5cCAADcgLEeAAAAcC8fTxcAwL3at2+v9u3be7oMAADgJoz1AAAAgHsxEx0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALDg4+kCALjX8ePHtW3bNsd2enq61qxZo9DQUMXExHiwMgAA4AqM9QAAAIB72YwxxtNFAHCfZcuWqVWrVvnaExISNGvWrMtfEAAAcCnGegAAAMC9CNEBAAAAAAAAALDAmugAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4TogJstW7ZMNptNR48evazn3bFjh2w2m9asWePROgAA8ITzx0F36N+/v7p27eq2418N3Pn643J8jQEAAACJEB1wu6ZNm2rv3r0KCQkpNnUQuAMA4B42m00LFizwdBmXzfmvP2bNmqVSpUp5tigAAACgiHw8XQBwtfP19VXZsmU9XcYVUwcAALh28PoDAAAAVwNmogNF1LJlSz344IMaNmyYSpcurcjISM2YMUMnTpzQgAEDFBQUpKpVq2rRokWS8s/q3rlzpzp16qTSpUurZMmSqlmzpj7//HNJ0pEjR9S7d2+Fh4fL399f1apVU0pKSqHq+umnn1SvXj35+fmpYcOG+uWXX5z2F7aOHTt2qFWrVpKk0qVLy2azqX///pKkxYsX65ZbblGpUqUUFhamjh07avv27Y5z5L2tet68eWrVqpUCAgJUt25dpaamOtXy/fffq2XLlgoICFDp0qUVHx+vI0eOSJJyc3OVnJysSpUqyd/fX3Xr1tVHH31U+C8QAOCacbFxSZK2bNmipk2bys/PT7Vq1dLy5csd+y427q5fv16tW7eWv7+/wsLCdO+99+r48eOW9VSsWFEvvviiU9uNN96osWPHOvZLUrdu3WSz2RzbkvTxxx+rfv368vPzU+XKlTVu3DidPXu2UPfBZrNp+vTp6tixowICAlS9enWlpqZq27ZtatmypUqWLKmmTZs63Zvt27erS5cuioyMVGBgoG666SZ99dVXTsfdu3evOnToIH9/f1WqVElz5szJd402m00zZ85Ut27dFBAQoGrVqumTTz5x7D/39ceyZcs0YMAAZWRkyGazyWazOe5NQTP0S5UqpVmzZjm2L/ZaR5I2bNig9u3bKzAwUJGRkerbt68OHTpUqPsIAAAAWCFEBy7Bm2++qTJlyuinn37Sgw8+qAceeEB33nmnmjZtqp9//llt27ZV3759dfLkyXzPTUxMVFZWllasWKH169drwoQJCgwMlCQ9/vjj2rRpkxYtWqTNmzdr2rRpKlOmzEXrOX78uDp27KgaNWooLS1NY8eO1ciRIy/4HKs6oqOjNXfuXEnS1q1btXfvXr300kuSpBMnTmjEiBFavXq1vv76a3l5ealbt27Kzc11Ovb//d//aeTIkVqzZo2uv/569erVyxEErFmzRm3atFGNGjWUmpqq7777Tp06dVJOTo4kKTk5WW+99ZZeffVVbdy4UcOHD1efPn2cQg8AAKTCjUujRo3Sww8/rF9++UVNmjRRp06ddPjwYUkXHndPnDih+Ph4lS5dWqtWrdKHH36or776SkOGDLnkeletWiVJSklJ0d69ex3b3377rfr166eHHnpImzZt0vTp0zVr1iw9/fTThT72+PHj1a9fP61Zs0axsbG66667dN999ykpKUmrV6+WMcap9uPHj+v222/X119/rV9++UXt2rVTp06dtGvXLkeffv36ac+ePVq2bJnmzp2r1157TQcOHMh37nHjxqlnz55at26dbr/9dvXu3Vt//fVXvn5NmzbViy++qODgYO3du1d79+696OuVc+u92Gudo0ePqnXr1qpXr55Wr16txYsXa//+/erZs2dhbyMAAABQMAOgSOLi4swtt9zi2D579qwpWbKk6du3r6Nt7969RpJJTU01S5cuNZLMkSNHjDHG1K5d24wdO7bAY3fq1MkMGDCgyDVNnz7dhIWFmVOnTjnapk2bZiSZX375xRhjilTH+X2tHDx40Egy69evN8YYk56ebiSZmTNnOvps3LjRSDKbN282xhjTq1cv06xZswKPd/r0aRMQEGB++OEHp/ZBgwaZXr16XbAWAADOHZfyxqRnn33Wsf/MmTOmfPnyZsKECcaYC4+7r732mildurQ5fvy4o+2zzz4zXl5eZt++fcYYYxISEkyXLl0c+ytUqGAmT57sdJy6deuaMWPGOLYlmfnz5zv1adOmjXnmmWec2t5++21Trly5Ql23JPPYY485tlNTU40k8/rrrzva3n33XePn53fB49SsWdO8/PLLxhhjNm/ebCSZVatWOfb/9ttvRpLTNZ5/7uPHjxtJZtGiRcaY/K8pUlJSTEhISIHXcP59CQkJMSkpKcaYwr3WGT9+vGnbtq3TMXbv3m0kma1bt17w2gEAAIALYSY6cAnq1Knj+Lu3t7fCwsJUu3ZtR1tkZKQkFThba+jQoXrqqafUrFkzjRkzRuvWrXPse+CBB/Tee+/pxhtv1OjRo/XDDz8Uqp7NmzerTp068vPzc7Q1adLkgs+5UB1WfvvtN/Xq1UuVK1dWcHCw423o585ak5zvT7ly5ST9717kzUQvyLZt23Ty5EnddtttCgwMdDzeeuutfG/PBwCgMOPSueOhj4+PGjZsqM2bN0u68Li7efNm1a1bVyVLlnS0NWvWTLm5udq6datLr2Pt2rV68sknnca+e+65R3v37i3wXW0FOXfszXsdcv5rk9OnTyszM1PS3zO7R44cqerVq6tUqVIKDAzU5s2bHfdu69at8vHxUf369R3HqFq1qkqXLn3Bc5csWVLBwcEFvgb6JwrzWmft2rVaunSp032MjY2VJF5HAAAA4B8hRAcuQYkSJZy2bTabU5vNZpOkfMucSNLdd9+t33//XX379tX69evVsGFDvfzyy5Kk9u3ba+fOnRo+fLj27NmjNm3aFPptzkV1oTqsdOrUSX/99ZdmzJihH3/8UT/++KMkKTs726nfhe6Fv7+/5fHz1pn97LPPtGbNGsdj06ZNrIsOAMinsOOSFVePu15eXjLGOLWdOXPmos87fvy4xo0b5zT2rV+//v+1d78hUS1hHMd/q2kpCkktRrJoZNpmaygYJWSgkUUJLQSREVagSBZoSWSZIIHZ/yArsFdaga8UywKt1cCEyPyfpa1iRGGRbVAbBCn3voi7uOmaSna53u8Hzos9c/bMnHnzzHmYMyO73e6WNJ7IeLF3onicm5urqqoqFRUVqbGxUe3t7bJYLJPuO091/1PXeGOgiRgMhmn13WhOp1MpKSlu/dje3i673a6EhIQp3QsAAAAYjSQ68C8wmUzKzMxUZWWlDh8+rOvXr7vKjEaj0tLSdPPmTV26dEmlpaW/vJ/ZbFZnZ6e+ffvmOvf48eNpt8PX11eSXOuUS9LHjx/V29ur/Px8JSUlyWw2uzYDnYro6GjZbLZxy1asWKG5c+fq9evXCg8PdztMJtOU6wIAzF6TjUuj4+Hw8LBaWlpkNptd5zzFXbPZrI6ODn39+tV1bVNTk7y8vBQZGTlum4xGowYHB12/P3/+rIGBAbdrfHx83OKrJMXGxqq3t3dM7AsPD5eX18wM15uamrRnzx5ZrVZZLBYtWrRIr169cpVHRkZqeHjYbfPOvr6+acX+0Xx9fcc8vzS27+x2u9ss/MmMdWJjY9Xd3a2wsLAx/Tj6iwIAAABgqkiiA39Ydna2amtrNTAwoNbWVjU0NLhe5gsKClRdXa2+vj51d3erpqbG7UXfk9TUVBkMBqWnp+v58+e6d++ezp07N+12hIaGymAwqKamRh8+fJDT6VRQUJAWLFig0tJS9fX1qb6+XocOHZry8+fl5am5uVn79+9XZ2enenp6dO3aNQ0NDSkwMFC5ubnKyclRWVmZ+vv71draqsuXL6usrGzKdQEAZq/JxqUrV66oqqpKPT09ysrK0qdPn7Rv3z5JE8fdXbt2ad68eUpLS9OzZ8/U0NCggwcPavfu3a7lUn6WmJioGzduqLGxUV1dXUpLS5O3t7fbNWFhYbLZbHr37p0rIV1QUKDy8nIVFhaqu7tbL168UEVFhfLz839nl7lZtmyZKisr1d7ero6ODqWmprrNHl++fLk2bNigjIwMPXnyRG1tbcrIyJCfn59rVvt0hIWFyel0ymazaWhoyJUoT0xMVElJidra2vT06VNlZma6zXCfzFgnKytLDodDO3fuVHNzs/r7+1VbW6u9e/eOm7gHAAAAJoskOvCHjYyMKCsrS2azWZs2bVJERISuXr0q6cfsrLy8PEVHRyshIUHe3t6qqKj45T0DAgJ0584ddXV1KSYmRsePH9fp06en3Y6QkBAVFhbq6NGjCg4O1oEDB+Tl5aWKigq1tLRo5cqVysnJ0dmzZ6f8/BEREaqrq1NHR4dWr16ttWvXqrq6WnPmzJEknTx5UidOnNCpU6dcbbt7966WLFky5boAALPXZONScXGxiouLtWrVKj169Ei3b9/WwoULJU0cd/39/VVbWyuHw6G4uDht375dSUlJKikp8dimvLw8rV+/Xlu3btWWLVu0bds2LV261O2a8+fP6/79+zKZTIqJiZEkJScnq6amRnV1dYqLi9OaNWt08eJFhYaG/q7uGuPChQsKCgpSfHy8UlJSlJyc7Lb+uSSVl5crODhYCQkJslqtSk9PV2Bg4KSXmBlPfHy8MjMztWPHDhmNRp05c0bSj34xmUxat26dUlNTlZubK39/f9f/JjPWWbx4sZqamjQyMqKNGzfKYrEoOztb8+fPn7EZ/QAAAPh/MPz18+KDAAAAAPCTN2/eyGQy6cGDBx43CQcAAABmI5LoAAAAAMaor6+X0+mUxWLR4OCgjhw5ordv3+rly5djNhMFAAAAZjO+awT+A4qKihQQEDDusXnz5n+7eQAAYIbcunXL4xggKipqRuv+/v27jh07pqioKFmtVhmNRj18+JAEOgAAAP53mIkO/Ac4HA45HI5xy/z8/BQSEvKHWwQAAP6EL1++6P379+OW+fj4zOi66QAAAAB+IIkOAAAAAAAAAIAHLOcCAAAAAAAAAIAHJNEBAAAAAAAAAPCAJDoAAAAAAAAAAB6QRAcAAAAAAAAAwAOS6AAAAAAAAAAAeEASHQAAAAAAAAAAD0iiAwAAAAAAAADgwd+DjSI9eiXhGQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Числовые столбцы DataFrame\n",
|
||
"numeric_columns: list[str] = [\n",
|
||
" 'est_diameter_min',\n",
|
||
" 'est_diameter_max', \n",
|
||
" 'relative_velocity', \n",
|
||
" 'miss_distance', \n",
|
||
" 'absolute_magnitude'\n",
|
||
"]\n",
|
||
"\n",
|
||
"# Проверка выбросов в DataFrame\n",
|
||
"def check_outliers(dataframe: DataFrame, columns: list[str]) -> None:\n",
|
||
" for column in columns:\n",
|
||
" if not pd.api.types.is_numeric_dtype(dataframe[column]): # Проверяем, является ли колонка числовой\n",
|
||
" continue\n",
|
||
" \n",
|
||
" Q1: float = dataframe[column].quantile(0.25) # 1-й квартиль (25%)\n",
|
||
" Q3: float = dataframe[column].quantile(0.75) # 3-й квартиль (75%)\n",
|
||
" IQR: float = Q3 - Q1 # Вычисляем межквартильный размах\n",
|
||
"\n",
|
||
" # Определяем границы для выбросов\n",
|
||
" lower_bound: float = Q1 - 1.5 * IQR # Нижняя граница\n",
|
||
" upper_bound: float = Q3 + 1.5 * IQR # Верхняя граница\n",
|
||
"\n",
|
||
" # Подсчитываем количество выбросов\n",
|
||
" outliers: DataFrame = dataframe[(dataframe[column] < lower_bound) | (dataframe[column] > upper_bound)]\n",
|
||
" outlier_count: int = outliers.shape[0]\n",
|
||
"\n",
|
||
" print(f\"Колонка {column}:\")\n",
|
||
" print(f\"\\tЕсть выбросы: {'Да' if outlier_count > 0 else 'Нет'}\")\n",
|
||
" print(f\"\\tКоличество выбросов: {outlier_count}\")\n",
|
||
" print(f\"\\tМинимальное значение: {dataframe[column].min()}\")\n",
|
||
" print(f\"\\tМаксимальное значение: {dataframe[column].max()}\")\n",
|
||
" print(f\"\\t1-й квартиль (Q1): {Q1}\")\n",
|
||
" print(f\"\\t3-й квартиль (Q3): {Q3}\\n\")\n",
|
||
"\n",
|
||
"# Визуализация выбросов\n",
|
||
"def visualize_outliers(dataframe: DataFrame, columns: list[str]) -> None:\n",
|
||
" # Диаграммы размахов\n",
|
||
" plt.figure(figsize=(15, 10))\n",
|
||
" rows: int = ceil(len(columns) / 3)\n",
|
||
" for index, column in enumerate(columns, 1):\n",
|
||
" plt.subplot(rows, 3, index)\n",
|
||
" plt.boxplot(dataframe[column], vert=True, patch_artist=True)\n",
|
||
" plt.title(f\"Диаграмма размахов для \\\"{column}\\\"\")\n",
|
||
" plt.xlabel(column)\n",
|
||
" \n",
|
||
" # Отображение графиков\n",
|
||
" plt.tight_layout()\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
"\n",
|
||
"# Проверка выбросов\n",
|
||
"check_outliers(df, numeric_columns)\n",
|
||
"visualize_outliers(df, numeric_columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Колонка est_diameter_min:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 0.0006089126\n",
|
||
"\tМаксимальное значение: 0.32962154705\n",
|
||
"\t1-й квартиль (Q1): 0.0192555078\n",
|
||
"\t3-й квартиль (Q3): 0.1434019235\n",
|
||
"\n",
|
||
"Колонка est_diameter_max:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 0.00136157\n",
|
||
"\tМаксимальное значение: 0.7370561859\n",
|
||
"\t1-й квартиль (Q1): 0.0430566244\n",
|
||
"\t3-й квартиль (Q3): 0.320656449\n",
|
||
"\n",
|
||
"Колонка relative_velocity:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 203.34643253\n",
|
||
"\tМаксимальное значение: 114380.48061454494\n",
|
||
"\t1-й квартиль (Q1): 28619.02064490995\n",
|
||
"\t3-й квартиль (Q3): 62923.60463276395\n",
|
||
"\n",
|
||
"Колонка miss_distance:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 6745.532515957\n",
|
||
"\tМаксимальное значение: 74798651.4521972\n",
|
||
"\t1-й квартиль (Q1): 17210820.23576468\n",
|
||
"\t3-й квартиль (Q3): 56548996.45139917\n",
|
||
"\n",
|
||
"Колонка absolute_magnitude:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 14.8\n",
|
||
"\tМаксимальное значение: 32.239999999999995\n",
|
||
"\t1-й квартиль (Q1): 21.34\n",
|
||
"\t3-й квартиль (Q3): 25.7\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPdCAYAAABlRyFLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADy8ElEQVR4nOzde1wV5dr/8S8HWaAkigiIG4XUUvNAQRKWh5JEswNlhmaJZNpTUhq7E23FY5HHUCMpy0OpRbbLp9QHM4zdQdLE3JqpWWqYtlA8QKKCwvz+6MfkEhYCoqB93q/XvHLdc80990zLdS2vNXOPg2EYhgAAAAAAAAAAQBmOtT0AAAAAAAAAAADqKoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAHARZGRkyMHBQRkZGWbb0KFDFRAQUGtj+jvYu3evHBwctHDhwtoeCgDgCkA+BwCg7ikvP9cEBwcHjR8/vkb7rG09e/ZUz549L1r/AQEBGjp06EXrvy6hiF6ODz/8UA4ODuUuHTp0qO3hAX8bPXv2ND+Mhw4detE++E+cOKHx48fXeAK+HK1bt07jx4/XsWPHansoteLsAnxAQMAV9wXq74Z8DtQN5PNL7++ez89V+iN76XuDH9yvXOR+oG64VLm/OlatWsW/8y6iH3/8UePHj9fevXur3cfZ/xY/+71U25xrewB12Ysvvqh27dqZr1966aVaHA2Ai+XEiROaMGGCJF3U5D5v3jyVlJRctP5rwrp16zRhwgQNHTpUjRo1qu3hVFnLli118uRJ1atXr7aHgjqEfA78PZDP/3K553PgQpH7AdizatUqJScnl1tIP3nypJydKZVWxc6dO+Xo+Nc12j/++KMmTJignj17XnF37vHOqMDtt99u8wX8rbfeUm5ubu0NCMBl7e9c2D1x4oTq169/0ffj4OAgV1fXi74fXF7I5wBqEvn84udz4EKR+4HLy5kzZ1RSUiIXF5daHQf/lqw6i8VS20O4ZJjOpRxFRUWSZPNLij0LFy6Ug4ODzW0KJSUl6tSpU5nbBLds2aKhQ4fq6quvlqurq3x9ffXII4/o8OHDNn2OHz++3NvPzv41rGfPnurQoYOysrLUtWtXubm5KTAwUCkpKWWOJSEhQcHBwfLw8FCDBg3UrVs3ffHFFzZxpbc4Ojg4aPny5TbrTp06pcaNG8vBwUHTp08vM05vb2+dPn3aZpv33nvP7O/sLyv/+7//q379+snPz08Wi0WtWrXSpEmTVFxcfN5zXbq/HTt26IEHHlDDhg3VpEkTjRo1SqdOnbKJXbBggW677TZ5e3vLYrGoffv2mjt3bpk+77nnHgUEBMjV1VXe3t66++67tXXrVpuY0uNISkoqs33btm3l4OCg2NhYs+3IkSN65pln1LFjR7m7u6thw4bq27ev/vvf/9psGx0dLVdXV23fvt2mPSIiQo0bN9aBAwfMtt27d2vAgAHy9PRU/fr1ddNNN2nlypU225XOCVa6WCwWXXPNNUpMTJRhGBWf3P/P3nuvvKu5zn7PnLuc7eDBgxo2bJhatGghJycnM8bd3b1SY6pISUmJkpKSdN1118nV1VU+Pj567LHHdPToUZu4jRs3KiIiQl5eXubflUceecQ8jqZNm0qSJkyYYI6vKrd3/fbbb4qMjFSDBg3k7e2tp59+WoWFhWXiyptDdfr06eratauaNGkiNzc3BQcH68MPPyyzben7bNmyZWrfvr3c3NwUFhZmvl/feOMNtW7dWq6ururZs2e5t06tX79effr0kYeHh+rXr68ePXrom2++MdePHz9ezz77rCQpMDDQPBdn97V48WIFBwfLzc1Nnp6eGjhwoPbt22ezn7M/n7p376769evrxRdfrNS5LH0P/vTTT3rooYfk4eGhpk2bauzYsTIMQ/v27dM999yjhg0bytfXVzNmzLDZvrw50YcOHSp3d3ft379fkZGRcnd3V9OmTfXMM89U6rMHly/y+XKbdeRz8jn5vGLk87qTzyv7mTdu3Dg5OjoqPT3dpn3EiBFycXEp8/cVVz5y/3KbdeR+cn9dzP2l+58+fbqSkpLUqlUrWSwW/fjjj5KkHTt26P7775enp6dcXV0VEhKiTz755Lz9fvXVVxowYIBatGghi8Uif39/Pf300zp58qQZM3ToUCUnJ0tSucd99neH0umh/vOf/5TZ1xtvvCEHBwf98MMPZlt1x322Dh066NZbby3TXlJSoubNm+v++++3aavM96fylP6/9fHxkaurqzp37qxFixaVu99Zs2apY8eOcnV1VdOmTdWnTx9t3LjRjDl7TvSFCxdqwIABkqRbb73VPL8ZGRmKjo6Wl5dXmc8cSerdu7euvfba8467tnElejlKE291f0159913y3x4S9KaNWu0e/duxcTEyNfXV9u2bdObb76pbdu26dtvvy3zgTV37lybD6dzvwgcPXpUd9xxhx544AENGjRIH3zwgR5//HG5uLiY/6DIz8/XW2+9pUGDBmn48OH6448/9PbbbysiIkIbNmxQUFCQTZ+urq5asGCBIiMjzbaPPvqoTGI72x9//KEVK1bo3nvvNdsWLFggV1fXMtstXLhQ7u7uiouLk7u7u9auXauEhATl5+dr2rRpdvdxtgceeEABAQFKTEzUt99+q9mzZ+vo0aN65513bM7dddddp7vvvlvOzs769NNP9cQTT6ikpEQjR4606W/EiBHy9fXVgQMH9Nprryk8PFx79uyxucqm9LyMHj3abFu3bp1+/fXXMuPbvXu3li9frgEDBigwMFA5OTl644031KNHD/3444/y8/OTJM2aNUtr165VdHS0MjMz5eTkpDfeeEOfffaZ3n33XTMuJydHXbt21YkTJ/TUU0+pSZMmWrRoke6++259+OGHNudd+uvWxZMnTyo1NVUvvviivL29NWzYsEqd39LzV/rei4+PrzB2xIgR6tatm6Q/3ysff/yxzfro6Gh9/vnnevLJJ9W5c2c5OTnpzTff1KZNmyo9Hnsee+wxLVy4UDExMXrqqae0Z88evfbaa/r+++/1zTffqF69ejp48KB69+6tpk2b6oUXXlCjRo20d+9effTRR5Kkpk2bau7cuXr88cd177336r777pMkderUqVJjOHnypHr16qXs7Gw99dRT8vPz07vvvqu1a9dWavtZs2bp7rvv1uDBg1VUVKT3339fAwYM0IoVK9SvXz+b2K+++kqffPKJ+R5OTEzUnXfeqeeee06vv/66nnjiCR09elRTp07VI488YjOGtWvXqm/fvgoODjb/wVn6BfWrr75Sly5ddN999+mnn37Se++9p1dffVVeXl7mOZL+vA127NixeuCBB/Too4/q0KFDmjNnjrp3767vv//e5nbxw4cPq2/fvho4cKAeeugh+fj4VOp8lIqKilK7du30yiuvaOXKlZo8ebI8PT31xhtv6LbbbtOUKVO0ZMkSPfPMM7rxxhvVvXv3CvsrLi5WRESEQkNDNX36dH3++eeaMWOGWrVqpccff7xKY8Plg3xOPiefk8/J55dnPq/sZ96YMWP06aefatiwYdq6dauuuuoqrV69WvPmzdOkSZPUuXPnKo0Xlz9yP7mf3H955H7pz/faqVOnNGLECFksFnl6emrbtm26+eab1bx5c73wwgtq0KCBPvjgA0VGRurf//53mXN2tmXLlunEiRN6/PHH1aRJE23YsEFz5szRb7/9pmXLlkn68zvHgQMHtGbNGr377rsVjq9fv35yd3fXBx98oB49etisS01N1XXXXWc+a+FCxn22qKgojR8/XlarVb6+vmb7119/rQMHDmjgwIFmW2W+P5Xn5MmT6tmzp37++WfFxsYqMDBQy5Yt09ChQ3Xs2DGNGjXKjB02bJgWLlyovn376tFHH9WZM2f01Vdf6dtvv1VISEiZvrt3766nnnpKs2fPtplWq127dnr44Yf1zjvvaPXq1brzzjvNbaxWq9auXatx48ZV6hzVKgNlJCUlGZKM//73vzbtPXr0MK677jqbtgULFhiSjD179hiGYRinTp0yWrRoYfTt29eQZCxYsMCMPXHiRJl9vffee4Yk48svvzTbxo0bZ0gyDh06ZHeMPXr0MCQZM2bMMNsKCwuNoKAgw9vb2ygqKjIMwzDOnDljFBYW2mx79OhRw8fHx3jkkUfMtj179hiSjEGDBhnOzs6G1Wo11/Xq1ct48MEHDUnGtGnTyoxz0KBBxp133mm2//rrr4ajo6MxaNCgMsdR3jl47LHHjPr16xunTp2ye7xn7+/uu++2aX/iiSfK/P8qbz8RERHG1VdfXeE+PvjgA0OSsXHjRrNNknH//fcbzs7ONu3Dhg0zz8vIkSPN9lOnThnFxcU2/e7Zs8ewWCzGxIkTbdpXr15tSDImT55s7N6923B3dzciIyNtYkaPHm1IMr766iuz7Y8//jACAwONgIAAc19ffPGFIcn44osvbMbi6OhoPPHEExUed6kXX3zRkGTk5uaabdddd53Ro0ePMrG7du0yJBmLFi0y20r/H5U6efKk4ejoaDz22GM220ZHRxsNGjSo1Jjs+eqrrwxJxpIlS2za09LSbNo//vhjQ5Lx3Xff2e3r0KFDhiRj3LhxVR5H6efFBx98YLYVFBQYrVu3LvP/Izo62mjZsqXN9ue+V4uKiowOHToYt912m027JMNisZifNYZhGG+88YYhyfD19TXy8/PN9vj4eJvPpZKSEqNNmzZGRESEUVJSYrPvwMBA4/bbbzfbpk2bZrNtqb179xpOTk7GSy+9ZNO+detWw9nZ2aa99PMpJSWl7Ak7j9L30IgRI8y2M2fOGP/4xz8MBwcH45VXXjHbjx49ari5uRnR0dFmW+ln2dmfvdHR0YakMn//rr/+eiM4OLjKY8Tlg3xOPiefk88ri3xet/J5ZT/zSsfu4uJiPProo8bRo0eN5s2bGyEhIcbp06erPG5c/sj95H5yf93P/aXv2YYNGxoHDx60WderVy+jY8eONu+pkpISo2vXrkabNm3MtvLOWXnvncTERMPBwcH49ddfzbaRI0faHOvZzv0eMWjQIMPb29s4c+aM2fb7778bjo6ONu+Jyo77fHbu3GlIMubMmWPT/sQTTxju7u7mMVb2+5Nh/PmZc/b7oPRzcvHixWZbUVGRERYWZri7u5vfRdauXWtIMp566qky4zz7e0jLli1tcviyZcvK/L8xDMMoLi42/vGPfxhRUVE27TNnzjQcHByM3bt3V3Bm6gamcylH6S1ZpVdrVEVycrIOHz5c7i8obm5u5p9PnTql3Nxc3XTTTZJUrV/ynJ2d9dhjj5mvXVxc9Nhjj+ngwYPKysqSJDk5OZlzSpWUlOjIkSM6c+aMQkJCyt3nDTfcoOuuu878Re7XX3/VF198UeGTcB955BGlpaXJarVKkhYtWqSwsDBdc801ZWLPPgd//PGHcnNz1a1bN504cUI7duyo1HGf++vzk08+KenPh0OUt5+8vDzl5uaqR48e2r17t/Ly8my2P3HihHJzc7V582bNmzdPPj4+Zcbu4+Ojfv36acGCBeY2H3zwgWJiYsqMz2KxmFcaFBcX6/Dhw3J3d9e1115b5pz37t1bjz32mCZOnKj77rtPrq6ueuONN2xiVq1apS5duuiWW24x29zd3TVixAjt3bvXvOXp3OPNzs7W1KlTVVJSottuu62cM1lW6dUGlZkHrDJXeRQUFKikpERNmjSp1P6rYtmyZfLw8NDtt9+u3NxccwkODpa7u7t5m2Pp1VQrVqwo97ahC7Vq1So1a9bM5raq+vXra8SIEZXa/uz36tGjR5WXl6du3bqV+/ezV69eNrePh4aGSpL69++vq666qkz77t27JUmbN2/Wrl279OCDD+rw4cPmuSooKFCvXr305ZdfnvcBaR999JFKSkr0wAMP2JxvX19ftWnTpsxtpRaLpdy/H5X16KOPmn92cnJSSEiIDMOwuQqjUaNGuvbaa83jPJ//+Z//sXndrVu3Sm+LyxP5nHxOPiefVxb5vG7l86p85nXo0EETJkzQW2+9pYiICOXm5mrRokU8GO5vitxP7if31/3cX6p///42f1ePHDmitWvX6oEHHjDfY7m5uTp8+LAiIiK0a9cu7d+/325/Z793CgoKlJubq65du8owDH3//ffVGmNUVJQOHjyojIwMs+3DDz9USUmJoqKiamTcZ7vmmmsUFBSk1NRUs624uFgffvih7rrrLvMYK/v9qTyrVq2Sr6+vBg0aZLbVq1dPTz31lI4fP25OX/Pvf/9bDg4O5X4mnnv3TWU4Ojpq8ODB+uSTT/THH3+Y7UuWLFHXrl0VGBhY5T4vNYro5fj111/l7Oxc5cSbl5enl19+WXFxceXe6njkyBGNGjVKPj4+cnNzU9OmTc03ybnJoDL8/PzUoEEDm7bShHH2vG6LFi1Sp06d5OrqqiZNmqhp06ZauXKl3X3GxMSYCWbhwoXq2rWr2rRpY3ccQUFB6tChg9555x0ZhmHeTlKebdu26d5775WHh4caNmyopk2b6qGHHpJU+XNw7lhatWolR0dHm2P+5ptvFB4ergYNGqhRo0Zq2rSpOYfjufuZOHGimjZtquuvv1579+5VRkaGzT9gSsXExGjp0qUqLCzUsmXL1Lhx43ITWklJiV599VW1adNGFotFXl5eatq0qbZs2VLuMU6fPl2enp7avHmzZs+eLW9vb5v1v/76a7lzQ5XeFnPubWiRkZFq2rSpWrZsqfHjx2vMmDHq379/me3Lk5ubq3r16lXqgVHHjh2TpArnQ2vSpInatGmjt956S5999pkOHjyo3NzccucXrapdu3YpLy9P3t7eatq0qc1y/PhxHTx4UJLUo0cP9e/fXxMmTJCXl5fuueceLViwoEbGIP15/lu3bl0miVR2Pq8VK1bopptukqurqzw9Pc3b0ct7r7Ro0cLmtYeHhyTJ39+/3PbSudB27dol6c/b8c49V2+99ZYKCwvP+/dv165dMgxDbdq0KdPH9u3bzfNdqnnz5hf0UJjyjtXV1dW8Jf3s9srM+VY6f9vZGjduXKltcfkin5PPyefk88oin9e9fF6Vz7xnn31WnTt31oYNGzRu3Di1b9++2mPG5Y3cT+4n99f93F/q3KLpzz//LMMwNHbs2DI5qrSQe26eOlt2draGDh0qT09P8zlYpdOwVOfvqSTzGSRnF7VTU1MVFBRk/p290HGfKyoqSt98841ZeM/IyNDBgwfNor1U+e9P5fn111/Vpk2bMtNMnfu+/OWXX+Tn5ydPT89Kj/18hgwZopMnT5pTB+3cuVNZWVl6+OGHa2wfFxM/z5dj586duvrqq6t89cKUKVPk6OioZ599tswDRqQ/5/9at26dnn32WQUFBcnd3V0lJSXq06fPea8aqa7Fixdr6NChioyM1LPPPitvb285OTkpMTFRv/zyS7nbPPTQQ3ruuef07bffatGiRRozZsx59/PII4/o9ddfV5cuXWS1WvXAAw+UeUDQsWPH1KNHDzVs2FATJ05Uq1at5Orqqk2bNun555+v9jk49x87v/zyi3r16qW2bdtq5syZ8vf3l4uLi1atWqVXX321zH4effRR9erVS7/99pteffVV9e/fX+vWrTP/4VKqX79+cnFx0fLly7VgwQJFR0eX+8Cal19+WWPHjtUjjzyiSZMmydPTU46Ojho9enS5x/j999+bH3Bbt261+TWwOqZPn67OnTvr9OnT+u677zR58mQ5OztXan6pvXv3qkWLFpX6VbH0aoWz5+kqT2pqqgYPHqyIiAib9nO/NFZVSUmJvL29tWTJknLXl35xdnBw0Icffqhvv/1Wn376qVavXq1HHnlEM2bM0LffflsjD0Srrq+++kp33323unfvrtdff13NmjVTvXr1tGDBAi1durRMvJOTU7n92Gs3/v9DaErfd9OmTSszd2Kp852HkpISOTg46P/+7//K3d+52599FUB1lLeP8x1nVfvDlY98Tj4nn5PPLwXyuX3VzedV/czbvXu3+SNDefNZ4++D3E/uJ/fX/dxf6twcU3qOn3nmmTL7LNW6dety24uLi3X77bfryJEjev7559W2bVs1aNBA+/fv19ChQ6v9HrVYLIqMjNTHH3+s119/XTk5Ofrmm2/08ssv18i4yxMVFaX4+HgtW7ZMo0eP1gcffCAPDw/16dPHZp+V+f5U17Rv317BwcFavHixhgwZosWLF8vFxUUPPPBAbQ+tUiiin6OwsFCbN2+2eRhHZRw4cECzZs1SYmKirrrqqjKJ9+jRo0pPT9eECROUkJBgtpd+2auOAwcOqKCgwOYD7KeffpIk8xbRDz/8UFdffbU++ugjmw/Tij6EmzRporvvvtu8naz0ds+KDB48WM8++6xGjRql+++/v9xffzMyMnT48GF99NFHNg8B3LNnT6WOt9SuXbtsfrH8+eefVVJSYh7zp59+qsLCQn3yySc2V7/Yu52ldevW5gdaeHi4WrRooaVLl5Z52KCzs7MefvhhvfTSS9q2bZvmz59fbn8ffvihbr31Vr399ts27ceOHStz1U1BQYFiYmLUvn17de3aVVOnTtW9996rG2+80Yxp2bKldu7cWWY/pbfMtWzZ0qY9ODjYfAJ33759tX//fk2ZMkVjx46t8Cn1Z86c0X//+1+bD+aK/Pjjj3JwcDjvFVrXX3+95s2bp27dumnixIm66aabNG3aNH3zzTeV2o89rVq10ueff66bb765Uv/Au+mmm3TTTTfppZde0tKlSzV48GC9//77evTRR6t1K1Kpli1b6ocffpBhGDb9lPf/7Fz//ve/5erqqtWrV9vcSld69UhNadWqlSSpYcOGCg8PrzDW3rlo1aqVDMNQYGBgubd3AnUN+Zx8Tj4nn1cF+bxuqcpnXklJiYYOHaqGDRtq9OjRevnll3X//febD5fF3we5n9xP7r88cr89V199taQ/pxY5X54719atW/XTTz9p0aJFGjJkiNm+Zs2aMrFV/b4QFRWlRYsWKT09Xdu3b5dhGDZXhV/IuMsTGBioLl26KDU1VbGxsfroo48UGRlp8x2jqt+fztayZUtt2bJFJSUlNu+rc9+XrVq10urVq3XkyJEqXY1+vvM7ZMgQxcXF6ffff9fSpUvVr18/NW7cuErHUFuYzuUcpbf49OrVq0rbTZgwQT4+PmXm3C1VesXFuVdMJiUlVWuc0p8flGfPuVVUVKQ33nhDTZs2VXBwsN39rl+/XpmZmRX2/cgjj2jLli0aMGBApa7s8fT01D333KMtW7aYTxM/V3ljKSoq0uuvv37e/s+WnJxs83rOnDmS/kwy9vaTl5dXqX/IlH7BsHeL0iOPPKKtW7eqe/fu5gfluZycnMr8f162bFm5c2A9//zzys7O1qJFizRz5kwFBAQoOjraZv933HGHNmzYYPP/rKCgQG+++aYCAgLOe7vqyZMndebMGZ05c6bCuM8++0x5eXm65557KoyT/nzv/fvf/1aXLl3O+/7Iz8/Xww8/rLvvvltjxoxReHi4mjVrdt59nM8DDzyg4uJiTZo0qdzxld6idvTo0TL/P0qv3io9z6W3vJVuUxV33HGHDhw4oA8//NBsO3HihN58883zbuvk5CQHBwcVFxebbXv37tXy5curPI6KBAcHq1WrVpo+fbqOHz9eZv2hQ4fMP5d+kT/3XNx3331ycnLShAkTypxPwzDKvWIHqE3k8z+Rz8nnFSGf/4V8XrfyeVU+82bOnKl169bpzTff1KRJk9S1a1c9/vjj5y0c4spD7v8TuZ/cX5G6kPvt8fb2Vs+ePfXGG2/o999/L7P+7Dx3rvLeO4ZhaNasWWVi7eVIe8LDw+Xp6anU1FSlpqaqS5cuNj8GXci47YmKitK3336r+fPnKzc316ZoL1X++1N57rjjDlmtVpspas6cOaM5c+bI3d3dnAKnf//+MgxDEyZMKNNHRXeDn+/8Dho0SA4ODho1apR2795tTgt1OeBK9P+voKBAc+bM0cSJE80PzsWLF9vE5OTk6Pjx41q8eLFuv/12m7nSPvvsMy1ZssTunIENGzZU9+7dNXXqVJ0+fVrNmzfXZ599VuVfbs/m5+enKVOmaO/evbrmmmuUmpqqzZs3680331S9evUkSXfeeac++ugj3XvvverXr5/27NmjlJQUtW/fvtwv36X69OmjQ4cOVenW2IULFyo5ObnML7SlunbtqsaNGys6OlpPPfWUHBwc9O6771ZqKoaz7dmzR3fffbf69OmjzMxMLV68WA8++KA6d+4s6c8HfLi4uOiuu+7SY489puPHj2vevHny9va2+UBbtWqV3nrrLXXt2lWenp7avXu35s2bpwYNGujee+8td9/t2rVTbm5uhb/03XnnnZo4caJiYmLUtWtXbd26VUuWLCmTqNeuXavXX39d48aN0w033CDpzyuWevbsqbFjx2rq1KmSpBdeeEHvvfee+vbtq6eeekqenp5atGiR9uzZo3//+99lfpFes2aNfvvtN/MWsCVLlujuu++ucD7L1NRUPfPMM7JYLDp58qTNez8vL0/FxcVavny5IiMj9fnnn2vs2LHasmWLPv30U7t9lho5cqROnjypt95667yxVdGjRw899thjSkxM1ObNm9W7d2/Vq1dPu3bt0rJlyzRr1izdf//9WrRokV5//XXde++9atWqlf744w/NmzdPDRs21B133CHpz9vI2rdvr9TUVF1zzTXy9PRUhw4d1KFDh/OOY/jw4Xrttdc0ZMgQZWVlqVmzZnr33XcrNRddv379NHPmTPXp00cPPvigDh48qOTkZLVu3Vpbtmy54HNUytHRUW+99Zb69u2r6667TjExMWrevLn279+vL774Qg0bNjT/X5Z+af/Xv/6lgQMHql69errrrrvUqlUrTZ48WfHx8dq7d68iIyN11VVXac+ePfr44481YsQIPfPMMzU2ZqC6yOe2yOfk81Lk84qRz+tWPq/sZ9727ds1duxYDR06VHfddZekPz/DgoKC9MQTT+iDDz6orUPAJUTut0XuJ/eXqqu5vyLJycm65ZZb1LFjRw0fPlxXX321cnJylJmZqd9++03//e9/y92ubdu2atWqlZ555hnt379fDRs21L///e9yn4FVmiOfeuopRUREyMnJSQMHDrQ7pnr16um+++7T+++/r4KCAk2fPr3Gxm3PAw88oGeeeUbPPPOMPD09y1zhXtnvT+UZMWKE3njjDQ0dOlRZWVkKCAjQhx9+qG+++UZJSUnm3Si33nqrHn74Yc2ePVu7du0yp6/66quvdOuttyo2Nrbc/oOCguTk5KQpU6YoLy9PFotFt912m/nMgKZNm6pPnz5atmyZGjVqpH79+lXp3NQqA4ZhGMaePXsMSZVevvjiC8MwDGPBggWGJCMoKMgoKSkp09+CBQvMtt9++8249957jUaNGhkeHh7GgAEDjAMHDhiSjHHjxplx48aNMyQZhw4dsjveHj16GNddd52xceNGIywszHB1dTVatmxpvPbaazZxJSUlxssvv2y0bNnSsFgsxvXXX2+sWLHCiI6ONlq2bFlmvNOmTavw/Jy9/nzjLG/9N998Y9x0002Gm5ub4efnZzz33HPG6tWrbc6pPaX9/fjjj8b9999vXHXVVUbjxo2N2NhY4+TJkzaxn3zyidGpUyfD1dXVCAgIMKZMmWLMnz/fkGTs2bPHMAzD+OGHH4zevXsbTZo0MVxcXAx/f39j4MCBxpYtW2z6kmSMHDnS7rjOXX/q1Cnjn//8p9GsWTPDzc3NuPnmm43MzEyjR48eRo8ePQzDMIz8/HyjZcuWxg033GCcPn3apr+nn37acHR0NDIzM822X375xbj//vuNRo0aGa6urkaXLl2MFStW2Gz3xRdf2LxHnZ2djZYtWxpPPfWUcfTo0QrPbcuWLc/7ni99vzz55JNG9+7djbS0tDL9lP4/KvXee+8ZDg4OZWKjo6ONBg0aVDimynrzzTeN4OBgw83NzbjqqquMjh07Gs8995xx4MABwzAMY9OmTcagQYOMFi1aGBaLxfD29jbuvPNOY+PGjTb9rFu3zggODjZcXFzK/J08n19//dW4++67jfr16xteXl7GqFGjjLS0tDLv63P/3hmGYbz99ttGmzZtDIvFYrRt29ZYsGBBmfNoGOW/D+39vS19Lyxbtsym/fvvvzfuu+8+o0mTJobFYjFatmxpPPDAA0Z6erpN3KRJk4zmzZsbjo6ONn9nDMMw/v3vfxu33HKL0aBBA6NBgwZG27ZtjZEjRxo7d+40Y0o/n6rD3ueKvffMufsq77PX3rblnWdc/sjn5HPyOfmcfP6nyzmfV+Yz78yZM8aNN95o/OMf/zCOHTtm09+sWbMMSUZqamq1xo/LC7mf3E/uv7xy//nes7/88osxZMgQw9fX16hXr57RvHlz48477zQ+/PBDM6b0nJ393vvxxx+N8PBww93d3fDy8jKGDx9u/Pe//y3z9/nMmTPGk08+aTRt2tRwcHCwOW573x3WrFljSDIcHByMffv2VXvcVXHzzTcbkoxHH33Ubsz5vj8ZhmHz/i2Vk5NjxMTEGF5eXoaLi4vRsWNHm3NU6syZM8a0adOMtm3bGi4uLkbTpk2Nvn37GllZWWZMy5YtjejoaJvt5s2bZ1x99dWGk5NTuZ8RH3zwgSHJGDFiRKXPR13gYBhV/OnwCrV3714FBgbqiy++MOegupC4i61nz57Kzc3VDz/8UGtjuNTGjx+vCRMm6NChQ3Z/IUf1BAQEaPz48Ro6dGi56zMyMjR06FCbp6YDQF1EPq/7yOcXD/kcwN8Rub/uI/dfPOR+XI7+93//V5GRkfryyy/VrVu32h5OpTEnOgAAAAAAAADgops3b56uvvpq3XLLLbU9lCphTvT/z93dXYMHD7aZG+1C4oDLSen8ovb4+PjYnVvuSlVUVKQjR45UGOPh4VHlJ2H/XR0/frzCuRulP+dGK30gDFBd5HP8nZHPyyKf1yzyOeoicj/+zsj9lw+r1Vrhejc3N3l4eFyi0dSO999/X1u2bNHKlSs1a9YsOTg41PaQqoTpXC5T3ALGLWC4uDIyMnTrrbdWGLNgwQK7t83BVunf34rs2bNHAQEBl2ZAQB1BPief4+Iin9cs8jlw4cj95H78PZ2vYBwdHa2FCxdemsHUEgcHB7m7uysqKkopKSlydr68ru2miA4A5Th69KiysrIqjLnuuuvUrFmzSzSiy9vu3bu1e/fuCmNuueUWubq6XqIRAQD+DsjnNYt8XnO+/PJLTZs2TVlZWfr999/18ccfKzIyUpJ0+vRpjRkzRqtWrdLu3bvl4eGh8PBwvfLKK/Lz8zP7OHLkiJ588kl9+umncnR0VP/+/TVr1iy5u7ubMVu2bNHIkSP13XffqWnTpnryySf13HPP2Yxl2bJlGjt2rPbu3as2bdpoypQpuuOOO8z1hmFo3Lhxmjdvno4dO6abb75Zc+fOVZs2bS7uSQKAK8jnn39e4Xo/Pz+1b9/+Eo0G1UERHQAAAACAS+j//u//9M033yg4OFj33XefTRE9Ly9P999/v4YPH67OnTvr6NGjGjVqlIqLi7Vx40azj759++r333/XG2+8odOnTysmJkY33nijli5dKknKz8/XNddco/DwcMXHx2vr1q165JFHlJSUpBEjRkiS1q1bp+7duysxMVF33nmnli5dqilTpmjTpk3q0KGDJGnKlClKTEzUokWLFBgYqLFjx2rr1q368ccf+cEEAPC3cUUU0UtKSnTgwAFdddVVl918OgCAK5thGPrjjz/k5+cnR0ee511Z5HYAQF1V07ndwcHBpohenu+++05dunTRr7/+qhYtWmj79u1q3769vvvuO4WEhEiS0tLSdMcdd+i3336Tn5+f5s6dq3/961+yWq1ycXGRJL3wwgtavny5duzYIUmKiopSQUGBVqxYYe7rpptuUlBQkFJSUmQYhvz8/PTPf/5TzzzzjKQ/i/w+Pj5auHChBg4cWKljJK8DAOqqyub1y2vyGTsOHDggf3//2h4GAAB27du3T//4xz9qexiXDXI7AKCuu5S5PS8vTw4ODmrUqJEkKTMzU40aNTIL6JIUHh4uR0dHrV+/Xvfee68yMzPVvXt3s4AuSREREZoyZYqOHj2qxo0bKzMzU3FxcTb7ioiI0PLlyyX9Oce91WpVeHi4ud7Dw0OhoaHKzMy0W0QvLCxUYWGh+Xr//v1MUwAAqNPOl9eviCL6VVddJenPg23YsGEtjwYAgL/k5+fL39/fzFWoHHI7AKCuutS5/dSpU3r++ec1aNAgMydarVZ5e3vbxDk7O8vT01NWq9WMCQwMtInx8fEx1zVu3FhWq9VsOzvm7D7O3q68mPIkJiaW+xBa8joAoK6pbF6/IoropbeDNWzYkIQMAKiTuHW5asjtAIC67lLk9tOnT+uBBx6QYRiaO3fuRd9fTYmPj7e5wr20QEFeBwDUVefL61dEER0AAAAAgCtJaQH9119/1dq1a22Kz76+vjp48KBN/JkzZ3TkyBH5+vqaMTk5OTYxpa/PF3P2+tK2Zs2a2cQEBQXZHbvFYpHFYqnK4QIAUKfxhDMAAAAAAOqQ0gL6rl279Pnnn6tJkyY268PCwnTs2DFlZWWZbWvXrlVJSYlCQ0PNmC+//FKnT582Y9asWaNrr71WjRs3NmPS09Nt+l6zZo3CwsIkSYGBgfL19bWJyc/P1/r1680YAAD+DiiiAwAAAABwCR0/flybN2/W5s2bJf35AM/NmzcrOztbp0+f1v3336+NGzdqyZIlKi4ultVqldVqVVFRkSSpXbt26tOnj4YPH64NGzbom2++UWxsrAYOHCg/Pz9J0oMPPigXFxcNGzZM27ZtU2pqqmbNmmUzzcqoUaOUlpamGTNmaMeOHRo/frw2btyo2NhYSX/e2j569GhNnjxZn3zyibZu3aohQ4bIz89PkZGRl/ScAQBQm5jOBQAAAACAS2jjxo269dZbzdelhe3o6GiNHz9en3zyiSSVmTLliy++UM+ePSVJS5YsUWxsrHr16iVHR0f1799fs2fPNmM9PDz02WefaeTIkQoODpaXl5cSEhI0YsQIM6Zr165aunSpxowZoxdffFFt2rTR8uXL1aFDBzPmueeeU0FBgUaMGKFjx47plltuUVpamlxdXWv6tAAAUGc5GIZh1PYgLlR+fr48PDyUl5fHQ0oAAHUKOap6OG8AgLqKHFV1nDMAQF1V2RzFdC4AAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADuca3sAAGreiRMntGPHjmpvf/LkSe3du1cBAQFyc3Ordj9t27ZV/fr1q709AAAgrwMAcKWpC7mdvA5UDUV04Aq0Y8cOBQcH1/YwlJWVpRtuuKG2hwEAwGWNvA4AwJWlLuR28jpQNRTRgStQ27ZtlZWVVe3tt2/froceekiLFy9Wu3btLmgcAADgwpDXAQC4stSF3E5eB6qGIjpwBapfv36N/KLcrl07fpkGAKCWkdcBALiykNuByw8PFgUAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AABwXsnJyQoICJCrq6tCQ0O1YcMGu7E9e/aUg4NDmaVfv36XcMQAAAAAANQMiugAAKBCqampiouL07hx47Rp0yZ17txZEREROnjwYLnxH330kX7//Xdz+eGHH+Tk5KQBAwZc4pEDAAAAAHDhKKIDAIAKzZw5U8OHD1dMTIzat2+vlJQU1a9fX/Pnzy833tPTU76+vuayZs0a1a9fv8IiemFhofLz820WAAAAAADqAoroAADArqKiImVlZSk8PNxsc3R0VHh4uDIzMyvVx9tvv62BAweqQYMGdmMSExPl4eFhLv7+/hc8dgAAAAAAagJFdAAAYFdubq6Ki4vl4+Nj0+7j4yOr1Xre7Tds2KAffvhBjz76aIVx8fHxysvLM5d9+/Zd0LgBAAAAAKgpzrU9AAAAcOV6++231bFjR3Xp0qXCOIvFIovFcolGBQAAAABA5XElOgAAsMvLy0tOTk7Kycmxac/JyZGvr2+F2xYUFOj999/XsGHDLuYQAQAAAAC4qCiiAwAAu1xcXBQcHKz09HSzraSkROnp6QoLC6tw22XLlqmwsFAPPfTQxR4mAAAAAAAXDdO5AACACsXFxSk6OlohISHq0qWLkpKSVFBQoJiYGEnSkCFD1Lx5cyUmJtps9/bbbysyMlJNmjSpjWEDAAAAAFAjKKIDAIAKRUVF6dChQ0pISJDValVQUJDS0tLMh41mZ2fL0dH25radO3fq66+/1meffVYbQwYAAAAAoMZQRAcAAOcVGxur2NjYctdlZGSUabv22mtlGMZFHhUAAAAAABcfc6IDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB3VKqInJycrICBArq6uCg0N1YYNG+zGfvTRRwoJCVGjRo3UoEEDBQUF6d1337WJMQxDCQkJatasmdzc3BQeHq5du3ZVZ2gAAAAAAAAAANSYKhfRU1NTFRcXp3HjxmnTpk3q3LmzIiIidPDgwXLjPT099a9//UuZmZnasmWLYmJiFBMTo9WrV5sxU6dO1ezZs5WSkqL169erQYMGioiI0KlTp6p/ZAAAAAAAAAAAXKAqF9Fnzpyp4cOHKyYmRu3bt1dKSorq16+v+fPnlxvfs2dP3XvvvWrXrp1atWqlUaNGqVOnTvr6668l/XkVelJSksaMGaN77rlHnTp10jvvvKMDBw5o+fLlF3RwAAAAAAAAAABciCoV0YuKipSVlaXw8PC/OnB0VHh4uDIzM8+7vWEYSk9P186dO9W9e3dJ0p49e2S1Wm369PDwUGhoqN0+CwsLlZ+fb7MAAAAAAAAAAFDTqlREz83NVXFxsXx8fGzafXx8ZLVa7W6Xl5cnd3d3ubi4qF+/fpozZ45uv/12STK3q0qfiYmJ8vDwMBd/f/+qHAYAAAAAAAAAAJVSrQeLVtVVV12lzZs367vvvtNLL72kuLg4ZWRkVLu/+Ph45eXlmcu+fftqbrAAAAAAAAAAAPx/zlUJ9vLykpOTk3Jycmzac3Jy5Ovra3c7R0dHtW7dWpIUFBSk7du3KzExUT179jS3y8nJUbNmzWz6DAoKKrc/i8Uii8VSlaEDAAAAAAAAAFBlVboS3cXFRcHBwUpPTzfbSkpKlJ6errCwsEr3U1JSosLCQklSYGCgfH19bfrMz8/X+vXrq9QnAAAAAAAAAAA1rUpXoktSXFycoqOjFRISoi5duigpKUkFBQWKiYmRJA0ZMkTNmzdXYmKipD/nLw8JCVGrVq1UWFioVatW6d1339XcuXMlSQ4ODho9erQmT56sNm3aKDAwUGPHjpWfn58iIyNr7kgBAAAAAAAAAKiiKhfRo6KidOjQISUkJMhqtSooKEhpaWnmg0Gzs7Pl6PjXBe4FBQV64okn9Ntvv8nNzU1t27bV4sWLFRUVZcY899xzKigo0IgRI3Ts2DHdcsstSktLk6uraw0cIgAAAAAAAAAA1VPlIrokxcbGKjY2ttx15z4wdPLkyZo8eXKF/Tk4OGjixImaOHFidYYDAAAAAAAAAMBFUaU50QEAAAAAAAAA+DuhiA4AAAAAAAAAgB0U0QEAAAAAuIS+/PJL3XXXXfLz85ODg4OWL19us94wDCUkJKhZs2Zyc3NTeHi4du3aZRNz5MgRDR48WA0bNlSjRo00bNgwHT9+3CZmy5Yt6tatm1xdXeXv76+pU6eWGcuyZcvUtm1bubq6qmPHjlq1alWVxwIAwJWOIjoAAAAAAJdQQUGBOnfurOTk5HLXT506VbNnz1ZKSorWr1+vBg0aKCIiQqdOnTJjBg8erG3btmnNmjVasWKFvvzyS40YMcJcn5+fr969e6tly5bKysrStGnTNH78eL355ptmzLp16zRo0CANGzZM33//vSIjIxUZGakffvihSmMBAOBKV60HiwIAAAAAgOrp27ev+vbtW+46wzCUlJSkMWPG6J577pEkvfPOO/Lx8dHy5cs1cOBAbd++XWlpafruu+8UEhIiSZozZ47uuOMOTZ8+XX5+flqyZImKioo0f/58ubi46LrrrtPmzZs1c+ZMs9g+a9Ys9enTR88++6wkadKkSVqzZo1ee+01paSkVGosAAD8HXAlOgAAAAAAdcSePXtktVoVHh5utnl4eCg0NFSZmZmSpMzMTDVq1MgsoEtSeHi4HB0dtX79ejOme/fucnFxMWMiIiK0c+dOHT161Iw5ez+lMaX7qcxYylNYWKj8/HybBQCAyxlFdAAAAAAA6gir1SpJ8vHxsWn38fEx11mtVnl7e9usd3Z2lqenp01MeX2cvQ97MWevP99YypOYmCgPDw9z8ff3P89RAwBQt1FEBwAAAAAANSY+Pl55eXnmsm/fvtoeEgAAF4QiOgAAAAAAdYSvr68kKScnx6Y9JyfHXOfr66uDBw/arD9z5oyOHDliE1NeH2fvw17M2evPN5byWCwWNWzY0GYBAOByRhEdAAAAAIA6IjAwUL6+vkpPTzfb8vPztX79eoWFhUmSwsLCdOzYMWVlZZkxa9euVUlJiUJDQ82YL7/8UqdPnzZj1qxZo2uvvVaNGzc2Y87eT2lM6X4qMxYAAP4OKKIDAAAAAHAJHT9+XJs3b9bmzZsl/fkAz82bNys7O1sODg4aPXq0Jk+erE8++URbt27VkCFD5Ofnp8jISElSu3bt1KdPHw0fPlwbNmzQN998o9jYWA0cOFB+fn6SpAcffFAuLi4aNmyYtm3bptTUVM2aNUtxcXHmOEaNGqW0tDTNmDFDO3bs0Pjx47Vx40bFxsZKUqXGAgDA34FzbQ8AAAAAAIC/k40bN+rWW281X5cWtqOjo7Vw4UI999xzKigo0IgRI3Ts2DHdcsstSktLk6urq7nNkiVLFBsbq169esnR0VH9+/fX7NmzzfUeHh767LPPNHLkSAUHB8vLy0sJCQkaMWKEGdO1a1ctXbpUY8aM0Ysvvqg2bdpo+fLl6tChgxlTmbEAAHClczAMw6jtQVyo/Px8eXh4KC8vj7nWgBqwadMmBQcHKysrSzfccENtDwe4rJGjqofzBtQc8jpQs8hRVcc5A2oWuR2oOZXNUUznAgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAOC8kpOTFRAQIFdXV4WGhmrDhg0Vxh87dkwjR45Us2bNZLFYdM0112jVqlWXaLQAAAAAANQc59oeAAAAqNtSU1MVFxenlJQUhYaGKikpSREREdq5c6e8vb3LxBcVFen222+Xt7e3PvzwQzVv3ly//vqrGjVqdOkHDwAAAADABaKIDgAAKjRz5kwNHz5cMTExkqSUlBStXLlS8+fP1wsvvFAmfv78+Tpy5IjWrVunevXqSZICAgIq3EdhYaEKCwvN1/n5+TV3AAAAAAAAXACmcwEAAHYVFRUpKytL4eHhZpujo6PCw8OVmZlZ7jaffPKJwsLCNHLkSPn4+KhDhw56+eWXVVxcbHc/iYmJ8vDwMBd/f/8aPxYAAAAAAKqDIjoAALArNzdXxcXF8vHxsWn38fGR1Wotd5vdu3frww8/VHFxsVatWqWxY8dqxowZmjx5st39xMfHKy8vz1z27dtXo8cBAAAAAEB1MZ0LAACoUSUlJfL29tabb74pJycnBQcHa//+/Zo2bZrGjRtX7jYWi0UWi+USjxQAAAAAgPOjiA4AAOzy8vKSk5OTcnJybNpzcnLk6+tb7jbNmjVTvXr15OTkZLa1a9dOVqtVRUVFcnFxuahjBgAAAACgJjGdCwAAsMvFxUXBwcFKT08320pKSpSenq6wsLByt7n55pv1888/q6SkxGz76aef1KxZMwroAAAAAIDLDkV0AABQobi4OM2bN0+LFi3S9u3b9fjjj6ugoEAxMTGSpCFDhig+Pt6Mf/zxx3XkyBGNGjVKP/30k1auXKmXX35ZI0eOrK1DAAAAAACg2pjOBQAAVCgqKkqHDh1SQkKCrFargoKClJaWZj5sNDs7W46Of/0u7+/vr9WrV+vpp59Wp06d1Lx5c40aNUrPP/98bR0CAAAAAADVRhEdAACcV2xsrGJjY8tdl5GRUaYtLCxM33777UUeFQAAAAAAFx/TuQAAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYEe1iujJyckKCAiQq6urQkNDtWHDBrux8+bNU7du3dS4cWM1btxY4eHhZeKHDh0qBwcHm6VPnz7VGRoAAAAAAAAAADWmykX01NRUxcXFady4cdq0aZM6d+6siIgIHTx4sNz4jIwMDRo0SF988YUyMzPl7++v3r17a//+/TZxffr00e+//24u7733XvWOCAAAAAAAAACAGlLlIvrMmTM1fPhwxcTEqH379kpJSVH9+vU1f/78cuOXLFmiJ554QkFBQWrbtq3eeustlZSUKD093SbOYrHI19fXXBo3bly9IwIAAAAAAAAAoIZUqYheVFSkrKwshYeH/9WBo6PCw8OVmZlZqT5OnDih06dPy9PT06Y9IyND3t7euvbaa/X444/r8OHDdvsoLCxUfn6+zQIAAAAAAAAAQE2rUhE9NzdXxcXF8vHxsWn38fGR1WqtVB/PP/+8/Pz8bArxffr00TvvvKP09HRNmTJF//nPf9S3b18VFxeX20diYqI8PDzMxd/fvyqHAQAAAAAAAABApThfyp298sorev/995WRkSFXV1ezfeDAgeafO3bsqE6dOqlVq1bKyMhQr169yvQTHx+vuLg483V+fj6FdAAAAAAAAABAjavSleheXl5ycnJSTk6OTXtOTo58fX0r3Hb69Ol65ZVX9Nlnn6lTp04Vxl599dXy8vLSzz//XO56i8Wihg0b2iwAAAAAAAAAANS0KhXRXVxcFBwcbPNQ0NKHhIaFhdndburUqZo0aZLS0tIUEhJy3v389ttvOnz4sJo1a1aV4QEAAAAAAAAAUKOqVESXpLi4OM2bN0+LFi3S9u3b9fjjj6ugoEAxMTGSpCFDhig+Pt6MnzJlisaOHav58+crICBAVqtVVqtVx48flyQdP35czz77rL799lvt3btX6enpuueee9S6dWtFRETU0GECAAAAAAAAAFB1VZ4TPSoqSocOHVJCQoKsVquCgoKUlpZmPmw0Oztbjo5/1ebnzp2roqIi3X///Tb9jBs3TuPHj5eTk5O2bNmiRYsW6dixY/Lz81Pv3r01adIkWSyWCzw8AAAAAAAAAACqr1oPFo2NjVVsbGy56zIyMmxe7927t8K+3NzctHr16uoMAwAAAAAAAACAi6rK07kAAAAAAAAAAPB3QREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAOqQ4uJijR07VoGBgXJzc1OrVq00adIkGYZhxhiGoYSEBDVr1kxubm4KDw/Xrl27bPo5cuSIBg8erIYNG6pRo0YaNmyYjh8/bhOzZcsWdevWTa6urvL399fUqVPLjGfZsmVq27atXF1d1bFjR61ateriHDgAAHUURXQAAAAAAOqQKVOmaO7cuXrttde0fft2TZkyRVOnTtWcOXPMmKlTp2r27NlKSUnR+vXr1aBBA0VEROjUqVNmzODBg7Vt2zatWbNGK1as0JdffqkRI0aY6/Pz89W7d2+1bNlSWVlZmjZtmsaPH68333zTjFm3bp0GDRqkYcOG6fvvv1dkZKQiIyP1ww8/XJqTAQBAHeBc2wMAAAAAAAB/Wbdune655x7169dPkhQQEKD33ntPGzZskPTnVehJSUkaM2aM7rnnHknSO++8Ix8fHy1fvlwDBw7U9u3blZaWpu+++04hISGSpDlz5uiOO+7Q9OnT5efnpyVLlqioqEjz58+Xi4uLrrvuOm3evFkzZ840i+2zZs1Snz599Oyzz0qSJk2apDVr1ui1115TSkpKueMvLCxUYWGh+To/P//inCgAAC4RrkQHAAAAAKAO6dq1q9LT0/XTTz9Jkv773//q66+/Vt++fSVJe/bskdVqVXh4uLmNh4eHQkNDlZmZKUnKzMxUo0aNzAK6JIWHh8vR0VHr1683Y7p37y4XFxczJiIiQjt37tTRo0fNmLP3UxpTup/yJCYmysPDw1z8/f0v5HQAAFDruBIdAAAAAIA65IUXXlB+fr7atm0rJycnFRcX66WXXtLgwYMlSVarVZLk4+Njs52Pj4+5zmq1ytvb22a9s7OzPD09bWICAwPL9FG6rnHjxrJarRXupzzx8fGKi4szX+fn51NIBwBc1iiiAwAAAABQh3zwwQdasmSJli5dak6xMnr0aPn5+Sk6Orq2h3deFotFFoultocBAECNoYgOAAAAAEAd8uyzz+qFF17QwIEDJUkdO3bUr7/+qsTEREVHR8vX11eSlJOTo2bNmpnb5eTkKCgoSJLk6+urgwcP2vR75swZHTlyxNze19dXOTk5NjGlr88XU7oeAIC/A+ZEBwAAAACgDjlx4oQcHW3/ue7k5KSSkhJJUmBgoHx9fZWenm6uz8/P1/r16xUWFiZJCgsL07Fjx5SVlWXGrF27ViUlJQoNDTVjvvzyS50+fdqMWbNmja699lo1btzYjDl7P6UxpfsBAODvgCI6AAA4r+TkZAUEBMjV1VWhoaHasGGD3diFCxfKwcHBZnF1db2EowUA4PJ211136aWXXtLKlSu1d+9effzxx5o5c6buvfdeSZKDg4NGjx6tyZMn65NPPtHWrVs1ZMgQ+fn5KTIyUpLUrl079enTR8OHD9eGDRv0zTffKDY2VgMHDpSfn58k6cEHH5SLi4uGDRumbdu2KTU1VbNmzbKZz3zUqFFKS0vTjBkztGPHDo0fP14bN25UbGzsJT8vAADUFqZzAQAAFUpNTVVcXJxSUlIUGhqqpKQkRUREaOfOnWUeWFaqYcOG2rlzp/nawcHhUg0XAIDL3pw5czR27Fg98cQTOnjwoPz8/PTYY48pISHBjHnuuedUUFCgESNG6NixY7rllluUlpZm88P1kiVLFBsbq169esnR0VH9+/fX7NmzzfUeHh767LPPNHLkSAUHB8vLy0sJCQkaMWKEGdO1a1ctXbpUY8aM0Ysvvqg2bdpo+fLl6tChw6U5GQAA1AEU0QEAQIVmzpyp4cOHKyYmRpKUkpKilStXav78+XrhhRfK3cbBwaFKc6UWFhaqsLDQfJ2fn39hgwYA4DJ21VVXKSkpSUlJSXZjHBwcNHHiRE2cONFujKenp5YuXVrhvjp16qSvvvqqwpgBAwZowIABFcYAAHAlYzoXAABgV1FRkbKyshQeHm62OTo6Kjw8XJmZmXa3O378uFq2bCl/f3/dc8892rZtW4X7SUxMlIeHh7n4+/vX2DEAAAAAAHAhKKIDAAC7cnNzVVxcLB8fH5t2Hx8fWa3Wcre59tprNX/+fP3v//6vFi9erJKSEnXt2lW//fab3f3Ex8crLy/PXPbt21ejxwEAAAAAQHUxnQsAAKhRYWFhCgsLM1937dpV7dq10xtvvKFJkyaVu43FYpHFYrlUQwQAAAAAoNK4Eh0AANjl5eUlJycn5eTk2LTn5ORUes7zevXq6frrr9fPP/98MYYIAAAAAMBFRREdAADY5eLiouDgYKWnp5ttJSUlSk9Pt7navCLFxcXaunWrmjVrdrGGCQAAAADARcN0LgAAoEJxcXGKjo5WSEiIunTpoqSkJBUUFCgmJkaSNGTIEDVv3lyJiYmSpIkTJ+qmm25S69atdezYMU2bNk2//vqrHn300do8DAAAAAAAqoUiOgAAqFBUVJQOHTqkhIQEWa1WBQUFKS0tzXzYaHZ2thwd/7q57ejRoxo+fLisVqsaN26s4OBgrVu3Tu3bt6+tQwAAAAAAoNooogMAgPOKjY1VbGxsuesyMjJsXr/66qt69dVXL8GoAAAAAAC4+JgTHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwI5qFdGTk5MVEBAgV1dXhYaGasOGDXZj582bp27duqlx48Zq3LixwsPDy8QbhqGEhAQ1a9ZMbm5uCg8P165du6ozNAAAAAAAAAAAakyVi+ipqamKi4vTuHHjtGnTJnXu3FkRERE6ePBgufEZGRkaNGiQvvjiC2VmZsrf31+9e/fW/v37zZipU6dq9uzZSklJ0fr169WgQQNFRETo1KlT1T8yAAAAAAAAAAAuUJWL6DNnztTw4cMVExOj9u3bKyUlRfXr19f8+fPLjV+yZImeeOIJBQUFqW3btnrrrbdUUlKi9PR0SX9ehZ6UlKQxY8bonnvuUadOnfTOO+/owIEDWr58ebl9FhYWKj8/32YBAAAAAAAAAKCmVamIXlRUpKysLIWHh//VgaOjwsPDlZmZWak+Tpw4odOnT8vT01OStGfPHlmtVps+PTw8FBoaarfPxMREeXh4mIu/v39VDgMAAAAAAAAAgEqpUhE9NzdXxcXF8vHxsWn38fGR1WqtVB/PP/+8/Pz8zKJ56XZV6TM+Pl55eXnmsm/fvqocBgAAAAAAAAAAleJ8KXf2yiuv6P3331dGRoZcXV2r3Y/FYpHFYqnBkQEAAAAAAAAAUFaVrkT38vKSk5OTcnJybNpzcnLk6+tb4bbTp0/XK6+8os8++0ydOnUy20u3q06fAAAAAAAAAABcTFUqoru4uCg4ONh8KKgk8yGhYWFhdrebOnWqJk2apLS0NIWEhNisCwwMlK+vr02f+fn5Wr9+fYV9AgAAAAAAAABwsVV5Ope4uDhFR0crJCREXbp0UVJSkgoKChQTEyNJGjJkiJo3b67ExERJ0pQpU5SQkKClS5cqICDAnOfc3d1d7u7ucnBw0OjRozV58mS1adNGgYGBGjt2rPz8/BQZGVlzRwoAAAAAAAAAQBVVuYgeFRWlQ4cOKSEhQVarVUFBQUpLSzMfDJqdnS1Hx78ucJ87d66Kiop0//332/Qzbtw4jR8/XpL03HPPqaCgQCNGjNCxY8d0yy23KC0t7YLmTQcAAAAAAAAA4EJV68GisbGxio2NLXddRkaGzeu9e/eetz8HBwdNnDhREydOrM5wAAAAAAAAAAC4KKo0JzoAAAAAAAAAAH8nFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA7n2h4AAAAAAAAAcDnJzs5Wbm5urex7+/btNv+91Ly8vNSiRYta2TdQWyiiAwCA80pOTta0adNktVrVuXNnzZkzR126dDnvdu+//74GDRqke+65R8uXL7/4AwUAAAAusuzsbF3btp1OnTxRq+N46KGHamW/rm71tXPHdgrp+FuhiA4AACqUmpqquLg4paSkKDQ0VElJSYqIiNDOnTvl7e1td7u9e/fqmWeeUbdu3S7haAEAAICLKzc3V6dOnlCTO/+pek38L/n+jTNFOpOXI2cPHzk4u1zSfZ8+vE+HV8xQbm4uRXT8rVBEBwAAFZo5c6aGDx+umJgYSVJKSopWrlyp+fPn64UXXih3m+LiYg0ePFgTJkzQV199pWPHjlW4j8LCQhUWFpqv8/Pza2z8AAAAwMVQr4m/LL6ta2fn/2hfO/sF/qZ4sCgAALCrqKhIWVlZCg8PN9scHR0VHh6uzMxMu9tNnDhR3t7eGjZsWKX2k5iYKA8PD3Px97/0V/QAAAAAAFAeiugAAMCu3NxcFRcXy8fHx6bdx8dHVqu13G2+/vprvf3225o3b16l9xMfH6+8vDxz2bdv3wWNGwAAAACAmsJ0LgAAoMb88ccfevjhhzVv3jx5eXlVejuLxSKLxXIRRwYAAAAAQPVwJToAALDLy8tLTk5OysnJsWnPycmRr69vmfhffvlFe/fu1V133SVnZ2c5OzvrnXfe0SeffCJnZ2f98ssvl2roAABc1vbv36+HHnpITZo0kZubmzp27KiNGzea6w3DUEJCgpo1ayY3NzeFh4dr165dNn0cOXJEgwcPVsOGDdWoUSMNGzZMx48ft4nZsmWLunXrJldXV/n7+2vq1KllxrJs2TK1bdtWrq6u6tixo1atWnVxDhoAgDqKIjoAALDLxcVFwcHBSk9PN9tKSkqUnp6usLCwMvFt27bV1q1btXnzZnO5++67deutt2rz5s3MdQ4AQCUcPXpUN998s+rVq6f/+7//048//qgZM2aocePGZszUqVM1e/ZspaSkaP369WrQoIEiIiJ06tQpM2bw4MHatm2b1qxZoxUrVujLL7/UiBEjzPX5+fnq3bu3WrZsqaysLE2bNk3jx4/Xm2++acasW7dOgwYN0rBhw/T9998rMjJSkZGR+uGHHy7NyQAAoA5gOhcAAFChuLg4RUdHKyQkRF26dFFSUpIKCgoUExMjSRoyZIiaN2+uxMREubq6qkOHDjbbN2rUSJLKtAMAgPJNmTJF/v7+WrBggdkWGBho/tkwDCUlJWnMmDG65557JEnvvPOOfHx8tHz5cg0cOFDbt29XWlqavvvuO4WEhEiS5syZozvuuEPTp0+Xn5+flixZoqKiIs2fP18uLi667rrrtHnzZs2cOdMsts+aNUt9+vTRs88+K0maNGmS1qxZo9dee00pKSmX6pQAAFCruBIdAABUKCoqStOnT1dCQoKCgoK0efNmpaWlmQ8bzc7O1u+//17LowQA4MrxySefKCQkRAMGDJC3t7euv/56mwd279mzR1arVeHh4Wabh4eHQkNDlZmZKUnKzMxUo0aNzAK6JIWHh8vR0VHr1683Y7p37y4XFxczJiIiQjt37tTRo0fNmLP3UxpTup/yFBYWKj8/32YBAOByxpXoAADgvGJjYxUbG1vuuoyMjAq3XbhwYc0PCACAK9ju3bs1d+5cxcXF6cUXX9R3332np556Si4uLoqOjpbVapUk8wftUj4+PuY6q9Uqb29vm/XOzs7y9PS0iTn7Cvez+7RarWrcuLGsVmuF+ylPYmKiJkyYUI0jBwCgbuJKdAAAAAAA6pCSkhLdcMMNevnll3X99ddrxIgRGj58+GUzfUp8fLzy8vLMZd++fbU9JAAALghFdAAAAAAA6pBmzZqpffv2Nm3t2rVTdna2JMnX11eSlJOTYxOTk5NjrvP19dXBgwdt1p85c0ZHjhyxiSmvj7P3YS+mdH15LBaLGjZsaLMAAHA5o4gOAAAAAEAdcvPNN2vnzp02bT/99JNatmwp6c+HjPr6+io9Pd1cn5+fr/Xr1yssLEySFBYWpmPHjikrK8uMWbt2rUpKShQaGmrGfPnllzp9+rQZs2bNGl177bVq3LixGXP2fkpjSvcDAMDfAUV0AAAAAADqkKefflrffvutXn75Zf38889aunSp3nzzTY0cOVKS5ODgoNGjR2vy5Mn65JNPtHXrVg0ZMkR+fn6KjIyU9OeV63369NHw4cO1YcMGffPNN4qNjdXAgQPl5+cnSXrwwQfl4uKiYcOGadu2bUpNTdWsWbMUFxdnjmXUqFFKS0vTjBkztGPHDo0fP14bN260+6wUAACuRDxYFAAAAACAOuTGG2/Uxx9/rPj4eE2cOFGBgYFKSkrS4MGDzZjnnntOBQUFGjFihI4dO6ZbbrlFaWlpcnV1NWOWLFmi2NhY9erVS46Ojurfv79mz55trvfw8NBnn32mkSNHKjg4WF5eXkpISNCIESPMmK5du2rp0qUaM2aMXnzxRbVp00bLly9Xhw4dLs3JAACgDqCIDgAAAABAHXPnnXfqzjvvtLvewcFBEydO1MSJE+3GeHp6aunSpRXup1OnTvrqq68qjBkwYIAGDBhQ8YABALiCMZ0LAAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHdUqoicnJysgIECurq4KDQ3Vhg0b7MZu27ZN/fv3V0BAgBwcHJSUlFQmZvz48XJwcLBZ2rZtW52hAQAAAAAAAABQY6pcRE9NTVVcXJzGjRunTZs2qXPnzoqIiNDBgwfLjT9x4oSuvvpqvfLKK/L19bXb73XXXafff//dXL7++uuqDg0AAAAAAAAAgBpV5SL6zJkzNXz4cMXExKh9+/ZKSUlR/fr1NX/+/HLjb7zxRk2bNk0DBw6UxWKx26+zs7N8fX3NxcvLy25sYWGh8vPzbRYAAAAAAAAAAGpalYroRUVFysrKUnh4+F8dODoqPDxcmZmZFzSQXbt2yc/PT1dffbUGDx6s7Oxsu7GJiYny8PAwF39//wvaNwAAAAAAAAAA5alSET03N1fFxcXy8fGxaffx8ZHVaq32IEJDQ7Vw4UKlpaVp7ty52rNnj7p166Y//vij3Pj4+Hjl5eWZy759+6q9bwAAAAAAAAAA7HGu7QFIUt++fc0/d+rUSaGhoWrZsqU++OADDRs2rEy8xWKpcGoYAAAAAAAAAABqQpWuRPfy8pKTk5NycnJs2nNycip8aGhVNWrUSNdcc41+/vnnGusTAAAAAAAAAICqqlIR3cXFRcHBwUpPTzfbSkpKlJ6errCwsBob1PHjx/XLL7+oWbNmNdYnAAAAAAAAAABVVeXpXOLi4hQdHa2QkBB16dJFSUlJKigoUExMjCRpyJAhat68uRITEyX9+TDSH3/80fzz/v37tXnzZrm7u6t169aSpGeeeUZ33XWXWrZsqQMHDmjcuHFycnLSoEGDauo4AQAAAAAAAACosioX0aOionTo0CElJCTIarUqKChIaWlp5sNGs7Oz5ej41wXuBw4c0PXXX2++nj59uqZPn64ePXooIyNDkvTbb79p0KBBOnz4sJo2bapbbrlF3377rZo2bXqBhwcAAAAAAAAAQPVV68GisbGxio2NLXddaWG8VEBAgAzDqLC/999/vzrDAK5o2dnZys3NrZV9b9++3ea/tcHLy0stWrSotf0DAFCTyOvkdQAAAFy+qlVEB3BxZWdn69q27XTq5IlaHcdDDz1Ua/t2dauvnTu28w9uAMBlj7xOXgcAAMDljSI6UAfl5ubq1MkTanLnP1Wvif8l379xpkhn8nLk7OEjB2eXS77/04f36fCKGcrNzeUf2wCAyx55nbwOAACAyxtFdKAOq9fEXxbf1rWz83+0r539AgBwhSKvAwAAAJcnx/OHAAAAAAAAAADw90QRHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AABwXsnJyQoICJCrq6tCQ0O1YcMGu7EfffSRQkJC1KhRIzVo0EBBQUF69913L+FoAQAAAACoORTRAQBAhVJTUxUXF6dx48Zp06ZN6ty5syIiInTw4MFy4z09PfWvf/1LmZmZ2rJli2JiYhQTE6PVq1df4pEDAAAAAHDhKKIDAIAKzZw5U8OHD1dMTIzat2+vlJQU1a9fX/Pnzy83vmfPnrr33nvVrl07tWrVSqNGjVKnTp309ddfX+KRAwAAAABw4SiiAwAAu4qKipSVlaXw8HCzzdHRUeHh4crMzDzv9oZhKD09XTt37lT37t3txhUWFio/P99mAQAAAACgLqCIDgAA7MrNzVVxcbF8fHxs2n18fGS1Wu1ul5eXJ3d3d7m4uKhfv36aM2eObr/9drvxiYmJ8vDwMBd/f/8aOwYAAAAAAC4ERXQAAFDjrrrqKm3evFnfffedXnrpJcXFxSkjI8NufHx8vPLy8sxl3759l26wAAAAAABUwLm2BwAAAOouLy8vOTk5KScnx6Y9JydHvr6+drdzdHRU69atJUlBQUHavn27EhMT1bNnz3LjLRaLLBZLjY0bAAAAAICawpXoAADALhcXFwUHBys9Pd1sKykpUXp6usLCwirdT0lJiQoLCy/GEAEAAAAAuKi4Eh0AAFQoLi5O0dHRCgkJUZcuXZSUlKSCggLFxMRIkoYMGaLmzZsrMTFR0p/zm4eEhKhVq1YqLCzUqlWr9O6772ru3Lm1eRgAAAAAAFQLRXQAAFChqKgoHTp0SAkJCbJarQoKClJaWpr5sNHs7Gw5Ov51c1tBQYGeeOIJ/fbbb3Jzc1Pbtm21ePFiRUVF1dYhAAAAAABQbRTRAQDAecXGxio2Nrbcdec+MHTy5MmaPHnyJRgVAAAAAAAXH0V0AAAAAAAAoAp83R3U0eWA6jk41fZQLqnTLgckd4faHgZwyVFEBwAAAAAAAKrgsWAXjfdLqe1hXHp+0vhgl9oeBXDJUUQHAAAAAAAAquCNrCKtu2aU6jXxr+2hXFKnD+/T1qxpuru2BwJcYhTRAQAAAAAAgCqwHjekIj9ZjMDaHsolVVhU/OexA38zjrU9AAAAAAAAAAAA6iqK6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAHXYK6+8IgcHB40ePdpsO3XqlEaOHKkmTZrI3d1d/fv3V05Ojs122dnZ6tevn+rXry9vb289++yzOnPmjE1MRkaGbrjhBlksFrVu3VoLFy4ss//k5GQFBATI1dVVoaGh2rBhw8U4TAAA6iyK6AAAAAAA1FHfffed3njjDXXq1Mmm/emnn9ann36qZcuW6T//+Y8OHDig++67z1xfXFysfv36qaioSOvWrdOiRYu0cOFCJSQkmDF79uxRv379dOutt2rz5s0aPXq0Hn30Ua1evdqMSU1NVVxcnMaNG6dNmzapc+fOioiI0MGDBy/+wQMAUEdQRAcAAAAAoA46fvy4Bg8erHnz5qlx48Zme15ent5++23NnDlTt912m4KDg7VgwQKtW7dO3377rSTps88+048//qjFixcrKChIffv21aRJk5ScnKyioiJJUkpKigIDAzVjxgy1a9dOsbGxuv/++/Xqq6+a+5o5c6aGDx+umJgYtW/fXikpKapfv77mz59vd9yFhYXKz8+3WQAAuJxRRAcAAAAAoA4aOXKk+vXrp/DwcJv2rKwsnT592qa9bdu2atGihTIzMyVJmZmZ6tixo3x8fMyYiIgI5efna9u2bWbMuX1HRESYfRQVFSkrK8smxtHRUeHh4WZMeRITE+Xh4WEu/v7+1TwDAADUDRTRAQAAAACoY95//31t2rRJiYmJZdZZrVa5uLioUaNGNu0+Pj6yWq1mzNkF9NL1pesqisnPz9fJkyeVm5ur4uLicmNK+yhPfHy88vLyzGXfvn2VO2gAAOoo59oeAAAAAAAA+Mu+ffs0atQorVmzRq6urrU9nCqzWCyyWCy1PQwAAGoMV6IDAAAAAFCHZGVl6eDBg7rhhhvk7OwsZ2dn/ec//9Hs2bPl7OwsHx8fFRUV6dixYzbb5eTkyNfXV5Lk6+urnJycMutL11UU07BhQ7m5ucnLy0tOTk7lxpT2AQDA3wFFdAAAAAAA6pBevXpp69at2rx5s7mEhIRo8ODB5p/r1aun9PR0c5udO3cqOztbYWFhkqSwsDBt3bpVBw8eNGPWrFmjhg0bqn379mbM2X2UxpT24eLiouDgYJuYkpISpaenmzEAAPwdMJ0LAAAAAAB1yFVXXaUOHTrYtDVo0EBNmjQx24cNG6a4uDh5enqqYcOGevLJJxUWFqabbrpJktS7d2+1b99eDz/8sKZOnSqr1aoxY8Zo5MiR5lQr//M//6PXXntNzz33nB555BGtXbtWH3zwgVauXGnuNy4uTtHR0QoJCVGXLl2UlJSkgoICxcTEXKKzAQBA7aOIDgAAAADAZebVV1+Vo6Oj+vfvr8LCQkVEROj111831zs5OWnFihV6/PHHFRYWpgYNGig6OloTJ040YwIDA7Vy5Uo9/fTTmjVrlv7xj3/orbfeUkREhBkTFRWlQ4cOKSEhQVarVUFBQUpLSyvzsFEAAK5kFNEBAAAAAKjjMjIybF67uroqOTlZycnJdrdp2bKlVq1aVWG/PXv21Pfff19hTGxsrGJjYys9VgAArjTMiQ4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7qlVET05OVkBAgFxdXRUaGqoNGzbYjd22bZv69++vgIAAOTg4KCkp6YL7BAAAAAAAAADgUqhyET01NVVxcXEaN26cNm3apM6dOysiIkIHDx4sN/7EiRO6+uqr9corr8jX17dG+gQAAAAAAAAA4FKochF95syZGj58uGJiYtS+fXulpKSofv36mj9/frnxN954o6ZNm6aBAwfKYrHUSJ+FhYXKz8+3WQAAAAAAAAAAqGlVKqIXFRUpKytL4eHhf3Xg6Kjw8HBlZmZWawDV6TMxMVEeHh7m4u/vX619AwAAAAAAAABQkSoV0XNzc1VcXCwfHx+bdh8fH1mt1moNoDp9xsfHKy8vz1z27dtXrX0DAAAAAAAAAFAR59oeQHVYLBa7U8MAAAAAAAAAAFBTqnQlupeXl5ycnJSTk2PTnpOTY/ehobXRJwAAAAAAAAAANaFKRXQXFxcFBwcrPT3dbCspKVF6errCwsKqNYCL0ScAAAAAAAAAADWhytO5xMXFKTo6WiEhIerSpYuSkpJUUFCgmJgYSdKQIUPUvHlzJSYmSvrzwaE//vij+ef9+/dr8+bNcnd3V+vWrSvVJwAAAAAAAAAAtaHKRfSoqCgdOnRICQkJslqtCgoKUlpamvlg0OzsbDk6/nWB+4EDB3T99debr6dPn67p06erR48eysjIqFSfAAAAAAAAAADUhmo9WDQ2NlaxsbHlristjJcKCAiQYRgX1CcAAAAAAAAAALWhSnOiAwCAv6fk5GQFBATI1dVVoaGh2rBhg93YefPmqVu3bmrcuLEaN26s8PDwCuMBAAAAAKjLKKIDAIAKpaamKi4uTuPGjdOmTZvUuXNnRURE6ODBg+XGZ2RkaNCgQfriiy+UmZkpf39/9e7dW/v377/EIwcAAAAA4MJRRAcAABWaOXOmhg8frpiYGLVv314pKSmqX7++5s+fX278kiVL9MQTTygoKEht27bVW2+9pZKSEqWnp1/ikQMAAAAAcOEoogMAALuKioqUlZWl8PBws83R0VHh4eHKzMysVB8nTpzQ6dOn5enpaTemsLBQ+fn5NgsAAAAAAHUBRXQAAGBXbm6uiouL5ePjY9Pu4+Mjq9VaqT6ef/55+fn52RTiz5WYmCgPDw9z8ff3v6BxAwAAAABQUyiiAwCAi+aVV17R+++/r48//liurq524+Lj45WXl2cu+/btu4SjBAAAAADAPufaHgAAAKi7vLy85OTkpJycHJv2nJwc+fr6Vrjt9OnT9corr+jzzz9Xp06dKoy1WCyyWCwXPF4AAAAAAGoaV6IDAAC7XFxcFBwcbPNQ0NKHhIaFhdndburUqZo0aZLS0tIUEhJyKYYKAAAAAMBFwZXoAACgQnFxcYqOjlZISIi6dOmipKQkFRQUKCYmRpI0ZMgQNW/eXImJiZKkKVOmKCEhQUuXLlVAQIA5d7q7u7vc3d1r7TgAAAAAAKgOiugAAKBCUVFROnTokBISEmS1WhUUFKS0tDTzYaPZ2dlydPzr5ra5c+eqqKhI999/v00/48aN0/jx4y/l0AEAAAAAuGAU0QEAwHnFxsYqNja23HUZGRk2r/fu3XvxBwQAAAAAwCVCER0AAAAAAACootOH99XKfo0zRTqTlyNnDx85OLtc0n3X1jEDtY0iOgAAAAAAAFBJXl5ecnWrr8MrZtT2UGqFq1t9eXl51fYwgEuKIjoAAAAAAABQSS1atNDOHduVm5tbK/vfvn27HnroIS1evFjt2rW75Pv38vJSixYtLvl+gdpEER0AAAAAAACoghYtWtR6Ibldu3a64YYbanUMwN+FY20PAAAAAAAAAACAuooiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAFDHJCYm6sYbb9RVV10lb29vRUZGaufOnTYxp06d0siRI9WkSRO5u7urf//+ysnJsYnJzs5Wv379VL9+fXl7e+vZZ5/VmTNnbGIyMjJ0ww03yGKxqHXr1lq4cGGZ8SQnJysgIECurq4KDQ3Vhg0bavyYAQCoqyiiAwAAAABQx/znP//RyJEj9e2332rNmjU6ffq0evfurYKCAjPm6aef1qeffqply5bpP//5jw4cOKD77rvPXF9cXKx+/fqpqKhI69at06JFi7Rw4UIlJCSYMXv27FG/fv106623avPmzRo9erQeffRRrV692oxJTU1VXFycxo0bp02bNqlz586KiIjQwYMHL83JAACgljnX9gAAAAAAAICttLQ0m9cLFy6Ut7e3srKy1L17d+Xl5entt9/W0qVLddttt0mSFixYoHbt2unbb7/VTTfdpM8++0w//vijPv/8c/n4+CgoKEiTJk3S888/r/Hjx8vFxUUpKSkKDAzUjBkzJEnt2rXT119/rVdffVURERGSpJkzZ2r48OGKiYmRJKWkpGjlypWaP3++XnjhhTJjLywsVGFhofk6Pz//opwjAAAuFa5EBwAAAACgjsvLy5MkeXp6SpKysrJ0+vRphYeHmzFt27ZVixYtlJmZKUnKzMxUx44d5ePjY8ZEREQoPz9f27ZtM2PO7qM0prSPoqIiZWVl2cQ4OjoqPDzcjDlXYmKiPDw8zMXf3/9CDx8AgFpFER0AAAAAgDqspKREo0eP1s0336wOHTpIkqxWq1xcXNSoUSObWB8fH1mtVjPm7AJ66frSdRXF5Ofn6+TJk8rNzVVxcXG5MaV9nCs+Pl55eXnmsm/fvuodOAAAdQTTuQAAAAAAUIeNHDlSP/zwg77++uvaHkqlWCwWWSyW2h4GAAA1hivRAQAAAACoo2JjY7VixQp98cUX+sc//mG2+/r6qqioSMeOHbOJz8nJka+vrxmTk5NTZn3puopiGjZsKDc3N3l5ecnJyancmNI+AAC40lFEBwAAAACgjjEMQ7Gxsfr444+1du1aBQYG2qwPDg5WvXr1lJ6ebrbt3LlT2dnZCgsLkySFhYVp69atOnjwoBmzZs0aNWzYUO3btzdjzu6jNKa0DxcXFwUHB9vElJSUKD093YwBAOBKV60ienJysgICAuTq6qrQ0FBt2LChwvhly5apbdu2cnV1VceOHbVq1Sqb9UOHDpWDg4PN0qdPn+oMDQAAAACAy97IkSO1ePFiLV26VFdddZWsVqusVqtOnjwpSfLw8NCwYcMUFxenL774QllZWYqJiVFYWJhuuukmSVLv3r3Vvn17Pfzww/rvf/+r1atXa8yYMRo5cqQ53cr//M//aPfu3Xruuee0Y8cOvf766/rggw/09NNPm2OJi4vTvHnztGjRIm3fvl2PP/64CgoKFBMTc+lPDAAAtaDKRfTU1FTFxcVp3Lhx2rRpkzp37qyIiAibX7bPtm7dOg0aNEjDhg3T999/r8jISEVGRuqHH36wievTp49+//13c3nvvfeqd0QAAAAAAFzm5s6dq7y8PPXs2VPNmjUzl9TUVDPm1Vdf1Z133qn+/fure/fu8vX11UcffWSud3Jy0ooVK+Tk5KSwsDA99NBDGjJkiCZOnGjGBAYGauXKlVqzZo06d+6sGTNm6K233lJERIQZExUVpenTpyshIUFBQUHavHmz0tLSyjxsFACAK1WVHyw6c+ZMDR8+3PzFOSUlRStXrtT8+fP1wgsvlImfNWuW+vTpo2effVaSNGnSJK1Zs0avvfaaUlJSzDiLxcJ8agAAAAAA6M/pXM7H1dVVycnJSk5OthvTsmXLMneDn6tnz576/vvvK4yJjY1VbGzseccEAMCVqEpXohcVFSkrK0vh4eF/deDoqPDwcGVmZpa7TWZmpk28JEVERJSJz8jIkLe3t6699lo9/vjjOnz4sN1xFBYWKj8/32YBAAAAAAAAAKCmVamInpubq+Li4jK3bPn4+MhqtZa7jdVqPW98nz599M477yg9PV1TpkzRf/7zH/Xt21fFxcXl9pmYmCgPDw9z8ff3r8phAAAAAAAAAABQKVWezuViGDhwoPnnjh07qlOnTmrVqpUyMjLUq1evMvHx8fGKi4szX+fn51NIxxXH191BHV0OqJ6DU20P5ZI77XJAcneo7WEAAFBjyOvkdQAAAFy+qlRE9/LykpOTk3Jycmzac3Jy7M5n7uvrW6V4Sbr66qvl5eWln3/+udwiusViMZ8kDlypHgt20Xi/lPMHXon8pPHBLrU9CgBnSU5O1rRp02S1WtW5c2fNmTNHXbp0KTd227ZtSkhIUFZWln799Ve9+uqrGj169KUdMFDHkNfJ6wAAALh8VamI7uLiouDgYKWnpysyMlKSVFJSovT0dLsPGAkLC1N6errNP57XrFmjsLAwu/v57bffdPjwYTVr1qwqwwOuKG9kFWndNaNUr8nf7y6L04f3aWvWNN1d2wMBIElKTU1VXFycUlJSFBoaqqSkJEVERGjnzp3y9vYuE3/ixAldffXVGjBggJ5++ulaGDFQ95DXyesAAAC4fFV5Ope4uDhFR0crJCREXbp0UVJSkgoKChQTEyNJGjJkiJo3b67ExERJ0qhRo9SjRw/NmDFD/fr10/vvv6+NGzfqzTfflCQdP35cEyZMUP/+/eXr66tffvlFzz33nFq3bq2IiIgaPFTg8mI9bkhFfrIYgbU9lEuusKj4z+MHUCfMnDlTw4cPN3N9SkqKVq5cqfnz5+uFF14oE3/jjTfqxhtvlKRy1wN/R+R18joAAAAuX1UuokdFRenQoUNKSEiQ1WpVUFCQ0tLSzIeHZmdny9Hxr+eVdu3aVUuXLtWYMWP04osvqk2bNlq+fLk6dOggSXJyctKWLVu0aNEiHTt2TH5+furdu7cmTZrElC0AANSyoqIiZWVlKT4+3mxzdHRUeHi4MjMza2w/hYWFKiwsNF/n5+fXWN8AAAAAAFyIaj1YNDY21u70LRkZGWXaBgwYoAEDBpQb7+bmptWrV1dnGAAA4CLLzc1VcXGx+WN5KR8fH+3YsaPG9pOYmKgJEybUWH8AAAAAANQUx/OHAAAAXFzx8fHKy8szl3379tX2kAAAAAAAkFTNK9EBAMDfg5eXl5ycnJSTk2PTnpOTI19f3xrbj8ViYRo3AAAAAECdxJXoAADALhcXFwUHBys9Pd1sKykpUXp6usLCwmpxZAAAAAAAXBpciQ4AACoUFxen6OhohYSEqEuXLkpKSlJBQYFiYmIkSUOGDFHz5s2VmJgo6c+Hkf7444/mn/fv36/NmzfL3d1drVu3rrXjAAAAAACgOiiiAwCACkVFRenQoUNKSEiQ1WpVUFCQ0tLSzIeNZmdny9Hxr5vbDhw4oOuvv958PX36dE2fPl09evQo9wHkAAAAAADUZRTRAQDAecXGxio2NrbcdecWxgMCAmQYxiUYFQAAAAAAFx9zogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACww7m2BwDAvtOH99XKfo0zRTqTlyNnDx85OLtc8v3X1nEDAHAxkdcBAACAyxNFdKAO8vLykqtbfR1eMaO2h1JrXN3qy8vLq7aHAQDABSOvk9cBAABweaOIDtRBLVq00M4d25Wbm1sr+9++fbseeughLV68WO3atauVMXh5ealFixa1sm8AAGoSeZ28DgAAgMsbRXSgjmrRokWt/2OzXbt2uuGGG2p1DAAAXAnI6wAAAMDliweLAgAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2FGtInpycrICAgLk6uqq0NBQbdiwocL4ZcuWqW3btnJ1dVXHjh21atUqm/WGYSghIUHNmjWTm5ubwsPDtWvXruoMDQAAXAQ1nfsBAMDlparfBQAAuJJUuYiempqquLg4jRs3Tps2bVLnzp0VERGhgwcPlhu/bt06DRo0SMOGDdP333+vyMhIRUZG6ocffjBjpk6dqtmzZyslJUXr169XgwYNFBERoVOnTlX/yAAAQI24GLkfAABcPqr6XQAAgCuNg2EYRlU2CA0N1Y033qjXXntNklRSUiJ/f389+eSTeuGFF8rER0VFqaCgQCtWrDDbbrrpJgUFBSklJUWGYcjPz0///Oc/9cwzz0iS8vLy5OPjo4ULF2rgwIHnHVN+fr48PDyUl5enhg0bVuVwgCvSiRMntGPHjmpvv337dj300ENavHix2rVrV+1+2rZtq/r161d7e+BKcCXkqJrO/ZVxJZw3oKaQ14G65e+Yo6r6XeBcf8dzBlSkLuR28jrwp8rmKOeqdFpUVKSsrCzFx8ebbY6OjgoPD1dmZma522RmZiouLs6mLSIiQsuXL5ck7dmzR1arVeHh4eZ6Dw8PhYaGKjMzs9wiemFhoQoLC83X+fn5VTkM4Iq3Y8cOBQcHX3A/Dz300AVtn5WVpRtuuOGCxwGg9lyM3F8ecjtgH3kdQG2qzncB8jpQsbqQ28nrQNVUqYiem5ur4uJi+fj42LT7+PjY/QXNarWWG2+1Ws31pW32Ys6VmJioCRMmVGXowN9K27ZtlZWVVe3tT548qb179yogIEBubm4XNA4Al7eLkfvLQ24H7COvA6hN1fkuQF4HKlYXcjt5HaiaKhXR64r4+HibK9zy8/8fe3ceV0XZ/3/8fQQ5oCyKskiC4pK4p1huuZvIbW5Zlmni0m0LZuZddtO3csvI9s1sM6jUbHG5zUorE70rtbJMLaU0XErRMAVFRYXr90c/zu0RhkWBc5TX8/GYR83MNTOfGQ5c57ydc02WwsPDXVgR4F6qVat2wf+i3Llz5zKqBgCKR98OWKNfB3CxoV8HikbfDlx8ShWi165dWx4eHjpw4IDT8gMHDig0NLTQbUJDQ4tsn//fAwcOqE6dOk5trrjiikL3abfbZbfbS1M6AAA4D+XR9xeGvh0AAPd0Pu8F6NcBAJeaKqVp7OXlpejoaK1atcqxLC8vT6tWrVLHjh0L3aZjx45O7SXps88+c7SPjIxUaGioU5usrCxt2LDBcp8AAKBilEffDwAALh7n814AAIBLTamHc5k0aZLi4uLUrl07XXXVVXr22WeVnZ2t0aNHS5JGjhypyy67TImJiZKku+++W926ddNTTz2lfv36aeHChfruu+/06quvSpJsNpsmTpyoRx55RI0bN1ZkZKQeeughhYWFadCgQWV3pgAA4LyUdd8PAAAuLsW9FwAA4FJX6hD9xhtv1J9//qmHH35Y6enpuuKKK7RixQrHQ0b27NmjKlX+d4N7p06dtGDBAj344IN64IEH1LhxYy1dulQtWrRwtJk8ebKys7M1btw4HTlyRFdffbVWrFghb2/vMjhFAABwIcqj7wcAABeP4t4LAABwqbMZY4yri7hQWVlZCggIUGZmpvz9/V1dDgAADvRR54frBgBwV/RRpcc1AwC4q5L2UaUaEx0AAAAAAAAAgMqEEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABgwdPVBZQFY4wkKSsry8WVAADgLL9vyu+rUDL07QAAd0XfXnr06wAAd1XSfv2SCNGPHj0qSQoPD3dxJQAAFO7o0aMKCAhwdRkXDfp2AIC7o28vOfp1AIC7K65ft5lL4J/P8/LytG/fPvn5+clms7m6HOCil5WVpfDwcO3du1f+/v6uLge4qBljdPToUYWFhalKFUZRKyn6dqDs0K8DZYu+vfTo14GyRd8OlJ2S9uuXRIgOoGxlZWUpICBAmZmZdMgAAFzk6NcBALi00LcDFY9/NgcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRARRgt9s1ZcoU2e12V5cCAAAuEP06AACXFvp2oOIxJjoAAAAAAAAAABa4Ex0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA7AYe3aterfv7/CwsJks9m0dOlSV5cEAADOE/06AACXFvp2wHUI0QE4ZGdnq3Xr1po9e7arSwEAABeIfh0AgEsLfTvgOp6uLgCA+4iNjVVsbKyrywAAAGWAfh0AgEsLfTvgOtyJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWPB0dQEA3MexY8e0Y8cOx3xaWpo2bdqkwMBARUREuLAyAABQWvTrAABcWujbAdexGWOMq4sA4B5SUlLUo0ePAsvj4uKUnJxc8QUBAIDzRr8OAMClhb4dcB1CdAAAAAAAAAAALDAmOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACITpwkRg1apQGDRrkmO/evbsmTpzosnouJjabTUuXLnV1GQAA0J8DAODGyqpfvtj69+TkZNWoUcNt9we4A0J0oJzt2rVLNptNmzZtKtP9Ll68WDNmzCjTfZ6PlJQU2Ww2HTlyxNWlWNq/f79iY2NdXQYA4CJGfw4AAM5l1X+6S//uKjfeeKN++eUXx/zUqVN1xRVXuK4goAx4uroAAOcnMDDQ1SWUKWOMcnNz5elZ9n+WQkNDy3yfAACUBfpzAAAqxqlTp+Tl5VUhx7rU+vfS8vHxkY+Pj6vLAMoUd6IDJZSXl6fExERFRkbKx8dHrVu31gcffCBJOnz4sIYPH66goCD5+PiocePGSkpKkiRFRkZKktq0aSObzabu3bsXe6zc3FxNmjRJNWrUUK1atTR58mQZY5zanPv1sLffflvt2rWTn5+fQkNDdfPNN+vgwYOO9fn/Qr5y5Uq1adNGPj4+6tmzpw4ePKhPPvlETZs2lb+/v26++WYdP368ROe9a9cu9ejRQ5JUs2ZN2Ww2jRo1qtjtzq7nk08+UXR0tOx2u7788ssir0v+v16/8cYbioiIkK+vr+68807l5ubq8ccfV2hoqIKDgzVz5kyn7c4eziX/TsLFixerR48eqlatmlq3bq1169YV+3MBAFz86M8v3v786aefVsuWLVW9enWFh4frzjvv1LFjxxzrx4wZo1atWiknJ0fS32FJmzZtNHLkyOJ+VACAS1D37t01fvx4TZw4UbVr11ZMTIy2bt2q2NhY+fr6KiQkRLfccosyMjIs91FUv1xU/3l2//7AAw+offv2BfbdunVrTZ8+3TH/+uuvq2nTpvL29lZUVJReeumlEp1np06ddP/99zst+/PPP1W1alWtXbtWkpSTk6N7771Xl112mapXr6727dsrJSWlyP3OmTNHDRs2lJeXl5o0aaK3337baf2RI0d02223KSQkRN7e3mrRooWWL18uyXk4l+TkZE2bNk0//vijbDabbDabkpOTNWbMGF177bVO+zx9+rSCg4M1d+7cEp07UKEMgBJ55JFHTFRUlFmxYoXZuXOnSUpKMna73aSkpJj4+HhzxRVXmG+//dakpaWZzz77zCxbtswYY8w333xjJJnPP//c7N+/3xw6dKjYY82aNcvUrFnTLFq0yPz8889m7Nixxs/PzwwcONDRplu3bubuu+92zM+dO9d8/PHHZufOnWbdunWmY8eOJjY21rF+9erVRpLp0KGD+fLLL833339vGjVqZLp162b69Oljvv/+e7N27VpTq1Yt89hjj5XovM+cOWMWLVpkJJnU1FSzf/9+c+TIkWK3O7ueVq1amU8//dTs2LGj2GszZcoU4+vra66//nrz008/mWXLlhkvLy8TExNj7rrrLrN9+3bzxhtvGElm/fr1ju0kmSVLlhhjjElLSzOSTFRUlFm+fLlJTU01119/valXr545ffp0sT8bAMDFjf784u3Pn3nmGfPFF1+YtLQ0s2rVKtOkSRNzxx13ONYfPXrUNGjQwEycONEYY8y9995r6tevbzIzM4v9WQEALj3dunUzvr6+5r777jPbt28369evN0FBQSYhIcFs27bNfP/99+aaa64xPXr0cNqmpP1yUf3n2fvZunWrkWR27Njh2G/+sl9//dUYY8y8efNMnTp1zKJFi8xvv/1mFi1aZAIDA01ycnKx5/niiy+aiIgIk5eX51j2wgsvOC279dZbTadOnczatWvNjh07zBNPPGHsdrv55ZdfjDHGJCUlmYCAAMf2ixcvNlWrVjWzZ882qamp5qmnnjIeHh7miy++MMYYk5ubazp06GCaN29uPv30U7Nz507z4Ycfmo8//rjA/o4fP27+9a9/mebNm5v9+/eb/fv3m+PHj5uvvvrKeHh4mH379jkdt3r16ubo0aPFnjdQ0QjRgRI4efKkqVatmvn666+dlo8dO9YMGzbM9O/f34wePbrQbfND2x9++KHEx6tTp455/PHHHfOnT582devWLfJD97m+/fZbI8nR+eR/yP38888dbRITE40ks3PnTsey2267zcTExBhjij/vs/d7+PBhx/rSbLd06dISXJG/TZkyxVSrVs1kZWU5lsXExJj69eub3Nxcx7ImTZqYxMREx3xhIfrrr7/uWP/TTz8ZSWbbtm0lrgUAcPGhP7+4+/Nzvf/++6ZWrVpOy77++mtTtWpV89BDDxlPT0/z3//+t8R1AQAuLd26dTNt2rRxzM+YMcP06dPHqc3evXsdIXj+NufTL5/dfxa2n9atW5vp06c75hMSEkz79u0d8w0bNjQLFixw2seMGTNMx44diz3PgwcPGk9PT7N27VrHso4dO5r777/fGGPM7t27jYeHh/njjz+ctuvVq5dJSEgwxhQM0Tt16mT++c9/OrW/4YYbzD/+8Q9jjDErV640VapUcVy3c527vylTppjWrVsXaNesWTMza9Ysx3z//v3NqFGjij1nwBUYrBAogR07duj48eO65pprnJbnf0146tSpGjJkiL7//nv16dNHgwYNUqdOnc7rWJmZmdq/f7/T1708PT3Vrl27Al8BP9vGjRs1depU/fjjjzp8+LDy8vIkSXv27FGzZs0c7Vq1auX4/5CQEFWrVk0NGjRwWvbNN9+U6LytlGa7du3aWe6nMPXr15efn59TvR4eHqpSpYrTsrO/+l6Ys69DnTp1JEkHDx5UVFRUqeoBAFw86M8v7v78888/V2JiorZv366srCydOXNGJ0+e1PHjx1WtWjVJUseOHXXvvfdqxowZuv/++3X11VeXqi4AwKUlOjra8f8//vijVq9eLV9f3wLtdu7cqcsvv7zA8pL2y8UZPny43njjDT300EMyxuidd97RpEmTJEnZ2dnauXOnxo4dq3/+85+Obc6cOaOAgIBi9x0UFKQ+ffpo/vz56tKli9LS0rRu3Tq98sorkqQtW7YoNze3wPnl5OSoVq1ahe5z27ZtGjdunNOyzp0767nnnpMkbdq0SXXr1i30mpXGrbfeqldffVWTJ0/WgQMH9Mknn+iLL764oH0C5YUQHSiB/PE2P/roI1122WVO6+x2u8LDw7V79259/PHH+uyzz9SrVy/Fx8frySefrJD6srOzFRMTo5iYGM2fP19BQUHas2ePYmJidOrUKae2VatWdfy/zWZzms9flv/GoLjztlKa7apXr16SUyy0/vx6izqHkuzHZrNJUrHbAAAubvTnF29/vmvXLl177bW64447NHPmTAUGBurLL7/U2LFjderUKUeInpeXp6+++koeHh7asWNHqWoCAFx6zu6fjh07pv79+2vWrFkF2uXfWHW20vTLxRk2bJjuv/9+ff/99zpx4oT27t2rG2+80VGXJL322msFxk738PAo0f6HDx+uCRMm6IUXXtCCBQvUsmVLtWzZ0rF/Dw8Pbdy4scD+CvsHhZIoq4eGjhw5Uv/+97+1bt06ff3114qMjFSXLl3KZN9AWSNEB0qgWbNmstvt2rNnj7p161Zom6CgIMXFxSkuLk5dunTRfffdpyeffNLx9O/c3NwSHSsgIEB16tTRhg0b1LVrV0l//wv0xo0b1bZt20K32b59uw4dOqTHHntM4eHhkqTvvvuutKdZQEnOu7DzK8l2AABUNPrzi7c/37hxo/Ly8vTUU0857lZ/7733CrR74okntH37dq1Zs0YxMTFKSkrS6NGjK7pcAIAbatu2rRYtWqT69evL07P4OKwk/XJJ3x/UrVtX3bp10/z583XixAldc801Cg4OlvT3N6/CwsL022+/afjw4edzaho4cKDGjRunFStWaMGCBU4P1W7Tpo1yc3N18ODBEgfUTZs21VdffaW4uDjHsq+++spx932rVq30+++/65dffinR3eheXl6FXqNatWpp0KBBSkpK0rp16+iz4dYI0YES8PPz07333qt77rlHeXl5uvrqq5WZmamvvvpK/v7+2rlzp6Kjo9W8eXPl5ORo+fLlatq0qSQpODhYPj4+WrFiherWrStvb+9iv5J1991367HHHlPjxo0VFRWlp59+WkeOHLFsHxERIS8vL73wwgu6/fbbtXXrVs2YMaPczzsuLk716tWTzWbT8uXL9Y9//EM+Pj4l2g4AgIpGf37x9ueNGjXS6dOn9cILL6h///766quv9PLLLzu1+eGHH/Twww/rgw8+UOfOnfX000/r7rvvVrdu3ZyGugEAVE7x8fF67bXXNGzYME2ePFmBgYHasWOHFi5cqNdff73AXdol6ZcL6z+t7u4ePny4pkyZolOnTumZZ55xWjdt2jRNmDBBAQEB6tu3r3JycvTdd9/p8OHDjmFfilK9enUNGjRIDz30kLZt26Zhw4Y51l1++eUaPny4Ro4cqaeeekpt2rTRn3/+qVWrVqlVq1bq169fgf3dd999Gjp0qNq0aaPevXvrww8/1OLFi/X5559Lkrp166auXbtqyJAhevrpp9WoUSNt375dNptNffv2LbC/+vXrKy0tzTEMjJ+fn+NbbbfeequuvfZa5ebmkhXArVUpvgkASZoxY4YeeughJSYmqmnTpurbt68++ugjRUZGysvLSwkJCWrVqpW6du0qDw8PLVy4UNLf458+//zzeuWVVxQWFqaBAwcWe6x//etfuuWWWxQXF6eOHTvKz89PgwcPtmwfFBSk5ORkvf/++2rWrJkee+yxMvvqeVHnLUmXXXaZpk2bpn//+98KCQnR+PHjS7QdAACuQH9+cfbnrVu31tNPP61Zs2apRYsWmj9/vhITEx3rT548qREjRmjUqFHq37+/JGncuHHq0aOHbrnllhJ/gwAAcOkKCwvTV199pdzcXPXp00ctW7bUxIkTVaNGDadncuQrSb9s1X8W5vrrr9ehQ4d0/PhxDRo0yGndrbfeqtdff11JSUlq2bKlunXrpuTk5FL1t8OHD9ePP/6oLl26KCIiwmldUlKSRo4cqX/9619q0qSJBg0apG+//bZAu3yDBg3Sc889pyeffFLNmzfXK6+8oqSkJHXv3t3RZtGiRbryyis1bNgwNWvWTJMnT7bsb4cMGaK+ffuqR48eCgoK0jvvvONY17t3b9WpU0cxMTEKCwsr8fkCFc1minqyEQAAAAAAAACUg2PHjumyyy5TUlKSrrvuOleXA1hiOBcAAAAAAAAAFSYvL08ZGRl66qmnVKNGDQ0YMMDVJQFFYjgXwAV8fX0tp//+97+uLs9lmjdvbnld5s+f7+ryAABwQn9eOPpzAADKzqOPPmrZr8bGxrq6vPO2Z88ehYSEaMGCBXrjjTdK9LBXwJUYzgVwgR07dliuu+yyy+Tj41OB1biP3bt36/Tp04WuCwkJkZ+fXwVXBACANfrzwtGfAwBQdv766y/99ddfha7z8fHRZZddVsEVAZUTIToAAAAAAAAAABYYzgUAAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEB4Dx1795d3bt3d3UZDsnJybLZbNq1a5djmbvVCACAFZvNpvHjx1foMadOnSqbzVahx6xM6tevr1GjRlXIsQp7HwQAAFBWCNHLwQcffCCbzVbo1KJFC1eXB1Qa3bt3d3xwGzVqFGFyCX399deaOnWqjhw54upSSq1+/fqaOnWqJOefPy5N9LeAe6is/e3F3F+6ys8//6ypU6e6XdA9depU1a9fX9L/wngAAICzebq6gEvZAw88oKZNmzrmZ86c6cJqAJS1Tz/91NUlFOt8avz66681bdo0jRo1SjVq1Cj7ooAyRn8LwBXoL4uXmpqqKlX+d9/Wzz//rGnTpql79+6O0BoAAOBiQIhejq655hqnO3Fef/11ZWRkuK4gAGXKy8vL1SUU62KoEbhQ9LcA4J7sdrurSwAAACgTDOdSDk6dOiVJTnddWCls7L68vDy1atVKNptNycnJjuWbN2/WqFGj1KBBA3l7eys0NFRjxozRoUOHnPaZP7bjuZOn5//+zaR79+5q0aKFNm7cqE6dOsnHx0eRkZF6+eWXC5zLww8/rOjoaAUEBKh69erq0qWLVq9e7dRu165djuMsXbrUad3JkydVs2ZN2Ww2PfnkkwXqDA4O1unTp522eeeddxz7OzsI+c9//qN+/fopLCxMdrtdDRs21IwZM5Sbm1vstc4/3vbt2zV06FD5+/urVq1auvvuu3Xy5EmntklJSerZs6eCg4Nlt9vVrFkzzZkzp8A+Bw4cqPr168vb21vBwcEaMGCAtmzZ4tQm/zyeffbZAttHRUUVGP/zr7/+0r333quWLVvK19dX/v7+io2N1Y8//ui0bVxcnLy9vbVt2zan5TExMapZs6b27dvnWPbbb7/phhtuUGBgoKpVq6YOHTroo48+ctouJSXF6fVit9t1+eWXKzExUcaYoi/u/2f12ivsa91nv2bOnc528OBBjR07VhEREfLw8HC08fX1LVFNVvKP/+STT2r27Nlq0KCBqlWrpj59+mjv3r0yxmjGjBmqW7eufHx8NHDgQP31119O+yhsvPEXXnhBzZs3V7Vq1VSzZk21a9dOCxYscKw/evSoJk6cqPr168tutys4OFjXXHONvv/++1LV/9NPP6lnz57y8fFR3bp19cgjjygvL69Au9LWOHXqVN13332SpMjISMf1zv8bVdLfjfr16+vaa6/Vl19+qauuukre3t5q0KCB3nrrrQJtjxw5onvuucdxTerWrauRI0c6/e7n5ORoypQpatSokex2u8LDwzV58mTl5OSU6rrh0kJ/u9RpHf0t/a079reS9OSTT6pTp06qVauWfHx8FB0drQ8++MCy/fz589WkSRN5e3srOjpaa9eudVpf0r70/fffV3R0tHx8fFS7dm2NGDFCf/zxR5G15l+vs/8m5LPZbI4hw4rrLyVp3rx5juMHBgbqpptu0t69e4s8/rny/3Z9+eWXmjBhgoKCglSjRg3ddtttOnXqlI4cOaKRI0eqZs2aqlmzpiZPnlzgdVTS63/ixAlNmDBBtWvXlp+fnwYMGKA//vjD6bzzz91ms2nHjh2Ou/ADAgI0evRoHT9+3GmfZ4+JnpycrBtuuEGS1KNHD8c1S0lJKXB9rfaRr6TvgyTpk08+UZcuXVS9enX5+fmpX79++umnn4q46gAAAAVxJ3o5yP9Qf753Xrz99tsFPhhK0meffabffvtNo0ePVmhoqH766Se9+uqr+umnn7R+/foCH4bmzJnj9MHn3JDh8OHD+sc//qGhQ4dq2LBheu+993THHXfIy8tLY8aMkSRlZWXp9ddf17Bhw/TPf/5TR48e1dy5cxUTE6NvvvlGV1xxhdM+vb29lZSUpEGDBjmWLV68uMCH5rMdPXpUy5cv1+DBgx3LkpKS5O3tXWC75ORk+fr6atKkSfL19dUXX3yhhx9+WFlZWXriiScsj3G2oUOHqn79+kpMTNT69ev1/PPP6/Dhw07h3pw5c9S8eXMNGDBAnp6e+vDDD3XnnXcqLy9P8fHxTvsbN26cQkNDtW/fPr344ovq3bu30tLSVK1atQLXZeLEiY5lX3/9tXbv3l2gvt9++01Lly7VDTfcoMjISB04cECvvPKKunXrpp9//llhYWGSpOeee05ffPGF4uLitG7dOnl4eOiVV17Rp59+qrffftvR7sCBA+rUqZOOHz+uCRMmqFatWnrzzTc1YMAAffDBB07XXfrfsAgnTpzQu+++qwceeEDBwcEaO3Zsia5v/vXLf+0lJCQU2XbcuHHq0qWLpL9fK0uWLHFaHxcXp88//1x33XWXWrduLQ8PD7366qulDp2tzJ8/X6dOndJdd92lv/76S48//riGDh2qnj17KiUlRffff7927NihF154Qffee6/eeOMNy3299tprmjBhgq6//npHWLR582Zt2LBBN998syTp9ttv1wcffKDx48erWbNmOnTokL788ktt27ZNbdu2LVHN6enp6tGjh86cOaN///vfql69ul599VX5+PgUu21xNV533XX65Zdf9M477+iZZ55R7dq1JUlBQUGSSve7sWPHDl1//fUaO3as4uLi9MYbb2jUqFGKjo5W8+bNJUnHjh1Tly5dtG3bNo0ZM0Zt27ZVRkaGli1bpt9//121a9dWXl6eBgwYoC+//FLjxo1T06ZNtWXLFj3zzDP65ZdfCgSJqDzob+lv6W8vjv72ueee04ABAzR8+HCdOnVKCxcu1A033KDly5erX79+Tm3XrFmjd999VxMmTJDdbtdLL72kvn376ptvvnE866AkfWlycrJGjx6tK6+8UomJiTpw4ICee+45ffXVV/rhhx8uePiV4vrLmTNn6qGHHtLQoUN166236s8//9QLL7ygrl27ntfx77rrLoWGhmratGlav369Xn31VdWoUUNff/21IiIi9Oijj+rjjz/WE088oRYtWmjkyJGObUt6/UeNGqX33ntPt9xyizp06KA1a9YU+PmcbejQoYqMjFRiYqK+//57vf766woODtasWbMKbd+1a1dNmDBBzz//vNMwXGcPx1USpXkf9PbbbysuLk4xMTGaNWuWjh8/rjlz5ujqq6/WDz/8wJAyAACg5AzK3LPPPmskmR9//NFpebdu3Uzz5s2dliUlJRlJJi0tzRhjzMmTJ01ERISJjY01kkxSUpKj7fHjxwsc65133jGSzNq1ax3LpkyZYiSZP//807LGbt26GUnmqaeecizLyckxV1xxhQkODjanTp0yxhhz5swZk5OT47Tt4cOHTUhIiBkzZoxjWVpampFkhg0bZjw9PU16erpjXa9evczNN99sJJknnniiQJ3Dhg0z1157rWP57t27TZUqVcywYcMKnEdh1+C2224z1apVMydPnrQ837OPN2DAAKfld955Z4GfV2HHiYmJMQ0aNCjyGO+9956RZL777jvHMknm+uuvN56enk7Lx44d67gu8fHxjuUnT540ubm5TvtNS0szdrvdTJ8+3Wn5ypUrjSTzyCOPmN9++834+vqaQYMGObWZOHGikWT++9//OpYdPXrUREZGmvr16zuOtXr1aiPJrF692qmWKlWqmDvvvLPI8873wAMPGEkmIyPDsax58+amW7duBdr++uuvRpJ58803Hcvyf0b5Tpw4YapUqWJuu+02p23j4uJM9erVS1STlfzXbFBQkDly5IhjeUJCgpFkWrdubU6fPu1YPmzYMOPl5eX0OuvWrZvTuQ0cOLDA7/i5AgICnH7e5yP/Z7phwwbHsoMHD5qAgACnvyfnW+MTTzxRYD/5Svq7Ua9evQJ/mw4ePGjsdrv517/+5Vj28MMPG0lm8eLFBfabl5dnjDHm7bffNlWqVHF6DRtjzMsvv2wkma+++qrI88Gli/6W/pb+1v37W2MK/pxPnTplWrRoYXr27Om0XFKBn+vu3buNt7e3GTx4sGNZcX3pqVOnTHBwsGnRooU5ceKEY/ny5cuNJPPwww87lp17LfJ/x87+m3B2fVOmTHHMW/WXu3btMh4eHmbmzJlOy7ds2WI8PT0LLC9K/t+umJgYR79ojDEdO3Y0NpvN3H777Y5lZ86cMXXr1i3wOijJ9d+4caORZCZOnOjUdtSoUQXOO/+anf23yRhjBg8ebGrVquW0rF69eiYuLs4x//777xd4/ec79zhW+yjp+6CjR4+aGjVqmH/+859O+0tPTzcBAQEFlgMAABSF4VzKQf7XvfPvRCmN2bNn69ChQ5oyZUqBdWffXXHy5EllZGSoQ4cOknRedwl5enrqtttuc8x7eXnptttu08GDB7Vx40ZJkoeHh2NM5by8PP311186c+aM2rVrV+gx27Ztq+bNm+vtt9+WJO3evVurV68u8BXMs40ZM0YrVqxQenq6JOnNN99Ux44ddfnllxdoe/Y1OHr0qDIyMtSlSxcdP35c27dvL9F5n3tn21133SVJ+vjjjws9TmZmpjIyMtStWzf99ttvyszMdNr++PHjysjI0KZNm/Taa68pJCSkQO0hISHq16+fkpKSHNu89957Gj16dIH67Ha74y7G3NxcHTp0SL6+vmrSpEmBa96nTx/ddtttmj59uq677jp5e3vrlVdecWrz8ccf66qrrtLVV1/tWObr66tx48Zp165d+vnnn53a55/vnj179PjjjysvL089e/Ys5EoWlH8no7e3d7FtS3IHaXZ2tvLy8lSrVq0SHf983HDDDQoICHDMt2/fXpI0YsQIpyEZ2rdvr1OnThX5NfAaNWro999/17fffltkmw0bNjh9/b+0Pv74Y3Xo0EFXXXWVY1lQUJCGDx9e7LYlqbEopfndaNasmeOux/wamzRpot9++82xbNGiRWrdunWBOzQlOe72ff/999W0aVNFRUUpIyPDMeW/Ls8d7gKVB/0t/S397cXR3579cz58+LAyMzPVpUuXQl/bHTt2VHR0tGM+IiJCAwcO1MqVKx3DCRXXl3733Xc6ePCg7rzzTqdr1K9fP0VFRRUYYqesLV68WHl5eRo6dKhTvxUaGqrGjRufV781duxYp2/BtG/fXsYYp28ueHh4qF27dk79rFSy679ixQpJ0p133um0bf7vbWFuv/12p/kuXbro0KFDysrKKsWZlV5J3wd99tlnOnLkiIYNG+b0c/Dw8FD79u15/wAAAErlkgvR165dq/79+yssLKzQ8UKLYzXGZPXq1Uu8j927d8vT07PUH+ozMzP16KOPatKkSQoJCSmw/q+//tLdd9+tkJAQ+fj4KCgoSJGRkY5tSyssLKzAeeV/GD17PMc333xTrVq1kre3t2rVqqWgoCB99NFHlsccPXq048NrcnKyOnXqpMaNG1vWccUVV6hFixZ66623ZIxxfP22MD/99JMGDx6sgIAA+fv7KygoSCNGjJBU8mtwbi0NGzZUlSpVnM75q6++Uu/evVW9enXVqFFDQUFBeuCBBwo9zvTp0xUUFKQ2bdpo165dSklJkZ+fX4Hjjh49WgsWLFBOTo7ef/991axZs9APy3l5eXrmmWfUuHFj2e121a5dW0FBQdq8eXOh5/jkk08qMDBQmzZt0vPPP6/g4GCn9bt371aTJk0KbJf/1dlzv+I+aNAgBQUFqV69epo6daoefPBBDRkypMD2hcnIyFDVqlWdvlpv5ciRI5JU5FirtWrVUuPGjfX666/r008/1cGDB5WRkVGm42BHREQ4zecH6uHh4YUuP3z4sOW+7r//fvn6+uqqq65S48aNFR8fr6+++sqpzeOPP66tW7cqPDxcV111laZOnVrgw25xdu/eXejvVGE/5/OpsSil+d0499pKUs2aNZ2u4c6dOx1fz7fy66+/6qefflJQUJDTlP/36uDBgyWuH5cW+lv6W/rbi6O/Xb58uTp06CBvb28FBgYqKChIc+bMKfQ6F/Yavvzyy3X8+HH9+eefkorvS/OvdWE/j6ioqEKH9ylLv/76q4wxaty4cYG+a9u2befVb5Xm/cq571VKcv13796tKlWqOP7W5WvUqFGJa6pZs6akot8rlYWSvg/69ddfJUk9e/Ys8HPIf50DAACU1CU3Jnp2drZat26tMWPG6Lrrriv19vfee2+Buyp69eqlK6+8ssT7SE1NVYMGDZzuYi2JWbNmqUqVKrrvvvsKPLxM+nvcwa+//lr33XefrrjiCvn6+iovL099+/a1fJDOhZo3b55GjRqlQYMG6b777lNwcLA8PDyUmJionTt3FrrNiBEjNHnyZK1fv15vvvmmHnzwwWKPM2bMGL300ku66qqrlJ6erqFDh+qpp55yanPkyBF169ZN/v7+mj59uho2bChvb299//33uv/++8/7Gpw7tu3OnTvVq1cvRUVF6emnn1Z4eLi8vLz08ccf65lnnilwnFtvvVW9evXS77//rmeeeUZDhgzR119/7XR3s/T33U9eXl5aunSpkpKSFBcXV+jD8B599FE99NBDGjNmjGbMmKHAwEBVqVJFEydOLPQcf/jhB8eHgC1btmjYsGHndR3yPfnkk2rdurVOnz6tb7/9Vo888og8PT0LvVvzXLt27VJERESBa1qY/DshQ0NDi2z37rvvavjw4YqJiXFaXpp/2CqKh4dHqZabIh761rRpU6Wmpmr58uVasWKFFi1apJdeekkPP/ywpk2bJunv3+MuXbpoyZIl+vTTT/XEE09o1qxZWrx4sWJjYy/8hIpRkhqtlPZ343yuYWHy8vLUsmVLPf3004WuPzdAQOVBf0t/S3/r/v3tf//7Xw0YMEBdu3bVSy+9pDp16qhq1apKSkpyevB2aZRnX2p1TUvyUN18eXl5stls+uSTTwrtC8/nYa2leb9ydj9bHte/uJpK288XpzTX/mz5v8dvv/12oa//0vYdAACgcrvk3jnExsYW+eY5JydH//d//6d33nlHR44cUYsWLTRr1ix1795d0t9vas9+Y/vjjz/q559/1ssvv1yi4+fk5GjTpk1OD/oqiX379um5555TYmKi/Pz8CnyoP3z4sFatWqVp06bp4YcfdizPv8PifOzbt0/Z2dlOH45++eUXSXI8ZOeDDz5QgwYNtHjxYqcPFUV9wKtVq5YGDBjg+Kp6/ldZizJ8+HDdd999uvvuu3X99dcXemdZSkqKDh06pMWLF6tr166O5WlpaSU633y//vqr0102O3bsUF5enuOcP/zwQ+Xk5GjZsmVOd9hYfeWzUaNGjrt0evfurYiICC1YsEB33HGHUztPT0/dcsstmjlzpn766SfLB1R+8MEH6tGjh+bOneu0/MiRI46HVuXLzs7W6NGj1axZM3Xq1EmPP/64Bg8e7PSPPvXq1VNqamqB4+R/Hb9evXpOy6Ojox2/D7Gxsfrjjz80a9YsPfTQQ4WGEPnOnDmjH3/8UX379rVsc7aff/5ZNput2Lun27Rpo9dee01dunTR9OnT1aFDBz3xxBOlunu6IlWvXl033nijbrzxRp06dUrXXXedZs6cqYSEBMdXyuvUqaM777xTd955pw4ePKi2bdtq5syZJf7gX69evUJ/9wv7OZ9PjVYBQml/N0qiYcOG2rp1a7FtfvzxR/Xq1atEgREqB/pb+lv624ujv120aJG8vb21cuVKpyFl8r9Fca7Cftd++eUXVatWzelbJ0X1pfnXOjU1tcC3EFJTUwv8LM6Wfzd1/h38+Qq7e92qT2rYsKGMMYqMjCx0uKSKVNLrX69ePeXl5SktLc3pLu8dO3aUaT1F9eM1a9YscN1PnTql/fv3F6i1JO+DGjZsKEkKDg5W7969z7NiAACAv11yw7kUZ/z48Vq3bp0WLlyozZs364YbblDfvn0tPxy//vrruvzyy53G9S1K/teHe/XqVaq6pk2bppCQkAJ3wefLv9Pj3Ds7nn322VId52xnzpxxGs/z1KlTeuWVVxQUFOQYi7Kw427YsEHr1q0rct9jxoxxXN+S3G0TGBiogQMHavPmzRozZkyhbQqr5dSpU3rppZeK3f/ZZs+e7TT/wgsvSJIjwCzsOJmZmZYf9s6WH15Yff15zJgx2rJli7p27aoGDRoU2sbDw6PAz/n9998vdCzu+++/X3v27NGbb76pp59+WvXr11dcXJzT8f/xj3/om2++cfqZZWdn69VXX1X9+vXVrFmzIs/pxIkTOnPmjM6cOVNku08//VSZmZkaOHBgke2kv197ixYt0lVXXVXs6yMrK0u33HKLBgwYoAcffFC9e/dWnTp1ij2GK5wbxnl5ealZs2Yyxuj06dPKzc0t8NX14OBghYWFleor8//4xz+0fv16ffPNN45lf/75p+bPn3/BNUr/u+vw3A+yF/K7YWXIkCH68ccftWTJkgLr8o8zdOhQ/fHHH3rttdcKtDlx4oSys7PP+/i4eNHf/o3+lv62KO7Q33p4eMhmszndTbxr1y7LIRfXrVvnNFb33r179Z///Ed9+vSRh4dHifrSdu3aKTg4WC+//LLTz+iTTz7Rtm3b1K9fP8t6/f39Vbt2ba1du9ZpeWGvf6v+8rrrrpOHh4emTZtW4DVmjCn0GzDlpaTXP/8bCOeeZ/7vbVmxumbS36H3udf91VdfLXAneknfB8XExMjf31+PPvqo4z3O2fKHBwIAACiJS+5O9KLs2bNHSUlJ2rNnj8LCwiT9PXzLihUrlJSUpEcffdSp/cmTJzV//nz9+9//Lnbf2dnZeuGFFzR9+nTHh7J58+Y5tTlw4ICOHTumefPm6ZprrnEah/XTTz/V/PnzHQ8VO5e/v7+6du2qxx9/XKdPn9Zll12mTz/9tNR3hZ0tLCxMs2bN0q5du3T55Zfr3Xff1aZNm/Tqq6+qatWqkqRrr71Wixcv1uDBg9WvXz+lpaXp5ZdfVrNmzXTs2DHLffft21d//vlnqb6umpycrNmzZxe4+ytfp06dVLNmTcXFxWnChAmy2Wx6++23S/2V0bS0NA0YMEB9+/bVunXrNG/ePN18881q3bq1pL8fHubl5aX+/fvrtttu07Fjx/Taa68pODjY6U6Yjz/+WK+//ro6deqkwMBA/fbbb3rttddUvXr1Qh+SKP09lEZGRobTA57Ode2112r69OkaPXq0OnXqpC1btmj+/PkFQoAvvvhCL730kqZMmaK2bdtK+vuuou7du+uhhx7S448/Lkn697//rXfeeUexsbGaMGGCAgMD9eabbyotLU2LFi0qcLfbZ599pt9//93x9fL58+drwIABlq9N6e+vgN97772y2+06ceKE02s/MzNTubm5Wrp0qQYNGqTPP/9cDz30kDZv3qwPP/zQcp/54uPjdeLECb3++uvFtnW1Pn36KDQ0VJ07d1ZISIi2bdumF198Uf369ZOfn5+OHDmiunXr6vrrr1fr1q3l6+urzz//XN9++22B4RSKMnnyZL399tvq27ev7r77blWvXl2vvvqq6tWrp82bN19QjZIcod7//d//6aabblLVqlXVv3//Ev9ulMZ9992nDz74QDfccIPGjBmj6Oho/fXXX1q2bJlefvlltW7dWrfccovee+893X777Vq9erU6d+6s3Nxcbd++Xe+9955Wrlypdu3andfxcfGhv3VGf0t/m89d+9t+/frp6aefVt++fXXzzTfr4MGDmj17tho1alRon9WiRQvFxMRowoQJstvtjlA3f8ixo0ePFtuXVq1aVbNmzdLo0aPVrVs3DRs2TAcOHNBzzz2n+vXr65577imy5ltvvVWPPfaYbr31VrVr105r1651fHvkbFb9ZcOGDfXII48oISFBu3bt0qBBg+Tn56e0tDQtWbJE48aN07333ntB17WkSnr9o6OjNWTIED377LM6dOiQOnTooDVr1jjOu6y+CXbFFVfIw8NDs2bNUmZmpux2u3r27Kng4GDdeuutuv322zVkyBBdc801+vHHH7Vy5coCf6tK+j7I399fc+bM0S233KK2bdvqpptuUlBQkPbs2aOPPvpInTt31osvvlgm5wUAACoBcwmTZJYsWeKYX758uZFkqlev7jR5enqaoUOHFth+wYIFxtPT06Snpxd7rLS0NCOpxNPq1auNMcYkJSUZSeaKK64weXl5BfaXlJTkWPb777+bwYMHmxo1apiAgABzww03mH379hlJZsqUKY52U6ZMMZLMn3/+aVlvt27dTPPmzc13331nOnbsaLy9vU29evXMiy++6NQuLy/PPProo6ZevXrGbrebNm3amOXLl5u4uDhTr169AvU+8cQTRV6fs9cXV2dh67/66ivToUMH4+PjY8LCwszkyZPNypUrna6plfz9/fzzz+b66683fn5+pmbNmmb8+PHmxIkTTm2XLVtmWrVqZby9vU39+vXNrFmzzBtvvGEkmbS0NGOMMVu3bjV9+vQxtWrVMl5eXiY8PNzcdNNNZvPmzU77kmTi4+Mt6zp3/cmTJ82//vUvU6dOHePj42M6d+5s1q1bZ7p162a6detmjDEmKyvL1KtXz7Rt29acPn3aaX/33HOPqVKlilm3bp1j2c6dO831119vatSoYby9vc1VV11lli9f7rTd6tWrnV6jnp6epl69embChAnm8OHDRV7bevXqFfuaz3+93HXXXaZr165mxYoVBfaT/zPK98477xibzVagbVxcnKlevXqRNRXH6jWbfx3ef/99p+X5v6vffvutY9nZPxNjjHnllVdM165dTa1atYzdbjcNGzY09913n8nMzDTGGJOTk2Puu+8+07p1a+Pn52eqV69uWrdubV566aVS179582bTrVs34+3tbS677DIzY8YMM3fuXKfX6PnUmG/GjBnmsssuM1WqVHHaZ0l+N4z5+zXRr1+/AnWfW48xxhw6dMiMHz/eXHbZZcbLy8vUrVvXxMXFmYyMDEebU6dOmVmzZpnmzZsbu91uatasaaKjo820adMK1I5LG/0t/S397cXV3xpjzNy5c03jxo2N3W43UVFRJikpqUANxvzvZzRv3jxH+zZt2ji95krTl7777rumTZs2xm63m8DAQDN8+HDz+++/F3ktjDHm+PHjZuzYsSYgIMD4+fmZoUOHmoMHDxb4G2CMdX9pjDGLFi0yV199teMzR1RUlImPjzepqaklvnaFvf84u+5zf68L+5mV9PpnZ2eb+Ph4ExgYaHx9fc2gQYNMamqqkWQee+yxYo+dX+u57wfi4uKc2r322mumQYMGxsPDw+lvSm5urrn//vtN7dq1TbVq1UxMTIzZsWNHofso6fsgY/7+nYuJiTEBAQHG29vbNGzY0IwaNcp89913hV1yAACAQtmMKeMnv7gRm82mJUuWOMZLzX9g0k8//VTgQTi+vr4FHjjTq1cv+fv7FzrMwLl27dqlyMhIrV692jG+5YW0K2/du3dXRkZGsWMRX0qmTp2qadOm6c8//7S8+w7np379+po6dapGjRpV6PqUlBSNGjVKu3btqtC6AFx66G/dH/1t+aG/RUXbtGmT2rRpo3nz5mn48OGuLgcAAMBlKtVwLm3atFFubq4OHjxY7BjnaWlpWr16tZYtW1ZB1QEAAACAa5w4caLAEEjPPvusqlSp4vSQYQAAgMrokgvRjx075vQU+bS0NG3atEmBgYG6/PLLNXz4cI0cOVJPPfWU2rRpoz///FOrVq1Sq1atnB4y9MYbb6hOnTqOh18Vx9fXV8OHD3cad/VC2gEXk8GDB6thw4aW60NCQizHrcX/nDhxosDD0s4VGBhY5Hi5wKWO/haVGf3tpcMd+/zHH39cGzduVI8ePeTp6alPPvlEn3zyicaNG6fw8PAKqwMAAMAdXXLDuaSkpKhHjx4FlsfFxSk5OVmnT5/WI488orfeekt//PGHateurQ4dOmjatGlq2bKlJCkvL0/16tXTyJEjNXPmzIo+hQrB18v5ejncT3JyskaPHl1kG1cPTQGgdOhv6W+Bwrhjn//ZZ59p2rRp+vnnn3Xs2DFFRETolltu0f/93//J0/OSu/cKAACgVC65EB0ALlb79+/XTz/9VGSb6Oho1axZs4IqAgAA5YE+HwAA4OJCiA4AAAAAAAAAgIVL4nt5eXl52rdvn/z8/GSz2VxdDgAADsYYHT16VGFhYapSpYqry7lo0LcDANwVfTsAAJXPJRGi79u3j4fdAADc2t69e1W3bl1Xl3HRoG8HALg7+nYAACqPSyJE9/Pzk/T3mxh/f38XVwMAwP9kZWUpPDzc0VehZOjbAQDuir4dAIDK55II0fO/5u3v788HbQCAW2JIktKhbwcAuDv6dgAAKg8GcAMAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAABUUnPmzFGrVq3k7+8vf39/dezYUZ988okk6a+//tJdd92lJk2ayMfHRxEREZowYYIyMzOL3OeoUaNks9mcpr59+1bE6QAAAAAAUC48XV0AAABwjbp16+qxxx5T48aNZYzRm2++qYEDB+qHH36QMUb79u3Tk08+qWbNmmn37t26/fbbtW/fPn3wwQdF7rdv375KSkpyzNvt9vI+FQAAAAAAyg0hOgAAlVT//v2d5mfOnKk5c+Zo/fr1Gjt2rBYtWuRY17BhQ82cOVMjRozQmTNn5Olp/RbCbrcrNDS0VLXk5OQoJyfHMZ+VlVWq7QEAAAAAKC8M5wIAAJSbm6uFCxcqOztbHTt2LLRNZmam/P39iwzQJSklJUXBwcFq0qSJ7rjjDh06dKjY4ycmJiogIMAxhYeHn9d5AAAAAABQ1mzGGOPqIi5UVlaWAgICHB/uAQBwF+7eR23ZskUdO3bUyZMn5evrqwULFugf//hHgXYZGRmKjo7WiBEjNHPmTMv9LVy4UNWqVVNkZKR27typBx54QL6+vlq3bp08PDwstyvsTvTw8HC3vW4AgMrL3ft2AABQ9gjRAQAoR+7eR506dUp79uxRZmamPvjgA73++utas2aNmjVr5miTlZWla665RoGBgVq2bJmqVq1a4v3/9ttvatiwoT7//HP16tWrxNu5+3UDAFRe9FEAAFQ+DOcCAEAl5uXlpUaNGik6OlqJiYlq3bq1nnvuOcf6o0ePqm/fvvLz89OSJUtKFaBLUoMGDVS7dm3t2LGjrEsHAAAAAKBCEKIDAACHvLw8x7AqWVlZ6tOnj7y8vLRs2TJ5e3uXen+///67Dh06pDp16pR1qQAAAAAAVIiinwwG4KJ0/Phxbd++/by3P3HihHbt2qX69evLx8fnvPcTFRWlatWqnff2AMpXQkKCYmNjFRERoaNHj2rBggVKSUnRypUrHQH68ePHNW/ePGVlZSkrK0uSFBQU5BjfPCoqSomJiRo8eLCOHTumadOmaciQIQoNDdXOnTs1efJkNWrUSDExMa48VeCiRr8OAAAAuBYhOnAJ2r59u6Kjo11dhjZu3Ki2bdu6ugwAFg4ePKiRI0dq//79CggIUKtWrbRy5Updc801SklJ0YYNGyRJjRo1ctouLS1N9evXlySlpqYqMzNTkuTh4aHNmzfrzTff1JEjRxQWFqY+ffpoxowZstvtFXpuwKWEfh0AAABwLR4sClyCLvSOtW3btmnEiBGaN2+emjZtet774Y41gD7qfHHdgP+hXwfcC30UAACVD3eiA5egatWqlcmdYk2bNuWOMwAAXIx+HQAAAHAtHiwKAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAW3CNHr168vm81WYIqPj3d1aQAAAAAAAACASszT1QVI0rfffqvc3FzH/NatW3XNNdfohhtucGFVAAAAAAAAAIDKzi1C9KCgIKf5xx57TA0bNlS3bt0KbZ+Tk6OcnBzHfFZWVrnWBwAAAAAAAAConNxiOJeznTp1SvPmzdOYMWNks9kKbZOYmKiAgADHFB4eXsFVAgAAAAAAAAAqA7cL0ZcuXaojR45o1KhRlm0SEhKUmZnpmPbu3VtxBQIAAAAAAAAAKg23GM7lbHPnzlVsbKzCwsIs29jtdtnt9gqsCgAAAAAAAABQGblViL579259/vnnWrx4satLAQAAAAAAAADAvYZzSUpKUnBwsPr16+fqUgAAAAAAAAAAcJ8QPS8vT0lJSYqLi5Onp1vdIA8AAAAAAAAAqKTcJkT//PPPtWfPHo0ZM8bVpQAAAAAAAAAAIMmNxkTv06ePjDGuLgMAAAAAAAAAAAe3uRMdAAAAAAAAAAB3Q4gOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AgEpqzpw5atWqlfz9/eXv76+OHTvqk08+caw/efKk4uPjVatWLfn6+mrIkCE6cOBAkfs0xujhhx9WnTp15OPjo969e+vXX38t71MBAAAAAKDcEKIDAFBJ1a1bV4899pg2btyo7777Tj179tTAgQP1008/SZLuueceffjhh3r//fe1Zs0a7du3T9ddd12R+3z88cf1/PPP6+WXX9aGDRtUvXp1xcTE6OTJkxVxSgAAAAAAlDlPVxcAAABco3///k7zM2fO1Jw5c7R+/XrVrVtXc+fO1YIFC9SzZ09JUlJSkpo2bar169erQ4cOBfZnjNGzzz6rBx98UAMHDpQkvfXWWwoJCdHSpUt10003lf9JAQAAAABQxrgTHQAAKDc3VwsXLlR2drY6duyojRs36vTp0+rdu7ejTVRUlCIiIrRu3bpC95GWlqb09HSnbQICAtS+fXvLbfLl5OQoKyvLaQIAAAAAwB0QogMAUIlt2bJFvr6+stvtuv3227VkyRI1a9ZM6enp8vLyUo0aNZzah4SEKD09vdB95S8PCQkp8Tb5EhMTFRAQ4JjCw8PP/6QAAAAAAChDhOgAAFRiTZo00aZNm7RhwwbdcccdiouL088//1zhdSQkJCgzM9Mx7d27t8JrAAAAAACgMIyJDgBAJebl5aVGjRpJkqKjo/Xtt9/queee04033qhTp07pyJEjTnejHzhwQKGhoYXuK3/5gQMHVKdOHadtrrjiiiLrsNvtstvtF3YyAAAAAACUA+5EBwAADnl5ecrJyVF0dLSqVq2qVatWOdalpqZqz5496tixY6HbRkZGKjQ01GmbrKwsbdiwwXIbAAAAAADcHXeiAwBQSSUkJCg2NlYRERE6evSoFixYoJSUFK1cuVIBAQEaO3asJk2apMDAQPn7++uuu+5Sx44d1aFDB8c+oqKilJiYqMGDB8tms2nixIl65JFH1LhxY0VGRuqhhx5SWFiYBg0a5LoTBQAAAADgAhCiAwBQSR08eFAjR47U/v37FRAQoFatWmnlypW65pprJEnPPPOMqlSpoiFDhignJ0cxMTF66aWXnPaRmpqqzMxMx/zkyZOVnZ2tcePG6ciRI7r66qu1YsUKeXt7V+i5AQAAAABQVgjRAQCopObOnVvkem9vb82ePVuzZ8+2bGOMcZq32WyaPn26pk+fXiY1AgAAAADgaoyJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFtwmRP/jjz80YsQI1apVSz4+PmrZsqW+++47V5cFAAAAAAAAAKjEPF1dgCQdPnxYnTt3Vo8ePfTJJ58oKChIv/76q2rWrOnq0gAAAAAAAAAAlZhbhOizZs1SeHi4kpKSHMsiIyMt2+fk5CgnJ8cxn5WVVa71AQAAAAAAAAAqJ7cYzmXZsmVq166dbrjhBgUHB6tNmzZ67bXXLNsnJiYqICDAMYWHh1dgtQAAAAAAAACAysItQvTffvtNc+bMUePGjbVy5UrdcccdmjBhgt58881C2yckJCgzM9Mx7d27t4IrBgAAAAAAAABUBm4xnEteXp7atWunRx99VJLUpk0bbd26VS+//LLi4uIKtLfb7bLb7RVdJgAAAAAAAACgknGLO9Hr1KmjZs2aOS1r2rSp9uzZ46KKAAAAAAAAAABwkxC9c+fOSk1NdVr2yy+/qF69ei6qCAAAAAAAAAAANwnR77nnHq1fv16PPvqoduzYoQULFujVV19VfHy8q0sDAAAAAAAAAFRibhGiX3nllVqyZIneeecdtWjRQjNmzNCzzz6r4cOHu7o0AAAAAAAAAEAl5hYPFpWka6+9Vtdee62rywAAAAAAAAAAwMEt7kQHAAAAAAAAAMAdEaIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVPVxcAoHB79uxRRkaGS469bds2p/+6Qu3atRUREeGy4wMAAAAAAAASITrglvbs2aMmUU118sRxl9YxYsQIlx3b26eaUrdvI0gHAAAAAACASxGiA24oIyNDJ08cV61r/6WqtcIr/PjmzCmdyTwgz4AQ2Ty9Kvz4pw/t1aHlTykjI4MQHQAAAAAAAC5FiA64saq1wmUPbeSag9dt5prjAgAAAAAAAG6EB4sCAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AACVVGJioq688kr5+fkpODhYgwYNUmpqqmP9rl27ZLPZCp3ef/99y/2OGjWqQPu+fftWxCkBAAAAAFDmCNEBAKik1qxZo/j4eK1fv16fffaZTp8+rT59+ig7O1uSFB4erv379ztN06ZNk6+vr2JjY4vcd9++fZ22e+eddyrilAAAAAAAKHOeri4AAAC4xooVK5zmk5OTFRwcrI0bN6pr167y8PBQaGioU5slS5Zo6NCh8vX1LXLfdru9wLYAAAAAAFyMuBMdAABIkjIzMyVJgYGBha7fuHGjNm3apLFjxxa7r5SUFAUHB6tJkya64447dOjQoSLb5+TkKCsry2kCAAAAAMAdEKIDAADl5eVp4sSJ6ty5s1q0aFFom7lz56pp06bq1KlTkfvq27ev3nrrLa1atUqzZs3SmjVrFBsbq9zcXMttEhMTFRAQ4JjCw8Mv6HwAAAAAACgrDOcCAAAUHx+vrVu36ssvvyx0/YkTJ7RgwQI99NBDxe7rpptucvx/y5Yt1apVKzVs2FApKSnq1atXodskJCRo0qRJjvmsrCyCdAAAAACAW+BOdAAAKrnx48dr+fLlWr16terWrVtomw8++EDHjx/XyJEjS73/Bg0aqHbt2tqxY4dlG7vdLn9/f6cJAAAAAAB3wJ3oAABUUsYY3XXXXVqyZIlSUlIUGRlp2Xbu3LkaMGCAgoKCSn2c33//XYcOHVKdOnUupFwAAAAAAFyCO9EBAKik4uPjNW/ePC1YsEB+fn5KT09Xenq6Tpw44dRux44dWrt2rW699dZC9xMVFaUlS5ZIko4dO6b77rtP69ev165du7Rq1SoNHDhQjRo1UkxMTLmfEwAAAAAAZY0QHQCASmrOnDnKzMxU9+7dVadOHcf07rvvOrV74403VLduXfXp06fQ/aSmpiozM1OS5OHhoc2bN2vAgAG6/PLLNXbsWEVHR+u///2v7HZ7uZ8TAAAAAABljeFcAACopIwxJWr36KOP6tFHHy3Rfnx8fLRy5coLrg0AAAAAAHfBnegAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABbcIkSfOnWqbDab0xQVFeXqsgAAAAAAAAAAlZynqwvI17x5c33++eeOeU9PtykNAAAAAAAAAFBJuU1S7enpqdDQUFeXAQAAAAAAAACAg1sM5yJJv/76q8LCwtSgQQMNHz5ce/bssWybk5OjrKwspwkAAAAAAAAAgLLmFiF6+/btlZycrBUrVmjOnDlKS0tTly5ddPTo0ULbJyYmKiAgwDGFh4dXcMUAAAAAAAAAgMrALUL02NhY3XDDDWrVqpViYmL08ccf68iRI3rvvfcKbZ+QkKDMzEzHtHfv3gquGAAAAAAAAABQGbjNmOhnq1Gjhi6//HLt2LGj0PV2u112u72CqwIAAAAAAAAAVDZucSf6uY4dO6adO3eqTp06ri4FAAAAAAAAAFCJuUWIfu+992rNmjXatWuXvv76aw0ePFgeHh4aNmyYq0sDAAAAAAAAAFRibjGcy++//65hw4bp0KFDCgoK0tVXX63169crKCjI1aUBAAAAAAAAACoxtwjRFy5c6OoSAAAAAAAAAAAowC2GcwEAAAAAAAAAwB0RogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABU9XFwAAAABc6vbs2aOMjAyXHHvbtm1O/3WF2rVrKyIiwmXHBwAAAC4EIToAAABQjvbs2aMmUU118sRxl9YxYsQIlx3b26eaUrdvI0gHAADARYkQHQAAAChHGRkZOnniuGpd+y9VrRVe4cc3Z07pTOYBeQaEyObpVeHHP31orw4tf0oZGRmE6AAAALgoEaIDAAAAFaBqrXDZQxu55uB1m7nmuAAAAMAlgAeLAgAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAUEklJibqyiuvlJ+fn4KDgzVo0CClpqY6tenevbtsNpvTdPvttxe5X2OMHn74YdWpU0c+Pj7q3bu3fv311/I8FQAAAAAAyg0hOgAAldSaNWsUHx+v9evX67PPPtPp06fVp08fZWdnO7X75z//qf379zumxx9/vMj9Pv7443r++ef18ssva8OGDapevbpiYmJ08uTJ8jwdAAAAAADKhaerCwAAAK6xYsUKp/nk5GQFBwdr48aN6tq1q2N5tWrVFBoaWqJ9GmP07LPP6sEHH9TAgQMlSW+99ZZCQkK0dOlS3XTTTYVul5OTo5ycHMd8VlZWaU8HAAAAAIBywZ3oAABAkpSZmSlJCgwMdFo+f/581a5dWy1atFBCQoKOHz9uuY+0tDSlp6erd+/ejmUBAQFq37691q1bZ7ldYmKiAgICHFN4ePgFng0AAAAAAGWDO9EBAIDy8vI0ceJEde7cWS1atHAsv/nmm1WvXj2FhYVp8+bNuv/++5WamqrFixcXup/09HRJUkhIiNPykJAQx7rCJCQkaNKkSY75rKwsgnQAAAAAgFsgRAcAAIqPj9fWrVv15ZdfOi0fN26c4/9btmypOnXqqFevXtq5c6caNmxYZse32+2y2+1ltj8AAAAAAMoKw7kAAFDJjR8/XsuXL9fq1atVt27dItu2b99ekrRjx45C1+ePnX7gwAGn5QcOHCjxuOoAAAAAALgTQnQAACopY4zGjx+vJUuW6IsvvlBkZGSx22zatEmSVKdOnULXR0ZGKjQ0VKtWrXIsy8rK0oYNG9SxY8cyqRsAAAAAgIpEiA4AQCUVHx+vefPmacGCBfLz81N6errS09N14sQJSdLOnTs1Y8YMbdy4Ubt27dKyZcs0cuRIde3aVa1atXLsJyoqSkuWLJEk2Ww2TZw4UY888oiWLVumLVu2aOTIkQoLC9OgQYNccZoAAAAAAFwQxkQHAKCSmjNnjiSpe/fuTsuTkpI0atQoeXl56fPPP9ezzz6r7OxshYeHa8iQIXrwwQed2qempiozM9MxP3nyZGVnZ2vcuHE6cuSIrr76aq1YsULe3t7lfk4AAAAAAJQ1QnQAACopY0yR68PDw7VmzZpS78dms2n69OmaPn36BdUHAAAAAIA7YDgXAAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALDgliH6Y489JpvNpokTJ7q6FAAAAAAAAABAJeZ2Ifq3336rV155Ra1atXJ1KQAAAAAAAACASs6tQvRjx45p+PDheu2111SzZk1XlwMAAAAAAAAAqOTcKkSPj49Xv3791Lt37yLb5eTkKCsry2kCAAAAAAAAAKCsebq6gHwLFy7U999/r2+//bbYtomJiZo2bVoFVAUAAAAAAAAAqMzc4k70vXv36u6779b8+fPl7e1dbPuEhARlZmY6pr1791ZAlQAAAAAAAACAysYt7kTfuHGjDh48qLZt2zqW5ebmau3atXrxxReVk5MjDw8Pxzq73S673e6KUgEAAAAAAAAAlYhbhOi9evXSli1bnJaNHj1aUVFRuv/++50CdAAAAAAAAAAAKopbhOh+fn5q0aKF07Lq1aurVq1aBZYDAAAAAAAAAFBR3GJMdAAAAAAAAAAA3JFb3IlemJSUFFeXAAAAAAAAAACo5LgTHQAAAAAAAAAAC257JzoAAABwqQj1taml1z5VtXm4upQKd9prn+Rrc3UZAAAAwHkjRAfcFB+2+bANALh03BbtpalhL7u6DNcIk6ZGe7m6CgAAAOC8EaIDbooP23zYBgBcOl7ZeEpfX363qtYKd3UpFe70ob3asvEJDXB1IQAAAMB5IkQH3BQftvmwDQC4dKQfM9KpMNlNpKtLqXA5p3L/Pn8AAADgIkWIDrgpPmzzYRsAAAAAAACuV8XVBQAAAAAAAAAA4K4I0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQCopBITE3XllVfKz89PwcHBGjRokFJTUx3r//rrL911111q0qSJfHx8FBERoQkTJigzM7PI/Y4aNUo2m81p6tu3b3mfDgAAAAAA5YIQHQCASmrNmjWKj4/X+vXr9dlnn+n06dPq06ePsrOzJUn79u3Tvn379OSTT2rr1q1KTk7WihUrNHbs2GL33bdvX+3fv98xvfPOO+V9OgAAAAAAlAtPVxcAAABcY8WKFU7zycnJCg4O1saNG9W1a1e1aNFCixYtcqxv2LChZs6cqREjRujMmTPy9LR+G2G32xUaGlputQMAAAAAUFG4Ex0AAEiSY5iWwMDAItv4+/sXGaBLUkpKioKDg9WkSRPdcccdOnToUJHtc3JylJWV5TQBAAAAAOAOCNEBAIDy8vI0ceJEde7cWS1atCi0TUZGhmbMmKFx48YVua++ffvqrbfe0qpVqzRr1iytWbNGsbGxys3NtdwmMTFRAQEBjik8PPyCzgcAAAAAgLLCcC4AAEDx8fHaunWrvvzyy0LXZ2VlqV+/fmrWrJmmTp1a5L5uuukmx/+3bNlSrVq1UsOGDZWSkqJevXoVuk1CQoImTZrkdDyCdAAAAACAO+BOdAAAKrnx48dr+fLlWr16terWrVtg/dGjR9W3b1/5+flpyZIlqlq1aqn236BBA9WuXVs7duywbGO32+Xv7+80AQAAAADgDgjRAQCopIwxGj9+vJYsWaIvvvhCkZGRBdpkZWWpT58+8vLy0rJly+Tt7V3q4/z+++86dOiQ6tSpUxZlAwAAAABQoQjRAQCopOLj4zVv3jwtWLBAfn5+Sk9PV3p6uk6cOCHpfwF6dna25s6dq6ysLEebs8c3j4qK0pIlSyRJx44d03333af169dr165dWrVqlQYOHKhGjRopJibGJecJAAAAAMCFYEx0AAAqqTlz5kiSunfv7rQ8KSlJo0aN0vfff68NGzZIkho1auTUJi0tTfXr15ckpaamKjMzU5Lk4eGhzZs3680339SRI0cUFhamPn36aMaMGbLb7eV7QgAAAAAAlANCdAAAKiljTJHru3fvXmybc/fj4+OjlStXXnBtAAAAAAC4C4ZzAQAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAW3CNHnzJmjVq1ayd/fX/7+/urYsaM++eQTV5cFAAAAAAAAAKjk3CJEr1u3rh577DFt3LhR3333nXr27KmBAwfqp59+cnVpAAAAAAAAAIBKzNPVBUhS//79neZnzpypOXPmaP369WrevLmLqgIAAAAAAAAAVHZuEaKfLTc3V++//76ys7PVsWPHQtvk5OQoJyfHMZ+VlVVR5QEAAAAAAAAAKhG3GM5FkrZs2SJfX1/Z7XbdfvvtWrJkiZo1a1Zo28TERAUEBDim8PDwCq4WAAAAAAAAAFAZuE2I3qRJE23atEkbNmzQHXfcobi4OP3888+Ftk1ISFBmZqZj2rt3bwVXCwAAAAAAAACoDNxmOBcvLy81atRIkhQdHa1vv/1Wzz33nF555ZUCbe12u+x2e0WXCAAAAAAAAACoZNzmTvRz5eXlOY17DgAAAAAAAABARXOLO9ETEhIUGxuriIgIHT16VAsWLFBKSopWrlzp6tIAAAAAAAAAAJWYW4ToBw8e1MiRI7V//34FBASoVatWWrlypa655hpXlwYAAAAAAAAAqMTcIkSfO3euq0sAAAAAAAAAAKAAtx0THQAAAAAAAAAAV3OLO9EBAACAS93pQ3tdclxz5pTOZB6QZ0CIbJ5eFX58V503AAAAUFYI0QEAAIByVLt2bXn7VNOh5U+5uhSX8fapptq1a7u6DAAAAOC8EKIDAAAA5SgiIkKp27cpIyPDJcfftm2bRowYoXnz5qlp06YuqaF27dqKiIhwybEBAACAC0WIDgAAAJSziIgIl4fITZs2Vdu2bV1aAwAAAHAx4sGiAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAUEklJibqyiuvlJ+fn4KDgzVo0CClpqY6tTl58qTi4+NVq1Yt+fr6asiQITpw4ECR+zXG6OGHH1adOnXk4+Oj3r1769dffy3PUwEAAAAAoNwQogMAUEmtWbNG8fHxWr9+vT777DOdPn1affr0UXZ2tqPNPffcow8//FDvv/++1qxZo3379um6664rcr+PP/64nn/+eb388svasGGDqlevrpiYGJ08ebK8TwkAAAAAgDLn6eoCAACAa6xYscJpPjk5WcHBwdq4caO6du2qzMxMzZ07VwsWLFDPnj0lSUlJSWratKnWr1+vDh06FNinMUbPPvusHnzwQQ0cOFCS9NZbbykkJERLly7VTTfdVP4nBgAAAABAGeJOdAAAIEnKzMyUJAUGBkqSNm7cqNOnT6t3796ONlFRUYqIiNC6desK3UdaWprS09OdtgkICFD79u0tt5GknJwcZWVlOU0AAAAAALgDQnQAAKC8vDxNnDhRnTt3VosWLSRJ6enp8vLyUo0aNZzahoSEKD09vdD95C8PCQkp8TbS3+OzBwQEOKbw8PALOBsAAAAAAMoOIToAAFB8fLy2bt2qhQsXuuT4CQkJyszMdEx79+51SR0AAAAAAJyLEB0AgEpu/PjxWr58uVavXq26des6loeGhurUqVM6cuSIU/sDBw4oNDS00H3lLz9w4ECJt5Eku90uf39/pwkAAAAAAHdAiA4AQCVljNH48eO1ZMkSffHFF4qMjHRaHx0drapVq2rVqlWOZampqdqzZ486duxY6D4jIyMVGhrqtE1WVpY2bNhguQ0AAAAAAO6MEB0AgEoqPj5e8+bN04IFC+Tn56f09HSlp6frxIkTkv5+IOjYsWM1adIkrV69Whs3btTo0aPVsWNHdejQwbGfqKgoLVmyRJJks9k0ceJEPfLII1q2bJm2bNmikSNHKiwsTIMGDXLFaQIAAAAAcEE8XV0AAABwjTlz5kiSunfv7rQ8KSlJo0aNkiQ988wzqlKlioYMGaKcnBzFxMTopZdecmqfmpqqzMxMx/zkyZOVnZ2tcePG6ciRI7r66qu1YsUKeXt7l+v5AAAAAABQHgjRAQCopIwxxbbx9vbW7NmzNXv27BLvx2azafr06Zo+ffoF1wgAAAAAgKu5xXAuiYmJuvLKK+Xn56fg4GANGjRIqampri4LAAAAAAAAAFDJuUWIvmbNGsXHx2v9+vX67LPPdPr0afXp00fZ2dmuLg0AAAAAAAAAUIm5xXAuK1ascJpPTk5WcHCwNm7cqK5du7qoKgAAAAAAAABAZecWIfq58h9OFhgYWOj6nJwc5eTkOOazsrIqpC4AAAAAAAAAQOXiFsO5nC0vL08TJ05U586d1aJFi0LbJCYmKiAgwDGFh4dXcJUAAAAAAAAAgMrA7UL0+Ph4bd26VQsXLrRsk5CQoMzMTMe0d+/eCqwQAAAAAAAAAFBZuNVwLuPHj9fy5cu1du1a1a1b17Kd3W6X3W6vwMoAAAAAAAAAAJWRW4ToxhjdddddWrJkiVJSUhQZGenqkgAAAAAAAAAAcI8QPT4+XgsWLNB//vMf+fn5KT09XZIUEBAgHx8fF1cHAAAAAAAAAKis3GJM9Dlz5igzM1Pdu3dXnTp1HNO7777r6tIAAAAAAAAAAJWYW9yJboxxdQkAAAAAAAAAABTgFneiAwAAAAAAAADgjgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC56uLgCAtdOH9rrkuObMKZ3JPCDPgBDZPL0q/PiuOm8AAAAAAADgXITogBuqXbu2vH2q6dDyp1xdist4+1RT7dq1XV0GAAAAAAAAKjlCdMANRUREKHX7NmVkZLjk+Nu2bdOIESM0b948NW3a1CU11K5dWxERES45NgAAAAAAAJCPEB1wUxERES4PkZs2baq2bdu6tAYAAAAAAADAlXiwKAAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAIBKbO3aterfv7/CwsJks9m0dOlSp/U2m63Q6YknnrDc59SpUwu0j4qKKuczAQAAAACgfBCiAwBQiWVnZ6t169aaPXt2oev379/vNL3xxhuy2WwaMmRIkftt3ry503ZffvlleZQPAAAAAEC583R1AQAAwHViY2MVGxtruT40NNRp/j//+Y969OihBg0aFLlfT0/PAtsWJScnRzk5OY75rKysEm8LAAAAAEB54k50AABQIgcOHNBHH32ksWPHFtv2119/VVhYmBo0aKDhw4drz549RbZPTExUQECAYwoPDy+rsgEAAAAAuCCE6AAAoETefPNN+fn56brrriuyXfv27ZWcnKwVK1Zozpw5SktLU5cuXXT06FHLbRISEpSZmemY9u7dW9blAwAAAABwXhjOBQAAlMgbb7yh4cOHy9vbu8h2Zw8P06pVK7Vv31716tXTe++9Z3kXu91ul91uL9N6AQAAAAAoC4ToAACgWP/973+Vmpqqd999t9Tb1qhRQ5dffrl27NhRDpUBAAAAAFC+GM4FAAAUa+7cuYqOjlbr1q1Lve2xY8e0c+dO1alTpxwqAwAAAACgfLlFiL527Vr1799fYWFhstlsWrp0qatLAgCgUjh27Jg2bdqkTZs2SZLS0tK0adMmpweBZmVl6f3339ett95a6D569eqlF1980TF/7733as2aNdq1a5e+/vprDR48WB4eHho2bFi5ngsAAAAAAOXBLUL07OxstW7dWrNnz3Z1KQAAVCrfffed2rRpozZt2kiSJk2apDZt2ujhhx92tFm4cKGMMZYh+M6dO5WRkeGY//333zVs2DA1adJEQ4cOVa1atbR+/XoFBQWV78kAAAAAAFAO3GJM9NjYWKeHkBUnJydHOTk5jvmsrKzyKAsAgEte9+7dZYwpss24ceM0btw4y/W7du1yml+4cGFZlAYAAAAAgFtwizvRSysxMVEBAQGOKTw83NUlAQAAAAAAAAAuQRdliJ6QkKDMzEzHtHfvXleXBAAAAAAAAAC4BLnFcC6lZbfbZbfbXV0GAAAAAAAAAOASd1HeiQ4AAAAAAAAAQEUgRAcAAAAAAAAAwIJbDOdy7Ngx7dixwzGflpamTZs2KTAwUBERES6sDAAAAAAAAABQmblFiP7dd9+pR48ejvlJkyZJkuLi4pScnOyiqgAAAAAAAAAAlZ1bhOjdu3eXMcbVZQAAAAAAAAAA4IQx0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AQCW2du1a9e/fX2FhYbLZbFq6dKnT+lGjRslmszlNffv2LXa/s2fPVv369eXt7a327dvrm2++KaczAAAAAACgfBGiAwBQiWVnZ6t169aaPXu2ZZu+fftq//79jumdd94pcp/vvvuuJk2apClTpuj7779X69atFRMTo4MHD5Z1+QAAAAAAlDtPVxcAAABcJzY2VrGxsUW2sdvtCg0NLfE+n376af3zn//U6NGjJUkvv/yyPvroI73xxhv697//fUH1AgAAAABQ0bgTHQAAFCklJUXBwcFq0qSJ7rjjDh06dMiy7alTp7Rx40b17t3bsaxKlSrq3bu31q1bZ7ldTk6OsrKynCYAAAAAANwBIToAALDUt29fvfXWW1q1apVmzZqlNWvWKDY2Vrm5uYW2z8jIUG5urkJCQpyWh4SEKD093fI4iYmJCggIcEzh4eFleh4AAAAAAJwvtwrReQgZAADu5aabbtKAAQPUsmVLDRo0SMuXL9e3336rlJSUMj1OQkKCMjMzHdPevXvLdP8AAAAAAJwvtwnReQgZAADur0GDBqpdu7Z27NhR6PratWvLw8NDBw4ccFp+4MCBIsdVt9vt8vf3d5oAAAAAAHAHbvNg0dI8hCwnJ0c5OTmOecZNBZwdP35c27dvP+/tt23b5vTf8xUVFaVq1apd0D4AuJfff/9dhw4dUp06dQpd7+XlpejoaK1atUqDBg2SJOXl5WnVqlUaP358BVYKXDro1wEAAADXcosQPf8hZAkJCY5lRT2ELDExUdOmTavIEoGLyvbt2xUdHX3B+xkxYsQFbb9x40a1bdv2gusAUH6OHTvmdFd5WlqaNm3apMDAQAUGBmratGkaMmSIQkNDtXPnTk2ePFmNGjVSTEyMY5tevXpp8ODBjpB80qRJiouLU7t27XTVVVfp2WefVXZ2tuMfygGUDv06AAAA4FpuEaIX9RCywu66SUhI0KRJkxzzWVlZPIAMOEtUVJQ2btx43tufOHFCu3btUv369eXj43NBdQBwb99995169OjhmM/vX+Pi4jRnzhxt3rxZb775po4cOaKwsDD16dNHM2bMkN1ud2yzc+dOZWRkOOZvvPFG/fnnn3r44YeVnp6uK664QitWrCjQzwMoGfp1AAAAwLXcIkQvLbvd7vThHYCzatWqXfCdYp07dy6jagC4s+7du8sYY7l+5cqVxe5j165dBZaNHz+e4VuAMkK/DgAAALiWWzxY9HwfQgYAAAAAAAAAQHlyixD97IeQ5ct/CFnHjh1dWBkAAAAAAAAAoDJzm+FceAgZAAAAAAAAAMDduE2IzkPIAAAAAAAAAADuxm1CdImHkAEAAAAAAAAA3ItbjIkOAAAAAAAAAIA7IkQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAgqerCygLxhhJUlZWlosrAQDAWX7flN9XoWTo2wEA7oq+HQCAyueSCNGPHj0qSQoPD3dxJQAAFO7o0aMKCAhwdRkXDfp2AIC7o28HAKDysJlL4J/P8/LytG/fPvn5+clms7m6HOCil5WVpfDwcO3du1f+/v6uLge4qBljdPToUYWFhalKFUZRKyn6dqDs0K8DZYu+HQCAyueSCNEBlK2srCwFBAQoMzOTD9sAAFzk6NcBAACAC8M/mwMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAqw2+2aMmWK7Ha7q0sBAAAXiH4dAAAAuDCMiQ4AAAAAAAAAgAXuRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQADmvXrlX//v0VFhYmm82mpUuXurokAABwnujXAQAAgLJBiA7AITs7W61bt9bs2bNdXQoAALhA9OsAAABA2fB0dQEA3EdsbKxiY2NdXQYAACgD9OsAAABA2eBOdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwIKnqwsA4D6OHTumHTt2OObT0tK0adMmBQYGKiIiwoWVAQCA0qJfBwAAAMqGzRhjXF0EAPeQkpKiHj16FFgeFxen5OTkii8IAACcN/p1AAAAoGwQogMAAAAAAAAAYIEx0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBN5GSkiKbzaYjR45U6HF37dolm82mTZs2ubQOAAAqwrn9XnkYNWqUBg0aVG77vxSU5/uNivgZAwAAoHIhRAfcRKdOnbR//34FBARcNHUQuAMAUDZsNpuWLl3q6jIqzLnvN5KTk1WjRg3XFgUAAABY8HR1AQD+5uXlpdDQUFeX4TZ1AACASxfvNwAAAHAx4U50oJx0795dd911lyZOnKiaNWsqJCREr732mrKzszV69Gj5+fmpUaNG+uSTTyQVvKt79+7d6t+/v2rWrKnq1aurefPm+vjjjyVJhw8f1vDhwxUUFCQfHx81btxYSUlJJarrm2++UZs2beTt7a127drphx9+cFpf0jp27dqlHj16SJJq1qwpm82mUaNGSZJWrFihq6++WjVq1FCtWrV07bXXaufOnY5j5H/NevHixerRo4eqVaum1q1ba926dU61fPXVV+revbuqVaummjVrKiYmRocPH5Yk5eXlKTExUZGRkfLx8VHr1q31wQcflPwHBAC4ZBXXD0nS9u3b1alTJ3l7e6tFixZas2aNY11x/eyWLVvUs2dP+fj4qFatWho3bpyOHTtmWU/9+vX17LPPOi274oorNHXqVMd6SRo8eLBsNptjXpL+85//qG3btvL29laDBg00bdo0nTlzpkTXwWaz6ZVXXtG1116ratWqqWnTplq3bp127Nih7t276/+1d+9BUVb/H8Dfy8W4rAgDDJntgIXIQkAw0gQUzkChqDvGTNmAAVFhGFqimxOJF6IQummDRaINgl2YaZTRIMNAmBBJuS2ssBIQZeVqIpYtRgGe7x+Nz48VFhd/8vv11fdrZmd4zjl7nvOcfz6Hz5znrL29PUJDQ43mpqenB0uXLoWbmxvkcjmCg4NRWVlp1K9er8fixYtha2uL2bNn49NPPx3zjDKZDLt370ZMTAzs7OwwZ84cHDx4UKofvd6oqalBUlISfv/9d8hkMshkMmluxtuh7+joiD179kjX11vbAMDJkycRHR0NuVwONzc3xMfHo6+vz6x5JCIiIiJiEp1oChUVFcHFxQUnTpzA6tWrsXLlSjzxxBMIDQ1Fc3MzoqKiEB8fj8uXL4/5bmpqKv766y9888030Gq1yM3NhVwuBwBs3LgRHR0dOHToEHQ6HfLz8+Hi4nLd8RgMBixZsgQ+Pj5oamrCli1boFarJ/yOqXEoFArs27cPANDZ2Qm9Xo/33nsPADAwMIC1a9eisbERVVVVsLCwQExMDK5cuWLU94YNG6BWq6HRaODl5YXY2FgpMaDRaBAZGQkfHx/U19fj6NGjUKlUGBkZAQBs3boVxcXF+PDDD9He3o60tDQ89dRTRkkQIiK6PZkTh15++WWsW7cOLS0tCAkJgUqlwoULFwBMHGcHBgawYMECODk5oaGhAZ9//jkqKyuxatWqGx5vQ0MDAKCwsBB6vV66rq2tRUJCAl566SV0dHRg586d2LNnD9544w2z+87KykJCQgI0Gg28vb0RFxeH559/Hunp6WhsbIQQwmjsBoMBixYtQlVVFVpaWrBw4UKoVCqcPn1aapOQkIAzZ86gpqYG+/btQ0FBAX799dcx987MzMSyZcvQ1taGRYsWYfny5ejv7x/TLjQ0FNu3b4eDgwP0ej30ev111yejx3u9tc1vv/2GiIgIBAYGorGxEV999RXOnTuHZcuWmTuNRERERHS7E0Q0JebPny8eeugh6Xp4eFjY29uL+Ph4qUyv1wsAor6+XlRXVwsA4uLFi0IIIfz8/MSWLVvG7VulUomkpKRJj2nnzp3C2dlZ/Pnnn1JZfn6+ACBaWlqEEGJS47i2rSnnz58XAIRWqxVCCNHb2ysAiN27d0tt2tvbBQCh0+mEEELExsaKsLCwcfsbHBwUdnZ24tixY0blzz77rIiNjZ1wLEREdPsZHYeuxqCcnBypfmhoSNx9990iNzdXCDFxnC0oKBBOTk7CYDBIZeXl5cLCwkKcPXtWCCFEYmKiWLp0qVTv7u4utm3bZtRPQECA2Lx5s3QNQJSWlhq1iYyMFNnZ2UZle/fuFTNnzjTruQGIjIwM6bq+vl4AEB999JFU9tlnnwkbG5sJ+/H19RV5eXlCCCF0Op0AIBoaGqT6rq4uAcDoGa+9t8FgEADEoUOHhBBj1xCFhYVixowZ4z7DtfMyY8YMUVhYKIQwb22TlZUloqKijPr46aefBADR2dk54bMTEREREQkhBHeiE00hf39/6W9LS0s4OzvDz89PKnNzcwOAcXdvvfjii3j99dcRFhaGzZs3o62tTapbuXIlSkpKcP/992P9+vU4duyYWePR6XTw9/eHjY2NVBYSEjLhdyYahyldXV2IjY3FPffcAwcHB+m19NG72ADj+Zk5cyaA/5mLqzvRx9Pd3Y3Lly/j0UcfhVwulz7FxcVjXtcnIqLbjzlxaHT8s7Kywrx586DT6QBMHGd1Oh0CAgJgb28vlYWFheHKlSvo7Oy8qc/R2tqK1157zSjWJScnQ6/Xj/sW23hGx9qr645r1yKDg4O4dOkSgH92dqvVaiiVSjg6OkIul0On00lz19nZCSsrKwQFBUl9eHp6wsnJacJ729vbw8HBYdw1z/+GOWub1tZWVFdXG82jt7c3AHDdQERERERmYRKdaApZW1sbXctkMqMymUwGAGOOOQGA5557Dt9//z3i4+Oh1Woxb9485OXlAQCio6Px448/Ii0tDWfOnEFkZKTZrz1P1kTjMEWlUqG/vx+7du3C8ePHcfz4cQDA33//bdRuormwtbU12f/Vc2fLy8uh0WikT0dHB89FJyIis+OQKTc7zlpYWEAIYVQ2NDR03e8ZDAZkZmYaxTqtVouuri6jpPFExou1E8VftVqN0tJSZGdno7a2FhqNBn5+fmbPnal7X73XeGueichkshuau9EMBgNUKpXRPGo0GnR1dSE8PHxSfRERERHR7YlJdKJ/MYVCgZSUFOzfvx/r1q3Drl27pDpXV1ckJibi448/xvbt21FQUHDd/pRKJdra2jA4OCiVffvttzc8jmnTpgGAdE45AFy4cAGdnZ3IyMhAZGQklEql9GOgk+Hv74+qqqpx63x8fHDHHXfg9OnT8PT0NPooFIpJ34uIiG4d5sah0fFveHgYTU1NUCqVUpmpOKtUKtHa2oqBgQGpbV1dHSwsLDB37txxx+Tq6gq9Xi9dX7p0Cb29vUZtrK2tjeIpAAQFBaGzs3NMrPP09ISFxdQs4+vq6vD0008jJiYGfn5+uPPOO/HDDz9I9XPnzsXw8LDRj3d2d3ffUKwfbdq0aWOeHxg7d11dXUa78M1Z2wQFBaG9vR0eHh5j5nH0GwVERERERKYwiU70L7VmzRpUVFSgt7cXzc3NqK6ulv6537RpEw4cOIDu7m60t7ejrKzM6B9/U+Li4iCTyZCcnIyOjg58+eWXePvtt294HO7u7pDJZCgrK8P58+dhMBjg5OQEZ2dnFBQUoLu7G0eOHMHatWsn/fzp6eloaGjACy+8gLa2Npw6dQr5+fno6+vD9OnToVarkZaWhqKiIvT09KC5uRl5eXkoKiqa9L2IiOjWYW4cev/991FaWopTp04hNTUVFy9exDPPPANg4ji7fPly2NjYIDExESdPnkR1dTVWr16N+Ph46biUa0VERGDv3r2ora2FVqtFYmIiLC0tjdp4eHigqqoKZ8+elRLSmzZtQnFxMTIzM9He3g6dToeSkhJkZGTczCkzMmfOHOzfvx8ajQatra2Ii4sz2j3u7e2NRx55BCtWrMCJEyfQ0tKCFStWwNbWVtrVfiM8PDxgMBhQVVWFvr4+KVEeERGBHTt2oKWlBY2NjUhJSTHa4W7O2iY1NRX9/f2IjY1FQ0MDenp6UFFRgaSkpHET90RERERE12ISnehfamRkBKmpqVAqlVi4cCG8vLzwwQcfAPhnt1Z6ejr8/f0RHh4OS0tLlJSUXLdPuVyOL774AlqtFoGBgdiwYQNyc3NveByzZs1CZmYmXnnlFbi5uWHVqlWwsLBASUkJmpqacN999yEtLQ1vvfXWpJ/fy8sLhw8fRmtrKx544AGEhITgwIEDsLKyAgBkZWVh48aN2Lp1qzS28vJyzJ49e9L3IiKiW4e5cSgnJwc5OTkICAjA0aNHcfDgQbi4uACYOM7a2dmhoqIC/f39CA4OxuOPP47IyEjs2LHD5JjS09Mxf/58LFmyBIsXL8Zjjz2Ge++916jNO++8g6+//hoKhQKBgYEAgAULFqCsrAyHDx9GcHAwHnzwQWzbtg3u7u43a7rGePfdd+Hk5ITQ0FCoVCosWLDA6PxzACguLoabmxvCw8MRExOD5ORkTJ8+3ewjZsYTGhqKlJQUPPnkk3B1dcWbb74J4J95USgUePjhhxEXFwe1Wg07Ozvpe+asbe666y7U1dVhZGQEUVFR8PPzw5o1a+Do6DhlO/qJiIiI6NYiE9ceMkhERERERGSmn3/+GQqFApWVlSZ/FJyIiIiI6L8Zk+hERERERGS2I0eOwGAwwM/PD3q9HuvXr8cvv/yC7777bsyPiRIRERER3Qr4/iLRLSQ7OxtyuXzcT3R09P/38IiIiOgm+eSTT0zGfF9f3ym999DQEF599VX4+voiJiYGrq6uqKmpYQKdiIiIiG5Z3IlOdAvp7+9Hf3//uHW2traYNWvW//GIiIiIaCr88ccfOHfu3Lh11tbWU3puOhERERHR7YZJdCIiIiIiIiIiIiIiE3icCxERERERERERERGRCUyiExERERERERERERGZwCQ6EREREREREREREZEJTKITEREREREREREREZnAJDoRERERERERERERkQlMohMRERERERERERERmcAkOhERERERERERERGRCf8B5Lpz/xu/ePEAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Устранить выборсы в DataFrame\n",
|
||
"def remove_outliers(dataframe: DataFrame, columns: list[str]) -> DataFrame:\n",
|
||
" for column in columns:\n",
|
||
" if not pd.api.types.is_numeric_dtype(dataframe[column]): # Проверяем, является ли колонка числовой\n",
|
||
" continue\n",
|
||
" \n",
|
||
" Q1: float = dataframe[column].quantile(0.25) # 1-й квартиль (25%)\n",
|
||
" Q3: float = dataframe[column].quantile(0.75) # 3-й квартиль (75%)\n",
|
||
" IQR: float = Q3 - Q1 # Вычисляем межквартильный размах\n",
|
||
"\n",
|
||
" # Определяем границы для выбросов\n",
|
||
" lower_bound: float = Q1 - 1.5 * IQR # Нижняя граница\n",
|
||
" upper_bound: float = Q3 + 1.5 * IQR # Верхняя граница\n",
|
||
"\n",
|
||
" # Устраняем выбросы:\n",
|
||
" # Заменяем значения ниже нижней границы на нижнюю границу\n",
|
||
" # А значения выше верхней границы – на верхнюю\n",
|
||
" dataframe[column] = dataframe[column].apply(lambda x: lower_bound if x < lower_bound else upper_bound if x > upper_bound else x)\n",
|
||
" \n",
|
||
" return dataframe\n",
|
||
"\n",
|
||
"\n",
|
||
"# Устраняем выборсы\n",
|
||
"df: DataFrame = remove_outliers(df, numeric_columns)\n",
|
||
"\n",
|
||
"# Проверка выбросов\n",
|
||
"check_outliers(df, numeric_columns)\n",
|
||
"visualize_outliers(df, numeric_columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Разбиение набора данных на выборки:\n",
|
||
"\n",
|
||
"**Групповое разбиение данных** – это метод разделения данных на несколько групп или подмножеств на основе определенного признака или характеристики. При этом наблюдения для одного объекта должны попасть только в одну выборку.\n",
|
||
"\n",
|
||
"**Основные виды выборки данных**:\n",
|
||
"1. Обучающая выборка (60-80%). Обучение модели (подбор коэффициентов некоторой математической функции для аппроксимации).\n",
|
||
"2. Контрольная выборка (10-20%). Выбор метода обучения, настройка гиперпараметров.\n",
|
||
"3. Тестовая выборка (10-20% или 20-30%). Оценка качества модели перед передачей заказчику.\n",
|
||
"\n",
|
||
"Разделим выборку данных на 3 группы и проанализируем качество распределения данных.\n",
|
||
"\n",
|
||
"Весь набор данных состоит из 90836 объектов, из которых 81996 (около 90.3%) неопасны (False), а 8840 (около 9.7%) опасны (True). Это говорит о том, что класс \"неопасные\" значительно преобладает.\n",
|
||
"\n",
|
||
"Все выборки показывают одинаковое распределение классов, что свидетельствует о том, что данные были отобраны случайным образом и не содержат явного смещения.\n",
|
||
"\n",
|
||
"Однако, несмотря на сбалансированность при разбиении данных, в целом данные обладают значительным дисбалансом между классами. Это может быть проблемой при обучении модели, так как она может иметь тенденцию игнорировать опасные объекты (True), что следует учитывать при дальнейшем анализе и выборе методов обработки данных.\n",
|
||
"\n",
|
||
"Для получения более сбалансированных выборок данных необходимо воспользоваться методами приращения (аугментации) данных, а именно методами oversampling и undersampling."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Функция для создания выборок\n",
|
||
"def split_stratified_into_train_val_test(\n",
|
||
" df_input,\n",
|
||
" stratify_colname=\"y\",\n",
|
||
" frac_train=0.6,\n",
|
||
" frac_val=0.15,\n",
|
||
" frac_test=0.25,\n",
|
||
" random_state=None,\n",
|
||
") -> tuple[Any, Any, Any]:\n",
|
||
" \"\"\"\n",
|
||
" Splits a Pandas dataframe into three subsets (train, val, and test)\n",
|
||
" following fractional ratios provided by the user, where each subset is\n",
|
||
" stratified by the values in a specific column (that is, each subset has\n",
|
||
" the same relative frequency of the values in the column). It performs this\n",
|
||
" splitting by running train_test_split() twice.\n",
|
||
"\n",
|
||
" Parameters\n",
|
||
" ----------\n",
|
||
" df_input : Pandas dataframe\n",
|
||
" Input dataframe to be split.\n",
|
||
" stratify_colname : str\n",
|
||
" The name of the column that will be used for stratification. Usually\n",
|
||
" this column would be for the label.\n",
|
||
" frac_train : float\n",
|
||
" frac_val : float\n",
|
||
" frac_test : float\n",
|
||
" The ratios with which the dataframe will be split into train, val, and\n",
|
||
" test data. The values should be expressed as float fractions and should\n",
|
||
" sum to 1.0.\n",
|
||
" random_state : int, None, or RandomStateInstance\n",
|
||
" Value to be passed to train_test_split().\n",
|
||
"\n",
|
||
" Returns\n",
|
||
" -------\n",
|
||
" df_train, df_val, df_test :\n",
|
||
" Dataframes containing the three splits.\n",
|
||
" \"\"\"\n",
|
||
"\n",
|
||
" if frac_train + frac_val + frac_test != 1.0:\n",
|
||
" raise ValueError(\n",
|
||
" \"fractions %f, %f, %f do not add up to 1.0\"\n",
|
||
" % (frac_train, frac_val, frac_test)\n",
|
||
" )\n",
|
||
"\n",
|
||
" if stratify_colname not in df_input.columns:\n",
|
||
" raise ValueError(\"%s is not a column in the dataframe\" % (stratify_colname))\n",
|
||
"\n",
|
||
" X: DataFrame = df_input # Contains all columns.\n",
|
||
" y: DataFrame = df_input[\n",
|
||
" [stratify_colname]\n",
|
||
" ] # Dataframe of just the column on which to stratify.\n",
|
||
"\n",
|
||
" # Split original dataframe into train and temp dataframes.\n",
|
||
" df_train, df_temp, y_train, y_temp = train_test_split(\n",
|
||
" X, y, \n",
|
||
" stratify=y, \n",
|
||
" test_size=(1.0 - frac_train), \n",
|
||
" random_state=random_state\n",
|
||
" )\n",
|
||
"\n",
|
||
" # Split the temp dataframe into val and test dataframes.\n",
|
||
" relative_frac_test: float = frac_test / (frac_val + frac_test)\n",
|
||
" df_val, df_test, y_val, y_test = train_test_split(\n",
|
||
" df_temp,\n",
|
||
" y_temp,\n",
|
||
" stratify=y_temp,\n",
|
||
" test_size=relative_frac_test,\n",
|
||
" random_state=random_state,\n",
|
||
" )\n",
|
||
"\n",
|
||
" assert len(df_input) == len(df_train) + len(df_val) + len(df_test)\n",
|
||
"\n",
|
||
" return df_train, df_val, df_test"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"hazardous\n",
|
||
"False 81996\n",
|
||
"True 8840\n",
|
||
"Name: count, dtype: int64 \n",
|
||
"\n",
|
||
"Обучающая выборка: (54501, 10)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 49197\n",
|
||
"True 5304\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 90.27%\n",
|
||
"Процент объектов класса \"True\": 9.73%\n",
|
||
"\n",
|
||
"Контрольная выборка: (18167, 10)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 16399\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 90.27%\n",
|
||
"Процент объектов класса \"True\": 9.73%\n",
|
||
"\n",
|
||
"Тестовая выборка: (18168, 10)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 16400\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 90.27%\n",
|
||
"Процент объектов класса \"True\": 9.73%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных требуется\n",
|
||
"Для контрольной выборки аугментация данных требуется\n",
|
||
"Для тестовой выборки аугментация данных требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABgcAAAH/CAYAAABzUQ1QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACenklEQVR4nOzdd3xT9f7H8Xe6S8sqZRZk7yGKgIAIKg7An1vEcRkuFATFdR1XARduRdxeBRSuA72CEwUVAQUBBWTILnu27O425/dHb2NDd5v0e5Lzej4ePJSQJp9mnFfa78mJy7IsSwAAAAAAAAAAwDFCTA8AAAAAAAAAAAAqF4sDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDAAAAAAAAAAA4DIsDABAAjhw5os2bNys7O9v0KPAhy7J06NAhbdq0yfQoAACggjIzM7Vv3z7t2bPH9CgAAMCHUlJStHPnTh0+fNj0KD7H4gAQAJo0aaKLL77Y9Bg+07dvX/Xt29f0GLaWlZWlZ599VqeeeqoiIyNVs2ZNtWzZUj/88IPp0QLCmjVrNGvWLM/fV65cqa+//trcQPkcP35c//rXv9S6dWtFRESoVq1aatWqlTZs2GB6NADlQKMB/5s+fbq2bdvm+fvUqVO1e/ducwPls3z5cl133XWKj49XZGSk6tevryuvvNL0WIDj0GMgMD311FNyu92SJLfbrYkTJxqe6G8zZ87Ueeedp6pVqyo2NlannHKKnn32WdNj+VyZFgemTp0ql8vl+RMVFaVWrVrpjjvu0P79+/01IxD0xo8fryZNmkj6+3kG/+vbt6+GDRsmSRo2bJhtXnxlZGSoX79+euSRR9S3b1/NnDlTc+fO1Y8//qgePXqYHi8gHD9+XCNGjNCSJUu0adMm3XnnnVq9erXpsZScnKwePXrolVde0VVXXaXZs2dr7ty5mj9/vmcbUF40GvAPGm2GXRsNMxYuXKj7779f27Zt03fffadRo0YpJMT8fm6zZ8/WWWedpXXr1unJJ5/U3Llzde+992rJkiX0GPAxemwGPYa/TZs2Tc8//7x27dqlF154QdOmTTM9kiTpgQce0KBBg1S1alW98847mjt3rubNm6eRI0eaHs3nwsrzRY899piaNm2q9PR0LVq0SG+88Ya++eYbrVmzRlWqVPH1jADgKM8884x+++03fffdd7z4KqcePXp4/khSq1atdMsttxieSrrvvvu0d+9eLV68WO3bt/fLddBoAECwGTt2rPr27aumTZtKku6++27Vr1/f6EyHDh3SzTffrAsvvFAzZ85URESEJGnXrl2S6DEAAKXx2GOPaciQIfrnP/+pyMhITZ8+3fRI+vnnn/XMM89o4sSJeuCBB0yP43flWhzo37+/zjjjDEnSzTffrFq1aunFF1/U7Nmzde211/p0QACBJyUlRTExMabHCEjZ2dl6+eWXdc8997AwUEGzZs3SunXrlJaWpo4dO3p+aDflwIEDmjZtmt58802/LQxINBpA8Wg0AlGbNm20ZcsWrVmzRvHx8WrevLnpkTRlyhSlp6dr6tSphb7GoMcAikOPgVzXXHONzjnnHG3evFktW7ZU7dq1TY+k559/Xj179nTEwoDko88cOPfccyVJiYmJknL3orj33nvVsWNHxcbGqlq1aurfv79WrVpV4GvT09M1fvx4tWrVSlFRUapfv76uuOIKbdmyRZK0bds2r8MknPwn/y/P5s+fL5fLpY8//lgPPfSQ6tWrp5iYGF1yySXauXNngev+7bffdNFFF6l69eqqUqWK+vTpo19++aXQ77Fv376FXv/48eMLnHf69Onq0qWLoqOjFRcXp8GDBxd6/cV9b/m53W69/PLLat++vaKiolS3bl2NGDGiwIdgFHWMvTvuuKPAZRY2+3PPPVfgNpVyD3Eybtw4tWjRQpGRkWrUqJHuv/9+ZWRkFHpb5VfYcfKefPJJhYSE6D//+U+5bo+8J2mtWrUUHR2tLl266NNPPy30+qdPn65u3bqpSpUqqlmzps4++2x9//33Xuf59ttv1adPH1WtWlXVqlVT165dC8w2c+ZMz30aHx+vG264ocBxTocNG+Y1c82aNdW3b18tXLiwxNuptBYtWqRu3bopKipKzZo10/vvv+/176V97jVp0qTI23r+/PmSpO3bt2vkyJFq3bq1oqOjVatWLV199dVex3uV/n5L588//6yRI0eqTp06atiwoeff3377bTVv3lzR0dHq1q1bkbfHgQMHdNNNN6lu3bqKiorSqaeeWuDtZHnP8bwZ8+Q9dqZOneo5bd++fRo+fLgaNmzoOf7rpZdeWmD+ssp/24WEhKhevXq65pprtGPHjlJ9/euvv6727dsrMjJSDRo00KhRo3TkyBHPv2/YsEGHDx9W1apV1adPH1WpUkXVq1fXxRdfrDVr1njO99NPP8nlcunzzz8vcB3/+c9/5HK5tHjxYs/MeW8FzVPYbblw4UJdffXVOuWUUzzP9bFjxyotLc3ra8ePH1/geTljxgx17txZUVFRqlWrlq699toCt8mwYcMUGxvrddqnn35a6H0aGxtbYGapdNvX/Nuddu3aqUuXLlq1alWh25PCnLy9j4+P18CBA71ufyl3O3rHHXcUeTl5z428x9yyZcvkdruVmZmpM844o9jbSpJ+/PFH9e7dWzExMapRo4YuvfRS/fXXX17nybsv1q9fr9dff12SdN555+nOO+9Uenq6pL8bfd1112n8+PGe7USHDh0UFhYml8ul3r17e20n8m7nqKgoRUdHq2rVqjSaRtPoEtDowG50Ya289dZbFRUVVeB7KqnlUu7zq0OHDgWu5/nnn/dqQ3H3t8vl8hxCI+92fP755/XSSy+pcePGio6OVp8+fQr0SSpdQwq73Qp7vOWdp6Rjeeef8WQdOnQosL0pzeMq/+MnJiZG3bt3V/PmzTVq1Ci5XK5CXysU9vV5f8LDw9WkSRPdd999yszM9Jwv77myfPnyIi/r5G3mkiVL1LlzZz311FNq1KiRIiMj1bJly0I/4yg7O9tzSKF//OMfatKkicaOHauxY8d6bROio6M928K811Xt2rXTRx995PUzc40aNTzP7cK+z5P/NGzY0DNjQkKCXC6XPvzwQ3qcDz2mx/TYfI/91cT169frqquuUlxcnKKionTGGWfoiy++8DpPUR1ISkoqsC0o7OfhEydOqF69egVu+7zXA7///rt69uyp6OhoNW3aVG+++WaBOcvSxZK6Jklbt27V1Vdfrbi4OFWpUkVnnnlmgUYV9r1IBV8XleX2kaQVK1aof//+qlatmmJjY3XeeedpyZIlXufJ//NynTp1PNusTp06FXisFubkw+pWqVJFHTt21L///W+v8xX2e4iTnfw9LFmyRB06dNDgwYMVFxen6Ohode3a1etzDfOU5X4rzWN22LBhBQ45PH36dIWEhOjpp5/2Or00j+3SKNc7B06W90uCWrVqScp9AM6aNUtXX321mjZtqv379+utt95Snz59tG7dOjVo0ECSlJOTo4svvlg//PCDBg8erDvvvFPHjx/X3LlztWbNGq89Qq699loNGDDA63offPDBQud58skn5XK59M9//lMHDhzQyy+/rH79+mnlypWKjo6WlPuCuX///urSpYvGjRunkJAQTZkyReeee64WLlyobt26Fbjchg0bej4Y48SJE7r99tsLve5HHnlEgwYN0s0336yDBw9q8uTJOvvss7VixQrVqFGjwNfceuut6t27tyTpv//9b4Ff9o0YMUJTp07V8OHDNWbMGCUmJurVV1/VihUr9Msvvyg8PLzQ26Esjhw5UuiHfrjdbl1yySVatGiRbr31VrVt21arV6/WSy+9pI0bNxb6xCjOlClT9K9//UsvvPCCrrvuukLPU9LtMWnSJF1yySW6/vrrlZmZqY8++khXX321vvrqKw0cONBzvgkTJmj8+PHq2bOnHnvsMUVEROi3337Tjz/+qAsuuEBS7sbkxhtvVPv27fXggw+qRo0aWrFihebMmeOZL++279q1qyZOnKj9+/dr0qRJ+uWXXwrcp/Hx8XrppZck5b6leNKkSRowYIB27txZ6H1fFps3b9ZVV12lm266SUOHDtV7772nYcOGqUuXLp69kEv73Hv55Zd14sQJr8t/6aWXtHLlSs/zeNmyZfr11181ePBgNWzYUNu2bdMbb7yhvn37at26dQXeDj1y5EjVrl1bjz76qFJSUiRJ7777rkaMGKGePXvqrrvu0tatW3XJJZcoLi5OjRo18nxtWlqa+vbtq82bN+uOO+5Q06ZNNXPmTA0bNkxHjhzRnXfeWebb68orr9TatWs1evRoNWnSRAcOHNDcuXO1Y8eOCh/bvXfv3rr11lvldru1Zs0avfzyy9qzZ0+JL2rHjx+vCRMmqF+/frr99tu1YcMGvfHGG1q2bJnnuZycnCwpd/vWsmVLTZgwQenp6XrttdfUq1cvLVu2TK1atVLfvn3VqFEjzZgxQ5dffrnX9cyYMUPNmzcv8+cTzJw5U6mpqbr99ttVq1YtLV26VJMnT9auXbs0c+bMIr/uP//5j2644QadeuqpmjhxopKTk/XKK69o0aJFWrFiheLj48s0R1HKs33N889//rNM19WmTRs9/PDDsixLW7Zs0YsvvqgBAwaUehGoMHn37R133KEuXbro6aef1sGDBwu9rebNm6f+/furWbNmGj9+vNLS0jR58mT16tVLf/zxR4HH8KBBgxQaGipJ6tWrl1555RUdPnxY77//vqfRefK2E9HR0QoJCdHw4cM9P/CtW7dOU6ZM0SOPPKKrrrpKKSkp2rBhgyIiIhQbG6tbb71VixYtotH50GgaLdHosrJjo082btw4vfvuu/r444+9fmlXmpaXRf77+6+//tJTTz2lhx56SG3btpWkAj/Mvv/++zp+/LhGjRql9PR0TZo0Seeee65Wr16tunXrSip7Q6S/b7f8c/hTRR5Xmzdv1jvvvFOm68vbdmVkZOi7777T888/r6ioKD3++OPl/h6Sk5O1aNEiLVq0SDfeeKO6dOmiH374odBfwN58882aMWOGJOnqq69WRESEXn75ZcXExGj06NGebcKECRP0yy+/6Oqrr9bIkSM925O8dxrk/cw8f/58ffrpp9qwYYP69OmjPXv2SMr9efyZZ55RZGSkpNxfWN9+++3av3+/7r//fp1yyin673//qz179mj06NFKSEigx2VAj+kxPS698vTYH01cu3atevXqpYSEBD3wwAOKiYnRJ598ossuu0yfffZZgZ+ly+uFF14o8nNlDh8+rAEDBmjQoEG69tpr9cknn+j2229XRESEbrzxRkllv39L6tr+/fvVs2dPpaamasyYMapVq5amTZumSy65RJ9++qnPvu/CrF27Vr1791a1atV0//33Kzw8XG+99Zb69u2rn3/+Wd27dy/yaz/44IMyf1bgSy+9pPj4eB07dkzvvfeebrnlFjVp0kT9+vUr9/eQnJyst99+W7GxsRozZoxq166t6dOn64orrtCMGTM8XS7r/Vaax+zJvv/+e91444264447vN7J4NPHtlUGU6ZMsSRZ8+bNsw4ePGjt3LnT+uijj6xatWpZ0dHR1q5duyzLsqz09HQrJyfH62sTExOtyMhI67HHHvOc9t5771mSrBdffLHAdbndbs/XSbKee+65Audp37691adPH8/ff/rpJ0uSlZCQYB07dsxz+ieffGJJsiZNmuS57JYtW1oXXnih53osy7JSU1Otpk2bWueff36B6+rZs6fVoUMHz98PHjxoSbLGjRvnOW3btm1WaGio9eSTT3p97erVq62wsLACp2/atMmSZE2bNs1z2rhx46z8d8vChQstSdaMGTO8vnbOnDkFTm/cuLE1cODAArOPGjXKOvmuPnn2+++/36pTp47VpUsXr9v0gw8+sEJCQqyFCxd6ff2bb75pSbJ++eWXAteXX58+fTyX9/XXX1thYWHWPffcU+h5S3N7WFbu/ZRfZmam1aFDB+vcc8/1uqyQkBDr8ssvL/BYzLvPjxw5YlWtWtXq3r27lZaWVuh5MjMzrTp16lgdOnTwOs9XX31lSbIeffRRz2lDhw61Gjdu7HU5b7/9tiXJWrp0aaHfc2k1btzYkmQtWLDAc9qBAwesyMhIr9uztM+9k+U9R/Kf5+Tb2bIsa/HixZYk6/333/eclrddOOuss6zs7GzP6Xm3XefOna2MjAzP6Xm3Sf7H2csvv2xJsqZPn+719T169LBiY2M9z+e85/hPP/1U4HuUZE2ZMsWyLMs6fPhwkduNimrcuLE1dOhQr9Ouu+46q0qVKsV+3YEDB6yIiAjrggsu8LqPXn31VUuS9d5771mW9ff3GB8fbyUlJXnOt3HjRis8PNy68sorPac9+OCDVmRkpHXkyBGv6wkLC/N6fjdt2tQaMmSI1zyF3ZaF3ecTJ060XC6XtX37ds9p+Z+X2dnZVt26da3mzZtbJ06c8Jxn/vz5liSvx+fQoUOtmJgYr8ufOXNmofdpTEyM1+1clu1r/u2OZVnWN998Y0myLrroogLbk8Kc/PWWZVkPPfSQJck6cOCA5zRJ1qhRo4q8nLznRmJiotff27Vr53Vb590X+W+rzp07W3Xq1LGSk5M9p61atcoKCQnxui/z7otLLrnEq9HDhw+3JFnPPPOMp9F52/309HTrgQcesEJDQ61Zs2ZZlvX3duLuu+/23M75G33y7Uyjc9FoGm1ZNDoYGn3y17711luWJGvy5Mle5yltyy0r9/nVvn37Atfz3HPPebUhv6JuQ8v6+3bM/zOXZVnWb7/9Zkmyxo4d6zmttA3Jk5CQYA0fPrzYOYrahhU2Y2maUNrH1cmPH8uyrEGDBlkdOnSwGjVqVOD+Lmqm/F9vWZbVoEEDa8CAAZ6/5z1Xli1bVuRlnfz6oE+fPpYka/z48V7n69WrlyXJeuedd6yDBw9a3333nSXJioyM9Lr/7rrrLkuS9eOPP3q+NiEhwZJkDR482HPaa6+95unnyfNu3brVOnTokNWiRYtCZ3n88cctl8tldevWzXNa3v0ryVq3bp3ndHpMj/OjxwXR49KrSI/z+KqJ5513ntWxY0crPT3dc5rb7bZ69uxptWzZ0nNaUR0obDt28nPuwIEDVtWqVa3+/fsXmDmvFS+88ILntIyMDE+rMzMzLcuqWBctq2DX8hqTf7t0/Phxq2nTplaTJk08z4EJEyZYkry285ZV8D4sy+1z2WWXWREREdaWLVs8p+3Zs8eqWrWqdfbZZxe4zLzXROnp6dYpp5ziuR1P/h5PdvLXW1bu700kWc8++6zntMJ+D3Gyk7+HvE7Onz/fc1pqaqrVtm1bq169euW+30rzmM2/nVy+fLkVGxtrXX311QW2W6V9bJdGuQ4r1K9fP9WuXVuNGjXS4MGDFRsbq88//1wJCQmSpMjISIWE5F50Tk6OkpOTFRsbq9atW+uPP/7wXM5nn32m+Ph4jR49usB1FPa2ltIaMmSIqlat6vn7VVddpfr16+ubb76RJK1cuVKbNm3Sddddp+TkZCUlJSkpKUkpKSk677zztGDBArndbq/LTE9PV1RUVLHX+9///ldut1uDBg3yXGZSUpLq1aunli1b6qeffvI6f95bfvL27CjMzJkzVb16dZ1//vlel9mlSxfFxsYWuMysrCyv8yUlJXkOLVGU3bt3a/LkyXrkkUcKrMTOnDlTbdu2VZs2bbwuM+8wFSdff1GWLl2qQYMG6corr9Rzzz1X6HlKc3tI8uzJIuWuwB49elS9e/f2emzNmjVLbrdbjz76qOexmCfvsTV37lwdP35cDzzwQIH7Nu88y5cv14EDBzRy5Eiv8wwcOFBt2rQp8JYst9vtuY1Wrlyp999/X/Xr1/esdFdEu3btPHuHSFLt2rXVunVrbd261XNaaZ97+a1bt0433nijLr30Uv3rX//ynJ7/ds7KylJycrJatGihGjVqFHpZt9xyi2fPZenv2+62227zOg7rsGHDVL16da+v/eabb1SvXj2v46+Gh4drzJgxOnHihOct06UVHR2tiIgIzZ8/v8BbiX0hIyNDSUlJnj0rfvzxR5133nnFfs28efOUmZmpu+66y+sxecstt6hatWoFHkvDhw/37JEiSS1bttQll1yiOXPmKCcnR1Luti4jI8NrD7WPP/5Y2dnZuuGGGzyn1alTx/PheMXJf5+npKQoKSlJPXv2lGVZWrFiRYHzJyUlaf78+dq/f79GjBjhdczMPn36qEuXLoW+tb48yrp9zWNZlh588EFdeeWVxe6hcLK8benBgwe1ePFiff755+rUqVOBd0Gkp6crKSlJycnJBbpRlFGjRnnd1n379vW6rfbu3auVK1dq2LBhiouL85yvU6dOOv/88z0tO/ky8/Tr109TpkyRlPuOibxG53nnnXf09NNP65VXXtHFF1/stZ34/vvvPbfzhx9+6Dns0cm3M43ORaMLotG5aHTR7Njo/GbPnq2RI0fqvvvuK3DouLK2PCcnp8BzPjU1tULf32WXXeb5mUuSunXrpu7du3u2oeVpSGZmZonPbenvbVhycrKys7OLPF9qamqB7zvvtUue8j6ufv/9d82cOVMTJ04ssP0ozokTJ5SUlKTdu3fr7bff1r59+wp9XBw9elRJSUk6fvx4qS43NDRUY8eO9TrtoosukpT7uKhdu7YuvPBCSbl79ef/mTnvXY1ff/21Z5vgcrkUFhbm1YZvvvlG0dHR2r17t/bt2+d1XRkZGbrkkkt06NAhSSpw/PKZM2cqJiZGYWFhnvvi6NGjnn/Pv72gx/Q4P3rsjR6XXUV7XBolNfHQoUP68ccfNWjQIB0/ftzzuEtOTtaFF16oTZs2FTj0VV4H8v7kbV+L8/jjj6t69eoaM2ZMof8eFhamESNGeP4eERGhESNG6MCBA/r9998llf3+Lalr33zzjbp166azzjrLc1reO8G3bdumdevWScr9XYGkUv2+QCr59snJydH333+vyy67TM2aNfOcXr9+fV133XVatGiRjh07Vuhlv/baa0pOTta4ceNKNUuew4cPKykpSVu3btVLL72k0NBQ9enTp8D5Sru9z9O1a1evy4mOjtbIkSO1b98+z/O7rPdbSY/Z/LZu3aqBAweqc+fO+uCDD7y20+V5bBenXIcVeu2119SqVSuFhYWpbt26at26tdeQbrdbkyZN0uuvv67ExESvF4P5f9m1ZcsWtW7dWmFhPjm6kUfLli29/u5yudSiRQvPcdM2bdokSRo6dGiRl3H06FHVrFnT8/ekpKQCl3uyTZs2ybKsIs938lsZ845NWtyxrzZt2qSjR496nrAnO3DggNffv//++zJ/eMe4cePUoEEDjRgxosDbYDdt2qS//vqryMs8+foLs3v3bg0cOFApKSmeF72FKc3tIUlfffWVnnjiCa1cudLrGI75L3fLli0KCQlRu3btirycvENtFHY82Dzbt2+XJLVu3brAv7Vp00aLFi3yOm3nzp1et1X9+vX12Weflfg9lcYpp5xS4LSaNWt6hby0z708x44d0xVXXKGEhAS9//77XrdhWlqaJk6cqClTpmj37t3KXTzNlf+HijxNmzb1+nvebXfy8yE8PNwrEnnnbdmyZYEXpXkvEPMuq7QiIyP1zDPP6J577lHdunV15pln6uKLL9aQIUNUr169Ml1WYT766CN99NFHnr937dq1wHHtTlbUYykiIkLNmjXz/HvefdCmTZsCl9G2bVt99tlnSkpKUt26ddWmTRt17dpVM2bM0E033SQp95BCZ555plq0aOH5up49e+qVV17RRx99pHPPPVchISGF3oc7duzQo48+qi+++KLAC8TCzp//sV7Yc6Rt27ZFHtu0rMq6fc0zY8YMrV27Vp988kmB46IW59dff/X6/lq2bKlZs2YV2H69++67evfddyXl3pfdu3fXiy++6PkAwvxKum/zbqvitjtt27bVd999V+ADzFq2bOk5pMBrr72mZs2aacCAAbr66qv14Ycfep5b3377rZYtWyZJeuSRRzRmzBiv7USDBg0K3M7169f3/L8v3pJPo2k0jabRdmt0npUrV+qTTz5RTk5Oob8MKG3L86xfv97nH6pX2DasVatW+uSTT4qdUSq6IUePHi3V8yD/Niw0NFSdOnXS008/7Tn0SJ5x48YV+oN9/rfLl/dx9cADD6h37966+OKLi/3cn5ONHj3aa4e04cOHF/ilviSvQxDUqFFD1157rZ577rlCPzTU5XKpQYMGqlatmtfped0866yzNG7cOL3yyiv66quvtHXrVq9f6NapU0dRUVF666239PLLL3ttE/I/j7ds2aKEhARt3rxZ27Zt83qeDB8+XEuWLCn0A5Gl3E6kpaUVeF2TJ38n6HHx6DE9psdlU5Eel1ZJTdy8ebMsy9IjjzyiRx55pNDLOHDggNcva8t6KJrExES99dZbeuONN4pcHG3QoEGBjrRq1UpS7rHozzzzzDLfvyV1bfv27YXuHJf/8jp06KAePXrI5XLpwQcf1BNPPOF5Hha141tJt8/BgweVmppa5OsQt9utnTt3eg7zlefo0aN66qmndPfddxd5eJ2inH766Z7/j4yM1KuvvlrgsHcpKSle251GjRrpnnvuKfZwXEX93C7l3m/du3cv8/1W0mM2/7wXXnih9u/fr1q1ahVoQnke28Up12/lu3XrVugvPvI89dRTeuSRR3TjjTfq8ccfV1xcnEJCQnTXXXeVes9Kf8qb4bnnnlPnzp0LPU/+MGVmZmrv3r06//zzS7xcl8ulb7/91ms1uLDLlOTZ86O4Da/b7VadOnU8x6g82ckvQLp3764nnnjC67RXX31Vs2fPLvTr//rrL02dOlXTp08v9Jc+brdbHTt21Isvvljo1+c/Bl5RNm/erNNPP10vvfSS/vGPf2jatGmFvsgsze2xcOFCXXLJJTr77LP1+uuvq379+goPD9eUKVPK9Is/f6lbt66mT58uKXfj9t577+miiy7SokWL1LFjxwpddmGPKUleL0DK+twbNmyY9uzZo6VLlxb4wWb06NGaMmWK7rrrLvXo0UPVq1eXy+XS4MGDC72s/HtN+EtRL5JP3htNku666y793//9n2bNmqXvvvtOjzzyiCZOnKgff/xRp512WoXmuOCCC3TfffdJyl1hf+aZZ3TOOedo+fLlFb4dyvr1Q4YM0Z133qldu3YpIyNDS5Ys0auvvup1noceeki//PKL12r2yXJycnT++efr0KFD+uc//6k2bdooJiZGu3fv1rBhwwq9z+fOnavFixfr0UcfLdPM5VHW7auUu+1+5JFHdNNNN3lefJVWp06d9MILL0iS53MB+vbtqz/++MNrG3XppZfqjjvukGVZSkxM1GOPPaaLL77Y8wN1fpXxHJFyG925c2fPh7zlf6GydOlSdenSRb///ruOHDmi5557Th06dPBsJw4dOuS5nfP2hH355Zc9X++LH9pKQqP/RqN9i0b7VzA0etWqVerfv7/OO+883XfffbrhhhsKfEhoWTRp0qTAsfFnzpypt99+u9yX6WuHDh1SZmZmqX4RlH8btmfPHj3zzDO6/PLLtXbtWq9jU9966626+uqrvb72lltuqfCs33//vebNm6fFixeX+Wvvu+8+XXDBBcrJydHatWv12GOPybIszzvt8uTtBJeRkaH58+d7Plz59ddfL3CZJT2e6tSpo379+unTTz+Vy+UqsJ146qmnlJ6eriZNmmjixImKi4vTP/7xD504caLUPzP/8ccfmj17tm677Tbt3bu3wL+73W7FxMSoefPmntc1q1at0r333qt77rlHV155ZZGXTY//Ro99ix77VzD02Ffy7oN7773X8y6uk+XfqU76uwN5jh07Vuy28uGHH1bLli01dOhQn36wdklK27WSnHrqqRo3bpwmTJhQ5DY0v7LePqX1zDPPKCQkRPfdd5/ns/pKa/r06apbt67S09P1448/atSoUYqKivL6QOWoqCh9+eWXkqTjx4/rvffe01133aX69etr0KBBBS6zsh6jRUlKSlJMTIy+/PJLXXbZZZo4caLXjhfleWwXx7e77P/Pp59+qnPOOcezN2WeI0eOeB2SoXnz5vrtt9+UlZXlk70R85z8SxnLsrR582Z16tTJc72SVK1atVKtCq5atUpZWVnFLojkXa5lWWratGmpfhG1bt06uVyuQlfU8l/mvHnz1KtXr1I9OOPj4wt8T8V9ANKDDz6ozp0765prriny+letWqXzzjuv3IeRyHt7at26dTV79mzdc889GjBgQIEXaaW5PT777DNFRUXpu+++89rz5uQNYPPmzeV2u7Vu3boiX8zmPQ7WrFlT5JOmcePGkqQNGzZ43haaZ8OGDZ5/zxMVFeV1++d9kNCrr76qt956q8jvy1dK+9yTpKefflqzZs3Sf//730JXRD/99FMNHTrU84OElPtW4by9VUqSd9ts2rTJ67bLyspSYmKiTj31VK/z/vnnn3K73V6/yFy/fr3XZeXtmXTyDEXtJdG8eXPdc889uueee7Rp0yZ17txZL7zwgufFaHnVr1/f635u3bq1evbsqVmzZhX5C/j8j6X8e4FkZmYqMTHRc3l5e5Ns2LChwGWsX79eMTExXvfl4MGDdffdd+vDDz9UWlqawsPDCzyf4+PjtXjxYq1bt87zA0XeD4Z5Vq9erY0bN2ratGkaMmSI5/S5c+cWeTv069dP1atX16OPPlrkvBX9IKs8Zd2+Srk/yB84cEDjx48v8/XVrFnT6z7u27evGjRooClTpnh90G7Dhg29zhcbG6vrr7++0MMw5b9vT96e5L+t8j9WTrZ+/XrFx8cX2PPk5O5t3rxZbre7wO1//vnn68CBAzr77LO1Y8cOzZ49W2PHjpXL5dKRI0cUHR3tuZ07deqk3377TX369KHRxVwmjf4bjS4ejfZmp0bn6dixo2bOnKno6GjNnDlTt956q/7880/PnoClbXmemJiYAqetXLmyIt9eoYvPGzduLHdD8g4rUJrDeZy8DWvRooV69eqlBQsWePWmZcuWhd4W+ZX2cZXHsiw98MADuvzyy3XmmWeWOOvJ2rVr55npwgsvVEZGhh566CE9+eSTng8flbx3ghs4cKBWrVqlOXPmFHqZTZs21ffff6/jx497HS4v77VW3uU2btxYbrdbmzZt8rqd8/aovfLKKzV48GBJub+MSEpK8rqe5s2b68cff5SkAl3/97//rUsuuURJSUm66aabtHTp0gJfm5iY6PW6Ju9d+xEREV57WdPjWUWenx7TY3pcdhXpcWmV1MS8VoeHh5f6HQEn7wx98jY5vxUrVuijjz7SrFmzilyYknIX1E9+197GjRslyavfZeliSV1r3Lhxka8FTr68cePG6dZbb9X69es9i0j5D1OcX0m3T+3atVWlSpUirzskJKTAgumePXs0adIkTZw4UVWrVi3z4kCvXr08t+PFF1+stWvXauLEiV6LA6GhoV6PgYEDByouLk5z5swpdHGgadOmxd5+5b3fSnrM5qlSpYrmzJmjNm3aaOzYsXrqqac0aNAgz+uI8jy2i1OuzxwoSWhoqNfKrJS7l8zJxzu68sorlZSUVGAvV0kFvr4s8j79Oc+nn36qvXv3qn///pKkLl26qHnz5nr++ecLfPq8lLuX6Mmzh4aG6uKLLy72eq+44gqFhoZqwoQJBea3LMvrAZ6dna3PPvtM3bp1K3ZPzEGDBiknJ8fzieP5ZWdnlzo6hVm8eLFmz56tp59+usgXMYMGDdLu3bsL7PUk5b6FLiUlpcTradWqledtQZMnT5bb7S7w1p3S3h6hoaFyuVxeq97btm0r8GLusssuU0hIiB577LECK/Z5980FF1ygqlWrauLEiQWOOZZ3njPOOEN16tTRm2++6fV2zG+//VZ//fWXBg4cWOz3npmZqezsbK+v9afSPvfmzZunf/3rX3r44Yd12WWXlfqyJk+eXOgeB4U544wzVLt2bb355pueY2NK0tSpUws8bgcMGKB9+/bp448/9pyWnZ2tyZMnKzY21nOct8aNGys0NFQLFizw+vqT9+ZKTU0tcJ82b95cVatW9ct9kZaWJknFXna/fv0UERGhV155xet2fffdd3X06FHPY6l27do644wzNG3aNK+3v27ZskVffPGF+vfv7/XCIz4+Xv3799f06dM1Y8YMXXTRRQVe1EpSSEiIOnTooH79+qlfv37q0qWL17/nXWb+2SzL0qRJk4r93jt37qy6devqnXfe8TqO8sKFC7V8+fISt5ulVZbtq5S7N8CTTz6psWPH+uRtsaW5j6W/V/ALe3F42mmnqV69egW2JyffVvXr11fnzp01bdo0r+fKmjVr9P3332vAgAEFLvu1117z+vvkyZMlydO9PD179lRoaKhCQkL05ptvasGCBXrnnXc824n4+HjP7XzFFVd4NTr/7Uyjc9FobzS6eDQ6lx0bnef0009XTEyMQkJC9O9//1vbtm3TY4895vn30rbcn2bNmuX1mFm6dKl+++03zza0rA356KOPFBER4XVM4tIqrnklKe3jKv+cf/75pyZOnFjm6ypM3uMi/+O/MG63u8jvb8CAAcrJySnws+x3330nSZ7bNO82z/9OPOnvX6jkf9ykpKR4jsee/3rS0tLUoEGDAq9p8q4j75eKX331lfbv3+/590GDBiktLa3Qw2Sd/FqTHheOHtNjeuwbZelxaZXUxDp16qhv37566623Cn131cnbsbJ64IEH1KtXL11yySXFni87O9tr4SszM1NvvfWWateu7fm5vKxdPNnJXRswYICWLl3q9W67lJQUvf3222rSpEmBw4nVr19f55xzjuf3BSV9fkxRQkNDdcEFF2j27Nmew9RJ0v79+/Wf//xHZ511VoF34EyYMEF169bVbbfdVq7rPFlaWlqJj7O8521xjV+6dKl+/fVXz2np6el64403VK9evXLfbyU9ZvPUrl3bsyD52GOPqWHDhrrllls8c/v6se2Xdw5cfPHFeuyxxzR8+HD17NlTq1ev1owZMwocM23IkCF6//33dffdd2vp0qXq3bu3UlJSNG/ePI0cOVKXXnppua4/Li5OZ511loYPH679+/fr5ZdfVosWLTxvZ817wd+/f3+1b99ew4cPV0JCgnbv3q2ffvpJ1apV05dffqmUlBS99tpreuWVV9SqVSvNnz/fcx15L5D+/PNPLV68WD169FDz5s31xBNP6MEHH9S2bdt02WWXqWrVqkpMTNTnn3+uW2+9Vffee6/mzZunRx55RH/++afnbS1F6dOnj0aMGKGJEydq5cqVuuCCCxQeHq5NmzZp5syZmjRpkq666qpy3U7ff/+9zj///GJXmf7xj3/ok08+0W233aaffvpJvXr1Uk5OjtavX69PPvlE3333XYl7h+RXr149Pffcc7r55pt1ww03aMCAAWW6PQYOHKgXX3xRF110ka677jodOHBAr732mlq0aKE///zTc74WLVro4Ycf1uOPP67evXvriiuuUGRkpJYtW6YGDRpo4sSJqlatml566SXdfPPN6tq1q6677jrVrFlTq1atUmpqqqZNm6bw8HA988wzGj58uPr06aNrr71W+/fv16RJk9SkSZMCxypNSUnxeovkBx98oPT0dF1++eWlvo0qorTPvWuvvVa1a9dWy5YtC+wRcP7556tu3bq6+OKL9cEHH6h69epq166dFi9erHnz5hV6HMbChIeH64knntCIESN07rnn6pprrlFiYqKmTJlSYJ5bb71Vb731loYNG6bff/9dTZo00aeffqpffvlFL7/8smdvrOrVq+vqq6/W5MmT5XK51Lx5c3311VcFjuO5ceNGnXfeeRo0aJDatWunsLAwff7559q/f79nz6yK2Lp1q+d22717t1599VVVq1at2A9Yql27th588EFNmDBBF110kS655BJt2LBBr7/+urp27eq1Mv/ss8/qggsuUI8ePXTzzTcrPT1dr732mqKiovTkk08WuOwhQ4Z4tgOF/VBUGm3atFHz5s117733avfu3apWrZo+++yzEj+cKu85MmzYMPXq1UtDhw7VoUOHNGnSJCUkJHg+bC9PTk6O1x54eXtQLl261OvFaU5Ojnbv3q2lS5eqW7dupd6+5vnjjz8UHx+v+++/v1y3x/79+z33cVJSkt566y2FhYUV+IF3x44dmjNnjuewQk8++aQaN26s0047rcBeAWFhYXr22Wc1ZMgQ9e7dW9dff73nkEUNGzb0uq2ee+459e/fXz169NBNN92ktLQ0TZ48WdWrVy/0nRCJiYmehZxHH31U3377ra677jqvvY3y5G0nmjRpou7du2v06NGKiYlRs2bNFB0d7bmdExMT1axZM9199916++23lZycrG7duikrK4tG/w+N9kaji0ejc9mx0YXp0KGD/vnPf+rpp5/W4MGD1alTpzK13F9atGihs846S7fffrsyMjL08ssvq1atWl69K01DNm3apHHjxunDDz/UAw88UOAH9cIcPHjQ0/C9e/fqmWeeUfXq1XXOOeeU+fso7eMqz/fff69bbrml2L2li7N48WKFhYV5Dr8wefJknXbaaQX21Fu8eLGSkpI8hxX64YcfvF5f5DdgwAD169dPDz/8sBITE9W5c2f9+OOPnsNK5O1xfeqpp2ro0KF6++23deTIEfXp00dLly71/BL//fff1+bNm7V69WodOnRI4eHhWr9+vR588EHVrVvXs3fznj17dO2116p3796eDzicO3eubr31Vq+5Ro8e7Tl28X333aenn35aq1ev1i233KIuXbpo1apVknLvw969e+vmm2+mx8Wgx/SYHpePr3pcnNI08bXXXtNZZ52ljh076pZbblGzZs20f/9+LV68WLt27fJsE8vj+++/1y+//FLi+Ro0aKBnnnlG27ZtU6tWrfTxxx9r5cqVevvttz3v0C5rF0vq2gMPPKAPP/xQ/fv315gxYxQXF6dp06YpMTFRn332WYFj5PvSE088oblz5+qss87SyJEjFRYWprfeeksZGRl69tlnC5z/+++/14wZM4r8/JySzJo1S/Hx8Z7DCi1cuFB33XWX13ny/x7i+PHjmjJlilJSUopc+Lv//vs1Y8YMz+0XHx+v6dOna926dZoxY4bnXXhlvd9K85g9WXR0tN5++23169dPb7zxhkaOHCnJx49tqwymTJliSbKWLVtW7PnS09Ote+65x6pfv74VHR1t9erVy1q8eLHVp08fq0+fPl7nTU1NtR5++GGradOmVnh4uFWvXj3rqquusrZs2WJZlmUlJiZakqznnnuuwPW0b9/e6/J++uknS5L14YcfWg8++KBVp04dKzo62ho4cKC1ffv2Al+/YsUK64orrrBq1aplRUZGWo0bN7YGDRpk/fDDD17XXdKfoUOHel3uZ599Zp111llWTEyMFRMTY7Vp08YaNWqUtWHDBsuyLGv06NHW2Wefbc2ZM6fATOPGjbMKu1vefvttq0uXLlZ0dLRVtWpVq2PHjtb9999v7dmzx3Oexo0bWwMHDizwtaNGjSpwmZIsl8tl/f77716nF3YfZWZmWs8884zVvn17KzIy0qpZs6bVpUsXa8KECdbRo0cLXF9Jl2dZlnXuuedap5xyinX8+PEy3x7vvvuu1bJlSysyMtJq06aNNWXKlCJvt/fee8867bTTPHP36dPHmjt3rtd5vvjiC6tnz55WdHS0Va1aNatbt27Whx9+6HWejz/+2HM5cXFx1vXXX2/t2rXL6zxDhw71elzExsZap59+uvXBBx8UexuVRlH37cm3b2mfe8U9nn/66SfLsizr8OHD1vDhw634+HgrNjbWuvDCC63169dbjRs39nrMl7RdeP31162mTZtakZGR1hlnnGEtWLCg0MfF/v37PdcXERFhdezY0ZoyZUqByzt48KB15ZVXWlWqVLFq1qxpjRgxwlqzZo0lyXP+pKQka9SoUVabNm2smJgYq3r16lb37t2tTz75pDQ3d7EaN27sdXvFx8dbF1xwgbV48eJSff2rr75qtWnTxgoPD7fq1q1r3X777dbhw4cLnO+HH36wevXq5XlcDhw40Fq9enWhl5mRkWHVrFnTql69upWWllaqOfK2l3n3t2VZ1rp166x+/fpZsbGxVnx8vHXLLbdYq1at8rptLavw5+VHH31kde7c2fNcu+aaa6xt27Z5nefk50hp/pz8OClp+2pZuc8LSdZLL73k9bVFbSdOlvf1eX9q1Khh9erVy/rmm2+8zpf/PC6Xy6pXr551xRVXWH/99ZdlWX8/NxITE72+7pNPPvHanlx77bWFNmrevHlej4H/+7//s9atW1fo97Ru3TrrjDPOsCRZVatWte64444CjwVJ1rhx4wpsJ8LCwjzPybzbO+92rlKlihUeHm6Fh4dbISEhVu3atWk0jfag0blo9N8CudEn33aWlXuftWnTxuratauVnZ3tOb00Le/Tp4/Vvn37Atfz3HPPFdoGyyq8zXnyb29feOEFq1GjRlZkZKTVu3dva9WqVQXOX1JDPvzwQ6tDhw7WpEmTLLfbXeIcRd22S5YsKXTGk53cBMsq3eMq7zKjo6Ot3bt3e/1bYfdZUbdb3p+QkBCrYcOG1tChQ722E3nPlbw/ERERVosWLaxHH33UysjIsCyr8G3miRMnrLFjx1oNGjSwwsPDrRYtWlhXXXVVgeddVlaWNWHCBM/PvI0aNbLuu+8+66677vLaJtSrV8+Ki4uzOnXqZHXq1MmzLZ0+fbrXz8zVq1e3JFk///yz1/d5zTXXWJKsL774wnPdbdu2tU455RSrRYsWVkREhFWtWjVLknX99ddb999/Pz3+H3pMj+mxPXqcx5dN3LJlizVkyBCrXr16Vnh4uJWQkGBdfPHF1qeffuo5T1H30cGDBz0/R+XJey5deumlJc6c93pg+fLlVo8ePayoqCircePG1quvvlpgzrJ0saSu5X3fV111lVWjRg0rKirK6tatm/XVV18VuN7ClPYxXNjtY1mW9ccff1gXXnihFRsba1WpUsU655xzrF9//dXrPHmX2blzZ6/XInnfY2GP7cK+vrB2p6ene85Xmu1OYd9D3u1XvXp1Kyoqyuratas1a9asAnOU5X4rzWN26NChVuPGjQtcz/Dhw61q1ap53c+leWyXhut/N0JQmD9/vs455xzNnDmz3HsG5Ldt2zY1bdpUiYmJRR43e/z48dq2bZumTp1a4esDgPLIzs5WgwYN9H//938Fjp0ZyKZOnaqpU6d67YEGb+PHj9eECRN08ODBQg8nZSc0GgDKL2+b99xzzxW5JzsCX5MmTdShQwd99dVXfrsOegwg0AVSE/v27aukpCStWbPG9CgwyO6PWf+9jwQAUClmzZqlgwcPen2QMAAAAAAAAFAcv3zmQLCIjY3V9ddfX+yH/XTq1EkNGjSoxKkAINdvv/2mP//8U48//rhOO+20Ej+kKNAkJCSoW7dupseATdFoAADMo8cAAAQ2FgeKkfeBE8W54oorKmkaAPD2xhtvaPr06ercuXNQvk37/PPP1/nnn296DNgUjQYAwDx6DABAYAuqzxwAAAAAAAAAAAAl4zMHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAAAAAAAAAABwGBYHAKAELper2D/jx483PSIAAMiHdgMAEFhoN2BGmOkBAMDu9u7d6/n/jz/+WI8++qg2bNjgOS02Ntbz/5ZlKScnR2FhbF4BADCFdgMAEFhoN2AG7xwAgBLUq1fP86d69epyuVyev69fv15Vq1bVt99+qy5duigyMlKLFi3SsGHDdNlll3ldzl133aW+fft6/u52uzVx4kQ1bdpU0dHROvXUU/Xpp59W7jcHAEAQot0AAAQW2g2YwRIbAPjAAw88oOeff17NmjVTzZo1S/U1EydO1PTp0/Xmm2+qZcuWWrBggW644QbVrl1bffr08fPEAAA4G+0GACCw0G7A91gcAAAfeOyxx3T++eeX+vwZGRl66qmnNG/ePPXo0UOS1KxZMy1atEhvvfUWL1IAAPAz2g0AQGCh3YDvsTgAAD5wxhlnlOn8mzdvVmpqaoEXNpmZmTrttNN8ORoAACgE7QYAILDQbsD3WBwAAB+IiYnx+ntISIgsy/I6LSsry/P/J06ckCR9/fXXSkhI8DpfZGSkn6YEAAB5aDcAAIGFdgO+x+IAAPhB7dq1tWbNGq/TVq5cqfDwcElSu3btFBkZqR07dvBWRgAAbIB2AwAQWGg3UHEsDgCAH5x77rl67rnn9P7776tHjx6aPn261qxZ43nrYtWqVXXvvfdq7NixcrvdOuuss3T06FH98ssvqlatmoYOHWr4OwAAwFloNwAAgYV2AxXH4gAA+MGFF16oRx55RPfff7/S09N14403asiQIVq9erXnPI8//rhq166tiRMnauvWrapRo4ZOP/10PfTQQwYnBwDAmWg3AACBhXYDFeeyTj44FwAAAAAAAAAACGohpgcAAAAAAAAAAACVi8UBAAAAAAAAAAAchsUBAAAAAAAAAAAchg8kBlAot9tStttSjttSjmUpJ8dSlNIU6XJLIaGSK/Tv/4ayKQEAwDTaDQBAYKHdAExjywIEucxst5JTMpR0PFNJKRlKOp6hpBOZSjqRoeQTf/9/0okMncjIVnZO7ouSwj6qfH6Lj9Vk1+zCrygkTIqqLlWplfsnOk6qEve/v8eddPr/TouuKblc/r0BAAAIMLQbAIDAQrsBBCoWB4AAZlmWdh1O0197j2nTgRM6cCxdSScydTDfC5CjaVmVM4w7W0pNzv1TWq7Q3BcqNU6R4ltKtVrm/je+pVSrhRQW6b95AQAwgHYDABBYaDeAYMbiABAgjqdnaf2+47l/9h7T+n3HtXHfcR3PyDY9WvlZOVJqUu6fPX94/5srRKreSIpv9feLlrz/r1rPzLwAAJQB7abdAIDAQrtpN+A0LA4ANpPjtpSYlKL1+45p/d7jWr/vmP7ae1y7j6SZHq1yWW7pyPbcP5vnev9bZLXcFy31T5VOOTP3T80mRsYEAIB2/w/tBgAECNr9P7QbcDwWBwDD9h5N08JNSVqWeEh/7TumTftPKCPbbXose8s4lrvHw54/pN+n5J5Wtb7UqLt0So/cFy31OuZ+cBMAAD5Gu8uBdgMADKLd5UC7AUdgcQCoZKmZ2VqyNVkLNyVp4aYkbT5wwvRIweH4XmndrNw/khRRVWrY5e8XLQ27ShExJicEAAQo2u0ntBsA4Ce0209oNxB0WBwA/MzttrRmz9H/vSg5qD+2H1FmDnso+F3mcWnr/Nw/khQSJtXtIDXuKTXrKzXtI4VHGRwQAGBXtNsQ2g0AKCfabUix7T5Hano27QZsjsUBwA/2HEnTwk0HtWBTkn7dnKTDqVmmR4I7W9q7MvfPktel8Cq5L1ZaXyS1ukiKrWN6QgCAQbTbhmg3AKAYtNuGCrQ7JneBn3YDtsXiAOAD6Vk5+nVLkhZsTNKCTQe19WCK6ZFQkqxUacPXuX/kkhK65L5gaXuJVLu16ekAAH5GuwMQ7QYAR6PdASgrhXYDNueyLMsyPQQQiHLcln7dkqTZK/fouzX7dDwj2/RIfje/xcdqsmu26TH8r3Ybqd2lUrvLpLrtTE8DAPAR2h3EaDcABCXaHcRqt8ntdrtLaTdgEIsDQBmt2nlEs1bu1ld/7tXB4xmmx6lUjnmRkl98q9wXK+0vl+q2Nz0NAKAcaDftBgAEFtrtwHa3vSS33fU6mJ4GcBQWB4BS2HkoVZ/9sUtfrNyjrUnOfeuiI1+k5NfgNKnLcKnjVVJEjOlpAADFoN25aDftBoBAQbtz0W7aDVQmPnMAKEJGdo7mrNmnT5bv1K9bksUyGrRnRe6f7/8ldbxaOmO4VK+j6akAAP9Du1EA7QYAW6PdKIB2A5WKxQHgJGv3HNUny3Zq1so9OpqWZXoc2FHGMWn5u7l/Es7IfbHS/gopoorpyQDAkWg3SkS7AcBWaDdKRLuBSsFhhQBJ6Vk5+uyPXfpw6Q6t2X3M9Di25fi3NxYnsrrUaVDuCxaObwwAfke7S4d2F4N2A0Clot2lQ7uLEVldOvWa3MMO8SHGgE+wOABHO56epQ+WbNd7i7Yp6YSzPuSoPHiRUkoNu/1vr4bLpfBo09MAQFCh3WVDu0uJdgOA39DusqHdpdSou9RlGO0GKojFAThS8okMTfllm95fvE3H0rNNjxMweJFSRlE1pK43ST3ukKrEmZ4GAAIa7S4f2l1GtBsAfIZ2lw/tLqOoGlLXm6Ueo2g3UA4sDsBR9hxJ09sLturjZTuVlpVjepyAw4uUcoqIzX2x0nOMFFPL9DQAEFBod8XQ7nKi3QBQbrS7Ymh3OUVUlbrdLPUYTbuBMmBxAI6w9eAJvTF/i2at3K2sHB7y5cWLlAoKj5G63ij1vFOKrW16GgCwNdrtG7S7gmg3AJQa7fYN2l1B4TG57wLsOYZ2A6UQZnoAwJ/W7D6q1+dv1pw1++TmtQlMy0qRfp0sLXs39wOUet0pVa1reioAsBXaDVuh3QBQItoNW8lKkX59RVr2b9oNlAKLAwhKv21N1mvzt2jBxoOmRwEKykqVlrwmLX839wOUet0lVatveioAMIp2w9ZoNwAUQLtha7QbKBUWBxBUft54UJN/2KTl2w+bHgUoWXa69Nub0vIp0ulDpLPGStUTTE8FAJWKdiOg0G4AoN0ILLQbKBaLAwgKiUkpeuzLtfppA3ssIADlZEjL3pH+mCaddoPU9yGOjQgg6NFuBDTaDcCBaDcCGu0GCsXiAAJaSka2Jv+4We8tSlRmjtv0OEDF5GRKy9+TVn8m9X1A6narFMpmGkBwod0IKrQbgAPQbgQV2g144dGPgDVrxW49/e167TuWbnoUwLcyjkrfPSit+EDq/6zUtLfpiQDAJ2g3ghbtBhCkaDeCFu0GJLE4gAC0ds9Rjf9irZZt4/iGCHIH1knTLpbaXy5d8CTHRQQQsGg3HIN2AwgStBuOQbvhcCwOIGAcTsnU899v0IdLd8htmZ4GqERrP5c2fi+dfY/UY7QUFmF6IgAoFdoNx6LdAAIU7YZj0W44FIsDsL0ct6X//LZdL8zdqCOpWabHAczISpF+eExaMUPq/4zU8nzTEwFAkWg3INoNIKDQbkC0G47E4gBsbWniIY3/Yq3W7T1mehTAHg5tkWZcJbXqL100UYpranoiAPBCu4GT0G4ANke7gZPQbjgIiwOwpX1H0/XUN3/pi1V7TI8C2NPGb6WtP0k9R0u975HCo01PBMDhaDdQAtoNwGZoN1AC2g0HCDE9AHCyj5ft0HkvzOcFClCS7HRpwXPSm72lXctNTwPAwWg3UEq0G4BN0G6glGg3ghyLA7CNo6lZun367/rnZ6uVkpljehwgcCRvkt69IPfYiNmZpqcB4CC0Gygn2g3AENoNlBPtRpBicQC2sHhLsi6atEDfrtlnehQgMFk50sIXpHfOlfatMT0NAAeg3UAF0W4AlezXLUm0G6gI2o0gxOIAjMrKcevpb9fr+n8v0d6j6abHAQLf/tXSO+dIC1+Q5XabngZAEKLdgI/RbgB+ltfuG/79G+0GfCFfu905tBuBjcUBGJOYlKIr3/hVb/68RW7L9DRAEMnJ1K4Ny3XN279pz5E009MACCK0G/AT2g3AT2g34Cc5mdq54XcNfod2I7CxOAAjPl62QwNfWag/dx01PQoQdLKrJuiaXVdr6bZD6j9pob5dvdf0SACCAO0G/Id2A/AH2g34T3bVBA3edRXtRsBjcQCV6mhqlkbOyP3wo1Q+/AjwOUsuPR05RrvTIyVJR9OydPuMP/Tgf/9UGs85AOVAuwH/ot0AfC3/hw7TbsD3LFeInoqg3QgOLA6g0uR9cOE3q/nwI8BfVje6Xv/e1ajA6R8u3an/e3WR1u05ZmAqAIGKdgP+R7sB+BIfOgz4358Nr9d7u2k3ggOLA/C7rBy3npnDBxcC/pYe10bXJl5Y5L9vPnBCl73+i6b8kliJUwEIRLQbqBy0G4Cv8KHDQOVIr9VO122l3QgeYaYHQHDblpSiMR+t4BiHgJ9ZoZG6K2uUUrJDiz1fZrZbE75cpzW7j2niFR0VEcYaMQBvtBuoHLQbgK/QbqByWKGRGpMxUik5xbeYdiOQ8OiE3yzalKRLX/uFFyhAJZhXf4TmHKxV6vN/9scu3fDv33QoJdOPUwEINLQbqDy0G4AvLNx0UJe8uoh2A5Xg+/oj9H1SXKnPn9fuw7QbNsbiAPzi/cXbNGzKUh1NyzI9ChD0jtTroVu3dC/z1y3ddkiXvfaLNh847oepAAQa2g1UHtoNwBem/bpNw6cs07H0bNOjAEHvcL1euq2c7b6UdsPGWByAT2XnuPWvWav16Oy1ynZbpscBgp47qoaGHBouy3KV6+t3HErV5a//qgUbD/p4MgCBgnYDlYt2A6iovHaP+4J2A5XBHVVDQ5KH0W4EJRYH4DNHU7M0dMpSTV+yw/QogGNMrTlafx6LrdBlHE/P1o1Tl+mDxdt8MxSAgEG7gcpHuwFUBO0GKt+UmmO0+nhMhS6DdsOuWByAT2w5mPtp7L9sTjY9CuAYOxterMcS2/rksrLdlh6ZvVbjZq9RDnsfAY5Au4HKR7sBVATtBirfjob/p8cT2/jksmg37IjFAVTYkq3JuuL1X5WYlGJ6FMAxsqsmaNCuq3x+udMWb9eNU5fpeDrHHAeCGe0GKh/tBlARS7Ym6/LXfqHdQCXKrtpQg3Ze6fPLpd2wExYHUCFfrtqjIe/x4YVAZbJcIXoi/E7tTY/wy+X/vPGgrnzjV+08lOqXywdgFu0GKh/tBlARX67aoyHvLuWDh4FKZLlC9Hj4ndqXQbsR3FgcQLm9s2Crxny0QpnZbtOjAI6yquENmrqnoV+vY+P+E7rstV+0fNshv14PgMpFuwEzaDeA8np7wZbcdufQbqAyrWg4RNP2JPj1Omg37IDFAZSZ221pwpdr9eQ3f8niEGlApUqr1V7Xb72gUq4rOSVT1/37N32+YlelXB8A/6HdgDm0G0B5uN2Wxn+xVk99s552A5UsrVYH/WNrv0q5LtoN01gcQJmkZ+Vo1H/+0JRftpkeBXAcKyxKYzJuV0pO5W26M7PdGvvxKr08b2OlXScA36LdgDm0G0B55LV76q/bTI8COI4VFqU70m+j3XCMMNMDIHAcS8/SjVOWafn2w6ZHARzpu3ojNHdznJHrfnneJuW4Ld1zQWsj1w+gfGg3YBbtBlBWtBswa0692/QD7YaDsDiAUjmRka0h7y7Vyp1HTI8CONLher10+5ZuRmeY/ONmuVwu3X1+K6NzACgd2g2YRbsBlBXtBsw6VO8sjdzS1egMtBuVjcMKoUSpmdka9h4vUABT3FE1dUPyMFmWy/QoeuWHTbzVEQgAtBswi3YDKCvaDZjljo7T9Um0G87D4gCKlZaZo+G8pREw6t0aY7T2eIzpMTxenrdJk+ZtMj0GgCLQbsA82g2gLGg3YN6/q4/RXyeqmB7Dg3ajsrA4gCKlZ+XolveX67fEQ6ZHARxre8NL9OQ2+x1v8KV5GzX5B16oAHZDuwHzaDeAsqDdgHnbGl6qp7bZ7zA+tBuVgcUBFCoz263bpv+uRZuTTI8COFZ2tUa6ZucVpsco0gtzN+q1nzabHgPA/9BuwDzaDaAsaDdgXna1UzSIdsPBWBxAAVk5bo2c8YfmbzhoehTAsSxXiCaEjdG+jAjToxTrue826PX5vFABTKPdgHm0G0BZ0G7APMsVqglho3UgI9z0KMWi3fAnFgfgJTvHrdH/WaF5f+03PQrgaH80HKIP9iSYHqNUnp2zQW/M32J6DMCxaDdgD7QbQGnRbsAefm80lHbD8VgcgEeO29LYT1Zpztp9pkcBHC0tvoNu2Hqe6THK5Jk56/XWz7xQASob7QbsgXYDKC3aDdhDanxH/WPLOabHKBPaDX9gcQCSJLfb0n2frtKXq/aYHgVwNCssWqPSbldaTqjpUcps4rfr9c6CrabHAByDdgP2QLsBlBbtBuzBCovWyNTbaDcgFgcgybIsPfjf1frvH7tNjwI43jf1btOPyTVNj1FuT37zl/69kBcqgL/RbsA+aDeA0qDdgH18Vfd2zT9EuwGJxQFI+tesNfp4+U7TYwCOl1z/bN2x5QzTY1TYE1//pQ+X7jA9BhDUaDdgD7QbQGnRbsAekuv30WjaDXiwOOBwT3y1TjN+Y2MCmOaOjtMNB4fIslymR/GJR2ev0eItyabHAIIS7QbsgXYDKC3aDdiDO7qWrj/4D9Nj+Azthi+wOOBgHy3doX8vSjQ9BgBJb1W7U3+dqGJ6DJ/JyrF0+4zftT05xfQoQFCh3YB90G4ApUG7Aft4q9oYrafdgBcWBxxq+bZDenT2WtNjAJCU2OgyPbO9pekxfO5IapZumrZcx9KzTI8CBAXaDdgH7QZQGrQbsI+tDS+n3UAhWBxwoD1H0nTb9N+VmeM2PQrgeFnVGuuaHZebHsNvNh84odH/WaEct2V6FCCg0W7APmg3gNKg3YB95Lb7MtNj+A3tRkWwOOAw6Vk5uvWD5Uo6kWl6FMDxLFeoxoWO0YGMcNOj+NXPGw/qya//Mj0GELBoN2AftBtAadBuwD4sV6geCR2jg5m0GygMiwMOc9+nf2rN7mOmxwAgaXnDofrP3vqmx6gU7/2SqI+W8iFsQHnQbsA+aDeA0qDdgH0sazhMHzmo3R8vo90oGxYHHOS1nzbry1V7TI8BQFJqfCfdsOVc02NUqkdmr9FvW5NNjwEEFNoN2AftBlAar8+n3YBdpMafqn9sOcf0GJXqX7NoN8qGxQGH+OGv/Xrh+w2mxwAgyQqvotvTRijD7axNcFaOpdtn/KGdh1JNjwIEBNoN2Aftpt1Aafzw1349/x3tBuzACq+i21JpN1ASZz1DHGrzgeO666OV4nNJAHv4su7t+jm5pukxjDiUkqmbpi3TiYxs06MAtka7AXuh3bQbKAntBuzlizojteBQDdNjGEG7URYsDgS5o6lZunnach1ngwDYQnL9PhqzuYvpMYzauP+Exny4Qm5+cgIKRbsBe6HdtBsoydG0LN3y/u+0G7CJpAZ9deeW002PYRTtRmmxOBDEctyW7vjwD21L5q1EgB24o+N17YEhpsewhR/XH9DEb/8yPQZgO7QbsBfa/TfaDRQux23pjv/8ocSkFNOjAFBuu6/b/w/TY9jCj+sP6Ok5602PAZtjcSCIPfXNX1q4Kcn0GAD+5/VqY7QxJdr0GLbxzsJEzVy+0/QYgK3QbsBeaLc32g0UNJF2A7byWtU7aXc+by/YSrtRLBYHgtSnv+/Su4sSTY8B4H+2NLxCz29vYXoM23n48zVat+eY6TEAW6DdgL3Q7sLRbuBvn/2+S/+m3YBtbG50pV7Y0dz0GLbz8CzajaKFmR4Avrdm91E99Plq02MAxTqeYemRnzL0+fosHUixdFq9UE26KEpdE0ILPf+wWWmatiqrwOntaodo7chYSdKMP7P0wA/pOpFpaXjnCL14YZTnfNuOuHXBB6lafmuMqkW6/PNNFSGrehMN3nFppV5noMjMcWvMRyv01eizFBVe+H0POAHtRiCg3ZBoN5Bn7Z6jepB2w+ac1e6mumb7JZV6nYEiM9utOz9aoS9pNwrBOweCTGa2W/d8skqZ2W7TowDFuvnLNM3dmq0PLo/W6ttjdUHzUPX7IEW7jxX+2J10UZT23hPr+bNzbKziol26ul3uGmdSqls3f5mm58+P0vc3xGj6n1n6auPfL2pGfp2up/tFVvoLFMsVqn+FjNHBzPBKvd5AsvnACT3x9TrTYwDG0G4ECtqNPLQbTpeZ7dbdH9Nu2J9j2h0Spodco5VMu4u06cAJPfk1nx2EglgcCDIvzt2oDfuPmx4DKFZalqXP1mXr2X6ROrtxmFrEhWh83yi1iAvRG8szC/2a6lEu1YsN8fxZvidHh9Ny91SQpK2HLVWPdOmaDuHqmhCqc5qG6q+DuS94PlydpfBQ6Yq2lf9CYWnDG/Xx3nqVfr2BZvqSHZq3br/pMQAjaDcCAe3GyWg3nIx2IxA4qd1LEoZr5j7aXZIPlmyn3SiAxYEg8seOw3pn4VbTYwAlynZLOZYUFea9N0F0mEuLduSU6jLeXZGlfs1C1bhG7masZVyIUrMsrdibo0NplpbtzlGnuqE6nGbpkZ/S9Wr/qBIu0fdSanfWkC19Kv16A9U/P/tTB46nmx4DqFS0G4GCdqMwtBtORLsRKJzU7mG0u9RoN07G4kCQSM/K0b2frFKO2zI9ClCiqpEu9WgYqscXZGjPcbdy3Jam/5mpxbtytPdEyY/hPcfd+nZTtm4+PcJzWs1ol6ZdFq0hs9LU7Z0TGnJquC5sEaZ7v0/XHd0ilHjErdPeOqEOr5/Qp+sKHkPR16zwGI1IGaEMN5vZ0kpOydS9M/+UZbEdgzPQbgQS2o3C0G44De1GIHFKu289QbvLIjklU/d8sop2w4MPJA4ST3+7XluTUkyPAZTaB5dH68Yv0pTw4gmFuqTT64fo2g7h+n1vyXswTFuZpRpRLl3WxnsTdnnbcF2e7y2MP2/L1p8HcjR5QJRavHJCH14ZrXqxLnX7d4rObhyqOjH+ewExq87tWrSlut8uP1gt2HhQ7/2yTTed1dT0KIDf0W4EGtqNwtBuOAntRqAJ9nZ/XmekfqHdZbZwU5LeXZSom3s3Mz0KbIDFgSCweEuypi3eZnoMoEyax4Xo52ExSsm0dCzDUv2qIbrm01Q1q1n8CwfLsvTeyiz9o1O4IkKL/pCjjGxLI79J1weXR2vzIbey3VKfJrmbvFa1QvTbrhz9X2v/vEg52OBcjd1yul8u2wmenbNefVrVVos6saZHAfyGdiMQ0W4UhXbDCWg3AlEwt/tAg/N095bT/HLZTvDcdxvUt3Ud2g0OKxToUjKydd+nq8S7gRCoYiJcql81RIfTLH23OVuXti5+zfLn7TnafMitm04v/kOOnliQoYuah+n0+qHKcUvZ+d76m5WTe+xFf3BXidd1+6/3z4U7REa2W/fO5O3aCF60G4GOduNktBvBjnYj0AVfu2vr2n3X+efCHYJ2Iw+LAwHuia/XadfhNNNjAGX23eZszdmcrcTDbs3dkq1zpqWoTXyohnfOffHx4Lx0Dfm84GP73RVZ6p4Qqg51Qou87HUHc/Tx2mw9dk6kJKlNfIhCXC69+0emvt6YpfVJbnVtUPTXV8Tk2Lu0KSXaL5ftJCt3HtHbC/igNwQn2o1ARbtRHNqNYEa7EaiCtd2vxN6pLam0u6JoNyQOKxTQ5m84oA+X7jQ9BlAuRzMsPfhDunYdsxQX7dKVbcP05LlRCv/fWxb3nrC046jb+2vSLX22LkuTLooq8nIty9KtX6brxQsjFRORe1nR4S5NvSxKo75JV0a29OqAKCVU8/3a6KZGV+mlTRyzz1demrdR/drWUcu6VU2PAvgM7UYgo90oCe1GMKLdCGTB2O6Nja7Wy7TbZ2g3XBYfTx2QjqZl6cKXFmjfsXTTo8BB5rf4WE12zTY9hi1lVW+mMw+PU3Jm8W+7RNmc2rC6/juyl0JDij7OJRAoaDdMoN1Fo93+QbsRTGg3TKDdRcus0Uzdk8frcBb7OvsS7XY2DisUoCZ8sZYXKIBNWCFhetA1ml8u+MGqXUf15s9bTI8B+ATtBuyDdvsP7UYwGU+7AduwQsL0oDWahQE/oN3OxuJAAPpu7T79d8Vu02MA+J/FCTfq0311TY8RtCbN26SN+4+bHgOoENoN2Avt9i/ajWAwZ80+fU67Adv4NeEmfbafdvvLpHmbtIl2OxKLAwHmUEqmHv58tekxAPzPidqnaeiWPqbHCGqZOW5N+HKt6TGAcqPdgL3Qbv+j3Qh0yScy9K9ZtBuwixO1T9ewLWebHiOoZea4NZ52OxKLAwHmia/XKelEpukxAEiyImJ0y4lbleXmuHz+9svmZM1dt9/0GEC50G7APmh35aHdCGRPfv0X7QZswoqI0c3Hb6HdleCXzcmaR7sdh8WBALJix2He1gjYyGfxo7T4cHXTYzjGU9/8pawct+kxgDKh3YC90O7KRbsRiFbsOKzPV9JuwC4+jR+lJUdod2Wh3c7D4kCAsCxLj321TpZlehIAknSgwXm6d2tn02M4SmJSit5fvN30GECp0W7AXmh35aPdCDSWZWnCl7QbsIt9Dc7XfbS7Um2l3Y7D4kCAmLVyt1bsOGJ6DACScmLqaPC+602P4Uiv/LBJR1J5izcCA+0G7IN2m0O7EUhmrdytlTuPmB4DgHLbfd2+a02P4Ui021lYHAgAqZnZeubbDabHAPA/r8SM0dbUKNNjONLRtCy9NHej6TGAEtFuwF5otzm0G4GCdgP28nLMnbTbkKNpWXp53ibTY6CSsDgQAN6Yv0X7jqWbHgOApA2NBmnSjmamx3C0Gb/t0OYDx02PARSLdgP2QbvNo90IBLQbsI/1ja7R5B1NTY/haNOXbNfmAydMj4FKwOKAze06nKq3F2w1PQYASZk1mmvQtotNj+F42W5LT379l+kxgCLRbsA+aLc90G7YHe0G7COzRgtds22g6TEcL7fd60yPgUrA4oDNPTNngzKy+ZRwwDQrJFz3W6N1NCvM9CiQ9NOGg1qw8aDpMYBC0W7AHmi3vdBu2BntBuwht9130G6boN3OwOKAja3edVRf/bnH9BgAJC1KuEmz9tcxPQbyeeLrdcpxW6bHALzQbsA+aLf90G7Y0ZrdtBuwi4UJN9Num6HdwY/FARt7Zs56WTz/AOOO1zlDN27pbXoMnGTj/hP6z9IdpscAvNBuwB5otz3RbtjR09/SbsAOjtc5Q8M39zI9Bk5Cu4MfiwM2tWhTkhZtTjI9BuB4VkSsbjp2s7LcLtOjoBAvzd2oY+lZpscAJNFuwC5ot73RbtgJ7QbswYqI1fCjtyjH4teUdkS7gxvPOhuyLEvPzFlvegwAkj6Jv0NLj1QzPQaKcCglU6/+uNn0GADtBmyEdtsb7YZd0G7APj6OH63lR6uaHgNFOJSSqck/bDI9BvyExQEb+urPvVq9+6jpMQDH25dwvv65tZPpMVCCqb9s0/bkFNNjwOFoN2APtDsw0G7YAe0G7GFfwgV6YGtH02OgBNN+3a5tSbQ7GLE4YDNZOW698P0G02MAjpcTU1eD91xregyUQmaOWy98v9H0GHAw2g3YA+0OHLQbptFuwB5yYupp8J7BpsdAKWTmuPXiXNodjFgcsJmPl+3UtuRU02MAjmbJpRer3KltaVGmR0EpfbN6r3YdZtsJM2g3YB7tDjy0GybRbsA8Sy49X2UM7Q4gtDs4sThgI263pbcWbDE9BuB46xtdo9d2NjE9Bsog223pvUXbTI8BB6LdgD3Q7sBDu2EK7Qbs4a9Gg/UG7Q4otDs4sThgI9+t3aedh9JMjwE4WmbNlhq8bYDpMVAOHy/boaNpWabHgMPQbsA82h24aDdMoN2AeRk1W+maxP6mx0A50O7gw+KAjfx7UaLpEQBHs0LCdU/OHTqaFWZ6FJRDSmaOpi/ZbnoMOAztBsyi3YGNdsME2g2YZYWE696cUTqeTbsDEe0OPiwO2MSKHYf1+/bDpscAHO3nhFv05YHapsdABUz7dZsys92mx4BD0G7APNod+Gg3KhPtBsyj3YGPdgcXFgdsgr0XALOO1emqmzb3ND0GKujA8QzNWrHb9BhwCNoNmEW7gwPtRmV6l3YDRh2r2412BwHaHVxYHLCBXYdTNWfNPtNjAI5lRVbVsKM3K8dikxgM3lm4VZZlmR4DQY52A2bR7uBCu1EZdh9Jo92AQVZkVQ07chPtDhK0O3jwjLSBab9uU46bJxRgyodxd+iPo1VNjwEf2XTghH7acMD0GAhytBswi3YHF9qNyjD1l0Rl027AmP/UGk27gwjtDh4sDhh2IiNbHy3baXoMwLH2JFykhxI7mh4DPvbWz1tNj4AgRrsBs2h3cKLd8CfaDZi1J+EiPby1g+kx4GO0OziwOGDYx8t26nh6tukxAEfKia2vwXsGmR4DfvBb4iH9ueuI6TEQpGg3YA7tDl60G/5EuwFzcmLra9Dua0yPAT/4LfGQVu08YnoMVBCLAwbluC1N/ZUPRAJMsOTSs1F3akdalOlR4CdvLWAvBvge7QbMod3Bj3bDH2g3YE5eu3elR5oeBX7y9kLaHehYHDDou7X7tPNQmukxAEda1+havbXrFNNjwI/mrNmnnYdSTY+BIEO7AXNod/Cj3fAH2g2Ys7bRdbQ7yNHuwMfigEH/ZnUNMCKjZmsNTrzI9Bjwsxy3pXcXsZcYfIt2A2bQbmeg3fAH2g2YkRHXWtcmXmh6DPhZjttiOxvgWBww5I8dh/XHjiOmxwAcxwqN0NjsUTqeHWZ6FFSCT5bv1JHUTNNjIEjQbsAM2u0stBu+RLsBM6zQCN2VRbudYubvu2h3AGNxwJB3F7JHDGDCTw1u0TcH402PgUqSmpmjj5btND0GggTtBsyg3c5Cu+FLtBsw48cGt+pb2u0YtDuwsThgwK7DqZqzdp/pMQDHOVa3u27Z3MP0GKhks1bsNj0CggDtBsyg3c5Eu+ELtBsw42jdM3Xr5jNNj4FKRrsDF4sDBnz2+27luC3TYwCOYkVW07AjNynHYrPnNOv3HdeGfcdNj4EAR7uByke7nYt2wxdoN1D5rMjqGnr4RtrtQLQ7cPFsNeCrP/eYHgFwnOlxo/XH0VjTY8CQ2SvZiwEVQ7uByke7nY12o6JoN1D5PogbrZXHaLdT0e7AxOJAJVu/75g2HThhegzAUXY1HKBHEtubHgMGfbFqjyyLPcdQPrQbqHy0G7QbFUG7gcq3q+FAPZrYzvQYMIh2ByYWByrZl6vYewGoTDmxDXTNrqtNjwHDdh1O0+/bD5seAwGKdgOVi3ZDot2oGNoNVK7sqgm6ZtdVpseAYbQ7MLE4UMm++nOv6REAx7Dk0sSoO7U7PdL0KLCB2Sv5IRHlQ7uBykO7kR/tRnnRbqDyWHJpYsQY2g1JtDsQsThQif7cdUTbk1NNjwE4xppTrte/dzUyPQZs4pvVe5Wd4zY9BgIM7QYqF+1GfrQb5UG7gcq1utENenc37Uaur2l3wGFxoBLx1kag8qTHtdHgrReaHgM2kpySqYWbk0yPgQBDu4HKQ7txMtqN8qDdQOVJj2uraxMvMD0GbORQSqYWbqLdgYTFgUpiWZa+5q2NQKWwQiN1V9YopWSHmh4FNjN7xW7TIyCA0G6g8tBuFIV2oyxoN1B5rNBIjcmk3Sho9kraHUhYHKgkv28/rD1H002PATjCvPq3as7BWqbHgA3NXbdfaZk5psdAgKDdQOWh3SgK7UZZLKfdQKWZV3+Evk+KMz0GbIh2BxYWByoJb20EKseRej1065YzTY8Bm0rJzNHcv/abHgMBgnYDlYN2ozi0G2XxFe0GKkVuu7ubHgM2lZKZo+/X7TM9BkqJxYFK4HZb+mYNTwrA36zI6hpyaLgsy2V6FNjYF7zFEaVAu4HKQbtRGrQbpZHjtvT1atoN+Js7qgbtRom+WMlibaBgcaASLNmarIPHM0yPAQS9qXFj9OexWNNjwOZ+3nhQR1IzTY8Bm6PdQOWg3SgN2o3SWLI1WUknaDfgb1NrjqbdKNGCTQd1OIV2BwIWByrBl3+yWgb4286GAzUhsa3pMRAAsnIsfb2aD6pD8Wg34H+0G6VFu1EaHA4Q8L+dDS/WY7QbpUC7AweLA36WnePWHA5LAPhVdtUEDdp1tekxEEBm8xZHFIN2A/5Hu1FWtBvFycpxa85a2g34U267rzI9BgIIhxYKDCwO+NnCzUk6nJplegwgaFmuED0VMUZ70yNMj4IAsnzbId7iiCLRbsC/aDfKg3ajOIs2JekI7Qb8xnKF6InwO2k3ymT59kM6RLttj8UBP/vmT95CA/jTqoY36L3djUyPgQDjtqRFm5NMjwGbot2Af9FulAftRnE4dAXgX6sa3qCpexqaHgMBxm1Jv9Bu22NxwM94EgD+k16rna7feoHpMRCgFm1i+4zC0W7Af2g3KoJ2oyi0G/CftFrtaTfKbeGmg6ZHQAlYHPCjnYdStedouukxgKBkhUVpdMZIpeSwGUP5sPchCkO7Af+h3ago2o3C7EhO1V7aDfiFFRalMRm3026UGwv79sez24+WbE02PQIQtL6rN0Jzk+JMj4EAtvtImrYcPGF6DNgM7Qb8h3ajomg3CrMkkXYD/kK7UVF7jqZr8wHabWcsDvjRb4mHTI8ABKXD9Xrp9i3dTI+BILBwI29xhDfaDfgH7Yav0G6c7LettBvwB9oNX1nEoYVsjcUBP/qNPRgAn3NH1dSQ5GGyLJfpURAEODwBTka7Ad+j3fAl2o2T0W7A99xRNXUD7YaPLOTQQrbG4oCf7DmSpp2H0kyPAQSd92qM0erjMabHQJBYsvWQsnLcpseATdBuwD9oN3yJdiO/3UfStOsw7QZ87d0aY7SWdsNHlmxNpt02xuKAn7D3AuB72xteoie2tTY9BoLIiYxs/bnriOkxYBO0G/A92g1fo93I7zc+Kwjwue0NL9GTtBs+lJKZQ7ttjMUBP1myheMeAr6UXa2Rrtl5hekxEISWJh42PQJsgnYDvkW74S+0G3n4vAHAt2g3/IV22xeLA37C3oeA71iuED0Wdqf2ZUSYHgVBaCnba/wP7QZ8h3bDn2g38tBuwHcsV4gmhI2h3fAL2m1fLA74wf5j6dqWnGp6DCBorGg0RO/vaWB6DASp5dsPy+22TI8Bw2g34Fu0G/5EuyHRbsDX/mg4RB/sSTA9BoIU7bYvFgf8YAnHPQR8Jq1WB12/5TzTYyCIHU/P1l/7jpkeA4bRbsB3aDf8jXZDot2AL6XFd9ANW2k3/Od4erbW7ztuegwUgsUBP/gtkeMeAr5ghUVrVPrtSssJNT0KgtwyttuOR7sB36DdqCy0G7Qb8A0rLFqj0mg3/I9DC9kTiwN+8Bt7MAA+8W29EfoxuabpMeAAS7fxw6XT0W7AN2g3KgvtBu0GfOOberfRblSKZdv4UGI7YnHAxw4ez9CWgymmxwAC3qH6vTVqS1fTY8AhlibyIsXJaDfgG7QblYl2OxvtBnwjuf7ZumPLGabHgEOwsG9PLA742FLe2ghUmDs6TtcfHCrLcpkeBQ6RdCJDu4+kmR4DhtBuoOJoNyob7XY22g1UnDs6TjccHEK7UWkOHqfddsTigI9x/Cyg4t6uNkZ/nahiegw4zKb9fDiSU9FuoOJoN0yg3c5Fu4GKo90wgXbbD4sDPrZ2zzHTIwABLbHhZXp6eyvTY8CBNh84YXoEGEK7gYqh3TCFdjsX7QYqhnbDFNptPywO+NhGVsCAcsuudoqu2Xm56THgUJv28yLFqWg3UH60GybRbuei3UD50W6YxOKA/bA44EP7jqbrWHq26TGAgGS5QjUudIwOZISbHgUOtfkgL1KciHYD5Ue7YRrtdibaDZQf7YZpm1gcsB0WB3yIvReA8lvecKhm7G1gegw4GHswOBPtBsqPdsM02u1MtBsoP9oN02i3/bA44EO8SAHKJzW+k4ZsPcf0GHC4o2lZOnAs3fQYqGS0Gygf2g07oN3ORLuB8qHdsIOjaVk6cJx22wmLAz7EixSg7KzwKro9bYTSckJNjwKwF4MD0W6g7Gg37IR2Ow/tBsqOdsNONvOZQbbC4oAPbeDBDZTZV3Vv18/JNU2PAUji+IdORLuBsqPdsBPa7TwbaTdQZl/WvY12wzZot72wOOAjlmVpM3swAGWSXL+PRm/uYnoMwGPTAbbjTkK7gbKj3bAb2u08vFsEKJvk+n00ZvMZpscAPGi3vbA44CP7j2UoJTPH9BhAwHBH19L1B/9hegzAyyb2RHMU2g2UDe2GHdFuZ9l3NF0nMrJNjwEEDHd0vK49MMT0GIAX2m0vLA74yLbkFNMjAAHlzWpjtP5EFdNjAF62HORFipPQbqBsaDfsiHY7C+0Gyub1amO0MSXa9BiAF9ptLywO+MiO5FTTIwABY2ujK/Ts9pamxwAKSDqRqcMpmabHQCWh3UDp0W7YFe12FtoNlN6Whlfo+e0tTI8BFEC77YXFAR9hDwagdLKqN9E12y81PQZQJD4cyTloN1A6tBt2R7udg3YDpZNVvYkG76DdsC/abR8sDvjIdvZgAEpkuUL1r5AxOpgZbnoUoEh8yJ1z0G6gZLQbgYB2O8f2Q7QbKAntRiDgQ4ntg8UBH9l+iD0YgJIsbThcH++tZ3oMoFi8SHEO2g2UjHYjENBu59jOOweAEi1teCPthu2xsG8fLA74CHsfAsVLqd1ZQ7b0NT0GUKKtB/mh0yloN1A82o1AQbudg3YDxcttdx/TYwAlot32weKADySfyNDx9GzTYwC2ZYXHaETKCGW42eTA/pJTMkyPgEpAu4Hi0W4EEtrtDIdSMmk3UAzajUBCu+2DLYYP7D2abnoEwNZm171diw5VNz0GUCqHU7JMj4BKQLuB4tFuBBLa7Qx7jqSZHgGwtVl1aDcCB+22DxYHfOBoGg9ooCgHG5yjuzafbnoMoNSOpGaaHgGVgHYDRaPdCDS02xloN1C0gw3O1dgttBuBg3bbB4sDPnCMFylAodxV4nXd/htMjwGUSUpmjjKz3abHgJ/RbqBwtBuBiHY7A+0GCpfb7utNjwGUCe22DxYHfOBYOi9SgMK8VvVObUqJNj0GUGZH0tiLIdjRbqBwtBuBinYHP9oNFG5y7F20GwGJdtsDiwM+wNsbgYI2NbpKL2xvbnoMoFyOpLJdD3a0GyiIdiOQ0e7gR7uBgjY1ukov7WhmegygXGi3PbA44APH0rJNjwDYSlb1Zhq8/f9MjwGU2+EU9mAIdrQb8Ea7Eehod/Cj3YA32o1AR7vtgcUBH2APBuBvVkiYHnSNVnJmuOlRgHI7zB4MQY92A3+j3QgGtDv40W7gb7QbwYB22wOLAz7AsQ+Bvy1OuFGf7qtregygQo5y7MOgR7uBv9FuBAPaHfxoN/A32o1gcCSVdtsBiwM+cIw9GABJ0onap2nolj6mxwAqjD0Ygh/tBnLRbgQL2h38aDeQi3YjWBxhu24LLA74AG9vBCQrIkYjTtyqLLfL9ChAhR1mD4agR7sB2o3gQruDH+0GaDeCC+22BxYHfOBYOh+MBPy39ij9cri66TEAnziSwg+fwY52A7QbwYV2Bz/aDdBuBBfabQ8sDvgAezDA6Q40OE/3bOlsegzAZ9iDIfjRbjgd7Uawod3Bj3bD6Wg3gg3ttgcWB3yAYx/CydxVauvafdeZHgPwKY59GPxoN5yMdiMY0e7gR7vhZLQbwYh22wOLAxWUkZ2jjGy36TEAYybF3qktqdGmxwB86gh7MAQ12g2no90IRrQ7uNFuOB3tRjCi3fbA4kAF8dZGONmGRoM0aUcz02MAPnc4lW17MKPdcDLajWBFu4Mb7YaT0W4EK9ptDywOVNCxND4UCc6UWaO5Bm+72PQYgF+kZ+aYHgF+RLvhVLQbwYx2BzfaDaei3QhmtNseWByooGPprHLBeayQcD1gjdbhrDDTowB+ERrqMj0C/Ih2w4loN4Id7Q5utBtORLsR7Gi3PbA4UEGWZXoCoPL9knCj/ru/jukxAL8JC+FFSjCj3XAi2o1gR7uDG+2GE9FuBDvabQ8sDlRQRCg3IZzlRJ0uGr7lbNNjAH4VyouUoEa74TS0G05Au4Mb7YbT0G44Ae22BwpbQeFhPJDhHKmuKrrp2C3KcvO4R3ALCyGPwYx2w0loN5yCdgc32g0nod1wCtptDxy4rILYgwFOcteeftqYEm16DMDv2IMhuNFuOAnthlPQ7uBGu+EktBtOQbvtgcJWUDgvUuAgvECBU3Dsw+BGu+EktBtOQbuDG+2Gk9BuOAXttgcKW0ERYdyEABBs2IMhuNFuAAg+tDu40W4ACD602x4obAWxBwMABB9epAQ32g0AwYd2BzfaDQDBh3bbA4WtIPZgAIDgExbKi5RgRrsBIPjQ7uAWzv0LAEGHdtsDPx1XEC9SACD4hIaQx2BGuwEg+NDu4MbCPgAEH9ptD9wLFRTB2xsBIOjwwUjBjXYDQPCh3cGNdgNA8KHd9kBhK8jlcvFgBoAgw7EPgxvtBoDgQ7uDG+0GgOBDu+2BxQEf4MORACC48MNn8KPdABBcaHfwo90AEFxotz1QVx/g+IcAEFzYgyH40W4ACC60O/jRbgAILrTbHqirD7AHAwAEF/ZgCH60GwCCC+0OfrQbAIIL7bYH6uoDEaE8mAEgmITxw2fQo90AEFxod/Cj3QAQXGi3PXAv+EA4b28EgKBSIzrc9AjwM9oNAMGFdgc/2g0AwYV22wN19YEqEWGmRwAA+FB81UjTI8DPaDcABBfaHfyiw0NNjwAA8CHabQ8sDvhAvWo8mAEgmMTHsl0PdrQbAIIL7Q5+9apHmR4BAOBDtNseWBzwgfo1ok2PAADwofjYCNMjwM9oNwAEF9od/BrQbgAIKrTbHlgc8IEG7MEAAEGlNnswBD3aDQDBhXYHP9oNAMGFdtsDiwM+UL86ezAAQDCpxYuUoEe7ASC40O7gR7sBILjwmQP2wOKAD9SvwR4MABBMeHtj8KPdABBcaHfwo90AEFz4zAF7YHHABxqwBwMABI3QEJdqVuEXDMGOdgNA8KDdzkC7ASB45LY73PQYEIsDPlGPYx8CQNCoUzVSISEu02PAz2g3AAQP2u0MtBsAgkedqpFyuWi3HbA44ANR4aGqFcOeKgAQDBrUYK80J6DdABA8aLcz0G4ACB4JtNs2WBzwEY5/CADBgRcpzkG7ASA40G7noN0AEBxY2LcPFgd8pD7HPwSAoJBQk+25U9BuAAgOtNs5aDcABAfabR8sDvhIA45/CABBgT0YnIN2A0BwoN3OQbsBIDjQbvtgccBH6vOgBoCg0JDtuWPQbgAIDrTbOWg3AAQH2m0fLA74SH32YACAoMAeDM5BuwEgONBu56DdABAcOKyQfbA44CO8IAWA4MCLFOeg3QAQHGi3c9BuAAgObM/tg8UBH+FBDQCBr1ZMhGIjw0yPgUpCuwEg8NFuZ+GdAwAQ+OJjabedsDjgI3WrRio0xGV6DABABbRrUM30CKhEtBsAAh/tdpZ61aJEugEgsLVrUN30CMiHxQEfCQsNUeO4KqbHAABUQIcEXqQ4Ce0GgMBHu50lLDRETWrFmB4DAFABHVjYtxUWB3yIvVYAILB1YA8Gx6HdABDYaLfztKXdABDQWNi3FxYHfIhfMABAYOuQwHbcaWg3AAQ22u087Wk3AAQ0FvbthcUBH2pXnxcpABCoqkWFqTFvU3cc2g0AgYt2OxPtBoDAVS0qTKfU4tCudsLigA+1Z+ULAAIWe5A7E+0GgMBFu52JdgNA4GIbbj8sDvhQ7aqRql010vQYAIBy4K2NzkS7ASBw0W5not0AELg4HKD9sDjgY7zFEQACEx+K5Fy0GwACE+12LtoNAIGJdtsPiwM+xocjAUBgYg8G56LdABCYaLdz0W4ACExsv+2HxQEf69SQFTAACDRVIkLVLD7W9BgwhHYDQOCh3c5GuwEg8NBue2JxwMdOO6Wm6REAAGXUtn41hYS4TI8BQ2g3AAQe2u1stBsAAg/tticWB3ysbrUoNageZXoMAEAZdOCtjY5GuwEg8NBuZ6PdABB4aLc9sTjgB+zFAACBpT0fiuR4tBsAAgvtBu0GgMBCu+2JxQE/OO2UGqZHAACUQYcGvEhxOtoNAIGFdoN2A0Bgod32xOKAH/AiBQACR0RYiFrV5UORnI52A0DgoN2QeOcAAAQS2m1fLA74QfsG1RURyk0LAIGgbf1qCmOb7Xi0GwACB+2GJHVIqEa7ASBA0G774l7xg6jwULXlQzYAICCc3TLe9AiwAdoNAIGDdkOSIsNoNwAECtptXywO+MmZTeNMjwAAKIW+reuYHgE2QbsBIDDQbuQ5sxntBoBAQLvti8UBPzmnDQ96ALC7mlXCdVqjGqbHgE3QbgCwP9qN/M7ll00AYHu0295YHPCTMxrXVPXocNNjAACKcXar2goJcZkeAzZBuwHA/mg38jujSRztBgCbo932xuKAn4SFhqhPq9qmxwAAFOMc9jZDPrQbAOyPdiO/0BCX+ram3QBgZ7Tb3lgc8KPz2vLgBwC7CnGJXwSjANoNAPZFu1GYczksIADYFu22PxYH/KhvqzoK420zAGBLpzaqoZoxEabHgM3QbgCwL9qNwvRtTbsBwK5ot/2xOOBH1auEq0vjmqbHAAAUgrc2ojC0GwDsi3ajMNWjaTcA2BXttj8WB/yMwxMAgD3xIgVFod0AYE+0G0Xp17au6REAAIWg3fbH4oCfnceLFACwndpVI9UhoZrpMWBTtBsA7Id2ozjnsrAPALZDuwMDiwN+1rx2rJrGx5geAwCQT59WteVycWxaFI52A4D90G4Uh3YDgP3Q7sDA4kAlOLcNezEAgJ3w1kaUhHYDgL3QbpSEdgOAvdDuwMDiQCU4jxcpAGAbYSEu9W4Vb3oM2BztBgD7oN0oDdoNAPZBuwMHiwOVoGvTOFWNCjM9BgBA0umNa6paVLjpMWBztBsA7IN2ozRoNwDYB+0OHCwOVILw0BCd3aq26TEAAOKtjSgd2g0A9kG7URq0GwDsg3YHDhYHKkm/tjwpAMAO2B6jtHisAIA9sD1GafFYAQB7YHscOFgcqCR9W9VRaAif0A0AJnVqWF0t61Y1PQYCBO0GAPNoN8qCdgOAeafS7oDC4kAlqRkToZ7Na5keAwAc7ZqujUyPgABCuwHAPNqNsqDdAGDeINodUFgcqESDu55iegQAcKzo8FBdcmoD02MgwNBuADCHdqM8ru1GuwHAFNodeFgcqEQXtK+r+NgI02MAgCP171hPVaPCTY+BAEO7AcAc2o3yOL8d7QYAU2h34GFxoBKFh4boyi4NTY8BAI7EHuAoD9oNAObQbpQH7QYAc2h34GFxoJJd2/UUufh8JACoVM3iY9StaZzpMRCgaDcAVD7ajYqg3QBQ+Wh3YGJxoJI1iY9Rj2Z8QBIAVKarz+ADkVB+tBsAKh/tRkXQbgCofLQ7MLE4YAAfkAQAlScsxKUruySYHgMBjnYDQOWh3fAF2g0AlYd2By4WBwy4sH091YrhA5IAoDKc06aO6lSNMj0GAhztBoDKQ7vhC7QbACoP7Q5cLA4YEBHGByQBQGW5hrc2wgdoNwBUHtoNX6DdAFB5aHfgYnHAEN7iCAD+V7dapM5pU8f0GAgStBsA/I92w5doNwD4X52qtDuQsThgSNP4GJ3ZjE/wBgB/uvL0hgoNcZkeA0GCdgOA/9Fu+BLtBgD/u7IL7Q5kLA4YxF4MAOA/Lpc0iLc2wsdoNwD4D+2GP9BuAPAfl4tDCgU6FgcMuqhDPdWsEm56DAAISt2axKlJfIzpMRBkaDcA+A/thj9c1KGe4vhgYgDwC9od+FgcMCgyLFRXnM4HJAGAPwzuxt4L8D3aDQD+Q7vhD5FhobritATTYwBAULqmK+0OdCwOGMZbHAHA92pXjdSAjvVNj4EgRbsBwPdoN/zp2u60GwB8jXYHBxYHDGtRJ5YPSAIAH7v5rKaKDAs1PQaCFO0GAN+j3fCn5rVj1aNZLdNjAEBQuemspooKp92BjsUBGxhzbkvTIwBA0KgeHa7rz2xsegwEOdoNAL5Du1EZRp/XwvQIABA0qkeH6wbaHRRYHLCBni3i1a0peyACgC8M7dFYsZFhpsdAkKPdAOA7tBuVoWfzeHWn3QDgE7Q7eLA4YBN3n9/K9AgAEPCqRIRqeK+mpseAQ9BuAKg42o3KNJZ2A0CF0e7gwuKATZzZrBbHQASAChrc9RTVjIkwPQYcgnYDQMXRblQm2g0AFUe7gwuLAzbCXgwAUH4RoSG69exmpseAw9BuACg/2g0T7r6AdgNAeUWEhuiWs3nXQDBhccBGujWNU68W7MUAAOVxZZcE1aseZXoMOAztBoDyo90woWuTOJ3VIt70GAAQkK44PUH1q0ebHgM+xOKAzYztx14MAFBWEaEhGnVOC9NjwKFoNwCUHe2GSWPPb2l6BAAIOBGhIbrjXNodbFgcsJkzmsSpd0v2YgCAshjUtaEa1qxiegw4FO0GgLKj3TCpS2PaDQBlRbuDE4sDNsTxiwGg9CLDQjT6XPb+glm0GwBKj3bDDmg3AJReZFiI7jiHdgcjFgds6PRTaqpPq9qmxwCAgHB998aqW43jFcMs2g0ApUe7YQe0GwBK7/rujfmcoCDF4oBNsRcDAJQsOjxUt/dtbnoMQBLtBoDSoN2wE9oNACWj3cGNxQGb6tyohs5pzV4MAFCcIT0bq3bVSNNjAJJoNwCUBu2GnXRuVEPntqljegwAsDXaHdxYHLAx9mIAgKLFRobptrPZewH2QrsBoGi0G3Z0Vz+OoQ0ARaHdwY/FARvr1LCG+rVlLwYAKMwd57ZQzZgI02MAXmg3ABSNdsOOaDcAFI12Bz8WB2zu7vNbK8RlegoAsJdWdWN101lNTY8BFIp2A0BBtBt2RrsBoCDa7QwsDthcuwbVdH33xqbHAABbefzSDgoPJWGwJ9oNAAXRbtgZ7QaAgmi3M3APB4B7L2ytWryFBwAkSVeclqDuzWqZHgMoFu0GgL/RbgQC2g0Af6PdzsHiQACoHh2uf/ZvY3oMADCuWlSYHhrY1vQYQIloNwDkot0IFLQbAHLRbmdhcSBAXN2lobo0rml6DAAw6r4LWys+NtL0GECp0G4AoN0ILLQbAGi307A4ECBcLpceu7S9QvmUJAAO1alhdY4Fi4BCuwE4He1GoKHdAJyOdjsPiwMBpH2D6rqh+ymmxwCAShfikp64rINC+EENAYZ2A3Aq2o1ARbsBOBXtdiYWBwLMPRe2Vu2qvLUHgLNc1/0UdWpYw/QYQLnQbgBORLsRyO7hkBoAHIh2OxOLAwGmWlS4xv9fe9NjAECliY+N0H0X8uFwCFy0G4DT0G4EumpR4ZpwCe0G4By027lYHAhAAzvV1/nt6poeAwAqxYP926p6dLjpMYAKod0AnIR2IxjQbgBOQrudK8z0ACifJy7roCVbk3U8Pdv0KCiEOyNVRxZOV+qmxXKnHlVEnWaq2e9WRdZvJUmyLEtHF83QiVXfyZ2RosiEtoq7YKTC4xKKvMzjK77R8RXfKPvofklSePwpqtHzWkU3P8NznkM/vKOUNT/IFR6lGn2GKrb9OZ5/S1m/SClrflCdq8b56bsGfK9b0zhd2aWh6TEAn6Dd9ka7Ad+g3Qgmj1/aQUu2JOt4Bu22I9oN+AbtdjbeORCg6laL0j8v4u0+dpU8Z7LSt61U/MX3qP6Nryqq6Wna/9G/lH08SZJ07LfPdOz3LxV34SjV+8cLcoVH6cAnj8rKzizyMkOr1lLNPkNVf+jLqj/0ZUU1PlUH/vuEMg9ulySlbv5NKX/9rDqDHlfNvsN1aM5k5aQelSS5M1J0ZMH7irvgdv9/84CPhIe69MRlHUyPAfgM7bY32g1UHO1GsKlXPUr/7E+77Yp2AxUXHurSk7Tb0VgcCGDXdz9F3ZrGmR4DJ3FnZSh1wy+qcc5wRTXqoPCaDVTjrOsVXrO+jq/4VpZl6fjy2are4xpVaXmmIuo0VfzFdyv7xCGlblxc5OVWadFd0c27KjwuQeFxCap59hCFREQpY88GSVJW8k5FNeqoyPotFdOuj1wRVTx7Oxz+aYqqnjZAYdXqVMptAPjCjb2aqlXdqqbHAHyKdtsT7QZ8g3YjGF3f/RR1a0K77YZ2A75x41lN1ZJ2OxqLAwHM5XLp6Ss6KiKMu9FW3DmS5ZYr1PtYba6wSGXsWqvso/uVk3JY0U06e/4tJDJGkQ1aK2PP+lJdheXOUcq6n+XOSldkQu6eLBG1mypz32blpJ9Qxr7NsrIzFFazgdJ3rVXm/i2q2uX/fPYtAv7WvHaM7uzX0vQYgM/Rbpui3UCF0W4EK5fLpYlX0m7bod1AhTWvHaO7zmtlegwYxmcOBLhmtWM1tl8rPTOndHGD/4VEVlFkgzY6+utHCq/VSKExNZTy1wJl7FmvsJr1lXPicO75Ymp4fV1olRrKSTlS7GVnHtymfR/cKys7U66IaNW5/GFFxJ8iSYpu1kUx7ftq37SxcoVFKH7gWIWER+rQd6+r1sCxucdO/OMrhUZXU9yFdyiidmN/fPtAhUWGhejV605XlQgSheBEu+2HdgMVQ7sR7JrTbtuh3UDFRIaF6LXrT1d0RKjpUWAYr96CwIizm+nXLUlauCnJ9Cj4n1oX36Pkbydp9+tDJVeIIuo1V0zbs5Wxb3OFLjc8LkH1h78id0aqUjcsUtLXL6nudU97XqjUOOt61Tjres/5jyz6j6KadJYrJFRHF3+sBje+prTNS5X89YuqP2xShWYB/OVfF7dT2/rVTI8B+BXtth/aDZQf7YYT0G77od1A+T1ycTu1qUe7wWGFgkJIiEsvX9NZdatFmh4F/xNes77qXfe0Go39VAkjp6r+kJdkuXMUXqOeQmNrSpLcJ+2tkJN6RKEn7dVwMldouMJrNlBkvRaq2WeYIuo01fHlXxR63qzknUpZ95Nq9L5B6TtWK6phB4VWqa4qbXorc/8WuTNSffGtAj41oGM9/eNM9q5B8KPd9kO7gfKh3XAK2m0/tBsonwEd6+kG2o3/YXEgSNSKjdQrg09TaIjL9CjIJyQiSmGxccpJP6G0xD8U3fJMhVWvq9CYmkrfvtJzPndGqjL2bFBkgzZlunzLsmTlZBV6evJ3r6nmuTcrJCJastyy3Nn/u7L//ddyl/fbAvyiYc1oPX1lJ9NjAJWGdtsT7QZKj3bDaWi3PdFuoPQaxdFueGNxIIh0b1ZLd5/PB4nYQdrW35W29XdlHdmntMQV2v/hgwqPa6jYjv3kcrlU9YxLdfTXj5W66TdlHtympK9fVFhsnKq06uG5jP0fPaRjv3/p+fvhn6cqfecaZR/dr8yD23T456nK2LFaMe36Frj+E6u+U2h0NVVp0V2SFJnQVunb/1TG7vU6tmy2wmudopCoWL/fDkBphYe6NPna01QtKrzkMwNBhHbbB+0GyoZ2w6lot33QbqBsctt9Ou2GFz5zIMiM7NtcSxMP6eeNB02P4mjujFQdWTBN2ceTFBpVVVVa91SNs4fIFZr7lKvW/UpZWelK/m6y3OkpimrYTnUGPSZXWITnMrIO71Nk2jHP33NSjirpqxeVk3JIIZExiqjdRHUGPabopqd5XXdOymEdXfyJ6t3wnOe0yAatVa3b5Trw6QSFVKmu+IFj/XwLAGVz7wWtddopNU2PARhBu+2BdgNlQ7vhZLTbHmg3UDb3XdhanRvVMD0GbMZlWZZlegj41qGUTA2YtFD7jqWbHgUAStSnVW1NHd5VLhdvz4Zz0W4AgYR2A7QbQGA5p3VtvTeMdqMgDisUhOJiIjT5utMUxnEQAdhc3WqRenHQqbxAgePRbgCBgnYDuWg3gEBRt1qkXhjUmXajUCwOBKmuTeJ09wUcBxGAfYW4pJeu6axasZGmRwFsgXYDsDvaDXjr2iRO91zQ2vQYAFCkEJf08jWnKS4mouQzw5FYHAhit/dprnNa1zY9BgAU6o5zW6pn83jTYwC2QrsB2BntBgq6rU8z2g3Atkaf21I9mtcyPQZsjMWBIOZyufTioM6qXz3K9CgA4KVb0zjdeV5L02MAtkO7AdgV7QYKl9fuBrQbgM10bxqnMbQbJWBxIMjVjInQqxwHEYCNxMVE6JXBpymU7RJQKNoNwG5oN1C8mnz+AACbiYuJ0CvX0m6UjMUBB+jSOE73XshxEAGYFxri0guDTlU99qwCikW7AdgF7QZKp0vjON1HuwHYQGiISy8OOlV1q9FulIzFAYcYcXYzndemjukxADjchEva65zWbIuA0qDdAOyAdgOld+vZzdSvLc8XAGY9dml79aXdKCUWBxzC5XJp0rWnqUNCNdOjAHCoUec01w1nNjY9BhAwaDcA02g3UDYul0svD6bdAMwZdU5zXd+ddqP0WBxwkNjIME0Z1k2nxFUxPQoAh7ni9ATdd2Eb02MAAYd2AzCFdgPlExsZpqnDu6lxLdoNoHLRbpQHiwMOU7tqpN6/sZviYyNMjwLAIXq3jNczV3YyPQYQsGg3gMpGu4GKiY+l3QAqF+1GebE44EBN4mM0ZVg3xUSEmh4FQJBrW7+a3rihi8JDyQ1QEbQbQGWh3YBvNK5FuwFUDtqNiuBR41AdG1bXm//oovBQl+lRAASphBrRmja8q2Ijw0yPAgQF2g3A32g34Fu0G4C/0W5UFIsDDta7ZW09d9WpcvE6BYCPVY8O17Qbu6pOtSjTowBBhXYD8BfaDfhH75a19fzVtBuA71WPDtfU4bQbFcPigMNddlqCHurf1vQYAIJIRFiI3hlyhlrUqWp6FCAo0W4Avka7Af+6tHOCHh5AuwH4TkRYiN7+Rxe1rEu7UTEsDkC3nN1Mt/RuanoMAEHA5ZJeGtRZ3ZrGmR4FCGq0G4Cv0G6gctzcm3YD8I28dndvVsv0KAgCLA5AkvTQgLa6rHMD02MACHAPD2irgZ3qmx4DcATaDcAXaDdQeR4a0FaXn5ZgegwAAY52w5dYHIAkyeVy6bmrT1XvlvGmRwEQoG46q6lu7t3M9BiAY9BuABVFu4HK5XK59OxVnWg3gHK7sRfthm+xOACP8NAQvXlDF3VqWN30KAACzMBO9fWvgRxHFahstBtAedFuwAzaDaC8Bnasr0cupt3wLRYH4CUmMkxThnVVk1pVTI8CIEBc0K6uXhrUWS6Xy/QogCPRbgBlRbsBs2g3gLI6v11dvXQN7YbvsTiAAmrFRmr6zd15oQKgRAM71tfr15+uiDByAphEuwGUFu0G7IF2AyitAR3r0W74jcuyLMv0ELCng8czNOS9pfpr7zHTowCwocs6N9ALgzorNIQ9FwC7oN0AikO7Afuh3QCKc2nnBnqRdsOPWBxAsY6mZemmqcu0fPth06MAsJGrujTUs1d2UggvUADbod0ACkO7Afui3QAKQ7tRGVgcQInSMnN02/Tf9fPGg6ZHAWAD13ZrpKcu78ixDgEbo90A8qPdgP2lZebo9hm/a/4G2g2AdqPysDiAUsnKcWvsxyv11Z97TY8CwKAhPRprwiXteYECBADaDUCi3UAgycpx6+5PVunLVXtMjwLAoKE9Gms87UYlYXEApeZ2W/rX7DX6z287TI8CwIAx57bQ3Re0Nj0GgDKg3YCz0W4g8Ljdlh6ZvUYzaDfgSLQblY3FAZTZs3PW6/X5W0yPAaCSuFzSuIvbaVivpqZHAVBOtBtwFtoNBD7aDTgL7YYpLA6gXN76eYsmfrve9BgA/Cw81KXnrz5Vl3ZOMD0KgAqi3YAz0G4geLy9YIue+oZ2A8GOdsMkFgdQbh8v26GHPl+jHDcPISAYRYeH6vUbTtc5reuYHgWAj9BuILjRbiD40G4guNFumMbiACrk29V7dedHK5WZ4zY9CgAf+v/27jw468LO4/j3yUESQhCCSAQhWmlURBCh1rW1lm6rUO1huzrraqvb2upYttParke327G707L2ctTpaE9rwa1aj7qzbaVVtgfXSEEOQeSURMohgXDlPvYPNC1VkCPJ73me3+s1kwlixG9mknk/wyd5clxZcfz42kkxsboy6VOAHqbdkJ+0G/KXdkN+0m6ygXGAY/bHNa/E9TMWRWNrR9KnAD1gZGVZ/Oiat0XNsIqkTwF6iXZDftFuyH9z1myPT8/4k3ZDnhhV2T9+eM0k7SZxxgF6xOLanfHpny6K7Xtbkj4FOAYX1gyNu/9xQhzXvzjpU4Bept2QH7Qb0uO52p3xKe2GnKfdZBPjAD1m866muGHm4lha15D0KcARymQiPvPu0XHT+2qioCCT9DlAH9FuyF3aDem0ZVdzXD9zkXZDDtJuspFxgB7V0t4RX37i+fj5opeTPgU4TBUlRfGtK8bHxWdWJX0KkADthtyj3ZBu2g25R7vJVsYBesWM+S/Ff/zvymjr8OEF2Wz0CQPiex+bGKcOHZD0KUDCtBtyg3YDr/np/JfiP7Ubsp52k82MA/SaZzfsiBsfXOz5ECFLTTmzKr51xfgYUFKU9ClAltBuyG7aDfyt/e1eFNv3tiZ9CvAGpo6tim9dPj7KtZssZRygV23Z1Rw3zFwUSzwfImSNgkzEFy8+LW589+ikTwGykHZD9tFu4FD8DCHIPtpNrjAO0Ota2ztj+q9fiPvnvpT0KZB6g/sXx91XTogL3jo06VOALKbdkD20Gzgc2g3ZQ7vJJcYB+sxTz2+Jmx9dGrub25M+BVLpzOED476rJ8bIyv5JnwLkCO2GZGk3cKSeen5z/Oujy2KPdkMitJtcYxygT9XtaIzP/PfiWPbyrqRPgVT5yIQR8fWPnBWlxYVJnwLkGO2GZGg3cLRq6/e3e/km7Ya+9JFzRsTXL9NucotxgD7X2t4ZX/vlynhg/sakT4G816+oIP7t/WfENeefnPQpQA7Tbug72g30BO2GvqPd5DLjAIn51fLNcdvjy2NXU1vSp0BeOmfUoPjGP4yP0ScMSPoUIE9oN/Qu7QZ62i+XbY4vPaHd0Fu0m1xnHCBR2/Y0x+3/syJ+tXxL0qdA3igrLowvXFQTn3jHKVFQkEn6HCDPaDf0PO0GepN2Q88rKy6ML158Wvzz+SdrNznNOEBW+M2KLfHvTz4fW3e3JH0K5LTz3lIZd3x0XFQPKU/6FCDPaTf0DO0G+sqsFVviK9oNx0y7ySfGAbLG7ua2+K9fr4qfPVsbPirhyAwoKYpbpp4eV799VGQyvmoB6BvaDUdPu4Ek7G5ui+m/WhUPLdRuOFIDSori1qmnx1XaTR4xDpB1Fqyvjy89vjzWb9+X9CmQE95VMzSmf+SsGDGoLOlTgJTSbjgy2g0kbcH6+rjt8eWxQbvhsFz4aruHazd5xjhAVmpu64i7n1kT3//D+mjv9CEKb+S4suL48iVnxOWTRiZ9CoB2w2HQbiCbNLd1xF3PrIkfaDcclHaT74wDZLUVf94Vtz62PJZv2pX0KZBV3jdmWHztw2PjhIGlSZ8CcADthjem3UC20m54Y9pNGhgHyHodnV3xoznr487frommto6kz4FEVZb3i9s/eGZ8cPzwpE8BOCjthr/QbiAXdHR2xQ//uD7ufHp1NLd1Jn0OJEq7SRPjADmjtr4xbntiWcxdW5/0KZCID4wfHrd/YEwMGVCS9CkAh0W7STvtBnLNxvp9cdvjy2PeOu0mnbSbtDEOkHMeWVgXdzy1Kur3tSZ9CvSJc0+ujFumnh4TqwcnfQrAUdFu0ka7gVz38MLa+MZTL2o3qXHuKZVxyxTtJn2MA+SkfS3t8eM5G+L7f1wfe5rbkz4HesXpVRVx85TT4j2nD0v6FIBjpt2kgXYD+WRfS3v8aM6G+MEf1seeFu0mP2k3aWccIKc1NLbGvb9fFw/Me8nzIpI3Rgwqiy9cVBMfPntEFBRkkj4HoEdpN/lIu4F81tDYGvf+bl08MF+7yR/aDfsZB8gL23Y3xz2z18ZDC2ujrcOHNLmpsrxffGby6PjYedXRr6gg6XMAepV2kw+0G0iTbbub4+7Za+LhhXXaTc7SbjiQcYC8UrejMe787er4xZJN0ekjmxzRv19hXPfOU+JT73pLVJQWJ30OQJ/SbnKRdgNpVlvfGHc+vTqe1G5yiHbDGzMOkJdWb90T3/7NizFrxdakT4GDKi7MxJXnjop/ec9bY2hFSdLnACRKu8kF2g3wF6u37olvzXoxfrNSu8le2g2HZhwgry2ta4hvznox5qzdnvQp0C2TifjAuOHxhYtqonpIedLnAGQV7SYbaTfAwS2pa4hvzloVc9fWJ30KdMtkIi4dNzy+qN1wSMYBUmHeuu3xzVkvxnO1DUmfQoplMhHvrhkaX7jotBg74rikzwHIatpNNtBugMM3b+32+MasF2NJXUPSp5Bi2g1HxjhAqsxetTV+NGeDr2igT5UUFcRlE0bEJ995Srx1WEXS5wDkFO0mCdoNcPSeXrk1fjx3Q8xbp930He2Go2McIJXWbtsbMxdsjMcWvxx7mtuTPoc8dfyAkvjYedVx9XmjYsgAz20IcCy0m76g3QA9Z+22PTFj/sZ4fPGm2NOi3fQO7YZjYxwg1Rpb2+OJ5zbFjPkbY9WWPUmfQ544bVhFfPKdp8SHJgyPkqLCpM8ByCvaTW/QboDes69lf7tnLtBues7pVRXxiXeeEh86W7vhWBgH4FULX9oRP52/MZ56fnO0dfi04MgUF2biojOr4qq3j4rzTz0+6XMAUkG7ORbaDdD3nt2wI2Ys0G6Ozmvtvvrt1fF3pw5J+hzIC8YB+Buv7GmJh56tjZ89Wxt/3tWc9DlkuRGDyuLKc0fGFW8bGSdUlCZ9DkAqaTdHQrsBkrdtT3M89Gxd/OzZ2tis3byJEYPK4p/ePiqumDQyhlZ46iDoScYBOIiOzq747cqtMXPBxpi7bnv4TOE1BZmIC2uGxtXnVcfk006IgoJM0icBENrNwWk3QHba3+4tMWPBxpi71g8w5i+0G/qGcQAOw7pX9saM+RvjySWbYmdjW9LnkIBMJmLcSYPi/WOr4pJxJ8ZJg/snfRIAh6DdaDdAblm7bW/MXLAxfrFkUzRod2qNHzkopo6tiku1G/qEcQCOQHtHZ8xfXx+/Wr45Zq3YGjv2tSZ9Er2oIBMxqboypoytiiljq2L4oLKkTwLgCGl3umg3QO5r7+iMeetea/cWI3+eK8hETKweHFPHnqjdkADjAByl9o7OWLB+R/zy1Qcs/rIhPxQWZOK8t1TGlLEnxsVnDvNcxAB5RLvzk3YD5C/tzk/aDdnDOAA9oKOzKxasr4/frNgST7+wLTY1NCV9EkegX2FBnD96SEwdWxUXjamKweX9kj4JgF6m3blNuwHSR7tzW3FhJt4x+viYOrYq3jemKiq1G7KCcQB6waotu+OZF7bFMy9sjSV1DdHpsyzrlBQVxLtqhsb7z6qKvz9jWAwsLU76JAASpN3ZT7sB+Gvanf1ea/fUsfvbfVyZdkO2MQ5AL6vf2xKzV22L2au2xYL19Z4vMSGFBZk448SKmFRdGeeeUhkX1gyN8pKipM8CIAtpd3bQbgAOV/3elvi/F1+JZ17Yqt0J0m7IPcYB6GMbtu+LxRt3xnN1O2PxxoZ4ceue6PAlDj2uoqQoJlQPjomjBsekkwfH2SMHeVACwFHR7r6h3QD0lA3b98VztTtjce3OeK62IVZt0e7eUFFSFGePGhSTqiu1G3KUcQAS1tjaHste3tX9oOW52p2xfa8fsnSkThpcFpOqB8fEkytjUvXgOG1YRRQUZJI+C4A8pN09Q7sB6Cuvb3dDbN/bkvRZOUe7If8YByAL1e1oPOAvHFZu3h1tHT5VX1NUkIkxwwfGxOrB3V+hMGxgadJnAZBi2n1o2g1AttHuQ9NuSAfjAOSA5raOeH7Trli5eXfU7WiMuh1NUbezMep2NMbu5vakz+sVhQWZOPG40qge0j+qh5RHdWX/7l+fcnx5lBYXJn0iAByUdms3ALlFuw9s98lDyqOsn3ZDvjMOQI7b1dQWdTsa4+Wd+x+81O5o7H4A8/LOpmhp70z6xIPqV1QQIweX7X8QMqT//gcix+9/QHLS4P7Rr6gg6RMBoMdpNwDklrxr96u/1m7AOAB5rKurK17Z0/Lqg5am2NTQFLub26K5tSOa2jqiqa0zmlo7oqmt/dXXndHc1hFNrR3R2NoezW2d0drx5g9yigszUVJUGKXFBVFSVBgDy4pjYGnRq6+L47iy4hhYVtT96xMHlUb1kPI4cWCp5ycEgL+i3QCQW46l3U2vvu6Vdh9XGtXHazdwaMYB4JA6Oru6H7A0t3VEe2dXlBQVRGlxYffrQg80ACBraDcA5BbtBpJiHAAAAAAAgJTxxGIAAAAAAJAyxgFS4yc/+UkMGjQo6TMAgMOk3QCQW7QbILcYB8g51157bWQymde9rF27NunTAIA3oN0AkFu0GyAdipI+AI7GlClT4v777z/g94YOHZrQNQDAm9FuAMgt2g2Q/3znADmppKQkqqqqDni566674qyzzory8vIYOXJk3HjjjbF3796D/hlLly6NyZMnR0VFRQwcODAmTpwYf/rTn7r//Zw5c+KCCy6IsrKyGDlyZHz2s5+Nffv29cW7BwB5R7sBILdoN0D+Mw6QNwoKCuLuu++OFStWxAMPPBCzZ8+Om2+++aBvf9VVV8VJJ50UCxcujEWLFsWtt94axcXFERGxbt26mDJlSnz0ox+NZcuWxcMPPxxz5syJadOm9dW7AwB5T7sBILdoN0B+yXR1dXUlfQQciWuvvTZmzpwZpaWl3b83derU+PnPf37A2z366KNxww03xPbt2yNi/w9G+tznPhcNDQ0RETFw4MC455574pprrnnd/+O6666LwsLC+N73vtf9e3PmzIkLL7ww9u3bd8D/GwA4NO0GgNyi3QDp4GcOkJMmT54c9957b/c/l5eXx9NPPx3Tp0+PVatWxe7du6O9vT2am5ujsbEx+vfv/7o/46abborrrrsuZsyYEe9973vj8ssvj1NPPTUi9n/r47Jly+LBBx/sfvuurq7o7OyMDRs2xBlnnNH77yQA5BHtBoDcot0A+c/TCpGTysvLY/To0d0vLS0tcemll8a4cePisccei0WLFsV3v/vdiIhobW19wz/j9ttvjxUrVsQll1wSs2fPjjFjxsQTTzwRERF79+6N66+/PpYsWdL9snTp0lizZk33AxkA4PBpNwDkFu0GyH++c4C8sGjRoujs7Ixvf/vbUVCwf/N65JFH3vS/q6mpiZqamvj85z8fV155Zdx///1x2WWXxTnnnBMrV66M0aNH9/bpAJBK2g0AuUW7AfKP7xwgL4wePTra2trinnvuifXr18eMGTPivvvuO+jbNzU1xbRp0+J3v/tdbNy4MebOnRsLFy7s/rbFW265JebNmxfTpk2LJUuWxJo1a+LJJ5/0g5EAoIdoNwDkFu0GyD/GAfLC+PHj4zvf+U7ccccdMXbs2HjwwQdj+vTpB337wsLCqK+vj49//ONRU1MTV1xxRUydOjW++tWvRkTEuHHj4ve//32sXr06LrjggpgwYUJ85StfieHDh/fVuwQAeU27ASC3aDdA/sl0dXV1JX0EAAAAAADQd3znAAAAAAAApIxxAAAAAAAAUsY4AAAAAAAAKWMcAAAAAACAlDEOAAAAAABAyhgHAAAAAAAgZYwDAAAAAACQMsYBAAAAAABIGeMAAAAAAACkjHEAAAAAAABSxjgAAAAAAAApYxwAAAAAAICUMQ4AAAAAAEDKGAcAAAAAACBljAMAAAAAAJAyxgEAAAAAAEgZ4wAAAAAAAKSMcQAAAAAAAFLGOAAAAAAAACljHAAAAAAAgJQxDgAAAAAAQMoYBwAAAAAAIGWMAwAAAAAAkDLGAQAAAAAASBnjAAAAAAAApIxxAAAAAAAAUsY4AAAAAAAAKWMcAAAAAACAlDEOAAAAAABAyhgHAAAAAAAgZYwDAAAAAACQMsYBAAAAAABIGeMAAAAAAACkjHEAAAAAAABSxjgAAAAAAAApYxwAAAAAAICUMQ4AAAAAAEDKGAcAAAAAACBljAMAAAAAAJAyxgEAAAAAAEgZ4wAAAAAAAKSMcQAAAAAAAFLm/wHB8oWceQdV3gAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Вывод распределения количества наблюдений по меткам (классам)\n",
|
||
"print(df.hazardous.value_counts(), '\\n')\n",
|
||
"\n",
|
||
"data: DataFrame = df[[\n",
|
||
" 'est_diameter_min', \n",
|
||
" 'est_diameter_max', \n",
|
||
" 'relative_velocity', \n",
|
||
" 'miss_distance', \n",
|
||
" 'absolute_magnitude', \n",
|
||
" 'hazardous'\n",
|
||
"]].copy()\n",
|
||
"\n",
|
||
"df_train, df_val, df_test = split_stratified_into_train_val_test(\n",
|
||
" df, \n",
|
||
" stratify_colname=\"hazardous\", \n",
|
||
" frac_train=0.60, \n",
|
||
" frac_val=0.20, \n",
|
||
" frac_test=0.20\n",
|
||
")\n",
|
||
"\n",
|
||
"# Оценка сбалансированности\n",
|
||
"def check_balance(dataframe: DataFrame, dataframe_name: str, column: str) -> None:\n",
|
||
" counts: Series[int] = dataframe[column].value_counts()\n",
|
||
" print(dataframe_name + \": \", dataframe.shape)\n",
|
||
" print(f\"Распределение выборки данных по классам \\\"{column}\\\":\\n\", counts)\n",
|
||
" total_count: int = len(dataframe)\n",
|
||
" for value in counts.index:\n",
|
||
" percentage: float = counts[value] / total_count * 100\n",
|
||
" print(f\"Процент объектов класса \\\"{value}\\\": {percentage:.2f}%\")\n",
|
||
" print()\n",
|
||
" \n",
|
||
"# Определение необходимости аугментации данных\n",
|
||
"def need_augmentation(dataframe: DataFrame,\n",
|
||
" column: str, \n",
|
||
" first_value: Any, second_value: Any) -> bool:\n",
|
||
" counts: Series[int] = dataframe[column].value_counts()\n",
|
||
" ratio: float = counts[first_value] / counts[second_value]\n",
|
||
" return ratio > 1.5 or ratio < 0.67\n",
|
||
" \n",
|
||
" # Визуализация сбалансированности классов\n",
|
||
"def visualize_balance(dataframe_train: DataFrame,\n",
|
||
" dataframe_val: DataFrame,\n",
|
||
" dataframe_test: DataFrame, \n",
|
||
" column: str) -> None:\n",
|
||
" fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n",
|
||
"\n",
|
||
" # Обучающая выборка\n",
|
||
" counts_train: Series[int] = dataframe_train[column].value_counts()\n",
|
||
" axes[0].pie(counts_train, labels=counts_train.index, autopct='%1.1f%%', startangle=90)\n",
|
||
" axes[0].set_title(f\"Распределение классов \\\"{column}\\\" в обучающей выборке\")\n",
|
||
"\n",
|
||
" # Контрольная выборка\n",
|
||
" counts_val: Series[int] = dataframe_val[column].value_counts()\n",
|
||
" axes[1].pie(counts_val, labels=counts_val.index, autopct='%1.1f%%', startangle=90)\n",
|
||
" axes[1].set_title(f\"Распределение классов \\\"{column}\\\" в контрольной выборке\")\n",
|
||
"\n",
|
||
" # Тестовая выборка\n",
|
||
" counts_test: Series[int] = dataframe_test[column].value_counts()\n",
|
||
" axes[2].pie(counts_test, labels=counts_test.index, autopct='%1.1f%%', startangle=90)\n",
|
||
" axes[2].set_title(f\"Распределение классов \\\"{column}\\\" в тренировочной выборке\")\n",
|
||
"\n",
|
||
" # Отображение графиков\n",
|
||
" plt.tight_layout()\n",
|
||
" plt.show()\n",
|
||
" \n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"check_balance(df_train, 'Обучающая выборка', 'hazardous')\n",
|
||
"check_balance(df_val, 'Контрольная выборка', 'hazardous')\n",
|
||
"check_balance(df_test, 'Тестовая выборка', 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test, 'hazardous', True, False) else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train, df_val, df_test, 'hazardous')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Приращение данных:\n",
|
||
"\n",
|
||
"**Аугментация данных** может быть полезна в том случае, когда имеется недостаточное количество данных и мы хотим сгенерировать новые данные на основе имеющихся, слегка модифицировав их.\n",
|
||
"\n",
|
||
"**Методы решения:**\n",
|
||
"1. **Выборка с избытком (oversampling).** Копирование наблюдений или генерация новых наблюдений на основе существующих с помощью алгоритмов SMOTE и ADASYN (нахождение k-ближайших соседей).\n",
|
||
"2. **Выборка с недостатком (undersampling).** Исключение некоторых наблюдений для меток с большим количеством наблюдений. Наблюдения можно исключать случайным образом или на основе определения связей Томека для наблюдений разных меток."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"После применения метода oversampling:\n",
|
||
"Обучающая выборка: (98782, 21784)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"True 49585\n",
|
||
"False 49197\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"True\": 50.20%\n",
|
||
"Процент объектов класса \"False\": 49.80%\n",
|
||
"\n",
|
||
"Контрольная выборка: (33168, 11762)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"True 16769\n",
|
||
"False 16399\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"True\": 50.56%\n",
|
||
"Процент объектов класса \"False\": 49.44%\n",
|
||
"\n",
|
||
"Тестовая выборка: (32695, 11820)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 16400\n",
|
||
"True 16295\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.16%\n",
|
||
"Процент объектов класса \"True\": 49.84%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных не требуется\n",
|
||
"Для контрольной выборки аугментация данных не требуется\n",
|
||
"Для тестовой выборки аугментация данных не требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAHxCAYAAAC1TkfqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC/0lEQVR4nOzdd3hT1f8H8Hd3SwerbJA9ZIkiDoaAArJElKGoP4YDFFDBjX4RcCGiskVQBARkCygiexbKprRQCqWD0kH3brPP74+Y0JBOaHqS2/frefIoaXLzzk1yz733c865TkIIASIiIiIiIiIiIiIiIgDOsgMQEREREREREREREZH9YOGAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiB5CRkYHr169Dp9PJjkLlSAiBtLQ0hIeHy45CRERE5Uij0eDWrVuIj4+XHYWIiIhsKDc3Fzdv3kR6errsKOWOhQMiB9CkSRMMHjxYdoxy06tXL/Tq1Ut2DLum1Wrx3Xff4YEHHoCHhweqV6+Oli1b4sCBA7KjOYRLly5h+/bt5n8HBQXhn3/+kReogOzsbPzvf/9D69at4e7ujpo1a6JVq1a4evWq7GhEdI/YXhPZ3tq1axEdHW3+96pVqxAXFycvUAFnz57FSy+9BH9/f3h4eKBevXoYNmyY7FhElR7bZyLH9M0338BgMAAADAYDZs+eLTnRbZs3b8ZTTz0FX19f+Pj44L777sN3330nO1a5K1PhYNWqVXBycjLfPD090apVK0yePBmJiYm2ykikeDNnzkSTJk0A3P6dke316tULY8eOBQCMHTvWbna+1Go1+vTpg+nTp6NXr17YvHkz9u3bh4MHD+Lxxx+XHc8hZGdnY8KECTh58iTCw8Px7rvvIiQkRHYspKam4vHHH8fChQsxfPhw7NixA/v27cPhw4fN24DywPaayDbYXsthr+01yXHs2DF89NFHiI6Oxp49ezBp0iQ4O8vvD7djxw50794doaGh+Prrr7Fv3z7s27cPy5YtMz+G7TORbbB9loPtM9na6tWr8f333yM2NhY//PADVq9eLTsSAOCTTz7ByJEj4evri19++QX79u3D/v37MXHiRNnRyp3r3Tzpiy++QNOmTaFSqRAQEIClS5di165duHTpEqpUqVLeGYmIKpU5c+bg1KlT2LNnD3e+7tLjjz9uvgFAq1at8MYbb0hOBXz44YdISEhAYGAg2rVrZ/PXY3tNRERKM3XqVPTq1QtNmzYFALz33nuoV6+e1ExpaWl4/fXX8fTTT2Pz5s1wd3cv9vFsn4mIiEr2xRdfYPTo0fj444/h4eGBtWvXyo6EI0eOYM6cOZg9ezY++eQT2XFs7q4KBwMGDMDDDz8MAHj99ddRs2ZN/Pjjj9ixYwdGjRpVrgGJyPHk5ubC29tbdgyHpNPpMH/+fLz//vssGtyj7du3IzQ0FPn5+ejQoUOJB/G2lpSUhNWrV+Pnn3+ukKIBwPaaiIrH9pocUZs2bRAREYFLly7B398fzZs3lx0JK1euhEqlwqpVq0q1v8H2mYiKw/aZyOiFF15A7969cf36dbRs2RK1atWSHQnff/89unbtWimKBkA5XePgySefBABERUUBMPa4+OCDD9ChQwf4+PjAz88PAwYMwMWLF62eq1KpMHPmTLRq1Qqenp6oV68enn/+eURERAAAoqOjLYZz3nkreGLt8OHDcHJywsaNG/Hpp5+ibt268Pb2xpAhQ3Dz5k2r1z516hT69++PqlWrokqVKujZsyeOHz9e6Hvs1atXoa8/c+ZMq8euXbsWnTt3hpeXF2rUqIEXX3yx0Ncv7r0VZDAYMH/+fLRr1w6enp6oU6cOJkyYYHXRjaLm7Zs8ebLVMgvLPnfuXKt1ChinTZkxYwZatGgBDw8PNGrUCB999BHUanWh66qgwube+/rrr+Hs7Iw//vjjrtaH6Udas2ZNeHl5oXPnztiyZUuhr7927Vo88sgjqFKlCqpXr44nnngCe/futXjMv//+i549e8LX1xd+fn7o0qWLVbbNmzebP1N/f3+88sorVnOpjh071iJz9erV0atXLxw7dqzE9VRaAQEBeOSRR+Dp6YlmzZrh999/t/h7aX97TZo0KXJdHz58GABw48YNTJw4Ea1bt4aXlxdq1qyJESNGWMwpC9weCnrkyBFMnDgRtWvXRsOGDc1/X758OZo3bw4vLy888sgjRa6PpKQkvPbaa6hTpw48PT3xwAMPWA1DM/3GTRlNTN+dVatWme+7desWxo0bh4YNG5rnmH322Wet8pdVwXXn7OyMunXr4oUXXkBMTEypnv/TTz+hXbt28PDwQP369TFp0iRkZGSY/3716lWkp6fD19cXPXv2RJUqVVC1alUMHjwYly5dMj/u0KFDcHJywrZt26xe448//oCTkxMCAwPNmU1DSE0KW5fHjh3DiBEjcN9995l/61OnTkV+fr7Fc2fOnGn1u1y3bh06deoET09P1KxZE6NGjbJaJ2PHjoWPj4/FfVu2bCn0M/Xx8bHKDJRu+1pwu9O2bVt07twZFy9eLHR7Upg7t/f+/v4YNGiQxfoHjNvRyZMnF7kc02/D9J07c+YMDAYDNBoNHn744WLXFQAcPHgQPXr0gLe3N6pVq4Znn30WV65csXiM6bMICwvDyJEj4efnh5o1a2LdunVWy3NyckJCQgIAY3ut0+nQp08f8zQJBbcZX3/9tdV6Dg8PZ3vN9rpM64PtNdtrR22vC2s3x48fD09PT6v3VFK7Dhh/X+3bt7d6ne+//96inSju83ZycjJPw2Faj99//z3mzZuHxo0bw8vLCz179rRqq4DStSeFrbfCvm+mx5Q0V3jBjHdq37691famNN+rgt8fb29vPProo2jevDkmTZoEJyenQvcbCnu+6ebm5oYmTZrgww8/hEajMT/O9Fs5e/Zskcu6c5t58uRJdOrUCd988w0aNWoEDw8PtGzZEt9++615buaCfv31VzRv3hweHh5o0qSJue0peDxdtWpV+Pn5wcvLCy4uLnB2dkazZs3w559/Wizrl19+gZOTE5o2bWpun/v06QM/Pz8MHjwY169fL/Z71axZM3NGts9sn+/E9pnts720z7ZqI8PCwjB8+HDUqFEDnp6eePjhh/HXX39ZPKaodiElJcVqW1DYsXJOTg7q1q1rte5N+wfnzp1D165d4eXlhaZNm+Lnn3+2ylmWdrKkdg4AIiMjMWLECNSoUQNVqlTBY489ZnVNwMLeC2C9n1SW9QMAFy5cwIABA+Dn5wcfHx889dRTOHnypMVjCh5L165d27zN6tixo9V3tTB3Tg1YpUoVdOjQAb/++qvF4wo7R3GnO9/DyZMn0b59e7z44ouoUaMGvLy80KVLF4trLJqU5XMrzXd27NixVlMcr127Fs7Ozvj2228t7i/Nd7s07mrEwZ1MJw1q1qwJwPgF3L59O0aMGIGmTZsiMTERy5YtQ8+ePREaGor69esDAPR6PQYPHowDBw7gxRdfxLvvvovs7Gzs27cPly5dsug9MmrUKAwcONDidadNm1Zonq+//hpOTk74+OOPkZSUhPnz56NPnz4ICgqCl5cXAOMO9IABA9C5c2fMmDEDzs7OWLlyJZ588kkcO3YMjzzyiNVyGzZsaL4QR05ODt56661CX3v69OkYOXIkXn/9dSQnJ2PRokV44okncOHCBVSrVs3qOePHj0ePHj0AAH/++afVicAJEyZg1apVGDduHN555x1ERUVh8eLFuHDhAo4fPw43N7dC10NZZGRkFHqREYPBgCFDhiAgIADjx4/H/fffj5CQEMybNw/Xrl0r9IdRnJUrV+J///sffvjhB7z00kuFPqak9bFgwQIMGTIEL7/8MjQaDTZs2IARI0Zg586dGDRokPlxs2bNwsyZM9G1a1d88cUXcHd3x6lTp3Dw4EH069cPgHFj8uqrr6Jdu3aYNm0aqlWrhgsXLmD37t3mfKZ136VLF8yePRuJiYlYsGABjh8/bvWZ+vv7Y968eQCA2NhYLFiwAAMHDsTNmzcL/ezL4vr16xg+fDhee+01jBkzBr/99hvGjh2Lzp07m3svl/a3N3/+fOTk5Fgsf968eQgKCjL/js+cOYMTJ07gxRdfRMOGDREdHY2lS5eiV69eCA0NtRpGPXHiRNSqVQuff/45cnNzAQArVqzAhAkT0LVrV0yZMgWRkZEYMmQIatSogUaNGpmfm5+fj169euH69euYPHkymjZtis2bN2Ps2LHIyMjAu+++W+b1NWzYMFy+fBlvv/02mjRpgqSkJOzbtw8xMTH3PJd8jx49MH78eBgMBly6dAnz589HfHx8iTu1M2fOxKxZs9CnTx+89dZbuHr1KpYuXYozZ86Yf8upqakAjNu3li1bYtasWVCpVFiyZAm6deuGM2fOoFWrVujVqxcaNWqEdevW4bnnnrN4nXXr1qF58+Zlvh7C5s2bkZeXh7feegs1a9bE6dOnsWjRIsTGxmLz5s1FPu+PP/7AK6+8ggceeACzZ89GamoqFi5ciICAAFy4cAH+/v5lylGUu9m+mnz88cdleq02bdrgs88+gxACERER+PHHHzFw4MBSF4gKY/psJ0+ejM6dO+Pbb79FcnJyoetq//79GDBgAJo1a4aZM2ciPz8fixYtQrdu3XD+/Hmr7/DIkSPRpEkTzJ49GydPnixyCKfpALlmzZp4/fXXERAQAH9/fwwbNsy8zfj++++xe/duDBkyxLyeFy5ciB07dkClUrG9Znttxva6cGyvy8Ye2+s7zZgxAytWrMDGjRstTuCVpl0vi4Kf95UrV/DNN9/g008/xf333w8AVge2v//+O7KzszFp0iSoVCosWLAATz75JEJCQlCnTh0AZW9PgNvrrWAOW7qX79X169fxyy+/lOn1TNsutVqNPXv24Pvvv4enpye+/PLLu34PqampCAgIQEBAAF599VV07twZBw4cwLRp0xAdHW11EmjZsmUYPnw43n//fZw6dcp88rLg8XReXh58fX2h0+nQrVs3BAcH48aNGxg+fDj27NmDvn37Qq/XY/78+QCADh064IMPPsDNmzcxf/58NG7cGJs2bUJSUhIAYMSIETh58iTS09Px5JNPombNmti4cSOioqLw3nvvmZcDsH2+G2yf2T6zfS69u2mfbdFGXr58Gd26dUODBg3wySefwNvbG5s2bcLQoUOxdetWq+Psu/XDDz8UeR2b9PR0DBw4ECNHjsSoUaOwadMmvPXWW3B3d8err74KoOyfb0ntXGJiIrp27Yq8vDy88847qFmzJlavXo0hQ4Zgy5Yt5fa+C3P58mX06NEDfn5++Oijj+Dm5oZly5ahV69eOHLkCB599NEin7tmzZoyX7dw3rx58Pf3R1ZWFn777Te88cYbaNKkCfr06XPX7yE1NRXLly+Hj48P3nnnHdSqVQtr167F888/j3Xr1plHDpb1cyvNd/ZOe/fuxauvvorJkydbjIAo1++2KIOVK1cKAGL//v0iOTlZ3Lx5U2zYsEHUrFlTeHl5idjYWCGEECqVSuj1eovnRkVFCQ8PD/HFF1+Y7/vtt98EAPHjjz9avZbBYDA/D4CYO3eu1WPatWsnevbsaf73oUOHBADRoEEDkZWVZb5/06ZNAoBYsGCBedktW7YUTz/9tPl1hBAiLy9PNG3aVPTt29fqtbp27Srat29v/ndycrIAIGbMmGG+Lzo6Wri4uIivv/7a4rkhISHC1dXV6v7w8HABQKxevdp834wZM0TBj+XYsWMCgFi3bp3Fc3fv3m11f+PGjcWgQYOssk+aNEnc+VHfmf2jjz4StWvXFp07d7ZYp2vWrBHOzs7i2LFjFs//+eefBQBx/Phxq9crqGfPnubl/fPPP8LV1VW8//77hT62NOtDCOPnVJBGoxHt27cXTz75pMWynJ2dxXPPPWf1XTR95hkZGcLX11c8+uijIj8/v9DHaDQaUbt2bdG+fXuLx+zcuVMAEJ9//rn5vjFjxojGjRtbLGf58uUCgDh9+nSh77m0GjduLACIo0ePmu9LSkoSHh4eFuuztL+9O5l+IwUfc+d6FkKIwMBAAUD8/vvv5vtM24Xu3bsLnU5nvt+07jp16iTUarX5ftM6Kfg9mz9/vgAg1q5da/H8xx9/XPj4+Jh/z6bf+KFDh6zeIwCxcuVKIYQQ6enpRW437lXjxo3FmDFjLO576aWXRJUqVYp9XlJSknB3dxf9+vWz+IwWL14sAIjffvtNCHH7Pfr7+4uUlBTz465duybc3NzEsGHDzPdNmzZNeHh4iIyMDIvXcXV1tfh9N23aVIwePdoiT2HrsrDPfPbs2cLJyUncuHHDfF/B36VOpxN16tQRzZs3Fzk5OebHHD58WACw+H6OGTNGeHt7Wyx/8+bNhX6m3t7eFuu5LNvXgtsdIYTYtWuXACD69+9vtT0pzJ3PF0KITz/9VAAQSUlJ5vsAiEmTJhW5HNNvIyoqyuLfbdu2tVjXps+i4Lrq1KmTqF27tkhNTTXfd/HiReHs7GzxWZo+iyFDhli89pNPPikAiOXLl5vbawDCy8tLeHl5icmTJwsXFxexefNmi+9jdHS0cHZ2Fq6urhbbgy+++EIAEAMHDrR6n2yvjdhes70Wgu21EtrrO5+7bNkyAUAsWrTI4jGlbdeFMP6+2rVrZ/U6c+fOtWgnCipqHQpxez0WPP4SQohTp04JAGLq1Knm+0rbnpg0aNBAjBs3rtgcRW3DCstYmjahtN+rO78/QggxcuRI0b59e9GoUSOrz7uoTAWfL4QQ9evXt2jfTL+VM2fOFLmsO/cVevbsKQCImTNnWjxu7NixAoAICQkRQggxa9YsAUAMGDDA4njay8tLABAbN24UQhi3Effdd58AILZu3WrO7+HhIXx8fMSDDz4ohLh9PG36HqWlpYm2bduK1q1bi+TkZIv3/fTTTwtvb29x7do1c7527dqJRo0aCRcXFxETE8P2me2zxbLYPhuxfS5f99I+m5RXG/nUU0+JDh06CJVKZb7PYDCIrl27ipYtW5rvK6pdKGw7dudvLikpSfj6+ooBAwZYZTa1HT/88IP5PrVabW67NRqNEOLe2kkhrNu5KVOmCAAW26Xs7GzRtGlT0aRJE/NvwNRmFdzOC2H9GZZl/QwdOlS4u7uLiIgI833x8fHC19dXPPHEE1bLNO0jmdpF03q88z3e6c7nC2E8pwJAfPfdd+b7CjtHcac734Op3T18+LD5vry8PHH//feLunXr3vXnVprvbMHt5NmzZ4WPj48YMWKE1XartN/t0rirqYr69OmDWrVqoVGjRnjxxRfh4+ODbdu2oUGDBgAADw8PODsbF63X65GamgofHx+0bt0a58+fNy9n69at8Pf3x9tvv231GoUNhymt0aNHw9fX1/zv4cOHo169eti1axcAICgoCOHh4XjppZeQmpqKlJQUpKSkIDc3F0899RSOHj1qNaRUpVLB09Oz2Nf9888/YTAYMHLkSPMyU1JSULduXbRs2RKHDh2yeLxpqJCHh0eRy9y8eTOqVq2Kvn37Wiyzc+fO8PHxsVqmVqu1eFxKSgpUKlWxuePi4rBo0SJMnz7dqkq7efNm3H///WjTpo3FMk3TU935+kU5ffo0Ro4ciWHDhmHu3LmFPqY06wOAuZcLYKzOZmZmokePHhbfre3bt8NgMODzzz83fxdNTN+tffv2ITs7G5988onVZ2t6zNmzZ5GUlISJEydaPGbQoEFo06aN1VAug8FgXkdBQUH4/fffUa9ePXMV/F60bdvW3HMEAGrVqoXWrVsjMjLSfF9pf3sFhYaG4tVXX8Wzzz6L//3vf+b7C65nrVaL1NRUtGjRAtWqVSt0WW+88QZcXFzM/zatuzfffNNirtexY8eiatWqFs/dtWsX6tatazGnq5ubG9555x3k5OTgyJEjJa6fgry8vODu7o7Dhw9bDUEuD2q1GikpKeZeFwcPHsRTTz1V7HP2798PjUaDKVOmWHwn33jjDfj5+Vl9l8aNG2furQIALVu2xJAhQ7B7927o9XoAxm2dWq22GFq8ceNG6HQ6vPLKK+b7ateujdjY2BLfV8HPPDc3FykpKejatSuEELhw4YLV41NSUnD48GEkJiZiwoQJFvNw9uzZE507d7Z6X3errNtXEyEEpk2bhmHDhhXbe+FOpm1pcnIyAgMDsW3bNnTs2NFq9IRKpUJKSgpSU1MLnYqgMJMmTbJY17169bJYVwkJCQgKCsLYsWNRo0YN8+M6duyIvn37mtuyO5dZkKkHxfjx483tNQC4u7tj3LhxWLx4MRYuXIjhw4dbbDPWrFkDg8GAFi1a4OTJk+b1fOzYMbi4uBTanrC9NmJ7bY3ttRHb66LZY3td0I4dOzBx4kR8+OGHVlPTlbVd1+v1Vr/5vLy8e3p/Q4cONR9/AcAjjzyCRx991LwNvZv2RKPRlPjbBm5vw1JTU6HT6Yp8XF5entX7Nu3HmNzt9+rcuXPYvHkzZs+ebbX9KE5OTg5SUlIQFxeH5cuX49atW4V+LzIzM5GSkoLs7OxSLdfFxQVTp061uO/9998HAPP3ITg4GIBxapeCx9Omfb7Tp08DMG4jnJycUL9+fQwZMsRiG1GvXj1cuHABt27dwtatW83tgUqlwpAhQ5CcnIzdu3db7bMEBwejR48eqF69usVnUb16dej1ehw9etT8WLbPbJ/ZPrN9tuf2uTRKaiPT0tJw8OBBjBw5EtnZ2ebvXWpqKp5++mmEh4dbTadlahdMt7S0tBJzfPnll6hatSreeeedQv/u6uqKCRMmmP/t7u6OCRMmICkpCefOnQNQ9s+3pHZu165deOSRR9C9e3fzfT4+Phg/fjyio6MRGhoKwHgeAUCpziUAJa8fvV6PvXv3YujQoWjWrJn5/nr16uGll15CQEAAsrKyCl32kiVLkJqaihkzZpQqi0l6ejpSUlIQGRmJefPmwcXFBT179rR6XGm39yZdunSxWI6XlxcmTpyIW7dumX/fZf3cSvrOFhQZGYlBgwahU6dOWLNmjcV2+m6+28W5q6mKlixZglatWsHV1RV16tRB69atLUIaDAYsWLAAP/30E6Kioix2DgueCIuIiEDr1q3h6louMyaZtWzZ0uLfTk5OaNGihXkutvDwcADAmDFjilxGZmYmqlevbv53SkqK1XLvFB4eDiFEkY+7cwikaf7T4ubTCg8PR2ZmpvkHeyfT0FOTvXv3lvliITNmzED9+vUxYcIEq7kNw8PDceXKlSKXeefrFyYuLg6DBg1Cbm4uUlNTizzJVJr1AQA7d+7EV199haCgIIt5IQsuNyIiAs7Ozmjbtm2RyzFNsVXYnLMmN27cAAC0bt3a6m9t2rRBQECAxX03b960WFf16tWz2KG/F/fdd5/VfdWrV7doyEv72zPJysrC888/jwYNGuD333+3WIf5+fmYPXs2Vq5cibi4OBgLq0aZmZlWy2ratKnFv03r7s7fg5ubm0UjYXpsy5YtrXZKTTuIpmWVloeHB+bMmYP3338fderUwWOPPYbBgwdj9OjRqFu3bpmWVZgNGzZgw4YN5n936dLFaq68OxX1XXJ3d0ezZs3Mfzd9Bm3atLFaxv3334+tW7ciJSUFderUQZs2bdClSxesW7cOr732GgDjNEWPPfYYWrRoYX5e165dsXDhQmzYsAFPPvkknJ2dC/0MY2Ji8Pnnn+Ovv/6y2kEs7PEFv+uF/Ubuv//+IudLLauybl9N1q1bh8uXL2PTpk1Wc60W58SJExbvr2XLlti+fbvV9mvFihVYsWIFAONn+eijj+LHH380X/CwoJI+W9O6Km67c//992PPnj1WF0y7c72Y2ozu3btjxowZcHV1Re/evdGqVSvzdAlpaWlFbjPCwsIQFhZmte1PSUmxynQv2F6zvWZ7zfba3tprk6CgIGzatAl6vb7QEwOlbddNCtum3qvCtmGtWrXCpk2bis0IFN2eZGZmlup3UHAb5uLigo4dO+Lbb781T19iMmPGjEIP8gsOub/b79Unn3yCHj16YPDgwcVec+hOb7/9tkXHtXHjxlmd8AdgMY1BtWrVMGrUKMydO7fQC5aaTvL7+flZ3G86Tja1a6ZpCxcuXIj777/f4ni6Zs2a5vdqMBiQlZWF/Px8eHp6WmwjTPsR0dHRiIiIQL169RAeHo5x48bh5MmT8PT0LLSYYyooFNdOmE5YsH1m+8z2me2zvbbPpVVSG3n9+nUIITB9+nRMnz690GUU3C4CKPP0NlFRUVi2bBmWLl1aZOG0fv36Vu1Kq1atABi384899liZP9+S2rkbN24U2qmu4PLat2+Pxx9/HE5OTpg2bRq++uor8++wqA5zJa2f5ORk5OXlFblfYjAYcPPmTfPUYSaZmZn45ptv8N577xU5ZU9RHnroIfP/e3h4YPHixVZT6eXm5lpsdxo1aoT333+/2Cm+ijqmB4yf26OPPlrmz62k72zBvE8//TQSExNRs2ZNqzbhbr7bxbmrM/aPPPJIoSdFTL755htMnz4dr776Kr788kvUqFEDzs7OmDJlSql7ZNqSKcPcuXPRqVOnQh9TsGHSaDRISEhA3759S1yuk5MT/v33X4tKcWHLBIwXmwFQ7IbXYDCgdu3ahV7oEoDVDsijjz6Kr776yuK+xYsXY8eOHYU+/8qVK1i1ahXWrl1b6Ik3g8GADh064Mcffyz0+QXn1SvK9evX8dBDD2HevHn4v//7P6xevbrQnczSrI9jx45hyJAheOKJJ/DTTz+hXr16cHNzw8qVK8t0UtBW6tSpY55bPDMzE7/99hv69++PgIAAdOjQ4Z6WXdh3CoDFDkhZf3tjx45FfHw8Tp8+bXWg8/bbb2PlypWYMmUKHn/8cVStWhVOTk548cUXC11WwR4VtlLUTvKdPdcAYMqUKXjmmWewfft27NmzB9OnT8fs2bNx8OBBPPjgg/eUo1+/fvjwww8BGKvvc+bMQe/evXH27Nl7Xg9lff7o0aPx7rvvIjY2Fmq1GidPnsTixYstHvPpp5/i+PHjFpXuO+n1evTt2xdpaWn4+OOP0aZNG3h7eyMuLg5jx44t9DPft28fAgMD8fnnn5cp890o6/YVMG67p0+fjtdee82881VaHTt2xA8//AAA5jn+e/XqhfPnz1tso5599llMnjwZQghERUXhiy++wODBg80H1AVVxG/kTrVr17bYgTtz5gzeeOMNeHt746uvvkJKSgoWLFhg3masWbMGu3btQuPGjVG1alXzOnj11Vfh5+eHZcuWVWh+tte3sb0uX2yvbUsJ7fXFixcxYMAAPPXUU/jwww/xyiuvWF2gtCyaNGliNRf/5s2bsXz58rteZnlLS0uDRqMp1Umhgtuw+Ph4zJkzB8899xwuX75sMff1+PHjMWLECIvnvvHGG/ecde/evdi/fz8CAwPL/NwPP/wQ/fr1g16vx+XLl/HFF19ACIGVK1daPM7UWU6tVuPw4cPmCz3/9NNPVsss6++qS5cueOyxx4r8+zfffIP09HTUqVMH8+fPt9hGFDXC4/z589ixYwcmT56M8ePH4+DBgxZ/F0Kgb9+++Oijj8z3mUbI/PDDD2jVqpVFz+visH2+je1z+WL7bFtKaJ/Li+kz+OCDD/D0008X+piCnfGA2+2CSVZWFoYNG1bka3z22Wdo2bIlxowZU64X+S5Jadu5kjzwwAOYMWMGZs2aVeQ2tKCyrp/SmjNnDpydnfHhhx+aC/CltXbtWtSpUwcqlQoHDx7EpEmT4OnpaXFxZ09PT/z9998AgOzsbPz222+YMmUK6tWrh5EjR1otU8ZxfUEpKSnw9vbG33//jaFDh2L27NkWnTTu5rtdnPLt6v+fLVu2oHfv3uZemCYZGRkWQyabN2+OU6dOQavVlssFiUzuPGEjhMD169fRsWNH8+sCgJ+fX6kqhhcvXoRWqy22WGJarhACTZs2LdVJqtDQUDg5ORVabSu4zP3796Nbt26l+nL6+/tbvafiLrg0bdo0dOrUCS+88EKRr3/x4kU89dRTdz0dhWlYa506dbBjxw68//77GDhwoNVOWmnWx9atW+Hp6Yk9e/ZYDMG8cwPYvHlzGAwGhIaGFrkza/oeXLp0qcgfTePGjQEAV69eNQ8nNbl69ar57yaenp4W69904aLFixdXyAm30v72AODbb7/F9u3b8eeffxZaLd2yZQvGjBljPnEIGIcYm3qylMS0bsLDwy3WnVarRVRUFB544AGLxwYHB8NgMFhUY8PCwiyWZeq1dGeGonpQNG/eHO+//z7ef/99hIeHo1OnTvjhhx+KvHBsadWrV8/ic27dujW6du2K7du3F3lyvuB3qWAPEY1Gg6ioKPPyTD1Nrl69arWMsLAweHt7W3yWL774It577z2sX78e+fn5cHNzs/o9+/v7IzAwEKGhoeYDiosXL+KDDz4wPyYkJATXrl3D6tWrMXr0aPP9+/btK3I99OnTB1WrVsXnn39eZN57vXCWSVm3r4DxwD4pKQkzZ84s8+tVr17d4jPu1asX6tevj5UrV1pc6Ldhw4YWj/Px8cHLL79c6NROBT/bO7cnBddVwe/KncLCwuDv72/VKyU8PNyil5Kp91q9evUsHte3b18sXboUKpUK27dvx6+//mqxzbh58yZ27doFlUplcdGojh074tSpU+jcuXNhq+uusb1me832mu01YF/ttUmHDh2wefNmeHl5YfPmzRg/fjyCg4PNPQZL266beHt7W90XFBR0L2+v0CL1tWvX7ro9MU1NUJopQe7chrVo0QLdunXD0aNHLdr+li1bFrouCirt98pECIFPPvkEzz33XLEn34vStm1bc6ann34aarUan376Kb7++mvzhU8By85ygwYNwsWLF7F79+5Cl9m0aVPs3bsX2dnZFlP8XLt2DQaDwbxOTD2Wb968aZE9MTERGRkZ5ve6ZcsWeHh4wMXFBS+88IJ5u56RkWFeR02aNEHz5s3NUx38+uuvGDJkCFxcXDB48GCsWLHCPCLV9No5OTkWn4e3t7fFPo+pcMD2me0z22e2z4B9ts+lVVIbaWq73dzcSj2S4M5O1MWNxr5w4QI2bNiA7du3F1m0AozF9ztH/127dg0ALNrzsrSTJbVzjRs3LnLf4M7lzZgxA+PHj0dYWJi5wFRwWuSCSlo/tWrVQpUqVYp8bWdnZ6tianx8PBYsWIDZs2fD19e3zIWDbt26mdfj4MGDcfnyZcyePduicODi4mLxHRg0aBBq1KiB3bt3F1o4aNq0abHr724/t5K+syZVqlTB7t270aZNG0ydOhXffPMNRo4cad5/u5vvdnHu6hoHJXFxcbGo2gLGHjV3zqE0bNgwpKSkWPWOBWD1/LIwXYnaZMuWLUhISMCAAQMAAJ07d0bz5s3x/fffm6/KXlBycrJVdtMOWHGef/55uLi4YNasWVb5hRAWX3CdToetW7fikUceKXbY3ciRI6HX681XPy9Ip9OVutEpTGBgIHbs2IFvv/22yJ2YkSNHIi4uzqqHFGAcepebm1vi67Rq1co8nGjRokUwGAxWQ35Kuz5cXFzg5ORkURGPjo622pkbOnQonJ2d8cUXX1hV802fTb9+/eDr64vZs2dbzWNmeszDDz+M2rVr4+eff7YYxvnvv//iypUrGDRoULHvXaPRQKfTWTzXlkr729u/fz/+97//4bPPPsPQoUNLvaxFixYV2huhMA8//DBq1aqFn3/+2TzfJgCsWrXK6ns7cOBA3Lp1Cxs3bjTfp9PpsGjRIvj4+JjnjmvcuDFcXFws5mAFrHt+5eXlWX2mzZs3h6+vr00+i/z8fAAodtl9+vSBu7s7Fi5caLFeV6xYgczMTPN3qVatWnj44YexevVqi2GzERER+OuvvzBgwACLHQ9/f38MGDAAa9euxbp169C/f3+rnVoAcHZ2Rvv27dGnTx/06dPH6gSwaZkFswkhsGDBgmLfe6dOnVCnTh388ssvFnM1Hzt2DGfPni1xu1laZdm+AsaeAl9//TWmTp1aLsNpS/MZA7er+4XtHD744IOoW7eu1fbkznVVr149dOrUCatXr7b4rVy6dAl79+7FwIEDrZa9ZMkSi3/v378fgHGaqoK6du0KFxcXeHt74+eff0Zubq7F9uH555+Hs7MzEhMTLZ5naq/nzJlj9dpsr43YXltie108ttdG9themzz00EPw9vaGs7Mzfv31V0RHR+OLL74w/7207botbd++3eI7c/r0aZw6dcq8DS1re7Jhwwa4u7tbzHlcWsW1fyUp7feqYM7g4GDMnj27zK9VGNP3ouD3vzAGg6HI9zdw4EDo9Xqr41pTL3PT98F04n39+vXFPs70OvHx8di2bRuA29uIxMREdOrUCXXr1sWwYcPM7aNp7vZBgwbhxRdfxAcffGDRnj/wwAMIDAzEnj17rPJnZGRYjGRg+1w6bJ/ZPrN9Lh9laZ9Lq6Q2snbt2ujVqxeWLVuGhIQEq+ffuR0rq08++QTdunXDkCFDin2cTqezKIppNBosW7YMtWrVMh+zl7WdvNOd7dzAgQNx+vRpi1F7ubm5WL58OZo0aWI1RVm9evXQu3dv87mEkq5XUxQXFxf069cPO3bsME99BxiL53/88Qe6d+9uNXJn1qxZqFOnDt588827es075efnl/g9M/1ui2vzT58+jRMnTpjvU6lUWLp0KerWrXvXn1tJ31mTWrVqmYuVX3zxBRo2bIg33njDnLu8v9s2GXEwePBgfPHFFxg3bhy6du2KkJAQrFu3zmoettGjR+P333/He++9h9OnT6NHjx7Izc3F/v37MXHiRDz77LN39fo1atRA9+7dMW7cOCQmJmL+/Plo0aKFeVis6QBgwIABaNeuHcaNG4cGDRogLi4Ohw4dgp+fH/7++2/k5uZiyZIlWLhwIVq1aoXDhw+bX8O0gxQcHIzAwEA8/vjjaN68Ob766itMmzYN0dHRGDp0KHx9fREVFYVt27Zh/Pjx+OCDD7B//35Mnz4dwcHB5uEwRenZsycmTJiA2bNnIygoCP369YObmxvCw8OxefNmLFiwAMOHD7+r9bR371707du32ArU//3f/2HTpk148803cejQIXTr1g16vR5hYWHYtGkT9uzZU2LPkYLq1q2LuXPn4vXXX8crr7yCgQMHlml9DBo0CD/++CP69++Pl156CUlJSViyZAlatGhhvtgYYOz19Nlnn+HLL79Ejx498Pzzz8PDwwNnzpxB/fr1MXv2bPj5+WHevHl4/fXX0aVLF7z00kuoXr06Ll68iLy8PKxevRpubm6YM2cOxo0bh549e2LUqFFITEzEggUL0KRJE6v5UHNzcy2GVq5ZswYqlQrPPfdcqdfRvSjtb2/UqFGoVasWWrZsadVboG/fvqhTpw4GDx6MNWvWoGrVqmjbti0CAwOxf//+Qud2LIybmxu++uorTJgwAU8++SReeOEFREVFYeXKlVZ5xo8fj2XLlmHs2LE4d+4cmjRpgi1btuD48eOYP3++uedW1apVMWLECCxatAhOTk5o3rw5du7caTU36LVr1/DUU09h5MiRaNu2LVxdXbFt2zYkJibixRdfLOtqtRIZGWleb3FxcVi8eDH8/PyKvaBTrVq1MG3aNMyaNQv9+/fHkCFDcPXqVfz000/o0qWLRdX+u+++Q79+/fD444/j9ddfh0qlwpIlS+Dp6Ymvv/7aatmjR482bwcKOygqjTZt2qB58+b44IMPEBcXBz8/P2zdurXEi2GZfiNjx45Ft27dMGbMGKSlpWHBggVo0KABPv74Y4vH6/V6i956pt6Wp0+fttg51ev1iIuLw+nTp/HII4+Uevtqcv78efj7+1sMxy+LxMRE82eckpKCZcuWwdXV1eqANyYmBrt37zZPVfT111+jcePGePDBB616DLi6uuK7777D6NGj0aNHD7z88svmaZAaNmxosa7mzp2LAQMG4PHHH8drr72G/Px8LFq0CFWrVi10BEVUVBSGDBmC/v37IzAw0Dw9QXG99Z5++ml06NABISEheOGFF9CnTx+EhITAw8MD+fn5uHDhAubOnQtfX19ERETAy8sL06dPx+XLl9leF4LttSW218Vje21kj+11Ydq3b4+PP/4Y3377LV588UV07NixTO26rbRo0QLdu3fHW2+9BbVajfnz56NmzZoWbV9p2pPw8HDMmDED69evxyeffGJ10F4Y03z5gPEizHPmzEHVqlXRu3fvMr+P0n6vTPbu3Ys33nij2F7VxQkMDISrq6t5CodFixbhwQcftOrRFxgYiJSUFPNURQcOHLDY1yho4MCB6NOnDz777DNERUWhU6dOOHjwILZu3Yo333zTPAe8aY71bdu24YUXXkDPnj1x+vRprF69GkOHDjWvv8GDB+P8+fPw8/PDK6+8grZt2+LKlStwd3eHRqPBt99+C8C4D/jdd98hLCwM77zzDvr374/c3FzcunULOp0Ob7/9Nr777jsAxtGTqampGDx4MMaOHYvOnTubL5jYsGFDi5M4bJ9Lh+0z22e2z3envNrn4pSmjVyyZAm6d++ODh064I033kCzZs2QmJiIwMBAxMbG4uLFi3f9+nv37sXx48dLfFz9+vUxZ84cREdHo1WrVti4cSOCgoKwfPly88wsZW0nS2rnPvnkE6xfvx4DBgzAO++8gxo1amD16tWIiorC1q1brebkL09fffUV9u3bh+7du2PixIlwdXXFsmXLoFarze1VQXv37sW6dessLhBeFtu3b4e/v795qqJjx45hypQpFo8peI4iOzsbK1euRG5ubpFFwY8++gjr1q0zrz9/f3+sXbsWoaGhWLdunfk6vmX93Erznb2Tl5cXli9fjj59+mDp0qWYOHEigHL+bosyWLlypQAgzpw5U+zjVCqVeP/990W9evWEl5eX6NatmwgMDBQ9e/YUPXv2tHhsXl6e+Oyzz0TTpk2Fm5ubqFu3rhg+fLiIiIgQQggRFRUlAIi5c+davU67du0slnfo0CEBQKxfv15MmzZN1K5dW3h5eYlBgwaJGzduWD3/woUL4vnnnxc1a9YUHh4eonHjxmLkyJHiwIEDFq9d0m3MmDEWy926davo3r278Pb2Ft7e3qJNmzZi0qRJ4urVq0IIId5++23xxBNPiN27d1tlmjFjhijsY1m+fLno3Lmz8PLyEr6+vqJDhw7io48+EvHx8ebHNG7cWAwaNMjquZMmTbJaJgDh5OQkzp07Z3F/YZ+RRqMRc+bMEe3atRMeHh6ievXqonPnzmLWrFkiMzPT6vVKWp4QQjz55JPivvvuE9nZ2WVeHytWrBAtW7YUHh4eok2bNmLlypVFrrfffvtNPPjgg+bcPXv2FPv27bN4zF9//SW6du0qvLy8hJ+fn3jkkUfE+vXrLR6zceNG83Jq1KghXn75ZREbG2vxmDFjxlh8L3x8fMRDDz0k1qxZU+w6Ko2iPts7129pf3vFfZ8PHTokhBAiPT1djBs3Tvj7+wsfHx/x9NNPi7CwMNG4cWOL73xJ24WffvpJNG3aVHh4eIiHH35YHD16tNDvRWJiovn13N3dRYcOHcTKlSutlpecnCyGDRsmqlSpIqpXry4mTJggLl26JACYH5+SkiImTZok2rRpI7y9vUXVqlXFo48+KjZt2lSa1V2sxo0bW6wvf39/0a9fPxEYGFiq5y9evFi0adNGuLm5iTp16oi33npLpKenWz3uwIEDolu3bubv5aBBg0RISEihy1Sr1aJ69eqiatWqIj8/v1Q5TNtL0+cthBChoaGiT58+wsfHR/j7+4s33nhDXLx40WLdClH473LDhg2iU6dO5t/aCy+8IKKjoy0ec+dvpDS3O78nJW1fhTD+LgCIefPmWTy3qO3EnUzPN92qVasmunXrJnbt2mXxuIKPcXJyEnXr1hXPP/+8uHLlihDi9m8jKirK4nmbNm2y2J6MGjWq0DZq//79Ft+BZ555RoSGhhb6nkJDQ8Xw4cOFr6+vqF69unjqqaesfpcAxIwZMyyeHxcXJ7y8vISnp6fFNqNdu3bCz8/PYj1PmDBBvPnmm2yv71j3d2J7fRvb69vYXjtWe33nuhPC+Jm1adNGdOnSReh0OvP9pWnXe/bsKdq1a2f1OnPnzi20nRCi8HbapOD29ocffhCNGjUSHh4eokePHuLixYtWjy+pPVm/fr1o3769WLBggTAYDCXmKGrdnjx5stCMd7qzTRCidN8r0zK9vLxEXFycxd8K+8yKWm+mm7Ozs2jYsKEYM2aMxXbC9Fsx3dzd3UWLFi3E559/LtRqtRCi8G1mTk6OmDp1qqhfv75wc3MTLVq0EN9++63Q6/VWyx4/fry5PW3UqJGYNm2aUKlU5sepVCrh5+cnPDw8hIeHh6hSpYpwc3MTXl5eom3bthavu2zZMgFANGrUyKJ9Nn2/fvnlF/NnkZ2dLaZNmyZatGgh3N3dhYuLi/Dz8xPff/+90Gg0bJ/ZPls9n+0z22d7ap9NyrONjIiIEKNHjxZ169YVbm5uokGDBmLw4MFiy5Yt5scU9RklJydbHWOZfkvPPvtsiZlN+wdnz54Vjz/+uPD09BSNGzcWixcvtspZlnaypHbO9L6HDx8uqlWrJjw9PcUjjzwidu7cafW6hSntd7iw9SOEEOfPnxdPP/208PHxEVWqVBG9e/cWJ06csHiMaZmdOnWy2DcxvcfCvtuFPb+wtrxge1ua7U5h78G0/qpWrSo8PT1Fly5dxPbt261ylOVzK813dsyYMaJx48ZWrzNu3Djh5+dn8TmX5rtdGk7/rQRFOHz4MHr37o3Nmzffda+BgqKjo9G0aVNERUUVOU/3zJkzER0djVWrVt3z6xER3Q2dTof69evjmWeesZqP05GtWrUKq1atsuidRpZmzpyJWbNmITk5udApquwV22siortn2ubNnTu3yB7w5PiaNGmC9u3bY+fOnRX2mmyficjROVIb2atXL6SkpODSpUuyo5BE9v6dtd34EyIiqhDbt29HcnKyxUWNiYiIiIiIiIiI7pZNrnGgFD4+Pnj55ZeLvbhQx44dUb9+/QpMRURkdOrUKQQHB+PLL7/Egw8+WOJFkRxNgwYN8Mgjj8iOQQ6A7TUREZH9YftMRETk2Fg4KIbpAhfFef755ysoDRGRpaVLl2Lt2rXo1KmTIod39+3bF3379pUdgxwA22siIiL7w/aZiIjIsSnqGgdERERERERERERERHRveI0DIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIjIUDIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIjIUDIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIjIUDIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIzFV2ACKSK0+jQ65aj1y1DjlqHfI0xv/P1eig0RlgEIBBCAgh8IR7OOrp4wAnZ8DJBXB2AVw9AHdvwN0X8PC5/f/u3oCbp+y3R0REpGh6g/iv/db915b/146rdcjX6qHTi//accAFegxzPvJfO+5sbMedXQG3Kv+14f/dCrbnzuxnREREZEsqrant1pvbdNOxuVqnh95w+5j8QfdYtNJfv92WOzn/d0xeSBvu7g24V5H99ojIgbFwQKRAqTlqJGWrkZilQlK2Gsmm/89SIynbeF9GnhZ5Gh0MovTLPdxiIxC7o/RPcHYz7qx4+wM+dQHf/24+dQDfeoCv6b91AQ/fsr9RIiIiBdLoDEjKViExS43k/9ptUzuemK1GUpYKKTka5Ki1UGkNpV6uv7sWw5zfKVsYtyqAZ1XAp/Z/bXmdO/5boF134aEFERERAGTma5GUpbI4Lje24yok//ff9FwN8jR66MpwUL665TG0urm09EGcXIwFhSrVb7ffvvUsj8lN7XmVGnfxTolIybh3T+SgMvO1iEzOQVRKLqJSchGZkovI5FzcSM1FnkYvO56RQQuoMoy31OvFP7ZKTaBmi/9uzW//f43mHLlARESKYzAIxGXkG9vw/9pzU1sen5kPUYbCvk1p84y37AQAF4t+nLMrUO2+wttyvwaAk1OFRSYiIqoIeRodIpNzzcfkprY8OiUXmfla2fGMhB5QZxpv6dHFP9ajKlCzWYG2vMDNw6dC4hKRfWHhgMjO6fQGXEvMwaW4TATHZeDqrWxEJuciNVcjO1r5yks13m6esrzfydl4wsG/FVCvI1CvE1C/E1C9iYSQREREZZeRp0FwbCZC4jIRGp+F60k5iE7NhVpX+tECds+gA9IijbfwvZZ/c/UyFhJqtzW24fU6Gdt0jjYkIiIHIIRAZEouQv5ry68kZCEiOQeJWWrZ0cqXOhOIv2C83cmnLuDfEqjb4fYxec2WnNKQSOFYOCCyI6YiQUhcBkLiMhESl4WwhCxlnVgoK2EAMm8abxEHbt/vVR2o98DtnZZ6nYAaTSWFJCIiMsrM0yLkv2L/pbhMBMdmIjY9X3YsuXT5QOIl4y1k0393OhmLCfU6Gdvz+v/917OqxKBERFTZGQzGIsGluMz/jsmNRf8ctU52NLlybhlv0cdu3+fuY1lIqNfJ2OGPxQQixWDhgEgijc6AoJsZCIxIxcnIVFy4mV6muYortfx0IPKw8WZSpSbQuCvQpAfQpLuxZyOnRiAiIhtKylIhMNLYjp+MTENUSq7sSA5CGKcxTL0OXNpivMvJGajTDmjc3diON+7K+ZaJiMimDAaBS/GZ5nb8TFQasit7kaC0NDlATKDxZuLuC9z3mLEdb9LDWFBwdpEWkYjuDQsHRBVIozPgYmwGTkakIjAyFedjWCgoV3mpwJW/jTcAqOJ/RyHhfhYSiIjonqTkqHEyMhWB/7XlkcksFJQbYQBuhRhvp5YCcPqvkNDtvxMQ3VlIICKie2IwCIQmZJnb8tPRachWsVBQbjTZwPV9xhsAePgBjR4Fmv53TF6vEwsJRA6EhQMiG4vPyMf+K4nYfyUJZ6LSkK+1kwsXVwZ5KcCVv4w3wFhIaPEU0HoA0PwpwNNPbj4iIrJ7eoPA6ag07L+SiKPXkhGelCM7UiUibk9xdHoZACfjtRFaDQBa9zeefGCHACIiKkF6rgYHwpJw4Eoijl9PQRYLBRVHnWVdSGj6hPGYvFV/wNtfbj4iKhYLB0TlTAiBkLhM7A81FgtCE7JkRyKTvBQgeKPx5uJu7MHYeoDxVu0+2emIiMhO5Kp1OHItGftCE3HoahIy8rSyIxEAQAAJF423I98CvvWAVk8bTzw06wW4eckOSEREdiIiOee/Y/JEnI/JgN4gZEciwFhICNtpvDk5Aw0evn1MXvt+2emI6A5OQghuPYnukUZnwPGIFOwLTcTBK0m4laWSHckmDrfYiCaxO2THsI3a7Yw7K/cPBuo/KDsNERFVsMQsFfaFJmJfaCICI1Oh0SlvKkF/dy3OOo+RHcM2XL2AZj2B1gOBtkMAr+qyExERUQUSQuDsjXTsvXwLB64kIVKh1xxa3fIYet5cKjuGbVRvYhxV2GaQsZMfL7JMJB0LB0R3ybRjsu1CHHaFJFSK3oiKLhwUVLMl0HEk0GEEUKOp7DRERGQjWSotdgUnYNuFOJyOToPS94oVXTgoyMUdaNHH2I63HsCRCERECnb1Vjb+vBCLv4PiEZ+pzA58BSm6cFCQb32gwzCgw0jjNIVEJAULB0RlFJGcg23n47DjYhxupuXLjlOhKk3hoKCGjxiLCO2eB7xryk5DRET3SKs34MjVZGy7EIf9VxKhVuDIgqJUmsJBQe6+xtGEHUYYpzPiBRmJiBzerUwVdgTFYduFOITdypYdp0JVmsJBQbXuBzqOMLblnGKYqEKxcEBUCik5auwIisf2C3EIicuUHUeaSlk4MHF2BZo/CXR8Abj/GcDVQ3YiIiIqgwsxxlGCO4MTkJarkR1HikpZOCjIuzbQfhjw0GigTlvZaYiIqAxy1DrsCknA9gtxOBmZisp6yYJKWTgwcwLue9xYRGg/HPD0kx2ISPFYOCAqxonrKVh3KgZ7Q29Bq+dPpVIXDgqq4g88+Arw8KtA9cay0xARURGyVFpsPReLdadicD0pR3Yc6Sp94aCg+x43tuNtn2VnACIiO3Y5PhNrT8bgr6A45Gr0suNIV7kLBwW4+wAdhgNdXgfqdpCdhkixWDggukOWSovNZ2Ox7tQNRCYr84JKd4uFgzs4ORvnUO7yOtCiLy/eRERkJy7FZWJN4A38dTEe+VqeZDBh4aAQVfyBB18GOo/jdY2IiOyEWqfH3xcTsObkDVy8mSE7jl1h4aAQjR41HpOzMwBRuWPhgOg/1xKzsfpENLZdiEMeezIUioWDYlS7z3jS4aHRgLe/7DRERJWOTm/Av5duYdWJaJy7kS47jl1i4aA4TsYpCbu8BrQawM4AREQSxGfkY+3JG9hw5malnVawJCwcFIMzAxCVOxYOqNI7ei0ZPx+JwImIVNlR7B4LB6Xg4gE88ALQbQpQs7nsNEREipeZr8XakzewJvAGbmWpZMexaywclFKN5kDXt4FOL7HnIhFRBQiJzcTSI9ex53Ii9JX14gWlxMJBKTg5A20GAd3fAxo8JDsNkUNj4YAqJSEEdl+6hZ8OR1Tqix2XFQsHZeDkDNw/BOjxHlDvAdlpiIgUJyVHjRUBUVgbeAPZap3sOA6BhYMy8qkDPPYW8PBrvAAjEZENnIxMxZJD13EsPEV2FIfBwkEZNe0JdJ8KNO8tOwmRQ3KVHYCoIun0BmwPisfPRyJ4kUSyLWEAQrcbb82fNO6sNH1CdioiIocXn5GP5UcjseFMDFRag+w4pGQ5icD+mcCxecDD44DHJgK+dWSnIiJyaEIIHAxLwk+HIzi1INle1BHjrf5DQPcpQJtnOB0hURmwcECVgkqrx8YzN7H8aCTiMvJlx6HKJuKg8dbgYeMIhNYDAScn2amIiBxKVEoulh6+jm0X4qDVc8AsVSB1JnB8PnByqXH6oh7vA9UayU5FRORQ9AaBncHxWHo4AmG3smXHocom/jywaTTg3wro+g7wwIuAi5vsVER2j1MVkaJp9Qb8cSoGiw5eR0qOWnYch8epispJ/QeBpz43jkQgIqJiRaXkYt6+a/gnJIHzHt8jTlVUTlw8jCMQenwA+NSSnYaIyK4JIbAzOAE/7ruGqJRc2XEcHqcqKifVmwK9PwM6DGenPqJicMQBKZIQAn9djMeP+67hRmqe7DhEluIvAGueM8632GcG0KCz7ERERHYnOVuNBQeuYcPpm9CxYED2RK8GTv0MXFhrvAZC17cBz6qyUxER2Z2A8BTM2R3G6wqS/UmPAv58HTixAHjyc6BVP9mJiOwSCwekOEeuJeO73WG4HJ8lOwpR8aKOAL88Cdz/jHFnpVYr2YmIiKTLVeuw7GgkVhyLRK5GLzsOUdE0OcDRucCZX4FuU4BHJwBuXrJTERFJFxKbiTm7wxBwnRc9Jjt3KwT4YwTQuBvw1AzgvkdlJyKyKywckGIEx2Zgzu4wHL+eKjsKUdlc+RsI2wV0GgX0mgZUbSg7ERFRhdPqDVh/OgYLD4QjJUcjOw5R6eWnA/tnGEch9PwIeGgM4OwiOxURUYWLTsnF93uv4p+QBHBSbHIoN44Dv/UDWg0wTitcp63sRER2gYUDcnjxGfn4ZtcV7pyQYxN645QHIVuB7lOMPRfdPGWnIiKqELtCEvDd7jBEc3pBcmTZCcDOqcCZ34CB3wGNu8pORERUITLztZi37xrWnboBrZ4H5eTArv0LhO8BOo8FnpwOVKkhOxGRVCwckMPS6g345VgkFh+8jjxOZUBKocsHDs8Ggv4A+n8LtBkoOxERkc1cT8rB5zsu4UQERwuSgiSGACsHAB1GAH2/BPzqyU5ERGQTQghsPheL73aHcbQgKYcwAGd/Ay5vN44+eGgM4OwsOxWRFCwckEMKCE/BjL8uISI5V3YUItvIuAFsGAW07GcsINRsLjsREVG5ydfosehgOH49FgWN3iA7DpFthGwGrv4LPPEB8NgkwNVddiIionITGp+F6Tsu4dyNdNlRiGwjPw3YOQU4/zsw8HugYWfZiYgqHAsH5FBuZarw5c5Q/BOSIDsKUcUI3wtEHgG6TgZ6fAC4V5GdiIjonuy9fAuz/g5FXEa+7ChEtqfJAfbPNE5H2P9boGVf2YmIiO5JlkqLH/dew5qTN6A3cFoiqgTizwO/PgU8+ArQZxbgXVN2IqIKw8IBOQSt3oAVAVFYdCAcuZyWiCobvRo49gNwcaNxzuQ2g2QnIiIqs5tpeZj512UcCEuSHYWo4qVeB9YNB+4fAgz6AfCpLTsREVGZbT0Xi9n/hiElRy07ClEFE8CFNcCVv43TFz38KuDkJDsUkc2xcEB271JcJj7YfBFht7JlRyGSKysW2PAS0H44MHAuL9RERA5BbxBYdjQCCw+EQ6XltERUyV35C4gOMI4+eOAF2WmIiEolNj0PH28NxvHrvCYRVXKqDOCf94DL24BnFwPVm8hORGRTvLoH2S2t3oAf913D0CXHWTQgKujSFmDJo0DoX7KTEBEVKyI5B88vPYHvdl9l0YDIJD8N2DYe+OMFICtedhoiomL9cSoG/ecfY9GAqKDoY8BPXYFTywHBKbtIuVg4ILt0JSELzy4+joUHwqHjvIlE1nKTgE3/B2weC+RyJ56I7IvBIPDrsUgMWngMF29myI5DZJ+u7QaWPGa86CIRkZ2Jz8jH/604hU+3hSBHrZMdh8j+aHOBfz8EVg0G0iJlpyGyCRYOyK7o9AYsPBCOIYsDEJqQJTsOkf27vA1Y8ojxv0REdiAmNQ8vLj+Jr/65wlEGRCVRZwJ/vQ38PhTIiJGdhogIALDxTAyenncUx8JTZEchsn83AoCl3YCTSzn6gBSHhQOyG9cSs/HcTyfw475r0Oq5sSUqtbwU48iDTWOA/AzZaYiokhJCYM3JG+i/4ChOR6fJjkPkWCIPGU86hGyRnYSIKrFbmSqMXXkaH28NQTZHGRCVnjYP2P0JsHIgOwKQorBwQHbh98BoDF4UgJC4TNlRiBxX6Hbg5x7AzdOykxBRJZOUrcLo305j+vZLyNPoZcchckzqLGDra8D2SYAmV3YaIqpk9oUmov+Cozh8NVl2FCLHFXMC+Lk7r0dIisHCAUmVpdJi4rpz+HzHZWh0nM6A6J5lxgArBwDHfuAwSSKqEMevp2DgggBOZ0BUXoLWAst6AgnBspMQUSWg1Rvw5c5QvPH7WWTkaWXHIXJ8qkzj9Qh3vgdoVbLTEN0TFg5ImuDYDAxeGIBdIbdkRyFSFoMOOPAFsOY5ICdJdhoiUiiDQWDevmv4vxWnkJKjlh2HSFlSw4Ff+wAnf5adhIgU7GZaHob/HIgVAVGyoxApz9kVxrY8JVx2EqK7xsIBSbEiIArDlwYiJi1PdhQi5TLNlxxxUHYSIlKY5Gw1XllxCgsOhMPAwU1EtqFXA7s/Bv54AchNlZ2GiBRm96UEDFp4DBdvZsiOQqRciSHGUYRBf8hOQnRXWDigCpWZp8Ubv5/FlztDodFzaiIim8tNAtY8D+yfBRg47zgR3bsTESkYuPAYTkTwRCZRhbi22zhfcuw52UmISAHUOj1m7LiEN9eeR5aKF0AmsjltLrD9LeDPCbyGETkcFg6owlyKy8TAhcewLzRRdhSiSkYAAT8C64YD+RmywxCRgzIYBBbsD8crv55CcjanJiKqUNnxxmsYXVgnOwkRObD4jHwMXxqI1YE3ZEchqnyCNwAr+gHp/P2R42DhgCrEP8EJGPFzIOIy8mVHIaq8Ig4CvzwJJF+VnYSIHEyuWofxa85h3v5rnJqISBa9GtgxEfj3Y0DPXsJEVDbnbqRhyOLjCInLlB2FqPJKvAT80huIOiY7CVGpsHBANiWEwI/7rmHy+vPI13KaFCLp0iKMF2i6ult2EiJyELHpeRi29AT2X+GIQSK7cOpnYM1QXveAiEpt89mbGLX8FFJyOGKQSLq8VGM7fvoX2UmISsTCAdlMnkaHt9aex8ID4RDsnUhkP9RZwIZRwNHvZSchIjt3NjoNQ5ccR9itbNlRiKig6GPA8l5AQrDsJERkx/QGga92huLDLcG8xiCRPTHogF0fAH+9A+i1stMQFYmFA7KJuIx8DFsaiN2Xb8mOQkSFEQbg4JfA5rGAJk92GiKyQ1vPxeKlX08hJUcjOwoRFSYzBvjtaeDSVtlJiMgOZam0eHXVGfwaECU7ChEV5fxqYPUzQE6y7CREhWLhgMrd2eg0PLs4AFcSsmRHIaKSXN5mPOmQzSIfERkZDAKz/72C9zdfhEbH3olEdk2bB2x5DQiYLzsJEdmRqJRcPLfkOI5c48lIIrsXE2i87kFiqOwkRFZYOKBy9U9wAl76hb0TiRzKrWBgRV8g5brsJEQkWb5Gjwlrz2HZkUjZUYio1ASwfwaw6yPAwGIfUWV3PiYdz/10HBHJubKjEFFpZd4EVvYHbpyQnYTIAgsHVG7WBEbj7fXnOXcikSPKiAF+6wfEnpOdhIgkycjT4KVfT2JfKC+CTOSQTi8DNo8BtCrZSYhIkkNhSXj5l1PIyOOc6UQOR5UJrHkOuPK37CREZiwcULn4cd81TN9xGQZeBJnIceWlGudXDN8nOwkRVbDELBVGLgvEhZgM2VGI6F5c+ct40iE/XXYSIqpgf56PxRu/n0W+Vi87ChHdLZ0K2DQaOLNCdhIiACwc0D0yGAQ+2xaChQfCZUchovKgzQXWvwgE/SE7CRFVkKiUXAxbegLXEnNkRyGi8hBzAvitP5AZKzsJEVWQX45G4v3NF6FjTz4ixycMwD/vAYe+kZ2EiIUDunsanQGT15/HulMxsqMQUXky6IDtbwHHfpSdhIhs7FJcJkb8fAKx6fmyoxBReUoOA37tywstEimcEAKzd13B17uuQLBmQKQsR+YAf70DGDiKiORh4YDuSo5ah7ErT2NXyC3ZUYjIVg7MAnZ/KjsFEdnIychUjFp+Eik5GtlRiMgWsuOBVYOA+CDZSYjIBnR6Az7YHIxlRyNlRyEiWzm/2jh1kY776yQHCwdUZpn5Wrz8y0mciEiVHYWIbO3kEuCf98EuTETKsi80EWN+O41stU52FCKypfw04PchwM0zspMQUTnS6g2Y9Md5bD3PKcmIFC9sJ7DhJUCrkp2EKiEWDqhMMvO0eOXXU7gYmyk7ChFVlDO/An+/y+IBkULsvpSAievOQa0zyI5CRBVBlWm8YHL0cdlJiKgcaHQGTFx3HnsuJ8qOQkQV5fo+47UItZxelCoWCwdUahl5Grz060mExLFoQFTpnF8N7JgMGHiikciR7b6UgLfXX4BWz0IgUaWiyQbWjQCiA2QnIaJ7oNEZ8Nbac9gXyqIBUaUTecjYlmvyZCehSoSFAyqVzDwtXvrlFC7HZ8mOQkSyBK0F/n6bIw+IHBSLBkSVnDYXWDeSxQMiB2UqGhwIS5IdhYhkiT4GrH+BIw+owrBwQCXKUmnxyopTCE1g0YCo0ruwFvj7HRYPiBzMvtBEFg2IiMUDIgel0xsw+Y/zLBoQERB19L9pi3jNA7I9Fg6oWDlqHUavOM3piYjotvO/Azunyk5BRKV05FoyJv1xnkUDIjLS5gJ/vADEnZOdhIhKQW8QeGfDBezl9EREZBJ5GNgwCtCpZSchhWPhgIqUr9Fj3MrTCLqZITsKEdmbcyuB/TNlpyCiEpyISMGENWeh4YWQiaggTQ6wdjiQfE12EiIqhhAC728Kwq6QW7KjEJG9iTgIbH2d1yEkm2LhgAqlNwhM/uM8zkSny45CRPYqYB4Q+JPsFERUhIs3M/DG6rNQaXkwQUSFyE8D1gwFMm7KTkJERfjqnyvYHhQvOwYR2asrfwH/vCc7BSkYCwdUqE//DOH8iURUsj2fAsGbZKcgojtEp+Ti1VVnkKvRy45CRPYsKw5Y8xyQmyI7CRHdYdmRCKwIiJIdg4js3bmVwKFvZKcghWLhgKx8v+cqNp5lzyMiKg0BbJ8IhO+XHYSI/pOSo8aYlaeRmquRHYWIHEFqOLB2GKDOlp2EiP7z5/lYfLs7THYMInIUR+YAp3+RnYIUiIUDsrAmMBqLD12XHYOIHIlBC2z6P+DmGdlJiCq9PI0Or606gxupebKjEJEjSQgC1vMii0T24PDVJHy0JRhCyE5CRA7l34+Ay9tkpyCFYeGAzP4NScCMvy7LjkFEjkibB/wxAki+KjsJUaWl0xswad15XIzNlB2FiBxR9DFg62vg2UoieYJuZmDiuvPQGfg7JKIyEgbgz/FA5GHZSUhBWDggAMDJyFS8uzEI3D8horuWnw6seR7ITpSdhKhS+mzbJRy6miw7BhE5sit/AwdmyU5BVClFJufg1VVnkMfrExHR3dJrgA2vALdCZCchhWDhgBCZnIPxv5+FRmeQHYWIHF1WLLDxZU51QFTBftx3jdcnIqLyETAPuLhBdgqiSiUjT4Nxq84gjdcnIqJ7pckG1r8E5KbITkIKwMJBJZel0uL1388iS6WTHYWIlCL2DPDXO7JTEFUa2y/EYeGBcNkxiEhJ/noHiDklOwVRpaDTGzDpj/O8PhERlZ/MGGDjK4COxUi6NywcVGIGg8C76y8gMjlXdhQiUprgDcDxBbJTECnepbhMfPJnsOwYRKQ0erVxBGFGjOwkRIr31T9XcPx6quwYRKQ0MYHAP+/JTkEOjoWDSuy7PVc5FzIR2c7+mcC1PbJTEClWao4aE9acg0rLqQaJyAZyk4E/XgTUObKTECnWprM3sepEtOwYRKRUF9YAJ5fKTkEOjIWDSmpHUBx+PhIhOwYRKZkwAFtfB5LCZCchUhyd3oCJ684jLiNfdhQiUrKky8a23MACJVF5O3cjHf/bdkl2DCJSuj2fAdcPyE5BDoqFg0ooJDYTH2/ltAZEVAHUWcD6F4G8NNlJiBTlq3+u4FQUf1dEVAGu/Qsc/FJ2CiJFScjMx5trz0GjZ1GOiGxM6IEt44CU67KTkANi4aCSSc5WY/yas5zWgIgqTnoUsOVV9lYkKiebOa0BEVW0gHnAtb2yUxApgkqrx4Q155CcrZYdhYgqC1UmsGEUpx+kMmPhoBLRGwQm/3EeCZkq2VGIqLKJPAQE/CA7BZHDC7qZgc+2c1oDIqpoAtg2AciMlR2EyOHN/OsygmMzZccgosom5RovlkxlxsJBJbLwQDinNSAieQ7NBm6ckJ2CyGFl5mkxce05aHQcvUNEEuSnAZvHAXqt7CREDuuvi/HYcOam7BhEVFkFbwQurJWdghwICweVxMnIVCw+xPnMiEgioQe2vAbkpspOQuSQPt4ajHiOGiQimWJPA/tnyk5B5JBupObisz9DZMcgospu14dA0hXZKchBsHBQCaTlajBlQxD0BiE7ChFVdtnxxqkOBLdHRGWx7tQN7L58S3YMIiIgcDFwZafsFEQORaMz4O31F5Ct1smOQkSVnTYP2DwW0OTJTkIOgIWDSuCDzRdxK4s9FInITlzfBxxfIDsFkcMIT8zGlztDZccgIrptx0QgPVp2CiKHMWd3GK9rQET2IzkM+PdD2SnIAbBwoHC/HovEwbAk2TGIiCwd/BKIOSU7BZHdU2n1eHv9Bai0vK4BEdkRVSaw5VVAz97TRCU5GJaI345HyY5BRGTpwlrg4kbZKcjOsXCgYCGxmfhu91XZMYiIrBl0wNbXjCceiKhI3+y6grBb2bJjEBFZizsHBPwoOwWRXbuVqcL7my5ylk4isk//vAekRshOQXaMhQOFytfo8fb689Do2UORiOxU5k1g96eyUxDZrX2hifg98IbsGERERTvyHRAfJDsFkV0SQuC9TUFIz9PKjkJEVDhNDrBjEmDguUMqHAsHCvXdnjBEp/JCJ0Rk54LWAtf2yk5BZHeSs9X4aMtF2TGIiIpn0ALb3gR0atlJiOzO2lMxOBGRKjsGEVHxYgKBkz/JTkF2ioUDBToTnYbVJ6JlxyAiKp2/3wHyM2SnILIrn++4xB6KROQYkq8AB7+SnYLIrsSm5+HbXVdkxyAiKp2DXwEp4bJTkB1i4UBhVFo9PtoSDAPnUCQiR5GdAPz7sewURHbj35AE/HvpluwYRESlF7gYiDkpOwWR3fh4azByNXrZMYiISkeXD2yfyCmLyAoLBwrz/Z6riErJlR2DiKhsgjcAYbtkpyCSLiNPg+k7LsuOQURUNsJgnLJIw+MQonWnbuD4dU5RREQOJvY0ELhIdgqyMywcKMi5G+n47XiU7BhERHfn73eBvDTZKYik+mJnKFJyOFc4ETmg9Chg3+eyUxBJFZeRj9m7wmTHICK6O4e+AZKvyk5BdoSFA4VQafX4cMtFTlFERI4rNwnY9aHsFETSHLqahD/Px8mOQUR0986sAGLPyk5BJM0nW4ORo9bJjkFEdHd0KmD7W4CBU62REQsHCjFv/zVEJnNoMBE5uEtbgIiDslMQVbgctQ6f/RkiOwYR0T0SwM4pPOFAldLGMzE4Fp4iOwYR0b2JOwec+VV2CrITLBwowNVb2VhxjFMUEZFC7PoQ0GlkpyCqUN/+ewXxmSrZMYiI7t2tEOD0ctkpiCpUeq4Gs//lFEVEpBAHvwZykmSnIDvAwoECzPjrEnSco4iIlCL1OnBioewURBXm4s0MrDsVIzsGEVH5Ofg1kJUgOwVRhZm79yoy8rSyYxARlQ91JrB3uuwUZAdYOHBwf12Mx8lIXkyUiBTm2A9ABk+kkvIJITDz78sQrP8TkZJosoHdn8hOQVQhQmIzseE091uJSGGCNwA3TshOQZKxcODA8jQ6fPPPFdkxiIjKnzYP2D1Ndgoim/vzfBwuxGTIjkFEVP5CtwPX98tOQWRTQgh8/tclcAIAIlKkfz4A9Lzge2XGwoEDW3jgOm5lcT5kIlKosJ3Atb2yUxDZTI5ahzm7OR8yESnYPx8AWh6vkHJtPhfLDgBEpFxJl3ndokqOhQMHFZmcg98CeEFkIlK4fz/iCQdSrEUHw5GUrZYdg4jIdtKjgMDFslMQ2URmvhbfsQMAESnd4dlA9i3ZKUgSFg4c1My/Q6HRG2THICKyrfQoIHCR7BRE5S4qJRcrA6JlxyAisr3jC4DcFNkpiMrdvH3XkJKjkR2DiMi21FnAvhmyU5AkLBw4oP2hiTh6LVl2DCKiinF8IZCbKjsFUbn6cic7ABBRJaHOAg5/KzsFUbm6lpiNNSdvyI5BRFQxgjcCCcGyU5AELBw4GINBcD5kIqpc1FnA0bmyUxCVm0NXk3AwLEl2DCKiinNuJZByXXYKonIzd89V6HlFZCKqNASwf6bsECQBCwcO5s8LcQhPypEdg4ioYp1dAaSzVxc5PiEEvtt9VXYMIqKKZdABB2bKTkFULs7HpGNfaKLsGEREFSviABB1VHYKqmAsHDgQjc6AefuuyY5BRFTx9Brg4FeyUxDds53BCbiSkCU7BhFRxbvyNxBzUnYKons251/OAEBElRSvdVDpsHDgQNaduoG4jHzZMYiI5AjZzHkVyaHpDQLz9rMDABFVYnuny05AdE8OX03Cqag02TGIiOSIPw9c3iY7BVUgFg4cRK5ahyWHOC8oEVVmnFeRHNvW87GITM6VHYOISJ7Y08Dl7bJTEN0VIQTm7uF0g0RUyR34EtDrZKegCsLCgYNYERCFlByN7BhERHJFHAAij8hOQVRmGp0BC/aHy45BRCTfkTmA4EVlyfHsDE7A5XhON0hElVxaBHB+lewUVEFYOHAA6bka/HI0UnYMIiL7wGsdkAPacCaG0w0SEQFAUqjxegdEDkSnN+BHXm+QiMjoyFxAp5adgioACwcO4OejEchWcxgQEREA4zQHUUdlpyAqNZVWj8UHOd0gEZHZ0bmyExCVyZ/n4xCVwukGiYgAADm3gAtrZaegCsDCgZ3LzNdi3ckY2TGIiOzLsR9kJyAqtTWBN5CUzR45RERmt4KBq7tlpyAqFYNB4OejEbJjEBHZl+MLeK2DSoCFAzu39uQN5HC0ARGRpcjDQNw52SmISqTRGfDLMU43SERk5eh3shMQlcqey7cQmczRBkREFjJuAJe2yE5BNsbCgR1TafVYeTxKdgwiIvt0lKMOyP5tuxDL0QZERIWJOwdcPyA7BVGJfj7C0QZERIUKmAcIITsF2RALB3Zs89mbSMnRyI5BRGSfru4CEkNlpyAqkhACy49ytAERUZF4rQOyc8evp+BibKbsGERE9ik5DAjbKTsF2RALB3ZKbxBYzqkNiIiKIYCAH2WHICrSgStJiODUBkRERYsJBKKOyU5BVKSlhznagIioWMd4TK5kLBzYqZ3B8biZli87BhGRfbv0J5DGIivZJ442ICIqhcAlshMQFSokNhMB11NkxyAism/x54GIg7JTkI2wcGCn2LOBiKgUhB44uVR2CiIr52PScTo6TXYMIiL7F74HSON13cj+LD1yXXYEIiLHcHyh7ARkIywc2KHDV5MQditbdgwiIscQtB5Qc5tJ9mX5EY42ICIqFWEATv8iOwWRhRupudh96ZbsGEREjiHyMJASLjsF2QALB3Zo9Ylo2RGIiByHJhu4uEF2CiKz6JRc7A3lyQYiolK7sBbQ8JowZD/WBN6AQchOQUTkKARw5lfZIcgGWDiwMzGpeThyLVl2DCIix8KdFLIjqwOjebKBiKgs1JlA0B+yUxABAFRaPTafi5Udg4jIsQStZycABWLhwM6sPcWeDUREZZYcBkQdlZ2CCCqtHlt5soGIqOw4XRHZie0X4pCZr5Udg4jIsagzgeCNslNQOWPhwI6otHpsOntTdgwiIsfEEw5kB/66GI8slU52DCIix5NyFYg4KDsFEdacvCE7AhGRYzrNmQCUhoUDO7IrJAEZeezZQER0V67uAjLjZKegSm4dTzYQEd29U8tkJ6BKLuhmBi7HZ8mOQUTkmJIuAzdOyE5B5YiFAzvyx6kY2RGIiByXQQecWyk7BVVil+MzcTE2U3YMIiLHFb4PyEqQnYIqsfU8Jiciujenl8tOQOWIhQM7EZ6YjbM30mXHICJybOd/Bwx62SmoktpwmtMNEhHdE6EHgjfITkGVVLZKi7+D42XHICJybFd2AjnJslNQOWHhwE6s58kGIqJ7l5MIRBySnYIqIZVWjx1BnCqLiOieBa2XnYAqqR1B8cjTsAMKEdE9MWiBS1tkp6BywsKBHdDpDTzZQERUXthTkST491ICL4pMRFQeUq4Csedkp6BK6M/zsbIjEBEpw0UekysFCwd24Nj1FKTmamTHICJShrB/AHWO7BRUyWw+y5MNRETlJmid7ARUydxMy8P5mAzZMYiIlCEhCEi+KjsFlQMWDuzAX0GcR5GIqNxo84Arf8lOQZVIUrYKJyNTZccgIlKOS1sBnVp2CqpEOAMAEVE546gDRWDhQDKVVo+9l2/JjkFEpCzcSaEKtCs4AQYhOwURkYKoMoCru2SnoEpkOzvzERGVr5DNgOBBkqNj4UCyfaGJyOUFmIiIylf0MSCLB4BUMf4OTpAdgYhIeYL+kJ2AKonL8Zm4nsRpLomIylXmTSA6QHYKukcsHEjGIZFERDYgDEDwJtkpqBKIz8jH+Zh02TGIiJQn4iCQlyY7BVUCnDqYiMhGgjkTgKNj4UCijDwNjlxLlh2DiEiZWDigCrAzOJ4jcImIbMGgA67tlp2CFE4Igb8usnBARGQToX8BWpXsFHQPWDiQaFfILWj1PNtARGQTSZeBtEjZKUjh/r7IaYqIiGzmyt+yE5DCnYpKQ0ImT2oREdmEOguIOiI7Bd0DFg4k+ieEPRuIiGwqjBdWJNu5kZqLkLhM2TGIiJQr4iCgyZWdghTsH16niIjItsL+kZ2A7gELB5JkqbQ4HcU5O4mIbIo7KWRDO3mygYjItnQqIHyf7BSkYAfDkmRHICJStmu7wbldHRcLB5IcvZbMaYqIiGzt5ikgN1V2ClKovZdvyY5ARKR8nK6IbCQ0PgtxGfmyYxARKVtOIhB7VnYKukssHEhy8Ap7NhAR2ZzQ88KKZBMpOWoEc5oiIiLbC98L6DSyU5ACHQxLlB2BiKhyuMqZABwVCwcSGAwCh66ycEBEVCE4XRHZwJGryRxxS0RUEdRZQORh2SlIgfazMx8RUcXgtQcdFgsHEpyPSUd6nlZ2DCKiyiHyEKDlMHQqX4evJcuOQERUebCnIpWzlBw1gmMzZMcgIqocUq4CqRGyU9BdYOFAggO8ABMRUcXR5gERh2SnIAXRGwSOhbNwQERUYdiOUzk7GJYEA0cOEhFVHM4E4JBYOJCA1zcgIqpg1/fJTkAKEnQzHRkcOUhEVHEybgBpkbJTkILwmJyIqIKF75WdgO4CCwcVLDY9D1cTs2XHICKqXKKOyk5ACnIojKMNiIgqHK9zQOVEozNw5CARUUW7eRrQqmSnoDJi4aCCBYSnyI5ARFT5pF4HsuJlpyCFOHSVvRSJiCocpyuichJ0MwO5Gr3sGERElYteDdw8JTsFlRELBxXsVFSa7AhERJVT1DHZCUgBkrPVCE3Ikh2DiKjyiT4GGAyyU5ACnI5KlR2BiKhy4kwADoeFgwp2KpI7KUREUnAnhcrB6ag0CF5MkYio4uWnAwkXZKcgBWBnPiIiSaLZmc/RsHBQgW6m5SE+k/N5ERFJwcIBlYMz0TzZQEQkDa9zQPdIpzfg3I102TGIiCqnuPOAOkd2CioDFg4qEHs2EBFJlBkDpEfLTkEO7uwNtuVERNLwOgd0j4LjMpHH6xsQEclh0AIxJ2WnoDJg4aACcZoiIiLJOOqA7kGuWocrCdmyYxARVV5x5wC9TnYKcmCnItkBgIhIqqgjshNQGbBwUIFOc3oDIiK5ogNkJyAHdj4mHXoDL3BARCSNNg9Iuiw7BTmwU7wwMhGRXLzOgUNh4aCC3MpU4UZqnuwYRESVW+xZ2QnIgZ3hlINERPKxLae7pDcInI3m9Q2IiKS6FQJoef1XR8HCQQXhaAMiIjuQFgnkZ8hOQQ7qDE82EBHJF3dOdgJyUFcSspCj5lRXRERSGXTG4gE5BBYOKkjwzQzZEYiICAKIvyA7BDkgnd6AILblRETyccQB3aXg2EzZEYiICOAxuQNh4aCCXI7Pkh2BiIgA7qTQXbmSkI18rV52DCIiSrkGqHgCmMrucjy/N0REdoHH5A6DhYMKwp0UIiI7EX9edgJyQKEJbMeJiOyD4HRFdFcusTMfEZF94DG5w2DhoALcTMtDlopzKRIR2YU49m6gsruSkC07AhERmcSycEBlo9MbEJbAwgERkV1IuQaoc2SnoFJg4aACXIpjL0UiIruRFQvkJMtOQQ4mlCcbiIjsB0ccUBlFJOdCrTPIjkFERAAgDEDCRdkpqBRYOKgAvL4BEZGd4dBIKiP2UiQisiNJobITkINhZz4iIjvD6xw4BBYOKsAlXt+AiMi+sHcDlUFcRj6nHCQisicZMYAmT3YKciDszEdEZGd4TO4QWDioANxJISKyMynXZCcgB3KF7TgRkZ0RQMpV2SHIgbAzHxGRnWE77hBYOLCxlBw1krPVsmMQEVFBLBxQGVzhNEVERPYnmSccqPSu3sqWHYGIiApKuQ4IITsFlYCFAxuLSsmVHYGIiO7EnRQqgyu3WDggIrI7SVdkJyAHkZarQWa+VnYMIiIqSJsLZMXLTkElYOHAxlg4ICKyQ9xJoTK4lpgjOwIREd2JIw6olHhMTkRkpzgTgN1j4cDGbqRyJ4WIyC5xJ4VKQQiBm2m8ACcRkd1J5ogDKp1oFg6IiOxT6nXZCagELBzYWHQKTzYQEdmllHDZCcgBJGapodYZZMcgIqI7ZcQA2nzZKcgBRLMzHxGRfeIxud1j4cDGOCySiMhOccQBlcLNdHYAICKyS8IApEXKTkEOIDqVbTkRkV3iMbndY+HAxjhVERGRnUpl7wYqWQxPNhAR2a/MWNkJyAFwqiIiIjvFqYrsHgsHNpSUrUKuRi87BhERFSYtSnYCcgAxvL4BEZH9yrwpOwE5ABYOiIjsVGYsoFPLTkHFYOHAhm6wlyIRkf3KviU7ATkAXhiZiMiOccQBlSAlR41stU52DCIiKpQAshNkh6BisHBgQzzZQERkx/RqIDdVdgqycxxxQERkxzLjZCcgOxeXzgtoExHZNXbos2ssHNhQUjaH2xAR2TX2bqAS8OLIRER2jCMOqAQ8JicisnNZ8bITUDFYOLChZO6kEBHZNxYOqBg6vYEnHIiI7BkLB1QCHpMTEdk5HpPbNRYObIg7KUREdo69G6gYaXkaCCE7BRERFSk7HjAYZKcgO8ZjciIiO8fCgV1j4cCGUnK4k0JEZNe4k0LFSMvVyI5ARETFMeiAHM6NTEVLzlHJjkBERMXJ4jG5PWPhwIbYu4GIyM5xxAEVIy2HhQMiIruXkyQ7AdmxpCwekxMR2TVeHNmusXBgQ8kccUBEZN844oCKkcoRB0RE9k+VITsB2TEekxMR2blsduazZywc2IhGZ0BmvlZ2DCIiKk5uiuwEZMc4VRERkQPIz5CdgOwYZwEgIrJzOcmyE1AxWDiwkdRcNS+oSERk79TZshOQHeOIAyIiB5CfLjsB2TFed5CIyM5pcsATqPaLhQMbSc/laAMiIrvHwgEVIy2XJxuIiOwepyqiIqi0eqi0BtkxiIioWILH5XaMhQMbydPoZEcgIqKScAeFisGpioiIHACnKqIi5Gn0siMQEVFp8LjcbrFwYCO53EkhIrJ/2lzAwO01FS4rn50AiIjsHkccUBHYmY+IyEGwcGC3WDiwkXzupBAROQZ1luwEZKdUWhaViIjsnp2MOFi1ahWqVasmOwYVkM/OfEREjoGFA7vFwoGNcFgkEZGD4E4KFUGlY1tORGT3ynnEwdixY+Hk5GR1u379erm+DtkeZwEgInIQ7Mxnt1g4sBEWDoiIHISdFA7YU9H+qHlBRSK6R98GqOE0KwtTdqvM90WkGfDcxjzUmpsNv9lZGLk5D4k5pd/eFLZMAHhvjwo15mSh0bxsrAvWWvxt82Utnlmfd29vxl5pyv999e/fHwkJCRa3pk2blvvrkG1xqiIiIgdhJ8fkZI2FAxvhsEgiulfldbJBbxCYflCFpguy4fV1FpovzMaXR9QQQpgf8/0JNWrPzUbtudn44YTa4vmnYnXovDwHOoO4c9HKUM47KeypqBxqHQsHRHT3zsTpseycBh3r3D7kytUI9FubCycAB0dXwfFXvaHRA8+sz4NBlNzOFrZMAPj7qhZ/hGix9/+88V0fT7z+dz5S8ozbsEyVwGcH1Vgy0LNc35/d0KtLfkwZeXh4oG7duha3BQsWoEOHDvD29kajRo0wceJE5OTkFLmMixcvonfv3vD19YWfnx86d+6Ms2fPmv8eEBCAHj16wMvLC40aNcI777yD3Nzccn8vlRmPyYnoXvGYvIKU4zF5YcfiBW8zZ84st9eqDFg4sBGOOCCie1GeJxvmHNdg6VktFg/wxJVJPpjTxxPfnVBj0WkNACA4UY/PD6mxYbgX1g/zwv8OqRGSaNyG6QwCb/6jws+DvODq7GTT9yyNNr/cF8meisqg5lRFRHSXcjQCL/+Zj1+e8UJ1z9vt5/GbekRnCKwa6oUOdVzQoY4LVg/1wtl4Aw5GFb/NKWqZAHAlxYBeTVzwcH0XjOrgBj8PJ0SlG/cNPtqnwlsPu+G+qgo99NNrS35MOXB2dsbChQtx+fJlrF69GgcPHsRHH31U5ONffvllNGzYEGfOnMG5c+fwySefwM3NDQAQERGB/v37Y9iwYQgODsbGjRsREBCAyZMnV8h7sQV7HDnJY3Iiuhc8Jq9AOlXJjymlgsfg8+fPh5+fn8V9H3zwgfmxQgjodBydVhy73nt05CpRnlZZX7yMgHW4MWewxS3ulzfNfxc6DVL3LsXNBaMQ8+NwJG/7Bvrc9CKXJ/Q6pB9eifgVkxDz4zDELhmNlJ0/QJedWmCZWqTs/AEx80Ygbvl45EcHWSwj89RWpO37udzfK5Fs5X2y4cRNPZ5t7YpBrdzQpJozhrd1Q7/mrjgdZ+wVEZZiQMc6LniyqSueauaKjnWcEZZi/Nvc4xo8cZ8rujRwse2blkmU/0Eleyoqg4pTFRHRXZq0S4VBLV3Rp5mrxf1qnYATAI8CzaqnK+DsBATEFH/8UNQyAeCBOi44G69Her7AuXg98rUCLWo4IyBGh/O39HjnUffyeFv2SVf+Iw527twJHx8f823EiBGYMmUKevfujSZNmuDJJ5/EV199hU2bNhW5jJiYGPTp0wdt2rRBy5YtMWLECDzwwAMAgNmzZ+Pll1/GlClT0LJlS3Tt2hULFy7E77//DpWq/E6e3A0ljZxU4ogDHpcTVQwek1cwQ/mdQy14DF61alU4OTmZ/x0WFgZfX1/8+++/6Ny5Mzw8PBAQEICxY8di6NChFsuZMmUKevXqdTuiwYDZs2ejadOm8PLywgMPPIAtW7aUW257Zb3XaUcSEhLM/79x40Z8/vnnuHr1qvk+Hx8f8/8LIaDX6+Hqah9vSYnzIrv534c6L3x9+w7n23WntAO/ID/iLPyHfgJnD2+k7VuK5G3foO4rcwtdltCpobkVgapdX4R77aYwqHKQdmA5kv/8EvXGzAcAZF/cDc2t66j7yvfIjzyHlL/nouHktXBycoI24xZyLu4xP5ZISQqeGPjq6O2D4ZJONhR2IgEAujZywfJzGlxL1aNVTRdcvKVHQIweP/YzTlnQobYzrqXqEZNpgBDAtVQD2td2RkSaASuDtDg33tuWb1c+Q8UcVJp6KjZt2hSRkZGYOHEiPvroI/z000+FPv7ll1/Ggw8+iKVLl8LFxQVBQUFWPRW/+uor/Pbbb0hOTsbkyZMxefJkrFy5skLeT2WgtBEHGQHrkHl8vcV9rjUaosEbxoN9odMg7eAK5F05CqHXwqvpQ6jR7y24eFcvdrnalJtIP7ISqphLgNDDreZ9qPXcNLj61QZg3EfIvXQATm6eqNZzDHza9TY/NzcsALmXDqD28Bnl/G6J5NlwSYvzCXqcecO6/XysoQu83YGP96vxzVMeEAL4ZL8KegEkZBfdU7G4ZQLA0y1c8UpHN3T5JQdebk5YPdQL3u7AW/+osOpZLyw9q8Wi0xr4V3HC8sGeaFdbQScfDOU/4qB3795YunSp+d/e3t7Yv38/Zs+ejbCwMGRlZUGn00GlUiEvLw9VqlSxWsZ7772H119/HWvWrEGfPn0wYsQING/eHICxc0BwcDDWrVtnfrwQAgaDAVFRUbj//vvL/T2VRf/+/a32J2rVqiUpzd1T65V3TA7wuJyoIvCYvIJV0DG5ySeffILvv/8ezZo1Q/XqxR/rmMyePRtr167Fzz//jJYtW+Lo0aN45ZVXUKtWLfTs2dPGieWx6xEHrBLZGWcXuPhUv32rUhUAYFDnIid4H6o/+Rq8Gj8Aj7ot4D9wCtRxV6COCyt8UR7eqPPiV/C+vwfcajaER4M2qNH3TWhuXYcuKwkAoE29Ca8Wj8K9VmP4PjQIhrxMGPKNV1pP2/sTqvcaC2cP6510IkdmOjEwu4+H1d8KnmzI0wrkagQ+2FvyyYZPurvjxfZuaLM4F25fZuHBZbmY8qg7Xu5oPAl9fy0XfPOUJ/quyUO/tXmY/ZQn7q/lggk78/FdXw/sidCh/U85eHBZDo7eUNZoKgDl2rvBpDL3VFQSJV7jwM3/PjSctMZ8q/vyHPPf0g78gvzrp+E/9BPUeelb6HJSkbztm2KXp01PwK11H8GtRkPUfWk26o1bjKpdX4STi7F3c971U8i9cgS1R36J6r3GIW33IujzMgEY9x8yjv6OGv3est0bJqpgNzMNeHe3Cuue94Knq/V0ArW8nbF5RBX8fU0Ln2+yUfXbbGSogYfqOaOo2QdKWqbJzF6euP6OL0Le8sFz97th9jEN+jR1hZsL8NVRNQLGVcHrD7ph9Pbyn6JPKkP5b6u9vb3RokUL802tVmPw4MHo2LEjtm7dinPnzmHJkiUAAI1GU+gyZs6cicuXL2PQoEE4ePAg2rZti23btgEAcnJyMGHCBAQFBZlvFy9eRHh4uLm4IBNHTto5HpcT2RSPySWwwSwAxfniiy/Qt29fNG/eHDVq1Cjx8Wq1Gt988w1+++03PP3002jWrBnGjh2LV155BcuWLauAxPLYR/f8e8AqUcXRpccjdsloOLm4wb1BG1TvOQaufrWhvnUdMOjg1aST+bFuNRvBxa8W1PFh8GjQplTLN6jzADjB2cM4ksS9dlPkXjoEg1YNVdR5uPjUgLOXH3IuH4KTqzuqtOpqg3dJJI/pxMC+/6tS7MmGt/7Jx8JTGjg7AaM6uBV7sgEANl3WYV2IFn8M80K7Ws4IuqXHlD1q1Pd1wphOxpN7bz7sjjcfvj2NweogDXw9nPB4Qxe0XpyDM294IzZL4MUt+Yh61wcexZy4cDg26N1Q2Xsqmjg5Ff89mTFjht1OO6g3CJTiOqWO57+TDXcynWzwf+YDeDU2Fqj8B05B/K9vQR1XdFuecfR3eDV/GNV7v2q+z616PfP/a1NvwrNRB3jUawmPei2RduAX6DIT4VKlKtIPrYTvgwPNIxOIlOBcgh5JuQIPLbt9AlQvgKM39Fh8WgP1/3zRr7krIt7xRUqeAa7OTqjm6YS632ejWbvC+3SVZpkud+wIhKXosTZEiwsTvPHbBQ2eaOyCWt7OGNnODa/+pUK2WsDXQyFteQWcbDh37hwMBgN++OEHOP/Xu7u44r9Jq1at0KpVK0ydOhWjRo3CypUr8dxzz+Ghhx5CaGgoWrRoYevo5cYhR04qsiHncTmRLfGYXJIKHnHw8MMPl+nx169fR15eHvr27Wtxv0ajwYMPPlie0eyOwxcOTFWi0jJVifbv34/HH38cANCsWTMEBARg2bJl5VY4EArbSfGo1xo1B06FW40G0OekIfP4etxa9zHqv7oEhtx0wMUVzp4+Fs9x8a5W7HyKBQmdBhmHV6JK2yfMvRV8OvSFJika8SsmwsXLD/7PfgyDKgeZAetQZ9RspB9dg7wrR+FarS5qDnwXrr7+5f6+yZJxUB7Zii1ONgDAh/tU+KSbB15sbzxY61DHBTcyBWYHaMw7KQWl5Bkw64gaR8d541ScHq1qOqNlTRe0rAloDcZhkx3qKGiKAxsw9VQ0iY6OxuDBg/HWW2/h66+/Ro0aNRAQEIDXXnsNGo2m0MLBzJkz8dJLL+Gff/7Bv//+ixkzZmDDhg147rnnzD0V33nnHavn3XfffTZ9b2XhyFMOKva6Y+V4skEIA/Ijz8LvkeeRuHE6NEmRcK1aB1UfG4EqrYz7WO61miInaA/0qhzoMm5B6NRwrV4fqtjL0CRGcLRBBVPW3ql9eqqpK0LespxOYNyOfLTxd8HH3dwtTvD7VzG23QejdEjKFRjSuvDtX1mWCRi3pxN2qvBjPw/4uDtBbzC238Dt/+qV9GUQth8d1qJFC2i1WixatAjPPPMMjh8/jp9/LnpO9/z8fHz44YcYPnw4mjZtitjYWJw5cwbDhg0DAHz88cd47LHHMHnyZLz++uvw9vZGaGgo9u3bh8WLF9v8/ZTENHLSZMCAAdi8ebP5302aNMFXX32FN998s8jCQUxMDD788EO0aWNsP1q2bGn+W8GRk6a/LVy4ED179sTSpUvh6elZLu9DSV9zEx6XE4/JbYvH5LJU7Bbb29tyv8rZ2dnqPK5We3sqRNMIu3/++QcNGjSweJyHh/XIFCWxj6Pze2CvVaKSelk6Gq/mBdZz7abwqN8asUtfRW5YAJzd7u1ia0KvQ/KObwEANftNMt/v5OKKmnecUEj5Zz58Oz8DTWIk8sMDUW/cImSd2or0/ctR67lP7ykHlYw7KbZli5MNAJCntT4J6uIEGIpom6fuUWPqYx5o6OeMM3F6FLxki84glHWyAQAqYHtdWXsq1q1b1/z/BaccBIDDhw+jd+/e2LVrF/73v/8hJCQEe/fuxapVq5CRkYHt27ebnztlyhQEBQXh8OHDAIxTDs6ZMwfLly/HrVu30KpVK0yfPh3Dhw8vt+xKa8eB8j/ZYMjNhNDkI+vUFlTr8X+o3msc8qPOIXnbN6gz6ht43tcBXs06w7tdL9xaPRVOru7wHzQVzm4eSNvzE2oOmorsC7uQfX4nXLz8UOPpyXCv1bgiVkWllaNzARR8jVx74OvhhPZ3XD/A280JNb1u37/yggb313JGrSrOCIzV4d3dakx9zB2t/W8/76nfc/FcGzdMfsS9VMss6NfzWtSq4oRnWhtPTnS7zxUzj6hxMlaHf8N1aFvLGdU8FbSNq4DCwQMPPIAff/wRc+bMwbRp0/DEE09g9uzZGD16dKGPd3FxQWpqKkaPHo3ExET4+/vj+eefx6xZswAAHTt2xJEjR/DZZ5+hR48eEEKgefPmeOGFF2z+XkqDIyftF4/LSWmHYvaGx+SyyN0vqVWrFi5dumRxX8GRcm3btoWHhwdiYmIq3Uw1Dl84sNcqkQLPN1hw9vSBW40G0GXEw7PJg4BeB4Mqx+KEgz43o8QLKpp2TnSZSagz6pti50ZU3QiGNvUGag54G+mHfoNXs4fh7O6JKm26I/GPneX23qhoBie7viyKw7PFyQYAeKaVK74+psZ9VZ3QrrYLLiTo8eNJDV7t5GaVYV+EDtdS9Vg91NjTq0sDF4SlGPBvuBY3swRcnJzQuia/B2VV2XoqloU9Tzno4uwEfVF78w6ovE82iP9O1nm1eAx+XYYCANzrNIM67gqyg/6F530dAADVur+Mat1fNj8vI+APeDbpBCdnF2QGbkT9V5cg//pppP7zI+qNXXD3b5BKpDY4Qzi7wskG13ah0ruaasC0A2qk5Qs0qeaMz3q4Y+pjlr/BiDQDUvLKfkI8MceAr4+pceK128dIjzRwwfuPe2DQH/mo7W28cLKiOJfvIe2qVasKvX/q1KmYOnWqxX3/93//Z/7/sWPHYuzYsQAAd3d3rF9veTH6O3Xp0gV79+69p6y2opSRk0rsBHAnHpdXPgYoqZe5/eExuSSSt9dPPvkk5s6di99//x2PP/441q5di0uXLpk7mPv6+uKDDz7A1KlTYTAY0L17d2RmZuL48ePw8/PDmDFjpOa3JYcvHNzJXqpELgrfSTFo8qHLSICLd2941G0BOLsi/8ZFeLfuBgDQpsZCn5UMj/pFz6No3jlJj0edUbPh4uVX9GN1GqTtWwr/Zz6Ak7MLIAy3OxcZ9OaTF2RbBvu+nnqlcDcnGxYN8MT0Q2pM3KVCUq5AfV8nTOjshs97WhZL87UCk/9VYeNwLzj/tw1r6OeMRQM8MW6HCh6uwOqhnvByU9r2zfbvp7L1VCwLe51yEDC25XoF9+u615MNLlX8AGcXuPk3srjfrWYjqGNDC32ONvUmckMPod7YhcgJ3gfPhu3hUqUqqrTpgdR/F8CgzuMFFm3N1RPQFH1BUyp/h8dadnT6to8nvu1T/FQs0VN8y7RMkzo+zoU+9/OeHlbtvmK4KvR92RFHHTnpqtR5BwvgcXnloxfK/17bOx6TK8/TTz+N6dOn46OPPoJKpcKrr76K0aNHIyQkxPyYL7/8ErVq1cLs2bMRGRmJatWq4aGHHsKnnyp7lJXiCgf2UiVycVHWjzj94Ap4tXgErlVrQ5edhsyAdYCTM7zb9oSzhzd8OvZF+sFf4eLpCyePKkjf9zM86rexmBM57pc3Ub3naFRp1dW4c7J9NjSJEag9/HPAYIA+xzgVgrOXD5xcLKuuGSc2wKvZw3CvYxze6tGgLdIP/wafDn2QfX4nPBtwOGtFYOGg4pXHyQZfDyfM7++J+f2Lf56XmxOuTvaxuv/1h9zx+kMKntvCpXzfG3sqlo29TjkIAK4uTtBU7HW6KtS9nmxwcnGDR92W0KXFWdyvTYuDSyEXPBZCIHXPElR/8nU4u3v9d7Lhv57vpv/yhIPNCVdPOLFwQEriWj7z4VPRHHXkpBI78/G4nAycPrjC8Zi8Ajhbj7woDwWPsQGgV69eRV6TdtasWeaOeoVxcnLCu+++i3fffbe8Y9o1xRUO7KVKpLTeDbrsFKT8PRf6/Cy4eFWFR8O2qPt/P8ClSlUAQI2n3kCakzOSt38DodfCs+lDqNl3ouUy0mJhUOcBAPQ5qci/fgoAkLDScoiqcV7kjuZ/a5KjkRd2DPXGLjLfV6VNN6huhuDWuo/hVrMB/J/50CbvmyzpOSySlMidvZtlstcpBwHAzcUZgHIqB+V9sgEA/B59Hsk7voNHw3bwbNwR+ZHnkH/9NOq8NNvq9XMu7oGLlx+qtHgUAODR4H5kBPwBdVwY8iPPwa3mfVbXWKDyZ3DxZDcAUhaOOLA5Rx05eeeFw5WAx+WkZytOSsRjcrvlJIoqtdA9WXggHD/uuyY7BlG5+rvVLnSIWSs7BlH5Gn8YqF++PdXJ2qpVqzBlyhRkZGQAuH1x5PT0dFSrVs38uI8//hiHDh3C6dOnzfd169YNbm5uOHz4MLKzs1GrVi388ssvFiM2bKHL1/uRnK226WtUpOQdc6COvWxxsqHaE6PhVr0egP+mHzi4AnlXjlicbHDxuT1V0Y05g1Fz4BT4dOhjvi8neC8yT26GPjsVrjUaoFr3l1Gl5WMWr63PTUfC7++j7itz4epb03x/xvH1yD77F5yrVIX/oKnwqN/axmuBrtX9HO4Z12XHICo/jR4FXnP8EXhU/nYGx2PyHxdkxyAqVwtbnMWQ2B9lxyAqX8//AnQcKTsFFUJxIw7shbcHVy0pj16wdwMpkFvh80STHPYy5SAAuLsoa5tX69mPi/27k6s7avZ7CzX7vVXkYxp/bH3RQ5+O/eDTsV+xy3bxro6Gb/1mdX+1bqNQrduoYp9L5UvvwmldSGE44oCK4MNjclIgTh9MiuTGEQf2ii2pjfh6ctWS8hicuJNCCsRhkXbFXqYcBAAvd07PRsqjd+FJVlIYXuOAisBjclIiXhyZFInH5HaLLamN+LJ3AykQRxyQIrF3Q4VwxAtT+fGEAymQzpmFA1IYFg6oCD4etrnYJpFMvMYBKZI7r3Nmr7jFsREfnmwgBTLw4sikRO6cqogKV9WLJxxIebQsHJDSsHBAReAxOSmRgZ35SInYmc9ucYtjI5xPkZRIDw6LJIVxduXcyFQkFg5IibRO3OaRwnhVL/kxVCnxmJyUiMfkpEicqshusXBgI5xPkZRIxxEHpDS8MDIVo1oVd9kRiMqd1onfa1KYKjVlJyA7xemDSYk4fTApEqcqslvc4tgI51MkJeJ8iqQ4XtVkJyA75scRB6RAGo44IKXxZuGACufs7IQq7uz4RMrCiyOTInlWlZ2AisCzgDbCEQekRAZuMkhpfOrITkB2jFMVkRKpwREHpDAccUDF4HE5KQ0785HieFbl9MF2jFscG/H2cIW7K1cvKQt7N5Di+NSWnYDsGAsHpEQsHJDiVPGXnYDsWHVOO0gKw2NyUhx25rNrPLNtQ3X8WDEjZWHvBlIcFg6oGCwckBKpWDggpfFm4YCKVreqp+wIROWKF0cmxWHhwK7xLKAN1fHlTgopi44XYiKl4U4KFaOGN0+wkvKwcECKw6mKqBg8JielYWc+Uhx25rNr3OLYUB32biCF0Ttxk0EKw50UKkb9amzHSXnyBUfSkJI4AV41ZIcgO8ZjclIanYEjDkhh2JnPrvEsoA3V9eNOCimLniMOSGm8WTigotXx9YSrMw/OSFnyWDggJfGqDrjw4rdUNE4fTErDEQekOOzMZ9e4xbEhFg5IaThVESkOezdQMZydnVCHbTkpTJ6BUxWRglRrJDsB2Tkek5PS6GUHICpvPCa3azwLaEMcFklKwwsxkeKwdwOVoEE1L9kRiMpVnoG9s0lBqjWWnYDsHDsAkNJwFgBSHB6T2zVucWyIvRtIabiTQori7Ar4NZCdguwcr3NASpNr4FRFpCDVWTig4rFwQEqjE+zMRwpT9T7ZCagYPAtoQywckNJwqiJSlGr3cV5kKlF9jjgghcnRs3BACsIRB1QCfx93uLnwRCspBzvzkaI4uQDVm8hOQcXgFseG6lXjRRVJWXTcZJCS1GgmOwE5gAbVWTggZcnRs2BKCsKTDVQCJycnNKpeRXYMonLDEQekKFUbAq68/pY941lAG3JzcUajGtxJIeXgiANSlBrNZScgB8ARB6Q02RxxQErCwgGVQrNa3rIjEJUbXneQFIWd+ewezwLaWHPupJCCsHBAisKdFCqF+9gBgBQmW+8iOwJROXEyTjtIVILmtXxkRyAqNzwmJ0Wpyc589o5bHBvjTgopCXs3kKJwJ4VKoXGNKnB34e4SKUeWjlMVkUL41gVcPWSnIAfAEQekJHpOVURKwlkA7B6PhG2MOymkJOzdQIrCEQdUCq4uzmzLSVEytSwckEKwHadSYmc+UhJe44AUhZ357B7PAtoYd1JISbiTQorh7MrpDajUWtbxlR2BqNxk6jhVESlE7bayE5CDaMZjclIQHpOTonDEgd1j4cDGWtTmTgoph5YjDkgpqt0HuPACoVQ6rdiWk4Jk61whOPUgKUGddrITkIOo4e2O6lW430fKwKmKSDGcXIDqjWWnoBLwLKCNVavijhre7rJjEJULTlVEilGnvewE5EBa1eWIA1IYV0/ZCYjuHdtyKgOOOiCl4DE5KYZ/K3bmcwDc4lSAFtxJIYXgsEhSjHodZSf4//buO8zOsszj+O/U6b33PpNMZiYzmSSTZNJIBRJIAgktgYAQkCIgImvDRRFde4O1YXcFCypgYUUBBZUFuyIYQksggfReZubM7B8nzC6SkGnn3O/7nu/nurgCeO3ub6/EZ97nuZ/7fuAijYwqgscMUDiA6/mkIkYVYejYk8MrIgPWCYAxwp7cFSgcxMG4Eg4c4A19LBnwipJ26wRwkarcVCUFWf/gHRQO4Ho51VKYh+sxdBPKMq0jAGOCjgN4RslE6wQYAlacOGgrz7aOAIyJvn46DuARfKRgGPx+n+q4qQgP6Q9QOIDL8b4Bhqm1LMs6AjAmeuk4gFewJ3cFCgdxMLGcjxR4Qy+jiuAF6cVSeqF1CrhMcyk3FeEdkUCSdQRgdHjfAMPUXJqpUIC9DNyPjgN4g08qbrUOgSFgxYmDuoJ0pYUD1jGAUevlIwVewCxFjEB7RbZ1BGDMROg4gNvRcYBhSgoGeLMInsC7g/CEnGopmUvWbsApYBz4/T610BoJD+B2AzyhmMIBhq+jMts6AjBmIn46DuBypR3WCeBCjBCGFzA+GJ7AmCLX4BQwTtoYVwQP6OUjBV7ARwpGYFxxJt2D8IxeCgdws8wyKbvCOgVciD05vIDLfPAEpgC4BitOnHC7AV7Qx5IBL+CWIkYg4PeplQMHeESfL2wdARi5ii7rBHApCgfwgj4eR4YXlLRbJ8AQcQoYJxMpHMAD6DiA62VVcksRI9ZRmWMdARgTdBzA1SqnWSeASzUVZSgpyBEI3I03DuB6voBUMdU6BYaIn5pxUpmXqpzUkHUMYFR6+UiB21XNsE4AF+vggWR4RI/oOICL0XGAEQoG/Lw9CNfrZVQR3K5kopTEY/VuwYoTR1Nrcq0jAKNCxwFcj8IBRoGOA3hFD6OK4FbhdKm41ToFXGxaLXtyuFtfv3UCYJSqu60TYBgoHMTRjLp86wjAqHC7Aa5XPdM6AVysICNJFbkp1jGAUTtC4QBuVTZJ8vNQPUaOPTncjseR4XpV7MndhBUnjmbU5VlHAEaFjgO4WnqxlFdnnQIu11XDz3K43+EB3jiAS1XwvgFGp7MqR2HeOYCL9fI4MtzM5+etIpfhJ2YcNRRlqCCDjRrcizcO4GpV060TwANmNXBTEe53WLy7BZfisAGjlBwK8GYRXC3CnhxuVjRBSsm2ToFhoHAQZ3QdwM0YVQRXq2KWIkZvZn2+fOzX4HKHBxhVBBcKJvNWEcYE44rgZkwBgKsxpsh1OAWMMwoHcLM+PlLgZhQOMAby0pPUXJJpHQMYlUN0HMCNqrqlEO/MYPSmsyeHi/HGAVyNh5FdhxUnzrjdADc7QuEAbpVRIhU1W6eAR8xqKLCOAIzKwX4KB3Ch+gXWCeARHZXZSgnxyDbca8DHUR5cyBfgMp8LsdrEWUVuqspzuCkDd+KNA7hWwyLrBPAQ3jmA2x3sZ1QRXIjCAcZIKODX5Ooc6xjAyFE4gBtVdEmpudYpMEysNga4qQi36qHjAG7VeLJ1AnjI5OocbirC1Q7QcQC3ya6UChqtU8BD5jSyJ4eL+fgOhQs1LrZOgBGgcGBgYXOhdQRgRCLMU4QbBZOl2rnWKeAhScGAptZwWwbudaA/aB0BGJ66+dYJ4DELm4usIwAjR8cB3IjLfK7EamOguz5faWEqxHCnAW43wG2qZ0rhVOsU8JjZ3FSEi+2P0HEAl2FMEcZYVV6aGovSrWMAI+PnKA8uk1MtFY6zToERYLUxkBQMcOAA9/JTOIDLcLMBMbCIm4pwsX0ROg7gIv6QVDvHOgU8aFFzsXUEYGS4zAe3YU/uWhQOjCyawIEDXIqPFLgNsxQRAxW5qWopy7SOAYzIvj4KB3CRmllSUoZ1CngQ44rgVgOMKoLbsCd3LVYbI/OaihT089AsXIiOA7hJYXP0QUUgBk5pKbGOAIzIXjoO4CbNy60TwKPayrNUnJlsHQMYPi7zwU3CGVLVTOsUGCEKB0ayUkM8rAh34iMFbtJ0inUCeNgpLYw4gDvRcQDX8Ael8adZp4BH+Xw+LWgutI4BDJ+PS6hwkbqTpGDYOgVGiMKBIeYjw40G6DiAm7SstE4AD6stSFdTEeMz4D57KBzALWrmSKlctkLsLOSdA7jQAJf54CYtZ1gnwChQODC0aAIfKXAh5inCLQqbpaJm6xTwuJPpOoAL7enlwAEuMWG5dQJ43PTaPGUkU0yFy7Anh1uEM6RGpgC4GauNodLsFHVW5VjHAIaF2w1wjVa6DRB7p7byzgHc50i/XwN+DsrgcP6gNG6pdQp4XDjoZ/QgXIfHkeEa45dKId6ScTNWG2NnTCqzjgAMD4UDuEXLmdYJkACaijNUW5BmHQMYviCbODgcY4oQJ2dMKreOAAwPe3K4BaODXY/CgbGlraUKB/ltgHvwxgFcoXyKlFNtnQIJYmlbqXUEYNgGKBzA6SassE6ABNFVk6uy7BTrGMCQ0XEAV0grkGrnWqfAKLHaGMtKDWn+uELrGMCQMaoIrtC6yjoBEsiqznL5fNYpgOHpD1A4gIMFkqLjDYA48Pl8Wt7BJQC4B4UDuELzcinAaEy3Y7VxAFoj4SZ8pMDxfAFuKSKuKnJTNa0mzzoGMCwUDuBo45dKKbwFh/hhTw53YU8OF+Aynyew2jjA3KYC5aaFrWMAQ0PHAZyuZraUTicX4mvVZA4c4C4RCgdwso7zrRMgwdQVpGtieZZ1DGBImAIAx8uukiq7rFNgDFA4cIBQwK/T2kqsYwBDQscBHG/SBdYJkIBObS1RRhKtuHCPSCDJOgJwbNlVzESGiRUdZdYRgCFhTw7Haz/POgHGCKuNQ9AaCbfgdgMcLa1AGn+adQokoORQQEsnMh8Z7tHnp3AAh+pYIx6OgYXTJpYqFODPHpyPwgEczR+UJq21ToExwmrjEBMrstVYlG4dAzihAZYNOFnHGikQsk6BBHUW44rgIr0UDuBEPr/Uvto6BRJUXnqS5o8rso4BnBCFAzha48lSJlNVvILVxkHWTKuyjgCcUL+fURxwKp/UeaF1CCSwjsocNRRyCQDu0OujcAAHqpsvZTEuBnbYk8MNuMwHR5v8JusEGEOsNg6yoqNMaWHGwMDZ+EiBY9XNk3KqrVMgwZ09pcI6AjAkvb6wdQTg9XinCMa66/NUm59mHQN4Q3QcwLFyaqL7cngGq42DZCSHtIwHmeBwfKTAsbjZAAdY1VmhlBCXAOB8PXQcwGnSCqWmU6xTIMH5fD6d11VpHQN4Y+zJ4VSdF/JOkcew2jjMBdNpjYSz8TgyHCmjlMMGOEJWakjLO3gkGc53RHQcwGGmXMI7RXAELgHA6fo5yoMTBcJSx/nWKTDGWG0cZlxxpqbV5lrHAI6rn9sNcKJJF0h+Nnhwhgtn1FhHAE6IwgEcJZgcLRwADpCVGtKKSUwCgHNxmQ+O1LxMSsuzToExxgmgA13UzYEDnIs3DuA4gSTGFMFRmoozNKOOj2Y422EKB3CStrM5bICjXDSj2joCcFwDjIKBE0291DoBYoATQAdaOL5IFbkp1jGAY+r3Ba0jAK818Rwpo8g6BfAaF8/kEgCcjcIBnMMnTb/SOgTwGg1FGZpZn28dAzgmLvPBcSpnSBVTrVMgBlhtHMjv92nt9GrrGMAxMaoIjuLzS93XWKcAXmfeuELVFaRZxwCO69AAs+ThEPULpIIm6xTA63AJAE5F4QCOM/Na6wSIEVYbhzqvq1I5qWzo4Dx8pMBRxi2R8uqsUwCv4/P5dMmsWusYwHEdpHAAp6DbAA510rhCNZdkWscAXmeAy3xwksJmqWGRdQrECKuNQ6WGg7x1AEei4wCO0v1W6wTAca3oKFN+OuNg4EwH+/mzCQcoapHqTrJOARzXVfPqrSMAr9PP48hwku5rJN7d8CxOAB1s7YxqZSQxTx7O0i8+UuAQVTOl8k7rFMBxJYcCehNjDuBQB/v5xoQDTL/KOgHwhk6eUMzoQThOvzikhUNkVUgtK61TIIYoHDhYVkpI50+vso4BvEY/ywacgjmKcIG106uVm8bNbjjPgX5GFcFYbq3Uuso6BfCG/H6frphL1wGchVFFcIzpV0oBLqN4GauNw10yq1YpIW54wzloi4QjFE6QGhZapwBOKC0pqEtm0XUA5zkQYZMHY7Nv4LABrrCsvVQVuSnWMYBBvDsIR0jJkSZdYJ0CMcZq43C5aWGd11VpHQMYRMcBHGHO260TAENG1wGcaD8dB7CUVy+1nWWdAhiSYMCvy2bXWccABrEnhyNMu0IKM8rN61htXODS2bUKB/mtgjPwkQJzJROl5uXWKYAhS0sKat2sWusYwGvsp+MAlmbfIPnpYoV7rJpcrqLMJOsYgCRGFcEBUvOjhQN4HquNCxRlJuusyeXWMQBJUj8fKbA270bJx4NgcJe1M6roOoCj7OujcAAjeQ1SKw8pwl2SggG6DuAYXOaDuVlvk5LSrVMgDlhtXOLqeQ28dQBH4CMFpipn8LYBXCk1HNSls+k6gHPspXAAK3P+jW4DuNKaaVUqz+GtA9hjTw5TmeXSlIutUyBOWG1cojAzmccV4Qh8pMDU/ButEwAjdsH0KuXRdQCH2NPHwS0M5DdJLWdapwBGJBz06/pFTdYxAA2I7msYmnODFGR0W6LgBNBFLptTx4EDzEXEQQOM1C+QqmZYpwBGLDUc1FXz6q1jAJKkPXQcwMLcd0h+tqBwr2XtpZpQmmkdAwmu38eeHEby6qWONdYpEEd8tblIelJQV89vsI6BBMcbB7Dhi75tALjcmmlVqs1Ps44BaC8dB4i3ii6p5QzrFMCo+Hw+vfOU8dYxkOD66TiAlZPexbjBBMMJoMuc11Wp6rxU6xhIYJEBlg0YaF4mlbZbpwBGLRTw652ncuAAewMDPg0Ek61jIGH4pMUfsg4BjImZDfma1ZBvHQMJjPHBMFHcKk3gAkCiYbVxmVDAr7cvHmcdAwmMjgPEXTBZWvg+6xTAmFnYXKQZdXnWMQAKB4if1lVSead1CmDMvOOUcfJx6RtGKBzAxKIPiIUv8bDauNCSthJNrMi2joEERccB4m76VVJOtXUKYEy9Z0mz/Hx3w9hAgMIB4iCUKi24yToFMKYmlGZpeXuZdQwkKEYVIe7Gny7VzrVOAQOcALrUuxlzACP9PI6MeMosk2a9zToFMOaaSzO1qrPCOgYSXD8dB4iHGW+Rsjhghfdcv7hJKSH2Rog/Og4QV8EUafEt1ilghNXGpabW5GpFBx/giL8ItxsQT4tulsK86wJvetviRqWFOXCAnf5AknUEeF1GidR9jXUKICbKslN01bx66xhIQBQOEFczr5WyK61TwAirjYu9e8l4ZSYHrWMgwfTRcYB4qZoptZxpnQKImcKMZF0+t846BhJYxE/HAWJs/nulcJp1CiBm1s2qVV0Bf8YRX7w7iLjJrpS6r7VOAUOsNi6Wn56kty9uso6BBBNh2UA8+ALSKR+2TgHE3LrZtarN58ABNvroOEAsVXRJE8+1TgHEVDjo183LWqxjIMH0DzAFAHGy+INSiIsmiYwTQJdb3VWltvIs6xhIILRFIi4mXyQVswmD9yUFA7plRat1DCSoPj+FA8SIPySd9mnJx+EWvG9Gfb5On1hqHQMJhD054qL2JGn8adYpYIzVxuX8fp8+sLxFfr7JEScRbjcg1lLzpZPebZ0CiJvpdXla1VluHQMJqNdH4QAx0n2NVDjeOgUQN+9ZMl4ZSYwRRnz0Mz4YseYPMQEAkigceEJbebZWd1VZx0CCYFQRYu7Uj0ipudYpgLh695Lxyk8PW8dAguml4wCxkFcvzbnBOgUQV4WZyXrrwkbrGEgQEXGZDzE2+3qpgNHooHDgGdcvblJ+Ops/xF7fAMsGYmjcUh5ERkLKTg3rxqXN1jGQYHpEsQoxsPRTUpB9CRLP2hnVai7JtI6BBNBP4QCxVNQizXqbdQo4BCeAHpGVEtJNp3PggNiL+Fg2ECPJ2dKST1inAMwsay/T7MYC6xhIID0+CgcYY+1rpJpZ1ikAEwG/Tx9Z2aYgc4QRY7xxgJjxB6Vlt0mBkHUSOASrjYcsbSvVkrYS6xjwuAgdB4iVxR+UMoqsUwCmblneopQQc2sRH0coHGAspRVIi262TgGYainL0pUn1VvHgMcxPhgxM+MtUmm7dQo4CKuNx3xgWYsKMmgNRuwwqggxUb9A6lhtnQIwV5GbquuYkYw4OTzANyPG0Mn/wRtFgKSr5tWrpYyRRYgdOg4QE/mN0tx3WqeAw7DaeExOWlj/cUardQx4GA8xYcyFM6LzkAFIki6eWaNptRy+IfYOizZ0jJGWlVLrSusUgCOEAn59fFW7wkGOWxAbkQH25BhjPn90RBFvFOFf8JPMg+aPL9KqznLrGPAoRhVhzC28ScqusE4BOIbf79MnzmpXZnLQOgo87vAAo4owBjLLpSUft04BOEpTcYbeuoAOQsQGjyNjzHW9WaqYap0CDsQJoEe997RmlWWnWMeABzGqCGOqYZE0+WLrFIDjlGan6OblLdYx4HGH6DjAaPn80orPSynZ1kkAx7l0dq0mVWZbx4AHUTjAmMpvkubdaJ0CDsUJoEdlJIf00ZVt8vHzBGOsj2UDYyW9SFr+ObFQAce2rL1My9pLrWPAww72UzjAKE2/UqqZZZ0CcKSA36ePrZqo5BD7J4ytiALWEeAVwWRp1VelcKp1EjgUP8E8bEZ9vtZOr7aOAY+h4wBjwyet+IKUlm8dBHC0m5e30EGImDnYz6gijEJRqzTvvdYpAEerLUjXu08dbx0DHsMbBxgziz4gFU2wTgEH4wTQ49516ni1lmVZx4CHUDjAmOi+Wqo7yToF4HiZySF9/KyJ8rM/RAwcoOMAIxVMls78khSk+AScyPnTq7WktcQ6BjyEUUUYE+OWSlPXWaeAw3EC6HHhoF+3nTdJGTywiDES4SMFo1XWyQxFYBim1ebp0tl11jHgQQf6+T7ECC24SSrkFjUwVP9xZquq8xgFgrHB+GCMWma5dPpnrVPABVhtEkBlXqo+urLNOgY8go4DjEpSpnTml6UAt1yB4XjbokZNrsqxjgGP2R9hLcYIjD9dmna5dQrAVTKSQ7r1vEkKB9lLYfT62ZNjNHwB6YwvSqm51kngAqw2CeLklhJd1F1tHQMe0Mc8RYzGkk9IuTXWKQDXCQX8+s/Vk1SQkWQdBR6yL0LHAYYpr0Fa/p/WKQBXainL0o1Lm61jwAOYAoBRmf12qbrbOgVcgsJBAnnXqePVXpFtHQMu18vtBoxU54VS2yrrFIBrFWYm69ZzOxTkwQOMkX19FA4wDKE06exvSUkZ1kkA1zp/WpVOm1hqHQMux+PIGLHqWdKcG6xTwEU4AUwgoYBft57XoawU2tIxcowqwohUTJNO+ah1CsD1umrz9I5TxlnHgEfspeMAw3H6Z6RC1h9gtD50Rqtq89OsY8DFIhzlYSSyK6VVX5f8AeskcBFWmwRTnpOqj6+aKB8FaowQo4owbBml0lnfkIJh6ySAJ1wyq1ZLWkusY8AD6DjAkHW9WWpdaZ0C8IT0pKBuWz1JKSEO7zAyES7zYbhCqdI535bS8qyTwGVYbRLQguYiXbeg0ToGXKqPZQPDEUiKjjXIKLJOAnjKR1a2qb4w3ToGXG4PhQMMRcU0adEHrFMAnjK+JFOfOIsLfRgZRhVh2JbdKhW3WqeAC3ECmKDeMr9By9qZrYjh6+vnIwXDsPSTUnmndQrAc9KSgvr8mk6lJ3Hwi5Hb08ttV5xAWqG06mtSgFGnwFg7pbVEb+VCH0aAx5ExLN3XSi1nWqeAS1E4SGAfPrNNHZXZ1jHgMr3cbsBQTb1U6lhtnQLwrPrCdH36nHYFeCwZI3Sk368BP8UnHEcwRTr3TimT0WhArFw9v4HHkjFsdBxgyOoXSPP/3ToFXIzCQQJLDgX0xfMnqzQr2ToKXKSXeYoYiqqZ0uIPWacAPG/++CK9d2mzdQy4WZDvQByLTzrji3QNAnHw0ZVtmliRbR0DLsLjyBiS3DrpzC9Lfv68YOT405PgCjKS9KW1k5UaplUdQ9NH4QAnklsXfQw5wC1WIB7WzqjWm7prrGPApQYoHOBYFr5Paj7dOgWQEJJDAX3p/E6VcKEPQ0THAU4oOVs69w4pJds6CVyOE0BoQmmWPnl2Ow8zYUh6eeMAbyStUFpzl5SWZ50ESCjvWTJei5p5hBzD1x9Iso4Ap+m8SOq+xjoFkFAKM5P1pQsmKyXEhT6cWB9vHOCNBJOjowYLmqyTwAMoHECStHhCsW5YPM46Blygj2UDxxNOl1Z/V8rl5jMQb36/T58+p0MTy7Oso8Bl+gPccMX/UzdfOvVj1imAhNRSlqVPnj1RPF2EE4kwBQDH4/NLZ3xJqppunQQewWqDQZfPrWPUAU6IjgMckz8orfq6VNphnQRIWCnhgG5fO0XlOSnWUeAiEQoHeFXhBGnV1xg1CBg6uaVEH1jeah0DDtfHqCIczykfYdQgxhSFA7zGjUvH64xJZdYx4GC9fKTgWE77jNSwwDoFkPAKMpL01QunKDOZgz8MTcTPqCJIyiiNdg0mZ1onARLeeV2VevtiRozg+Og4wDHNfKs0dZ11CngMqw1ew+fz6SNntmnB+ELrKHAoOg7wOie9W+pYbZ0CwFENRRn66kVTlBpmTjJOrI83DpCSK53/Qymr3DoJgKOuPKleF89kGgCOLTJgnQCOM/FcacFN1ingQRQO8DrBgF+3njdJU2tyraPAgXq53YD/r/Miac4N1ikA/IvOqlzdfsFkJQVZs/HG+ug4SGzhDGnNXVIhb50BTvOeJeN1RgfTAPB6vDuI16ibL53+WesU8ChWGxxTciigL6+drOYS2pXxWnQcYFDrWdKST1inAHAcM+rz9bk1kxQKsG7j+Hp9FA4SVjBZOvcOqWySdRIAx+Dz+fSRlW2aP45pAHitPi7z4VUV06SzvykFQtZJ4FGsNjiujOSQvnHxVNXkp1lHgYPwxgEkSeNPl1Z8XvLzYwRwsnnjivSpszsU8LN249h6KBwkpkBYOvtbUs0s6yQA3kAw4NdtqydpSnWOdRQ4SIQ9OSSprFNa/T0pzJkdYocTH7yh/PQkffPiqSrPSbGOAodgVBHUeLK08iuSn/npgBssaSvRh89sk489Jo6hxxe2joB48wellV+VGhZaJwEwBMmhgL5y4RS1V2RbR4FD9FE4QHGbtOYHUjJTQhBbnADihMpzUnXnpdMoHkCS1MeoosRWv1A66xu0QgIus7KzXO8/fYJ1DDhQjygcJBSfX1rxBWn8UuskAIbh1WkAFA8gUThIeEUt0vk/klKyrZMgAVA4wJBQPMCrjlA4SFz1C6Vz/ksKMtYCcKPzp1frPUvGW8eAwxyh4yBx+IPSGV+SWldaJwEwApkUD3BUhCkAiauoRbrgHiktzzoJEgSrDYbs1eJBZW6qdRQY4o2DBEXRAPCES2bV6v3LJjC2CIMOD1A4SAiBpGjHIEUDwNUyk0P65sVTNaky2zoKDPUNWCeACYoGMEDhAMNSnpOq7142XbU8mJyweug4SDxNSygaAB5ywfRqffiMNvFeMiTpMKOKvC+UKp17hzRuiXUSAGMgIzmkb17cpa6aXOsoMBIRH3EJp2QiRQOYoHCAYSvOStZ3LpuupqIM6ygwQFtkgmlfLZ39TYoGgMecNaVCnzy7XUGqBwnv0ABv1nhaOENac5dUP986CYAxlJYU1NffNFWzGvKto8BAXz978oRSPUta+2OKBjDBaoMRKchI0p2XTlNbeZZ1FBgY8AWsIyAepl8lLbtN8vP7DXjRsvYyfX5Np5KCfA4mskP9dBx4VnK2tPZuqWqGdRIAMZAcCuj2tZO1qLnIOgrirJdRRYlj3NLoBYDkTOskSFDsFDFiOWlh3XnpNM1tKrCOgnjjINn75v+7tPgWMQgd8LYFzUX62kVTlZ4UtI4CIwfpOPCmtALpwp9IZZ3WSQDEUFIwoM+v6dSaaZXWURBHfUwBSAwd50ffJ6L7H4ZYbTAqqeGgbr9gslZ1lltHQTzRceBdPr902qelWddZJwEQJ9Pr8vTtdV3KS+PmeSI60E/hwHNyaqSL7pOKW6yTAIgDv9+nDyxv1fWLGq2jIE4iA1zu8rzua6Rlt3JpE+YoHGDUggG/Prpqoq6eV28dBfHCDy9vCoSlVV+TOi+0TgIgztrKs/XDK7pVV5BmHQVxRuHAY8qnSpf8UsrnuxxINFfNa9BHV7bxflEC6KNw4G0Lb5YWvt86BSCJwgHG0HWLmvTBFa0K8KHifXQceE9ytrT6+1LzMuskAIxU5qXqB1d0a3otD68lkv0RxlR5RvMyae29PJ4IJLBVkyt0+9rJSg2zX/OyXh5H9iZ/SFr2n1L31dZJgEGsNhhT53VV6gtrOpUS4kPFywboOPCWvHpp3QNS7RzrJACMZaWE9I2Lp2olIwgTxn46DrxhxtXSqq9LoWTrJACMzW0q1J2XTlN+OiMIvaqPx5G9JzVPuuBuqWO1dRLgNSgcYMwtaC7St9d1qSCDB1w8y8fS4Rm1c6MjDfLqrJMAcIhQwK+PrZqo6xc18j56AqDjwOV8AWnJx6VFN4v/wgJ4VVt5tn5webcai9KtoyAGGFXkMQXjoxf5qrutkwCvw+kfYqKjMkf3XjVTEyuyraMgBgYYVeQNUy6RVt8lpWRbJwHgQFfNa9Cnz+lQOMjnopft66Nw4FrhdOncO6M/zwHgX1TmpeqHV3RrUXORdRSMMQoHHtKwWLrkfimn2joJcEzsBBEzxVnJ+u5l0xh34EUUDtzNF5BO/Vj0hmKAAyMAx3f6xFLdsa5L+el0EXrVXgoH7pRXL13yC6lxkXUSAA6WlhTUF87v1LULGmhK8pC+AY7yPGH6VdELAEkZ1kmA42K1QUwlBQP62KqJuum0ZgV5NNkzeOPAxZKzpDXfl6aus04CwCU6q3L106tnakp1jnUUxMCePn6mu07TEmndg1LheOskAFzA5/Pp2gWN+sKaTqUnUSz2gr5+6wQYlUBYWnabtPgWyc+xLJyNP6GIiwu7a/StS7qUl8YDTV7AqCKXKm6LHjTUzbNOAsBlCjOTdce6aXpTd411FIyxPXQcuIfPL827UTrnv6TkTOs0AFxm0YRi/fCKGarJT7OOglHqZVSRe2WWSWt/LHWssU4CDAmFA8TNtNo83fOWmWopY6PjdgM8juw+nRdFRxrwCDKAEQoG/Hrvac269bwOpYUpIHvFXjoO3CElV1pzlzT7eh5BBjBiDUUZ+tGV3ZrbVGAdBaPAGwcuVb9QuuxhqbLLOgkwZJz+Ia7KslP0/TfP0OquSusoGA06DtwjnC6dcbt02qekIDPKAYze0rZS3X1Vt+oL062jYAwMDPg0EEy2joE3UtIuXfYrOgYBjImslJC+snaKbji5iXHCLtXbz++bq/iD0vx/l1Z/T0rLs04DDAuFA8RdciigW1a06vNrOpWVErKOgxGg48AlCpulSx+S2lZZJwHgMfWFGbr7ym4tbSuxjoIxQOHAwTovkt7031I2l24AjB2/36cr5tbru2+ervKcFOs4GCYeR3aRjNLoaKJZ19ExCFditYGZk1uK9bNrZmlqda51FAwTbxy4QPsaad0DUn6DdRIAHpWWFNSt503SB1e0KpXRRa42EKBw4Dip+dI5d0Q7BkP8/gCIjUmVOfrpNbO4COBCA+IQ2vHq5ktvfliqmm6dBBgxCgcwVZqdojsunaZrFzQoQJukawywdDhXUpa04gvS8tukELeHAMTeeV2V+snVs9RekW0dBSPUT8eBs9QvkC7/rTTuVOskABJAZnJIt543SR8+s1UpIS4CuIaf3yvH8oekeTdG3yZKy7dOA4wKp38wF/D7dO2CRt2xbppKs9i4ukG/P2gdAcdSM0e64rfSxHOskwBIMDX5afr+m6fr2gUNzEt2of4Ab+A4QjBZOuUj0urvSxlF1mkAJJizp1Tq3rfM1PiSTOsoGAqmADhT4YRo5//s6xlNBE+gcADHmFqTq59dM1unTyy1joIToOPAYUKp0qkfky64W8oqt04DIEEFA35du6BR3798hmry06zjYBgifi5umCtqib5L1HUZBw0AzNQXputHV87QZXNqmQjgdLw76Cy+gDTzuujP8pI26zTAmGGlgaNkpYb0mXM7dPsFk1WUye03p+JxZAep6JLe/Ig0dR0HDQAcob0iWz+9epbO6+IxV7foo+PAji8gzXhL9HZi4XjrNACgpGBA7zxlvH54xQw1FWVYx8Hx+NmTO0Zeg3Txz6UF/y4Fw9ZpgDHFSgNHWtBcpPuvm6NzplRYR8Ex8DiyAwSSpAXvky66T8qrs04DAK+REg7ogyta9bWLpqg8h/dWnK7PT+HARHGrtO6X0qIPSEF+DwA4S1t5tu59y0xdPb9BoQAXlByHy3wO4JOmXRF9ALl8snUYICZYaeBYmckh/ceZbfqvS7pUkcuhg5P085Fiq3xqtAVy5rXcNAHgaHObCnX/W+fo0tm1vH3gYL0+Dq3jKpgiLbhJWveQVNphnQYAjisc9Ou6hY2656qZainj7QMn4TKfsdw66cIfSyd/SApxXgXv4sQJjtddn6//vna2LpxRLc4cnIE3Doyk5EinfSbaBlnUbJ0GAIYkJRzQu04dr7uv6tbE8izrODiGXjoO4qdmtnT5b6SZb5UCQes0ADAk40sy9aMruvX2xU0KB9kLOgKX+WwEk6WT3i1d8TupeqZ1GiDmWGngCqnhoG46fYK+9+YZ3HRwgH4fG9348knta6Sr/iB1ruUtAwCuNKE0Sz+8ols3ndas9CR+jjhJj5jHG3PJ2dLpt0pr72XEIABXCgb8uvKket13zSzNbSqwjgMKB/HXsEi64lFpzg2MGETCYKWBq3RW5eieK2fqgytalZvGJtcKo4riqHCC9Kb7pOW3SWl51mkAYFT8fp8u7K7R/dfN1qLmIus4OKrHxzdVzPj8R4v/j0uTzrdOAwCjVluQrq9dNFW3XzBZVXmp1nESFqOK4iizXDrrm9Lq70m5NdZpgLjiuhdcx+/36byuSi1pK9En71+vbz36gvr6B6xjJRRGFcVBOF2a+w6p63JGGQDwnJKsFH3xgsl66J9b9cGfPqn1r+y3jpTQjlA4iI3KGdHZx6Xt1kkAYMwtaC7SrMZ83f7wc7r1gQ061BuxjpRYuMwXe/6QNO3y6L48nGadBjDhGxgY4MQVrrb+lX266Z4n9NtndlhHSRiP1n1VxS/dbx3Dm3wBqWN1dG5iRrF1GgCIuUj/gO58fKM+ef96bd/fYx0nIX2n4QF1bbrdOoZ3ZFdKC98vTVhhnQQA4mLLnkO65SdP6sd/3WIdJWFsKHi7gvteso7hXY2nSAvfJxU0WScBTFE4gGf87G9bdMtPn9SLuw5ZR/G839Z9Q6Uv3Wcdw3saT5YWvE8qHGedBADibv+RPv3ngxv05Uee05G+fus4CeUbDQ9r9qbPWcdwv3B69NHj6VdJoWTrNAAQd48+u0M3//gfemLzXusonreh8N8U3LvJOob3lE2WFt0sVc2wTgI4AoUDeEpPX7/ufHyjPvvABm3bd8Q6jmc9Uvctlb/0U+sY3lE6KfpxUj3TOgkAmHtp9yF95L6ndM9fNouv1Pj4Yv2jWvTiZ6xjuJcvILWfK827kW5BAAlvYGBAP/nbFn3i/vV6dtsB6zie9XTRuxTa87x1DO/IrZPmv1easNw6CeAoFA7gSYd6Ivr6757X53/1jHYf7LWO4zm/rr9DlS/eax3D/XKqo4cMLWdKPp91GgBwlD9v2q2P/fc/9ciG7dZRPO/TdX/Uspc+Zh3DfXx+qWVldPZxXp11GgBwlEj/gO76w4v69C+f1ku7mQow1tYXv0fh3c9ax3C/tAJpzr9JnRdKgZB1GsBxKBzA0/Yd7tWXHn5OX3nkOe0/0mcdxzMeqv+Oql+82zqGe2VVSN3XSJPWSkEepASAN/KHF3bqU794Wg8/TQEhVj5U+zedu/lD1jFcxBe9kTj3ncw+BoATONIX0bf/Z6Nue3ADbxmNofXF71V49wbrGO6VnB19+Hj6lVJShnUawLEoHCAh7DzQo889tEHf+N0LzE0eAw/Uf0+1L/7QOob75NRIs66TJp7LbQYAGKY/btylT/3iaf16/TbrKJ5zY81TunjL+61juMO4pdJJ75KKJlgnAQBXOdjTp6/+5nl98dfPas8hpgKM1j9L3qekXf+0juE+aQXRYsGUSygYAENA4QAJZfv+I/rab57XNx99gY+VUfhFw12q33SXdQz3yG+SZr1Nal0p+QPWaQDA1f50tIDwKwoIY+ZtVc/oLa/caB3DwXxS06nSnBuk0nbrMADgageO9OmOxzbqK488p817DlvHca2nSt+v5J1PWcdwj8wyacbVUudaKZRinQZwDQoHSEgHjvTpO49v0pcfeY55iyPw84YfqnHT96xjOF9xqzTremn86ZLfb50GADzlz5t26/MPPaP7n3xFkX4+Z0fjsvKNeuf2d1jHcJ5gSvTR42lXSvn11mkAwFP6Iv265y+b9cVfP6unXt5nHcd1niy7RSk7nrCO4Xw51VL3tVL7asYEAyNA4QAJrS/Srx//dYu+8Otn9eSWvdZxXOO+hrs1btN3rGM4lE9qWCR1XSrVL7AOAwCet2nnQX39t8/rO7/fpH2Hec9oJFaXbNYtu663juEcaQXSlHXRMQZpedZpAMDzHnxqqz7/q2f0P8/ttI7iGk+WfVApO/5uHcO5yqdIUy+TJqyQAkHrNIBrUTgAjvrV+m26/eFn9ciG7eK/FW/sJw0/1oRN37aO4SxJWVLH6ughQ16ddRoASDgHjvTpe7/fpK/99nk9v+OgdRxXWVa0VZ/ec611DHv5jdG5x23nSKFk6zQAkHD+tHGXbn/kOf38iZfVG2FT/kb+Uf5hpW7/i3UMZwkkSS1nRi/xlXZYpwE8gcIB8C+e3bZf3/6fjfr+H1/U7oO8g3As9zb+VK0bv2Udwxnym6Sp66IPHielW6cBgIQ3MDCgB57aqq/85jn9ZsMO6ziuMC9vl75y4ErrGDb8QanpFGnShVL9fMnns04EAAlv697DuvPxTbrjsY3awjsIx/T3io8qfdufrGM4Q2a5NOVN0Z/ldAoCY4rCAXAch3sj+vFft+jOxzbq9y/sso7jKD9quE/tm75hHcOOPyQ1Lo52F9SdZJ0GAHAcG7bu03ce36Qf/PEl7TjQYx3HsSZn7dP3j1xmHSO+cmulSRdEZx6nF1qnAQAcQ6R/QL948hXd+dhG/Wr9NvGk0f/5e+XHlb71D9YxDPmk6pnRS3zjlkr+gHUgwJMoHABDsGHrPt352Cb94E8vaScHD/pB4881aePXrGPEX2mHNPE8qXWllJprnQYAMES9kX794h+v6Du/36SHn97OY8r/ojHtkH4eudg6RuwFkqTm06VJa6OHDXQXAIBrbN59SN/9/SZ97/cv6qXdh6zjmPtr5SeVufVx6xjxl1cfHSk48Wwpu9I6DeB5FA6AYejp69ev12/TvX/drPv/8YoO9kSsI5n4XsMvNGXTV6xjxEdGidR2VrRgUDjOOg0AYJS27jusu/+0WXf98UU99fI+6ziOUJzUo0d9F1rHiBFf9IHEljOjP88p/AOAqw0MDOix53bq3r9u1k//9nLCXuz7S9WnlfXK/1jHiI/kbKnljOievGKKdRogoVA4AEboUE9Ev3zqFd3z5816aP029fT1W0eKm+80PKiuTV+yjhE7SZlS48nSxHOk2pMkv986EQAgBp7YvEc/+esW3ffEy3p22wHrOGZSAhE9GTrfOsbYKp0UPWRoXi5lV1inAQDEQF+kX49s2K57/rJZP3/iFe0/0mcdKW7+XP1ZZb/8O+sYsRNIkurmRffkTadIwSTrREBConAAjIG9h3v1339/Wff+dYt+u2G7+jw+AuHbDQ9pxqYvWscYW2mF0rhTpXGnSTWzpWDYOhEAII7Wv7JPP/vby7rviZf15Ja91nHi7rmU8+UbcHknZXFbtFgwYYWUU22dBgAQR4d7I3rwqa265y+b9eA/t+pwr7cv9v2p+jblvPwb6xhjKylTalgojVsiNSySkjKsEwEJj8IBMMb2HOzVr57epoee2qqH1m/zZOvkNxoe1uxNn7OOMXo51dGHlMafJpVPpbMAACBJemHHAf3s7y/rvr+/rL+8uFuJ8LX8XOY6+Xpc1nURCEuV06OHDI2nSPn11okAAA5wuDei3z2zQw88tVUPPLXVk28i/LH6c8p9+WHrGKOXXhztKBi3lAt8gANROABiqL9/QH95cbcefGqrHvznNv198x5PHD58teE3OmnTbdYxhi+YLFV0SbVzojcYilutEwEAHG7r3sN6+OntemRD9K9t+45YR4qJZ3Oulv/QdusYJ5ZVIdUviP4cr5ktJaVbJwIAONz6V/YNFhH++MIuT0wI+EPNF5S35VfWMYbPF5DKJkk1c6LjgcsnSz6fdSoAx0HhAIijrfsO66F/btOjz+zQY8/v1Iu73Hnz4csNv9P8TZ+1jnFiPr9U0i7Vzo0WCyqmSaFk61QAABf758v79PDT2/TIhu167LmdOtjj8vE+R20oeLuC+16yjvF64YzoQ4h186T6hVLhOOtEAAAX23OoVw8/vU2/e2aHHn9+p57eut+Vl/ser/mSCrY8aB1jaAqbo4WC2jlSVbeUnGmdCMAQUTgADG3Zc0iPPbdTjz+/U48/t0vrt+5zxUfLF+sf1aIXP2Md4/X8IaloglQxNXoLsXqWlJJtnQoA4FE9ff3648ZdevTZHfrzpt3686bd2n2w1zrWiKwvvlHh3c9Yx4iOLKicFh1BVDkt2h3oD1inAgB41K4DPXrs+Z16/Lmdeuz5nXpi815FXNCR8Fjtl1W4+ZfWMV7P55fyGqJ78tq50X15eqF1KgAjFLQOACSykqwULWsv07L2MknS7oM9+v3zu/T4Czv1xEt79eSWvdrhwDcSInLIWwC5tVJZ59G/JkslbVIwyToVACBBhIN+TavN07TavMF/99z2A/rTxl2DhYQnt+xVb8T5BxCRgEFHXiAp2kFQ0v5/hYLcmvjnAAAkrJy0sBZPKNbiCcWSpANH+vSHF3bp9y/s0j8279E/Nu/V5j2HjVO+Xr9T9uSZZdHRQ6/uy0s7eNQY8BAKB4CDZKeGtaC5SAuaiwb/3ct7DuvJLXv1jy179Y/N0V+f33HAtDOhbyDOHymhVCm/QcpvkgoapZKO6MdJam58cwAAcAI1+WmqyU/TGZPKJUUfaHzi6MHD01v36+lX9uvprfu0fb+zLgZE/DEuvKcVRrsHilukoqO/5jVIAbYjAADnSEsKanZjgWY3Fgz+u10Hegb3409s3qN/bNmrZ7YdMO1MGPDFeU/uD0l5dVJ+o1QwLlogKOuUMopO/D8LwLX4UgccrjgrWcVZyTpp3P+19x040qf1r+zTxp0H9cKO6F8bdx7QCzsOamscHm2MxOQjxSel5Ue7CPIbpYKm6AdJfqOUXcmDSQAAV0oOBdRZlavOqtcWu3cd6IkWErbu09Ov7NeGrfu1addBbdlzWD19/XHP2RcYg8JBOEPKqZZyq6O/5lRHf64XtTCmAADgWjlpYXXX56u7Pn/w3x3ujeiZbfu1ccdBPX90P/789oPauPOgtuw5pFjXFGLWcZCcJeXVRy/t5TdE9+X5TdGf6RT7gYTDf+sBF0pLCqqjMkcdlTmv+88O9USOFhQO6KXdh7R9/xHt2N+j7ft7tOPAq39/ZFSPOUaG23EQzoh+gKTlSZnlUmaplFUWbWvMLIv+c2YpY4YAAAkjJy2sqTW5mlrz2oLCwMCAtu/v0ZY9h7R592Ft3n0o+vd7DmvL7kPaeaBHew/3ae+hXvWN4alE3xt1HATCUmp+9Od4WsHRvy+IFvyzK6WcmuiBQlre8f93AADgIcmhgCaUZmlCadbr/rMjfRFt2nlIL+w4oM17Dmv7viPaceCItu+L7sVf3aPvO9I34v/7w+44CKZEHyVOK/x/+/HS/7cfP/prOG3EmQB4D48jAwnqUE9E2/cf0Z5DvTrcG9Hh3n4d6o3ocG9Eh3ojOnL018O9/eqN9MsnyefzyeeTulJe0vTIH6RAKNqyGAhJoRQpKTNaIPjXv3jUEACAMXfgSJ/2Hu7VnkO92nuo7+ivveqJ9Kuvf0CRSL8iA1Kk/9V/HlBkYECR/gEF/D6Fg36FA36Fg36dnLpehf690QODUGr015ScaHEg+fWHIgAAYHQO90b35PsO9+lQb0SHeo7+NbgX/79/7n/1ssDRTvyz0v6k8r6N0f24Pxjdk4fTju7JM1+7N0/KlIJhw/9PAbgVhQMAAAAAAAAAADDIIc+wAwAAAAAAAAAAJ6BwAAAAAAAAAAAABlE4AAAAAAAAAAAAgygcAAAAAAAAAACAQRQOAAAAAAAAAADAIAoHAAAAAAAAAABgEIUDAAAAAAAAAAAwiMIBAAAAAAAAAAAYROEAAAAAAAAAAAAMonAAAAAAAAAAAAAGUTgAAAAAAAAAAACDKBwAAAAAAAAAAIBBFA4AAAAAAAAAAMAgCgcAAAAAAAAAAGAQhQMAAAAAAAAAADCIwgEAAAAAAAAAABhE4QAAAAAAAAAAAAyicAAAAAAAAAAAAAZROAAAAAAAAAAAAIMoHAAAAAAAAAAAgEEUDgAAAAAAAAAAwCAKBwAAAAAAAAAAYBCFAwAAAAAAAAAAMIjCAQAAAAAAAAAAGEThAAAAAAAAAAAADKJwAAAAAAAAAAAABlE4AAAAAAAAAAAAgygcAAAAAAAAAACAQRQOAAAAAAAAAADAIAoHAAAAAAAAAABgEIUDAAAAAAAAAAAwiMIBAAAAAAAAAAAYROEAAAAAAAAAAAAMonAAAAAAAAAAAAAGUTgAAAAAAAAAAACDKBwAAAAAAAAAAIBBFA4AAAAAAAAAAMAgCgcAAAAAAAAAAGAQhQMAAAAAAAAAADCIwgEAAAAAAAAAABhE4QAAAAAAAAAAAAyicAAAAAAAAAAAAAZROAAAAAAAAAAAAIMoHAAAAAAAAAAAgEEUDgAAAAAAAAAAwCAKBwAAAAAAAAAAYBCFAwAAAAAAAAAAMIjCAQAAAAAAAAAAGEThAAAAAAAAAAAADKJwAAAAAAAAAAAABlE4AAAAAAAAAAAAgygcAAAAAAAAAACAQRQOAAAAAAAAAADAIAoHAAAAAAAAAABg0P8CsaFLt/sAigsAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Метод приращения с избытком (oversampling)\n",
|
||
"def oversample(df: DataFrame, column: str) -> DataFrame:\n",
|
||
" X: DataFrame = pd.get_dummies(df.drop(column, axis=1))\n",
|
||
" y: DataFrame = df[column] # type: ignore\n",
|
||
" \n",
|
||
" adasyn = ADASYN()\n",
|
||
" X_resampled, y_resampled = adasyn.fit_resample(X, y) # type: ignore\n",
|
||
" \n",
|
||
" df_resampled: DataFrame = pd.concat([X_resampled, y_resampled], axis=1)\n",
|
||
" return df_resampled\n",
|
||
"\n",
|
||
"\n",
|
||
"# Приращение данных (oversampling)\n",
|
||
"df_train_oversampled: DataFrame = oversample(df_train, 'hazardous')\n",
|
||
"df_val_oversampled: DataFrame = oversample(df_val, 'hazardous')\n",
|
||
"df_test_oversampled: DataFrame = oversample(df_test, 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"print('После применения метода oversampling:')\n",
|
||
"check_balance(df_train_oversampled, 'Обучающая выборка', 'hazardous')\n",
|
||
"check_balance(df_val_oversampled, 'Контрольная выборка', 'hazardous')\n",
|
||
"check_balance(df_test_oversampled, 'Тестовая выборка', 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_oversampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_oversampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_oversampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train_oversampled, df_val_oversampled, df_test_oversampled, 'hazardous')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"После применения метода undersampling:\n",
|
||
"Обучающая выборка: (10608, 21784)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 5304\n",
|
||
"True 5304\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.00%\n",
|
||
"Процент объектов класса \"True\": 50.00%\n",
|
||
"\n",
|
||
"Контрольная выборка: (3536, 11762)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 1768\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.00%\n",
|
||
"Процент объектов класса \"True\": 50.00%\n",
|
||
"\n",
|
||
"Тестовая выборка: (3536, 11820)\n",
|
||
"Распределение выборки данных по классам \"hazardous\":\n",
|
||
" hazardous\n",
|
||
"False 1768\n",
|
||
"True 1768\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"False\": 50.00%\n",
|
||
"Процент объектов класса \"True\": 50.00%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных не требуется\n",
|
||
"Для контрольной выборки аугментация данных не требуется\n",
|
||
"Для тестовой выборки аугментация данных не требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABgcAAAHzCAYAAAAEk80rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIjUlEQVR4nOzdd3gU9d6G8WfTQxJqIPTepInSpAkqqJRXsYD1UGwoYsHu8ShgQ8QCYkOPIgo25Ah2AQEVREEUpEsJICAldEL6zvtHyJrNbvruzszu/bmuXErYbL7Zdk/4zcw6DMMwBAAAAAAAAAAAQkaY2QMAAAAAAAAAAIDAYnEAAAAAAAAAAIAQw+IAAAAAAAAAAAAhhsUBAAAAAAAAAABCDIsDAAAAAAAAAACEGBYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQYlgcAAAAAAAAAAAgxLA4AAA2cPToUW3dulXZ2dlmjwIfMgxDhw8f1pYtW8weBQAAlFNmZqb27dunvXv3mj0KAADwodTUVP311186cuSI2aP4HIsDgA00bNhQAwcONHsMn+ndu7d69+5t9hiWlpWVpWeffVZnnnmmoqOjVaVKFTVr1kzfffed2aPZwrp16zR37lzXn1evXq0vv/zSvIHyOXHihP7zn/+oRYsWioqKUrVq1dS8eXNt3rzZ7NEAlAGNBvxv5syZ2rFjh+vP77zzjvbs2WPeQPn8+uuvuvbaa5WYmKjo6GjVqlVLV1xxhdljASGHHgP29PTTT8vpdEqSnE6nJkyYYPJE/5g9e7YuuOACJSQkKD4+XvXr19ezzz5r9lg+V6rFgXfeeUcOh8P1ERMTo+bNm2v06NHav3+/v2YEgt64cePUsGFDSf88z+B/vXv31vDhwyVJw4cPt8zGV0ZGhvr06aNHH31UvXv31uzZs7VgwQItWrRIXbt2NXs8Wzhx4oRGjhypn3/+WVu2bNFdd92ltWvXmj2WDh06pK5du+qll17SlVdeqXnz5mnBggVasmSJ6zWgrGg04B802hxWbTTM8eOPP+qBBx7Qjh079O233+r2229XWJj5+7nNmzdPPXr00IYNG/TUU09pwYIFuu+++/Tzzz/TY8DH6LE56DH8bcaMGXruuee0e/duPf/885oxY4bZI0mSHnroIQ0ZMkQJCQl68803tWDBAi1cuFCjRo0yezSfiyjLFz3++ONq1KiR0tPTtXTpUr322mv66quvtG7dOlWoUMHXMwJASJk4caJ++eUXffvtt2x8lVHXrl1dH5LUvHlz3XzzzSZPJd1///36+++/tXz5crVu3dov34NGAwCCzZgxY9S7d281atRIknTPPfeoVq1aps50+PBh3XTTTbrooos0e/ZsRUVFSZJ2794tiR4DAFASjz/+uIYOHaoHH3xQ0dHRmjlzptkj6fvvv9fEiRM1YcIEPfTQQ2aP43dlWhzo16+fOnbsKEm66aabVK1aNb3wwguaN2+errnmGp8OCMB+UlNTFRcXZ/YYtpSdna3Jkyfr3nvvZWGgnObOnasNGzYoLS1Nbdu2df3SbpYDBw5oxowZev311/22MCDRaABFo9Gwo5YtW2rbtm1at26dEhMT1aRJE7NH0vTp05Wenq533nnH6zYGPQZQFHoM5Lrqqqt03nnnaevWrWrWrJmqV69u9kh67rnn1K1bt5BYGJB89J4D559/viQpOTlZUu5eFPfdd5/atm2r+Ph4VaxYUf369dOaNWs8vjY9PV3jxo1T8+bNFRMTo1q1aunyyy/Xtm3bJEk7duxwO01CwY/8/3i2ZMkSORwOffTRR/r3v/+tmjVrKi4uTpdccon++usvj+/9yy+/6OKLL1alSpVUoUIF9erVS8uWLfP6M/bu3dvr9x83bpzHZWfOnKkOHTooNjZWVatW1dVXX+31+xf1s+XndDo1efJktW7dWjExMUpKStLIkSM93gSjsHPsjR492uM6vc0+adIkj9tUyj3FydixY9W0aVNFR0erXr16euCBB5SRkeH1tsrP23nynnrqKYWFhen9998v0+2R9yStVq2aYmNj1aFDB33yySdev//MmTPVuXNnVahQQVWqVNG5556r+fPnu13m66+/Vq9evZSQkKCKFSuqU6dOHrPNnj3bdZ8mJibq+uuv9zjP6fDhw91mrlKlinr37q0ff/yx2NuppJYuXarOnTsrJiZGjRs31rvvvuv29yV97jVs2LDQ23rJkiWSpJ07d2rUqFFq0aKFYmNjVa1aNQ0ePNjtfK/SP4d0fv/99xo1apRq1KihunXruv7+jTfeUJMmTRQbG6vOnTsXenscOHBAN954o5KSkhQTE6MzzzzT43CyvOd43ox58h4777zzjutz+/bt04gRI1S3bl3X+V8vvfRSj/lLK/9tFxYWppo1a+qqq67Srl27SvT1r776qlq3bq3o6GjVrl1bt99+u44ePer6+82bN+vIkSNKSEhQr169VKFCBVWqVEkDBw7UunXrXJdbvHixHA6HPv30U4/v8f7778vhcGj58uWumfMOBc3j7bb88ccfNXjwYNWvX9/1XB8zZozS0tLcvnbcuHEez8tZs2apffv2iomJUbVq1XTNNdd43CbDhw9XfHy82+c++eQTr/dpfHy8x8xSyV5f87/utGrVSh06dNCaNWu8vp54U/D1PjExUQMGDHC7/aXc19HRo0cXej15z428x9zKlSvldDqVmZmpjh07FnlbSdKiRYvUs2dPxcXFqXLlyrr00ku1ceNGt8vk3RebNm3Sq6++Kkm64IILdNdddyk9PV3SP42+9tprNW7cONfrRJs2bRQRESGHw6GePXu6vU7k3c4xMTGKjY1VQkICjabRNLoYNNrejfbWyltuuUUxMTEeP1NxLZdyn19t2rTx+D7PPfecWxuKur8dDofrFBp5t+Nzzz2nF198UQ0aNFBsbKx69erl0SepZA3xdrt5e7zlXaa4c3nnn7GgNm3aeLzelORxlf/xExcXpy5duqhJkya6/fbb5XA4vG4rePv6vI/IyEg1bNhQ999/vzIzM12Xy3uu/Prrr4VeV8HXzJ9//lnt27fX008/rXr16ik6OlrNmjXz+h5H2dnZrlMK/etf/1LDhg01ZswYjRkzxu01ITY21vVamLdd1apVK3344YduvzNXrlzZ9dz29nMW/Khbt65rxjp16sjhcOiDDz6gx/nQY3pMj83vsb+auGnTJl155ZWqWrWqYmJi1LFjR3322WdulymsAykpKR6vBd5+Hz558qRq1qzpcdvnbQ+sWrVK3bp1U2xsrBo1aqTXX3/dY87SdLG4rknS9u3bNXjwYFWtWlUVKlTQOeec49Eobz+L5LldVJrbR5J+//139evXTxUrVlR8fLwuuOAC/fzzz26Xyf/7co0aNVyvWe3atfN4rHpT8LS6FSpUUNu2bfXf//7X7XLe/h2ioII/w88//6w2bdro6quvVtWqVRUbG6tOnTq5va9hntLcbyV5zA4fPtzjlMMzZ85UWFiYnnnmGbfPl+SxXRJlOnKgoLx/JKhWrZqk3Afg3LlzNXjwYDVq1Ej79+/XtGnT1KtXL23YsEG1a9eWJOXk5GjgwIH67rvvdPXVV+uuu+7SiRMntGDBAq1bt85tj5BrrrlG/fv3d/u+Dz/8sNd5nnrqKTkcDj344IM6cOCAJk+erD59+mj16tWKjY2VlLvB3K9fP3Xo0EFjx45VWFiYpk+frvPPP18//vijOnfu7HG9devWdb0xxsmTJ3Xbbbd5/d6PPvqohgwZoptuukkHDx7U1KlTde655+r3339X5cqVPb7mlltuUc+ePSVJ//vf/zz+sW/kyJF65513NGLECN15551KTk7Wyy+/rN9//13Lli1TZGSk19uhNI4ePer1TT+cTqcuueQSLV26VLfccovOOOMMrV27Vi+++KL+/PNPr0+MokyfPl3/+c9/9Pzzz+vaa6/1epnibo8pU6bokksu0XXXXafMzEx9+OGHGjx4sL744gsNGDDAdbnx48dr3Lhx6tatmx5//HFFRUXpl19+0aJFi3ThhRdKyn0xueGGG9S6dWs9/PDDqly5sn7//Xd98803rvnybvtOnTppwoQJ2r9/v6ZMmaJly5Z53KeJiYl68cUXJeUeUjxlyhT1799ff/31l9f7vjS2bt2qK6+8UjfeeKOGDRumt99+W8OHD1eHDh1ceyGX9Lk3efJknTx50u36X3zxRa1evdr1PF65cqV++uknXX311apbt6527Nih1157Tb1799aGDRs8DoceNWqUqlevrscee0ypqamSpLfeeksjR45Ut27ddPfdd2v79u265JJLVLVqVdWrV8/1tWlpaerdu7e2bt2q0aNHq1GjRpo9e7aGDx+uo0eP6q677ir17XXFFVdo/fr1uuOOO9SwYUMdOHBACxYs0K5du8p9bveePXvqlltukdPp1Lp16zR58mTt3bu32I3acePGafz48erTp49uu+02bd68Wa+99ppWrlzpei4fOnRIUu7rW7NmzTR+/Hilp6frlVdeUffu3bVy5Uo1b95cvXv3Vr169TRr1ixddtllbt9n1qxZatKkSanfn2D27Nk6deqUbrvtNlWrVk0rVqzQ1KlTtXv3bs2ePbvQr3v//fd1/fXX68wzz9SECRN06NAhvfTSS1q6dKl+//13JSYmlmqOwpTl9TXPgw8+WKrv1bJlSz3yyCMyDEPbtm3TCy+8oP79+5d4EcibvPt29OjR6tChg5555hkdPHjQ6221cOFC9evXT40bN9a4ceOUlpamqVOnqnv37vrtt988HsNDhgxReHi4JKl79+566aWXdOTIEb377ruuRufJe52IjY1VWFiYRowY4fqFb8OGDZo+fboeffRRXXnllUpNTdXmzZsVFRWl+Ph43XLLLVq6dCmNzodG02iJRpeWFRtd0NixY/XWW2/po48+cvtHu5K0vDTy398bN27U008/rX//+98644wzJMnjl9l3331XJ06c0O2336709HRNmTJF559/vtauXaukpCRJpW+I9M/tln8OfyrP42rr1q168803S/X98l67MjIy9O233+q5555TTEyMnnjiiTL/DIcOHdLSpUu1dOlS3XDDDerQoYO+++47r/8Ae9NNN2nWrFmSpMGDBysqKkqTJ09WXFyc7rjjDtdrwvjx47Vs2TINHjxYo0aNcr2e5B1pkPc785IlS/TJJ59o8+bN6tWrl/bu3Ssp9/fxiRMnKjo6WlLuP1jfdttt2r9/vx544AHVr19f//vf/7R3717dcccdqlOnDj0uBXpMj+lxyZWlx/5o4vr169W9e3fVqVNHDz30kOLi4vTxxx9r0KBBmjNnjsfv0mX1/PPPF/q+MkeOHFH//v01ZMgQXXPNNfr444912223KSoqSjfccIOk0t+/xXVt//796tatm06dOqU777xT1apV04wZM3TJJZfok08+8dnP7c369evVs2dPVaxYUQ888IAiIyM1bdo09e7dW99//726dOlS6Ne+9957pX6vwBdffFGJiYk6fvy43n77bd18881q2LCh+vTpU+af4dChQ3rjjTcUHx+vO++8U9WrV9fMmTN1+eWXa9asWa4ul/Z+K8ljtqD58+frhhtu0OjRo92OZPDpY9sohenTpxuSjIULFxoHDx40/vrrL+PDDz80qlWrZsTGxhq7d+82DMMw0tPTjZycHLevTU5ONqKjo43HH3/c9bm3337bkGS88MILHt/L6XS6vk6SMWnSJI/LtG7d2ujVq5frz4sXLzYkGXXq1DGOHz/u+vzHH39sSDKmTJniuu5mzZoZF110kev7GIZhnDp1ymjUqJHRt29fj+/VrVs3o02bNq4/Hzx40JBkjB071vW5HTt2GOHh4cZTTz3l9rVr1641IiIiPD6/ZcsWQ5IxY8YM1+fGjh1r5L9bfvzxR0OSMWvWLLev/eabbzw+36BBA2PAgAEes99+++1Gwbu64OwPPPCAUaNGDaNDhw5ut+l7771nhIWFGT/++KPb17/++uuGJGPZsmUe3y+/Xr16ua7vyy+/NCIiIox7773X62VLcnsYRu79lF9mZqbRpk0b4/zzz3e7rrCwMOOyyy7zeCzm3edHjx41EhISjC5duhhpaWleL5OZmWnUqFHDaNOmjdtlvvjiC0OS8dhjj7k+N2zYMKNBgwZu1/PGG28YkowVK1Z4/ZlLqkGDBoYk44cffnB97sCBA0Z0dLTb7VnS515Bec+R/JcpeDsbhmEsX77ckGS8++67rs/lvS706NHDyM7Odn0+77Zr3769kZGR4fp83m2S/3E2efJkQ5Ixc+ZMt6/v2rWrER8f73o+5z3HFy9e7PEzSjKmT59uGIZhHDlypNDXjfJq0KCBMWzYMLfPXXvttUaFChWK/LoDBw4YUVFRxoUXXuh2H7388suGJOPtt982DOOfnzExMdFISUlxXe7PP/80IiMjjSuuuML1uYcfftiIjo42jh496vZ9IiIi3J7fjRo1MoYOHeo2j7fb0tt9PmHCBMPhcBg7d+50fS7/8zI7O9tISkoymjRpYpw8edJ1mSVLlhiS3B6fw4YNM+Li4tyuf/bs2V7v07i4OLfbuTSvr/lfdwzDML766itDknHxxRd7vJ54U/DrDcMw/v3vfxuSjAMHDrg+J8m4/fbbC72evOdGcnKy259btWrldlvn3Rf5b6v27dsbNWrUMA4dOuT63Jo1a4ywsDC3+zLvvrjkkkvcGj1ixAhDkjFx4kRXo/Ne99PT042HHnrICA8PN+bOnWsYxj+vE/fcc4/rds7f6IK3M43ORaNptGHQ6GBodMGvnTZtmiHJmDp1qttlStpyw8h9frVu3drj+0yaNMmtDfkVdhsaxj+3Y/7fuQzDMH755RdDkjFmzBjX50rakDx16tQxRowYUeQchb2GeZuxJE0o6eOq4OPHMAxjyJAhRps2bYx69ep53N+FzZT/6w3DMGrXrm3079/f9ee858rKlSsLva6C2we9evUyJBnjxo1zu1z37t0NScabb75pHDx40Pj2228NSUZ0dLTb/Xf33XcbkoxFixa5vrZOnTqGJOPqq692fe6VV15x9bPgvNu3bzcOHz5sNG3a1OssTzzxhOFwOIzOnTu7Ppd3/0oyNmzY4Po8PabH+dFjT/S45MrT4zy+auIFF1xgtG3b1khPT3d9zul0Gt26dTOaNWvm+lxhHfD2OlbwOXfgwAEjISHB6Nevn8fMea14/vnnXZ/LyMhwtTozM9MwjPJ10TA8u5bXmPyvSydOnDAaNWpkNGzY0PUcGD9+vCHJ7XXeMDzvw9LcPoMGDTKioqKMbdu2uT63d+9eIyEhwTj33HM9rjNvmyg9Pd2oX7++63Ys+DMWVPDrDSP3300kGc8++6zrc97+HaKggj9DXieXLFni+typU6eMM844w6hZs2aZ77eSPGbzv07++uuvRnx8vDF48GCP162SPrZLokynFerTp4+qV6+uevXq6eqrr1Z8fLw+/fRT1alTR5IUHR2tsLDcq87JydGhQ4cUHx+vFi1a6LfffnNdz5w5c5SYmKg77rjD43t4O6ylpIYOHaqEhATXn6+88krVqlVLX331lSRp9erV2rJli6699lodOnRIKSkpSklJUWpqqi644AL98MMPcjqdbteZnp6umJiYIr/v//73PzmdTg0ZMsR1nSkpKapZs6aaNWumxYsXu10+75CfvD07vJk9e7YqVaqkvn37ul1nhw4dFB8f73GdWVlZbpdLSUlxnVqiMHv27NHUqVP16KOPeqzEzp49W2eccYZatmzpdp15p6ko+P0Ls2LFCg0ZMkRXXHGFJk2a5PUyJbk9JLn2ZJFyV2CPHTumnj17uj225s6dK6fTqccee8z1WMyT99hasGCBTpw4oYceesjjvs27zK+//qoDBw5o1KhRbpcZMGCAWrZs6XFIltPpdN1Gq1ev1rvvvqtatWq5VrrLo1WrVq69QySpevXqatGihbZv3+76XEmfe/lt2LBBN9xwgy699FL95z//cX0+/+2clZWlQ4cOqWnTpqpcubLX67r55ptdey5L/9x2t956q9t5WIcPH65KlSq5fe1XX32lmjVrup1/NTIyUnfeeadOnjzpOmS6pGJjYxUVFaUlS5Z4HErsCxkZGUpJSXHtWbFo0SJdcMEFRX7NwoULlZmZqbvvvtvtMXnzzTerYsWKHo+lESNGuPZIkaRmzZrpkksu0TfffKOcnBxJua91GRkZbnuoffTRR8rOztb111/v+lyNGjVcb45XlPz3eWpqqlJSUtStWzcZhqHff//d4/IpKSlasmSJ9u/fr5EjR7qdM7NXr17q0KGD10Pry6K0r695DMPQww8/rCuuuKLIPRQKynstPXjwoJYvX65PP/1U7dq18zgKIj09XSkpKTp06JBHNwpz++23u93WvXv3drut/v77b61evVrDhw9X1apVXZdr166d+vbt62pZwevM06dPH02fPl1S7hETeY3O8+abb+qZZ57RSy+9pIEDB7q9TsyfP991O3/wwQeu0x4VvJ1pdC4a7YlG56LRhbNio/ObN2+eRo0apfvvv9/j1HGlbXlOTo7Hc/7UqVPl+vkGDRrk+p1Lkjp37qwuXbq4XkPL0pDMzMxin9vSP69hhw4dUnZ2dqGXO3XqlMfPnbftkqesj6tVq1Zp9uzZmjBhgsfrR1FOnjyplJQU7dmzR2+88Yb27dvn9XFx7NgxpaSk6MSJEyW63vDwcI0ZM8btcxdffLGk3MdF9erVddFFF0nK3as//+/MeUc1fvnll67XBIfDoYiICLc2fPXVV4qNjdWePXu0b98+t++VkZGhSy65RIcPH5Ykj/OXz549W3FxcYqIiHDdF8eOHXP9ff7XC3pMj/Ojx+7ocemVt8clUVwTDx8+rEWLFmnIkCE6ceKE63F36NAhXXTRRdqyZYvHqa/yOpD3kff6WpQnnnhClSpV0p133un17yMiIjRy5EjXn6OiojRy5EgdOHBAq1atklT6+7e4rn311Vfq3LmzevTo4fpc3pHgO3bs0IYNGyTl/luBpBL9e4FU/O2Tk5Oj+fPna9CgQWrcuLHr87Vq1dK1116rpUuX6vjx416v+5VXXtGhQ4c0duzYEs2S58iRI0pJSdH27dv14osvKjw8XL169fK4XElf7/N06tTJ7XpiY2M1atQo7du3z/X8Lu39VtxjNr/t27drwIABat++vd577z231+myPLaLUqbTCr3yyitq3ry5IiIilJSUpBYtWrgN6XQ6NWXKFL366qtKTk522xjM/49d27ZtU4sWLRQR4ZOzG7k0a9bM7c8Oh0NNmzZ1nTdty5YtkqRhw4YVeh3Hjh1TlSpVXH9OSUnxuN6CtmzZIsMwCr1cwUMZ885NWtS5r7Zs2aJjx465nrAFHThwwO3P8+fPL/Wbd4wdO1a1a9fWyJEjPQ6D3bJlizZu3FjodRb8/t7s2bNHAwYMUGpqqmuj15uS3B6S9MUXX+jJJ5/U6tWr3c7hmP96t23bprCwMLVq1arQ68k71Ya388Hm2blzpySpRYsWHn/XsmVLLV261O1zf/31l9ttVatWLc2ZM6fYn6kk6tev7/G5KlWquIW8pM+9PMePH9fll1+uOnXq6N1333W7DdPS0jRhwgRNnz5de/bsUe7iaa78v1TkadSokduf8267gs+HyMhIt0jkXbZZs2YeG6V5G4h511VS0dHRmjhxou69914lJSXpnHPO0cCBAzV06FDVrFmzVNflzYcffqgPP/zQ9edOnTp5nNeuoMIeS1FRUWrcuLHr7/Pug5YtW3pcxxlnnKE5c+YoJSVFSUlJatmypTp16qRZs2bpxhtvlJR7SqFzzjlHTZs2dX1dt27d9NJLL+nDDz/U+eefr7CwMK/34a5du/TYY4/ps88+89hA9Hb5/I91b8+RM844o9Bzm5ZWaV9f88yaNUvr16/Xxx9/7HFe1KL89NNPbj9fs2bNNHfuXI/Xr7feektvvfWWpNz7skuXLnrhhRdcb0CYX3H3bd5tVdTrzhlnnKFvv/3W4w3MmjVr5jqlwCuvvKLGjRurf//+Gjx4sD744APXc+vrr7/WypUrJUmPPvqo7rzzTrfXidq1a3vczrVq1XL9vy8OyafRNJpG02irNTrP6tWr9fHHHysnJ8frPwaUtOV5Nm3a5PM31fP2Gta8eXN9/PHHRc4oFd6QY8eOleh5kP81LDw8XO3atdMzzzzjOvVInrFjx3r9xT7/4fJlfVw99NBD6tmzpwYOHFjk+/4UdMcdd7jtkDZixAiPf9SX5HYKgsqVK+uaa67RpEmTvL5pqMPhUO3atVWxYkW3z+d1s0ePHho7dqxeeuklffHFF9q+fbvbP+jWqFFDMTExmjZtmiZPnuz2mpD/ebxt2zbVqVNHW7du1Y4dO9yeJyNGjNDPP//s9Q2RpdxOpKWleWzX5MnfCXpcNHpMj+lx6ZSnxyVVXBO3bt0qwzD06KOP6tFHH/V6HQcOHHD7x9rSnoomOTlZ06ZN02uvvVbo4mjt2rU9OtK8eXNJueeiP+ecc0p9/xbXtZ07d3rdOS7/9bVp00Zdu3aVw+HQww8/rCeffNL1PCxsx7fibp+DBw/q1KlThW6HOJ1O/fXXX67TfOU5duyYnn76ad1zzz2Fnl6nMGeffbbr/6Ojo/Xyyy97nPYuNTXV7XWnXr16uvfee4s8HVdhv7dLufdbly5dSn2/FfeYzT/vRRddpP3796tatWoeTSjLY7soZfpX+c6dO3v9h488Tz/9tB599FHdcMMNeuKJJ1S1alWFhYXp7rvvLvGelf6UN8OkSZPUvn17r5fJH6bMzEz9/fff6tu3b7HX63A49PXXX7utBnu7TkmuPT+KeuF1Op2qUaOG6xyVBRXcAOnSpYuefPJJt8+9/PLLmjdvntev37hxo9555x3NnDnT6z/6OJ1OtW3bVi+88ILXr89/DrzCbN26VWeffbZefPFF/etf/9KMGTO8bmSW5Pb48ccfdckll+jcc8/Vq6++qlq1aikyMlLTp08v1T/8+UtSUpJmzpwpKffF7e2339bFF1+spUuXqm3btuW6bm+PKUluGyClfe4NHz5ce/fu1YoVKzx+sbnjjjs0ffp03X333eratasqVaokh8Ohq6++2ut15d9rwl8K20guuDeaJN199936v//7P82dO1fffvutHn30UU2YMEGLFi3SWWedVa45LrzwQt1///2SclfYJ06cqPPOO0+//vpruW+H0n790KFDddddd2n37t3KyMjQzz//rJdfftntMv/+97+1bNkyt9XsgnJyctS3b18dPnxYDz74oFq2bKm4uDjt2bNHw4cP93qfL1iwQMuXL9djjz1WqpnLorSvr1Lua/ejjz6qG2+80bXxVVLt2rXT888/L0mu9wXo3bu3fvvtN7fXqEsvvVSjR4+WYRhKTk7W448/roEDB7p+oc4vEM8RKbfR7du3d73JW/4NlRUrVqhDhw5atWqVjh49qkmTJqlNmzau14nDhw+7bue8PWEnT57s+npf/NJWHBr9DxrtWzTav4Kh0WvWrFG/fv10wQUX6P7779f111/v8SahpdGwYUOPc+PPnj1bb7zxRpmv09cOHz6szMzMEv1DUP7XsL1792rixIm67LLLtH79erdzU99yyy0aPHiw29fefPPN5Z51/vz5WrhwoZYvX17qr73//vt14YUXKicnR+vXr9fjjz8uwzBcR9rlydsJLiMjQ0uWLHG9ufKrr77qcZ3FPZ5q1KihPn366JNPPpHD4fB4nXj66aeVnp6uhg0basKECapatar+9a9/6eTJkyX+nfm3337TvHnzdOutt+rvv//2+Hun06m4uDg1adLEtV2zZs0a3Xfffbr33nt1xRVXFHrd9Pgf9Ni36LF/BUOPfSXvPrjvvvtcR3EVlH+nOumfDuQ5fvx4ka+VjzzyiJo1a6Zhw4b59I21i1PSrhXnzDPP1NixYzV+/PhCX0PzK+3tU1ITJ05UWFiY7r//ftd79ZXUzJkzlZSUpPT0dC1atEi33367YmJi3N5QOSYmRp9//rkk6cSJE3r77bd19913q1atWhoyZIjHdQbqMVqYlJQUxcXF6fPPP9egQYM0YcIEtx0vyvLYLopvd9k/7ZNPPtF5553n2psyz9GjR91OydCkSRP98ssvysrK8sneiHkK/qOMYRjaunWr2rVr5/q+klSxYsUSrQquWbNGWVlZRS6I5F2vYRhq1KhRif4hasOGDXI4HF5X1PJf58KFC9W9e/cSPTgTExM9fqai3gDp4YcfVvv27XXVVVcV+v3XrFmjCy64oMynkcg7PDUpKUnz5s3Tvffeq/79+3tspJXk9pgzZ45iYmL07bffuu15U/AFsEmTJnI6ndqwYUOhG7N5j4N169YV+qRp0KCBJGnz5s2uw0LzbN682fX3eWJiYtxu/7w3Enr55Zc1bdq0Qn8uXynpc0+SnnnmGc2dO1f/+9//vK6IfvLJJxo2bJjrFwkp91DhvL1VipN322zZssXttsvKylJycrLOPPNMt8v+8ccfcjqdbv+QuWnTJrfrytszqeAMhe0l0aRJE91777269957tWXLFrVv317PP/+8a2O0rGrVquV2P7do0ULdunXT3LlzC/0H+PyPpfx7gWRmZio5Odl1fXl7k2zevNnjOjZt2qS4uDi3+/Lqq6/WPffcow8++EBpaWmKjIz0eD4nJiZq+fLl2rBhg+sXirxfDPOsXbtWf/75p2bMmKGhQ4e6Pr9gwYJCb4c+ffqoUqVKeuyxxwqdt7xvZJWntK+vUu4v8gcOHNC4ceNK/f2qVKnidh/37t1btWvX1vTp093eaLdu3bpul4uPj9d1113n9TRM+e/bgq8n+W+r/I+VgjZt2qTExESPPU8Kdm/r1q1yOp0et3/fvn114MABnXvuudq1a5fmzZunMWPGyOFw6OjRo4qNjXXdzu3atdMvv/yiXr160egirpNG/4NGF41Gu7NSo/O0bdtWs2fPVmxsrGbPnq1bbrlFf/zxh2tPwJK2PE9cXJzH51avXl2eH8/r4vOff/5Z5obknVagJKfzKPga1rRpU3Xv3l0//PCDW2+aNWvm9bbIr6SPqzyGYeihhx7SZZddpnPOOafYWQtq1aqVa6aLLrpIGRkZ+ve//62nnnrK9eajkvtOcAMGDNCaNWv0zTffeL3ORo0aaf78+Tpx4oTb6fLytrXyrrdBgwZyOp3asmWL2+2ct0ftFVdcoauvvlpS7j9GpKSkuH2fJk2aaNGiRZLk0fX//ve/uuSSS5SSkqIbb7xRK1as8Pja5ORkt+2avKP2o6Ki3PaypsdzC708PabH9Lj0ytPjkiquiXmtjoyMLPERAQV3hi74mpzf77//rg8//FBz584tdGFKyl1QL3jU3p9//ilJbv0uTReL61qDBg0K3RYoeH1jx47VLbfcok2bNrkWkfKfpji/4m6f6tWrq0KFCoV+77CwMI8F071792rKlCmaMGGCEhISSr040L17d9ftOHDgQK1fv14TJkxwWxwIDw93ewwMGDBAVatW1TfffON1caBRo0ZF3n5lvd+Ke8zmqVChgr755hu1bNlSY8aM0dNPP60hQ4a4tiPK8tguSpnec6A44eHhbiuzUu5eMgXPd3TFFVcoJSXFYy9XSR5fXxp57/6c55NPPtHff/+tfv36SZI6dOigJk2a6LnnnvN493kpdy/RgrOHh4dr4MCBRX7fyy+/XOHh4Ro/frzH/IZhuD3As7OzNWfOHHXu3LnIPTGHDBminJwc1zuO55ednV3i6HizfPlyzZs3T88880yhGzFDhgzRnj17PPZ6knIPoUtNTS32+zRv3tx1WNDUqVPldDo9Dt0p6e0RHh4uh8Phtuq9Y8cOj425QYMGKSwsTI8//rjHin3efXPhhRcqISFBEyZM8DjnWN5lOnbsqBo1auj11193Oxzz66+/1saNGzVgwIAif/bMzExlZ2e7fa0/lfS5t3DhQv3nP//RI488okGDBpX4uqZOnep1jwNvOnbsqOrVq+v11193nRtTkt555x2Px23//v21b98+ffTRR67PZWdna+rUqYqPj3ed561BgwYKDw/XDz/84Pb1BffmOnXqlMd92qRJEyUkJPjlvkhLS5OkIq+7T58+ioqK0ksvveR2u7711ls6duyY67FUvXp1dezYUTNmzHA7/HXbtm367LPP1K9fP7cNj8TERPXr108zZ87UrFmzdPHFF3ts1EpSWFiY2rRpoz59+qhPnz7q0KGD29/nXWf+2QzD0JQpU4r82du3b6+kpCS9+eabbudR/vHHH/Xrr78W+7pZUqV5fZVy9wZ46qmnNGbMGJ8cFluS+1j6ZwXf28bhWWedpZo1a3q8nhS8rWrVqqX27dtrxowZbs+VdevWaf78+erfv7/Hdb/yyituf546daokubqXp1u3bgoPD1dYWJhef/11/fDDD3rzzTddrxOJiYmu2/nyyy93a3T+25lG56LR7mh00Wh0Lis2Os/ZZ5+tuLg4hYWF6b///a927Nihxx9/3PX3JW25P82dO9ftMbNixQr98ssvrtfQ0jbkww8/VFRUlNs5iUuqqOYVp6SPq/xz/vHHH5owYUKpv5c3eY+L/I9/b5xOZ6E/X//+/ZWTk+Pxu+y3334rSa7bNO82z38knvTPP6jkf9ykpqa6zsee//ukpaWpdu3aHts0ed8j7x8Vv/jiC+3fv9/190OGDFFaWprX02QV3Nakx97RY3pMj32jND0uqeKaWKNGDfXu3VvTpk3zenRVwdex0nrooYfUvXt3XXLJJUVeLjs7223hKzMzU9OmTVP16tVdv5eXtosFFexa//79tWLFCrej7VJTU/XGG2+oYcOGHqcTq1Wrls477zzXvxcU9/4xhQkPD9eFF16oefPmuU5TJ0n79+/X+++/rx49engcgTN+/HglJSXp1ltvLdP3LCgtLa3Yx1ne87aoxq9YsUI//fST63Pp6el67bXXVLNmzTLfb8U9ZvNUr17dtSD5+OOPq27durr55ptdc/v6se2XIwcGDhyoxx9/XCNGjFC3bt20du1azZo1y+OcaUOHDtW7776re+65RytWrFDPnj2VmpqqhQsXatSoUbr00kvL9P2rVq2qHj16aMSIEdq/f78mT56spk2bug5nzdvg79evn1q3bq0RI0aoTp062rNnjxYvXqyKFSvq888/V2pqql555RW99NJLat68uZYsWeL6HnkbSH/88YeWL1+url27qkmTJnryySf18MMPa8eOHRo0aJASEhKUnJysTz/9VLfccovuu+8+LVy4UI8++qj++OMP12EthenVq5dGjhypCRMmaPXq1brwwgsVGRmpLVu2aPbs2ZoyZYquvPLKMt1O8+fPV9++fYtcZfrXv/6ljz/+WLfeeqsWL16s7t27KycnR5s2bdLHH3+sb7/9tti9Q/KrWbOmJk2apJtuuknXX3+9+vfvX6rbY8CAAXrhhRd08cUX69prr9WBAwf0yiuvqGnTpvrjjz9cl2vatKkeeeQRPfHEE+rZs6cuv/xyRUdHa+XKlapdu7YmTJigihUr6sUXX9RNN92kTp066dprr1WVKlW0Zs0anTp1SjNmzFBkZKQmTpyoESNGqFevXrrmmmu0f/9+TZkyRQ0bNvQ4V2lqaqrbIZLvvfee0tPTddlll5X4NiqPkj73rrnmGlWvXl3NmjXz2COgb9++SkpK0sCBA/Xee++pUqVKatWqlZYvX66FCxd6PQ+jN5GRkXryySc1cuRInX/++brqqquUnJys6dOne8xzyy23aNq0aRo+fLhWrVqlhg0b6pNPPtGyZcs0efJk195YlSpV0uDBgzV16lQ5HA41adJEX3zxhcd5PP/8809dcMEFGjJkiFq1aqWIiAh9+umn2r9/v2vPrPLYvn2763bbs2ePXn75ZVWsWLHIN1iqXr26Hn74YY0fP14XX3yxLrnkEm3evFmvvvqqOnXq5LYy/+yzz+rCCy9U165dddNNNyk9PV2vvPKKYmJi9NRTT3lc99ChQ12vA95+KSqJli1bqkmTJrrvvvu0Z88eVaxYUXPmzCn2zanyniPDhw9X9+7dNWzYMB0+fFhTpkxRnTp1XG+2lycnJ8dtD7y8PShXrFjhtnGak5OjPXv2aMWKFercuXOJX1/z/Pbbb0pMTNQDDzxQpttj//79rvs4JSVF06ZNU0REhMcvvLt27dI333zjOq3QU089pQYNGuiss87y2CsgIiJCzz77rIYOHaqePXvquuuuc52yqG7dum631aRJk9SvXz917dpVN954o9LS0jR16lRVqlTJ65EQycnJroWcxx57TF9//bWuvfZat72N8uS9TjRs2FBdunTRHXfcobi4ODVu3FixsbGu2zk5OVmNGzfWPffcozfeeEOHDh1S586dlZWVRaNPo9HuaHTRaHQuKzbamzZt2ujBBx/UM888o6uvvlrt2rUrVcv9pWnTpurRo4duu+02ZWRkaPLkyapWrZpb70rSkC1btmjs2LH64IMP9NBDD3n8ou7NwYMHXQ3/+++/NXHiRFWqVEnnnXdeqX+Okj6u8syfP18333xzkXtLF2X58uWKiIhwnX5h6tSpOuusszz21Fu+fLlSUlJcpxX67rvv3LYv8uvfv7/69OmjRx55RMnJyWrfvr0WLVrkOq1E3h7XZ555poYNG6Y33nhDR48eVa9evbRixQrXP+K/++672rp1q9auXavDhw8rMjJSmzZt0sMPP6ykpCTX3s179+7VNddco549e7re4HDBggW65ZZb3Oa64447XOcuvv/++/XMM89o7dq1uvnmm9WhQwetWbNGUu592LNnT9100030uAj0mB7T47LxVY+LUpImvvLKK+rRo4fatm2rm2++WY0bN9b+/fu1fPly7d692/WaWBbz58/XsmXLir1c7dq1NXHiRO3YsUPNmzfXRx99pNWrV+uNN95wHaFd2i4W17WHHnpIH3zwgfr166c777xTVatW1YwZM5ScnKw5c+Z4nCPfl5588kktWLBAPXr00KhRoxQREaFp06YpIyNDzz77rMfl58+fr1mzZhX6/jnFmTt3rhITE12nFfrxxx919913u10m/79DnDhxQtOnT1dqamqhC38PPPCAZs2a5br9EhMTNXPmTG3YsEGzZs1yHYVX2vutJI/ZgmJjY/XGG2+oT58+eu211zRq1ChJPn5sG6Uwffp0Q5KxcuXKIi+Xnp5u3HvvvUatWrWM2NhYo3v37sby5cuNXr16Gb169XK77KlTp4xHHnnEaNSokREZGWnUrFnTuPLKK41t27YZhmEYycnJhiRj0qRJHt+ndevWbte3ePFiQ5LxwQcfGA8//LBRo0YNIzY21hgwYICxc+dOj6///fffjcsvv9yoVq2aER0dbTRo0MAYMmSI8d1337l97+I+hg0b5na9c+bMMXr06GHExcUZcXFxRsuWLY3bb7/d2Lx5s2EYhnHHHXcY5557rvHNN994zDR27FjD293yxhtvGB06dDBiY2ONhIQEo23btsYDDzxg7N2713WZBg0aGAMGDPD42ttvv93jOiUZDofDWLVqldvnvd1HmZmZxsSJE43WrVsb0dHRRpUqVYwOHToY48ePN44dO+bx/Yq7PsMwjPPPP9+oX7++ceLEiVLfHm+99ZbRrFkzIzo62mjZsqUxffr0Qm+3t99+2zjrrLNcc/fq1ctYsGCB22U+++wzo1u3bkZsbKxRsWJFo3PnzsYHH3zgdpmPPvrIdT1Vq1Y1rrvuOmP37t1ulxk2bJjb4yI+Pt44++yzjffee6/I26gkCrtvC96+JX3uFfV4Xrx4sWEYhnHkyBFjxIgRRmJiohEfH29cdNFFxqZNm4wGDRq4PeaLe1149dVXjUaNGhnR0dFGx44djR9++MHr42L//v2u7xcVFWW0bdvWmD59usf1HTx40LjiiiuMChUqGFWqVDFGjhxprFu3zpDkunxKSopx++23Gy1btjTi4uKMSpUqGV26dDE+/vjjktzcRWrQoIHb7ZWYmGhceOGFxvLly0v09S+//LLRsmVLIzIy0khKSjJuu+0248iRIx6X++6774zu3bu7HpcDBgww1q5d6/U6MzIyjCpVqhiVKlUy0tLSSjRH3utl3v1tGIaxYcMGo0+fPkZ8fLyRmJho3HzzzcaaNWvcblvD8P68/PDDD4327du7nmtXXXWVsWPHDrfLFHyOlOSj4OOkuNdXw8h9XkgyXnzxRbevLex1oqC8r8/7qFy5stG9e3fjq6++crtc/ss4HA6jZs2axuWXX25s3LjRMIx/nhvJycluX/fxxx+7vZ5cc801Xhu1cOFCt8fA//3f/xkbNmzw+jNt2LDB6NixoyHJSEhIMEaPHu3xWJBkjB071uN1IiIiwvWczLu9827nChUqGJGRkUZkZKQRFhZmVK9enUbTaBcanYtG/8POjS542xlG7n3WsmVLo1OnTkZ2drbr8yVpea9evYzWrVt7fJ9JkyZ5bYNheG9znvyvt88//7xRr149Izo62ujZs6exZs0aj8sX15APPvjAaNOmjTFlyhTD6XQWO0dht+3PP//sdcaCCjbBMEr2uMq7ztjYWGPPnj1uf+ftPivsdsv7CAsLM+rWrWsMGzbM7XUi77mS9xEVFWU0bdrUeOyxx4yMjAzDMLy/Zp48edIYM2aMUbt2bSMyMtJo2rSpceWVV3o877Kysozx48e7fuetV6+ecf/99xt3332322tCzZo1japVqxrt2rUz2rVr53otnTlzptvvzJUqVTIkGd9//73bz3nVVVcZkozPPvvM9b3POOMMo379+kbTpk2NqKgoo2LFioYk47rrrjMeeOABenwaPabH9NgaPc7jyyZu27bNGDp0qFGzZk0jMjLSqFOnjjFw4EDjk08+cV2msPvo4MGDrt+j8uQ9ly699NJiZ87bHvj111+Nrl27GjExMUaDBg2Ml19+2WPO0nSxuK7l/dxXXnmlUblyZSMmJsbo3Lmz8cUXX3h8X29K+hj2dvsYhmH89ttvxkUXXWTEx8cbFSpUMM477zzjp59+crtM3nW2b9/ebVsk72f09tj29vXe2p2enu66XEled7z9DHm3X6VKlYyYmBijU6dOxty5cz3mKM39VpLH7LBhw4wGDRp4fJ8RI0YYFStWdLufS/LYLgnH6RshKCxZskTnnXeeZs+eXeY9A/LbsWOHGjVqpOTk5ELPmz1u3Djt2LFD77zzTrm/HwCURXZ2tmrXrq3/+7//8zh3pp298847euedd9z2QIO7cePGafz48Tp48KDX00lZCY0GgLLLe82bNGlSoXuyw/4aNmyoNm3a6IsvvvDb96DHAOzOTk3s3bu3UlJStG7dOrNHgYms/pj133EkAICAmDt3rg4ePOj2RsIAAAAAAABAUfzyngPBIj4+Xtddd12Rb/bTrl071a5dO4BTAUCuX375RX/88YeeeOIJnXXWWcW+SZHd1KlTR507dzZ7DFgUjQYAwHz0GAAAe2NxoAh5bzhRlMsvvzxA0wCAu9dee00zZ85U+/btg/Iw7b59+6pv375mjwGLotEAAJiPHgMAYG9B9Z4DAAAAAAAAAACgeLznAAAAAAAAAAAAIYbFAQAAAAAAAAAAQgyLAwAAAAAAAAAAhBgWBwAAAAAAAAAACDEsDgAAAAAAAAAAEGJYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQIhhcQAAAAAAAAAAgBDD4gAAAAAAAAAAACGGxQEAAAAAAAAAAEIMiwMAAAAAAAAAAIQYFgcAAAAAAAAAAAgxLA4AAAAAAAAAABBiWBwAAAAAAAAAACDEsDgAAAAAAAAAAECIYXEAAAAAAAAAAIAQw+IAAAAAAAAAAAAhhsUBAAAAAAAAAABCDIsDAAAAAAAAAACEGBYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQYlgcAAAAAAAAAAAgxLA4AAAAAAAAAABAiGFxAAAAAAAAAACAEMPiAAAAAAAAAAAAIYbFAQAAAAAAAAAAQgyLAwAAAAAAAAAAhBgWBwAAAAAAAAAACDEsDgAAAAAAAAAAEGJYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQIhhcQAAAAAAAAAAgBDD4gAAAAAAAAAAACGGxQEAAAAAAAAAAEIMiwMAAAAAAAAAAIQYFgcAAAAAAAAAAAgxLA4AAAAAAAAAABBiWBwAAAAAAAAAACDEsDgAAAAAAAAAAECIYXEAAAAAAAAAAIAQw+IAAAAAAAAAAAAhhsUBAAAAAAAAAABCDIsDAAAAAAAAAACEGBYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQYlgcAAAAAAAAAAAgxLA4AAAAAAAAAABAiGFxAAAAAAAAAACAEMPiAAAAAAAAAAAAISbC7AEA+N/h1EwdOJGuA8cztP94ug6cyNDxtCydzMjWqcwcnczIVmreR2aO6/8zc5xyGpJhGHIa0sIms9Voz2eSI+z0R7gUESVFJUjR8VJUvBQVd/r/832uQlUpoZYUnyQl1Mz9iE4w+2YBAMCyaDcAAPZCuwHYEYsDgM0ZhqG/j6UrOSVV2w+eVHLKKe05ekoHTmTowPEMHTyRocwcp0++l8PIkZzZ7p/MSpXSjpT+yqLi3TdaKjeQqjXN/UhslrthAwBAEKLdAADYC+0GEKxYHABsIivHqc37TujP/Se0/WBq7kZJSqp2pKQqLSvH7PFKL/OkdPikdHib97+PrXJ6o6WZVK1J7oZLUhupamPJ4QjsrAAAlAHtpt0AAHuh3bQbCDUsDgAWlLdBsm7PMa09/bFp3wllZvtmTwRbSDsi7V6Z+5FfTCWpZjup9llS7fZSrfZsuAAATEe7RbsBALZCu0W7AbA4AFjB/uPpWr7tkFbuOByaGySlkX5M2vFj7kee6EpSrXZSnbOlBt2l+l2lmIrmzQgACHq0uxRoNwDAAmh3KdBuIGQ4DMMwzB4CCDUHjqdr+fZD+nn7IS3fdkg7Dp0ye6QSWdL0IzXcPc/sMYrnCJdqnSk17CE1Oleqfw5vxAQAKBfa7We0GwDgY7Tbz2g3EBQ4cgAIgOPpWfrhz4P6adsh/bztkLanpJo9UnAzcqS9v+V+/PSSFBZxeqOlp9TkvNy9HMIjzZ4SAGBhtDvAaDcAoJxod4DRbiAocOQA4Cd/HT6lhRv3a+HG/VqRfFhZOfZ/qtlmD4biRFeSmp4vtegvNeub+yZMAICQR7stjHYDALyg3RZGuwFb4MgBwEcMw9Dqv47mbphsOKDN+0+YPRIKk3FMWv9p7kdYRO65Elv0y/2o2tjs6QAAAUK7bYR2AwBEu22FdgO2wJEDQDmt2nlE81bv0dfr9ungiQyzx/GroNmDoSjVW0qtL5faDZGqNjJ7GgCAH9DuIEO7ASDo0e4gQ7sBy2BxACiD7QdPau7qvZq3eo922uRNjXwhJDZS8qvbOXdjpc0VUoWqZk8DACgH2h0iaDcABA3aHSJoN2AqFgeAEko5maHP1+zV3N/3aM3uY2aPY4qQ20jJExYpNb0gd4OlRX8pMtbsiQAAJUC7aTftBgB7od20m3YDgcV7DgBFcDoNLfnzgGb9vEvf/3lQ2U7W0kKSM0v685vcj6gEqc3lUqebpFrtzJ4MAFAA7YYk2g0ANkK7IYl2AyZhcQDw4nBqpj5a+ZfeX7FTfx1OM3scWEnmCem3GbkfdTvnbqy0HiRFRJs9GQCENNqNQtFuALAk2o1C0W4gYFgcAPJZtfOIZv68U1+u/VuZ2U6zx4HV7V6R+/Htv6Wzrpc63iBVaWD2VAAQUmg3SoV2A4DpaDdKhXYDfsV7DiDkZWTnaO7ve/Tu8p1av/e42eNYWsie+7CkHGFS075Sl1ukpn3MngYAghbtLjnaXQzaDQABQbtLjnYXg3YDPsWRAwhZJzOyNevnnXprabIOnMgwexwEA8Mpbfk296NmO6nHGKnVICkszOzJACAo0G74HO0GAL+i3fA52g34FEcOIOQcTs3U9GXJenf5Th1LyzJ7HFthD4YyqNpE6n6XdOY1UkSU2dMAgC3R7rKj3WVAuwGg3Gh32dHuMqDdQJmxOICQsfdomt74Ybs+WvmX0rJyzB7HlthIKYeE2lLX26UOw6XoeLOnAQBboN3lR7vLgXYDQKnR7vKj3eVAu4FSY3EAQe+vw6f00ndbNHf1HmXl8HAvDzZSfCC2inTOqNwPNlYAwCva7Tu02wdoNwAUi3b7Du32AdoNlBiLAwhah05maOqirXr/l13KzHGaPU5QYCPFhyokSufeL3W8gcMeAeA02u17tNuHaDcAeKDdvke7fYh2A8VicQBB52RGtt78YbveWpqskxnZZo8TVNhI8YPK9aXzHpHaDuENlACELNrtP7TbD2g3ANBuP6LdfkC7gUKxOICgkZnt1Myfd+qVxVt1KDXT7HGCEhspflSjtXTBY1KLi82eBAAChnb7H+32I9oNIATRbv+j3X5EuwEPEWYPAJSXYRiat3qvnpu/WbuPpJk9DlA2B9ZLH1wl1e8q9X1CqtfJ7IkAwG9oN4IC7QYQQmg3ggLtBjywOABb27D3uB6bt06/7jxi9iiAb+xaLr3VV2p/rdT3cSku0eyJAMCnaDeCDu0GEORoN4IO7QZcWByALR1Ly9IL8zdr5i+7lOPkzFgINoa0epa06QvpvP9InW6UwsLNHgoAyoV2I7jRbgDBh3YjuNFuQGJxADZjGIZmr9qtZ7/ZpJSTnN8QQS79mPT1/dJv70oDnpPqn2P2RABQarQbIYV2AwgCtBshhXYjxLE4ANtYt+eYHpu3Tr/tOmr2KEBg7V8rvX2xdObVuYc8xtcweyIAKBHajZBFuwHYFO1GyKLdCFEsDsDy0jJz9Oy3mzTjpx3iSEaELkNa84G06Sup73ip4wizBwKAQtFuQKLdAOyEdgMS7UYoCjN7AKAoK5IPq9+UHzR9GRsogCQp45j0xd3Su4Oko3+ZPQ0AeKDdQAG0G4DF0W6gANqNEMLiACwpLTNH4z5br6veWK4dh06ZPQ5gPdsXS691k1a9Y/YkACCJdgPFot0ALIZ2A8Wg3QgBLA7AcvL2Wnjnpx0y2GsBKFzGcenzu9ibAYDpaDdQQrQbgEXQbqCEaDeCHIsDsAz2WgDKiL0ZAJiEdgNlRLsBmIR2A2VEuxGkWByAJazdfUz9X/qRvRaAssrbm2HmFdLJg2ZPAyAE0G6gnGg3gACj3UA50W4EIRYHYLq3lybritd+UnJKqtmjAPa3daH0eg8p+QezJwEQxGg34EO0G0AA0G7Ah2g3ggiLAzDNsVNZuvndX/X4FxuUmeM0exwgeJzcJ717qbT4acmZY/Y0AIII7Qb8hHYD8BPaDfgJ7UaQYHEApli187D6v/SjFmzYb/YoQHAynNL3E6UZl0jH/zZ7GgBBgHYDfka7AfgY7Qb8jHYjCLA4gIAyDEOvLN6qq6b9rD1H08weBwh+O5dKr3eXtiwwexIANkW7gQCj3QDKiXYDAUa7YWMsDiBgjqRmatj0lZr07WZlO3n3IyBgTh2SZg2WFjzG4Y4ASoV2Ayah3QDKiHYDJqHdsCkWBxAQm/ed0KWvLNMPf/Ju7oA5DGnZlNyNlbSjZg8DwAZoN2A22g2gdGg3YDbaDfthcQB+N3/9Pl3+6jLtOnzK7FEAbPtO+u8FUsoWsycBYGG0G7AQ2g2gBGg3YCG0GzbC4gD8aup3WzRy5iqlZnJIFWAZh7ZKb17A+RABeEW7AQui3QCKQLsBC6LdsAkWB+AXaZk5uv393/T8gj9lcJpDwHoyjknvD8k95BEARLsBy6PdAAqg3YDF0W7YAIsD8Lm9R9N05es/6cs//jZ7FABFMZy5b5b0v5FSVrrZ0wAwEe0GbIJ2AziNdgM2QbthcSwOwKfW7j6mS15epvV7j5s9CoCS+uNDacZA6dRhsycBYALaDdgQ7QZCGu0GbIh2w6JYHIDPLN2SoqvfWK6UkxlmjwKgtHavlN6+SDr6l9mTAAgg2g3YGO0GQhLtBmyMdsOCWByAT3y2Zq9ueGclb4AE2FnKn9JbF0r7N5g9CYAAoN1AEKDdQEih3UAQoN2wGBYHUG7TlyXrrg9/V2aO0+xRAJTXib3S9IulncvNngSAH9FuIIjQbiAk0G4giNBuWAiLAyiXid9s0vjPN8gwzJ4EgM+kH5PeGyRt+tLsSQD4Ae0GghDtBoIa7QaCEO2GRbA4gDLJznHq/tlr9NqSbWaPAsAfstOlj/4lrXrH7EkA+AjtBoIc7QaCDu0GghzthgVEmD0A7Ccz26nb3/9NCzbsN3sUAP5k5Eif3yWlHZF6jDF7GgDlQLuBEEG7gaBBu4EQQbthMhYHUCoZ2Tm69b1VWrz5oNmjAAiUheOknCyp1wNmTwKgDGg3EIJoN2BrtBsIQbQbJmFxACWWnpWjm9/9VT9uSTF7FACBtvgpyZktnfdvsycBUAq0GwhhtBuwJdoNhDDaDRPwngMokfSsHN00gw0UIKR9P1H67gmzpwBQQrQbAO0G7IV2A6DdCDQWB1CsvD0Xlm5lAwUIeT8+Jy16yuwpABSDdgNwod2ALdBuAC60GwHE4gCKlJGdo5HvrWLPBQD/+OFZ6ftnzZ4CQCFoNwAPtBuwNNoNwAPtRoCwOIBCZeU4NWrmb/r+T94ECUABi5+SfnzB7CkAFEC7ARSKdgOWRLsBFIp2IwBYHIBXhmHovtlr9N2mA2aPAsCqvhsv/Trd7CkAnEa7ARSLdgOWQrsBFIt2w89YHIBXT3yxUfNW7zV7DABW9+W90sbPzZ4CgGg3gBKi3YBl0G4AJUK74UcsDsDDa0u26e1lyWaPAcAOjBxpzk3SjmVmTwKENNoNoMRoN2AJtBtAidFu+BGLA3Az+9e/NPGbTWaPAcBOstOlD66R9q0zexIgJNFuAKVGuwFT0W4ApUa74ScsDsBl0ab9evh/a80eA4AdZRyTZl4hHd1l9iRASKHdAMqMdgOmoN0Ayox2ww9YHIAk6bddR3T7rN+V7TTMHgWAXZ3cJ713uZR6yOxJgJBAuwGUG+0GAop2Ayg32g0fY3EASk5J1Y3vrFRaVo7ZowCwu0NbpPcHS1npZk8CBDXaDcBnaDcQELQbgM/QbvgQiwMh7kR6lm6asVJHTmWZPQqAYLFnlfTZaLOnAIIW7Qbgc7Qb8CvaDcDnaDd8hMWBEOZ0Grrzg9+17WCq2aMACDZrZ0tLXzR7CiDo0G4AfkO7Ab+g3QD8hnbDB1gcCGETv9mkxZsPmj0GgGD13ePSn9+aPQUQVGg3AL+i3YDP0W4AfkW7UU4sDoSoT3/frWk/bDd7DADBzHBKc26SDm42exIgKNBuAH5HuwGfot0A/I52o5xYHAhBa/46qofmrDV7DAChIOO49ME1UtoRsycBbI12AwgY2g34BO0GEDC0G+XA4kCIOXA8Xbe896sysp1mjwIgVBzeJs0eITlzzJ4EsCXaDSDgaDdQLrQbQMDRbpQRiwMhJCvHqZEzV2n/8QyzRwEQarYvlhY8ZvYUgO3QbgCmod1AmdBuAKah3SgDFgdCyLPfbNLvu46aPQaAULX8FWnzN2ZPAdgK7QZgKtoNlBrtBmAq2o1SYnEgRCzedED/XZps9hgAQpohzb1NOrbH7EEAW6DdAMxHu4HSoN0AzEe7UTosDoSAfcfSde/sNTIMsycBEPLSDktzbuI8iEAxaDcAy6DdQInQbgCWQbtRCiwOBLkcp6E7P/xdh1MzzR4FAHLt+klaMsHsKQDLot0ALId2A0Wi3QAsh3ajhFgcCHJTFv6pFcmHzR4DANz9+Ly0fYnZUwCWRLsBWBLtBgpFuwFYEu1GCbA4EMR+2pqilxdvNXsMAPBkOKX/3SKdPGj2JICl0G4AlkW7Aa9oNwDLot0oARYHgtTh1Ezd/dFqOTnfIQCrOrlf+vQWcWJWIBftBmB5tBtwQ7sBWB7tRjFYHAhSj85dpwMnMsweAwCKtm2R9OtbZk8BWALtBmALtBtwod0AbIF2owgsDgShr9b+rS/X/m32GABQMgvGSkd2mj0FYCraDcBWaDdAuwHYC+1GIVgcCDKHTmbo0bnrzB4DAEou86T02WgOc0TIot0AbId2I8TRbgC2Q7tRCBYHgsxj89brUGqm2WMAQOkk/8BhjghZtBuALdFuhDDaDcCWaDe8YHEgiHBYIwBb4zBHhCDaDcDWaDdCEO0GYGu0GwWwOBAkOKwRgO1xmCNCDO0GYHu0GyGGdgOwPdqNAlgcCBIc1gggKHCYI0II7QYQFGg3QgjtBhAUaDfyYXEgCCzcsJ/DGgEEjwXjpOO8piG40W4AQYV2IwTQbgBBhXbjNBYHbC49K0fjv1hv9hgA4DuZJ6QFj5o9BeA3tBtA0KHdCHK0G0DQod04jcUBm3v9+23663Ca2WMAgG+tnS3tWGr2FIBf0G4AQYl2I4jRbgBBiXZDLA7Y2l+HT+m1JdvMHgMA/OOr+6WcbLOnAHyKdgMIarQbQYh2AwhqtDvksThgY+M/36CMbKfZYwCAfxzYIK14w+wpAJ+i3QCCGu1GEKLdAIIa7Q55LA7Y1OJNB7Rw436zxwAA/1oyQTrBax2CA+0GEBJoN4II7QYQEmh3SGNxwIYysnM07nPeDAlACMg4Li14zOwpgHKj3QBCBu1GkKDdAEIG7Q5pLA7Y0Js/bNfOQ6fMHgMAAuOPD6Wdy82eAigX2g0gpNBuBAHaDSCk0O6QxeKAzaSczODNkACEnvn/MXsCoMxoN4CQRLthY7QbQEii3SGJxQGbeXnRVqVm5pg9BgAE1p5fpY2fmz0FUCa0G0BIot2wMdoNICTR7pDE4oCN/HX4lN7/ZZfZYwCAOb57QnLySxrshXYDCGm0GzZEuwGENNodclgcsJEXFvypzByn2WMAgDlSNkur3zd7CqBUaDeAkEa7YUO0G0BIo90hh8UBm9j493HNW73H7DEAwFxLJkhZ6WZPAZQI7QYA0W7YCu0GANHuEMPigE08+80mOQ2zpwAAkx3fI614w+wpgBKh3QAg2g1bod0AINodYlgcsIEVyYe1ePNBs8cAAGtY+oKUfszsKYAi0W4AyId2wwZoNwDkQ7tDBosDNjDxm01mjwAA1pF2RFr2ktlTAEWi3QCQD+2GDdBuAMiHdocMFgcs7qdtKVq184jZYwCAtax4g70YYFm0GwC8oN2wMNoNAF7Q7pDA4oDFvbZkm9kjAID1ZByXVv7X7CkAr2g3AHhBu2FhtBsAvKDdIYHFAQtbu/uYftySYvYYAGBNP78mZaWZPQXghnYDQBFoNyyIdgNAEWh30GNxwMJeXbLV7BEAwLpSD0q/zzR7CsAN7QaAItBuWBDtBoAi0O6gx+KARW07eFLfrt9n9hgAYG0/vSTlZJs9BSCJdgNAidBuWAjtBoASoN1BjcUBi5r2/TY5DbOnAACLO7pLWjfH7CkASbQbAEqEdsNCaDcAlADtDmosDljQ38fS9Onve8weAwDsYemLksFvdTAX7QaAUqDdsADaDQClQLuDFosDFvTfH5OVlcMTDgBK5OBGafPXZk+BEEe7AaAUaDcsgHYDQCnQ7qDF4oDFnMrM1se//mX2GABgLyummT0BQhjtBoAyoN0wEe0GgDKg3UGJxQGLmfv7Xp1I500+AKBUtn8vpWw1ewqEKNoNAGVAu2Ei2g0AZUC7gxKLAxbz3s87zR4BAGzIkH59y+whEKJoNwCUBe2GeWg3AJQF7Q5GLA5YyK87Dmvj38fNHgMA7Gn1LCnzlNlTIMTQbgAoB9oNE9BuACgH2h10WBywEPZeAIBySD8mrZ1t9hQIMbQbAMqBdsMEtBsAyoF2Bx0WByzi0MkMfb12n9ljAIC9rfyv2RMghNBuAPAB2o0Aot0A4AO0O6iwOGARH678S5k5TrPHAAB72/eH9NdKs6dAiKDdAOADtBsBRLsBwAdod1BhccACnE5D7/+yy+wxACA4sBcDAoB2A4AP0W4EAO0GAB+i3UGDxQEL+GnbIe05mmb2GAAQHDbMkzJOmD0FghztBgAfot0IANoNAD5Eu4MGiwMW8Onve8weAQCCR3aatPFzs6dAkKPdAOBDtBsBQLsBwIdod9BgccBk6Vk5+nY9b4gEAD71x8dmT4AgRrsBwA9oN/yIdgOAH9DuoMDigMkWbNivkxnZZo8BAMEl+QfpBL8Awj9oNwD4Ae2GH9FuAPAD2h0UWBww2bzVHNoIAD5n5Ejr5pg9BYIU7QYAP6Dd8CPaDQB+QLuDAosDJjqSmqnv/zxo9hgAEJz++MjsCRCEaDcA+BHthh/QbgDwI9pteywOmOiLP/YqK8cwewwACE5/r5EObjZ7CgQZ2g0AfkS74Qe0GwD8iHbbHosDJpq7eq/ZIwBAcOMNkuBjtBsA/Ix2w8doNwD4Ge22NRYHTLLnaJpW7Txi9hgAENw4/yF8iHYDQADQbvgQ7QaAAKDdtsbigEkWbthv9ggAEPyOJEsHNpo9BYIE7QaAAKDd8CHaDQABQLttjcUBkyzcyEYKAATE5q/MngBBgnYDQIDQbvgI7QaAAKHdtsXigAlOpGfpl+2HzR4DAELD5q/NngBBgHYDQADRbvgA7QaAAKLdtsXigAm+//OgMnOcZo8BAKFhzyrp5AGzp4DN0W4ACCDaDR+g3QAQQLTbtlgcMAHnPQSAADKc0p/fmD0FbI52A0AA0W74AO0GgACi3bbF4kCAZec4tXjzQbPHAIDQwiGOKAfaDQAmoN0oB9oNACag3bbE4kCArdxxRMfSssweAwBCy/YlUlaa2VPApmg3AJiAdqMcaDcAmIB22xKLAwH23UYObQSAgMs6JW3/3uwpYFO0GwBMQLtRDrQbAExAu22JxYEAW7o1xewRACA0bV9s9gSwKdoNACah3Sgj2g0AJqHdtsPiQAAdTs3U5v0nzB4DAEJT8o9mTwAbot0AYCLajTKg3QBgItptOywOBNAv2w/JMMyeAgBC1IEN0qnDZk8Bm6HdAGAi2o0yoN0AYCLabTssDgTQz9sPmT0CAIQwQ9qx1OwhYDO0GwDMRLtRerQbAMxEu+2GxYEA+nk7K2cAYCo2UlBKtBsATEa7UUq0GwBMRrtthcWBADl0MkN/HuC8hwBgqh2c/xAlR7sBwAJoN0qBdgOABdBuW2FxIEB+ST7MeQ8BwGwHNkqpHGqOkqHdAGABtBulQLsBwAJot62wOBAgnPcQAKzAkHZyiCNKhnYDgBXQbpQc7QYAK6DddsLiQICsSOa8hwBgCTuWmT0BbIJ2A4BF0G6UEO0GAIug3bbB4kAAnMrM1pYDJ80eAwAgSXt/M3sC2ADtBgALod0oAdoNABZCu22DxYEA2LD3uHKcnPgQACxh3zrJmWP2FLA42g0AFkK7UQK0GwAshHbbBosDAbB2zzGzRwAA5MlOkw5uMnsKWBztBgALod0oAdoNABZCu22DxYEAYCMFACxm72qzJ4DF0W4AsBjajWLQbgCwGNptCywOBMDa3WykAICl7P3d7AlgcbQbACyGdqMYtBsALIZ22wKLA352KjNb2w7ypkgAYCl/rzZ7AlgY7QYAC6LdKALtBgALot22wOKAn23Ye1y8JxIAWAxvjoQi0G4AsCDajSLQbgCwINptCywO+BnnPQQAC+LNkVAE2g0AFkS7UQTaDQAWRLttgcUBP9uw97jZIwAAvNm31uwJYFG0GwAsinajELQbACyKdlseiwN+tj0l1ewRAADepGwxewJYFO0GAIui3SgE7QYAi6LdlsfigJ8ls5ECANZ0aKvZE8CiaDcAWBTtRiFoNwBYFO22PBYH/OjoqUwdTs00ewwAgDdspMAL2g0AFka74QXtBgALo92Wx+KAH3FoIwBY2OHtkmGYPQUshnYDgIXRbnhBuwHAwmi35bE44EfJB9lIAQDLyjolHd9j9hSwGNoNABZGu+EF7QYAC6PdlsfigB9x3kMAsDgOcUQBtBsALI52owDaDQAWR7stjcUBP2IjBQAsjo0UFEC7AcDiaDcKoN0AYHG029JYHPCjbQdPmj0CAKAoKWykwB3tBgCLo90ogHYDgMXRbktjccCP9hxJM3sEAEBRju40ewJYDO0GAIuj3SiAdgOAxdFuS2NxwE9SM7J1IiPb7DEAAEU58bfZE8BCaDcA2ADtRj60GwBsgHZbGosDfnLgRIbZIwAAinNiv9kTwEJoNwDYAO1GPrQbAGyAdlsaiwN+cuB4utkjAACKk3pAcjrNngIWQbsBwAZoN/Kh3QBgA7Tb0lgc8JP97MEAANbnzJZOpZg9BSyCdgOADdBu5EO7AcAGaLelsTjgJ+zBAAA2cWKf2RPAImg3ANgE7cZptBsAbIJ2WxaLA37CuQ8BwCbYSMFptBsAbIJ24zTaDQA2Qbsti8UBP2EPBgCwiZNspCAX7QYAm6DdOI12A4BN0G7LYnHAT/YfZw8GALAF9mDAabQbAGyCduM02g0ANkG7LYvFAT85cirT7BEAACVx6pDZE8AiaDcA2ATtxmm0GwBsgnZbFosDfnIyI9vsEQAAJZFx0uwJYBG0GwBsgnbjNNoNADZBuy2LxQE/SWUjBQDsIfOE2RPAImg3ANgE7cZptBsAbIJ2WxaLA36Smplj9ggAgJLITDV7AlgE7QYAm6DdOI12A4BN0G7LYnHAD7JynMrMdpo9BgCgJDi8EaLdAGArtBui3QBgK7Tbslgc8AMObQQAG8lkIwW0GwBshXZDtBsAbIV2WxaLA37AmyIBgI1kcO5D0G4AsBXaDdFuALAV2m1Ztl8ceOedd1S5cmWzx3BzivMeAoB9cO7DgKPdAIByod0BR7sBAOVCuy0rwuwB8gwfPlwzZszw+PyWLVvUtGlTEyYqu2Dcg+Ho0lk6tuwDt89FVK2rOje/LkkysjN1eNFbOrXxBxk5WYptdLaqXnibwuOqFHqdhmHo2NJZOrnmWzkzUhVd5wxVvXCUIqvWOX2dWTr0zUs6teVnhcdVUdULRym2YXvX1x/7ZY5yjh9U1b63+v4HBkwybkm6xn+f6fa5FtXCtGl0vCQpPdvQvd+m68P12crINnRR0wi92j9GSfGFr/UahqGxSzL05m9ZOppuqHu9cL02IEbNqoVLkjKyDd30ebrmbcpSzfgwvTogRn0a/5OHScsytOuYU1P7x/rhJ7YAHx7e6HA4ivz7sWPHaty4cT77fmaj3dZGu4HAoN0moN1lRrutjXYDgUG7TUC7LcsyiwOSdPHFF2v69Olun6tevbpJ05RdRlZwvilSZGJ9JV311D+fCPvnRfHwd28qbduvShz0kMKi43R4wWs6+OnTqnn9pEKv7/gvc3R81edKHDBGEZWSdPTHmTrw8WOqfdNrckRE6cSab5S5b6tqXv+c0ravUsrnk1R39Ew5HA5lHd2nk2u+Va1hk/34EwPmaF09TAuHVnD9OSLf9seYb9L15ZZszR4cq0rRDo3+Ol2Xf5ymZTfEFXp9zy7L1Eu/ZGrGoFg1qhKmRxdn6KKZp7Th9njFRDj0xqosrdqbo+U3xunrrdm6dk6a9t8XL4fDoeQjTr35W5Z+vaXw67e97HSfXdXff//t+v+PPvpIjz32mDZv3uz6XHx8vOv/DcNQTk6OIiIsleJSo93WRruBwKDdAUa7y4V2WxvtBgKDdgcY7bYsS51WKDo6WjVr1nT7mDJlitq2bau4uDjVq1dPo0aN0smTha82rVmzRuedd54SEhJUsWJFdejQQb/++qvr75cuXaqePXsqNjZW9erV05133qnUVN8e2uI0DJ9en2WEhSs8vso/HxUqSZKcGak6+ccCVTn/RsU2OFPRNZsqsf/dytizURl7Nnm9KsMwdOLXearU9SpVaHaOomo0UuLAe5R98rBO/blckpR16C/FNu2iqOoNlHD2ADlPHZMz7bgk6fD8V1Wl93CFRVfwev2AnUWESTXjw1wfiRVyX6qPpRt66/csvXBRjM5vFKEOtcM1/dIY/fRXjn7e7X3PKcMwNPmXTP3n3Ghd2jJS7ZLC9e6gWO09YWjuptyv2ZiSo0taRKh1jXDd3ilKB08ZSjmV+zp225dpmtgnWhWji16Ztz2nb365zN+vSpUqyeFwuP68adMmJSQk6Ouvv1aHDh0UHR2tpUuXavjw4Ro0aJDb9dx9993q3bt3vvGcmjBhgho1aqTY2FideeaZ+uSTT3wyc3nRbouj3UBA0G4T0O4yo90WR7uBgKDdJqDdlmSpxQFvwsLC9NJLL2n9+vWaMWOGFi1apAceeKDQy1933XWqW7euVq5cqVWrVumhhx5SZGSkJGnbtm26+OKLdcUVV+iPP/7QRx99pKVLl2r06NE+nTlYN1Kyj+zV7leGas/rN+rg55OUffyAJClj31bJme126GFktXoKr1hdGXu9b6RkH9uvnNQjbl8TFh2n6NotXF8TVaORMnZvkDMrQ+nJvyk8vqrCYivq5PrFckREqULzbn77WQEzbTnsVO3nT6jxlBO67n+ntOtYbkBX/Z2jLKfcDj1smRiu+pUcWv6X93OuJh81tO+k4fY1lWIc6lI33PU1ZyaFa+muHKVlGfp2W7ZqxTuUWMGhWX9kKSbCocvOiPTjT2sRRuD2PHvooYf0zDPPaOPGjWrXrl2JvmbChAl699139frrr2v9+vUaM2aMrr/+en3//fd+nrZsaLd10G4gMGi3CWi3T9Fu66DdQGDQbhPQbkuy1DEVX3zxhduhH/369dPs2bNdf27YsKGefPJJ3XrrrXr11Ve9XseuXbt0//33q2XLlpKkZs2auf5uwoQJuu6663T33Xe7/u6ll15Sr1699NprrykmJsYnP4czCLdRomu1ULX+YxRZtY5yTh7WsWUfaN+sB1X7hlfkTD0ihUcoLCbe7WvC4yorJ/WI1+vLOZn7+bC4yu5fU6GyclKPSpLi2/ZV5oEd2vvWKIXHVlTipQ/KmX5Sx5bOUtI1E3Tkh/d0auMPiqhcU9X636WIhESf/9xAoHWpE653Lo1Vi8Qw/X3C0PjvM9RzeqrW3RavfScNRYVLlWPc9yZIinNo30nvLzz7Tjpdl/H4mtTcv7vhrEj9sT9HrV49qcQKDn08OFZH0qXHlqRrybA4/WdRuj5cl6UmVcP09iWxqlPR8uvKpRfAjZTHH39cffv2LfHlMzIy9PTTT2vhwoXq2rWrJKlx48ZaunSppk2bpl69evlr1BKh3dZFu4HAoN0mod1lRruti3YDgUG7TUK7LclSiwPnnXeeXnvtNdef4+LitHDhQk2YMEGbNm3S8ePHlZ2drfT0dJ06dUoVKnge2nbPPffopptu0nvvvac+ffpo8ODBatKkiaTcQx//+OMPzZo1y3V5wzDkdDqVnJysM844wyc/hxGEezDENun4zx9qNFJ07Rba/doNSt20VGGRUX75no7wCFW78Da3z6V8OVkJHf5Pmfu3K23LctUaMVXHf5mjIwvfUPXL/u2XOYBA6tfsn70F2iVJXeqGq8HkE/p4fZZiI/1ziGFkuEOvDHB/06MR89J0Z+co/b4vR3M3ZWvNrfF6dlmG7vwmXXOGBOFhxQHcSOnYsWPxF8pn69atOnXqlMeGTWZmps466yxfjlYmtNu6aDcQGLTbJLS7zGi3ddFuIDBot0lotyVZahkqLi5OTZs2dX1kZGRo4MCBateunebMmaNVq1bplVdekZR753gzbtw4rV+/XgMGDNCiRYvUqlUrffrpp5KkkydPauTIkVq9erXrY82aNdqyZYtrQwYlExYTr8iqdZR9dK/C4qpIOdlyprufkzIn9ajC46p4/frw+NzPO0/vreD6mlNHFV5gr4Y86Tv/UNahnUo4e6DSd/2h2MYdFRYVowoteyh919py/0yAFVWOcah5tTBtPexUzXiHMnOko+nuvwjtTzVUM977BkzN+DDXZTy+Js57AhYnZ2v9gRyN7hylJTty1L9ZhOKiHBrSOlJLdng/jNL2HIE7t2NcnPubTIWFhXn8cpuVleX6/7zz/X755Zdu/dqwYYMlzn9Iu+2DdgOBQbsDhHaXGe22D9oNBAbtDhDabUmWWhwoaNWqVXI6nXr++ed1zjnnqHnz5tq7d2+xX9e8eXONGTNG8+fP1+WXX67p06dLks4++2xt2LDBbUMo7yMqyner8GEBfLCbxZmZpuyjfys8rqqiazaVwiKUtnON6++zDu1WzvGDiq7d0uvXR1RKUnhcFaXvXP3PdWacUsbezV6/xsjO1OEFr6naRaPlCAuXDKcM5+kXS2eOjACuPgKBdDLT0LbDTtVKcKhDrXBFhknfbf/nTZA2p+Ro1zFDXeuFe/36RpUdqhnvcPua4xmGftmd4/Vr0rMN3f5VuqYNjFV4mEM5Tinr9FMtyynlBOPx25LkMC+H1atX199//+32udWrV7v+v1WrVoqOjtauXbs82lWvXr0AT1s82m1dtBsIDNodILTbZ2i3ddFuIDBod4DQbkuy9OJA06ZNlZWVpalTp2r79u1677339Prrrxd6+bS0NI0ePVpLlizRzp07tWzZMq1cudJ12OKDDz6on376SaNHj9bq1au1ZcsWzZs3z+dvjBSMGylHFr2l9F1rlX1sv9J3b9TB/z0lOcIU16qXwqLjFN+ur44s+q/Sd/6hjH1bdeiryYqu3VLRdf7Z4Njz5q069edPkiSHw6GEjpfq2E8f6dSWX5R5cIdSvnxBEfFVVaF5V4/vf/SnDxXbuKOiknL3NImu00qn/vxJmQeSdeK3LxRTxzeHpgJmu29+ur7fka0dR5366a9sXfbRKYWHOXRNm0hVinHoxrMidc/8dC1OztaqvTkaMS9dXeuG65y6+d4s6eWT+nRj7gq4w+HQ3V2i9OSPGfpsc5bW7s/R0E/TVDvBoUEtPc8s98T3GerfLEJn1crdgOleP1z/25SlP/bn6OUVmepe31Jno/MdEzdSzj//fP3666969913tWXLFo0dO1br1q1z/X1CQoLuu+8+jRkzRjNmzNC2bdv022+/aerUqZoxY4ZpcxeGdlsH7QYCg3abhHb7DO22DtoNBAbtNgnttiRLP9rOPPNMvfDCC5o4caIefvhhnXvuuZowYYKGDh3q9fLh4eE6dOiQhg4dqv379ysxMVGXX365xo8fL0lq166dvv/+ez3yyCPq2bOnDMNQkyZNdNVVV/l07rDg20ZR9okUpXw+STlpxxUeW0nRdVup5r+eV3iFSpKkqhfcrMOOMB2c+7SMnCzFNDpb1fqOcr+Ow7vlzDjl+nPFLlfIyErXoW+nypmeqpi6rVRjyONyRLjvTZJ5cIdObfpRtYZPdX2uQsvuSv9rrfbNelCR1eoo8f/u9+NPDwTO7uNOXTMnTYfSDFWv4FCP+uH6+cY4VT99KOKLF8co7Nt0XfHxKWXkSBc1idCrA9zf1G3zIaeOZfyzp8ED3aOUmmXols/TdTTdUI/64frm+gqKiXB/sVp3IEcfb8jW6pH/HH53ZasILdkRoZ7TU9WiWpjevyIIz3sombqRctFFF+nRRx/VAw88oPT0dN1www0aOnSo1q7957DtJ554QtWrV9eECRO0fft2Va5cWWeffbb+/W/rnfOVdlsH7QYCg3abhHb7DO22DtoNBAbtNgnttiSHEYzv4mOylTsOa/Dry80eA/C5JU0/UsPd88weA/CtsAjpsUNmTwGT0W4EK9qNoES7IdqN4EW7EZRot2VZ+rRCdlUhyvs5yAAAFhQVV/xlEPRoNwDYCO2GaDcA2ArttiwWB/wgPtrSZ2sCAOQXlWD2BLAA2g0ANkK7IdoNALZCuy2LxQE/iGMjBQDsIzre7AlgAbQbAGyEdkO0GwBshXZbFosDfsAeDABgI1FspIB2A4Ct0G6IdgOArdBuy2JxwA9iIsMVHuYo/oIAAPNx7kOIdgOArdBuiHYDgK3QbsticcBPeHMkALCJaM59iFy0GwBsgnbjNNoNADZBuy2LxQE/4RBHALAJDm/EabQbAGyCduM02g0ANkG7LYvFAT/hzZEAwCZ4YyScRrsBwCZoN06j3QBgE7Tbslgc8JOKMWykAIAtxFQyewJYBO0GAJug3TiNdgOATdBuy2JxwE9qJMSYPQIAoCTia5o9ASyCdgOATdBunEa7AcAmaLdlsTjgJzUqRps9AgCgJBKSzJ4AFkG7AcAmaDdOo90AYBO027JYHPCTpIrswQAAtpBQy+wJYBG0GwBsgnbjNNoNADZBuy2LxQE/qZ7AHgwAYAvx7MGAXLQbAGyCduM02g0ANkG7LYvFAT9hDwYAsIkEzn2IXLQbAGyCduM02g0ANkG7LYvFAT+pwR4MAGB9sVWkCF6vkYt2A4AN0G7kQ7sBwAZot6WxOOAn7MEAADbAeQ+RD+0GABug3ciHdgOADdBuS2NxwE+qVIhUVDg3LwBYGuc9RD60GwBsgHYjH9oNADZAuy2NivqJw+FQzUrsxQAAllaprtkTwEJoNwDYAO1GPrQbAGyAdlsaiwN+1DAxzuwRAABFqdbE7AlgMbQbACyOdqMA2g0AFke7LY3FAT9qzEYKAFhbtWZmTwCLod0AYHG0GwXQbgCwONptaSwO+FHj6mykAIClVWtq9gSwGNoNABZHu1EA7QYAi6PdlsbigB81Yg8GALAuR5hUtbHZU8BiaDcAWBjthhe0GwAsjHZbHosDfsRGCgBYWKV6UkSU2VPAYmg3AFgY7YYXtBsALIx2Wx6LA35Up3KsoiO4iQHAkji0EV7QbgCwMNoNL2g3AFgY7bY8CupHDoeDvRgAwKoSeVMkeKLdAGBhtBte0G4AsDDabXksDvgZGykAYFHswYBC0G4AsCjajULQbgCwKNpteSwO+FnzpASzRwAAeFPjDLMngEXRbgCwKNqNQtBuALAo2m15LA74Wds6lcweAQDgwSHVbGf2ELAo2g0AVkS7UTjaDQBWRLvtgMUBP2tbl40UALCcak2kmIpmTwGLot0AYEG0G0Wg3QBgQbTbFlgc8LOkijGqkRBt9hgAgPxqn2X2BLAw2g0AFkS7UQTaDQAWRLttgcWBAOAQRwCwmFrtzZ4AFke7AcBiaDeKQbsBwGJoty2wOBAAbdhIAQBrqd3e7AlgcbQbACyGdqMYtBsALIZ22wKLAwHQjvMfAoCFOKRaZ5o9BCyOdgOAldBuFI92A4CV0G67YHEgADi8EQAspFpTKTrB7ClgcbQbACyEdqMEaDcAWAjttg0WBwKgRsUYJVXkzZEAwBI4tBElQLsBwEJoN0qAdgOAhdBu22BxIEA6Nqhq9ggAAEmqf47ZE8AmaDcAWATtRgnRbgCwCNptGywOBMg5jdlIAQBLaNjT7AlgE7QbACyCdqOEaDcAWATttg0WBwLknMbVzB4BABBXQ6rewuwpYBO0GwAsgHajFGg3AFgA7bYVFgcCpFlSghLjo8weAwBCW8PuZk8AG6HdAGABtBulQLsBwAJot62wOBBAXdiLAQDMxaGNKCXaDQAmo90oJdoNACaj3bbC4kAAcYgjAJiMjRSUEu0GAJPRbpQS7QYAk9FuW2FxIIC68uZIAGCe+CSpenOzp4DN0G4AMBHtRhnQbgAwEe22HRYHAqhpjQRVT4g2ewwACE0Ne5g9AWyIdgOAiWg3yoB2A4CJaLftsDgQYF05xBEAzNHoXLMngE3RbgAwCe1GGdFuADAJ7bYdFgcC7IIzapg9AgCEIIfU7CKzh4BN0W4AMAPtRtnRbgAwA+22IxYHAqx38xqKCHOYPQYAhJZaZ0oVa5k9BWyKdgOACWg3yoF2A4AJaLctsTgQYJUqRKpjwypmjwEAoaVFf7MngI3RbgAwAe1GOdBuADAB7bYlFgdM0OeMJLNHAIDQ0qKf2RPA5mg3AAQY7UY50W4ACDDabUssDpjgwlY1zR4BAEJHpXpSrXZmTwGbo90AEEC0Gz5AuwEggGi3bbE4YIL61SqoWY14s8cAgNDQ/GKzJ0AQoN0AEEC0Gz5AuwEggGi3bbE4YJI+rTjEEQACgkMb4SO0GwAChHbDR2g3AAQI7bYtFgdMwvkPASAAoitKDXuaPQWCBO0GgACg3fAh2g0AAUC7bY3FAZOcXb+yalWKMXsMAAhuzS+WIqLMngJBgnYDQADQbvgQ7QaAAKDdtsbigEkcDocuObO22WMAQHBrN8TsCRBEaDcABADthg/RbgAIANptaywOmGjQWXXMHgEAgldcdanJ+WZPgSBDuwHAj2g3/IB2A4Af0W7bY3HARGfUqqiWNRPMHgMAglObK6SwcLOnQJCh3QDgR7QbfkC7AcCPaLftsThgskvbsxcDAPhFWw5thH/QbgDwE9oNP6HdAOAntNv2WBww2aCzasvhMHsKAAgy1ZpKdTuYPQWCFO0GAD+g3fAj2g0AfkC7gwKLAyarVSlWXRpVNXsMAAgu7L0AP6LdAOAHtBt+RLsBwA9od1BgccACBnGIIwD4VrvBZk+AIEe7AcDHaDf8jHYDgI/R7qDA4oAF9G9XS7GRvHkHAPhEvS5S1cZmT4EgR7sBwIdoNwKAdgOAD9HuoMHigAVUjInU/51Zy+wxACA4dLzR7AkQAmg3APgQ7UYA0G4A8CHaHTRYHLCIoV0bmj0CANhfhUSp9SCzp0CIoN0A4AO0GwFEuwHAB2h3UGFxwCLa1KmkM+tVNnsMALC3s66XIqLNngIhgnYDgA/QbgQQ7QYAH6DdQYXFAQv51zkNzB4BAOzLESZ1vMHsKRBiaDcAlAPthgloNwCUA+0OOiwOWMjAdrVUpUKk2WMAgD017StV4Zc9BBbtBoByoN0wAe0GgHKg3UGHxQELiYkM1+CO9cweAwDsqdNNZk+AEES7AaAcaDdMQLsBoBxod9BhccBiru/SQA6H2VMAgM1UaSg17WP2FAhRtBsAyoB2w0S0GwDKgHYHJRYHLKZ+tQrq1by62WMAgL10vEEKI2kwB+0GgDKg3TAR7QaAMqDdQYl71IJGntvE7BEAwD6iK0kdRpg9BUIc7QaAUqDdsADaDQClQLuDFosDFtS1STWdVb+y2WMAgD10ulGKqWj2FAhxtBsASoF2wwJoNwCUAu0OWiwOWNSo3k3NHgEArC8iVjpnlNlTAJJoNwCUCO2GhdBuACgB2h3UWBywqD5n1FDzpHizxwAAazvreime88XCGmg3AJQA7YaF0G4AKAHaHdRYHLAoh8Oh23pzDkQAKFRYhNT9TrOnAFxoNwAUg3bDYmg3ABSDdgc9Fgcs7P/a1VbdKrFmjwEA1tTmSqlyfbOnANzQbgAoAu2GBdFuACgC7Q56LA5YWER4mEae29jsMQDAghxSjzFmDwF4oN0AUBjaDWui3QBQGNodClgcsLjBHespMT7a7DEAwFpa9JdqtDR7CsAr2g0AXtBuWBjtBgAvaHdIYHHA4mIiw3XH+U3NHgMArMMRJp3/iNlTAIWi3QBQAO2GxdFuACiAdocMFgds4Nou9VWvKudABABJUtvBUlJrs6cAikS7ASAf2g0boN0AkA/tDhksDthAZHiY7u3bwuwxAMB84VHSeey9AOuj3QBwGu2GTdBuADiNdocUFgds4tL2tXVGrYpmjwEA5up4g1SlgdlTACVCuwFAtBu2QrsBQLQ7xLA4YBMOh0MPXMReDABCWFS8dO79Zk8BlBjtBhDyaDdshnYDCHm0O+SwOGAj57Wsoc6Nqpo9BgCYo+toKS7R7CmAUqHdAEIa7YYN0W4AIY12hxwWB2zmoX4tzR4BAAKvQqLUbbTZUwBlQrsBhCTaDRuj3QBCEu0OSSwO2MzZ9avootZJZo8BAIHV6wEpOsHsKYAyod0AQhLtho3RbgAhiXaHJBYHbOg/A1opOoK7DkCIqNFK6nij2VMA5UK7AYQU2o0gQLsBhBTaHbIonQ3Vq1pBt/VuYvYYABAY/Z+TwiPMngIoF9oNIKTQbgQB2g0gpNDukMXigE3d2quJ6letYPYYAOBfbQdLDbubPQXgE7QbQEig3QgitBtASKDdIY3FAZuKiQzXYwNbmT0GAPhPVIJ04ZNmTwH4DO0GEPRoN4IM7QYQ9Gh3yGNxwMb6tErS+S1rmD0GAPhH7welhJpmTwH4FO0GENRoN4IQ7QYQ1Gh3yGNxwObG/V9r3iQJQPCpfobU5TazpwD8gnYDCEq0G0GMdgMISrQbYnHA9upXq6CRvXiTJABBpv8k3gwJQYt2AwhKtBtBjHYDCEq0G2JxICiM6t1EjRLjzB4DAHyj3VVSo55mTwH4Fe0GEFRoN0IA7QYQVGg3TmNxIAjERIbr2SvbKcxh9iQAUE7xSdLFz5g9BeB3tBtA0KDdCBG0G0DQoN3Ih8WBINGpYVUN79bI7DEAoHwGTpYqVDV7CiAgaDeAoEC7EUJoN4CgQLuRD4sDQeSBi1uoYbUKZo8BAGXTdojUsr/ZUwABRbsB2BrtRgii3QBsjXajABYHgkhMZLgmDT6TwxwB2E98ktRvotlTAAFHuwHYFu1GiKLdAGyLdsMLFgeCDIc5ArAlDmtECKPdAGyJdiOE0W4AtkS74QWLA0GIwxwB2AqHNQK0G4C90G6AdgOwF9qNQrA4EIQ4zBGAbcTX5LBGQLQbgI3QbkAS7QZgI7QbRWBxIEh1alhVo89vZvYYAFA4R5h0+Rsc1gicRrsBWB7tBtzQbgCWR7tRDBYHgthdFzRTl0Y8+QFYVM/7pMa9zJ4CsBTaDcDSaDfggXYDsDTajWKwOBDEwsMceumas1Q1LsrsUQDAXYPuUu+HzJ4CsBzaDcCyaDfgFe0GYFm0GyXA4kCQS6oYo+eHnCkH50EEYBUVqklX/FcKCzd7EsCSaDcAy6HdQJFoNwDLod0oIRYHQsB5LWro5p6NzR4DACQ5pEGvSxVrmz0IYGm0G4B10G6gJGg3AOug3Sg5FgdCxP0XtdBZ9SubPQaAUNf1dqn5hWZPAdgC7QZgCbQbKDHaDcASaDdKgcWBEBEZHqap15ylijERZo8CIFTV6SD1GWf2FIBt0G4ApqPdQKnQbgCmo90oJRYHQkjdKhU05ZqzFMZ5EAEEWlwNaci7Unik2ZMAtkK7AZiGdgNlQrsBmIZ2owxYHAgx57WooQcvbmn2GABCSXiUdNVMqVJdsycBbIl2Awg42g2UC+0GEHC0G2XE4kAIGtmriS4/q47ZYwAIFQNekOp3MXsKwNZoN4CAot1AudFuAAFFu1FGLA6EqKcvb6sz61U2ewwAwa7LrdLZ/zJ7CiAo0G4AAUG7AZ+h3QACgnajHFgcCFExkeF6418dlFQx2uxRAASrxudJFz1t9hRA0KDdAPyOdgM+RbsB+B3tRjmxOBDCkirGaNq/Oio6gocBAB+r2lgaPF0KCzd7EiCo0G4AfkO7Ab+g3QD8hnbDB6hTiGtfr7ImXN7W7DEABJPoitLVH0ixVcyeBAhKtBuAz9FuwK9oNwCfo93wERYHoMvPrqsxfZqbPQaAYBAeJV31nlSjpdmTAEGNdgPwGdoNBATtBuAztBs+xOIAJEl39Wmm68+pb/YYAGzNIV32utS4t9mDACGBdgMoP9oNBBLtBlB+tBu+xeIAXB6/pI36talp9hgA7KrfRKnNFWZPAYQU2g2gXGg3EHC0G0C50G74GIsDcAkLc2jy1e11TuOqZo8CwG563CN1GWn2FEDIod0Ayox2A6ag3QDKjHbDD1gcgJvoiHC9ObSjzqhV0exRANjFWddLfcaaPQUQsmg3gFKj3YCpaDeAUqPd8BMWB+AhISZSM0Z0Ur2qsWaPAsDqmveT/u8ls6cAQh7tBlBitBuwBNoNoMRoN/yIxQF4VaNijN69oYsS46PNHgWAVdXvKg2eLoWFmz0JANFuACVAuwFLod0AikW74WcsDqBQjRLj9P7NXVQtLsrsUQBYTd1O0nWzpUj2dAKshHYDKBTtBiyJdgMoFO1GALA4gCI1T0rQrJu7qEqFSLNHAWAVdTpI1/9Pik4wexIAXtBuAB5oN2BptBuAB9qNAGFxAMVqWbOiZt7URZXZUAFQq33uBkoMb54GWBntBuBCuwFboN0AXGg3AojFAZRI69qVNOumLqrKoY5A6Kp9tjR0nhRb2exJAJQA7QZAuwF7od0AaDcCjcUBlFjr2pU4FyIQqup2kobOZQMFsBnaDYQw2g3YEu0GQhjthglYHECptKxZUR/cco4S46PNHgVAoNQ7R/rXp1JMJbMnAVAGtBsIQbQbsDXaDYQg2g2TsDiAUmuelKDZt3ZVvaq8WzoQ9Jr2kf7FmyABdke7gRBCu4GgQLuBEEK7YSIWB1AmjRLjNOfWbjqjFm+OAgStdldJ13woRcWZPQkAH6DdQAig3UBQod1ACKDdMBmLAyizGhVj9NHIc9SlUVWzRwHga11HS5dNk8IjzZ4EgA/RbiCI0W4gKNFuIIjRblgAiwMol4oxkXr3xs7q16am2aMA8AmH1PcJ6aKnJIfD7GEA+AHtBoIN7QaCHe0Ggg3thnWwOIByi44I1yvXnq3rz6lv9igAyiMsQrrsdan7nWZPAsDPaDcQJGg3EDJoNxAkaDcshsUB+ERYmENPDmqrMX2amz0KgLKIjJOu+Ug682qzJwEQILQbsDnaDYQc2g3YHO2GBbE4AJ+6q08zPTf4TEVF8NACbKNiHWnEl1KzPmZPAsAEtBuwIdoNhDTaDdgQ7YZFURL43JUd6urDW85RjYRos0cBUJy6naWbF0u1zzJ7EgAmot2AjdBuAKLdgK3QblgYiwPwi7PrV9Fno3uoXd1KZo8CoDDtr5eGfyklJJk9CQALoN2ADdBuAPnQbsAGaDcsjsUB+E3NSjH6eGRXDWpf2+xRAOTnCJcumiANekWKiDJ7GgAWQrsBi6LdAApBuwGLot2wCRYH4FcxkeGafPVZevDilgpzmD0NAMVUlq7/ROo6yuxJAFgU7QYshnYDKAbtBiyGdsNGWBxAQNzWu4n+O6yjEmIizB4FCF3VW0o3L5KanG/2JABsgHYDFkC7AZQC7QYsgHbDZlgcQMCc3zJJX93ZU2dyPkQg8M68NncDpVoTsycBYCO0GzAR7QZQBrQbMBHthg2xOICAqle1gj65rZtu6tFIDg53BPwvKl66bJp02WtSVJzZ0wCwIdoNBBjtBlBOtBsIMNoNG2NxAAEXGR6m/wxspf8O7agqFSLNHgcIXkltpVuWSGdebfYkAGyOdgMBQrsB+AjtBgKEdsPmWByAaS44I0lf3dVTnRtWNXsUIPh0ukm6aaGU2MzsSQAEEdoN+BHtBuAHtBvwI9qNIMDiAExVq1KsPrjlHI0+r6nCONwRKL/oStKQd6UBz0uRMWZPAyAI0W7Ax2g3AD+j3YCP0W4EERYHYLrwMIfuu6iF3r/5HNWvWsHscQD7atRLum2p1OpSsycBEORoN+AjtBtAgNBuwEdoN4IMiwOwjHMaV9M3d/fUsK4NeNMkoDSiEqSBL0rDPpMq1zd7GgAhhHYDZUS7AZiEdgNlRLsRpFgcgKVUiIrQ+Evb6AP2ZgBKplEvadRPUscbzJ4EQIii3UAp0W4AJqPdQCnRbgQxFgdgSezNABSDvRYAWAztBopBuwFYDO0GikG7EQJYHIBlsTcDUAj2WgBgUbQbKATtBmBRtBsoBO1GiGBxAJZ3TuNq+vbuczWqdxNFhfOQRQiLqy4Neo29FgBYHu0GTqPdAGyCdgOn0W6EGF7xYQuxUeF64OKW+ubunjq3eXWzxwECyxEudblVumOV1P5as6cBgBKh3QhptBuADdFuhDTajRDF4gBspXH1eL17Q2e9fn0H1akca/Y4gP/V7yaN/EHqN1GKqWT2NABQarQbIYd2A7A52o2QQ7sRwiLMHgAoi4vb1FTvFtX1yuKtmvbDdmVmO80eCfCt+CSp7xPSmVeZPQkA+ATtRtCj3QCCDO1G0KPdAEcOwL5iIsN174UtNP/uc3VByxpmjwP4RniUdM7t0uhf2UABEHRoN4IS7QYQxGg3ghLtBlw4cgC21zAxTm8N76QVyYf1zNcb9duuo2aPBJSeI0xqO1g6799SlYZmTwMAfkW7ERRoN4AQQrsRFGg34MFhGIZh9hCAL81fv0/Pzd+sP/efNHuUoLOk6UdquHue2WMEn2YXSheMlWq2MXsSADAF7fYf2u0ntBtAiKPd/kO7/YR2A15x5ACCzoWta6rPGUma89tuTV64RXuOppk9EuBd3c5S3/FSg25mTwIApqLdsA3aDQCSaDdshHYDRWJxAEEpLMyhwR3r6ZL2tfXe8p16dck2HU7NNHssIFf1M6QLHpVaDjB7EgCwDNoNS6PdAOCBdsPSaDdQIpxWCCHhVGa2Pljxl/7743b9fSzd7HFsi8Mby6n22VLPe6SWAyWHw+xpAMDSaLdv0O5yot0AUGK02zdodznRbqBUWBxASMnMdmru73v0+vfbtD0l1exxbIeNlDJq1Ct346Rxb7MnAQDbod3lQ7vLiHYDQJnR7vKh3WVEu4EyYXEAIcnpNPTN+n16dclWrdtz3OxxbIONlNJw5B6+2OMeqW4Hs4cBANuj3WVDu0uDdgOAL9HusqHdpUG7gfLiPQcQksLCHOrftpb6t62lH/48qGk/bNOyrYfMHgvBIDxaanul1P0uqXoLs6cBgKBBu+E3tBsA/IJ2w29oN+AzLA4g5J3bvLrObV5dWw+c1Myfd2rOb7t1Ij3b7LFgN5UbSB1vkM76lxRXzexpACCo0W74BO0GgICh3fAJ2g34HKcVAgo4lZmteav36r3lO7Xhbw59zI/DGwtwhElN+0idbs79b1iY2RMBQEii3YWj3QXQbgCwBNpdONpdAO0G/IrFAaAIq3Ye0XvLd+irdfuUme00exzTsZFyWoVq0lnX5+6xUKWh2dMAAPKh3e5o92m0GwAsi3a7o92n0W4gIDitEFCEDg2qqEODKhqbmqkv/tirT3/fo992HTV7LJghPEpqdqHUbojU/GIpItrsiQAAXtBuuNBuALAF2g0X2g0EHEcOAKW081Cq5q3eq7mr92j7wVSzxwmo0NuDwSHV75q7YdJ6kBRbxeyBAABlQLtpNwDAXmg37QYQGCwOAOWw5q+jmrt6jz5f87dSTmaYPY7fhcxGSvUzpHaDpbaDpcr1zZ4GAOBDtDtI0W4ACFq0O0jRbsASWBwAfCDHaWhF8mEt3LhfCzfu185Dp8weyS+CdyPFIdU5W2rRT2oxQEpqZfZAAAA/o912R7sBINTQbruj3YAVsTgA+MGW/Se0YON+LdywX6v/OipnkDzLgmojJSJWatxbanGx1LyflJBk9kQAABPRbhug3QCAfGi3DdBuwPJYHAD8LOVkhhZtPKDvNu3Xz9sP61haltkjlZntN1Iq1Zca95Ja9JeanCdFxpo9EQDAgmi3hdBuAEAJ0G4Lod2ArbA4AASQ02low9/H9fP2Q/p5+yGtSD6s4+nZZo9VYrbbSKlYV2rUU2rYI/ejSkOzJwIA2AztDjDaDQAoJ9odYLQbsDUWBwATOZ2G1u/9Z6Nl5Q5rb7RYfiOlYl2pYffTGyU9paqNzJ4IABBkaLeP0W4AgJ/Rbh+j3UBQYXEAsJidh1K1ds8xrd1zTOv2HNPa3ccss+FiqY2UinWl2u2lWu3/+W98dXNnAgCEJNpdQrQbAGARtLuEaDcQ9CLMHgCAuwbV4tSgWpwGtqvt+tyuQ6f0x56jWrvnmP7cd0LbU1K1+0iacoLlHZeKEhErVW0sJTaVktqyQQIAsBzaXQDtBgBYHO0ugHYDIYvFAcAG6leroPrVKrhtuGTlOLXz0Cklp6QqOeWkth9M1faUVCWnpCrlZIZsdUyQI1yqXE+q1jTfRxOpWjOpUl3J4TB7QgAASoV2024AgL3QbtoNhCIWBwCbigwPU9Ma8WpaI15SktvfZWY7dfBkhvYfT9eB4xk6cOKf/+4/nqEDJzJ0PC1LJzOydSozW1k5ftiiiYiRouKlqDipQjUpoZaUkCTF15QS8n3E15TiqkthYb6fAQAAC6HdAADYC+0GEOx4zwEAysjOUWpGjlIzspWama3UjGydzMhRVrZTTsOQ05AMw9DZEclKMg5KjrDTH+FSRLQUnZC7QRJ9eqMkKkEKZ+0RAAB/od0AANgL7QZgRSwOAAAAAAAAAAAQYjieCAAAAAAAAACAEMPiAAAAAAAAAAAAIYbFAQAAAAAAAAAAQgyLAwAAAAAAAAAAhBgWBwAAAAAAAAAACDEsDgAAAAAAAAAAEGJYHAAAAAAAAAAAIMSwOAAAAAAAAAAAQIhhcQAAAAAAAAAAgBDD4gAAAAAAAAAAACGGxQEAAAAAAAAAAEIMiwMAAAAAAAAAAIQYFgcAAAAAAAAAAAgxLA4AAAAAAAAAABBiWBwAAAAAAAAAACDEsDgAAADw/+3ZgQAAAACAIH/rQS6NAAAAYEYOAAAAAADAjBwAAAAAAIAZOQAAAAAAADNyAAAAAAAAZuQAAAAAAADMyAEAAAAAAJiRAwAAAAAAMCMHAAAAAABgRg4AAAAAAMCMHAAAAAAAgBk5AAAAAAAAM3IAAAAAAABm5AAAAAAAAMzIAQAAAAAAmJEDAAAAAAAwIwcAAAAAAGBGDgAAAAAAwIwcAAAAAACAGTkAAAAAAAAzcgAAAAAAAGbkAAAAAAAAzMgBAAAAAACYkQMAAAAAADAjBwAAAAAAYEYOAAAAAADAjBwAAAAAAIAZOQAAAAAAADNyAAAAAAAAZuQAAAAAAADMyAEAAAAAAJiRAwAAAAAAMCMHAAAAAABgRg4AAAAAAMCMHAAAAAAAgBk5AAAAAAAAM3IAAAAAAABm5AAAAAAAAMzIAQAAAAAAmAkGLBWo3GzrLQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Метод приращения с недостатком (undersampling)\n",
|
||
"def undersample(df: DataFrame, column: str) -> DataFrame:\n",
|
||
" X: DataFrame = pd.get_dummies(df.drop(column, axis=1))\n",
|
||
" y: DataFrame = df[column] # type: ignore\n",
|
||
" \n",
|
||
" undersampler = RandomUnderSampler()\n",
|
||
" X_resampled, y_resampled = undersampler.fit_resample(X, y) # type: ignore\n",
|
||
" \n",
|
||
" df_resampled: DataFrame = pd.concat([X_resampled, y_resampled], axis=1)\n",
|
||
" return df_resampled\n",
|
||
"\n",
|
||
"\n",
|
||
"# Приращение данных (undersampling)\n",
|
||
"df_train_undersampled: DataFrame = undersample(df_train, 'hazardous')\n",
|
||
"df_val_undersampled: DataFrame = undersample(df_val, 'hazardous')\n",
|
||
"df_test_undersampled: DataFrame = undersample(df_test, 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"print('После применения метода undersampling:')\n",
|
||
"check_balance(df_train_undersampled, 'Обучающая выборка', 'hazardous')\n",
|
||
"check_balance(df_val_undersampled, 'Контрольная выборка', 'hazardous')\n",
|
||
"check_balance(df_test_undersampled, 'Тестовая выборка', 'hazardous')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_undersampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_undersampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_undersampled, 'hazardous', True, False) else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train_undersampled, df_val_undersampled, df_test_undersampled, 'hazardous')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Датасет №2: [Зарплаты в области Data Science](https://www.kaggle.com/datasets/henryshan/2023-data-scientists-salary).\n",
|
||
"\n",
|
||
"### Описание датасета:\n",
|
||
"Данный набор данных предназначен для исследования факторов, влияющих на заработную плату специалистов по данным (Data Scientists) в 2023 году. Набор данных содержит информацию о различных характеристиках работников, таких как уровень опыта, тип занятости, местоположение сотрудника и компании, удалённость работы и размер компании. Этот анализ помогает понять, какие факторы наиболее значимо влияют на уровень зарплат в области Data Science, и как изменяются заработные платы в зависимости от этих факторов.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Анализ сведений:\n",
|
||
"**Проблемная область:**\n",
|
||
"Основная задача – изучить, как различные факторы, такие как опыт, тип занятости, местоположение и удалённость работы, влияют на уровень зарплаты специалистов по данным. Это важно для понимания рыночных тенденций и формирования конкурентоспособной системы оплаты труда.\n",
|
||
"\n",
|
||
"**Актуальность:**\n",
|
||
"Данный набор данных актуален для компаний, стремящихся выстроить конкурентоспособные стратегии оплаты труда, а также для специалистов по данным, желающих оценить свои зарплатные ожидания в зависимости от их опыта, географии и типа занятости.\n",
|
||
"\n",
|
||
"**Объекты наблюдения:**\n",
|
||
"Объектами наблюдения являются специалисты по данным, работающие в различных компаниях и странах, с разным уровнем опыта и типом занятости.\n",
|
||
"\n",
|
||
"**Атрибуты объектов:**\n",
|
||
"- work_year: Год, в который была выплачена зарплата.\n",
|
||
"- experience_level: Уровень опыта сотрудника.\n",
|
||
" - EN: Начальный.\n",
|
||
" - MI: Средний.\n",
|
||
" - SE: Старший.\n",
|
||
" - EX: Исполнительный.\n",
|
||
"- employment_type: Тип занятости.\n",
|
||
" - PT: Полная.\n",
|
||
" - FT: Частичная.\n",
|
||
" - CT: Контрактная.\n",
|
||
" - FL: Фриланс.\n",
|
||
"- job_title: Должность, которую занимал сотрудник.\n",
|
||
"- salary: Общая сумма выплаченной заработной платы.\n",
|
||
"- salary_currency: Валюта, в которой выплачена зарплата.\n",
|
||
"- salary_in_usd: Заработная плата, конвертированная в доллары США (USD).\n",
|
||
"- employee_residence: Страна проживания сотрудника в год выплаты зарплаты.\n",
|
||
"- remote_ratio: Доля удалённой работы (например, 100% удалённо или частично удалённо).\n",
|
||
"- company_location: Страна, в которой расположена основная офисная компания работодателя.\n",
|
||
"- company_size: Среднее количество сотрудников, работающих в компании.\n",
|
||
"\n",
|
||
"**Связь между объектами:**\n",
|
||
"Набор данных позволяет исследовать взаимосвязи между факторами, такими как уровень опыта, тип занятости и местоположение сотрудника, с уровнем его заработной платы. Взаимосвязи между этими факторами могут дать полезную информацию о влиянии определённых условий работы на доход.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Качество набора данных:\n",
|
||
"**Информативность:**\n",
|
||
"Датасет предоставляет важную информацию для анализа различных факторов, влияющих на зарплату специалистов по данным. Он включает множество атрибутов, которые можно использовать для построения моделей и анализа.\n",
|
||
"\n",
|
||
"**Степень покрытия:**\n",
|
||
"Набор данных охватывает специалистов по данным с разным опытом, работающих в различных странах, что позволяет провести сравнительный анализ и выявить региональные и глобальные тренды.\n",
|
||
"\n",
|
||
"**Соответствие реальным данным:**\n",
|
||
"ДЗаработные платы специалистов по данным, приведенные в датасете, отражают реальную ситуацию на рынке труда в 2023 году, предоставляя точные данные для анализа текущих рыночных условий.\n",
|
||
"\n",
|
||
"**Согласованность меток:**\n",
|
||
"Все категории, такие как уровни опыта или типы занятости, имеют четко определённые метки, что упрощает анализ и моделирование.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Бизес-цели:\n",
|
||
"1. **Оптимизация структуры оплаты труда:**\n",
|
||
"Компании могут использовать данный анализ для создания конкурентных предложений по оплате труда, основываясь на опыте, географии и других значимых факторах.\n",
|
||
"2. **Планирование найма и удержание специалистов:**\n",
|
||
"Помогает работодателям понять, какие факторы могут привлечь или удержать специалистов по данным, и оптимизировать HR-процессы для сокращения текучести кадров.**\n",
|
||
"3. **Анализ глобальных и региональных зарплатных трендов:**\n",
|
||
"Позволяет компаниям проводить сравнительный анализ зарплат по регионам, уровням опыта и типам занятости, помогая в принятии решений о расширении бизнеса в разные страны.**\n",
|
||
"\n",
|
||
"**Эффект для бизнеса:**\n",
|
||
"Компании, использующие данную информацию, могут предлагать конкурентоспособные зарплаты, улучшить процессы найма и удержания специалистов, а также сократить издержки, связанные с высокими зарплатными ожиданиями. Это также помогает улучшить планирование бюджета на персонал.\n",
|
||
"\n",
|
||
"---\n",
|
||
"\n",
|
||
"### Технические цели:\n",
|
||
"1. **Построение модели прогнозирования зарплат:**\n",
|
||
"Создание модели, которая будет предсказывать уровень зарплаты специалиста по данным на основе таких факторов, как опыт, регион и удалённость работы.\n",
|
||
"2. **Анализ влияния опыта и удалённости на зарплату:**\n",
|
||
"Исследование того, как уровень опыта и удалённость работы влияют на заработную плату, что может помочь компаниям лучше планировать условия найма.\n",
|
||
"3. **Оптимизация найма специалистов:**\n",
|
||
"С помощью анализа компания может определить наиболее значимые факторы для назначения зарплат, чтобы предлагать более конкурентные условия и привлекать лучших специалистов.\n",
|
||
"\n",
|
||
"**Входные данные:**\n",
|
||
"Год, уровень опыта, тип занятости, должность, зарплата, страна проживания, удалённость работы.\n",
|
||
"\n",
|
||
"**Целевой признак:**\n",
|
||
"Признак \"salary_in_usd\" – заработная плата в долларах США.\n",
|
||
"\n",
|
||
"---"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Выгрузка данных из файла в DataFrame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df: DataFrame = pd.read_csv('..//static//csv//ds_salaries.csv')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Краткая информация о DataFrame:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 3755 entries, 0 to 3754\n",
|
||
"Data columns (total 11 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 work_year 3755 non-null int64 \n",
|
||
" 1 experience_level 3755 non-null object\n",
|
||
" 2 employment_type 3755 non-null object\n",
|
||
" 3 job_title 3755 non-null object\n",
|
||
" 4 salary 3755 non-null int64 \n",
|
||
" 5 salary_currency 3755 non-null object\n",
|
||
" 6 salary_in_usd 3755 non-null int64 \n",
|
||
" 7 employee_residence 3755 non-null object\n",
|
||
" 8 remote_ratio 3755 non-null int64 \n",
|
||
" 9 company_location 3755 non-null object\n",
|
||
" 10 company_size 3755 non-null object\n",
|
||
"dtypes: int64(4), object(7)\n",
|
||
"memory usage: 322.8+ KB\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>count</th>\n",
|
||
" <th>mean</th>\n",
|
||
" <th>std</th>\n",
|
||
" <th>min</th>\n",
|
||
" <th>25%</th>\n",
|
||
" <th>50%</th>\n",
|
||
" <th>75%</th>\n",
|
||
" <th>max</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>work_year</th>\n",
|
||
" <td>3755.0</td>\n",
|
||
" <td>2022.373635</td>\n",
|
||
" <td>0.691448</td>\n",
|
||
" <td>2020.0</td>\n",
|
||
" <td>2022.0</td>\n",
|
||
" <td>2022.0</td>\n",
|
||
" <td>2023.0</td>\n",
|
||
" <td>2023.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>salary</th>\n",
|
||
" <td>3755.0</td>\n",
|
||
" <td>190695.571771</td>\n",
|
||
" <td>671676.500508</td>\n",
|
||
" <td>6000.0</td>\n",
|
||
" <td>100000.0</td>\n",
|
||
" <td>138000.0</td>\n",
|
||
" <td>180000.0</td>\n",
|
||
" <td>30400000.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>salary_in_usd</th>\n",
|
||
" <td>3755.0</td>\n",
|
||
" <td>137570.389880</td>\n",
|
||
" <td>63055.625278</td>\n",
|
||
" <td>5132.0</td>\n",
|
||
" <td>95000.0</td>\n",
|
||
" <td>135000.0</td>\n",
|
||
" <td>175000.0</td>\n",
|
||
" <td>450000.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>remote_ratio</th>\n",
|
||
" <td>3755.0</td>\n",
|
||
" <td>46.271638</td>\n",
|
||
" <td>48.589050</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>100.0</td>\n",
|
||
" <td>100.0</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" count mean std min 25% \\\n",
|
||
"work_year 3755.0 2022.373635 0.691448 2020.0 2022.0 \n",
|
||
"salary 3755.0 190695.571771 671676.500508 6000.0 100000.0 \n",
|
||
"salary_in_usd 3755.0 137570.389880 63055.625278 5132.0 95000.0 \n",
|
||
"remote_ratio 3755.0 46.271638 48.589050 0.0 0.0 \n",
|
||
"\n",
|
||
" 50% 75% max \n",
|
||
"work_year 2022.0 2023.0 2023.0 \n",
|
||
"salary 138000.0 180000.0 30400000.0 \n",
|
||
"salary_in_usd 135000.0 175000.0 450000.0 \n",
|
||
"remote_ratio 0.0 100.0 100.0 "
|
||
]
|
||
},
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Краткая информация о DataFrame\n",
|
||
"df.info()\n",
|
||
"\n",
|
||
"# Статистическое описание числовых столбцов\n",
|
||
"df.describe().transpose()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Проблема пропущенных данных:\n",
|
||
"\n",
|
||
"Проверка на отсутствие значений, представленная ниже, показала, что DataFrame не имеет пустых значений признаков. Нет необходимости использовать методы заполнения пропущенных данных."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"work_year False\n",
|
||
"experience_level False\n",
|
||
"employment_type False\n",
|
||
"job_title False\n",
|
||
"salary False\n",
|
||
"salary_currency False\n",
|
||
"salary_in_usd False\n",
|
||
"employee_residence False\n",
|
||
"remote_ratio False\n",
|
||
"company_location False\n",
|
||
"company_size False\n",
|
||
"dtype: bool \n",
|
||
"\n",
|
||
"work_year 0\n",
|
||
"experience_level 0\n",
|
||
"employment_type 0\n",
|
||
"job_title 0\n",
|
||
"salary 0\n",
|
||
"salary_currency 0\n",
|
||
"salary_in_usd 0\n",
|
||
"employee_residence 0\n",
|
||
"remote_ratio 0\n",
|
||
"company_location 0\n",
|
||
"company_size 0\n",
|
||
"dtype: int64\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Проверка пропущенных данных\n",
|
||
"check_null_columns(df)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Проблема зашумленности данных:\n",
|
||
"\n",
|
||
"Представленный ниже код помогает определить наличие выбросов в наборе данных и устранить их (при наличии), заменив значения ниже нижней границы (рассматриваемого минимума) на значения нижней границы, а значения выше верхней границы (рассматриваемого максимума) – на значения верхней границы."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Колонка work_year:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 76\n",
|
||
"\tМинимальное значение: 2020\n",
|
||
"\tМаксимальное значение: 2023\n",
|
||
"\t1-й квартиль (Q1): 2022.0\n",
|
||
"\t3-й квартиль (Q3): 2023.0\n",
|
||
"\n",
|
||
"Колонка salary:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 113\n",
|
||
"\tМинимальное значение: 6000\n",
|
||
"\tМаксимальное значение: 30400000\n",
|
||
"\t1-й квартиль (Q1): 100000.0\n",
|
||
"\t3-й квартиль (Q3): 180000.0\n",
|
||
"\n",
|
||
"Колонка salary_in_usd:\n",
|
||
"\tЕсть выбросы: Да\n",
|
||
"\tКоличество выбросов: 63\n",
|
||
"\tМинимальное значение: 5132\n",
|
||
"\tМаксимальное значение: 450000\n",
|
||
"\t1-й квартиль (Q1): 95000.0\n",
|
||
"\t3-й квартиль (Q3): 175000.0\n",
|
||
"\n",
|
||
"Колонка remote_ratio:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 0\n",
|
||
"\tМаксимальное значение: 100\n",
|
||
"\t1-й квартиль (Q1): 0.0\n",
|
||
"\t3-й квартиль (Q3): 100.0\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPOCAYAAAALMup9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbMklEQVR4nOzdeVhV5f7//xeDDIrgyGCi4FDOE5mAoqImebQktM7RSpzSEjspZYWZUyXlkHlyykqxo6hpqKmdlFSUEk8nzAo1v6WYlYBaCWoKCOv3hz/Wxy2IoOhGeD6ua1+67/u91nqvzd7ci/de6142hmEYAgAAAAAAAAAARbK1dgIAAAAAAAAAAJRnFNIBAAAAAAAAACgGhXQAAAAAAAAAAIpBIR0AAAAAAAAAgGJQSAcAAAAAAAAAoBgU0gEAAAAAAAAAKAaFdAAAAAAAAAAAikEhHQAAAAAAAACAYlBIBwAAAAAAAACgGBTSAaASmTp1qmxsbHT69GlrpwIAAG7SsWPHZGNjo5iYGGunAgDAHaW8j6EJCQmysbFRQkKCtVO5YUOHDpWPj4+10yhTFNIrmHXr1snGxqbIR6tWraydHlBpdO/eXUOHDpV0efDo3r27VfOpDAoOhAoONMrzQRFwq3AcAJQPleU44Mp9mzp1aoX7YxmVC2MoUD5UljG0srry73QfHx9NnTrVqvmUlr21E8CtMXHiRDVv3tx8/vrrr1sxGwAAcDtxHAAAwI1hDAVQHnTt2lUXLlyQg4ODtVPBFSikV1D333+/xbd277//PlM5AJXY+fPnVa1aNWuncUtcunRJ+fn51k4DKFc4DgBwIyry8QJQUoyhAG5EWY+htra2cnJyKrP1oWwwtUsFk5OTI+nyB+56YmJiZGNjo2PHjplt+fn5atOmTaEpEb777jsNHTpUjRo1kpOTkzw9PTV8+HD9/vvvFussmH/56oe9/f99Z9O9e3e1atVKycnJCgwMlLOzs3x9fbV48eJC+zJ58mT5+fnJzc1N1apVU1BQkHbu3GkRVzCdg42NjTZs2GDRd/HiRdWsWVM2NjaaPXt2oTzd3d2Vm5trscyqVavM9V15wLRx40b17dtX9erVk6Ojoxo3bqxXX31VeXl5132tC7b3ww8/6NFHH5Wrq6tq166tZ599VhcvXrSIXbZsmXr06CF3d3c5OjqqRYsWWrRoUaF19u/fXz4+PnJycpK7u7seeughff/99xYxBfvx9ttvF1q+WbNmsrGx0dixY822P/74Q88//7xat24tFxcXubq6qk+fPvr2228tlg0PD5eTk5MOHTpk0R4SEqKaNWvqxIkTZtvRo0f1yCOPqFatWqpatar8/f21ZcsWi+UK5v4qeDg6Ouruu+9WdHS0DMMo/sX9/13rvVfUZWBXvmeuflzp5MmTGjFihBo0aCA7OzszxsXFpUQ5XUuHDh0UFhZm0da6dWvZ2Njou+++M9vWrFkjGxsbi9f5m2++UZ8+feTq6ioXFxf17NlTe/futVhXwWd7165dGjNmjNzd3VW/fv1r5vPzzz+rSZMmatWqlTIyMq6b/9GjR2VjY6O5c+cW6tuzZ49sbGy0atUqs+23337T8OHD5eHhIUdHR7Vs2VJLly61WK60n/fZs2fr7bffVuPGjeXo6KiDBw9eN2+gMuA4YINFH8cBHAeUx+MASVq9erX8/PxUvXp1ubq6qnXr1po3b57ZX9KfRVFK+3k9ePCgBg8erJo1a6pLly5atmyZbGxs9M033xRa94wZM2RnZ6fffvvtpl8DoLxhDN1g0ccYyhjKGGrdMbSoOdILfgccPHhQwcHBqlq1qu666y7NnDmzROu8ko2NTZHTqvj4+JhT60hSbm6upk2bpqZNm8rJyUm1a9dWly5dFB8fb7Hchg0b1KpVKzk5OalVq1Zav359qXO6E3BGegVTMPg7Ojre0PL//ve/Cw0gkhQfH6+jR49q2LBh8vT01IEDB7RkyRIdOHBAe/fuLfRLc9GiRRa/IK8+GPnzzz/1t7/9TY8++qgGDRqkjz76SE8//bQcHBw0fPhwSVJWVpbef/99DRo0SE8++aTOnj2rDz74QCEhIfrqq6/Url07i3U6OTlp2bJlCg0NNdvi4uIKDa5XOnv2rDZv3qyHH37YbFu2bJmcnJwKLRcTEyMXFxdFRkbKxcVFO3bs0OTJk5WVlaVZs2ZdcxtXevTRR+Xj46Po6Gjt3btX//rXv/Tnn3/qww8/tHjtWrZsqYceekj29vbatGmTxowZo/z8fEVERFisb9SoUfL09NSJEyc0f/589erVS6mpqapatWqh12XcuHFm2549e/Tzzz8Xyu/o0aPasGGDHnnkEfn6+iojI0PvvvuuunXrpoMHD6pevXqSpHnz5mnHjh0KDw9XUlKS7Ozs9O6772rbtm3697//bcZlZGQoMDBQf/31l/75z3+qdu3aWr58uR566CGtW7fO4nWX/u8yygsXLmjNmjWaOHGi3N3dNWLEiBK9vgWvX8F7LyoqqtjYUaNGKSgoSNLl98rVv+jDw8P1+eef65lnnlHbtm1lZ2enJUuWaN++fSXOpyhBQUEWheY//vhDBw4ckK2trRITE9WmTRtJUmJiourWrWteWnrgwAEFBQXJ1dVVL7zwgqpUqaJ3331X3bt3165du9SpUyeL7YwZM0Z169bV5MmTdf78+SJzOXLkiHr06KFatWopPj5ederUuW7+jRo1UufOnbVy5UqNHz/eom/lypWqXr26+vfvL+nye8Df39880Kxbt67+85//aMSIEcrKyjLfl6X9vC9btkwXL17UqFGj5OjoqFq1anFWOiCOAzgO4DjgTjgOiI+P16BBg9SzZ0+9+eabkqRDhw7pyy+/1LPPPiup5D+La62/NJ/XRx55RE2bNtWMGTNkGIYGDhyoiIgIrVy5Uu3bt7eIXblypbp376677rrrpl4DoDxiDGUMZQxlDL0TxtA///xTDzzwgMLCwvToo49q3bp1evHFF9W6dWv16dPnptZdlKlTpyo6OlojR47Ufffdp6ysLH399dfat2+f7r//fknStm3bNGDAALVo0ULR0dH6/fffNWzYsGJP6LtjGahQ3n77bUOS8e2331q0d+vWzWjZsqVF27JlywxJRmpqqmEYhnHx4kWjQYMGRp8+fQxJxrJly8zYv/76q9C2Vq1aZUgydu/ebbZNmTLFkGScOnXqmjl269bNkGTMmTPHbMvOzjbatWtnuLu7Gzk5OYZhGMalS5eM7Oxsi2X//PNPw8PDwxg+fLjZlpqaakgyBg0aZNjb2xvp6elmX8+ePY3BgwcbkoxZs2YVynPQoEFGv379zPaff/7ZsLW1NQYNGlRoP4p6DUaPHm1UrVrVuHjx4jX398rtPfTQQxbtY8aMKfTzKmo7ISEhRqNGjYrdxkcffWRIMr7++muzTZIxcOBAw97e3qJ9xIgR5usSERFhtl+8eNHIy8uzWG9qaqrh6OhoTJ8+3aJ969athiTjtddeM44ePWq4uLgYoaGhFjHjxo0zJBmJiYlm29mzZw1fX1/Dx8fH3NbOnTsNScbOnTstcrG1tTXGjBlT7H4XmDhxoiHJOH36tNnWsmVLo1u3boVif/zxR0OSsXz5crOt4GdU4MKFC4atra0xevRoi2XDw8ONatWqlSina1m7dq0hyTh48KBhGIbxySefGI6OjsZDDz1k/P3vfzfj2rRpYzz88MPm89DQUMPBwcE4cuSI2XbixAmjevXqRteuXc22gs92ly5djEuXLlls+8rP6KFDh4x69eoZHTt2NP74449S7cO7775rSDIOHTpktuXk5Bh16tQxwsPDzbYRI0YYXl5eFj8XwzCMf/zjH4abm5v5fi/t593V1dU4efJkqXIGKgOOAzgO4Dig/B8HPPvss4arq2uhMfpKJf1ZFLz/b+bzOmjQoELxgwYNMurVq2eRw759+wptC6hIGEMZQxlDGUPL0xha1M+24HfAhx9+aLZlZ2cbnp6exoABA0q8bsO4/B6fMmVKofaGDRta/E3ftm1bo2/fvsWuq127doaXl5dx5swZs23btm2GJKNhw4alyqu8Y2qXCqbgcpO6deuWetkFCxbo999/15QpUwr1OTs7m/+/ePGiTp8+LX9/f0m6oW8U7e3tNXr0aPO5g4ODRo8erZMnTyo5OVmSZGdnZ95UIT8/X3/88YcuXbqke++9t8htdujQQS1bttS///1vSZenq9i5c6fFJSlXGz58uD777DOlp6dLkpYvX66AgADdfffdhWKvfA3Onj2r06dPKygoSH/99Zd++OGHEu331d+CP/PMM5KkTz/9tMjtZGZm6vTp0+rWrZuOHj2qzMxMi+X/+usvnT59Wvv379d7770nDw+PQrl7eHiob9++WrZsmbnMRx99pGHDhhXKz9HR0TzjIS8vT7///rtcXFx0zz33FHrNe/furdGjR2v69OkKCwuTk5OT3n33XYuYTz/9VPfdd5+6dOlitrm4uGjUqFE6duxYoek4Cvb3+PHjmjlzpvLz89WjR48iXsnCCs56KMkcYiU52+T8+fPKz89X7dq1S7T90ij45n737t2SLp953rFjR91///1KTEyUJJ05c0YpKSlmbF5enrZt26bQ0FA1atTIXJeXl5cGDx6sL774QllZWRbbefLJJ2VnZ1dkDikpKerWrZt8fHz0+eefq2bNmqXah0cffVROTk5auXKl2bZ161adPn1ajz/+uCTJMAx9/PHHevDBB2UYhk6fPm0+QkJClJmZab6vSvt5HzBgwA39ngMqOo4DOA7gOKD8HwfUqFFD58+fL3RJ9JVK87O4Wmk/r0899VShtiFDhujEiRMW00CsXLlSzs7OGjBgQPE7CNyhGEMZQxlDGUPvhDHUxcXF/Jtbuvw74L777tPRo0dvet1FqVGjhg4cOKAff/yxyP60tDTt379f4eHhcnNzM9vvv/9+tWjR4pbkZE0U0iuYn3/+Wfb29qUe/DMzMzVjxgxFRkbKw8OjUP8ff/yhZ599Vh4eHnJ2dlbdunXl6+trLlta9erVK3QThoJB68p55pYvX642bdqY8zDVrVtXW7ZsueY2hw0bZg5yMTExCgwMVNOmTa+ZR7t27dSqVSt9+OGHMgxDMTExRQ6K0uVpNR5++GG5ubnJ1dVVdevWNX95lfQ1uDqXxo0by9bW1mKfv/zyS/Xq1UvVqlVTjRo1VLduXU2cOLHI7UyfPl1169ZV+/btdezYMSUkJKh69eqFtjts2DDFxsYqOztba9euVc2aNYscVPPz8zV37lw1bdpUjo6OqlOnjurWravvvvuuyH2cPXu2atWqpf379+tf//qX3N3dLfp//vln3XPPPYWWK5iq5OpL4kJDQ1W3bl01bNhQU6dO1aRJk0o80Jw+fVpVqlSxuBTvWs6cOSNJxc7PVrt2bTVt2lTvv/++tm3bppMnT+r06dPKzs4uUT7F8fDwUNOmTc2ieWJiooKCgtS1a1edOHFCR48e1Zdffqn8/HyzkH7q1Cn99ddf13w98/Pz9csvv1i0F3xGi/Lggw+qevXq2rp1q1xdXUu9DzVq1NCDDz6o2NhYs23lypW66667zPfWqVOndObMGS1ZskR169a1eBR8zk6ePGkuX5rPe3H7hspt9+7devDBB1WvXr0i5/u8nmvNEXmn3HyP4wCOAzgOKP/HAWPGjNHdd9+tPn36qH79+mYx6kql/VlcqbSf16LG1Pvvv19eXl7mF+b5+flatWqV+vfvX+R7DKgIGEMZQxlDGUPvhDG0fv36haaYqVmzpv7888+bXndRpk+frjNnzujuu+9W69atNWHCBIt7uxW8F4v6fVHUe/hORyG9gjl8+LAaNWpkcUOSknjzzTdla2urCRMmFNn/6KOP6r333tNTTz2luLg4bdu2zfxldavmJV6xYoWGDh2qxo0b64MPPtBnn32m+Ph49ejR45rbfPzxx/XTTz9p7969Wr58+TUH8isNHz5cy5Yt065du5Senq5HH320UMyZM2fUrVs3ffvtt5o+fbo2bdqk+Ph4c06uG30Nrv7ld+TIEfXs2VOnT5/WW2+9pS1btig+Pt6ch/rq7YwcOVLbtm3T0qVL5eTkpAEDBhT5y71v375ycHDQhg0btGzZMoWHhxd5E52CA8CuXbtqxYoV2rp1q+Lj49WyZcsi9/Gbb74xC6FFzQdYWrNnz1Z8fLw+/fRTTZkyRW+++aamTZtWomWPHTumBg0aFHpNi1Jw1oSnp2excWvWrFHt2rUVEhIiDw8P1a1bV6tXry5RPtfTpUsXJSYm6sKFC0pOTlZQUJBatWqlGjVqKDExUYmJiXJxcSk0r1ppXPlt+tUGDBigI0eOWJxRXlpDhgzR0aNHtWfPHp09e1affPKJBg0aZL63Ct4zjz/+uOLj44t8dO7cWVLpP+/F7Rsqt/Pnz6tt27ZasGDBDS3//PPPKy0tzeLRokULPfLII2Wc6a3BcQDHARwHlP/jAHd3d+3fv1+ffPKJHnroIe3cuVN9+vRReHi4GVPan8WVSvt5LWpMtbOz0+DBg/Xxxx/r4sWL2rlzp06cOGFxBhxQ0TCGMoYyhjKG3glj6LWuOjdKeHPZ67n6JsBdu3bVkSNHtHTpUrVq1Urvv/++OnTooPfff79Mtnen4WajFUh2drb2799vcYOQkjhx4oTmzZun6OhoVa9evdDdiP/8809t375d06ZN0+TJk832a13WUdJtnj9/3uKb9P/3//6fpMt3CJakdevWqVGjRoqLi7P4hV7U5XIFateurYceesi8tO3RRx+1uFt4UR577DFNmDBBzz77rAYOHFjkN4QJCQn6/fffFRcXp65du5rtqampJdrfAj/++KPFN5Y//fST8vPzzX3etGmTsrOz9cknn6hBgwZm3NV3Vy/QpEkTNWnSRJLUq1cvNWjQQLGxsXr66act4uzt7fXEE0/o9ddf14EDB7R06dIi17du3ToFBwfrgw8+sGg/c+ZMoZtQnj9/XsOGDVOLFi0UGBiomTNn6uGHH1bHjh3NmIYNG+rw4cOFtlNw+V7Dhg0t2v38/Mw7g/fp00e//fab3nzzTb3yyitFHqwUuHTpkr799ls98MAD14y50sGDB2VjY3Pdb0fbt2+v9957T0FBQZo+fbr8/f01a9YsffnllyXaTnGCgoK0bNkyrV69Wnl5eQoMDJStra1ZYD906JACAwPNQbJu3bqqWrXqNV9PW1tbeXt7l3j7s2bNkr29vcaMGaPq1atr8ODBpd6HBx54QHXr1tXKlSvVqVMn/fXXX3riiSfM/rp166p69erKy8tTr169il3XjXzegaL06dOn2JvsZGdn6+WXX9aqVat05swZtWrVSm+++ab5u8fFxcXiDJtvv/1WBw8e1OLFi2916jeN4wCOAzgOuHOOAxwcHPTggw/qwQcfVH5+vsaMGaN3331Xr7zyipo0aVKqn8WVyvLzOmTIEM2ZM0ebNm3Sf/7zH9WtW1chISGlXg9wJ2AMZQxlDGUMrWxjaM2aNc0rDArk5OQoLS2tUGytWrU0bNgwDRs2TOfOnVPXrl01depUjRw50nwvFvU6FfUevtNxRnoFUnC5Uc+ePUu13LRp0+Th4VHk3E7S/33bdfW3W2+//fYN5Sld/mV95RxgOTk5evfdd1W3bl35+fldc7v//e9/lZSUVOy6hw8fru+++06PPPJIsZcbFahVq5b69++v7777zrzL+dWKyiUnJ0cLFy687vqvdPUZku+8844kmUWforaTmZlpXmJXnIKDnGtdLjV8+HB9//336tq1q8Uc21eys7Mr9HNeu3atfvvtt0KxL774oo4fP67ly5frrbfeko+Pj8LDwy22/7e//U1fffWVxc/s/PnzWrJkiXx8fK47X9aFCxd06dIlXbp0qdi4bdu2KTMzU/379y82Trr83vv444913333Xff9kZWVpSeeeEIPPfSQJk2apF69esnLy+u62yiJgilb3nzzTbVp08acSywoKEjbt2/X119/bcZIl382vXv31saNGy0uX8zIyFBsbKy6dOlSqilabGxstGTJEg0cOFDh4eH65JNPSr0P9vb2GjRokD766CPFxMSodevWatOmjUXOAwYM0Mcff6yUlJRCy586dcoiVir95x0orbFjxyopKUmrV682x4oHHnjgmgfI77//vu6++26Lz2N5xXHAZRwHcBxQnPJwHHB1oc3W1tYcPwtev9L8LK5Ulp/XNm3aqE2bNnr//ff18ccf6x//+Eepz9QF7hSMoZcxhjKGFocxtOTuhDG0cePG5n3bCixZsqTQGelXv+YuLi5q0qSJ+Xp7eXmpXbt2Wr58ucVVHfHx8YXm8q8IytdPETfk/PnzeueddzR9+nTzF8aKFSssYjIyMnTu3DmtWLFC999/v8Xcbdu2bdPKlSvNm5FczdXVVV27dtXMmTOVm5uru+66S9u2bSv1N8hXqlevnt58800dO3ZMd999t9asWaP9+/dryZIlqlKliiSpX79+iouL08MPP6y+ffsqNTVVixcvVosWLXTu3LlrrvuBBx7QqVOnSjTwF4iJidGCBQuu+e1kYGCgatasqfDwcP3zn/+UjY2N/v3vf5f60pnU1FQ99NBDeuCBB5SUlKQVK1Zo8ODBatu2raTLNx0p+HZ19OjROnfunN577z25u7tbfCv46aef6v3331dgYKBq1aqlo0eP6r333lO1atX08MMPF7nt5s2b6/Tp08VOidGvXz9Nnz5dw4YNU2BgoL7//nutXLmy0MHCjh07tHDhQk2ZMkUdOnSQJC1btkzdu3fXK6+8opkzZ0qSXnrpJa1atUp9+vTRP//5T9WqVUvLly9XamqqPv7440LfjMfHx+vXX39Vbm6u/ve//2nlypV66KGHrvnelC5fMvb888/L0dFRFy5csHjvZ2ZmKi8vTxs2bFBoaKg+//xzvfLKK/ruu++0adOma66zQEREhC5cuHBLLllq0qSJPD09dfjwYfNGOdLly6ZefPFFSSpUuHvttdcUHx+vLl26aMyYMbK3t9e7776r7Oxs8zUvDVtbW61YsUKhoaF69NFH9emnn5b4hjQFhgwZon/961/auXOneXnmld544w3t3LlTnTp10pNPPqkWLVrojz/+0L59+/T555/rjz/+kHTjn3egNI4fP65ly5bp+PHjqlevnqTLU7l89tlnWrZsmWbMmGERf/HiRa1cuVIvvfSSNdItMY4DLHEcwHFAgfJ6HDBy5Ej98ccf6tGjh+rXr6+ff/5Z77zzjtq1a2fOfVvSn8XVyvrzOmTIED3//POSxLQuqJAYQy0xhjKGFmAMrfhj6MiRI/XUU09pwIABuv/++/Xtt99q69athT7LLVq0UPfu3eXn56datWrp66+/1rp16zR27FgzJjo6Wn379lWXLl00fPhw/fHHH3rnnXfUsmXLivf3vIE7XmpqqiGpxI+dO3cahmEYy5YtMyQZ7dq1M/Lz8wutb9myZWbbr7/+ajz88MNGjRo1DDc3N+ORRx4xTpw4YUgypkyZYsZNmTLFkGScOnXqmvl269bNaNmypfH1118bAQEBhpOTk9GwYUNj/vz5FnH5+fnGjBkzjIYNGxqOjo5G+/btjc2bNxvh4eFGw4YNC+U7a9asYl+fK/uvl2dR/V9++aXh7+9vODs7G/Xq1TNeeOEFY+vWrRav6bUUrO/gwYPGwIEDjerVqxs1a9Y0xo4da1y4cMEi9pNPPjHatGljODk5GT4+Psabb75pLF261JBkpKamGoZhGCkpKUbv3r2N2rVrGw4ODoa3t7fxj3/8w/juu+8s1iXJiIiIuGZeV/dfvHjReO655wwvLy/D2dnZ6Ny5s5GUlGR069bN6Natm2EYhpGVlWU0bNjQ6NChg5Gbm2uxvvHjxxu2trZGUlKS2XbkyBFj4MCBRo0aNQwnJyfjvvvuMzZv3myx3M6dOy3eo/b29kbDhg2Nf/7zn8aff/5Z7GvbsGHD677nC94vzzzzjNG1a1fjs88+K7Segp9RgVWrVhk2NjaFYsPDw41q1aoVm1NJPfLII4YkY82aNWZbTk6OUbVqVcPBwaHQe8MwDGPfvn1GSEiI4eLiYlStWtUIDg429uzZYxFT8Nn+3//+V2j5ot7bf/31l9GtWzfDxcXF2Lt3b6n3o2XLloatra3x66+/FtmfkZFhREREGN7e3kaVKlUMT09Po2fPnsaSJUvMmLL6vANXkmSsX7/efL5582ZDklGtWjWLh729vfHoo48WWj42Ntawt7c30tPTb2PWpcdxAMcBHAfcWccB69atM3r37m24u7sbDg4ORoMGDYzRo0cbaWlpZkxJfhaGces/r2lpaYadnZ1x991339Q+A+UVYyhjKGMoY2h5HUMLfrZXfkYKfgdc7erPdknk5eUZL774olGnTh2jatWqRkhIiPHTTz8ZDRs2NMLDw8241157zbjvvvuMGjVqGM7OzkazZs2M119/3cjJybFY38cff2w0b97ccHR0NFq0aGHExcXdUF7lHYX0CqDgw3+9AaikcbfatT74FVlJfsnixjRs2NBi4Lvazp07K9wv7vKmXbt2Ro8ePaydBlDI1YX01atXG3Z2dsYPP/xg/PjjjxaPKw++C/To0cMIDQ29jRnfGI4Dyj+OA24djgNurVOnThn29vbG9OnTrZ0KcEswhpZ/jKG3DmPorcUYWjExtQsA4IZ9/fXX2r9/v2JiYqydCnBd7du3V15enk6ePHndOc9TU1O1c+fOG7p/AABUFDExMcrLy7O4mTgAALg+xtCKiUJ6BeDi4qLHHnvMYq62m4kD7iQPP/ywGjdufM1+Dw+Pa851h8IuXLhgcYOQotSqVUv/7//9PyUnJ2vOnDny8vLS3//+99uUIVC8c+fO6aeffjKfp6amav/+/apVq5buvvtuPfbYYxoyZIjmzJmj9u3b69SpU9q+fbvatGmjvn37msstXbpUXl5e5g2syjOOA1CZcRxwa+zYsUMHDx7U66+/rtDQUPn4+Fg7JeCWYAxFZcYYemtcbwwt6d/cxc1vX5xTp04VumHolRwcHFSrVq0bWjckG8Mo5R0egJvUvXt3nT59WikpKdZO5baZOnWqpk2bplOnTl3zJixAeRATE6Nhw4YVG7Nz504lJCRo+vTpuueee7R48WJ169btNmUIFC8hIUHBwcGF2sPDwxUTE6Pc3Fy99tpr+vDDD/Xbb7+pTp068vf317Rp09S6dWtJUn5+vho2bKghQ4bo9ddfv927UOFxHMBxAMq/7t27a8+ePercubNWrFihu+66y9opARBjKGMo7gTXG0NL+jd39+7db2j7Pj4++vnnn6/Z361bNyUkJNzQukEhHQBwhbS0NB04cKDYGD8/P9WsWfM2ZQQAAAAAQMVwq//m/vLLL3XhwoVr9tesWVN+fn43tG5QSAcAAAAAAAAAoFjMkX4FwzB09uxZa6cBAICqV68uGxsba6dxR8jPz9eJEyd4zQAAVlXw92S9evVka2tr7XTuCIzhAABrK834TSH9CllZWapRo4a10wAAQGfOnJGbm5u107gjnDhxQt7e3tZOAwAASdIvv/yi+vXrWzuNOwJjOACgvCjJ+E0hvQi//PKLXF1drZ0GAKASysrK4g/KUqpevbokxm8AgHUVjOEF4xKujzEcAGBtpRm/KaRfoeBSMldXVwZxAIBVcXlzyTF+AwDKE8bwkmMMBwCUFyUZv5m4DQAAAAAAAACAYlBIBwAAAAAAAACgGBTSAQAAAAAAAAAoBoV0AAAAAAAAAACKQSEdAAAAAAAAAIBiUEgHAAAAAAAAAKAYFNIBAAAAAAAAACgGhXQAAAAAAAAAAIpBIR0AAAAAAAAAgGJQSAcAAAAAAAAAoBgU0gEAAAAAAAAAKIa9tRMAAAAAYD15eXlKTExUWlqavLy8FBQUJDs7O2unBQAAisH4Ddx+pTojPTo6Wh07dlT16tXl7u6u0NBQHT582CLm4sWLioiIUO3ateXi4qIBAwYoIyPD7P/22281aNAgeXt7y9nZWc2bN9e8efMs1vHFF1+oc+fOql27tpydndWsWTPNnTv3uvl99913CgoKkpOTk7y9vTVz5szS7B4AAABQqcTFxalJkyYKDg7W4MGDFRwcrCZNmiguLs7aqQEAgGtg/Aaso1SF9F27dikiIkJ79+5VfHy8cnNz1bt3b50/f96MGT9+vDZt2qS1a9dq165dOnHihMLCwsz+5ORkubu7a8WKFTpw4IBefvllRUVFaf78+WZMtWrVNHbsWO3evVuHDh3SpEmTNGnSJC1ZsuSauWVlZal3795q2LChkpOTNWvWLE2dOrXYZQAAAIDKKi4uTgMHDlTr1q2VlJSks2fPKikpSa1bt9bAgQP5YxwAgHKI8RuwHhvDMIwbXfjUqVNyd3fXrl271LVrV2VmZqpu3bqKjY3VwIEDJUk//PCDmjdvrqSkJPn7+xe5noiICB06dEg7duy45rbCwsJUrVo1/fvf/y6yf9GiRXr55ZeVnp4uBwcHSdJLL72kDRs26IcffijR/mRlZcnNzU2ZmZlydXUt0TIAAJQlxqLS4zUDSi8vL09NmjRR69attWHDBtna/t/5Nfn5+QoNDVVKSop+/PFHLhMHSojxqPR4zYDSYfwGyl5pxqKbmiM9MzNTklSrVi1Jl882z83NVa9evcyYZs2aqUGDBsUW0jMzM811FOWbb77Rnj179Nprr10zJikpSV27djWL6JIUEhKiN998U3/++adq1qxZaJns7GxlZ2ebz7Oysq65fuBOcvz4cZ0+ffqGlr1w4YKOHTtWtgmVko+Pj5ydnW9o2Tp16qhBgwZlnBEAABVLYmKijh07plWrVln8ES5Jtra2ioqKUmBgoBITE9W9e3frJAkAACwwfgPWdcOF9Pz8fI0bN06dO3dWq1atJMk8G7xGjRoWsR4eHkpPTy9yPXv27NGaNWu0ZcuWQn3169fXqVOndOnSJU2dOlUjR468Zj7p6eny9fUttN2CvqIK6dHR0Zo2bVqx+wncaY4fP657mjXXxQt/WTsVq3ByrqrDPxyimA4AQDHS0tIkyTyOv1pBe0EcAACwPsZvwLpuuJAeERGhlJQUffHFFze88ZSUFPXv319TpkxR7969C/UnJibq3Llz2rt3r1566SU1adJEgwYNuuHtXS0qKkqRkZHm86ysLHl7e5fZ+gFrOH36tC5e+Eu1+z2nKrVL/342LuXoUmbG9QNvIXs3D9nYO1w/8Cq5v/+i3zfP0enTpymkA1ayaNEiLVq0yLyypWXLlpo8ebL69OlzzWXWrl2rV155RceOHVPTpk315ptv6m9/+9ttyhionLy8vCRdPh4v6qrRlJQUizgAAGB9jN+Add1QIX3s2LHavHmzdu/erfr165vtnp6eysnJ0ZkzZyzOSs/IyJCnp6fFOg4ePKiePXtq1KhRmjRpUpHbKTjDvHXr1srIyNDUqVOvWUj39PRURoZl8a/g+dXbLuDo6ChHR8fidxa4Q1Wp7S1HzyY3tnD9FmWbDIBKo379+nrjjTfUtGlTGYah5cuXq3///vrmm2/UsmXLQvF79uzRoEGDFB0drX79+ik2NlahoaHat2/fNc+0AXDzgoKC5OPjoxkzZhQ5x2p0dLR8fX0VFBRkxSwBAMCVGL8B67K9fsj/MQxDY8eO1fr167Vjx45CU6n4+fmpSpUq2r59u9l2+PBhHT9+XAEBAWbbgQMHFBwcrPDwcL3++usl2nZ+fr7FfOZXCwgI0O7du5Wbm2u2xcfH65577ilyWhcAAFD2HnzwQf3tb39T06ZNdffdd+v111+Xi4uL9u7dW2T8vHnz9MADD2jChAlq3ry5Xn31VXXo0EHz58+/zZkDlYudnZ3mzJmjzZs3KzQ0VElJSTp79qySkpIUGhqqzZs3a/bs2dyoDACAcoTxG7CuUhXSIyIitGLFCsXGxqp69epKT09Xenq6Lly4IElyc3PTiBEjFBkZqZ07dyo5OVnDhg1TQECAeclJSkqKgoOD1bt3b0VGRprrOHXqlLmdBQsWaNOmTfrxxx/1448/6oMPPtDs2bP1+OOPmzHz589Xz549zeeDBw+Wg4ODRowYoQMHDmjNmjWaN2+exdQtAADg9snLy9Pq1at1/vx5iy/Ur5SUlGRxk3Lp8s3Ck5KSrrne7OxsZWVlWTwAlF5YWJjWrVun77//XoGBgXJ1dVVgYKBSUlK0bt06hYWFWTtFAABwFcZvwHpKNbXLokWLJKnQnX+XLVumoUOHSpLmzp0rW1tbDRgwQNnZ2QoJCdHChQvN2HXr1unUqVNasWKFVqxYYbY3bNjQnE81Pz9fUVFRSk1Nlb29vRo3bqw333xTo0ePNuNPnz6tI0eOmM/d3Ny0bds2RUREyM/PT3Xq1NHkyZM1atSo0uwiAAC4Sd9//70CAgJ08eJFubi4aP369WrRougpo9LT082bgxco7iblEjcLB8pSWFiY+vfvr8TERKWlpcnLy0tBQUGcyQYAQDnG+A1Yh41hGIa1kygvsrKy5ObmpszMTLm6ulo7HeCG7Nu3T35+fvIMf/vG50i/Q2Wn/6T05eOUnJysDh06WDsd4IZUhLEoJydHx48fV2ZmptatW6f3339fu3btKrKY7uDgoOXLl1vcA2XhwoWaNm1aoXufFMjOzraY7q3gZuF38msGALjzVYQx/HbjNQMAWFtpxqIbutkoAADAtTg4OKhJk8tf5Pn5+el///uf5s2bp3fffbdQ7LVuFn6tG4VL3CwcAAAAAHD7lWqOdAAAgNIq7obhAQEBFjcply7fLPxac6oDAAAAAGANnJEOAADKTFRUlPr06aMGDRro7Nmzio2NVUJCgrZu3SpJGjJkiO666y5FR0dLkp599ll169ZNc+bMUd++fbV69Wp9/fXXWrJkiTV3AwAAAAAACxTSAQBAmTl58qSGDBmitLQ0ubm5qU2bNtq6davuv/9+SdLx48dla/t/F8QFBgYqNjZWkyZN0sSJE9W0aVNt2LBBrVq1stYuAAAAAABQCIV0AABQZj744INi+xMSEgq1PfLII3rkkUduUUYAAABAxZOXl6fExESlpaXJy8tLQUFBsrOzs3ZaQIXGHOkAAAAAAADAHSIuLk5NmjRRcHCwBg8erODgYDVp0kRxcXHWTg2o0CikAwAAAAAAAHeAuLg4DRw4UK1bt1ZSUpLOnj2rpKQktW7dWgMHDqSYDtxCFNIBAAAAAACAci4vL0/PPfec+vXrpw0bNsjf318uLi7y9/fXhg0b1K9fPz3//PPKy8uzdqpAhUQhHQAAAAAAACjnEhMTdezYMU2cOFG2tpYlPVtbW0VFRSk1NVWJiYlWyhCo2LjZKAAAAAAAAFDOpaWlSZJatWpV5M1GW7VqZREHoGxRSAcAAAAAAADKOS8vL0nS/PnztXjxYv38889mX8OGDTV69GiLOABli0I6AAAAAAAAUM4FBQXJ3d1dUVFRcnZ2tug7efKkJk6cKHd3dwUFBVkpQ6BiY450AAAAAAAA4A5w8eJFSZKrq6uWLFmiEydOaMmSJXJ1dbXoB1D2OCMdAAAAAAAAKOcSEhKUlZWl5s2b66+//tKoUaPMPh8fHzVr1kw//PCDEhIS1LNnTytmClRMnJEOAAAAAAAAlHMJCQmSLs+RfuTIEe3cuVOxsbHauXOnfvrpJ73zzjsWcQDKFmekAwAAAAAAAHcQOzs7de/e3dppAJUKZ6QDAAAAAAAA5VxB4XzKlCnKzc1VQkKCVq1apYSEBOXm5mrq1KkWcQDKFmekAwAAAAAAAOVc9+7d5e7uri+++EKurq4WNxZ1cnLSxYsX5e7uTiEduEU4Ix0AAAAAAAAo5+zs7BQeHi5JysnJsejLzc2VJIWHh8vOzu625wZUBhTSAQAAAAAAgHIuLy9Pa9eu1b333itvb2+LPm9vb917771at26d8vLyrJQhULFRSAcAAAAAAADKucTERB07dkwDBgyQjY1Nof6wsDClpqYqMTHRCtkBFR+FdAAAAAAAAKCcS0tLkyRNnDhRrVu3VlJSks6ePaukpCS1bt1aL7/8skUcgLLFzUYBAAAAAACAcs7d3V2S1LlzZ23YsEG2tpfPj/X399eGDRvUrVs3ffHFF2YcgLLFGekAAAAAAADAHc4wDGunAFRoFNIBAAAAAACAcu7kyZOSpC+++EKhoaEWU7uEhobqyy+/tIgDULYopAMAAAAAAADlnJeXlyQpOjpa33//vQIDA+Xq6qrAwEClpKRoxowZFnEAyhaFdAAAAAAAAKCcCwoKko+Pjz7++GPl5+db9OXl5SkuLk6+vr4KCgqyUoZAxUYhHQAAAAAAACjn7Ozs9Mgjj+jrr79Wdna2lixZohMnTmjJkiXKzs7W119/rYEDB8rOzs7aqQIVEoV0AAAAAAAAoJzLy8vT2rVrde+998rZ2VmjRo1SvXr1NGrUKFWtWlX33nuv1q1bp7y8PGunClRI9tZOAAAAAAAAAEDxEhMTdezYMa1atUodO3ZUYmKi0tLS5OXlpaCgIH311VcKDAxUYmKiunfvbu10gQqHQjoAAAAAAABQzqWlpUmSWrVqJTs7u0LF8latWlnEAShbTO0CAAAAAEA588Ybb8jGxkbjxo0z2y5evKiIiAjVrl1bLi4uGjBggDIyMiyWO378uPr27auqVavK3d1dEyZM0KVLlyxiEhIS1KFDBzk6OqpJkyaKiYkptP0FCxbIx8dHTk5O6tSpk7766iuL/pLkAqBseXl5SZJSUlKK7C9oL4gDULYopAMAAAAAUI7873//07vvvqs2bdpYtI8fP16bNm3S2rVrtWvXLp04cUJhYWFmf15envr27aucnBzt2bNHy5cvV0xMjCZPnmzGpKamqm/fvgoODtb+/fs1btw4jRw5Ulu3bjVj1qxZo8jISE2ZMkX79u1T27ZtFRISopMnT5Y4FwBlLygoSD4+PpoxY4by8/Mt+vLz8xUdHS1fX18FBQVZKUOgYqOQDgAAAABAOXHu3Dk99thjeu+991SzZk2zPTMzUx988IHeeust9ejRQ35+flq2bJn27NmjvXv3SpK2bdumgwcPasWKFWrXrp369OmjV199VQsWLFBOTo4kafHixfL19dWcOXPUvHlzjR07VgMHDtTcuXPNbb311lt68sknNWzYMLVo0UKLFy9W1apVtXTp0hLnUpTs7GxlZWVZPACUnJ2dnebMmaPNmzcrNDRUSUlJOnv2rJKSkhQaGqrNmzdr9uzZsrOzs3aqQIVEIR0AAAAAgHIiIiJCffv2Va9evSzak5OTlZuba9HerFkzNWjQQElJSZKkpKQktW7dWh4eHmZMSEiIsrKydODAATPm6nWHhISY68jJyVFycrJFjK2trXr16mXGlCSXokRHR8vNzc18eHt7l+q1ASCFhYVp3bp1+v777xUYGChXV1cFBgYqJSVF69at48oQ4BbiZqMAAAAAAJQDq1ev1r59+/S///2vUF96erocHBxUo0YNi3YPDw+lp6ebMVcW0Qv6C/qKi8nKytKFCxf0559/Ki8vr8iYH374ocS5FCUqKkqRkZHm86ysLIrpwA0ICwtT//79lZiYqLS0NHl5eSkoKIgz0YFbjEI6AAAAAABW9ssvv+jZZ59VfHy8nJycrJ3OLeHo6ChHR0drpwFUCHZ2durevbu10wAqFaZ2AQAAAADAypKTk3Xy5El16NBB9vb2sre3165du/Svf/1L9vb28vDwUE5Ojs6cOWOxXEZGhjw9PSVJnp6eysjIKNRf0FdcjKurq5ydnVWnTh3Z2dkVGXPlOq6XCwAAFQ2FdAAAAAAArKxnz576/vvvtX//fvNx77336rHHHjP/X6VKFW3fvt1c5vDhwzp+/LgCAgIkSQEBAfr+++918uRJMyY+Pl6urq5q0aKFGXPlOgpiCtbh4OAgPz8/i5j8/Hxt377djPHz87tuLgAAVDRM7QIAAAAAgJVVr15drVq1smirVq2aateubbaPGDFCkZGRqlWrllxdXfXMM88oICBA/v7+kqTevXurRYsWeuKJJzRz5kylp6dr0qRJioiIMKdUeeqppzR//ny98MILGj58uHbs2KGPPvpIW7ZsMbcbGRmp8PBw3Xvvvbrvvvv09ttv6/z58xo2bJgkyc3N7bq5AABQ0VBIBwAAAADgDjB37lzZ2tpqwIABys7OVkhIiBYuXGj229nZafPmzXr66acVEBCgatWqKTw8XNOnTzdjfH19tWXLFo0fP17z5s1T/fr19f777yskJMSM+fvf/65Tp05p8uTJSk9PV7t27fTZZ59Z3ID0erkAAFDR2BiGYVg7ifIiKytLbm5uyszMlKurq7XTAW7Ivn375OfnJ8/wt+Xo2cTa6dxW2ek/KX35OCUnJ6tDhw7WTge4IYxFpcdrBgAoDxiPSo/XDABgbaUZizgjHQAAAAAAALiD5OXlKTExUWlpafLy8lJQUJDs7OysnRZQoXGzUQAAAAAAAOAOERcXpyZNmig4OFiDBw9WcHCwmjRpori4OGunBlRoFNIBAAAAAACAO0BcXJwGDhyo1q1bKykpSWfPnlVSUpJat26tgQMHUkwHbiEK6QAAAAAAAEA5l5eXp+eee079+vXThg0b5O/vLxcXF/n7+2vDhg3q16+fnn/+eeXl5Vk7VaBCopAOAAAAAAAAlHOJiYk6duyYJk6cKMMwlJCQoFWrVikhIUGGYSgqKkqpqalKTEy0dqpAhcTNRgEAAAAAAIByLi0tTZJ05MgRDRo0SMeOHTP7fHx89Nprr1nEAShbnJEOAAAAAAAAlHNeXl6SpCeeeKLIOdKfeOIJizgAZYtCOgAAAAAAAFDOBQYGyt7eXu7u7lq7dq0uXryoTZs26eLFi1q7dq3c3d1lb2+vwMBAa6cKVEilKqRHR0erY8eOql69utzd3RUaGqrDhw9bxFy8eFERERGqXbu2XFxcNGDAAGVkZJj93377rQYNGiRvb285OzurefPmmjdvnsU64uLidP/996tu3bpydXVVQECAtm7dWmxux44dk42NTaHH3r17S7OLAAAAAAAAQLmzZ88eXbp0SRkZGapRo4aCg4M1ePBgBQcHq0aNGsrIyNClS5e0Z88ea6cKVEilKqTv2rVLERER2rt3r+Lj45Wbm6vevXvr/PnzZsz48eO1adMmrV27Vrt27dKJEycUFhZm9icnJ8vd3V0rVqzQgQMH9PLLLysqKkrz5883Y3bv3q37779fn376qZKTkxUcHKwHH3xQ33zzzXVz/Pzzz5WWlmY+/Pz8SrOLAAAAAAAAQLlz5dznFy9etOi78jlzpAO3RqluNvrZZ59ZPI+JiZG7u7uSk5PVtWtXZWZm6oMPPlBsbKx69OghSVq2bJmaN2+uvXv3yt/fX8OHD7dYR6NGjZSUlKS4uDiNHTtWkvT2229bxMyYMUMbN27Upk2b1L59+2JzrF27tjw9PUuzWwAAAAAAAEC55u7ubvH/IUOGqFGjRjp69Kg+/PBDnTx5slAcgLJTqkL61TIzMyVJtWrVknT5bPPc3Fz16tXLjGnWrJkaNGigpKQk+fv7X3M9BesoSn5+vs6ePVtsTIGHHnpIFy9e1N13360XXnhBDz300DVjs7OzlZ2dbT7Pysq67voBAAAAAACA2y0nJ0eSVKVKFf3yyy9ycHAw+15//XW5uLgoNzfXjANQtm74ZqP5+fkaN26cOnfurFatWkmS0tPT5eDgoBo1aljEenh4KD09vcj17NmzR2vWrNGoUaOuua3Zs2fr3LlzevTRR68Z4+Liojlz5mjt2rXasmWLunTpotDQUH3yySfXXCY6Olpubm7mw9vbu5g9BgAA11OS+6lcLSYmptA9TpycnG5TxgAAAMCdITY2VpJ06dIlhYWFady4cRo9erTGjRunsLAwXbp0ySIOQNm64TPSIyIilJKSoi+++OKGN56SkqL+/ftrypQp6t27d5ExsbGxmjZtmjZu3FjspSl16tRRZGSk+bxjx446ceKEZs2adc2z0qOioiyWycrKopgOAMBNKLifSseOHXXp0iVNnDhRvXv31sGDB1WtWrVrLufq6mpRcLexsbkd6QIAAAB3jHPnzkm6XPPasmVLof777rtPX331lRkHoGzdUCF97Nix2rx5s3bv3q369eub7Z6ensrJydGZM2cszkrPyMgoNG/5wYMH1bNnT40aNUqTJk0qcjurV6/WyJEjtXbtWovpYkqqU6dOio+Pv2a/o6OjHB0dS71eAABQtOvdT+VabGxsuMcJAAAAUIwuXbpow4YN+uqrr4qcI/2rr74y4wCUvVJN7WIYhsaOHav169drx44d8vX1tej38/NTlSpVtH37drPt8OHDOn78uAICAsy2AwcOKDg4WOHh4Xr99deL3NaqVas0bNgwrVq1Sn379i1Nmqb9+/fLy8vrhpYFAAA37+r7qVzLuXPn1LBhQ3l7e6t///46cODANWOzs7OVlZVl8QAAAAAqutGjR5v/9/PzU1hYmB5//HGFhYXJz8+vyDgAZadUZ6RHREQoNjZWGzduVPXq1c15z93c3OTs7Cw3NzeNGDFCkZGRqlWrllxdXfXMM88oICDAvNFoSkqKevTooZCQEEVGRprrsLOzU926dSVdns4lPDxc8+bNU6dOncyYgm1I0vz587V+/XqzaL98+XI5ODioffv2kqS4uDgtXbpU77///s2+RgAA4AYUdT+Votxzzz1aunSp2rRpo8zMTM2ePVuBgYE6cOCAxZVvBaKjozVt2rRbmToAAABQ7lxZ49q6dav+85//mM/t7Ows4saNG3c7UwMqhVKdkb5o0SJlZmaqe/fu8vLyMh9r1qwxY+bOnat+/fppwIAB6tq1qzw9PRUXF2f2r1u3TqdOndKKFSss1tGxY0czZsmSJbp06ZIiIiIsYp599lkz5vTp0zpy5IhFfq+++qr8/PzUqVMnbdy4UWvWrNGwYcNK/aIAAICbV3A/ldWrVxcbFxAQoCFDhqhdu3bq1q2b4uLiVLduXb377rtFxkdFRSkzM9N8/PLLL7cifQAAAKBcKaiDPf3007K1tSzp2djY6Omnn7aIA1C2SnVGumEY141xcnLSggULtGDBgiL7p06dqqlTpxa7joSEhOtu5+r1hIeHKzw8/LrLAQCAW+9a91MpiSpVqqh9+/b66aefiuznHicAAACojBo3bixJ6tChg86fP6+FCxfqyJEjaty4scaMGaOYmBiLOABlq1RnpAMAABTnevdTKYm8vDx9//333OcEAAAAuMKYMWNkb2+vSZMmydbWVuPGjdM777yjcePGydbWVpMnT5a9vb3GjBlj7VSBColCOgAAKDMRERFasWKFYmNjzfuppKen68KFC2bMkCFDFBUVZT6fPn26tm3bpqNHj2rfvn16/PHH9fPPP2vkyJHW2AUAAACgXHJwcND48eOVkZGh+vXra8mSJTpx4oSWLFmi+vXrKyMjQ+PHj5eDg4O1UwUqpFJN7QIAAFCcRYsWSZK6d+9u0b5s2TINHTpUknT8+HGLOR3//PNPPfnkk0pPT1fNmjXl5+enPXv2qEWLFrcrbQAAAOCOMHPmTEmX71E4evRos93e3l4TJkww+wGUPQrpAACgzJTkfipX3wtl7ty5mjt37i3KCAAAAKhYZs6cqddee63QHOmciQ7cWhTSAQAAAAAAgDuIg4ODxo0bZ+00gEqFOdIBAAAAAAAAACgGhXQAAAAAAAAAAIrB1C4AAAAAAADAHSQvL0+JiYlKS0uTl5eXgoKCZGdnZ+20gAqNM9IBAAAAAACAO0RcXJyaNGmi4OBgDR48WMHBwWrSpIni4uKsnRpQoXFGOgAAAAAAAHAHiIuL08CBA/W3v/1N/fv314ULF+Ts7KyffvpJAwcO1Lp16xQWFmbtNIEKiUI6AAAAAAAAUM7l5eXpueeeU6NGjbR161Zt2bLF7LO3t1ejRo30/PPPq3///kzzAtwCTO0CAAAAAAAAlHOJiYk6duyYjhw5otq1a+u9995TWlqa3nvvPdWuXVtHjhxRamqqEhMTrZ0qUCFxRjoAAAAAAABQzv3yyy+SJHd3d/3666+yt79c1hs5cqSGDh2qu+66SydPnjTjAJQtzkgHAAAAAAAAyrn//ve/kqThw4fLxsZGCQkJWrVqlRISEmRjY6OhQ4daxAEoW5yRDgAAAAAAAJRzhmFIkj799FOtXr1ax44dM/t8fHzk6upqEQegbFFIBwAAAAAAAMq5pk2bSpK+++47eXh4mDcePXr0qFasWGEW1gviAJQtCukAAAAAAABAOTd69GiNHz9ednZ2ysjI0Jw5c8w+Gxsb2dnZKS8vT6NHj7ZilkDFxRzpAAAAAAAAQDlXMPd5Xl5eoT7DMMx25kgHbg0K6QAAAAAAAEA599tvv5n/t7Gxsei78vmVcQDKDoV0AAAAAAAAoJxLT0+XJDVs2FDe3t4Wfd7e3mrYsKFFHICyRSEdAAAAAAAAKOf++OMPSdLPP/+sNm3aKCkpSWfPnlVSUpLatGmjn3/+2SIOQNmikA4AAAAAAADcYQzDMB8Abj17aycAAAAAAAAAoHi1atWSdHlql5SUFAUGBpp9vr6+atCggY4fP27GAShbFNIBAAAAAACAcs7T01PS5ald+vbtq+eff17Ozs66cOGC/vOf/2jLli0WcQDKFoV0AAAAAAAAoJy76667zP/v2LHDLJxLUtWqVYuMA1B2KKQDAAAAAAAA5VxQUJB8fHxUp04dnTp1yry5qCS5u7urTp06+v333xUUFGTFLIGKi0I6AAAAAAAAUM7Z2dlpzpw5GjhwoP72t78pNDRUFy5ckLOzs3766Sd9+umnWrdunezs7KydKlAhUUgHAAAAAAAA7gBhYWF6/vnnNXfuXIupXezt7fX8888rLCzMitkBFRuFdAAAAAAAAOAOEBcXp9mzZ6tv377q06ePxc1GZ8+eLX9/f4rpwC1CIR0AAAAAAAAo5/Ly8vTcc8+pX79+2rBhg2xtbc2+p556SqGhoXr++efVv39/pncBbgHb64cAAAAAAAAAsKbExEQdO3ZMEydOlGEYSkhI0KpVq5SQkCDDMBQVFaXU1FQlJiZaO1WgQuKMdAAAAAAAAKCcS0tLkyQdOXJEgwYN0rFjx8w+Hx8fvfbaaxZxAMoWhXQAAAAAAACgnPPy8pIkPfHEE3JycrLoy8jI0BNPPGERB6BsMbULAAAAAAAAUM4FBgbK1tZWhmHIMAyLvoI2W1tbBQYGWilDoGKjkA4AAAAAAACUc4mJicrPz5ckubq6asmSJTpx4oSWLFkiV1dXSVJ+fj5zpAO3CFO7AAAAAAAAAOXcjh07JEl33323srOzNWrUKLPPx8dHTZs21Y8//qgdO3aoZ8+e1koTqLA4Ix0AAAAAAAAo544fPy5JeuaZZ3To0CFFRESod+/eioiI0MGDBzV27FiLOABlizPSAQAAAAAAgHKuQYMGkqTo6Gg9++yz5jQv27Zt06JFi+Tp6WkRB6BscUY6AAAAAAAAUM716NFDknTixAmziF4gPz9fJ06csIgDULYopAMAAAAAAADlXGBgYJnGASgdCukAAAAAAABAObdw4cIyjQNQOhTSAQAAAAAAgHIuMTHR/L+jo6NFn5OTU5FxAMoOhXQAAAAAAACgnDt37pwkqVGjRjp69Kg8PDzk6OgoDw8PHTlyRI0aNbKIA1C27K2dAAAAAAAAAIDiubu7S5KOHj2qu+66y2zPyMiweF4QB6BscUY6AAAAAAAAUM75+vqWaRyA0qGQDgAAAAAAAJRzbdu2LdM4AKVDIR0AAAAAAAAo5yZMmGD+/8qbi0qSs7NzkXEAyg6FdAAAAAAAAKCcS09PN/9vY2NTojgAZYdCOgAAAAAAAFDOOTg4SJJq1qypnJwci76cnBzVqFHDIg5A2bK3dgIAAAAAAAAAijdhwgRNmTJFf/75p+6//36FhobK2dlZFy5c0IYNGxQfH2/GASh7nJEOAAAAAAAAlHNXFsjj4+M1f/581ahRQ/PnzzeL6FfHASg7pSqkR0dHq2PHjqpevbrc3d0VGhqqw4cPW8RcvHhRERERql27tlxcXDRgwABlZGSY/d9++60GDRokb29vOTs7q3nz5po3b57FOuLi4nT//ferbt26cnV1VUBAgLZu3Xrd/L777jsFBQXJyclJ3t7emjlzZml2DwAAAAAAACiX/vvf/1o8P3TokMLCwnTo0KFi4wCUjVIV0nft2qWIiAjt3btX8fHxys3NVe/evXX+/HkzZvz48dq0aZPWrl2rXbt26cSJEwoLCzP7k5OT5e7urhUrVujAgQN6+eWXFRUVpfnz55sxu3fv1v33369PP/1UycnJCg4O1oMPPqhvvvnmmrllZWWpd+/eatiwoZKTkzVr1ixNnTpVS5YsKc0uAgAAAABgFYsWLVKbNm3k6upqnlT2n//8x+y/3olrknT8+HH17dtXVatWlbu7uyZMmKBLly5ZxCQkJKhDhw5ydHRUkyZNFBMTUyiXBQsWyMfHR05OTurUqZO++uori/6S5AKgbKWlpZVpHIDSKdUc6Z999pnF85iYGLm7uys5OVldu3ZVZmamPvjgA8XGxqpHjx6SpGXLlql58+bau3ev/P39NXz4cIt1NGrUSElJSYqLi9PYsWMlSW+//bZFzIwZM7Rx40Zt2rRJ7du3LzK3lStXKicnR0uXLpWDg4Natmyp/fv366233tKoUaOKXCY7O1vZ2dnm86ysrNK8HEC55elio+Z/fSP7P07c9m0bebnKO/uH7KrXko1dldu67Ut/ZUgu175zOQAAAFCe1a9fX2+88YaaNm0qwzC0fPly9e/fX998841atmyp8ePHa8uWLVq7dq3c3Nw0duxYhYWF6csvv5Qk5eXlqW/fvvL09NSePXuUlpamIUOGqEqVKpoxY4YkKTU1VX379tVTTz2llStXavv27Ro5cqS8vLwUEhIiSVqzZo0iIyO1ePFiderUSW+//bZCQkJ0+PBhubu7S9J1cwFQ9ry8vMo0DkDp3NTNRjMzMyVJtWrVknT5bPPc3Fz16tXLjGnWrJkaNGigpKQk+fv7X3M9BesoSn5+vs6ePVtsTFJSkrp27WpxZ+KQkBC9+eab+vPPP1WzZs1Cy0RHR2vatGnF7yRwh6lTp44i/KtpUov11k7l9qsnvfZnNdWpU8famQCVVnR0tOLi4vTDDz/I2dlZgYGBevPNN3XPPfcUu9zatWv1yiuv6NixY2ratKnefPNN/e1vf7tNWQMAUD48+OCDFs9ff/11LVq0SHv37lX9+vWve+Latm3bdPDgQX3++efy8PBQu3bt9Oqrr+rFF1/U1KlT5eDgoMWLF8vX11dz5syRJDVv3lxffPGF5s6daxbS33rrLT355JMaNmyYJGnx4sXasmWLli5dqpdeeqlEJ9EBKHuOjo5lGgegdG64kJ6fn69x48apc+fOatWqlSQpPT1dDg4OqlGjhkWsh4eH0tPTi1zPnj17tGbNGm3ZsuWa25o9e7bOnTunRx999Jox6enp8vX1LbTdgr6iCulRUVGKjIw0n2dlZcnb2/ua2wDuBA0aNNDQdxJ06MSPVtl+amqqJk2apNdee63QZ/J2GPqPpqrfoMFt3y6AywqmgevYsaMuXbqkiRMnqnfv3jp48KCqVatW5DJ79uzRoEGDFB0drX79+ik2NlahoaHat2+feYwBAEBlk5eXp7Vr1+r8+fMKCAgo0YlrSUlJat26tfm3sHT5BLOnn35aBw4cUPv27ZWUlGSxjoKYcePGSZJycnKUnJysqKgos9/W1la9evVSUlKSpBs/iY6rwoGbExgYaPHc399fr732miZNmqS9e/daxBmGcbvTAyq8Gy6kR0REKCUlRV988cUNbzwlJUX9+/fXlClT1Lt37yJjYmNjNW3aNG3cuNG8hKysODo68i0dKqT6zfykZn5W2faFffv0TfpEebYPUfMOHaySAwDrud40cEWZN2+eHnjgAU2YMEGS9Oqrryo+Pl7z58/X4sWLb3nOAACUJ99//70CAgJ08eJFubi4aP369WrRooX2799/3RPX0tPTLYroBf0FfcXFZGVl6cKFC/rzzz+Vl5dXZMwPP/xgrqO0J9FJXBUOlKW77rpLe/fuNb/Qql+/vn799VcrZwVUbKW62WiBsWPHavPmzdq5c6fq169vtnt6eionJ0dnzpyxiM/IyJCnp6dF28GDB9WzZ0+NGjVKkyZNKnI7q1ev1siRI/XRRx8V+sb8ap6enoVubFLw/OptAwCA2+PqaeCKcq0z4wrOertadna2srKyLB4AAFQU99xzj/bv36///ve/evrppxUeHq6DBw9aO60yERUVpczMTPPxyy+/WDsl4I71888/a+fOnYqNjdXOnTt17Ngxa6cEVHilKqQbhqGxY8dq/fr12rFjR6FpG/z8/FSlShVt377dbDt8+LCOHz+ugIAAs+3AgQMKDg5WeHi4Xn/99SK3tWrVKg0bNkyrVq1S3759r5tbQECAdu/erdzcXLMtPj5e99xzT5HTugAAgFurqGnginKtM+OudUZbdHS03NzczAfTsgEAKhIHBwc1adJEfn5+io6OVtu2bTVv3rwSnbhWkhPMrhXj6uoqZ2dn1alTR3Z2dkXGXLmOkp5EdyVHR0e5urpaPACU3JUnp6Smpqp79+4aNGiQunfvrtTU1CLjAJSdUhXSIyIitGLFCsXGxqp69epKT09Xenq6Lly4IElyc3PTiBEjFBkZqZ07dyo5OVnDhg1TQECAOUdaSkqKgoOD1bt3b0VGRprrOHXqlLmd2NhYDRkyRHPmzFGnTp3MmIKz2iRp/vz56tmzp/l88ODBcnBw0IgRI3TgwAGtWbNG8+bNs5gDHQAA3D4F08CtXr26TNfL2WwAgMokPz9f2dnZJTpxLSAgQN9//71OnjxpxsTHx8vV1VUtWrQwY65cR0FMwTocHBzk5+dnEZOfn6/t27ebMSU9iQ5A2WrevLn5/6ZNm8rGxkZDhgyRjY2NmjZtWmQcgLJTqjnSFy1aJEnq3r27RfuyZcs0dOhQSdLcuXNla2urAQMGKDs7WyEhIVq4cKEZu27dOp06dUorVqzQihUrzPaGDRual6EsWbJEly5dUkREhCIiIsyY8PBwxcTESJJOnz6tI0eOmH1ubm7atm2bIiIi5Ofnpzp16mjy5MkaNWpUaXYRAACUgYJp4Hbv3m0xDVxRrnVm3LXOaOMeJwCAiioqKkp9+vRRgwYNdPbsWcXGxiohIUFbt261OHGtVq1acnV11TPPPGNx4lrv3r3VokULPfHEE5o5c6bS09M1adIkRUREmGPnU089pfnz5+uFF17Q8OHDtWPHDn300UfasmWLmUdkZKTCw8N177336r777tPbb7+t8+fPa9iwYZJUolwAlL0tW7YUujfBv//97yLjAJQ9G4Pb+JqysrLk5uamzMxMLjEDbtC+ffvk5+en5ORkdeBmo0Cp3eljkWEYeuaZZ7R+/XolJCRYnBlzLX//+9/1119/adOmTWZbYGCg2rRpU6Kbjd7prxkAoGIoi/FoxIgR2r59u9LS0uTm5qY2bdroxRdf1P333y9Junjxop577jmtWrXK4sS1K798/vnnn/X0008rISFB1apVU3h4uN544w3Z2//feXQJCQkaP368Dh48qPr16+uVV14xT44rMH/+fM2aNUvp6elq166d/vWvf6lTp05mf0lyuR2vGXCn++uvv8wb+ZZE//79i72paP369bVx48ZS5dCsWTNVrVq1VMsAFUVpxiIK6VdgEAduHoV04Obc6WPRmDFjFBsbq40bN+qee+4x293c3OTs7CxJGjJkiO666y5FR0dLkvbs2aNu3brpjTfeUN++fbV69WrNmDFD+/btK3Zu9QJ3+msGAKgYGI9Kj9cM+L+/oa2Jv99RmZVmLCrV1C4AAADFKck0cMePH5et7f/dpiUwMFCxsbGaNGmSJk6cqKZNm2rDhg0lKqIDAAAAd7JmzZopOTm51MtlZmZq9OjR+vHHH9W0aVO9++67cnNzu+EcAFwfhXQAAFBmSnKhW0JCQqG2Rx55RI888sgtyAgAAAAov6pWrXrDZ4OvXr1afn5+Wr16NWeUA7eB7fVDAAAAAAAAAACovCikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFKNUhfTo6Gh17NhR1atXl7u7u0JDQ3X48GGLmIsXLyoiIkK1a9eWi4uLBgwYoIyMDLP/22+/1aBBg+Tt7S1nZ2c1b95c8+bNs1hHWlqaBg8erLvvvlu2trYaN25cifKzsbEp9Fi9enVpdhEAAAAAAAAAAAulKqTv2rVLERER2rt3r+Lj45Wbm6vevXvr/PnzZsz48eO1adMmrV27Vrt27dKJEycUFhZm9icnJ8vd3V0rVqzQgQMH9PLLLysqKkrz5883Y7Kzs1W3bl1NmjRJbdu2LdUOLVu2TGlpaeYjNDS0VMsDAAAAAAAAAHAl+9IEf/bZZxbPY2Ji5O7uruTkZHXt2lWZmZn64IMPFBsbqx49eki6XNhu3ry59u7dK39/fw0fPtxiHY0aNVJSUpLi4uI0duxYSZKPj495lvrSpUtLtUM1atSQp6dnqZYBAABlY/fu3Zo1a5aSk5OVlpam9evXF/uldkJCgoKDgwu1p6WlMZ4DAAAAAMqNm5ojPTMzU5JUq1YtSZfPNs/NzVWvXr3MmGbNmqlBgwZKSkoqdj0F67hZERERqlOnju677z4tXbpUhmFcMzY7O1tZWVkWDwAAcOPOnz+vtm3basGCBaVa7vDhwxZXlLm7u9+iDAEAAAAAKL1SnZF+pfz8fI0bN06dO3dWq1atJEnp6elycHBQjRo1LGI9PDyUnp5e5Hr27NmjNWvWaMuWLTeaimn69Onq0aOHqlatqm3btmnMmDE6d+6c/vnPfxYZHx0drWnTpt30dgEAwGV9+vRRnz59Sr2cu7t7oeMHAAAAAADKixsupEdERCglJUVffPHFDW88JSVF/fv315QpU9S7d+8bXk+BV155xfx/+/btdf78ec2aNeuahfSoqChFRkaaz7OysuTt7X3TeQAAgNJp166dsrOz1apVK02dOlWdO3e+Zmx2drays7PN51xRBgAAAAC41W5oapexY8dq8+bN2rlzp+rXr2+2e3p6KicnR2fOnLGIz8jIKDTP6cGDB9WzZ0+NGjVKkyZNupE0rqtTp0769ddfLf7YvpKjo6NcXV0tHgAA4Pbx8vLS4sWL9fHHH+vjjz+Wt7e3unfvrn379l1zmejoaLm5uZkPvgQHAAAAANxqpSqkG4ahsWPHav369dqxY4d8fX0t+v38/FSlShVt377dbDt8+LCOHz+ugIAAs+3AgQMKDg5WeHi4Xn/99ZvchWvbv3+/atasKUdHx1u2DQAAcOPuuecejR49Wn5+fgoMDNTSpUsVGBiouXPnXnOZqKgoZWZmmo9ffvnlNmYMAAAAAKiMSjW1S0REhGJjY7Vx40ZVr17dnPfczc1Nzs7OcnNz04gRIxQZGalatWrJ1dVVzzzzjAICAuTv7y/p8nQuPXr0UEhIiCIjI8112NnZqW7duua29u/fL0k6d+6cTp06pf3798vBwUEtWrSQJK1fv15RUVH64YcfJEmbNm1SRkaG/P395eTkpPj4eM2YMUPPP//8zb1CAADgtrrvvvuKnTrO0dGRL8kBAAAAALdVqQrpixYtkiR1797don3ZsmUaOnSoJGnu3LmytbXVgAEDlJ2drZCQEC1cuNCMXbdunU6dOqUVK1ZoxYoVZnvDhg117Ngx83n79u3N/ycnJys2NtYiJjMzU4cPHzZjqlSpogULFmj8+PEyDENNmjTRW2+9pSeffLI0uwgAAKxs//798vLysnYaAAAAAACYSlVINwzjujFOTk5asGCBFixYUGT/1KlTNXXq1Jve1tChQ83ivSQ98MADeuCBB667XgAAcOucO3dOP/30k/k8NTVV+/fvV61atdSgQQNFRUXpt99+04cffihJevvtt+Xr66uWLVvq4sWLev/997Vjxw5t27bNWrsAAAAAAEAhpSqkAwAAFOfrr79WcHCw+TwyMlKSFB4erpiYGKWlpen48eNmf05Ojp577jn99ttvqlq1qtq0aaPPP//cYh0AAAAAAFgbhXQAAFBmunfvXuxVZTExMRbPX3jhBb3wwgu3OCsAAAAAAG6OrbUTAAAAAAAAAACgPKOQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAUA5ER0erY8eOql69utzd3RUaGqrDhw9bxFy8eFERERGqXbu2XFxcNGDAAGVkZFjEHD9+XH379lXVqlXl7u6uCRMm6NKlSxYxCQkJ6tChgxwdHdWkSRPFxMQUymfBggXy8fGRk5OTOnXqpK+++qrUuQAAUFFQSAcAAAAAoBzYtWuXIiIitHfvXsXHxys3N1e9e/fW+fPnzZjx48dr06ZNWrt2rXbt2qUTJ04oLCzM7M/Ly1Pfvn2Vk5OjPXv2aPny5YqJidHkyZPNmNTUVPXt21fBwcHav3+/xo0bp5EjR2rr1q1mzJo1axQZGakpU6Zo3759atu2rUJCQnTy5MkS5wIAQEViYxiGYe0kyousrCy5ubkpMzNTrq6u1k4HuCPt27dPfn5+Sk5OVocOHaydDnDHYSwqPV4zAEB5cCvGo1OnTsnd3V27du1S165dlZmZqbp16yo2NlYDBw6UJP3www9q3ry5kpKS5O/vr//85z/q16+fTpw4IQ8PD0nS4sWL9eKLL+rUqVNycHDQiy++qC1btiglJcXc1j/+8Q+dOXNGn332mSSpU6dO6tixo+bPny9Jys/Pl7e3t5555hm99NJLJcrlatnZ2crOzrZ4zby9vRnDgRvE39/AzSvN+M0Z6QAAAAAAlEOZmZmSpFq1akmSkpOTlZubq169epkxzZo1U4MGDZSUlCRJSkpKUuvWrc0iuiSFhIQoKytLBw4cMGOuXEdBTME6cnJylJycbBFja2urXr16mTElyeVq0dHRcnNzMx/e3t439sIAAGAFFNIBAAAAAChn8vPzNW7cOHXu3FmtWrWSJKWnp8vBwUE1atSwiPXw8FB6eroZc2URvaC/oK+4mKysLF24cEGnT59WXl5ekTFXruN6uVwtKipKmZmZ5uOXX34p4asBAID12Vs7AQAAAAAAYCkiIkIpKSn64osvrJ1KmXF0dJSjo6O10wAA4IZwRjoAAAAAAOXI2LFjtXnzZu3cuVP169c32z09PZWTk6MzZ85YxGdkZMjT09OMycjIKNRf0FdcjKurq5ydnVWnTh3Z2dkVGXPlOq6XCwAAFQmFdAAAAAAAygHDMDR27FitX79eO3bskK+vr0W/n5+fqlSpou3bt5tthw8f1vHjxxUQECBJCggI0Pfff6+TJ0+aMfHx8XJ1dVWLFi3MmCvXURBTsA4HBwf5+flZxOTn52v79u1mTElyAQCgImFqFwAAAAAAyoGIiAjFxsZq48aNql69ujnXuJubm5ydneXm5qYRI0YoMjJStWrVkqurq5555hkFBATI399fktS7d2+1aNFCTzzxhGbOnKn09HRNmjRJERER5rQqTz31lObPn68XXnhBw4cP144dO/TRRx9py5YtZi6RkZEKDw/Xvffeq/vuu09vv/22zp8/r2HDhpk5XS8XAAAqEgrpAAAAAACUA4sWLZIkde/e3aJ92bJlGjp0qCRp7ty5srW11YABA5Sdna2QkBAtXLjQjLWzs9PmzZv19NNPKyAgQNWqVVN4eLimT59uxvj6+mrLli0aP3685s2bp/r16+v9999XSEiIGfP3v/9dp06d0uTJk5Wenq527drps88+s7gB6fVyAQCgIrExDMOwdhLlRVZWltzc3JSZmSlXV1drpwPckfbt2yc/Pz8lJyerQ4cO1k4HuOMwFpUerxkAoDxgPCo9XjPg5vD3N3DzSjMWMUc6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUw97aCQAAAAAAAAB3quPHj+v06dO3fbuHDh2y+Nca6tSpowYNGlht+8DtRCEdAAAAAAAAuAHHjx/XPc2a6+KFv6yWw+OPP261bTs5V9XhHw5RTEelQCEdAAAAAAAAuAGnT5/WxQt/qXa/51Sltvdt3bZxKUeXMjNk7+YhG3uH27ptScr9/Rf9vnmOTp8+TSEdlQKFdAAAAKASy8nJ0cKFC3XkyBE1btxYY8aMkYPD7f9jHACAO1mV2t5y9Gxy+zdcv8Xt3yZQSVFIBwAAACqpF154QXPnztWlS5fMtgkTJmj8+PGaOXOmFTMDAAAAyhdbaycAAAAA4PZ74YUXNGvWLNWuXVvvvfee0tLS9N5776l27dqaNWuWXnjhBWunCAAAAJQbFNIBAACASiYnJ0dz586Vh4eHfv31V40cOVKenp4aOXKkfv31V3l4eGju3LnKycmxdqoAAABAuUAhHQAAAKhkFi5cqEuXLum1116Tvb3lbI/29vaaPn26Ll26pIULF1opQwAAAKB8oZAOAAAAVDJHjhyRJPXr16/I/oL2gjgAAACgsqOQDgAAAFQyjRs3liRt3ry5yP6C9oI4AAAAoLKjkA4AAABUMmPGjJG9vb0mTZqkS5cuWfRdunRJkydPlr29vcaMGWOlDAEAAIDyhUI6AAAAUMk4ODho/PjxysjIUP369bVkyRKdOHFCS5YsUf369ZWRkaHx48fLwcHB2qkCAAAA5YL99UMAAAAAVDQzZ86UJM2dO1ejR4822+3t7TVhwgSzHwAAAACFdAAAAKDSmjlzpl577TUtXLhQR44cUePGjTVmzBjORAcAAACuQiEdAAAAqMQcHBw0btw4a6cBAAAAlGulmiM9OjpaHTt2VPXq1eXu7q7Q0FAdPnzYIubixYuKiIhQ7dq15eLiogEDBigjI8Ps//bbbzVo0CB5e3vL2dlZzZs317x58yzWkZaWpsGDB+vuu++Wra1tiQ/sjx8/rr59+6pq1apyd3fXhAkTCt08CQAAAAAAAACA0ihVIX3Xrl2KiIjQ3r17FR8fr9zcXPXu3Vvnz583Y8aPH69NmzZp7dq12rVrl06cOKGwsDCzPzk5We7u7lqxYoUOHDigl19+WVFRUZo/f74Zk52drbp162rSpElq27ZtiXLLy8tT3759lZOToz179mj58uWKiYnR5MmTS7OLAAAAAAAAAABYKFUh/bPPPtPQoUPVsmVLtW3bVjExMTp+/LiSk5MlSZmZmfrggw/01ltvqUePHvLz89OyZcu0Z88e7d27V5I0fPhwzZs3T926dVOjRo30+OOPa9iwYYqLizO34+Pjo3nz5mnIkCFyc3MrUW7btm3TwYMHtWLFCrVr1059+vTRq6++qgULFignJ6c0uwkAAG7Q7t279eCDD6pevXqysbHRhg0brrtMQkKCOnToIEdHRzVp0kQxMTG3PE8AAAAAAErjpuZIz8zMlCTVqlVL0uWzzXNzc9WrVy8zplmzZmrQoIGSkpLk7+9/zfUUrONGJSUlqXXr1vLw8DDbQkJC9PTTT+vAgQNq3759oWWys7OVnZ1tPs/KyrqpHICK4K+//tIPP/xww8sfOnTI4t8b0axZM1WtWvWGlwdgPefPn1fbtm01fPhwiyvSriU1NVV9+/bVU089pZUrV2r79u0aOXKkvLy8FBISchsyBgAAAADg+m64kJ6fn69x48apc+fOatWqlSQpPT1dDg4OqlGjhkWsh4eH0tPTi1zPnj17tGbNGm3ZsuVGUzG3fWURvWC7BX1FiY6O1rRp025qu0BF88MPP8jPz++m1/P444/f8LLJycnq0KHDTecA4Pbr06eP+vTpU+L4xYsXy9fXV3PmzJEkNW/eXF988YXmzp17zUI6X4QDAAAAAG63Gy6kR0REKCUlRV988cUNbzwlJUX9+/fXlClT1Lt37xtez42KiopSZGSk+TwrK0ve3t63PQ+gPGnWrJk5XdONuHDhgo4dOyYfHx85OzvfcA4AKoekpCSLK9mky1eUFXejcb4IBwAAAADcbjdUSB87dqw2b96s3bt3q379+ma7p6encnJydObMGYuz0jMyMuTp6WmxjoMHD6pnz54aNWqUJk2adGPZX8HT01NfffWVRVtGRobZVxRHR0c5Ojre9LaBiqRq1ao3fTZ4586dyygbABXdta4oy8rK0oULF4r8Qo4vwgEAAAAAt1upbjZqGIbGjh2r9evXa8eOHfL19bXo9/PzU5UqVbR9+3az7fDhwzp+/LgCAgLMtgMHDig4OFjh4eF6/fXXb3IXLgsICND333+vkydPmm3x8fFydXVVixYtymQbAADA+hwdHeXq6mrxAAAAAADgVirVGekRERGKjY3Vxo0bVb16dXPucTc3Nzk7O8vNzU0jRoxQZGSkatWqJVdXVz3zzDMKCAgwbzSakpKiHj16KCQkRJGRkeY67OzsVLduXXNb+/fvlySdO3dOp06d0v79++Xg4GAWxdevX6+oqCjzpoi9e/dWixYt9MQTT2jmzJlKT0/XpEmTFBERwVnnAACUU56enuYVZAUyMjLk6up6w9NDAQAAAABQ1kpVSF+0aJEkqXv37hbty5Yt09ChQyVJc+fOla2trQYMGKDs7GyFhIRo4cKFZuy6det06tQprVixQitWrDDbGzZsqGPHjpnP27dvb/4/OTlZsbGxFjGZmZk6fPiwGWNnZ6fNmzfr6aefVkBAgKpVq6bw8HBNnz69NLsIAABuo4CAAH366acWbfHx8RZXsgEAAAAAYG2lKqQbhnHdGCcnJy1YsEALFiwosn/q1KmaOnXqTW9r6NChZvG+QMOGDQv9MQ4AAG6fc+fO6aeffjKfp6amav/+/apVq5YaNGigqKgo/fbbb/rwww8lSU899ZTmz5+vF154QcOHD9eOHTv00UcfacuWLdbaBQAAAAAACinVHOkAAADF+frrr9W+fXvzyrLIyEi1b99ekydPliSlpaXp+PHjZryvr6+2bNmi+Ph4tW3bVnPmzNH777+vkJAQq+QPAAAAAEBRSnVGOgAAQHG6d+9e7FVlMTExRS7zzTff3MKsAAAAAAC4OZyRDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAx7K2dAAAAAAAAAHCn8nSxUWuHE6piY2ftVG6rXIcTkouNtdMAbhsK6QAAAEAllpeXp8TERKWlpcnLy0tBQUGys6tchQAAAG7GaD8HTa232Npp3H71pKl+DtbOArhtKKQDAAAAlVRcXJyee+45HTt2zGzz8fHRnDlzFBYWZr3EAAC4g7ybnKM9dz+rKrW9rZ3KbZX7+y/6PnmWHrJ2IsBtQiEdAAAAqITi4uI0cOBA9evXT6tWrVKrVq2UkpKiGTNmaODAgVq3bh3FdAAASiD9nCHl1JOj4WvtVG6r7Jy8y/sOVBLcbBQAAACoZPLy8vTcc8+pX79+2rBhg/z9/eXi4iJ/f39t2LBB/fr10/PPP6+8vDxrpwoAAACUCxTSAQAAgEomMTFRx44d08SJE2Vra/knga2traKiopSamqrExEQrZQgAAACULxTSAQAAgEomLS1NktSqVasi+wvaC+IAAACAyo5COgAAAFDJeHl5SZJSUlKK7C9oL4gDAAAAKjsK6QAAAEAlExQUJB8fH82YMUP5+fkWffn5+YqOjpavr6+CgoKslCEAAABQvlBIBwAAACoZOzs7zZkzR5s3b1ZoaKiSkpJ09uxZJSUlKTQ0VJs3b9bs2bNlZ2dn7VQBAACAcsHe2gkAAAAAuP3CwsK0bt06PffccwoMDDTbfX19tW7dOoWFhVkxOwAAAKB8oZAOAAAAVFJhYWHq37+/EhMTlZaWJi8vLwUFBXEmOgAAAHAVCukAAABAJWZnZ6fu3btbOw0AAACgXKOQDgAAAFRieXl5nJEOAAAAXAc3GwUAAAAqqbi4ODVp0kTBwcEaPHiwgoOD1aRJE8XFxVk7NQAAAKBcoZAOAAAAVEJxcXEaOHCgWrduraSkJJ09e1ZJSUlq3bq1Bg4cSDEdAAAAuAKFdAAAAKCSycvL03PPPad+/fppw4YN8vf3l4uLi/z9/bVhwwb169dPzz//vPLy8qydKgAAAFAuUEgHAAAAKpnExEQdO3ZMEydOlK2t5Z8Etra2ioqKUmpqqhITE62UIQAAAFC+UEgHAAAAKpm0tDRJUqtWrYrsL2gviAMAAAAqO3trJwAAAADg9vLy8pIkpaSkqEOHDlq4cKGOHDmixo0ba8yYMUpJSbGIAwAAACo7CukAAABAJRMUFCQfHx89/vjj+vnnn3Xp0iWzb8KECWrYsKF8fX0VFBRkxSwBAACA8oOpXQAAAIBKxs7OTm3bttWRI0dka2url156ST/++KNeeukl2dra6siRI2rTpo3s7OysnSoAAABQLnBGOgAAAFDJ5OTkaMuWLXJzc5Obm5veeOMNvfHGG5Kkhg0b6syZM9qyZYtycnLk4OBg5WwBAAAA6+OMdAAAAKCSWbhwoS5duqTZs2fr6NGj2rlzp2JjY7Vz504dOXJEM2fO1KVLl7Rw4UJrpwoAAACUCxTSAQAAgErmyJEjkqR+/foV2V/QXhAHAAAAVHZM7QIAAABUMo0bN5YkTZ8+Xf/5z3907Ngxs8/Hx0cPPPCARRwAAABQ2XFGOgAAAFDJjBkzRra2tlq0aJFatmyppKQknT17VklJSWrZsqUWL14sW1tbjRkzxtqpApXK7t279eCDD6pevXqysbHRhg0bLPoNw9DkyZPl5eUlZ2dn9erVSz/++KNFzB9//KHHHntMrq6uqlGjhkaMGKFz585ZxHz33XcKCgqSk5OTvL29NXPmzEK5rF27Vs2aNZOTk5Nat26tTz/9tNS5AABQkVBIBwAAACoZOzs7ubi4SJK+/vprfffdd8rKytJ3332nr7/+WpLk4uIiOzs7a6YJVDrnz59X27ZttWDBgiL7Z86cqX/9619avHix/vvf/6patWoKCQnRxYsXzZjHHntMBw4cUHx8vDZv3qzdu3dr1KhRZn9WVpZ69+6thg0bKjk5WbNmzdLUqVO1ZMkSM2bPnj0aNGiQRowYoW+++UahoaEKDQ1VSkpKqXIBAKAioZAOAAAAVDKJiYnKysrSY489pt9//12jR4/WXXfdpdGjR+v333/X4MGDlZWVpcTERGunClQqffr00WuvvaaHH364UJ9hGHr77bc1adIk9e/fX23atNGHH36oEydOmGeuHzp0SJ999pnef/99derUSV26dNE777yj1atX68SJE5KklStXKicnR0uXLlXLli31j3/8Q//85z/11ltvmduaN2+eHnjgAU2YMEHNmzfXq6++qg4dOmj+/PklzgUAgIqGQjoAAABQyaSlpUmSFi9erPPnz2vu3LkaO3as5s6dq/Pnz2vx4sUWcQCsLzU1Venp6erVq5fZ5ubmpk6dOikpKUmSlJSUpBo1aujee+81Y3r16iVbW1v997//NWO6du0qBwcHMyYkJESHDx/Wn3/+acZcuZ2CmILtlCSXomRnZysrK8viAQDAnYKbjQIAAACVjJeXlyQpJSVF/v7+GjdunEV/cnKyRRwA60tPT5ckeXh4WLR7eHiYfenp6XJ3d7fot7e3V61atSxifH19C62joK9mzZpKT0+/7naul0tRoqOjNW3atOvvLAAA5RBnpAMAAACVTFBQkHx8fDRjxgzl5uYqISFBq1atUkJCgnJzcxUdHS1fX18FBQVZO1UAFUhUVJQyMzPNxy+//GLtlAAAKDHOSAcAAAAqGTs7O82ZM0cDBgyQm5ubLly4YPY5OzvrwoUL+vjjj7nZKFCOeHp6SpIyMjIsrhbJyMhQu3btzJiTJ09aLHfp0iX98ccf5vKenp7KyMiwiCl4fr2YK/uvl0tRHB0d5ejoWKL9BQCgvKGQDgAAAFRSNjY2RbYV1Q7Aunx9feXp6ant27ebxeqsrCz997//1dNPPy1JCggI0JkzZ5ScnCw/Pz9J0o4dO5Sfn69OnTqZMS+//LJyc3NVpUoVSVJ8fLzuuece1axZ04zZvn27xbRP8fHxCggIKHEuQGWT+/vtv8LCuJSjS5kZsnfzkI29w/UXKGPW2GfAmiikAwAAAJVMXl6ennvuOfXr108ff/yxvvzyS6WlpcnLy0udO3fWgAED9Pzzz6t///6clQ7cRufOndNPP/1kPk9NTdX+/ftVq1YtNWjQQOPGjdNrr72mpk2bytfXV6+88orq1aun0NBQSVLz5s31wAMP6Mknn9TixYuVm5ursWPH6h//+Ifq1asnSRo8eLCmTZumESNG6MUXX1RKSormzZunuXPnmtt99tln1a1bN82ZM0d9+/bV6tWr9fXXX2vJkiWSLn/hdr1cgMqiTp06cnKuqt83z7F2Klbh5FxVderUsXYawG1BIR0AAACoZBITE3Xs2DGtWrVKVapUUffu3S36o6KiFBgYqMTExEJ9AG6dr7/+WsHBwebzyMhISVJ4eLhiYmL0wgsv6Pz58xo1apTOnDmjLl266LPPPpOTk5O5zMqVKzV27Fj17NlTtra2GjBggP71r3+Z/W5ubtq2bZsiIiLk5+enOnXqaPLkyRo1apQZExgYqNjYWE2aNEkTJ05U06ZNtWHDBrVq1cqMKUkuQGXQoEEDHf7hkE6fPn3bt33o0CE9/vjjWrFihZo3b37bty9d/iKhQYMGVtk2cLvZGIZhWDuJ8iIrK0tubm7KzMyUq6urtdMBAFRCjEWlx2sGlN6qVas0ePBgnT17Vi4uLoX6z549K1dXV8XGxmrQoEFWyBC48zAelR6vGXBz9u3bJz8/PyUnJ6tDhw7WTge4I5VmLLK9TTkBAAAAKCcKbg6YkpJSZH9B+5U3EQQAAAAqMwrpAAAAQCUTFBQkHx8fzZgxQ/n5+RZ9+fn5io6Olq+vr4KCgqyUIQAAAFC+UEgHAAAAKhk7OzvNmTNHmzdvVmhoqJKSknT27FklJSUpNDRUmzdv1uzZs7nRKAAAAPD/42ajAAAAQCUUFhamdevW6bnnnlNgYKDZ7uvrq3Xr1iksLMyK2QEAAADlC4V0AAAAoJIKCwtT//79lZiYqLS0NHl5eSkoKIgz0QEAAICrUEgHAAAAKjE7Ozt1797d2mkAAAAA5Vqp5kiPjo5Wx44dVb16dbm7uys0NFSHDx+2iLl48aIiIiJUu3Ztubi4aMCAAcrIyDD7v/32Ww0aNEje3t5ydnZW8+bNNW/evELbSkhIUIcOHeTo6KgmTZooJiam2NyOHTsmGxubQo+9e/eWZhcBAACASiUvL08JCQlatWqVEhISlJeXZ+2UAAAAgHKnVIX0Xbt2KSIiQnv37lV8fLxyc3PVu3dvnT9/3owZP368Nm3apLVr12rXrl06ceKExfyKycnJcnd314oVK3TgwAG9/PLLioqK0vz5882Y1NRU9e3bV8HBwdq/f7/GjRunkSNHauvWrdfN8fPPP1daWpr58PPzK80uAgCAMrBgwQL5+PjIyclJnTp10ldffXXN2JiYmEJfhDs5Od3GbIHKKy4uTo0bN1ZwcLAGDx6s4OBgNW7cWHFxcdZODQAAAChXSjW1y2effWbxPCYmRu7u7kpOTlbXrl2VmZmpDz74QLGxserRo4ckadmyZWrevLn27t0rf39/DR8+3GIdjRo1UlJSkuLi4jR27FhJ0uLFi+Xr66s5c+ZIkpo3b64vvvhCc+fOVUhISLE51q5dW56enqXZLQAAUIbWrFmjyMhILV68WJ06ddLbb7+tkJAQHT58WO7u7kUu4+rqanGVm42Nze1KF6i04uLiNGDAADk7O1u0nzx5UgMGDNDHH3/MDUcBAACA/1+pzki/WmZmpiSpVq1aki6fbZ6bm6tevXqZMc2aNVODBg2UlJRU7HoK1iFJSUlJFuuQpJCQkGLXUeChhx6Su7u7unTpok8++aTY2OzsbGVlZVk8AADAzXnrrbf05JNPatiwYWrRooUWL16sqlWraunSpddcxsbGRp6enubDw8PjNmYMVD55eXl66qmnJEk9e/ZUUlKSzp49q6SkJPXs2VOS9PTTTzPNCwAAAPD/u+FCen5+vsaNG6fOnTurVatWkqT09HQ5ODioRo0aFrEeHh5KT08vcj179uzRmjVrNGrUKLMtPT290B/QHh4eysrK0oULF4pcj4uLi+bMmaO1a9dqy5Yt6tKli0JDQ4stpkdHR8vNzc18eHt7l2TXAQDANeTk5Cg5OdniC3FbW1v16tWr2C/Ez507p4YNG8rb21v9+/fXgQMHrhnLF+HAzUtISNCpU6fUpUsXbdy4Uf7+/nJxcZG/v782btyoLl266OTJk0pISLB2qgAAAEC5cMOF9IiICKWkpGj16tU3vPGUlBT1799fU6ZMUe/evW94PZJUp04dRUZGqlOnTurYsaPeeOMNPf7445o1a9Y1l4mKilJmZqb5+OWXX24qBwAAKrvTp08rLy+vyC/Er/Wl+j333KOlS5dq48aNWrFihfLz8xUYGKhff/21yHi+CAduXkGBfNq0abK1tfyTwNbWVlOmTLGIAwAAACq7Gyqkjx07Vps3b9bOnTtVv359s93T01M5OTk6c+aMRXxGRkahecsPHjyonj17atSoUZo0aZJFn6enpzIyMgqtw9XVtdAcjsXp1KmTfvrpp2v2Ozo6ytXV1eIBAABur4CAAA0ZMkTt2rVTt27dFBcXp7p16+rdd98tMp4vwoGylZeXp4SEBK1atUoJCQlM5wIAAID/r707j9OqrP/H/xq2AQUGQdZk00hFzQU3sJSUJHfcNStE3BI0JDUt9zRSc19TCzS13FLL3VC0FDfMJbePC4hLoKQwiIDK3L8//HF/HYEjIDoO83w+HvdD7utc5zrvc+YeLnnNmeuwEEv0sNFSqZRDDz00N910U8aNG5eePXvW2t6nT580bdo0Y8eOza677pokefHFFzN58uT07du33O/ZZ5/NlltumcGDB+fUU09d4Dh9+/bN7bffXqvtnnvuqTXG4njyySfTuXPnJdoHAFh6K6+8cho3brzQH4gv7sPAmzZtmvXXX3+RPwyvrKxMZWXlF64VGrL+/fvnlFNOybBhwzJ79uy89tpr5W3du3cv37zSv3//OqoQAAC+XpYoSB82bFiuueaa3HLLLWnVqlX5V7SrqqrSokWLVFVVZejQoRk5cmTatm2b1q1b59BDD03fvn2z6aabJvlkOZctt9wyAwcOzMiRI8tjNG7cOO3bt0+SHHzwwbngggty1FFHZb/99su9996b6667Lrfddlu5lgsuuCA33XRTxo4dmyS54oor0qxZs6y//vpJkr/+9a/54x//mMsvv/wLXiIAYHE1a9Ysffr0ydixYzNo0KAknzxXZezYsRk+fPhijTFv3rw888wz2Xbbbb/ESqFh69+/f6qqqvLCCy8ssLTL66+/npqamlRVVQnSAQDg/7dEQfrFF1+cZME7U0aPHp199903SXL22WenUaNG2XXXXTN37twMHDgwF110UbnvDTfckHfeeSdXXXVVrrrqqnJ79+7dM2nSpCRJz549c9ttt+Xwww/Pueeem1VWWSWXX355Bg4cWO4/bdq0vPLKK7Xq+PWvf53XXnstTZo0yRprrJFrr702u+2225KcIgDwBY0cOTKDBw/OhhtumI033jjnnHNOZs2alSFDhiRJfvKTn+Qb3/hGRo0alSQ5+eSTs+mmm+ab3/xmpk+fnjPOOCOvvfZa9t9//7o8DVjulUqlL7QdAAAakoqS/0Muq66uTlVVVWbMmGG9dADqxPIyF11wwQU544wzMmXKlKy33no577zzsskmmyT55AfyPXr0yJgxY5Ikhx9+eP76179mypQpWWmlldKnT5+ccsop5d8y+zzLyzWDr9LYsWMzYMCArLnmmpk1a1YmT55c3jZ/aZcXXngh//jHP7LVVlvVYaVQf5iPlpxrBl/ME088kT59+mTChAnZYIMN6rocqJeWZC5aqoeNAgAUGT58eF577bXMnTs3jzzySDlET5Jx48aVQ/Tkk99mm993ypQpue222xY7RAeWzrhx45Ike+65ZyoqKhbYvueee9bqBwAADd0SLe0CAAAsP0488cRst912GTRoUGbPnp0WLVrk5ZdfzkknnVTXpQEAwNeKIB0AABqYzTffPElSWVmZO++8M/PmzStva9y4cSorKzN37txyPwAAaOgs7QIAAA1Mo0af/DNg7ty5adSoUY4++ui89NJLOfroo9OoUaPMnTu3Vj8AAGjo3JEOAAANzFtvvVX+c5MmTfLb3/42v/3tb5MkLVq0yEcffbRAPwAAaMjcYgIAAA3MI488kiTZeeed07Fjx1rbOnXqlEGDBtXqBwAADZ070gEAoIEplUpJkvfffz//93//lwcffDD//e9/07lz52y22WbZbrvtavUDAICGzh3pAADQwPTq1StJcs8992TXXXdNZWVltt9++1RWVmbXXXfNPffcU6sfAAA0dIJ0AABoYA455JA0adIkVVVVefrpp9OvX7+0bt06/fr1yzPPPJOqqqo0adIkhxxySF2XCgAAXwuCdAAAaGCaNWuWww8/PDNmzMicOXMycuTIXHDBBRk5cmRmz56dGTNm5PDDD0+zZs3qulQAAPhasEY6AAA0QKeffnqS5Oyzz85ZZ51Vbm/SpEmOPPLI8nYAAECQDgAADdbpp5+eU045JRdddFFeeeWVrLbaajnkkEPciQ4AAJ8hSAcAgAasWbNmGTFiRF2XAQAAX2vWSAcAgAZs9uzZGT58eAYOHJjhw4dn9uzZdV0SAAB87QjSAQCggRo0aFBWWGGFXHjhhbn77rtz4YUXZoUVVsigQYPqujQAAPhaEaQDAEADNGjQoNxyyy1p1qxZjj766Lz88ss5+uij06xZs9xyyy3CdAAA+BRBOgAANDCzZ88uh+jTp0/PwIED8+ijj2bgwIGZPn16OUy3zAsAAHzCw0YBAKCBOfLII5Mk2223XXr37p1JkyaVt/Xo0SPbbrttbr755hx55JG54IIL6qhKAAD4+nBHOgAANDAvvfRSkuSmm27KOuusk/Hjx2fmzJkZP3581llnndx88821+gEAQEMnSAcAgAZm1VVXTZKsttpque666/Lwww/nmGOOycMPP5zrrruuvH3+fwEAoKGztAsAADQwO+64Yy655JJMnDgxLVu2zLx588rbjjjiiJRKpXI/AABAkA4AAA3O9OnTkyQ1NTULbPt0qD6/HwAANHSWdgEAgAamXbt2y7QfAAAs7wTpAADQwPz73/9OkjRq1Chdu3atta1r165p1KhRrX4AANDQCdIBAKCB+fvf/57kk6Vd3njjjVrb3njjjfKSL/P7AQBAQydIBwAAAACAAh42CgAADcyaa66ZBx98MEmyzTbbZLvttkuLFi0ye/bs3Hbbbbn99tvL/QAAAHekAwBAg/Pph4g+/vjjadKkSQYOHJgmTZrk8ccfX2g/AABoyNyRDgAADcybb75Z/vPbb7+dgw466HP7AQBAQ+aOdAAAaGC6deuWJFlxxRUXun1++/x+AADQ0AnSAQCggdlyyy2TJLNmzVro9vnt8/sBAEBDJ0gHAIAGpl+/fsu0HwAALO8E6QAA0MCcf/75y7QfAAAs7wTpAADQwPzpT39apv0AAGB5J0gHAIAG5r333lum/QAAYHknSAcAgAamadOmy7QfAAAs7wTpAADQwPz3v/9dpv0AAGB5J0gHAIAG5sMPP1ym/QAAYHknSAcAgAamoqJimfYDAIDlnSAdAAAamJYtWy7TfgAAsLwTpAMAQAOzwgorLNN+AACwvBOkAwBAA/PBBx8s034AALC8E6QDAEAD8/HHHy/TfgAAsLwTpAMAQAPTpk2bZdoPAACWd4J0AABoYDbddNNl2g8AAJZ3gnQAAGhgpk+fvkz7AQDA8k6QDgAADczs2bOXaT8AAFjeCdIBAKCBee+995ZpPwAAWN4J0gEAoIF54YUXlmk/AABY3gnSgWVm0KBBqaioKL8GDRpU1yUBAJ+joqKi8D0AAJA0qesCgOXDwv7Rfcstt6SioiKlUqkOKgKAhuODDz5Y6rvHPztPf/b9E088sdhjrbHGGllhhRWWqg4AAPg6W6IgfdSoUfnrX/+aF154IS1atEi/fv1y2mmnZfXVVy/3mTNnTn7+85/nL3/5S+bOnZuBAwfmoosuSseOHZMkTz31VH7729/mX//6V6ZNm5YePXrk4IMPzs9+9rNaxxo3blxGjhyZZ599Nl27ds2xxx6bfffdt7C+p59+OsOGDctjjz2W9u3b59BDD81RRx21JKcILIXPu3NNmA4Nz4UXXpgzzjgjU6ZMybrrrpvzzz8/G2+88SL7X3/99TnuuOMyadKk9OrVK6eddlq23Xbbr7Bi+HqYPHlypk2btsT7Pf/88/nRj370JVSU9OnTZ7H7XnXVVVlzzTWX+Bgrr7xyunXrtsT7AQDAV2WJgvT7778/w4YNy0YbbZSPP/44v/zlL7P11lvnueeey4orrpgkOfzww3Pbbbfl+uuvT1VVVYYPH55ddtklDz74YJJkwoQJ6dChQ6666qp07do1Dz30UA488MA0btw4w4cPT5JMnDgx2223XQ4++OBcffXVGTt2bPbff/907tw5AwcOXGht1dXV2XrrrTNgwIBccskleeaZZ7LffvulTZs2OfDAA7/INQIKfHr5lp///Of53e9+V35/xBFH5Mwzzyz3u/nmm7/i6oC6cO2112bkyJG55JJLsskmm+Scc87JwIED8+KLL6ZDhw4L9H/ooYey9957Z9SoUdl+++1zzTXXZNCgQXniiSey9tpr18EZQN2YPHlytuizZlZqMmep9l+/U92v2njmET9Zqv3e+7h57p/wvDAdAICvrYrSF7hN9J133kmHDh1y//33Z/PNN8+MGTPSvn37XHPNNdltt92SfPKAojXXXDPjx4/PpptuutBxhg0blueffz733ntvkuQXv/hFbrvttvznP/8p99lrr70yffr03HnnnQsd4+KLL86vfvWrTJkyJc2aNUuSHH300bn55psX+Wuuc+fOzdy5c8vvq6ur07Vr18yYMSOtW7de8gsCDdCn70Zf2F8nn7cdqK26ujpVVVX1ei7aZJNNstFGG+WCCy5IktTU1KRr16459NBDc/TRRy/Qf88998ysWbNy6623lts23XTTrLfeernkkksW6G/+Znk1efLkXDl0rRy7Wd0H4l+1Ux6syU/+8KwgnXpteZjDv2quGXyx5dnm/0ba0v5G2HyWZqMhW5K56AutkT5jxowkSdu2bZN8crf5Rx99lAEDBpT7rLHGGunWrVthkD5jxozyGEkyfvz4WmMkycCBAzNixIhF1jJ+/Phsvvnm5RB9/j6nnXZa3nvvvay00koL7DNq1KicdNJJn3+iAMBi+fDDDzNhwoQcc8wx5bZGjRplwIABGT9+/EL3GT9+fEaOHFmrbeDAgYv8LRbzN8urbt26Zd/zx+X5t15a4n0nTpyYY489dtkXtYROOeWU9OzZc4n323evXllFiA5AA/TCCy8s0TJqC/NFl3ebMGFCNthggy80BjQESx2k19TUZMSIEdlss83Kv3Y9/27wNm3a1OrbsWPHTJkyZaHjPPTQQ7n22mtz2223ldumTJlSXlP902NUV1dn9uzZadGixQLjTJkyZYH/aZ8/xpQpUxYapB9zzDG1/uE+/442AGDpTJs2LfPmzVvoPL6oO20WNe8v6v8dzN8sz1ZZo0+yxpL/Y7r7Bx/k8vUXvgRikaJ/uE+YMGGJx3NHGzQ8S/pcFKC2NdZYY6nm3CSZPXt2Jk2alB49eiw0K1uSGoDPt9RB+rBhw/Kf//wn//rXv5b64P/5z3+y00475YQTTsjWW2+91OMsrcrKylRWVn7lx4XlyU477ZRbbrklySdron92jfRP9wNYFszfsKAVVlhhqe4kK5VKmTBhQjbccMNy2+OPP/6F74wDGoYlfS4KsKClncPn22yzzZZhNUCRpVqAcfjw4bn11ltz3333ZZVVVim3d+rUKR9++GGmT59eq//UqVPTqVOnWm3PPfdcttpqqxx44IEL/Bpqp06dMnXq1AXGaN269SJ/wraofeZvA74cn1564cwzz0xFRUX5Nf9Bo5/tByy/Vl555TRu3Hihc/Ki5uNFzeHmb/hq9OnTJ6VSqfwSogOL66yzzsoBBxyQIUOGpHfv3rnkkkuywgor5I9//GNdlwYAy9wSBemlUinDhw/PTTfdlHvvvXeBpVT69OmTpk2bZuzYseW2F198MZMnT07fvn3Lbc8++2y+973vZfDgwTn11FMXOE7fvn1rjZEk99xzT60xFrbPAw88kI8++qjWPquvvvpCl3UBlp3Pe4ioh4xCw9GsWbP06dOn1jxeU1OTsWPHLnIeX5p5HwCoW/Ofi/Lp55t93nNR5s6dm+rq6lovAKgvlihIHzZsWK666qpcc801adWqVaZMmZIpU6Zk9uzZSZKqqqoMHTo0I0eOzH333ZcJEyZkyJAh6du3b/lBo//5z3/yve99L1tvvXVGjhxZHuOdd94pH+fggw/Oq6++mqOOOiovvPBCLrroolx33XU5/PDDy30uuOCCbLXVVuX3P/zhD9OsWbMMHTo0zz77bK699tqce+65Czy8DPhylEqlBZZv2WmnnYTo0ACNHDkyl112Wa644oo8//zz+elPf5pZs2ZlyJAhSZKf/OQntR5G+rOf/Sx33nlnzjzzzLzwwgs58cQT8/jjj2f48OF1dQoAwOcoei7Kop5zMmrUqFRVVZVfnnECQH2yRGukX3zxxUmS/v3712ofPXp09t133yTJ2WefnUaNGmXXXXfN3LlzM3DgwFx00UXlvjfccEPeeeedXHXVVbnqqqvK7d27d8+kSZOSJD179sxtt92Www8/POeee25WWWWVXH755Rk48P89QGnatGl55ZVXyu+rqqpy9913Z9iwYenTp09WXnnlHH/88TnwwAOX5BSBL8DyLUCS7LnnnnnnnXdy/PHHZ8qUKVlvvfVy5513lv+hPXny5DRq9P9+lt+vX79cc801OfbYY/PLX/4yvXr1ys0331x+mDkAsHzwwHAA6rOKkttFy6qrq1NVVZUZM2akdevWdV0OAA2QuWjJuWYAfB00tPnoww8/zAorrJAbbrghgwYNKrcPHjw406dPzy233PK5YzS0awbA18+SzEVL9bBRAAAAoOFamueiAEB9tkRLuwAAAAAknzwXZfDgwdlwww2z8cYb55xzzqn1XBQAWJ4I0gEAAIAl9nnPRQGA5YkgHQAAAFgqw4cPz/Dhw+u6DAD40lkjHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoECTui7g66RUKiVJqqur67gSABqq+XPQ/DmJz2f+BuDrwBy+5MzhANS1JZm/BemfMnPmzCRJ165d67gSABq6mTNnpqqqqq7LqBfM3wB8nZjDF585HICvi8WZvytKflxeVlNTk7feeiutWrVKRUVFXZcD9VJ1dXW6du2a119/Pa1bt67rcqDeKZVKmTlzZrp06ZJGjazAtjjM3/DFmb/hizOHLzlzOHwx5m/44pZk/hakA8tUdXV1qqqqMmPGDBM5ANQT5m8AqH/M3/DV8mNyAAAAAAAoIEgHAAAAAIACgnRgmaqsrMwJJ5yQysrKui4FAFhM5m8AqH/M3/DVskY6AAAAAAAUcEc6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOrBMPPDAA9lhhx3SpUuXVFRU5Oabb67rkgCAz2H+BoD6yRwOXz1BOrBMzJo1K+uuu24uvPDCui4FAFhM5m8AqJ/M4fDVa1LXBQDLh2222SbbbLNNXZcBACwB8zcA1E/mcPjquSMdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACjSp6wKA5cP777+fl19+ufx+4sSJefLJJ9O2bdt069atDisDABbF/A0A9ZM5HL56FaVSqVTXRQD137hx4/K9731vgfbBgwdnzJgxX31BAMDnMn8DQP1kDoevniAdAAAAAAAKWCMdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB1YLJMmTUpFRUWefPLJui4FAFgGKioqcvPNN9d1GQCwXPg6zKsnnnhi1ltvvTqt4fN8Ha4TLC1BOgAAAADUc0cccUTGjh1b12XAckuQDnyuDz/8sK5LWCr1tW4AqA/MswCw7CyLebVly5Zp167dMqgGWBhBOiwHbr311rRp0ybz5s1Lkjz55JOpqKjI0UcfXe6z//7750c/+lGS5MYbb8xaa62VysrK9OjRI2eeeWat8Xr06JFf//rX+clPfpLWrVvnwAMPXOCY8+bNy3777Zc11lgjkydPLqxvv/32y/bbb1+r7aOPPkqHDh3yhz/8IUlSU1OTUaNGpWfPnmnRokXWXXfd3HDDDbWON3To0PL21VdfPeeee26tMffdd98MGjQop556arp06ZLVV1/98y4dANRrN9xwQ9ZZZ520aNEi7dq1y4ABAzJr1qw89thj+f73v5+VV145VVVV2WKLLfLEE08UjvWLX/wi3/rWt7LCCitk1VVXzXHHHZePPvqovH3+r4tffvnl6dmzZ5o3b54rr7wy7dq1y9y5c2uNNWjQoPz4xz/+Us4ZAL4s9X1e/ezSLvP/jfy73/0unTt3Trt27TJs2LBadRRZ2DIsbdq0yZgxY5J8Ev4PHz48nTt3TvPmzdO9e/eMGjWq3Pell17K5ptvnubNm6d379655557Fuu48HXVpK4LAL647373u5k5c2b+/e9/Z8MNN8z999+flVdeOePGjSv3uf/++/OLX/wiEyZMyB577JETTzwxe+65Zx566KEccsghadeuXfbdd99y/9/97nc5/vjjc8IJJyxwvLlz52bvvffOpEmT8s9//jPt27cvrG///ffP5ptvnv/+97/p3Llzkk/C/w8++CB77rlnkmTUqFG56qqrcskll6RXr1554IEH8qMf/Sjt27fPFltskZqamqyyyiq5/vrr065duzz00EM58MAD07lz5+yxxx7lY40dOzatW7c2QQOw3Pvvf/+bvffeO6effnp23nnnzJw5M//85z9TKpUyc+bMDB48OOeff35KpVLOPPPMbLvttnnppZfSqlWrhY7XqlWrjBkzJl26dMkzzzyTAw44IK1atcpRRx1V7vPyyy/nxhtvzF//+tc0btw4vXr1ymGHHZa//e1v2X333ZMkb7/9dm677bbcfffdX8l1AIBlYXmdV++777507tw59913X15++eXsueeeWW+99XLAAQcs1Xifdt555+Vvf/tbrrvuunTr1i2vv/56Xn/99SSf3Cy3yy67pGPHjnnkkUcyY8aMjBgx4gsfE+pUCVgubLDBBqUzzjijVCqVSoMGDSqdeuqppWbNmpVmzpxZeuONN0pJSv/3f/9X+uEPf1j6/ve/X2vfI488stS7d+/y++7du5cGDRpUq8/EiRNLSUr//Oc/S1tttVXpO9/5Tmn69OmLXV/v3r1Lp512Wvn9DjvsUNp3331LpVKpNGfOnNIKK6xQeuihh2rtM3To0NLee++9yDGHDRtW2nXXXcvvBw8eXOrYsWNp7ty5i10XANRXEyZMKCUpTZo06XP7zps3r9SqVavS3//+93JbktJNN920yH3OOOOMUp8+fcrvTzjhhFLTpk1Lb7/9dq1+P/3pT0vbbLNN+f2ZZ55ZWnXVVUs1NTVLcDYAULeWh3n1hBNOKK277rrl94MHDy5179699PHHH5fbdt9999Kee+75uWOVSgs/p6qqqtLo0aNLpVKpdOihh5a23HLLhdZ21113lZo0aVJ68803y2133HHH514n+DqztAssJ7bYYouMGzcupVIp//znP7PLLrtkzTXXzL/+9a/cf//96dKlS3r16pXnn38+m222Wa19N9tss7z00kvlpWGSZMMNN1zocfbee+/MmjUrd999d6qqqha7vv333z+jR49OkkydOjV33HFH9ttvvySf/BT+gw8+yPe///20bNmy/LryyivzyiuvlMe48MIL06dPn7Rv3z4tW7bMpZdeusCyMuuss06aNWu22HUBQH217rrrZquttso666yT3XffPZdddlnee++9JJ/MtQcccEB69eqVqqqqtG7dOu+//37hcmzXXnttNttss3Tq1CktW7bMscceu0D/7t27L/CbaAcccEDuvvvuvPnmm0mSMWPGZN99901FRcUyPmMA+PIsr/PqWmutlcaNG5ffd+7cOW+//fZSjfVZ++67b5588smsvvrqOeyww2rdNf/888+na9eu6dKlS7mtb9++y+S4UFcE6bCc6N+/f/71r3/lqaeeStOmTbPGGmukf//+GTduXO6///5sscUWSzTeiiuuuND2bbfdNk8//XTGjx+/ROP95Cc/yauvvprx48fnqquuSs+ePfPd7343SfL+++8nSW677bY8+eST5ddzzz1XXif9L3/5S4444ogMHTo0d999d5588skMGTJkgQeyLKpuAFjeNG7cOPfcc0/uuOOO9O7dO+eff35WX331TJw4MYMHD86TTz6Zc889Nw899FCefPLJtGvXbpEPMhs/fnz22WefbLvttrn11lvz73//O7/61a8Wa55df/31s+666+bKK6/MhAkT8uyzz9ZaLg4A6oPldV5t2rRprfcVFRWpqalZrH0rKipSKpVqtX16ffUNNtggEydOzK9//evMnj07e+yxR3bbbbelrhW+7qyRDsuJ+eukn3322eXQvH///vntb3+b9957Lz//+c+TJGuuuWYefPDBWvs++OCD+da3vlXrp9SL8tOf/jRrr712dtxxx9x2222LHdC3a9cugwYNyujRozN+/PgMGTKkvK13796prKzM5MmTFznegw8+mH79+uWQQw4pt336bnUAaIgqKiqy2WabZbPNNsvxxx+f7t2756abbsqDDz6Yiy66KNtuu22S5PXXX8+0adMWOc5DDz2U7t2751e/+lW57bXXXlvsOvbff/+cc845efPNNzNgwIB07dp16U8KAOqIebW29u3b57///W/5/UsvvZQPPvigVp/WrVtnzz33zJ577pnddtstP/jBD/Luu+9mzTXXzOuvv17rWWkPP/zwV1o/LGuCdFhOrLTSSvn2t7+dq6++OhdccEGSZPPNN88ee+yRjz76qBxQ//znP89GG22UX//619lzzz0zfvz4XHDBBbnooosW+1iHHnpo5s2bl+233z533HFHvvOd7yzWfvvvv3+23377zJs3L4MHDy63t2rVKkcccUQOP/zw1NTU5Dvf+U5mzJiRBx98MK1bt87gwYPTq1evXHnllbnrrrvSs2fP/OlPf8pjjz2Wnj17LsFVAoDlxyOPPJKxY8dm6623TocOHfLII4/knXfeyZprrplevXrlT3/6UzbccMNUV1fnyCOPTIsWLRY5Vq9evTJ58uT85S9/yUYbbZTbbrstN91002LX8sMf/jBHHHFELrvsslx55ZXL4vQA4CtlXl3QlltumQsuuCB9+/bNvHnz8otf/KLWHe5nnXVWOnfunPXXXz+NGjXK9ddfn06dOqVNmzYZMGBAvvWtb2Xw4ME544wzUl1dXesHC1AfWdoFliNbbLFF5s2bl/79+ydJ2rZtm969e6dTp05ZffXVk3zyq1fXXXdd/vKXv2TttdfO8ccfn5NPPnmJf1VsxIgROemkk7LtttvmoYceWqx9BgwYkM6dO2fgwIG11klLkl//+tc57rjjMmrUqKy55pr5wQ9+kNtuu60clB900EHZZZddsueee2aTTTbJ//73v1p3pwNAQ9O6des88MAD2XbbbfOtb30rxx57bM4888xss802+cMf/pD33nsvG2ywQX784x/nsMMOS4cOHRY51o477pjDDz88w4cPz3rrrZeHHnooxx133GLXUlVVlV133TUtW7bMoEGDlsHZAcBXy7y6oDPPPDNdu3bNd7/73XK4v8IKK5S3t2rVKqeffno23HDDbLTRRpk0aVJuv/32NGrUKI0aNcpNN92U2bNnZ+ONN87++++fU089tc7OBZaFitJnFzsC+JK8//77+cY3vpHRo0dnl112qetyAIBlaKuttspaa62V8847r65LAYB6z7wKXz+WdgG+dDU1NZk2bVrOPPPMtGnTJjvuuGNdlwQALCPvvfdexo0bl3Hjxi3RUnEAwILMq/D1JUgHvrCrr746Bx100EK3de/evbxEyyqrrJIxY8akSRN/9QDA8mL99dfPe++9l9NOO628lBwAsHSK5tW11lprkQ8t/f3vf5999tlnsY/zz3/+M9tss80it7///vuLPRY0FJZ2Ab6wmTNnZurUqQvd1rRp03Tv3v0rrggAAACWL6+99lo++uijhW7r2LFjWrVqtdhjzZ49O2+++eYit3/zm99c4vpgeSdIBwAAAACAAo3qugAAAAAAAPg6E6QDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDUO+MGzcuFRUVGTduXF2XAgAAADQAgvR64IYbbkhFRcVCX2uvvXZdlwcNRv/+/bPvvvsmSfbdd9/079+/Tuv5In7zm9/k5ptvrusyPtdFF12UMWPGLNMxTzzxxPTo0SNJMmbMmFRUVCzT8QEAAIDlT5O6LoDF98tf/jJrrrlm+f2pp55ah9UA9dlvfvOb7Lbbbhk0aFBdl1Looosuysorr1z+AcZ8m2++eWbPnp1mzZrVTWEAAABAgyJIr0e+//3v17oD9vLLL8+0adPqriCg0Mcff5yamhph7/+vVCplzpw5adGixRceq1GjRmnevPkyqAoAAADg81napR748MMPk3wSHH2e+csUTJo0qdxWU1OTb3/726moqKi1RMLTTz+dfffdN6uuumqaN2+eTp06Zb/99sv//ve/WmOeeOKJC11WpkmT//dzmP79+2fttdfOhAkT0q9fv7Ro0SI9e/bMJZdcssC5HH/88enTp0+qqqqy4oor5rvf/W7uu+++Wv0mTZpUPs5nl5+YM2dOVlpppVRUVOR3v/vdAnV26NAhH330Ua19/vznP5fH+/QPH2655ZZst9126dKlSyorK7Paaqvl17/+debNm/e513r+8V544YXssccead26ddq1a5ef/exnmTNnTq2+o0ePzpZbbpkOHTqksrIyvXv3zsUXX7zAmDvttFN69OiR5s2bp0OHDtlxxx3zzDPP1Ooz/zzOOeecBfZfY401UlFRkeHDh5fb3n333RxxxBFZZ5110rJly7Ru3TrbbLNNnnrqqVr7Dh48OM2bN8/zzz9fq33gwIFZaaWV8tZbb5XbXn311ey+++5p27ZtVlhhhWy66aa57bbbau03fw3r+a/Kysp861vfyqhRo1IqlYov7v9vUZ+9hS2p8unPzGdfn/b2229n6NCh6datWxo3blzu07Jly8WqaVHmH/93v/tdzjnnnKy22mqprKzMc889lyR54YUXsttuu6Vt27Zp3rx5Ntxww/ztb3+rNcb8799//etfOeyww9K+ffu0adMmBx10UD788MNMnz49P/nJT7LSSitlpZVWylFHHbXAtZw1a1Z+/vOfp2vXrqmsrMzqq6+e3/3ud7X6VVRUZNasWbniiivK5//pO77ffPPN7LfffunYsWMqKyuz1lpr5Y9//OMSX5MePXpk++23z1133ZUNN9wwLVq0yO9///ski/c90aNHjzz77LO5//77F/jaL2qN9Ouvvz59+vRJixYtsvLKK+dHP/pR3nzzzSWuHQAAAODT3JFeD8wP0isrK5dq/z/96U8LhLFJcs899+TVV1/NkCFD0qlTpzz77LO59NJL8+yzz+bhhx9eIIC8+OKLa4WNnw3233vvvWy77bbZY489svfee+e6667LT3/60zRr1iz77bdfkqS6ujqXX3559t577xxwwAGZOXNm/vCHP2TgwIF59NFHs95669Uas3nz5hk9enSt5Sf++te/LhBUf9rMmTNz6623Zueddy63jR49Os2bN19gvzFjxqRly5YZOXJkWrZsmXvvvTfHH398qqurc8YZZyzyGJ+2xx57pEePHhk1alQefvjhnHfeeXnvvfdy5ZVX1rp2a621Vnbcccc0adIkf//733PIIYekpqYmw4YNqzXegQcemE6dOuWtt97KBRdckAEDBmTixIlZYYUVFrguI0aMKLc99NBDee211xao79VXX83NN9+c3XffPT179szUqVPz+9//PltssUWee+65dOnSJUly7rnn5t57783gwYMzfvz4NG7cOL///e9z9913509/+lO539SpU9OvX7988MEHOeyww9KuXbtcccUV2XHHHXPDDTfUuu7J/1uSaPbs2bn22mvzy1/+Mh06dMjQoUMX6/rOv37zP3vHHHNMYd8DDzww3/3ud5N88lm56aabam0fPHhw/vGPf+TQQw/Nuuuum8aNG+fSSy/NE088sdj1FBk9enTmzJmTAw88MJWVlWnbtm2effbZbLbZZvnGN76Ro48+OiuuuGKuu+66DBo0KDfeeOMC1+zQQw9Np06dctJJJ+Xhhx/OpZdemjZt2uShhx5Kt27d8pvf/Ca33357zjjjjKy99tr5yU9+kuSTO7533HHH3HfffRk6dGjWW2+93HXXXTnyyCPz5ptv5uyzz07yyd8J+++/fzbeeOMceOCBSZLVVlstySdf30033bT8A5n27dvnjjvuyNChQ1NdXV3rM7c4Xnzxxey999456KCDcsABB2T11VdPsnjfE+ecc04OPfTQtGzZMr/61a+SJB07dlzkscaMGZMhQ4Zko402yqhRozJ16tSce+65efDBB/Pvf/87bdq0WaLaAQAAAMpKfO2dc845pSSlp556qlb7FltsUVprrbVqtY0ePbqUpDRx4sRSqVQqzZkzp9StW7fSNttsU0pSGj16dLnvBx98sMCx/vznP5eSlB544IFy2wknnFBKUnrnnXcWWeMWW2xRSlI688wzy21z584trbfeeqUOHTqUPvzww1KpVCp9/PHHpblz59ba97333it17NixtN9++5XbJk6cWEpS2nvvvUtNmjQpTZkypbxtq622Kv3whz8sJSmdccYZC9S59957l7bffvty+2uvvVZq1KhRae+9917gPBZ2DQ466KDSCiusUJozZ84iz/fTx9txxx1rtR9yyCELfL0WdpyBAweWVl111cJjXHfddaUkpccff7zclqS02267lZo0aVKrfejQoeXrMmzYsHL7nDlzSvPmzas17sSJE0uVlZWlk08+uVb7XXfdVUpSOuWUU0qvvvpqqWXLlqVBgwbV6jNixIhSktI///nPctvMmTNLPXv2LPXo0aN8rPvuu6+UpHTffffVqqVRo0alQw45pPC85/vlL39ZSlKaNm1auW2ttdYqbbHFFgv0femll0pJSldccUW5bf7XaL7Zs2eXGjVqVDrooINq7Tt48ODSiiuuuFg1Lcr8z2zr1q1Lb7/9dq1tW221VWmdddap9Zmqqakp9evXr9SrV69y2/zv34EDB5ZqamrK7X379i1VVFSUDj744HLbxx9/XFpllVVqXYubb765/PX7tN12261UUVFRevnll8ttK664Ymnw4MELnMfQoUNLnTt3rnXNS6VSaa+99ipVVVUt9LO8KN27dy8lKd15550LbFvc74lFfb0/+/n68MMPSx06dCitvfbapdmzZ5f73XrrraUkpeOPP36x6wYAAAD4LEu71APzl1pp3779Eu974YUX5n//+19OOOGEBbZ9ep3iOXPmZNq0adl0002TZKnuzm3SpEkOOuig8vtmzZrloIMOyttvv50JEyYkSRo3blxeL7qmpibvvvtuPv7442y44YYLPeYGG2yQtdZaK3/605+SJK+99lruu+++BR48+Gn77bdf7rzzzkyZMiVJcsUVV6Rv37751re+tUDfT1+DmTNnZtq0afnud7+bDz74IC+88MJinfdn7yg/9NBDkyS33377Qo8zY8aMTJs2LVtssUVeffXVzJgxo9b+H3zwQaZNm5Ynn3wyl112WTp27LhA7R07dsx2222X0aNHl/e57rrrMmTIkAXqq6ysLP/2wLx58/K///0vLVu2zOqrr77ANd96661z0EEH5eSTT84uu+yS5s2bl5fimO/222/PxhtvnO985zvltpYtW+bAAw/MpEmTykuZfPZ8J0+enNNPPz01NTXZcsstF3IlFzT/NwgWZy3sxfnNjVmzZqWmpibt2rVbrOMvjV133bXW9+q7776be++9N3vssUf5MzZt2rT873//y8CBA/PSSy8tsPTI0KFDa/1GyCabbJJSqVTrLv7GjRtnww03zKuvvlpuu/3229O4ceMcdthhtcb7+c9/nlKplDvuuKOw9lKplBtvvDE77LBDSqVSudZp06Zl4MCBmTFjxhL/3dCzZ88MHDhwgfYl+Z5YHI8//njefvvtHHLIIbU+L9ttt13WWGONBZYeAgAAAFgSgvR64LXXXkuTJk2WOEifMWNGfvOb32TkyJELXQ7h3Xffzc9+9rN07NgxLVq0SPv27dOzZ8/yvkuqS5cuWXHFFWu1zQ+AP71m+xVXXJFvf/vbad68edq1a5f27dvntttuW+QxhwwZUg6Mx4wZk379+qVXr16LrGO99dbL2muvnSuvvDKlUqm83MPCPPvss9l5551TVVWV1q1bp3379vnRj36UZPGvwWdrWW211dKoUaNa5/zggw9mwIABWXHFFdOmTZu0b98+v/zlLxd6nJNPPjnt27fP+uuvn0mTJmXcuHFp1arVAscdMmRIrrnmmsydOzfXX399VlpppYUG1DU1NTn77LPTq1evVFZWZuWVV0779u3z9NNPL/Qcf/e736Vt27Z58sknc95556VDhw61tr/22mvl5Tk+bc011yxv/7RBgwalffv26d69e0488cQce+yx2XXXXRfYf2GmTZuWpk2b1lrWZlGmT5+eJIVrnbdr1y69evXK5Zdfnrvvvjtvv/12pk2blrlz5y5WPYtj/vfQfC+//HJKpVKOO+64tG/fvtZr/g+43n777Vr7dOvWrdb7qqqqJEnXrl0XaH/vvffK71977bV06dJlgc/Lor42n/XOO+9k+vTpufTSSxeodf730Gdr/TyfvR7zLcn3xOKYf24L+2yuscYan3vuAAAAAEWskV4PvPjii1l11VVrPdxzcZx22mlp1KhRjjzyyAUeIJp8srb3Qw89lCOPPDLrrbdeWrZsmZqamvzgBz9ITU3Nsiq/lquuuir77rtvBg0alCOPPDIdOnRI48aNM2rUqLzyyisL3edHP/pRjjrqqDz88MO54oorcuyxx37ucfbbb79cdNFF2XjjjTNlypTsscceOfPMM2v1mT59erbYYou0bt06J598clZbbbU0b948TzzxRH7xi18s9TX47Nryr7zySrbaaqusscYaOeuss9K1a9c0a9Yst99+e84+++wFjrP//vtnq622yhtvvJGzzz47u+66ax566KFymDrfdtttl2bNmuXmm2/O6NGjM3jw4IU+kPY3v/lNjjvuuOy333759a9/nbZt26ZRo0YZMWLEQs/x3//+dzksfeaZZ7L33nsv1XWY73e/+13WXXfdfPTRR3nsscdyyimnpEmTJgv9LYnPmjRpUrp167bANV2Y+b+B0KlTp8J+1157bfbZZ58F7pL+7A+Bltan77ROUr7GRxxxxELvzE6Sb37zm7XeN27ceKH9FtZeWswHty6O+bX+6Ec/yuDBgxfa59vf/vYSjfnZ65Es+fcEAAAAQF0TpH/NzZ07N08++WSth20ujrfeeivnnntuRo0alVatWi0QpL/33nsZO3ZsTjrppBx//PHl9pdeemmpa33rrbcya9asWoHk//3f/yVJevTokSS54YYbsuqqq+avf/1rrXC0KFRt165ddtxxx/IyMXvssUemTZtWWMs+++yTI488Mj/72c+y2267LfSO7nHjxuV///tf/vrXv2bzzTcvt0+cOHGxzne+l156qdZdty+//HJqamrK5/z3v/89c+fOzd/+9rdadxrfd999Cx3vm9/8ZjlYHTBgQLp165ZrrrkmP/3pT2v1a9KkSX784x/n1FNPzbPPPps//vGPCx3vhhtuyPe+97384Q9/qNU+ffr0rLzyyrXaZs2alSFDhqR3797p169fTj/99Oy8887ZaKONyn26d++eF198cYHjzF8Kp3v37rXa+/Tpk/79+ydJttlmm7z55ps57bTTctxxxy00+J/v448/zlNPPZUf/OAHi+zzac8991wqKioWekfyp62//vq57LLL8t3vfjcnn3xyNt1005xxxhl58MEHF+s4S2rVVVdNkjRt2jQDBgz4Uo4xX/fu3fOPf/wjM2fOrPWZX9jXZmE/nGjfvn1atWqVefPmfam1Lsn3xOL8ECX5f+f24osvLvCbGS+++OICn0sAAACAJWFpl6+5+Ut3bLXVVku030knnZSOHTvm4IMPXuj2+Xe2fvZu1nPOOWep6kw+CT4/vZ72hx9+mN///vdp3759+vTps8jjPvLIIxk/fnzh2Pvtt1+efvrp7L777oVLd8zXtm3b7LTTTnn66aez3377LbTPwmr58MMPc9FFF33u+J924YUX1np//vnnJ/kkNF7UcWbMmFFerqbI/B8YLGrpkf322y/PPPNMNt9883Jg+1mNGzde4Ot8/fXXL7Aud5L84he/yOTJk3PFFVfkrLPOSo8ePTJ48OBax992223z6KOP1vqazZo1K5deeml69OiR3r17F57T7Nmz8/HHH+fjjz8u7Hf33XdnxowZ2WmnnQr7JZ989m688cZsvPHGn/v5qK6uzo9//OPsuOOOOfbYYzNgwIB07tz5c4+xtDp06JD+/fvn97//ff773/8usP2dd95ZZsfadtttM2/evFxwwQW12s8+++xUVFSUP5PJJ3fgz18OZ77GjRtn1113zY033pj//Oc/X1qtS/I9sbA6F2bDDTdMhw4dcskll9T6vN5xxx15/vnns912233xwgEAAIAGyx3pX1OzZs3K+eefn5NPPrkchF511VW1+kydOjXvv/9+rrrqqnz/+9+vtQ763Xffnauvvrr8YM/Pat26dTbffPOcfvrp+eijj/KNb3wjd9999xLfjf1pXbp0yWmnnZZJkyblW9/6Vq699to8+eSTufTSS9O0adMkyfbbb5+//vWv2XnnnbPddttl4sSJueSSS9K7d++8//77ixz7Bz/4Qd55553FCtHnGzNmTC688MIF7rqer1+/fllppZUyePDgHHbYYamoqMif/vSnJV4qY+LEidlxxx3zgx/8IOPHj89VV12VH/7wh1l33XWTfPIAz2bNmmWHHXbIQQcdlPfffz+XXXZZOnToUCtYvf3223P55ZenX79+adu2bV599dVcdtllWXHFFbPzzjsv9Nhrrrlmpk2bttDlM+bbfvvtc/LJJ2fIkCHp169fnnnmmVx99dULBO/33ntvLrroopxwwgnZYIMNkiSjR49O//79c9xxx+X0009Pkhx99NH585//nG222SaHHXZY2rZtmyuuuCITJ07MjTfeuMBd5vfcc0/eeOON8tIuV199dXbcccdFfjaTT5ZfOeKII1JZWZnZs2fX+uzPmDEj8+bNy80335xBgwblH//4R4477rg8/fTT+fvf/77IMecbNmxYZs+encsvv/xz+y4rF154Yb7zne9knXXWyQEHHJBVV101U6dOzfjx4/PGG2/kqaeeWibH2WGHHfK9730vv/rVrzJp0qSsu+66ufvuu3PLLbdkxIgRWW211cp9+/Tpk3/84x8566yz0qVLl/Ts2TObbLJJfvvb3+a+++7LJptskgMOOCC9e/fOu+++myeeeCL/+Mc/8u67737hOhf3e2J+nRdffHFOOeWUfPOb30yHDh0W+iyApk2b5rTTTsuQIUOyxRZbZO+9987UqVNz7rnnpkePHjn88MO/cN0AAABAA1bia2nixImlJIv9uu+++0qlUqk0evToUpLSeuutV6qpqVlgvNGjR5fb3njjjdLOO+9catOmTamqqqq0++67l956661SktIJJ5xQ7nfCCSeUkpTeeeedRda7xRZblNZaa63S448/Xurbt2+pefPmpe7du5cuuOCCWv1qampKv/nNb0rdu3cvVVZWltZff/3SrbfeWho8eHCpe/fuC9R7xhlnFF6fT2//vDoXtv3BBx8sbbrppqUWLVqUunTpUjrqqKNKd911V61ruijzx3vuuedKu+22W6lVq1allVZaqTR8+PDS7Nmza/X929/+Vvr2t79dat68ealHjx6l0047rfTHP/6xlKQ0ceLEUqlUKv3nP/8pbb311qV27dqVmjVrVuratWtpr732Kj399NO1xkpSGjZs2CLr+uz2OXPmlH7+85+XOnfuXGrRokVps802K40fP760xRZblLbYYotSqVQqVVdXl7p3717aYIMNSh999FGt8Q4//PBSo0aNSuPHjy+3vfLKK6Xddtut1KZNm1Lz5s1LG2+8cenWW2+ttd99991X6zPapEmTUvfu3UuHHXZY6b333iu8tt27d//cz/z8z8uhhx5a2nzzzUt33nnnAuPM/xrN9+c//7lUUVGxQN/BgweXVlxxxcKaPs/nfWZfeeWV0k9+8pNSp06dSk2bNi194xvfKG2//falG264odxn/vfvY489ttDz+Oxne2F1z5w5s3T44YeXunTpUmratGmpV69epTPOOKPW3welUqn0wgsvlDbffPNSixYtSklKgwcPLm+bOnVqadiwYaWuXbuWmjZtWurUqVNpq622Kl166aVLdE26d+9e2m677Ra6bXG+J0qlUmnKlCml7bbbrtSqVatSkvJndv7n67Pfp9dee21p/fXXL1VWVpbatm1b2meffUpvvPHGEtUNAAAA8FkVpdIyfFIdy8ykSZPSs2fP3HfffeX1pb9Ivy9b//79M23atIUuB7G8OvHEE3PSSSflnXfeWeRd7yydHj165MQTT8y+++670O3jxo3Lvvvum0mTJn2ldQEAAADQMFkjHQAAAAAAClgj/WuqZcuW2WeffWqte/5F+kF9svPOO9daz/uzOnbsuMh14/nyvfPOO5k3b94itzdr1ixt27b9CisCAAAA+HJZ2oVlwtIulnah4ejRo0dee+21RW7fYostMm7cuK+uIAAAAIAvmSAdgCXy4IMPZvbs2YvcvtJKK6VPnz5fYUUAAAAAXy5BOgAAAAAAFLBG+qfU1NTkrbfeSqtWrVJRUVHX5QDQAJVKpcycOTNdunRJo0aeCQ4AAABfB4L0T3nrrbfStWvXui4DAPL6669nlVVWqesyAAAAgAjSa2nVqlWST8KL1q1b13E1ADRE1dXV6dq1a3lOAgAAAOqeIP1T5i/n0rp1a0E6AHXKEmMAAADw9WHxVQAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAJfiyD9gQceyA477JAuXbqkoqIiN998c63tpVIpxx9/fDp37pwWLVpkwIABeemll2r1effdd7PPPvukdevWadOmTYYOHZr333//KzwLAAAAAACWR1+LIH3WrFlZd911c+GFFy50++mnn57zzjsvl1xySR555JGsuOKKGThwYObMmVPus88+++TZZ5/NPffck1tvvTUPPPBADjzwwK/qFAAAAAAAWE5VlEqlUl0X8WkVFRW56aabMmjQoCSf3I3epUuX/PznP88RRxyRJJkxY0Y6duyYMWPGZK+99srzzz+f3r1757HHHsuGG26YJLnzzjuz7bbb5o033kiXLl0W69jV1dWpqqrKjBkz0rp16y/l/ACgiLkIAAAAvn6a1HUBn2fixImZMmVKBgwYUG6rqqrKJptskvHjx2evvfbK+PHj06ZNm3KIniQDBgxIo0aN8sgjj2TnnXde6Nhz587N3Llzy++rq6u/vBOBr9DkyZMzbdq0pdp39uzZmTRp0rItaAn16NEjLVq0WKp9V1555XTr1m0ZVwQAAABAQ/a1D9KnTJmSJOnYsWOt9o4dO5a3TZkyJR06dKi1vUmTJmnbtm25z8KMGjUqJ5100jKuGOrW5MmTs/oaa2bO7A/qupQ60bzFCnnxheeF6QAAAAAsM1/7IP3LdMwxx2TkyJHl99XV1enatWsdVgRf3LRp0zJn9gdpt/3P07Tdkn+eSx9/mI9nTP0SKlt8Tao6pqJJsyXe76P/vZ7/3Xpmpk2bJkgHAAAAYJn52gfpnTp1SpJMnTo1nTt3LrdPnTo16623XrnP22+/XWu/jz/+OO+++255/4WprKxMZWXlsi8avgaatuuayk7fXLqdV+m9bIsBAAAAgHqsUV0X8Hl69uyZTp06ZezYseW26urqPPLII+nbt2+SpG/fvpk+fXomTJhQ7nPvvfempqYmm2yyyVdeMwAAAAAAy4+vxR3p77//fl5++eXy+4kTJ+bJJ59M27Zt061bt4wYMSKnnHJKevXqlZ49e+a4445Lly5dMmjQoCTJmmuumR/84Ac54IADcskll+Sjjz7K8OHDs9dee6VLly51dFYAAAAAACwPvhZB+uOPP57vfe975ffz1y0fPHhwxowZk6OOOiqzZs3KgQcemOnTp+c73/lO7rzzzjRv3ry8z9VXX53hw4dnq622SqNGjbLrrrvmvPPO+8rPBQAAAACA5cvXIkjv379/SqXSIrdXVFTk5JNPzsknn7zIPm3bts0111zzZZQHAAAAAEAD9rVfIx0AAAAAAOqSIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoEC9CdLnzZuX4447Lj179kyLFi2y2mqr5de//nVKpVK5T6lUyvHHH5/OnTunRYsWGTBgQF566aU6rBoAAAAAgPqu3gTpp512Wi6++OJccMEFef7553Paaafl9NNPz/nnn1/uc/rpp+e8887LJZdckkceeSQrrrhiBg4cmDlz5tRh5QAAAAAA1GdN6rqAxfXQQw9lp512ynbbbZck6dGjR/785z/n0UcfTfLJ3ejnnHNOjj322Oy0005JkiuvvDIdO3bMzTffnL322muBMefOnZu5c+eW31dXV38FZwIAAAAAQH1Sb+5I79evX8aOHZv/+7//S5I89dRT+de//pVtttkmSTJx4sRMmTIlAwYMKO9TVVWVTTbZJOPHj1/omKNGjUpVVVX51bVr1y//RAAAAAAAqFfqzR3pRx99dKqrq7PGGmukcePGmTdvXk499dTss88+SZIpU6YkSTp27Fhrv44dO5a3fdYxxxyTkSNHlt9XV1cL0wEAAAAAqKXeBOnXXXddrr766lxzzTVZa6218uSTT2bEiBHp0qVLBg8evFRjVlZWprKychlXCgAAAADA8qTeBOlHHnlkjj766PJa5+uss05ee+21jBo1KoMHD06nTp2SJFOnTk3nzp3L+02dOjXrrbdeXZQMAAAAAMByoN6skf7BBx+kUaPa5TZu3Dg1NTVJkp49e6ZTp04ZO3ZseXt1dXUeeeSR9O3b9yutFQAAAACA5Ue9uSN9hx12yKmnnppu3bplrbXWyr///e+cddZZ2W+//ZIkFRUVGTFiRE455ZT06tUrPXv2zHHHHZcuXbpk0KBBdVs8AAAAAAD1Vr0J0s8///wcd9xxOeSQQ/L222+nS5cuOeigg3L88ceX+xx11FGZNWtWDjzwwEyfPj3f+c53cuedd6Z58+Z1WDkAAAAAAPVZvQnSW7VqlXPOOSfnnHPOIvtUVFTk5JNPzsknn/zVFQYAAAAAwHKt3qyRDgAAAAAAdUGQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABepVkP7mm2/mRz/6Udq1a5cWLVpknXXWyeOPP17eXiqVcvzxx6dz585p0aJFBgwYkJdeeqkOKwYAAAAAoL6rN0H6e++9l8022yxNmzbNHXfckeeeey5nnnlmVlpppXKf008/Peedd14uueSSPPLII1lxxRUzcODAzJkzpw4rBwAAAACgPmtS1wUsrtNOOy1du3bN6NGjy209e/Ys/7lUKuWcc87Jsccem5122ilJcuWVV6Zjx465+eabs9dee33lNQMAAAAAUP/VmzvS//a3v2XDDTfM7rvvng4dOmT99dfPZZddVt4+ceLETJkyJQMGDCi3VVVVZZNNNsn48eMXOubcuXNTXV1d6wUAAAAAAJ9Wb4L0V199NRdffHF69eqVu+66Kz/96U9z2GGH5YorrkiSTJkyJUnSsWPHWvt17NixvO2zRo0alaqqqvKra9euX+5JAAAAAABQ79SbIL2mpiYbbLBBfvOb32T99dfPgQcemAMOOCCXXHLJUo95zDHHZMaMGeXX66+/vgwrBgAAAABgeVBvgvTOnTund+/etdrWXHPNTJ48OUnSqVOnJMnUqVNr9Zk6dWp522dVVlamdevWtV4AAAAAAPBp9SZI32yzzfLiiy/Wavu///u/dO/ePcknDx7t1KlTxo4dW95eXV2dRx55JH379v1KawUAAAAAYPnRpK4LWFyHH354+vXrl9/85jfZY4898uijj+bSSy/NpZdemiSpqKjIiBEjcsopp6RXr17p2bNnjjvuuHTp0iWDBg2q2+IBAAAAAKi36k2QvtFGG+Wmm27KMccck5NPPjk9e/bMOeeck3322afc56ijjsqsWbNy4IEHZvr06fnOd76TO++8M82bN6/DygEAAAAAqM/qTZCeJNtvv3223377RW6vqKjIySefnJNPPvkrrAoAAAAAgOVZvVkjHQAAAAAA6oIgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACgQL0M0n/729+moqIiI0aMKLfNmTMnw4YNS7t27dKyZcvsuuuumTp1at0VCQAAAADAcqHeBemPPfZYfv/73+fb3/52rfbDDz88f//733P99dfn/vvvz1tvvZVddtmljqoEAAAAAGB5Ua+C9Pfffz/77LNPLrvssqy00krl9hkzZuQPf/hDzjrrrGy55Zbp06dPRo8enYceeigPP/zwIsebO3duqqura70AAAAAAODT6lWQPmzYsGy33XYZMGBArfYJEybko48+qtW+xhprpFu3bhk/fvwixxs1alSqqqrKr65du35ptQMAAAAAUD/VmyD9L3/5S5544omMGjVqgW1TpkxJs2bN0qZNm1rtHTt2zJQpUxY55jHHHJMZM2aUX6+//vqyLhsAAAAAgHquSV0XsDhef/31/OxnP8s999yT5s2bL7NxKysrU1lZuczGAwAAAABg+VMv7kifMGFC3n777WywwQZp0qRJmjRpkvvvvz/nnXdemjRpko4dO+bDDz/M9OnTa+03derUdOrUqW6KBgAAAABguVAv7kjfaqut8swzz9RqGzJkSNZYY4384he/SNeuXdO0adOMHTs2u+66a5LkxRdfzOTJk9O3b9+6KBkAAAAAgOVEvQjSW7VqlbXXXrtW24orrph27dqV24cOHZqRI0embdu2ad26dQ499ND07ds3m266aV2UDAAAAADAcqJeBOmL4+yzz06jRo2y6667Zu7cuRk4cGAuuuiiui4LAAAAAIB6rt4G6ePGjav1vnnz5rnwwgtz4YUX1k1BAAAAAAAsl+rFw0YBAAAAAKCuCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKBAvQnSR40alY022iitWrVKhw4dMmjQoLz44ou1+syZMyfDhg1Lu3bt0rJly+y6666ZOnVqHVUMAAAAAMDyoN4E6ffff3+GDRuWhx9+OPfcc08++uijbL311pk1a1a5z+GHH56///3vuf7663P//ffnrbfeyi677FKHVQMAAAAAUN81qesCFtedd95Z6/2YMWPSoUOHTJgwIZtvvnlmzJiRP/zhD7nmmmuy5ZZbJklGjx6dNddcMw8//HA23XTTuigbAAAAAIB6rt7ckf5ZM2bMSJK0bds2STJhwoR89NFHGTBgQLnPGmuskW7dumX8+PELHWPu3Lmprq6u9QIAAAAAgE+rl0F6TU1NRowYkc022yxrr712kmTKlClp1qxZ2rRpU6tvx44dM2XKlIWOM2rUqFRVVZVfXbt2/bJLBwAAAACgnqmXQfqwYcPyn//8J3/5y1++0DjHHHNMZsyYUX69/vrry6hCAAAAAACWF/VmjfT5hg8fnltvvTUPPPBAVllllXJ7p06d8uGHH2b69Om17kqfOnVqOnXqtNCxKisrU1lZ+WWXDAAAAABAPVZv7kgvlUoZPnx4brrpptx7773p2bNnre19+vRJ06ZNM3bs2HLbiy++mMmTJ6dv375fdbkAAAAAACwn6s0d6cOGDcs111yTW265Ja1atSqve15VVZUWLVqkqqoqQ4cOzciRI9O2bdu0bt06hx56aPr27ZtNN920jqsHAAAAAKC+qjdB+sUXX5wk6d+/f6320aNHZ999902SnH322WnUqFF23XXXzJ07NwMHDsxFF130FVcKAAAAAMDypN4E6aVS6XP7NG/ePBdeeGEuvPDCr6AiAAAAAAAagnqzRjoAAAAAANQFQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQIHlLki/8MIL06NHjzRv3jybbLJJHn300bouCQAAAACAemy5CtKvvfbajBw5MieccEKeeOKJrLvuuhk4cGDefvvtui4NAAAAAIB6qkldF7AsnXXWWTnggAMyZMiQJMkll1yS2267LX/84x9z9NFHL9B/7ty5mTt3bvl9dXX1V1YrfJk6tazImh/8O03efWuJ9y3N+yjzZr77JVS1+Bq3apuKxk2XeL+PP5iatKz4EioCAAAAoCFbboL0Dz/8MBMmTMgxxxxTbmvUqFEGDBiQ8ePHL3SfUaNG5aSTTvqqSoSvxMorr5xhm66YY3vfVNelfPW6JKe8t2JWXnnluq4EAAAAgOXIchOkT5s2LfPmzUvHjh1rtXfs2DEvvPDCQvc55phjMnLkyPL76urqdO3a9UutE75s3bp1y77nj8vzb720VPvPnTs3b7215HeyL0tdunRJZWXlUu277169skq3bsu4IgAAAAAasuUmSF8alZWVSx3WwdfZKmv0Sdbos9T7r7fsSgEAAACAem+5edjoyiuvnMaNG2fq1Km12qdOnZpOnTrVUVUAAAAAANR3y02Q3qxZs/Tp0ydjx44tt9XU1GTs2LHp27dvHVYGAAAAAEB9tlwt7TJy5MgMHjw4G264YTbeeOOcc845mTVrVoYMGVLXpQEAAAAAUE8tV0H6nnvumXfeeSfHH398pkyZkvXWWy933nnnAg8gBQAAAACAxVVRKpVKdV3E10V1dXWqqqoyY8aMtG7duq7LAaABMhcBAADA189ys0Y6AAAAAAB8GQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFCgSV0X8HVSKpWSJNXV1XVcCQAN1fw5aP6cBAAAANQ9QfqnzJw5M0nStWvXOq4EgIZu5syZqaqqqusyAAAAgCQVJbe8ldXU1OStt95Kq1atUlFRUdflQL1UXV2drl275vXXX0/r1q3ruhyod0qlUmbOnJkuXbqkUSMrsAEAAMDXgSAdWKaqq6tTVVWVGTNmCNIBAAAAWC641Q0AAAAAAAoI0gEAAAAAoIAgHVimKisrc8IJJ6SysrKuSwEAAACAZcIa6QAAAAAAUMAd6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOnAMvHAAw9khx12SJcuXVJRUZGbb765rksCAAAAgGVCkA4sE7Nmzcq6666bCy+8sK5LAQAAAIBlqkldFwAsH7bZZptss802dV0GAAAAACxz7kgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAk3qugBg+fD+++/n5ZdfLr+fOHFinnzyybRt2zbdunWrw8oAAAAA4IupKJVKpbouAqj/xo0bl+9973sLtA8ePDhjxoz56gsCAAAAgGVEkA4AAAAAAAWskQ4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDix3evTokXPOOaeuywAAAABgOSFIB5ZI//79M2LEiLouI0kyZsyYtGnTZoH2xx57LAceeOBXXxAAAAAAyyVBOtRDH374YV2X8KX6oufXvn37rLDCCsuoGgAAAAAaOkE61AP9+/fP8OHDM2LEiKy88soZOHBg/vOf/2SbbbZJy5Yt07Fjx/z4xz/OtGnTau1z6KGHZsSIEVlppZXSsWPHXHbZZZk1a1aGDBmSVq1a5Zvf/GbuuOOOWse6//77s/HGG6eysjKdO3fO0UcfnY8//jhJsu++++b+++/Pueeem4qKilRUVGTSpElJ8rn1LOn5JclZZ52VddZZJyuuuGK6du2aQw45JO+//36SZNy4cRkyZEhmzJhRruXEE09MsuDSLpMnT85OO+2Uli1bpnXr1tljjz0yderUpflSAAAAANAACdKhnrjiiivSrFmzPPjgg/ntb3+bLbfcMuuvv34ef/zx3HnnnZk6dWr22GOPBfZZeeWV8+ijj+bQQw/NT3/60+y+++7p169fnnjiiWy99db58Y9/nA8++CBJ8uabb2bbbbfNRhttlKeeeioXX3xx/vCHP+SUU05Jkpx77rnp27dvDjjggPz3v//Nf//733Tt2jXTp09frHoW9/wuueSSJEmjRo1y3nnn5dlnn80VV1yRe++9N0cddVSSpF+/fjnnnHPSunXrci1HHHHEAuPW1NRkp512yrvvvpv7778/99xzT1599dXsueeeS/V1AAAAAKDhqSiVSqW6LgIo1r9//1RXV+eJJ55Ikpxyyin55z//mbvuuqvc54033kjXrl3z4osv5lvf+lb69++fefPm5Z///GeSZN68eamqqsouu+ySK6+8MkkyZcqUdO7cOePHj8+mm26aX/3qV7nxxhvz/PPPp6KiIkly0UUX5Re/+EVmzJiRRo0apX///llvvfVq3fG9OPUsyfktyg033JCDDz64fKf7mDFjMmLEiEyfPr1Wvx49emTEiBEZMWJE7rnnnmyzzTaZOHFiunbtmiR57rnnstZaa+XRRx/NRhttVHhMAAAAAHBHOtQTffr0Kf/5qaeeyn333ZeWLVuWX2ussUaS5JVXXin3+/a3v13+c+PGjdOuXbuss8465baOHTsmSd5+++0kyfPPP5++ffuWQ/Qk2WyzzfL+++/njTfeWGRti1vP4p7ffP/4xz+y1VZb5Rvf+EZatWqVH//4x/nf//5XvoN+cTz//PPp2rVrOURPkt69e6dNmzZ5/vnnF3scAAAAABquJnVdALB4VlxxxfKf33///eywww457bTTFujXuXPn8p+bNm1aa1tFRUWttvmBeU1NzReqbXHrKfLp80uSSZMmZfvtt89Pf/rTnHrqqWnbtm3+9a9/ZejQofnwww89TBQAAACAr4wgHeqhDTbYIDfeeGN69OiRJk2W3bfxmmuumRtvvDGlUqkcsj/44INp1apVVllllSRJs2bNMm/evC+9ngkTJqSmpiZnnnlmGjX65Jdnrrvuulp9FlbLws7p9ddfz+uvv15raZfp06end+/ey6RWAAAAAJZvlnaBemjYsGF59913s/fee+exxx7LK6+8krvuuitDhgz53GC5yCGHHJLXX389hx56aF544YXccsstOeGEEzJy5MhymN2jR4888sgjmTRpUqZNm5aampovpZ5vfvOb+eijj3L++efn1VdfzZ/+9KfyQ0jn69GjR95///2MHTs206ZNW+iSLwMGDMg666yTffbZJ0888UQeffTR/OQnP8kWW2yRDTfccKlqAwAAAKBhEaRDPdSlS5c8+OCDmTdvXrbeeuuss846GTFiRNq0aVMOvJfGN77xjdx+++159NFHs+666+bggw/O0KFDc+yxx5b7HHHEEWncuHF69+6d9u3bZ/LkyV9KPeuuu27OOuusnHbaaVl77bVz9dVXZ9SoUbX69OvXLwcffHD23HPPtG/fPqeffvoC41RUVOSWW27JSiutlM033zwDBgzIqquummuvvXap6gIAAACg4akolUqlui4CAAAAAAC+rtyRDgAAAAAABQTpwJdq8uTJadmy5SJfkydPrusSAQAAAKCQpV2AL9XHH3+cSZMmLXJ7jx490qRJk6+uIAAAAABYQoJ0AAAAAAAoYGkXAAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAo8P8B1haTvolcILYAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 4 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Числовые столбцы DataFrame\n",
|
||
"numeric_columns: list[str] = [\n",
|
||
" 'work_year',\n",
|
||
" 'salary',\n",
|
||
" 'salary_in_usd',\n",
|
||
" 'remote_ratio'\n",
|
||
"]\n",
|
||
"\n",
|
||
"# Проверка выбросов\n",
|
||
"check_outliers(df, numeric_columns)\n",
|
||
"visualize_outliers(df, numeric_columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Колонка work_year:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 2020.5\n",
|
||
"\tМаксимальное значение: 2023.0\n",
|
||
"\t1-й квартиль (Q1): 2022.0\n",
|
||
"\t3-й квартиль (Q3): 2023.0\n",
|
||
"\n",
|
||
"Колонка salary:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 6000.0\n",
|
||
"\tМаксимальное значение: 300000.0\n",
|
||
"\t1-й квартиль (Q1): 100000.0\n",
|
||
"\t3-й квартиль (Q3): 180000.0\n",
|
||
"\n",
|
||
"Колонка salary_in_usd:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 5132.0\n",
|
||
"\tМаксимальное значение: 295000.0\n",
|
||
"\t1-й квартиль (Q1): 95000.0\n",
|
||
"\t3-й квартиль (Q3): 175000.0\n",
|
||
"\n",
|
||
"Колонка remote_ratio:\n",
|
||
"\tЕсть выбросы: Нет\n",
|
||
"\tКоличество выбросов: 0\n",
|
||
"\tМинимальное значение: 0\n",
|
||
"\tМаксимальное значение: 100\n",
|
||
"\t1-й квартиль (Q1): 0.0\n",
|
||
"\t3-й квартиль (Q3): 100.0\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPeCAYAAAAI5OjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEHUlEQVR4nOzdeVxV5fr//zegDIqgKIMeETUrwTHJgcyZQI+lFk024ZRlG0v5nPRw8jhWfNLULFEzE+wgOaWZw1HJsRLqhKGJyufkkJ6DoJZCkgLK+v3hj/V1C2xBTRBez8djPWqv+9r3utaCzb289lr3sjMMwxAAAAAAAAAAACiRfUUnAAAAAAAAAABAZUYhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQCqkcmTJ8vOzk5nzpyp6FQAAMBNOnbsmOzs7BQXF1fRqQAAcEep7GPojh07ZGdnpx07dlR0KjdsyJAhatq0aUWncUtRSK9iVq1aJTs7uxKX1q1bV3R6QLXRs2dPDRkyRNKVwaNnz54Vmk91UHQiVHSiUZlPioA/CucBQOVQXc4Drt63yZMnV7l/LKN6YQwFKofqMoZWV1f/O71p06aaPHlyheZTXjUqOgH8Mf72t7/J39/ffP3WW29VYDYAAOB24jwAAIAbwxgKoDLo3r27Lly4IEdHx4pOBVehkF5FPfTQQ1bf2i1atIipHIBqLDc3V7Vr167oNP4Qly5dUmFhYUWnAVQqnAcAuBFV+XwBKCvGUAA34laPofb29nJ2dr5l/eHWYGqXKiY/P1/SlQ/c9cTFxcnOzk7Hjh0z1xUWFqpt27bFpkTYt2+fhgwZoubNm8vZ2Vk+Pj4aNmyYfvnlF6s+i+ZfvnapUeP/fWfTs2dPtW7dWikpKXrggQfk4uKiZs2aacGCBcX2ZeLEiQoMDJS7u7tq166tbt26afv27VZxRdM52NnZ6fPPP7dqu3jxourVqyc7Ozu9++67xfL08vJSQUGB1Xs+/fRTs7+rT5jWrl2r/v37q1GjRnJyctJdd92ladOm6fLly9c91kXbO3TokJ588km5ubmpfv36eu2113Tx4kWr2NjYWPXu3VteXl5ycnJSQECA5s+fX6zPgQMHqmnTpnJ2dpaXl5cGDBigH3/80SqmaD/ee++9Yu9v2bKl7OzsFBERYa779ddf9Ze//EVt2rSRq6ur3Nzc1K9fP+3du9fqveHh4XJ2dtbBgwet1oeGhqpevXrKyMgw1x05ckRPPPGEPDw8VKtWLXXp0kUbNmywel/R3F9Fi5OTk+655x5FR0fLMAzbB/f/V9rvXkm3gV39O3PtcrVTp05p+PDhatKkiRwcHMwYV1fXMuVUmg4dOuixxx6zWtemTRvZ2dlp37595rrly5fLzs7O6jj/8MMP6tevn9zc3OTq6qo+ffooOTnZqq+iz/bOnTv1yiuvyMvLS40bNy41n59//lktWrRQ69atlZWVdd38jxw5Ijs7O82ePbtY2+7du2VnZ6dPP/3UXPff//5Xw4YNk7e3t5ycnNSqVSstXrzY6n3l/by/++67eu+993TXXXfJyclJBw4cuG7eQHXAecDnVm2cB3AeUBnPAyRp2bJlCgwMVJ06deTm5qY2bdpozpw5ZntZfxYlKe/n9cCBA3rmmWdUr149Pfjgg4qNjZWdnZ1++OGHYn2//fbbcnBw0H//+9+bPgZAZcMY+rlVG2MoYyhjaMWOoSXNkV70N+DAgQPq1auXatWqpT/96U+aPn16mfq8mp2dXYnTqjRt2tScWkeSCgoKNGXKFN19991ydnZW/fr19eCDDyoxMdHqfZ9//rlat24tZ2dntW7dWmvWrCl3TncCrkivYooGfycnpxt6/z/+8Y9iA4gkJSYm6siRIxo6dKh8fHyUlpamhQsXKi0tTcnJycX+aM6fP9/qD+S1JyNnz57Vn//8Zz355JMaPHiwVqxYoVGjRsnR0VHDhg2TJOXk5GjRokUaPHiwXnzxRf3222/6+OOPFRoaqu+++07t27e36tPZ2VmxsbEaNGiQuW716tXFBter/fbbb1q/fr0effRRc11sbKycnZ2LvS8uLk6urq6KjIyUq6urtm3bpokTJyonJ0czZswodRtXe/LJJ9W0aVNFR0crOTlZ77//vs6ePatPPvnE6ti1atVKAwYMUI0aNbRu3Tq98sorKiwslMVisepv5MiR8vHxUUZGhubOnavg4GAdPXpUtWrVKnZcxowZY67bvXu3fv7552L5HTlyRJ9//rmeeOIJNWvWTFlZWfrwww/Vo0cPHThwQI0aNZIkzZkzR9u2bVN4eLiSkpLk4OCgDz/8UFu2bNE//vEPMy4rK0sPPPCAfv/9d7366quqX7++lixZogEDBmjVqlVWx136f7dRXrhwQcuXL9ff/vY3eXl5afjw4WU6vkXHr+h3LyoqymbsyJEj1a1bN0lXfleu/UMfHh6uL7/8UqNHj1a7du3k4OCghQsXas+ePWXOpyTdunWzKjT/+uuvSktLk729vb766iu1bdtWkvTVV1/J09PTvLU0LS1N3bp1k5ubm8aNG6eaNWvqww8/VM+ePbVz50517tzZajuvvPKKPD09NXHiROXm5paYy+HDh9W7d295eHgoMTFRDRo0uG7+zZs3V9euXbV06VKNHTvWqm3p0qWqU6eOBg4cKOnK70CXLl3ME01PT0/985//1PDhw5WTk2P+Xpb38x4bG6uLFy9q5MiRcnJykoeHB1elA+I8gPMAzgPuhPOAxMREDR48WH369NE777wjSTp48KC++eYbvfbaa5LK/rMorf/yfF6feOIJ3X333Xr77bdlGIYef/xxWSwWLV26VPfdd59V7NKlS9WzZ0/96U9/uqljAFRGjKGMoYyhjKF3whh69uxZ9e3bV4899piefPJJrVq1SuPHj1ebNm3Ur1+/m+q7JJMnT1Z0dLRGjBihTp06KScnR99//7327Nmjhx56SJK0ZcsWhYWFKSAgQNHR0frll180dOhQmxf03bEMVCnvvfeeIcnYu3ev1foePXoYrVq1sloXGxtrSDKOHj1qGIZhXLx40WjSpInRr18/Q5IRGxtrxv7+++/FtvXpp58akoxdu3aZ6yZNmmRIMk6fPl1qjj169DAkGTNnzjTX5eXlGe3btze8vLyM/Px8wzAM49KlS0ZeXp7Ve8+ePWt4e3sbw4YNM9cdPXrUkGQMHjzYqFGjhpGZmWm29enTx3jmmWcMScaMGTOK5Tl48GDj4YcfNtf//PPPhr29vTF48OBi+1HSMXjppZeMWrVqGRcvXix1f6/e3oABA6zWv/LKK8V+XiVtJzQ01GjevLnNbaxYscKQZHz//ffmOknG448/btSoUcNq/fDhw83jYrFYzPUXL140Ll++bNXv0aNHDScnJ2Pq1KlW6zdv3mxIMt58803jyJEjhqurqzFo0CCrmDFjxhiSjK+++spc99tvvxnNmjUzmjZtam5r+/bthiRj+/btVrnY29sbr7zyis39LvK3v/3NkGScOXPGXNeqVSujR48exWL//e9/G5KMJUuWmOuKfkZFLly4YNjb2xsvvfSS1XvDw8ON2rVrlymn0qxcudKQZBw4cMAwDMP44osvDCcnJ2PAgAHGU089Zca1bdvWePTRR83XgwYNMhwdHY3Dhw+b6zIyMow6deoY3bt3N9cVfbYffPBB49KlS1bbvvozevDgQaNRo0ZGx44djV9//bVc+/Dhhx8akoyDBw+a6/Lz840GDRoY4eHh5rrhw4cbDRs2tPq5GIZhPP3004a7u7v5+17ez7ubm5tx6tSpcuUMVAecB3AewHlA5T8PeO211ww3N7diY/TVyvqzKPr9v5nP6+DBg4vFDx482GjUqJFVDnv27Cm2LaAqYQxlDGUMZQytTGNoST/bor8Bn3zyibkuLy/P8PHxMcLCwsrct2Fc+R2fNGlSsfV+fn5W/6Zv166d0b9/f5t9tW/f3mjYsKFx7tw5c92WLVsMSYafn1+58qrsmNqliim63cTT07Pc742JidEvv/yiSZMmFWtzcXEx///ixYs6c+aMunTpIkk39I1ijRo19NJLL5mvHR0d9dJLL+nUqVNKSUmRJDk4OJgPVSgsLNSvv/6qS5cu6f777y9xmx06dFCrVq30j3/8Q9KV6Sq2b99udUvKtYYNG6ZNmzYpMzNTkrRkyRIFBQXpnnvuKRZ79TH47bffdObMGXXr1k2///67Dh06VKb9vvZb8NGjR0uSNm7cWOJ2srOzdebMGfXo0UNHjhxRdna21ft///13nTlzRqmpqfroo4/k7e1dLHdvb2/1799fsbGx5ntWrFihoUOHFsvPycnJvOLh8uXL+uWXX+Tq6qp777232DEPCQnRSy+9pKlTp+qxxx6Ts7OzPvzwQ6uYjRs3qlOnTnrwwQfNda6urho5cqSOHTtWbDqOov09fvy4pk+frsLCQvXu3buEI1lc0VUPZZlDrCxXm+Tm5qqwsFD169cv0/bLo+ib+127dkm6cuV5x44d9dBDD+mrr76SJJ07d0779+83Yy9fvqwtW7Zo0KBBat68udlXw4YN9cwzz+jrr79WTk6O1XZefPFFOTg4lJjD/v371aNHDzVt2lRffvml6tWrV659ePLJJ+Xs7KylS5ea6zZv3qwzZ87oueeekyQZhqHPPvtMjzzyiAzD0JkzZ8wlNDRU2dnZ5u9VeT/vYWFhN/R3DqjqOA/gPIDzgMp/HlC3bl3l5uYWuyX6auX5WVyrvJ/Xl19+udi6F154QRkZGVbTQCxdulQuLi4KCwuzvYPAHYoxlDGUMZQx9E4YQ11dXc1/c0tX/gZ06tRJR44cuem+S1K3bl2lpaXp3//+d4ntJ0+eVGpqqsLDw+Xu7m6uf+ihhxQQEPCH5FSRKKRXMT///LNq1KhR7sE/Oztbb7/9tiIjI+Xt7V2s/ddff9Vrr70mb29vubi4yNPTU82aNTPfW16NGjUq9hCGokHr6nnmlixZorZt25rzMHl6emrDhg2lbnPo0KHmIBcXF6cHHnhAd999d6l5tG/fXq1bt9Ynn3wiwzAUFxdX4qAoXZlW49FHH5W7u7vc3Nzk6elp/vEq6zG4Npe77rpL9vb2Vvv8zTffKDg4WLVr11bdunXl6empv/3tbyVuZ+rUqfL09NR9992nY8eOaceOHapTp06x7Q4dOlQJCQnKy8vTypUrVa9evRIH1cLCQs2ePVt33323nJyc1KBBA3l6emrfvn0l7uO7774rDw8Ppaam6v3335eXl5dV+88//6x777232PuKpiq59pa4QYMGydPTU35+fpo8ebImTJhQ5oHmzJkzqlmzptWteKU5d+6cJNmcn61+/fq6++67tWjRIm3ZskWnTp3SmTNnlJeXV6Z8bPH29tbdd99tFs2/+uordevWTd27d1dGRoaOHDmib775RoWFhWYh/fTp0/r9999LPZ6FhYU6ceKE1fqiz2hJHnnkEdWpU0ebN2+Wm5tbufehbt26euSRR5SQkGCuW7p0qf70pz+Zv1unT5/WuXPntHDhQnl6elotRZ+zU6dOme8vz+fd1r4B1RnnAZwHcB5Q+c8DXnnlFd1zzz3q16+fGjdubBajrlben8XVyvt5LWlMfeihh9SwYUPzC/PCwkJ9+umnGjhwYIm/Y0BVwBjKGMoYyhh6J4yhjRs3LjbFTL169XT27Nmb7rskU6dO1blz53TPPfeoTZs2ev31162e7Vb0u1jS34uSfofvdBTSq5j09HQ1b97c6oEkZfHOO+/I3t5er7/+eontTz75pD766CO9/PLLWr16tbZs2WL+sfqj5iWOj4/XkCFDdNddd+njjz/Wpk2blJiYqN69e5e6zeeee04//fSTkpOTtWTJklIH8qsNGzZMsbGx2rlzpzIzM/Xkk08Wizl37px69OihvXv3aurUqVq3bp0SExPNOblu9Bhc+8fv8OHD6tOnj86cOaNZs2Zpw4YNSkxMNOehvnY7I0aM0JYtW7R48WI5OzsrLCysxD/u/fv3l6Ojoz7//HPFxsYqPDy8xIfoFJ0Adu/eXfHx8dq8ebMSExPVqlWrEvfxhx9+MAuhJc0HWF7vvvuuEhMTtXHjRk2aNEnvvPOOpkyZUqb3Hjt2TE2aNCl2TEtSdNWEj4+Pzbjly5erfv36Cg0Nlbe3tzw9PbVs2bIy5XM9Dz74oL766itduHBBKSkp6tatm1q3bq26devqq6++0ldffSVXV9di86qVx9Xfpl8rLCxMhw8ftrqivLxeeOEFHTlyRLt379Zvv/2mL774QoMHDzZ/t4p+Z5577jklJiaWuHTt2lVS+T/vtvYNqM44D+A8gPOAyn8e4OXlpdTUVH3xxRcaMGCAtm/frn79+ik8PNyMKe/P4mrl/byWNKY6ODjomWee0WeffaaLFy9q+/btysjIsLoCDqhqGEMZQxlDGUPvhDG0tLvOjTI+XPZ6rn0IcPfu3XX48GEtXrxYrVu31qJFi9ShQwctWrTolmzvTsPDRquQvLw8paamWj0gpCwyMjI0Z84cRUdHq06dOsWeRnz27Flt3bpVU6ZM0cSJE831pd3WUdZt5ubmWn2T/n//93+SrjwhWJJWrVql5s2ba/Xq1VZ/0Eu6Xa5I/fr1NWDAAPPWtieffNLqaeElefbZZ/X666/rtdde0+OPP17iN4Q7duzQL7/8otWrV6t79+7m+qNHj5Zpf4v8+9//tvrG8qefflJhYaG5z+vWrVNeXp6++OILNWnSxIy79unqRVq0aKEWLVpIkoKDg9WkSRMlJCRo1KhRVnE1atTQ888/r7feektpaWlavHhxif2tWrVKvXr10scff2y1/ty5c8UeQpmbm6uhQ4cqICBADzzwgKZPn65HH31UHTt2NGP8/PyUnp5ebDtFt+/5+flZrQ8MDDSfDN6vXz/997//1TvvvKO///3vJZ6sFLl06ZL27t2rvn37lhpztQMHDsjOzu66347ed999+uijj9StWzdNnTpVXbp00YwZM/TNN9+UaTu2dOvWTbGxsVq2bJkuX76sBx54QPb29maB/eDBg3rggQfMQdLT01O1atUq9Xja29vL19e3zNufMWOGatSooVdeeUV16tTRM888U+596Nu3rzw9PbV06VJ17txZv//+u55//nmz3dPTU3Xq1NHly5cVHBxss68b+bwDsMZ5AOcBnAfcOecBjo6OeuSRR/TII4+osLBQr7zyij788EP9/e9/V4sWLcr1s7jarfy8vvDCC5o5c6bWrVunf/7zn/L09FRoaGi5+wHuBIyhjKGMoYyh1W0MrVevnnmHQZH8/HydPHmyWKyHh4eGDh2qoUOH6vz58+revbsmT56sESNGmL+LJR2nkn6H73RckV6FFN1u1KdPn3K9b8qUKfL29i5xbifp/33bde23W++9994N5Sld+WN99Rxg+fn5+vDDD+Xp6anAwMBSt/vtt98qKSnJZt/Dhg3Tvn379MQTT9i83aiIh4eHBg4cqH379plPOb9WSbnk5+dr3rx51+3/ajExMVavP/jgA0kyn6xc0nays7PNW+xsKTrJKe12qWHDhunHH39U9+7drebYvpqDg0Oxn/PKlSv13//+t1js+PHjdfz4cS1ZskSzZs1S06ZNFR4ebrX9P//5z/ruu++sfma5ublauHChmjZtet35si5cuKBLly7p0qVLNuO2bNmi7OxsDRw40GacdOV377PPPlOnTp2u+/uRk5Oj559/XgMGDNCECRMUHByshg0bXncbZVE0Zcs777yjtm3bmnOJdevWTVu3btX3339vxkhXfjYhISFau3at1e2LWVlZSkhI0IMPPliuKVrs7Oy0cOFCPf744woPD9cXX3xR7n2oUaOGBg8erBUrViguLk5t2rRR27ZtrXIOCwvTZ599pv379xd7/+nTp61ipfJ/3gH8P5wHXMF5AOcBtlSG84BrC2329vbm+Fl0/Mrzs7jarfy8tm3bVm3bttWiRYv02Wef6emnny73lbrAnYIx9ArGUMZQWxhDy+5OGEPvuusu87ltRRYuXFjsivRrj7mrq6tatGhhHu+GDRuqffv2WrJkidVdHYmJicXm8q8KKtdPETckNzdXH3zwgaZOnWr+wYiPj7eKycrK0vnz5xUfH6+HHnrIau62LVu2aOnSpebDSK7l5uam7t27a/r06SooKNCf/vQnbdmypdzfIF+tUaNGeuedd3Ts2DHdc889Wr58uVJTU7Vw4ULVrFlTkvTwww9r9erVevTRR9W/f38dPXpUCxYsUEBAgM6fP19q33379tXp06fLNPAXiYuLU0xMTKnfTj7wwAOqV6+ewsPD9eqrr8rOzk7/+Mc/yn3rzNGjRzVgwAD17dtXSUlJio+P1zPPPKN27dpJuvLQkaJvV1966SWdP39eH330kby8vKy+Fdy4caMWLVqkBx54QB4eHjpy5Ig++ugj1a5dW48++miJ2/b399eZM2dsTonx8MMPa+rUqRo6dKgeeOAB/fjjj1q6dGmxk4Vt27Zp3rx5mjRpkjp06CBJio2NVc+ePfX3v/9d06dPlyT99a9/1aeffqp+/frp1VdflYeHh5YsWaKjR4/qs88+K/bNeGJiov7zn/+ooKBA//rXv7R06VINGDCg1N9N6cotY3/5y1/k5OSkCxcuWP3uZ2dn6/Lly/r88881aNAgffnll/r73/+uffv2ad26daX2WcRisejChQt/yC1LLVq0kI+Pj9LT080H5UhXbpsaP368JFkV0iXpzTffVGJioh588EG98sorqlGjhj788EPl5eWZx7w87O3tFR8fr0GDBunJJ5/Uxo0by/xAmiIvvPCC3n//fW3fvt28PfNq//u//6vt27erc+fOevHFFxUQEKBff/1Ve/bs0Zdffqlff/1V0o1/3gFwHnAtzgM4DyhSWc8DRowYoV9//VW9e/dW48aN9fPPP+uDDz5Q+/btzblvy/qzuNat/ry+8MIL+stf/iJJTOuCKokx1BpjKGNoEcbQqj+GjhgxQi+//LLCwsL00EMPae/evdq8eXOxz3JAQIB69uypwMBAeXh46Pvvv9eqVasUERFhxkRHR6t///568MEHNWzYMP3666/64IMP1KpVq6r373kDd7yjR48aksq8bN++3TAMw4iNjTUkGe3btzcKCwuL9RcbG2uu+89//mM8+uijRt26dQ13d3fjiSeeMDIyMgxJxqRJk8y4SZMmGZKM06dPl5pvjx49jFatWhnff/+9ERQUZDg7Oxt+fn7G3LlzreIKCwuNt99+2/Dz8zOcnJyM++67z1i/fr0RHh5u+Pn5Fct3xowZNo/P1e3Xy7Ok9m+++cbo0qWL4eLiYjRq1MgYN26csXnzZqtjWpqi/g4cOGA8/vjjRp06dYx69eoZERERxoULF6xiv/jiC6Nt27aGs7Oz0bRpU+Odd94xFi9ebEgyjh49ahiGYezfv98ICQkx6tevbzg6Ohq+vr7G008/bezbt8+qL0mGxWIpNa9r2y9evGj8z//8j9GwYUPDxcXF6Nq1q5GUlGT06NHD6NGjh2EYhpGTk2P4+fkZHTp0MAoKCqz6Gzt2rGFvb28kJSWZ6w4fPmw8/vjjRt26dQ1nZ2ejU6dOxvr1663et337dqvf0Ro1ahh+fn7Gq6++apw9e9bmsfXz87vu73zR78vo0aON7t27G5s2bSrWT9HPqMinn35q2NnZFYsNDw83ateubTOnsnriiScMScby5cvNdfn5+UatWrUMR0fHYr8bhmEYe/bsMUJDQw1XV1ejVq1aRq9evYzdu3dbxRR9tv/1r38Ve39Jv9u///670aNHD8PV1dVITk4u9360atXKsLe3N/7zn/+U2J6VlWVYLBbD19fXqFmzpuHj42P06dPHWLhwoRlzqz7vQHXEeQDnAZwH3FnnAatWrTJCQkIMLy8vw9HR0WjSpInx0ksvGSdPnjRjyvKzMIw//vN68uRJw8HBwbjnnntuap+ByooxlDGUMZQxtLKOoUU/26s/I0V/A6517We7LC5fvmyMHz/eaNCggVGrVi0jNDTU+Omnnww/Pz8jPDzcjHvzzTeNTp06GXXr1jVcXFyMli1bGm+99ZaRn59v1d9nn31m+Pv7G05OTkZAQICxevXqG8qrsqOQXgUUffivNwCVNe6PVtoHvyoryx9Z3Bg/Pz+rge9a27dvr3J/uCub9u3bG717967oNIBqi/OAyo/zgD8O5wF/rNOnTxs1atQwpk6dWtGpAH8IxtDKjzH0j8MY+sdiDK2amCMdAHDDvv/+e6WmpuqFF16o6FQAAMAtFhcXp8uXL1s9TBwAAFwfY2jVxBzpVYCrq6ueffZZq7nabiYOuJM8+uijuuuuu0pt9/b2LnWuOxR34cIFqweElMTDw0P/93//p5SUFM2cOVMNGzbUU089dZsyBHAtzgNQnXEe8MfYtm2bDhw4oLfeekuDBg1S06ZNKzol4A/BGIrqjDH0j3G9MbSs/+a2Nb+9LadPny72wNCrOTo6ysPD44b6hmRnGOV8wgNwk3r27KkzZ85o//79FZ3KbTN58mRNmTJFp0+fLvUhLEBlEBcXp6FDh9qM2b59u3bs2KGpU6fq3nvv1YIFC9SjR4/blCGAOx3nAZwHoPLr2bOndu/era5duyo+Pl5/+tOfKjolAGIMZQzFneB6Y2hZ/83ds2fPG9p+06ZN9fPPP5fa3qNHD+3YseOG+gaFdADAVU6ePKm0tDSbMYGBgapXr95tyggAAAAAgKrhj/439zfffKMLFy6U2l6vXj0FBgbeUN+gkA4AAAAAAAAAgE08bBQAAAAAAAAAABt42OhVCgsLlZGRoTp16sjOzq6i0wEAVEOGYei3335To0aNZG/P991lwfgNAKgMGMPLjzEcAFDRyjN+U0i/SkZGhnx9fSs6DQAAdOLECTVu3Lii07gjMH4DACoTxvCyYwwHAFQWZRm/KaRfpU6dOpKuHDg3N7cKzgYAUB3l5OTI19fXHJNwfYzfAIDKgDG8/BjDAQAVrTzjN4X0qxTdSubm5sYgDgCoUNzeXHaM3wCAyoQxvOwYwwEAlUVZxm8mbgMAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAEAlMH/+fLVt21Zubm5yc3NTUFCQ/vnPf5rtFy9elMViUf369eXq6qqwsDBlZWVZ9XH8+HH1799ftWrVkpeXl15//XVdunTJKmbHjh3q0KGDnJyc1KJFC8XFxRXLJSYmRk2bNpWzs7M6d+6s7777zqq9LLkAAFCVUEgHAAAAAKASaNy4sf73f/9XKSkp+v7779W7d28NHDhQaWlpkqSxY8dq3bp1WrlypXbu3KmMjAw99thj5vsvX76s/v37Kz8/X7t379aSJUsUFxeniRMnmjFHjx5V//791atXL6WmpmrMmDEaMWKENm/ebMYsX75ckZGRmjRpkvbs2aN27dopNDRUp06dMmOulwsAAFWNnWEYRkUnUVnk5OTI3d1d2dnZcnNzq+h0AADVEGNR+XHMAACVwR81Hnl4eGjGjBl6/PHH5enpqYSEBD3++OOSpEOHDsnf319JSUnq0qWL/vnPf+rhhx9WRkaGvL29JUkLFizQ+PHjdfr0aTk6Omr8+PHasGGD9u/fb27j6aef1rlz57Rp0yZJUufOndWxY0fNnTtXklRYWChfX1+NHj1af/3rX5WdnX3dXCrymAEAUFblGYu4Ih0AAAAAgErm8uXLWrZsmXJzcxUUFKSUlBQVFBQoODjYjGnZsqWaNGmipKQkSVJSUpLatGljFtElKTQ0VDk5OeZV7UlJSVZ9FMUU9ZGfn6+UlBSrGHt7ewUHB5sxZckFAICqpkZFJwAAAAAAAK748ccfFRQUpIsXL8rV1VVr1qxRQECAUlNT5ejoqLp161rFe3t7KzMzU5KUmZlpVUQvai9qsxWTk5OjCxcu6OzZs7p8+XKJMYcOHTL7uF4uJcnLy1NeXp75Oicn5zpHAwCAyoMr0gEAAAAAqCTuvfdepaam6ttvv9WoUaMUHh6uAwcOVHRat0R0dLTc3d3NxdfXt6JTAgCgzCikAwAAAABQSTg6OqpFixYKDAxUdHS02rVrpzlz5sjHx0f5+fk6d+6cVXxWVpZ8fHwkST4+PsrKyirWXtRmK8bNzU0uLi5q0KCBHBwcSoy5uo/r5VKSqKgoZWdnm8uJEyfKdlAAAKgEylVIj46OVseOHVWnTh15eXlp0KBBSk9Pt4q5ePGiLBaL6tevL1dXV4WFhVkNwHv37tXgwYPl6+srFxcX+fv7a86cOVZ9fP311+ratavq168vFxcXtWzZUrNnz75ufvv27VO3bt3k7OwsX19fTZ8+vTy7BwBAlTB//ny1bdtWbm5ucnNzU1BQkP75z3+a7dcbqyXp+PHj6t+/v2rVqiUvLy+9/vrrunTpklXMjh071KFDBzk5OalFixaKi4srlktMTIyaNm0qZ2dnde7cWd99951Ve1lyAQCgOissLFReXp4CAwNVs2ZNbd261WxLT0/X8ePHFRQUJEkKCgrSjz/+qFOnTpkxiYmJcnNzU0BAgBlzdR9FMUV9ODo6KjAw0CqmsLBQW7duNWPKkktJnJyczPOTogUAgDtFuQrpO3fulMViUXJyshITE1VQUKCQkBDl5uaaMWPHjtW6deu0cuVK7dy5UxkZGXrsscfM9pSUFHl5eSk+Pl5paWl64403FBUVZT4NXJJq166tiIgI7dq1SwcPHtSECRM0YcIELVy4sNTccnJyFBISIj8/P6WkpGjGjBmaPHmyzfcAAFAVNW7cWP/7v/+rlJQUff/99+rdu7cGDhxoPmTsemP15cuX1b9/f+Xn52v37t1asmSJ4uLiNHHiRDPm6NGj6t+/v3r16qXU1FSNGTNGI0aM0ObNm82Y5cuXKzIyUpMmTdKePXvUrl07hYaGWv3j/nq5AABQnURFRWnXrl06duyYfvzxR0VFRWnHjh169tln5e7uruHDhysyMlLbt29XSkqKhg4dqqCgIHXp0kWSFBISooCAAD3//PPau3evNm/erAkTJshiscjJyUmS9PLLL+vIkSMaN26cDh06pHnz5mnFihUaO3asmUdkZKQ++ugjLVmyRAcPHtSoUaOUm5uroUOHSlKZcgEAoMoxbsKpU6cMScbOnTsNwzCMc+fOGTVr1jRWrlxpxhw8eNCQZCQlJZXazyuvvGL06tXL5rYeffRR47nnniu1fd68eUa9evWMvLw8c9348eONe++9t6y7Y2RnZxuSjOzs7DK/BwCAW+mPGovq1atnLFq0qExj9caNGw17e3sjMzPTjJk/f77h5uZmjrPjxo0zWrVqZbWNp556yggNDTVfd+rUybBYLObry5cvG40aNTKio6MNw7jx84ZrMX4DACqDWzEeDRs2zPDz8zMcHR0NT09Po0+fPsaWLVvM9gsXLhivvPKKUa9ePaNWrVrGo48+apw8edKqj2PHjhn9+vUzXFxcjAYNGhj/8z//YxQUFFjFbN++3Wjfvr3h6OhoNG/e3IiNjS2WywcffGA0adLEcHR0NDp16mQkJydbtZcll+thDAcAVLTyjEU1bqYIn52dLUny8PCQdOVq84KCAgUHB5sxLVu2VJMmTZSUlFTqN9PZ2dlmHyX54YcftHv3br355pulxiQlJal79+5ydHQ014WGhuqdd97R2bNnVa9evWLv4YnhqKqOHz+uM2fO3NB7L1y4oGPHjt3ahMqpadOmcnFxuaH3NmjQQE2aNLnFGQF3rsuXL2vlypXKzc1VUFBQmcbqpKQktWnTRt7e3mZMaGioRo0apbS0NN13331KSkqy6qMoZsyYMZKk/Px8paSkKCoqymy3t7dXcHCwkpKSJN34eQPjN1Dc77//rkOHDt3w+4vG/5sZg6Urn+FatWrd8PuB6u7jjz+22e7s7KyYmBjFxMSUGuPn56eNGzfa7Kdnz5764YcfbMZEREQoIiLipnIBcH03M4YzfgO31w0X0gsLCzVmzBh17dpVrVu3liRlZmbK0dFRdevWtYr19vZWZmZmif3s3r1by5cv14YNG4q1NW7cWKdPn9alS5c0efJkjRgxotR8MjMz1axZs2LbLWorqZAeHR2tKVOm2NxP4E5z/Phx3dvSXxcv/F7RqVQIZ5daSj90kGI6qr0ff/xRQUFBunjxolxdXbVmzRoFBAQoNTX1umN1ZmamVRG9qL2ozVZMTk6OLly4oLNnz+ry5cslxhT9Q+FGzhskxm+gJIcOHVJgYGBFp6GUlBR16NChotMAAOCOURnGcMZvoGxuuJBusVi0f/9+ff311ze88f3792vgwIGaNGmSQkJCirV/9dVXOn/+vJKTk/XXv/5VLVq00ODBg294e9eKiopSZGSk+TonJ0e+vr63rH+gIpw5c0YXL/yu+g//j2rWL//vs3EpX5eyK/ZBfzXcvWVXw/H6gdco+OWEflk/U2fOnKGQjmrv3nvvVWpqqrKzs7Vq1SqFh4dr586dFZ3WLcH4DRTXsmVLpaSk3PD7Dx48qOeee07x8fHy9/e/qTwAAEDZ3cwYzvgN3F43VEiPiIjQ+vXrtWvXLjVu3Nhc7+Pjo/z8fJ07d87q6rKsrCz5+PhY9XHgwAH16dNHI0eO1IQJE0rcTtEV5m3atFFWVpYmT55caiHdx8dHWVnWxb+i19duu4iTk5P5wBWgqqlZ31dOPi1u7M2NA25tMgBuO0dHR7VoceVvQGBgoP71r39pzpw5euqpp647Vvv4+Oi7776z6u/aMbW0cdfNzU0uLi5ycHCQg4NDiTFX91HW84arMX4DxdWqVeuWXEnm7+/PFWkAANxGt2IMZ/wGbg/78gQbhqGIiAitWbNG27ZtKzaVSmBgoGrWrKmtW7ea69LT03X8+HEFBQWZ69LS0tSrVy+Fh4frrbfeKtO2CwsLreZDvVZQUJB27dqlgoICc11iYqLuvffeEqd1AQCgOikaR8syVgcFBenHH3/UqVOnzJjExES5ubkpICDAjLm6j6KYoj4cHR0VGBhoFVNYWKitW7eaMWU9bwAAAAAAoKKV64p0i8WihIQErV27VnXq1DHnL3V3d5eLi4vc3d01fPhwRUZGysPDQ25ubho9erSCgoLMB4bt379fvXv3VmhoqCIjI80+HBwc5OnpKUmKiYlRkyZNzFtLdu3apXfffVevvvqqmcvcuXO1Zs0a8x/fzzzzjKZMmaLhw4dr/Pjx2r9/v+bMmaPZs2ff5CECAODOEhUVpX79+qlJkyb67bfflJCQoB07dmjz5s1lGqtDQkIUEBCg559/XtOnT1dmZqYmTJggi8ViXgn+8ssva+7cuRo3bpyGDRumbdu2acWKFVbPPImMjFR4eLjuv/9+derUSe+9955yc3M1dOhQSSpTLgAAAAAAVAblKqTPnz9f0pUnfF8tNjZWQ4YMkSTNnj1b9vb2CgsLU15enkJDQzVv3jwzdtWqVTp9+rTi4+MVHx9vrvfz89OxY8ckXbliLSoqSkePHlWNGjV011136Z133tFLL71kxp85c0aHDx82X7u7u2vLli2yWCwKDAxUgwYNNHHiRI0cObI8uwgAwB3v1KlTeuGFF3Ty5Em5u7urbdu22rx5sx566CFJ1x+rHRwctH79eo0aNUpBQUGqXbu2wsPDNXXqVDOmWbNm2rBhg8aOHas5c+aocePGWrRokUJDQ82Yp556SqdPn9bEiROVmZmp9u3ba9OmTVYPIL1eLgAAAAAAVAZ2hmEYFZ1EZZGTkyN3d3dlZ2fLzc2totMBbsiePXsUGBgon/D3bnyO9DtUXuZPylwyhieO447GWFR+HDPg5hWdPzCGAjeO8aj8OGbAzWH8Bm5eecaics2RDgAAAAAAAABAdUMhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAoBKIjo5Wx44dVadOHXl5eWnQoEFKT0+3iunZs6fs7Oyslpdfftkq5vjx4+rfv79q1aolLy8vvf7667p06ZJVzI4dO9ShQwc5OTmpRYsWiouLK5ZPTEyMmjZtKmdnZ3Xu3FnfffedVfvFixdlsVhUv359ubq6KiwsTFlZWbfmYAAAUMlQSAcAAAAAoBLYuXOnLBaLkpOTlZiYqIKCAoWEhCg3N9cq7sUXX9TJkyfNZfr06Wbb5cuX1b9/f+Xn52v37t1asmSJ4uLiNHHiRDPm6NGj6t+/v3r16qXU1FSNGTNGI0aM0ObNm82Y5cuXKzIyUpMmTdKePXvUrl07hYaG6tSpU2bM2LFjtW7dOq1cuVI7d+5URkaGHnvssT/wCAEAUHFqVHQCAAAAAABA2rRpk9XruLg4eXl5KSUlRd27dzfX16pVSz4+PiX2sWXLFh04cEBffvmlvL291b59e02bNk3jx4/X5MmT5ejoqAULFqhZs2aaOXOmJMnf319ff/21Zs+erdDQUEnSrFmz9OKLL2ro0KGSpAULFmjDhg1avHix/vrXvyo7O1sff/yxEhIS1Lt3b0lSbGys/P39lZycrC5dutzy4wMAQEXiinQAAAAAACqh7OxsSZKHh4fV+qVLl6pBgwZq3bq1oqKi9Pvvv5ttSUlJatOmjby9vc11oaGhysnJUVpamhkTHBxs1WdoaKiSkpIkSfn5+UpJSbGKsbe3V3BwsBmTkpKigoICq5iWLVuqSZMmZsy18vLylJOTY7UAAHCn4Ip0AAAAAAAqmcLCQo0ZM0Zdu3ZV69atzfXPPPOM/Pz81KhRI+3bt0/jx49Xenq6Vq9eLUnKzMy0KqJLMl9nZmbajMnJydGFCxd09uxZXb58ucSYQ4cOmX04Ojqqbt26xWKKtnOt6OhoTZkypZxHAgCAyoEr0gEAqGJ4UBkAAHc+i8Wi/fv3a9myZVbrR44cqdDQULVp00bPPvusPvnkE61Zs0aHDx+uoEzLLioqStnZ2eZy4sSJik4JAIAyo5AOAEAVw4PKAAC4s0VERGj9+vXavn27GjdubDO2c+fOkqSffvpJkuTj41PsC+mi10XzqpcW4+bmJhcXFzVo0EAODg4lxlzdR35+vs6dO1dqzLWcnJzk5uZmtQAAcKegkA4AQBWzadMmDRkyRK1atVK7du0UFxen48ePKyUlxSqu6EFlRcvV/5gtelBZfHy82rdvr379+mnatGmKiYlRfn6+JFk9qMzf318RERF6/PHHNXv2bLOfqx9UFhAQoAULFqhWrVpavHixJJkPKps1a5Z69+6twMBAxcbGavfu3UpOTr4NRwsAgMrDMAxFRERozZo12rZtm5o1a3bd96SmpkqSGjZsKEkKCgrSjz/+aPWldWJiotzc3BQQEGDGbN261aqfxMREBQUFSZIcHR0VGBhoFVNYWKitW7eaMYGBgapZs6ZVTHp6uo4fP27GAABQlVBIBwCgiqtqDyoDAKCqslgsio+PV0JCgurUqaPMzExlZmbqwoULkqTDhw9r2rRpSklJ0bFjx/TFF1/ohRdeUPfu3dW2bVtJUkhIiAICAvT8889r79692rx5syZMmCCLxSInJydJ0ssvv6wjR45o3LhxOnTokObNm6cVK1Zo7NixZi6RkZH66KOPtGTJEh08eFCjRo1Sbm6uhg4dKklyd3fX8OHDFRkZqe3btyslJUVDhw5VUFCQunTpcpuPHAAAfzweNgoAQBVWFR9UlpeXp7y8PPN1Tk5OWQ8HAACV2vz58yVdeZbJ1WJjYzVkyBA5Ojrqyy+/1Hvvvafc3Fz5+voqLCxMEyZMMGMdHBy0fv16jRo1SkFBQapdu7bCw8M1depUM6ZZs2basGGDxo4dqzlz5qhx48ZatGiRQkNDzZinnnpKp0+f1sSJE5WZman27dtr06ZNVuP67NmzZW9vr7CwMOXl5Sk0NFTz5s37g44OAAAVi0I6AABVWNGDyr7++mur9SNHjjT/v02bNmrYsKH69Omjw4cP66677rrdaZZLdHS0pkyZUtFpAABwyxmGYbPd19dXO3fuvG4/fn5+2rhxo82Ynj176ocffrAZExERoYiIiFLbnZ2dFRMTo5iYmOvmBADAnY6pXQAAqKKq6oPKoqKilJ2dbS4nTpywuW8AAAAAANwsCukAAFQxVf1BZU5OTnJzc7NaAAAAAAD4IzG1CwAAVYzFYlFCQoLWrl1rPqhMuvJQMBcXFx0+fFgJCQn685//rPr162vfvn0aO3ZsqQ8qmz59ujIzM0t8UNncuXM1btw4DRs2TNu2bdOKFSu0YcMGM5fIyEiFh4fr/vvvV6dOncw5XUt6UJmHh4fc3Nw0evRoHlQGAAAAAKhUKKQDAFDF8KAyAAAAAABuLQrpAABUMTyoDAAAAACAW6tcc6RHR0erY8eOqlOnjry8vDRo0CClp6dbxVy8eFEWi0X169eXq6urwsLCrB4ytnfvXg0ePFi+vr5ycXGRv7+/5syZY9XH6tWr9dBDD8nT01Nubm4KCgrS5s2bbeZ27Ngx2dnZFVuSk5PLs4sAAAAAAAAAAFgpVyF9586dslgsSk5OVmJiogoKChQSEqLc3FwzZuzYsVq3bp1WrlypnTt3KiMjQ4899pjZnpKSIi8vL8XHxystLU1vvPGGoqKiNHfuXDNm165deuihh7Rx40alpKSoV69eeuSRR657xZskffnllzp58qS5BAYGlmcXAQAAAAAAAACwUq6pXTZt2mT1Oi4uTl5eXkpJSVH37t2VnZ2tjz/+WAkJCerdu7ekK/Ox+vv7Kzk5WV26dNGwYcOs+mjevLmSkpK0evVq87bv9957zyrm7bff1tq1a7Vu3Trdd999NnOsX7++fHx8yrNbAAAAAAAAAACUqlxXpF8rOztbkuTh4SHpytXmBQUFCg4ONmNatmypJk2aKCkpyWY/RX2UpLCwUL/99pvNmCIDBgyQl5eXHnzwQX3xxRdl3RUAAAAAAAAAAEp0ww8bLSws1JgxY9S1a1e1bt1akpSZmSlHR0fVrVvXKtbb21uZmZkl9rN7924tX75cGzZsKHVb7777rs6fP68nn3yy1BhXV1fNnDlTXbt2lb29vT777DMNGjRIn3/+uQYMGFDie/Ly8pSXl2e+zsnJKbV/AAAAAAAAAED1dMOFdIvFov379+vrr7++4Y3v379fAwcO1KRJkxQSElJiTEJCgqZMmaK1a9fKy8ur1L4aNGigyMhI83XHjh2VkZGhGTNmlFpIj46O1pQpU244fwAAAAAAAABA1XdDU7tERERo/fr12r59uxo3bmyu9/HxUX5+vs6dO2cVn5WVVWze8gMHDqhPnz4aOXKkJkyYUOJ2li1bphEjRmjFihVW08WUVefOnfXTTz+V2h4VFaXs7GxzOXHiRLm3AQAAAAAAAACo2spVSDcMQxEREVqzZo22bdumZs2aWbUHBgaqZs2a2rp1q7kuPT1dx48fV1BQkLkuLS1NvXr1Unh4uN56660St/Xpp59q6NCh+vTTT9W/f//ypGlKTU1Vw4YNS213cnKSm5ub1QIAAAAAAAAAwNXKNbWLxWJRQkKC1q5dqzp16pjznru7u8vFxUXu7u4aPny4IiMj5eHhITc3N40ePVpBQUHq0qWLpCvTufTu3VuhoaGKjIw0+3BwcJCnp6ekK9O5hIeHa86cOercubMZU7QNSZo7d67WrFljFu2XLFkiR0dH3XfffZKk1atXa/HixVq0aNHNHiMAAAAAAAAAQDVWrkL6/PnzJUk9e/a0Wh8bG6shQ4ZIkmbPni17e3uFhYUpLy9PoaGhmjdvnhm7atUqnT59WvHx8YqPjzfX+/n56dixY5KkhQsX6tKlS7JYLLJYLGZMeHi44uLiJElnzpzR4cOHrfKYNm2afv75Z9WoUUMtW7bU8uXL9fjjj5dnFwEAAAAAAAAAsFKuQrphGNeNcXZ2VkxMjGJiYkpsnzx5siZPnmyzjx07dlx3O9f2Ex4ervDw8Ou+DwAAAAAAAACA8rihh40CAAAAAAAAAFBdUEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAKoHo6Gh17NhRderUkZeXlwYNGqT09HSrmIsXL8pisah+/fpydXVVWFiYsrKyrGKOHz+u/v37q1atWvLy8tLrr7+uS5cuWcXs2LFDHTp0kJOTk1q0aKG4uLhi+cTExKhp06ZydnZW586d9d1335U7FwAAqgoK6QAAAAAAVAI7d+6UxWJRcnKyEhMTVVBQoJCQEOXm5poxY8eO1bp167Ry5Urt3LlTGRkZeuyxx8z2y5cvq3///srPz9fu3bu1ZMkSxcXFaeLEiWbM0aNH1b9/f/Xq1UupqakaM2aMRowYoc2bN5sxy5cvV2RkpCZNmqQ9e/aoXbt2Cg0N1alTp8qcCwAAVUmNik4AAAAAAABImzZtsnodFxcnLy8vpaSkqHv37srOztbHH3+shIQE9e7dW5IUGxsrf39/JScnq0uXLtqyZYsOHDigL7/8Ut7e3mrfvr2mTZum8ePHa/LkyXJ0dNSCBQvUrFkzzZw5U5Lk7++vr7/+WrNnz1ZoaKgkadasWXrxxRc1dOhQSdKCBQu0YcMGLV68WH/961/LlAsAAFUJV6QDAAAAAFAJZWdnS5I8PDwkSSkpKSooKFBwcLAZ07JlSzVp0kRJSUmSpKSkJLVp00be3t5mTGhoqHJycpSWlmbGXN1HUUxRH/n5+UpJSbGKsbe3V3BwsBlTllwAAKhKuCIdAAAAAIBKprCwUGPGjFHXrl3VunVrSVJmZqYcHR1Vt25dq1hvb29lZmaaMVcX0Yvai9psxeTk5OjChQs6e/asLl++XGLMoUOHypzLtfLy8pSXl2e+zsnJud5hAACg0uCKdAAAqhgeVAYAwJ3PYrFo//79WrZsWUWncstER0fL3d3dXHx9fSs6JQAAyoxCOgAAVQwPKgMA4M4WERGh9evXa/v27WrcuLG53sfHR/n5+Tp37pxVfFZWlnx8fMyYa7+QLnp9vRg3Nze5uLioQYMGcnBwKDHm6j6ul8u1oqKilJ2dbS4nTpwow9EAAKByoJAOAEAVs2nTJg0ZMkStWrVSu3btFBcXp+PHjyslJUWSzIeDzZo1S71791ZgYKBiY2O1e/duJScnS5L5oLL4+Hi1b99e/fr107Rp0xQTE6P8/HxJsnpQmb+/vyIiIvT4449r9uzZZi5XP6gsICBACxYsUK1atbR48eIy5wIAQHVhGIYiIiK0Zs0abdu2Tc2aNbNqDwwMVM2aNbV161ZzXXp6uo4fP66goCBJUlBQkH788UerL60TExPl5uamgIAAM+bqPopiivpwdHRUYGCgVUxhYaG2bt1qxpQll2s5OTnJzc3NagEA4E5BIR0AgCquqj2oLC8vTzk5OVYLAABVgcViUXx8vBISElSnTh1lZmYqMzNTFy5ckCS5u7tr+PDhioyM1Pbt25WSkqKhQ4cqKChIXbp0kSSFhIQoICBAzz//vPbu3avNmzdrwoQJslgscnJykiS9/PLLOnLkiMaNG6dDhw5p3rx5WrFihcaOHWvmEhkZqY8++khLlizRwYMHNWrUKOXm5mro0KFlzgUAgKqEh40CAFCFVcUHlUVHR2vKlCllPAIAANw55s+fL0nq2bOn1frY2FgNGTJEkjR79mzZ29srLCxMeXl5Cg0N1bx588xYBwcHrV+/XqNGjVJQUJBq166t8PBwTZ061Yxp1qyZNmzYoLFjx2rOnDlq3LixFi1apNDQUDPmqaee0unTpzVx4kRlZmaqffv22rRpk9W4fr1cAACoSiikAwBQhRU9qOzrr7+u6FRumaioKEVGRpqvc3JyeFgZAKBKMAzjujHOzs6KiYlRTExMqTF+fn7auHGjzX569uypH374wWZMRESEIiIibioXAACqCgrpAABUUUUPKtu1a1epDyq7+krwax8g9t1331n1V94HlTk4OJTrQWWl5XItJycn89Z0AAAAAABuB+ZIBwCgiqnqDyoDAAAAAOB244p0AACqGIvFooSEBK1du9Z8UJl05aFgLi4uVg8H8/DwkJubm0aPHl3qg8qmT5+uzMzMEh9UNnfuXI0bN07Dhg3Ttm3btGLFCm3YsMHMJTIyUuHh4br//vvVqVMnvffee6U+qKy0XAAAAAAAqGgU0gEAqGJ4UBkAAAAAALcWhXQAAKoYHlQGAAAAAMCtxRzpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGBDuQrp0dHR6tixo+rUqSMvLy8NGjRI6enpVjEXL16UxWJR/fr15erqqrCwMGVlZZnte/fu1eDBg+Xr6ysXFxf5+/trzpw5Vn2sXr1aDz30kDw9PeXm5qagoCBt3rz5uvnt27dP3bp1k7Ozs3x9fTV9+vTy7B4AAAAAAAAAAMWUq5C+c+dOWSwWJScnKzExUQUFBQoJCVFubq4ZM3bsWK1bt04rV67Uzp07lZGRoccee8xsT0lJkZeXl+Lj45WWlqY33nhDUVFRmjt3rhmza9cuPfTQQ9q4caNSUlLUq1cvPfLII/rhhx9KzS0nJ0chISHy8/NTSkqKZsyYocmTJ2vhwoXl2UUAAAAAAAAAAKzUKE/wpk2brF7HxcXJy8tLKSkp6t69u7Kzs/Xxxx8rISFBvXv3liTFxsbK399fycnJ6tKli4YNG2bVR/PmzZWUlKTVq1crIiJCkvTee+9Zxbz99ttau3at1q1bp/vuu6/E3JYuXar8/HwtXrxYjo6OatWqlVJTUzVr1iyNHDmyPLsJAAAAAAAAAIDppuZIz87OliR5eHhIunK1eUFBgYKDg82Yli1bqkmTJkpKSrLZT1EfJSksLNRvv/1mMyYpKUndu3eXo6OjuS40NFTp6ek6e/ZsmfcJAAAAAAAAAICrleuK9KsVFhZqzJgx6tq1q1q3bi1JyszMlKOjo+rWrWsV6+3trczMzBL72b17t5YvX64NGzaUuq13331X58+f15NPPllqTGZmppo1a1Zsu0Vt9erVK/aevLw85eXlma9zcnJK7R+4k/i42sn/9x9U49eM275t43KBLv/2qxzqeMjOoeZt3fal37MkV7vbuk0AAAAAAABUfTdcSLdYLNq/f7++/vrrG974/v37NXDgQE2aNEkhISElxiQkJGjKlClau3atvLy8bnhbJYmOjtaUKVNuaZ9ARWvQoIEsXWprQsCaik7l9mskvXm2tho0aFDRmQAAAAAAAKAKuaFCekREhNavX69du3apcePG5nofHx/l5+fr3LlzVlelZ2VlycfHx6qPAwcOqE+fPho5cqQmTJhQ4naWLVumESNGaOXKlVbTxZTEx8dHWVlZVuuKXl+77SJRUVGKjIw0X+fk5MjX19fmdoDKrkmTJhrywQ4dzPh3hWz/6NGjmjBhgt58881id4ncDkOevluNmzS57dsFAAAAAABA1VWuQrphGBo9erTWrFmjHTt2FCuSBQYGqmbNmtq6davCwsIkSenp6Tp+/LiCgoLMuLS0NPXu3Vvh4eF66623StzWp59+qmHDhmnZsmXq37//dXMLCgrSG2+8oYKCAtWseWU6icTERN17770lTusiSU5OTnJycirTvgN3ksYtA6WWgRWy7Qt79uiHzL/J575Q+XfoUCE5AABwpzp+/LjOnDlz27d78OBBq//ebg0aNFATvggHAABAJVauQrrFYlFCQoLWrl2rOnXqmPOeu7u7y8XFRe7u7ho+fLgiIyPl4eEhNzc3jR49WkFBQerSpYukK9O59O7dW6GhoYqMjDT7cHBwkKenp6Qr07mEh4drzpw56ty5sxlTtA1Jmjt3rtasWaOtW7dKkp555hlNmTJFw4cP1/jx47V//37NmTNHs2fPvgWHCQAAAPhjHT9+XPe29NfFC79XWA7PPfdchWzX2aWW0g8dpJgOAACASqtchfT58+dLknr27Gm1PjY2VkOGDJEkzZ49W/b29goLC1NeXp5CQ0M1b948M3bVqlU6ffq04uPjFR8fb6738/PTsWPHJEkLFy7UpUuXZLFYZLFYzJjw8HDFxcVJks6cOaPDhw+bbe7u7tqyZYssFosCAwPVoEEDTZw4USNHjizPLgIAAAAV4syZM7p44XfVf/h/VLP+7Z1u0LiUr0vZWarh7i27Go63ddsFv5zQL+tn6syZMxTSAQB3pOp6R5nEXWWoXuwMwzAqOonKIicnR+7u7srOzpabm1tFpwPckfbs2aPAwEClpKSoA1O7AOXGWFR+HDNUFUVjqE/4e3LyaVHR6dw2eZk/KXPJGM4dcMdjPCo/jhmqgspwR1lF4q4y3OnKMxbd0MNGAQAAAAAAgOquut5RJnFXGaofCukAAAAAAADATahZ37di7ihrHHD7twlUU/YVnQAAAAAAAAAAAJUZhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAACqBXbt26ZFHHlGjRo1kZ2enzz//3Kp9yJAhsrOzs1r69u1rFfPrr7/q2WeflZubm+rWravhw4fr/PnzVjH79u1Tt27d5OzsLF9fX02fPr1YLitXrlTLli3l7OysNm3aaOPGjVbthmFo4sSJatiwoVxcXBQcHKx///vft+ZAAABQCVFIBwAAAACgEsjNzVW7du0UExNTakzfvn118uRJc/n000+t2p999lmlpaUpMTFR69ev165duzRy5EizPScnRyEhIfLz81NKSopmzJihyZMna+HChWbM7t27NXjwYA0fPlw//PCDBg0apEGDBmn//v1mzPTp0/X+++9rwYIF+vbbb1W7dm2Fhobq4sWLt/CIAABQedSo6AQAAAAAAIDUr18/9evXz2aMk5OTfHx8Smw7ePCgNm3apH/961+6//77JUkffPCB/vznP+vdd99Vo0aNtHTpUuXn52vx4sVydHRUq1atlJqaqlmzZpkF9zlz5qhv3756/fXXJUnTpk1TYmKi5s6dqwULFsgwDL333nuaMGGCBg4cKEn65JNP5O3trc8//1xPP/30rTokAABUGlyRDgAAAADAHWLHjh3y8vLSvffeq1GjRumXX34x25KSklS3bl2ziC5JwcHBsre317fffmvGdO/eXY6OjmZMaGio0tPTdfbsWTMmODjYaruhoaFKSkqSJB09elSZmZlWMe7u7urcubMZU5K8vDzl5ORYLQAA3CkopAMAUAUxxyoAAFVP37599cknn2jr1q165513tHPnTvXr10+XL1+WJGVmZsrLy8vqPTVq1JCHh4cyMzPNGG9vb6uYotfXi7m6/er3lRRTkujoaLm7u5uLr69vufYfAICKRCEdAIAqiDlWAQCoep5++mkNGDBAbdq00aBBg7R+/Xr961//0o4dOyo6tTKJiopSdna2uZw4caKiUwIAoMyYIx0AgCqIOVYBAKj6mjdvrgYNGuinn35Snz595OPjo1OnTlnFXLp0Sb/++qs55vv4+CgrK8sqpuj19WKubi9a17BhQ6uY9u3bl5qvk5OTnJycbmBPAQCoeFyRDgBANXWnzrHK/KoAAFzxn//8R7/88otZzA4KCtK5c+eUkpJixmzbtk2FhYXq3LmzGbNr1y4VFBSYMYmJibr33ntVr149M2br1q1W20pMTFRQUJAkqVmzZvLx8bGKycnJ0bfffmvGAABQ1VBIBwCgGrqT51hlflUAQFV1/vx5paamKjU1VdKVL5xTU1N1/PhxnT9/Xq+//rqSk5N17Ngxbd26VQMHDlSLFi0UGhoqSfL391ffvn314osv6rvvvtM333yjiIgIPf3002rUqJEk6ZlnnpGjo6OGDx+utLQ0LV++XHPmzFFkZKSZx2uvvaZNmzZp5syZOnTokCZPnqzvv/9eERERkiQ7OzuNGTNGb775pr744gv9+OOPeuGFF9SoUSMNGjToth4zAABuF6Z2AQCgGrp6ypQ2bdqobdu2uuuuu7Rjxw716dOnAjO7vqioKKt/7Ofk5FBMBwBUCd9//7169eplvi4a78LDwzV//nzt27dPS5Ys0blz59SoUSOFhIRo2rRpVtOlLF26VBEREerTp4/s7e0VFham999/32x3d3fXli1bZLFYFBgYqAYNGmjixIlWz0F54IEHlJCQoAkTJuhvf/ub7r77bn3++edq3bq1GTNu3Djl5uZq5MiROnfunB588EFt2rRJzs7Of+QhAgCgwlBIBwAAd9Qcq8yvCgCoqnr27CnDMEpt37x583X78PDwUEJCgs2Ytm3b6quvvrIZ88QTT+iJJ54otd3Ozk5Tp07V1KlTr5sTAABVAVO7AAAA5lgFAAAAAMAGCukAAFRBzLEKAAAAAMCtw9QuAABUQcyxCgAAAADArUMhHQCAKog5VgEAAAAAuHWY2gUAAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMCGGhWdAAAAAIArfFzt1MYxQzXtHCo6ldumwDFDcrWr6DQAAAAAmyikAwAAAJXES4GOmtxoQUWncXs1kiYHOlZ0FgAA3LDq+EW4xJfhqH4opAMAAACVxIcp+dp9z2uqWd+3olO5bQp+OaEfU2ZoQEUnAgDADaqWX4RLfBmOaodCOgAAAFBJZJ43pPxGcjKaVXQqt01e/uUr+w0AwB2qOn4RLvFlOKofCukAAAAAAADADaqOX4RLfBmO6se+ohMAAAAAAAAAAKAyo5AOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIAN5SqkR0dHq2PHjqpTp468vLw0aNAgpaenW8VcvHhRFotF9evXl6urq8LCwpSVlWW27927V4MHD5avr69cXFzk7++vOXPmWPVx8uRJPfPMM7rnnntkb2+vMWPGlCk/Ozu7YsuyZcvKs4sAAAAAAAAAAFgpVyF9586dslgsSk5OVmJiogoKChQSEqLc3FwzZuzYsVq3bp1WrlypnTt3KiMjQ4899pjZnpKSIi8vL8XHxystLU1vvPGGoqKiNHfuXDMmLy9Pnp6emjBhgtq1a1euHYqNjdXJkyfNZdCgQeV6PwAAAAAAAAAAV6tRnuBNmzZZvY6Li5OXl5dSUlLUvXt3ZWdn6+OPP1ZCQoJ69+4t6Uph29/fX8nJyerSpYuGDRtm1Ufz5s2VlJSk1atXKyIiQpLUtGlT8yr1xYsXl2uH6tatKx8fn3K9BwAAAAAAAACA0tzUHOnZ2dmSJA8PD0lXrjYvKChQcHCwGdOyZUs1adJESUlJNvsp6uNmWSwWNWjQQJ06ddLixYtlGMYt6RcAAAAAAAAAUD2V64r0qxUWFmrMmDHq2rWrWrduLUnKzMyUo6Oj6tataxXr7e2tzMzMEvvZvXu3li9frg0bNtxoKqapU6eqd+/eqlWrlrZs2aJXXnlF58+f16uvvlpifF5envLy8szXOTk5N50DAAAAAAAAAKBqueFCusVi0f79+/X111/f8Mb379+vgQMHatKkSQoJCbnhfor8/e9/N///vvvuU25urmbMmFFqIT06OlpTpky56e0CAAAAAAAAAKquG5raJSIiQuvXr9f27dvVuHFjc72Pj4/y8/N17tw5q/isrKxi85YfOHBAffr00ciRIzVhwoQbSeO6OnfurP/85z9WV51fLSoqStnZ2eZy4sSJPyQPAAAAAAAAAMCdq1yFdMMwFBERoTVr1mjbtm1q1qyZVXtgYKBq1qyprVu3muvS09N1/PhxBQUFmevS0tLUq1cvhYeH66233rrJXShdamqq6tWrJycnpxLbnZyc5ObmZrUAAAAAAAAAAHC1ck3tYrFYlJCQoLVr16pOnTrmvOfu7u5ycXGRu7u7hg8frsjISHl4eMjNzU2jR49WUFCQunTpIunKdC69e/dWaGioIiMjzT4cHBzk6elpbis1NVWSdP78eZ0+fVqpqalydHRUQECAJGnNmjWKiorSoUOHJEnr1q1TVlaWunTpImdnZyUmJurtt9/WX/7yl5s7QgAAAAAAAACAaq1chfT58+dLknr27Gm1PjY2VkOGDJEkzZ49W/b29goLC1NeXp5CQ0M1b948M3bVqlU6ffq04uPjFR8fb6738/PTsWPHzNf33Xef+f8pKSlKSEiwisnOzlZ6eroZU7NmTcXExGjs2LEyDEMtWrTQrFmz9OKLL5ZnFwEAAAAAAAAAsFKuQrphGNeNcXZ2VkxMjGJiYkpsnzx5siZPnnzT2xoyZIhZvJekvn37qm/fvtftFwAAAAAAAACA8rihh40CAAAAAAAAAFBdUEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAACVwK5du/TII4+oUaNGsrOz0+eff27VbhiGJk6cqIYNG8rFxUXBwcH697//bRXz66+/6tlnn5Wbm5vq1q2r4cOH6/z581Yx+/btU7du3eTs7CxfX19Nnz69WC4rV65Uy5Yt5ezsrDZt2mjjxo3lzgUAgKqEQjoAAAAAAJVAbm6u2rVrp5iYmBLbp0+frvfff18LFizQt99+q9q1ays0NFQXL140Y5599lmlpaUpMTFR69ev165duzRy5EizPScnRyEhIfLz81NKSopmzJihyZMna+HChWbM7t27NXjwYA0fPlw//PCDBg0apEGDBmn//v3lygUAgKqkRkUnAAAAAAAApH79+qlfv34lthmGoffee08TJkzQwIEDJUmffPKJvL299fnnn+vpp5/WwYMHtWnTJv3rX//S/fffL0n64IMP9Oc//1nvvvuuGjVqpKVLlyo/P1+LFy+Wo6OjWrVqpdTUVM2aNcssuM+ZM0d9+/bV66+/LkmaNm2aEhMTNXfuXC1YsKBMuQAAUNVwRToAAFUQt4YDAFC1HD16VJmZmQoODjbXubu7q3PnzkpKSpIkJSUlqW7dumYRXZKCg4Nlb2+vb7/91ozp3r27HB0dzZjQ0FClp6fr7NmzZszV2ymKKdpOWXIBAKCqoZAOAEAVxK3hAABULZmZmZIkb29vq/Xe3t5mW2Zmpry8vKzaa9SoIQ8PD6uYkvq4ehulxVzdfr1cSpKXl6ecnByrBQCAOwWFdAAAqqB+/frpzTff1KOPPlqs7drbsdu2batPPvlEGRkZ5pXrRbeGL1q0SJ07d9aDDz6oDz74QMuWLVNGRoYkWd0a3qpVKz399NN69dVXNWvWLHNbV98a7u/vr2nTpqlDhw6aO3dumXMBAABVQ3R0tNzd3c3F19e3olMCAKDMKKQDAFDNcGs4AAB3Hh8fH0lSVlaW1fqsrCyzzcfHR6dOnbJqv3Tpkn799VermJL6uHobpcVc3X69XEoSFRWl7Oxsczlx4sR19hoAgMqDh40CAFDN3Mpbw5s1a1asj6K2evXq/SG3hufl5SkvL898zW3hqGoKfrn9hSXjUr4uZWephru37Go4Xv8Nt1BF7C9wJ2rWrJl8fHy0detWtW/fXtKVMfDbb7/VqFGjJElBQUE6d+6cUlJSFBgYKEnatm2bCgsL1blzZzPmjTfeUEFBgWrWrClJSkxM1L333qt69eqZMVu3btWYMWPM7ScmJiooKKjMuZTEyclJTk5Ot+yYAABwO1FIBwAAd5To6GhNmTKlotMAbrkGDRrI2aWWflk/s6JTue2cXWqpQYMGFZ0GUOHOnz+vn376yXx99OhRpaamysPDQ02aNNGYMWP05ptv6u6771azZs3097//XY0aNdKgQYMkSf7+/urbt69efPFFLViwQAUFBYqIiNDTTz+tRo0aSZKeeeYZTZkyRcOHD9f48eO1f/9+zZkzR7Nnzza3+9prr6lHjx6aOXOm+vfvr2XLlun77783n4NiZ2d33VwAAKhqKKQDAFDNXH07dsOGDc31WVlZ5lVlFXFreGm5XCsqKkqRkZHm65ycHOZYRZXQpEkTpR86qDNnztz2bR88eFDPPfec4uPj5e/vf9u336BBAzVp0uS2bxeobL7//nv16tXLfF003oWHhysuLk7jxo1Tbm6uRo4cqXPnzunBBx/Upk2b5OzsbL5n6dKlioiIUJ8+fWRvb6+wsDC9//77Zru7u7u2bNkii8WiwMBANWjQQBMnTrR6oPgDDzyghIQETZgwQX/7299099136/PPP1fr1q3NmLLkAgBAVUIhHQCAauZOvzWc28JRlTVp0qRCC8r+/v7q0KFDhW0fqO569uwpwzBKbbezs9PUqVM1derUUmM8PDyUkJBgcztt27bVV199ZTPmiSee0BNPPHFTuQDVSXWbmk1iejZUPxTSAQCogrg1HAAAAPjjVeep2SSmZ0P1QiEdAIAqiFvDAQAAgD9edZ6aTWJ6NlQvdoat+8aqmZycHLm7uys7O1tubm4VnQ5wR9qzZ48CAwOVkpLCreHADWAsKj+OGXDzGL+Bm8d4VH4cM+DmMH4DN688Y5H9bcoJAAAAAAAAAIA7EoV0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsKFchPTo6Wh07dlSdOnXk5eWlQYMGKT093Srm4sWLslgsql+/vlxdXRUWFqasrCyzfe/evRo8eLB8fX3l4uIif39/zZkzx6qPkydP6plnntE999wje3t7jRkzpkz5HT9+XP3791etWrXk5eWl119/XZcuXSrPLgIAAAAAAAAAYKVchfSdO3fKYrEoOTlZiYmJKigoUEhIiHJzc82YsWPHat26dVq5cqV27typjIwMPfbYY2Z7SkqKvLy8FB8fr7S0NL3xxhuKiorS3LlzzZi8vDx5enpqwoQJateuXZlyu3z5svr376/8/Hzt3r1bS5YsUVxcnCZOnFieXQQAAAAAAAAAwEqN8gRv2rTJ6nVcXJy8vLyUkpKi7t27Kzs7Wx9//LESEhLUu3dvSVJsbKz8/f2VnJysLl26aNiwYVZ9NG/eXElJSVq9erUiIiIkSU2bNjWvUl+8eHGZctuyZYsOHDigL7/8Ut7e3mrfvr2mTZum8ePHa/LkyXJ0dCzPrgIAAAAAAAAAIOkm50jPzs6WJHl4eEi6crV5QUGBgoODzZiWLVuqSZMmSkpKstlPUR83KikpSW3atJG3t7e5LjQ0VDk5OUpLS7upvgEAAAAAAAAA1Ve5rki/WmFhocaMGaOuXbuqdevWkqTMzEw5Ojqqbt26VrHe3t7KzMwssZ/du3dr+fLl2rBhw42mYm776iJ60XaL2kqSl5envLw883VOTs5N5QAAAAAAAAAAqHpu+Ip0i8Wi/fv3a9myZTe88f3792vgwIGaNGmSQkJCbrifGxUdHS13d3dz8fX1ve05AAAAAAAAAAAqtxsqpEdERGj9+vXavn27GjdubK738fFRfn6+zp07ZxWflZUlHx8fq3UHDhxQnz59NHLkSE2YMOFG0rDi4+OjrKysYtstaitJVFSUsrOzzeXEiRM3nQcAAAAAAAAAoGopVyHdMAxFRERozZo12rZtm5o1a2bVHhgYqJo1a2rr1q3muvT0dB0/flxBQUHmurS0NPXq1Uvh4eF66623bnIXrggKCtKPP/6oU6dOmesSExPl5uamgICAEt/j5OQkNzc3qwUAAAAAAAAAgKuVa450i8WihIQErV27VnXq1DHnHnd3d5eLi4vc3d01fPhwRUZGysPDQ25ubho9erSCgoLUpUsXSVemc+ndu7dCQ0MVGRlp9uHg4CBPT09zW6mpqZKk8+fP6/Tp00pNTZWjo6NZFF+zZo2ioqJ06NAhSVJISIgCAgL0/PPPa/r06crMzNSECRNksVjk5OR0c0cJAAAAAAAAAFBtlauQPn/+fElSz549rdbHxsZqyJAhkqTZs2fL3t5eYWFhysvLU2hoqObNm2fGrlq1SqdPn1Z8fLzi4+PN9X5+fjp27Jj5+r777jP/PyUlRQkJCVYx2dnZSk9PN2McHBy0fv16jRo1SkFBQapdu7bCw8M1derU8uwiAAAAAAAAAABWylVINwzjujHOzs6KiYlRTExMie2TJ0/W5MmTb3pbQ4YMMYv3Rfz8/LRx48br9g0AAAAAAAAAQFnd0MNGAQAAAAAAAACoLiikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAA4A4wefJk2dnZWS0tW7Y02y9evCiLxaL69evL1dVVYWFhysrKsurj+PHj6t+/v2rVqiUvLy+9/vrrunTpklXMjh071KFDBzk5OalFixaKi4srlktMTIyaNm0qZ2dnde7cWd99990fss8AAFQWFNIBAAAAALhDtGrVSidPnjSXr7/+2mwbO3as1q1bp5UrV2rnzp3KyMjQY489ZrZfvnxZ/fv3V35+vnbv3q0lS5YoLi5OEydONGOOHj2q/v37q1evXkpNTdWYMWM0YsQIbd682YxZvny5IiMjNWnSJO3Zs0ft2rVTaGioTp06dXsOAgAAFYBCOgAA1RBXtAEAcGeqUaOGfHx8zKVBgwaSpOzsbH388ceaNWuWevfurcDAQMXGxmr37t1KTk6WJG3ZskUHDhxQfHy82rdvr379+mnatGmKiYlRfn6+JGnBggVq1qyZZs6cKX9/f0VEROjxxx/X7NmzzRxmzZqlF198UUOHDlVAQIAWLFigWrVqafHixbf/gAAAcJtQSAcAoJriijYAAO48//73v9WoUSM1b95czz77rI4fPy5JSklJUUFBgYKDg83Yli1bqkmTJkpKSpIkJSUlqU2bNvL29jZjQkNDlZOTo7S0NDPm6j6KYor6yM/PV0pKilWMvb29goODzZjS5OXlKScnx2oBAOBOQSEdAIBqiivaAAC4s3Tu3FlxcXHatGmT5s+fr6NHj6pbt2767bfflJmZKUdHR9WtW9fqPd7e3srMzJQkZWZmWhXRi9qL2mzF5OTk6MKFCzpz5owuX75cYkxRH6WJjo6Wu7u7ufj6+pb7GAAAUFEopAMAUE3dqVe0cTUbAKC66tevn5544gm1bdtWoaGh2rhxo86dO6cVK1ZUdGplEhUVpezsbHM5ceJERacEAECZUUgHAKAaupOvaONqNgAArqhbt67uuece/fTTT/Lx8VF+fr7OnTtnFZOVlSUfHx9Jko+PT7FnnhS9vl6Mm5ubXFxc1KBBAzk4OJQYU9RHaZycnOTm5ma1AABwp6CQDgBANXQnX9HG1WwAAFxx/vx5HT58WA0bNlRgYKBq1qyprVu3mu3p6ek6fvy4goKCJElBQUH68ccfrZ5FkpiYKDc3NwUEBJgxV/dRFFPUh6OjowIDA61iCgsLtXXrVjMGAICqiEI6AAC4o65o42o2AEB19Ze//EU7d+7UsWPHtHv3bj366KNycHDQ4MGD5e7uruHDhysyMlLbt29XSkqKhg4dqqCgIHXp0kWSFBISooCAAD3//PPau3evNm/erAkTJshiscjJyUmS9PLLL+vIkSMaN26cDh06pHnz5mnFihUaO3asmUdkZKQ++ugjLVmyRAcPHtSoUaOUm5uroUOHVshxAQDgdqCQDgAAuKINAIA7wH/+8x8NHjxY9957r5588knVr19fycnJ8vT0lCTNnj1bDz/8sMLCwtS9e3f5+Pho9erV5vsdHBy0fv16OTg4KCgoSM8995xeeOEFTZ061Yxp1qyZNmzYoMTERLVr104zZ87UokWLFBoaasY89dRTevfddzVx4kS1b99eqamp2rRpU7Hp2gAAqEpqVHQCAADg9vvLX/6iRx55RH5+fsrIyNCkSZNKvKLNw8NDbm5uGj16dKlXtE2fPl2ZmZklXtE2d+5cjRs3TsOGDdO2bdu0YsUKbdiwwcwjMjJS4eHhuv/++9WpUye99957XNEGAEApli1bZrPd2dlZMTExiomJKTXGz89PGzdutNlPz5499cMPP9iMiYiIUEREhM0YAACqEgrpAABUQ0VXtP3yyy/y9PTUgw8+WOyKNnt7e4WFhSkvL0+hoaGaN2+e+f6iK9pGjRqloKAg1a5dW+Hh4SVe0TZ27FjNmTNHjRs3LvGKttOnT2vixInKzMxU+/btuaINAAAAAFDpUEgHAKAa4oo2AAAAAADKjjnSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABvKVUiPjo5Wx44dVadOHXl5eWnQoEFKT0+3irl48aIsFovq168vV1dXhYWFKSsry2zfu3evBg8eLF9fX7m4uMjf319z5swptq0dO3aoQ4cOcnJyUosWLRQXF2czt2PHjsnOzq7YkpycXJ5dBAAAAAAAAADASrkK6Tt37pTFYlFycrISExNVUFCgkJAQ5ebmmjFjx47VunXrtHLlSu3cuVMZGRl67LHHzPaUlBR5eXkpPj5eaWlpeuONNxQVFaW5c+eaMUePHlX//v3Vq1cvpaamasyYMRoxYoQ2b9583Ry//PJLnTx50lwCAwPLs4sAAAAAAAAAAFipUZ7gTZs2Wb2Oi4uTl5eXUlJS1L17d2VnZ+vjjz9WQkKCevfuLUmKjY2Vv7+/kpOT1aVLFw0bNsyqj+bNmyspKUmrV69WRESEJGnBggVq1qyZZs6cKUny9/fX119/rdmzZys0NNRmjvXr15ePj095dgsAAAAAAAAAgFKVq5B+rezsbEmSh4eHpCtXmxcUFCg4ONiMadmypZo0aaKkpCR16dKl1H6K+pCkpKQkqz4kKTQ0VGPGjLluTgMGDNDFixd1zz33aNy4cRowYECpsXl5ecrLyzNf5+TkXLd/oKr7/fffdejQoRt+/8GDB63+eyNatmypWrVq3fD7AQCobirD+C0xhgMAUF43M4YzfgO31w0X0gsLCzVmzBh17dpVrVu3liRlZmbK0dFRdevWtYr19vZWZmZmif3s3r1by5cv14YNG8x1mZmZ8vb2LtZHTk6OLly4IBcXl2L9uLq6aubMmeratavs7e312WefadCgQfr8889LLaZHR0drypQp5dltoMo7dOjQLZkS6bnnnrvh96akpKhDhw43nQMAANVFZRi/JcZwAADK61aM4YzfwO1xw4V0i8Wi/fv36+uvv77hje/fv18DBw7UpEmTFBIScsP9SFKDBg0UGRlpvu7YsaMyMjI0Y8aMUgvpUVFRVu/JycmRr6/vTeUB3OlatmyplJSUG37/hQsXdOzYMTVt2rTEL73KmgMAACi7yjB+F+UBAADK7mbGcMZv4Pa6oUJ6RESE1q9fr127dqlx48bmeh8fH+Xn5+vcuXNWV6VnZWUVm7f8wIED6tOnj0aOHKkJEyZYtfn4+CgrK8tqXVZWltzc3Mr1h6Fz585KTEwstd3JyUlOTk5l7g+oDmrVqnXT30R37dr1FmUDAADKgvEbQEWJiYnRjBkzlJmZqXbt2umDDz5Qp06dKjot4I5xs2M44zdw+9iXJ9gwDEVERGjNmjXatm2bmjVrZtUeGBiomjVrauvWrea69PR0HT9+XEFBQea6tLQ09erVS+Hh4XrrrbeKbScoKMiqD0lKTEy06qMsUlNT1bBhw3K9BwAAAAAAXN/y5csVGRmpSZMmac+ePWrXrp1CQ0N16tSpik4NAIBbrlyFdIvFovj4eCUkJKhOnTrKzMxUZmamLly4IElyd3fX8OHDFRkZqe3btyslJUVDhw5VUFCQ+aDR/fv3q1evXgoJCVFkZKTZx+nTp83tvPzyyzpy5IjGjRunQ4cOad68eVqxYoXGjh1rxsydO1d9+vQxXy9ZskSffvqpDh06pEOHDuntt9/W4sWLNXr06Js6QAAA4PaIiYlR06ZN5ezsrM6dO+u7776r6JQAAIANs2bN0osvvqihQ4cqICBACxYsUK1atbR48eKKTg0AgFuuXIX0+fPnKzs7Wz179lTDhg3NZfny5WbM7Nmz9fDDDyssLEzdu3eXj4+PVq9ebbavWrVKp0+fVnx8vFUfHTt2NGOaNWumDRs2KDExUe3atdPMmTO1aNEihYaGmjFnzpzR4cOHrfKbNm2aAgMD1blzZ61du1bLly/X0KFDy31QAADA7cUVbQAA3Fny8/OVkpKi4OBgc529vb2Cg4OVlJRUgZkBAPDHsDMMw6joJCqLnJwcubu7Kzs7W25ubhWdDgCgGqquY1Hnzp3VsWNHzZ07V5JUWFgoX19fjR49Wn/9619tvre6HjMAQOVS3cajjIwM/elPf9Lu3butpmEdN26cdu7cqW+//bbYe/Ly8pSXl2e+zsnJka+vb7U5ZgCAyqc843e5rkgHAAC41cp7RVteXp5ycnKsFgAAUPlFR0fL3d3dXHx9fSs6JQAAyoxCOgAAqFBnzpzR5cuX5e3tbbXe29tbmZmZxeL5RzgAABWvQYMGcnBwUFZWltX6rKws+fj4lPieqKgoZWdnm8uJEyduR6oAANwSFNIBAMAdhX+EAwBQ8RwdHRUYGKitW7ea6woLC7V161arqV6u5uTkJDc3N6sFAIA7RY2KTgAAAFRv5b2izcnJSU5OTrcrPQAAUIrIyEiFh4fr/vvvV6dOnfTee+8pNzdXQ4cOrejUAAC45bgiHQAAVKgbuaINAABUvKeeekrvvvuuJk6cqPbt2ys1NVWbNm0qNl0bAABVAVekAwCACscVbQAA3JkiIiIUERFR0WkAAPCHo5AOAAAq3FNPPaXTp09r4sSJyszMVPv27bmiDQAAAABQaVBIBwAAlQJXtAEAAAAAKivmSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAG5gj/SqGYUiScnJyKjgTAEB1VTQGFY1JuD7GbwBAZcAYXn6M4QCAilae8ZtC+lV+++03SZKvr28FZwIAqO5+++03ubu7V3QadwTGbwBAZcIYXnaM4QCAyuL/a+++w6wo7/9xv5a2EDpIW6VpsGDvikaIkhCs2GM0QSBirEFjTEysaCR27DUBWxJbNMbeQBPFEhWT2D4WECygRGUBBZU9vz/8cn6uwAiKrov3fV3nujjPPPPMe2bnOO5rZp+zJNfvipLb5WU1NTV5/fXX07Jly1RUVNR1OVAvVVdXp2vXrpk6dWpatWpV1+VAvVMqlTJr1qxUVVWlQQMzsC0J12/44ly/4YtzDV96ruHwxbh+wxe3NNdvQTqwTFVXV6d169aZOXOmCzkA1BOu3wBQ/7h+w1fLbXIAAAAAACggSAcAAAAAgAKCdGCZqqyszHHHHZfKysq6LgUAWEKu3wBQ/7h+w1fLHOkAAAAAAFDAE+kAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpwDLxwAMPZIcddkhVVVUqKipy00031XVJAMBncP0GgPrJNRy+eoJ0YJmYM2dO1l133Zx//vl1XQoAsIRcvwGgfnINh69eo7ouAFg+DBw4MAMHDqzrMgCApeD6DQD1k2s4fPU8kQ4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFGtV1AcDyYfbs2XnxxRfL7ydNmpSJEyemXbt26datWx1WBgAsjus3ANRPruHw1asolUqlui4CqP/Gjx+f7373uwu1Dx48OGPHjv3qCwIAPpPrNwDUT67h8NUTpAMAAAAAQAFzpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAfANVVFTkpptuqusyAACgXhCkA0tk8uTJqaioyMSJE+u6FAAAAPha+TrcoD7++OOz3nrr1WkNn+XrcJzg8xKkAwAAS+2DDz6o6xIAgE844ogjcu+999Z1GbDcEqQDn6m+/qJcX+sGgCV1/fXXZ+21106zZs3Svn379O/fP3PmzMljjz2W733ve1lhhRXSunXr9O3bN0888UThWL/61a+y6qqr5lvf+lZWXnnlHHPMMfnwww/Lyxc85XbZZZelZ8+eadq0aa644oq0b98+8+bNqzXWoEGD8uMf//hL2WcAWB4ti99fW7Rokfbt2y+DaoBFEaTDcuCWW25JmzZtMn/+/CTJxIkTU1FRkV//+tflPj/96U+zzz77JEluuOGGrLnmmqmsrEyPHj1yxhln1BqvR48eOfHEE/OTn/wkrVq1yvDhwxfa5vz58zN06NCsvvrqmTJlSmF9Q4cOzfbbb1+r7cMPP0zHjh3zhz/8IUlSU1OTUaNGpWfPnmnWrFnWXXfdXH/99bW2N2zYsPLy1VZbLWeffXatMffdd98MGjQov/vd71JVVZXVVlvtsw4dANRbb7zxRvbaa68MHTo0zz77bMaPH59ddtklpVIps2bNyuDBg/PPf/4zDz/8cHr16pVtt902s2bNWux4LVu2zNixY/PMM8/k7LPPzqWXXpqzzjqrVp8XX3wxN9xwQ/76179m4sSJ2X333TN//vzcfPPN5T5vvvlmbr311gwdOvRL23cA+DLU9xvUn57aZcHvyKeffnq6dOmS9u3b56CDDqpVR5FFTcPSpk2bjB07NsnH4f/BBx+cLl26pGnTpunevXtGjRpV7vvCCy9kq622StOmTdO7d+/cfffdS7Rd+LpqVNcFAF/cd77zncyaNStPPvlkNtpoo9x///1ZYYUVMn78+HKf+++/P7/61a/y+OOPZ4899sjxxx+fPffcMw899FAOPPDAtG/fPvvuu2+5/+mnn55jjz02xx133ELbmzdvXvbaa69Mnjw5//jHP9KhQ4fC+n76059mq622yhtvvJEuXbok+Tj8f++997LnnnsmSUaNGpWrrroqF110UXr16pUHHngg++yzTzp06JC+ffumpqYmK620Uq677rq0b98+Dz30UIYPH54uXbpkjz32KG/r3nvvTatWrVygAVjuvfHGG/noo4+yyy67pHv37kmStddeO0my9dZb1+p7ySWXpE2bNrn//vsXurm9wNFHH13+d48ePXLEEUfkL3/5S4488shy+wcffJArrrii1rX/Rz/6UcaMGZPdd989SXLVVVelW7du6dev3zLZTwD4Kiy4QX3qqadm5513zqxZs/KPf/yj1g3qc889N6VSKWeccUa23XbbvPDCC2nZsuUix1twg7qqqir/+c9/st9++6Vly5a1rqufvEHdsGHD9OrVK4ceemhuvvnm8nV1wQ3qu+6663Pt17hx49KlS5eMGzcuL774Yvbcc8+st9562W+//T7XeJ90zjnn5Oabb861116bbt26ZerUqZk6dWqSjx+W22WXXdKpU6c88sgjmTlzZkaMGPGFtwl1SZAOy4HWrVtnvfXWy/jx47PRRhtl/PjxOeyww3LCCSdk9uzZmTlzZl588cX07ds3xx9/fLbZZpscc8wxSZJVV101zzzzTE477bRaQfrWW2+dX/ziF+X3kydPTpLMnj072223XebNm5dx48aldevWn1lfnz59stpqq+XKK68s/0/Dgl+4W7RokXnz5uXkk0/OPffck8033zxJsvLKK+ef//xnLr744vTt2zeNGzfOCSecUB6zZ8+emTBhQq699tpaQXrz5s1z2WWXpUmTJp/7eAJAfbDuuutmm222ydprr50BAwbk+9//fnbbbbe0bds206dPz9FHH53x48fnzTffzPz58/Pee+8V/hXZNddck3POOScvvfRSZs+enY8++iitWrWq1ad79+4L3UDfb7/9svHGG+e1117LiiuumLFjx2bfffdNRUXFl7LfAPBlWF5vULdt2zbnnXdeGjZsmNVXXz3bbbdd7r333mUSpE+ZMiW9evXKlltumYqKivJxS5J77rknzz33XO68885UVVUlSU4++eQMHDjwC28X6oqpXWA50bdv34wfPz6lUin/+Mc/sssuu2SNNdbIP//5z9x///2pqqpKr1698uyzz2aLLbaote4WW2yRF154oTw1TJJstNFGi9zOXnvtlTlz5uSuu+5aohB9gZ/+9KcZM2ZMkmT69Om5/fbby3/y/eKLL+a9997L9773vbRo0aL8uuKKK/LSSy+Vxzj//POz4YYbpkOHDmnRokUuueSShQKBtddeW4gOwDdCw4YNc/fdd+f2229P7969c+6552a11VbLpEmTMnjw4EycODFnn312HnrooUycODHt27df7PyrEyZMyN57751tt902t9xyS5588sn89re/Xah/8+bNF1p3/fXXz7rrrpsrrrgijz/+eJ5++ulaN+cBoD745A3q3XffPZdeemneeeedJB//DrvffvulV69ead26dVq1apXZs2d/5g3qLbbYIp07d06LFi1y9NFHL9R/cTeo77rrrrz22mtJ8oVvUK+55ppp2LBh+X2XLl3y5ptvfq6xPm3ffffNxIkTs9pqq+XQQw+t9dT8s88+m65du5ZD9CTlB+egvhKkw3KiX79++ec//5mnnnoqjRs3zuqrr55+/fpl/Pjxuf/++9O3b9+lGm9Rvygnybbbbpt///vfmTBhwlKN95Of/CQvv/xyJkyYkKuuuio9e/bMd77znSQfP+WeJLfeemsmTpxYfj3zzDPledL/8pe/5IgjjsiwYcNy1113ZeLEiRkyZMgS/YIPAMurioqKbLHFFjnhhBPy5JNPpkmTJrnxxhvz4IMP5tBDD822225b/l6UGTNmLHachx56KN27d89vf/vbbLTRRunVq1deeeWVJa7jpz/9acaOHZsxY8akf//+6dq167LYPQD4yiyvN6gbN25c631FRUVqamqWaN2KioqUSqVabZ+cX32DDTbIpEmTcuKJJ+b999/PHnvskd122+1z1wpfd6Z2geXEgnnSzzrrrHJo3q9fv/z+97/PO++8U56mZY011siDDz5Ya90HH3wwq666aq271ItzwAEHZK211sqOO+6YW2+9dYkD+vbt22fQoEEZM2ZMJkyYkCFDhpSX9e7dO5WVlZkyZcpix3vwwQfTp0+fHHjggeW2Tz6tDgDfNI888kjuvffefP/730/Hjh3zyCOP5K233soaa6yRXr165corr8xGG22U6urq/PKXv0yzZs0WO1avXr0yZcqU/OUvf8nGG2+cW2+9NTfeeOMS1/KjH/0oRxxxRC699NJcccUVy2L3AOArt+AG9RZbbJFjjz023bt3L9+gvuCCC7LtttsmSaZOnbrEN6gXWNob1KNHj85rr71WpzeoO3TokDfeeKP8/oUXXsh7771Xq0+rVq2y5557Zs8998xuu+2WH/zgB3n77bezxhprZOrUqbW+K+3hhx/+SuuHZU2QDsuJtm3bZp111snVV1+d8847L0my1VZbZY899siHH35YDqh/8YtfZOONN86JJ56YPffcMxMmTMh5552XCy64YIm3dcghh2T+/PnZfvvtc/vtt2fLLbdcovV++tOfZvvtt8/8+fMzePDgcnvLli1zxBFH5LDDDktNTU223HLLzJw5Mw8++GBatWqVwYMHp1evXrniiity5513pmfPnrnyyivz2GOPpWfPnktxlABg+dGqVas88MADGT16dKqrq9O9e/ecccYZGThwYDp37pzhw4dngw02SNeuXXPyySfniCOOWOxYO+64Yw477LAcfPDBmTdvXrbbbrscc8wxOf7445eoltatW2fXXXfNrbfemkGDBi2bHQSAr5Ab1Avbeuutc95552XzzTfP/Pnz86tf/arWE+5nnnlmunTpkvXXXz8NGjTIddddl86dO6dNmzbp379/Vl111QwePDinnXZaqqura91YgPpIkA7Lkb59+2bixInlLyFp165devfunenTp2e11VZL8vGfXl177bU59thjc+KJJ6ZLly4ZOXLkUv+p2IgRI1JTU5Ntt902d9xxR/r06fOZ6/Tv3z9dunTJmmuuWWuetCQ58cQT06FDh4waNSovv/xy2rRpkw022CC/+c1vkiT7779/nnzyyey5556pqKjIXnvtlQMPPDC33377UtUNAMuLNdZYI3fccccil62//vp57LHHarV9+k+tP/2n2qeeempOPfXUWm0jRowo//v4448vDNZfe+217L333qmsrFyC6gHg68UN6oWdccYZGTJkSL7zne+kqqoqZ599dh5//PHy8pYtW+bUU0/NCy+8kIYNG2bjjTfObbfdlgYNPp5J+sYbb8ywYcOyySabpEePHjnnnHPygx/8oK52B76witKn/w8a4Esye/bsrLjiihkzZkx22WWXui4HAFgG3nnnnYwfPz677bZbnnnmmfLNewDg89tmm22y5ppr5pxzzqnrUoD/xxPpwJeupqYmM2bMyBlnnJE2bdpkxx13rOuSAIBlZP31188777yTU045RYgOAF/QghvU48ePX6opWIEvnyAd+MKuvvrq7L///otc1r1799x6663p2bNnVlpppYwdOzaNGvlPDwAsLyZPnlzXJQDAcqPoBvWaa6652C8tvfjii7P33nsv8Xb+8Y9/ZODAgYtdPnv27CUeC74pTO0CfGGzZs3K9OnTF7mscePG6d69+1dcEQAAACxfXnnllXz44YeLXNapU6e0bNlyicd6//3389prry12+be//e2lrg+Wd4J0AAAAAAAo0KCuCwAAAAAAgK8zQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToA9c748eNTUVGR8ePH13UpAAAAwDeAIL0euP7661NRUbHI11prrVXX5cE3Rr9+/bLvvvsmSfbdd9/069evTuv5Ik4++eTcdNNNdV3GZ7rgggsyduzYZTrm8ccfnx49eiRJxo4dm4qKimU6PgAAALD8aVTXBbDkfvOb32SNNdYov//d735Xh9UA9dnJJ5+c3XbbLYMGDarrUgpdcMEFWWGFFco3MBbYaqut8v7776dJkyZ1UxgAAADwjSJIr0e+973v1XoC9rLLLsuMGTPqriCg0EcffZSamhph7/9TKpUyd+7cNGvW7AuP1aBBgzRt2nQZVAUAAADw2UztUg988MEHST4Ojj7LgmkKJk+eXG6rqanJOuusk4qKilpTJPz73//Ovvvum5VXXjlNmzZN586dM3To0Pzvf/+rNebxxx+/yGllGjX6/+/D9OvXL2uttVYef/zx9OnTJ82aNUvPnj1z0UUXLbQvxx57bDbccMO0bt06zZs3z3e+852MGzeuVr/JkyeXt/Pp6Sfmzp2btm3bpqKiIqeffvpCdXbs2DEffvhhrXX+/Oc/l8f75M2Hv/3tb9luu+1SVVWVysrKrLLKKjnxxBMzf/78zzzWC7b33HPPZY899kirVq3Svn37/PznP8/cuXNr9R0zZky23nrrdOzYMZWVlendu3cuvPDChcbcaaed0qNHjzRt2jQdO3bMjjvumP/85z+1+izYj9GjRy+0/uqrr56KioocfPDB5ba33347RxxxRNZee+20aNEirVq1ysCBA/PUU0/VWnfw4MFp2rRpnn322VrtAwYMSNu2bfP666+X215++eXsvvvuadeuXb71rW9ls802y6233lprvQVzWC94VVZWZtVVV82oUaNSKpWKD+7/s7hzb1FTqnzynPn065PefPPNDBs2LN26dUvDhg3LfVq0aLFENS3Ogu2ffvrpGT16dFZZZZVUVlbmmWeeSZI899xz2W233dKuXbs0bdo0G220UW6++eZaYyz4/P7zn//MoYcemg4dOqRNmzbZf//988EHH+Tdd9/NT37yk7Rt2zZt27bNkUceudCxnDNnTn7xi1+ka9euqayszGqrrZbTTz+9Vr+KiorMmTMnl19+eXn/P/nE92uvvZahQ4emU6dOqayszJprrpk//vGPS31MevToke233z533nlnNtpoozRr1iwXX3xxkiX7TPTo0SNPP/107r///oV+9oubI/26667LhhtumGbNmmWFFVbIPvvsk9dee22pawcAAAD4JE+k1wMLgvTKysrPtf6VV165UBibJHfffXdefvnlDBkyJJ07d87TTz+dSy65JE8//XQefvjhhQLICy+8sFbY+Olg/5133sm2226bPfbYI3vttVeuvfbaHHDAAWnSpEmGDh2aJKmurs5ll12WvfbaK/vtt19mzZqVP/zhDxkwYEAeffTRrLfeerXGbNq0acaMGVNr+om//vWvCwXVnzRr1qzccsst2XnnncttY8aMSdOmTRdab+zYsWnRokUOP/zwtGjRIvfdd1+OPfbYVFdX57TTTlvsNj5pjz32SI8ePTJq1Kg8/PDDOeecc/LOO+/kiiuuqHXs1lxzzey4445p1KhR/v73v+fAAw9MTU1NDjrooFrjDR8+PJ07d87rr7+e8847L/3798+kSZPyrW99a6HjMmLEiHLbQw89lFdeeWWh+l5++eXcdNNN2X333dOzZ89Mnz49F198cfr27ZtnnnkmVVVVSZKzzz479913XwYPHpwJEyakYcOGufjii3PXXXflyiuvLPebPn16+vTpk/feey+HHnpo2rdvn8svvzw77rhjrr/++lrHPfn/pyR6//33c8011+Q3v/lNOnbsmGHDhi3R8V1w/Bace0cddVRh3+HDh+c73/lOko/PlRtvvLHW8sGDB+eee+7JIYccknXXXTcNGzbMJZdckieeeGKJ6ykyZsyYzJ07N8OHD09lZWXatWuXp59+OltssUVWXHHF/PrXv07z5s1z7bXXZtCgQbnhhhsWOmaHHHJIOnfunBNOOCEPP/xwLrnkkrRp0yYPPfRQunXrlpNPPjm33XZbTjvttKy11lr5yU9+kuTjJ7533HHHjBs3LsOGDct6662XO++8M7/85S/z2muv5ayzzkry8X8TfvrTn2aTTTbJ8OHDkySrrLJKko9/vptttln5hkyHDh1y++23Z9iwYamurq51zi2J559/PnvttVf233//7LfffllttdWSLNlnYvTo0TnkkEPSokWL/Pa3v02SdOrUabHbGjt2bIYMGZKNN944o0aNyvTp03P22WfnwQcfzJNPPpk2bdosVe0AAAAAZSW+9kaPHl1KUnrqqadqtfft27e05ppr1mobM2ZMKUlp0qRJpVKpVJo7d26pW7dupYEDB5aSlMaMGVPu+9577y20rT//+c+lJKUHHnig3HbccceVkpTeeuutxdbYt2/fUpLSGWecUW6bN29eab311it17Nix9MEHH5RKpVLpo48+Ks2bN6/Wuu+8806pU6dOpaFDh5bbJk2aVEpS2muvvUqNGjUqTZs2rbxsm222Kf3oRz8qJSmddtppC9W51157lbbffvty+yuvvFJq0KBBaa+99lpoPxZ1DPbff//St771rdLcuXMXu7+f3N6OO+5Yq/3AAw9c6Oe1qO0MGDCgtPLKKxdu49prry0lKf3rX/8qtyUp7bbbbqVGjRrVah82bFj5uBx00EHl9rlz55bmz59fa9xJkyaVKisrSyNHjqzVfuedd5aSlE466aTSyy+/XGrRokVp0KBBtfqMGDGilKT0j3/8o9w2a9asUs+ePUs9evQob2vcuHGlJKVx48bVqqVBgwalAw88sHC/F/jNb35TSlKaMWNGuW3NNdcs9e3bd6G+L7zwQilJ6fLLLy+3LfgZLfD++++XGjRoUNp///1rrTt48OBS8+bNl6imxVlwzrZq1ar05ptv1lq2zTbblNZee+1a51RNTU2pT58+pV69epXbFnx+BwwYUKqpqSm3b7755qWKiorSz372s3LbRx99VFpppZVqHYubbrqp/PP7pN12261UUVFRevHFF8ttzZs3Lw0ePHih/Rg2bFipS5cutY55qVQq/fCHPyy1bt16kefy4nTv3r2UpHTHHXcstGxJPxOL+3l/+vz64IMPSh07diyttdZapffff7/c75ZbbiklKR177LFLXDcAAADAp5napR5YMNVKhw4dlnrd888/P//73/9y3HHHLbTsk/MUz507NzNmzMhmm22WJJ/r6dxGjRpl//33L79v0qRJ9t9//7z55pt5/PHHkyQNGzYszxddU1OTt99+Ox999FE22mijRW5zgw02yJprrpkrr7wySfLKK69k3LhxC33x4CcNHTo0d9xxR6ZNm5Ykufzyy7P55ptn1VVXXajvJ4/BrFmzMmPGjHznO9/Je++9l+eee26J9vvTT5QfcsghSZLbbrttkduZOXNmZsyYkb59++bll1/OzJkza63/3nvvZcaMGZk4cWIuvfTSdOrUaaHaO3XqlO222y5jxowpr3PttddmyJAhC9VXWVlZ/uuB+fPn53//+19atGiR1VZbbaFj/v3vfz/7779/Ro4cmV122SVNmzYtT8WxwG233ZZNNtkkW265ZbmtRYsWGT58eCZPnlyeyuTT+ztlypSceuqpqampydZbb72II7mwBX9BsCRzYS/JX27MmTMnNTU1ad++/RJt//PYdddda31W33777dx3333ZY489yufYjBkz8r///S8DBgzICy+8sNDUI8OGDav1FyGbbrppSqVSraf4GzZsmI022igvv/xyue22225Lw4YNc+ihh9Ya7xe/+EVKpVJuv/32wtpLpVJuuOGG7LDDDimVSuVaZ8yYkQEDBmTmzJlL/d+Gnj17ZsCAAQu1L81nYkn861//yptvvpkDDzyw1vmy3XbbZfXVV19o6iEAAACApSFIrwdeeeWVNGrUaKmD9JkzZ+bkk0/O4YcfvsjpEN5+++38/Oc/T6dOndKsWbN06NAhPXv2LK+7tKqqqtK8efNabQsC4E/O2X755ZdnnXXWSdOmTdO+fft06NAht95662K3OWTIkHJgPHbs2PTp0ye9evVabB3rrbde1lprrVxxxRUplUrl6R4W5emnn87OO++c1q1bp1WrVunQoUP22WefJEt+DD5dyyqrrJIGDRrU2ucHH3ww/fv3T/PmzdOmTZt06NAhv/nNbxa5nZEjR6ZDhw5Zf/31M3ny5IwfPz4tW7ZcaLtDhgzJn/70p8ybNy/XXXdd2rZtu8iAuqamJmeddVZ69eqVysrKrLDCCunQoUP+/e9/L3IfTz/99LRr1y4TJ07MOeeck44dO9Za/sorr5Sn5/ikNdZYo7z8kwYNGpQOHTqke/fuOf7443P00Udn1113XWj9RZkxY0YaN25ca1qbxXn33XeTpHCu8/bt26dXr1657LLLctddd+XNN9/MjBkzMm/evCWqZ0ks+Awt8OKLL6ZUKuWYY45Jhw4dar0W3OB68803a63TrVu3Wu9bt26dJOnatetC7e+88075/SuvvJKqqqqFzpfF/Ww+7a233sq7776bSy65ZKFaF3yGPl3rZ/n08VhgaT4TS2LBvi3q3Fx99dU/c98BAAAAipgjvR54/vnns/LKK9f6cs8lccopp6RBgwb55S9/udAXiCYfz+390EMP5Ze//GXWW2+9tGjRIjU1NfnBD36QmpqaZVV+LVdddVX23XffDBo0KL/85S/TsWPHNGzYMKNGjcpLL720yHX22WefHHnkkXn44Ydz+eWX5+ijj/7M7QwdOjQXXHBBNtlkk0ybNi177LFHzjjjjFp93n333fTt2zetWrXKyJEjs8oqq6Rp06Z54okn8qtf/epzH4NPzy3/0ksvZZtttsnqq6+eM888M127dk2TJk1y22235ayzzlpoOz/96U+zzTbb5NVXX81ZZ52VXXfdNQ899FA5TF1gu+22S5MmTXLTTTdlzJgxGTx48CK/kPbkk0/OMccck6FDh+bEE09Mu3bt0qBBg4wYMWKR+/jkk0+Ww9L//Oc/2WuvvT7XcVjg9NNPz7rrrpsPP/wwjz32WE466aQ0atRokX8l8WmTJ09Ot27dFjqmi7LgLxA6d+5c2O+aa67J3nvvvdBT0p++CfR5ffJJ6yTlY3zEEUcs8snsJPn2t79d633Dhg0X2W9R7aUl/OLWJbGg1n322SeDBw9eZJ911llnqcb89PFIlv4zAQAAAFDXBOlfc/PmzcvEiRNrfdnmknj99ddz9tlnZ9SoUWnZsuVCQfo777yTe++9NyeccEKOPfbYcvsLL7zwuWt9/fXXM2fOnFqB5P/93/8lSXr06JEkuf7667Pyyivnr3/9a61wtChUbd++fXbcccfyNDF77LFHZsyYUVjL3nvvnV/+8pf5+c9/nt12222RT3SPHz8+//vf//LXv/41W221Vbl90qRJS7S/C7zwwgu1nrp98cUXU1NTU97nv//975k3b15uvvnmWk8ajxs3bpHjffvb3y4Hq/3790+3bt3ypz/9KQcccECtfo0aNcqPf/zj/O53v8vTTz+dP/7xj4sc7/rrr893v/vd/OEPf6jV/u6772aFFVao1TZnzpwMGTIkvXv3Tp8+fXLqqadm5513zsYbb1zu07179zz//PMLbWfBVDjdu3ev1b7hhhumX79+SZKBAwfmtddeyymnnJJjjjlmkcH/Ah999FGeeuqp/OAHP1hsn0965plnUlFRscgnkj9p/fXXz6WXXprvfOc7GTlyZDbbbLOcdtppefDBB5doO0tr5ZVXTpI0btw4/fv3/1K2sUD37t1zzz33ZNasWbXO+UX9bBZ1c6JDhw5p2bJl5s+f/6XWujSfiSW5iZL8//v2/PPPL/SXGc8///xC5yUAAADA0jC1y9fcgqk7ttlmm6Va74QTTkinTp3ys5/9bJHLFzzZ+umnWUePHv256kw+Dj4/OZ/2Bx98kIsvvjgdOnTIhhtuuNjtPvLII5kwYULh2EOHDs2///3v7L777oVTdyzQrl277LTTTvn3v/+doUOHLrLPomr54IMPcsEFF3zm+J90/vnn13p/7rnnJvk4NF7cdmbOnFmerqbIghsGi5t6ZOjQofnPf/6TrbbaqhzYflrDhg0X+jlfd911C83LnSS/+tWvMmXKlFx++eU588wz06NHjwwePLjW9rfddts8+uijtX5mc+bMySWXXJIePXqkd+/ehfv0/vvv56OPPspHH31U2O+uu+7KzJkzs9NOOxX2Sz4+92644YZssskmn3l+VFdX58c//nF23HHHHH300enfv3+6dOnymdv4vDp27Jh+/frl4osvzhtvvLHQ8rfeemuZbWvbbbfN/Pnzc95559VqP+uss1JRUVE+J5OPn8BfMB3OAg0bNsyuu+6aG264If/973+/tFqX5jOxqDoXZaONNkrHjh1z0UUX1Tpfb7/99jz77LPZbrvtvnjhAAAAwDeWJ9K/pubMmZNzzz03I0eOLAehV111Va0+06dPz+zZs3PVVVfle9/7Xq150O+6665cffXV5S/2/LRWrVplq622yqmnnpoPP/wwK664Yu66666lfhr7k6qqqnLKKadk8uTJWXXVVXPNNddk4sSJueSSS9K4ceMkyfbbb5+//vWv2XnnnbPddttl0qRJueiii9K7d+/Mnj17sWP/4Ac/yFtvvbVEIfoCY8eOzfnnn7/QU9cL9OnTJ23bts3gwYNz6KGHpqKiIldeeeVST5UxadKk7LjjjvnBD36QCRMm5KqrrsqPfvSjrLvuukk+/gLPJk2aZIcddsj++++f2bNn59JLL03Hjh1rBau33XZbLrvssvTp0yft2rXLyy+/nEsvvTTNmzfPzjvvvMhtr7HGGpkxY8Yip89YYPvtt8/IkSMzZMiQ9OnTJ//5z39y9dVXLxS833fffbngggty3HHHZYMNNkiSjBkzJv369csxxxyTU089NUny61//On/+858zcODAHHrooWnXrl0uv/zyTJo0KTfccMNCT5nffffdefXVV8tTu1x99dXZcccdF3tuJh9Pv3LEEUeksrIy77//fq1zf+bMmZk/f35uuummDBo0KPfcc0+OOeaY/Pvf/87f//73xY65wEEHHZT3338/l1122Wf2XVbOP//8bLnllll77bWz3377ZeWVV8706dMzYcKEvPrqq3nqqaeWyXZ22GGHfPe7381vf/vbTJ48Oeuuu27uuuuu/O1vf8uIESOyyiqrlPtuuOGGueeee3LmmWemqqoqPXv2zKabbprf//73GTduXDbddNPst99+6d27d95+++088cQTueeee/L2229/4TqX9DOxoM4LL7wwJ510Ur797W+nY8eOi/wugMaNG+eUU07JkCFD0rdv3+y1116ZPn16zj777PTo0SOHHXbYF64bAAAA+AYr8bU0adKkUpIlfo0bN65UKpVKY8aMKSUprbfeeqWampqFxhszZky57dVXXy3tvPPOpTZt2pRat25d2n333Uuvv/56KUnpuOOOK/c77rjjSklKb7311mLr7du3b2nNNdcs/etf/yptvvnmpaZNm5a6d+9eOu+882r1q6mpKZ188sml7t27lyorK0vrr79+6ZZbbikNHjy41L1794XqPe200wqPzyeXf1adi1r+4IMPljbbbLNSs2bNSlVVVaUjjzyydOedd9Y6pouzYLxnnnmmtNtuu5VatmxZatu2benggw8uvf/++7X63nzzzaV11lmn1LRp01KPHj1Kp5xySumPf/xjKUlp0qRJpVKpVPrvf/9b+v73v19q3759qUmTJqWuXbuWfvjDH5b+/e9/1xorSemggw5abF2fXj537tzSL37xi1KXLl1KzZo1K22xxRalCRMmlPr27Vvq27dvqVQqlaqrq0vdu3cvbbDBBqUPP/yw1niHHXZYqUGDBqUJEyaU21566aXSbrvtVmrTpk2padOmpU022aR0yy231Fpv3Lhxtc7RRo0albp371469NBDS++8807hse3evftnnvMLzpdDDjmktNVWW5XuuOOOhcZZ8DNa4M9//nOpoqJiob6DBw8uNW/evLCmz/JZ5+xLL71U+slPflLq3LlzqXHjxqUVV1yxtP3225euv/76cp8Fn9/HHntskfvx6XN7UXXPmjWrdNhhh5WqqqpKjRs3LvXq1at02mmn1frvQalUKj333HOlrbbaqtSsWbNSktLgwYPLy6ZPn1466KCDSl27di01bty41Llz59I222xTuuSSS5bqmHTv3r203XbbLXLZknwmSqVSadq0aaXtttuu1LJly1KS8jm74Pz69Of0mmuuKa2//vqlysrKUrt27Up777136dVXX12qugEAAAA+raJUWobfVMcyM3ny5PTs2TPjxo0rzy/9Rfp92fr165cZM2YscjqI5dXxxx+fE044IW+99dZin3rn8+nRo0eOP/747LvvvotcPn78+Oy7776ZPHnyV1oXAAAAAN9M5kgHAAAAAIAC5kj/mmrRokX23nvvWvOef5F+UJ/svPPOtebz/rROnTotdt54vnxvvfVW5s+fv9jlTZo0Sbt27b7CigAAAAC+XKZ2YZkwtYupXfjm6NGjR1555ZXFLu/bt2/Gjx//1RUEAAAA8CUTpAOwVB588MG8//77i13etm3bbLjhhl9hRQAAAABfLkE6AAAAAAAU8GWjAAAAAABQwJeNfkJNTU1ef/31tGzZMhUVFXVdDgDfQKVSKbNmzUpVVVUaNHC/GwAAAL4OBOmf8Prrr6dr1651XQYAZOrUqVlppZXqugwAAAAggvRaWrZsmeTj8KJVq1Z1XA0A30TV1dXp2rVr+ZoEAAAA1D1B+icsmM6lVatWgnQA6pQpxgAAAODrw+SrAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUOBrEaQ/8MAD2WGHHVJVVZWKiorcdNNNtZaXSqUce+yx6dKlS5o1a5b+/fvnhRdeqNXn7bffzt57751WrVqlTZs2GTZsWGbPnv0V7gUAAAAAAMujr0WQPmfOnKy77ro5//zzF7n81FNPzTnnnJOLLroojzzySJo3b54BAwZk7ty55T577713nn766dx999255ZZb8sADD2T48OFf1S4AAAAAALCcqiiVSqW6LuKTKioqcuONN2bQoEFJPn4avaqqKr/4xS9yxBFHJElmzpyZTp06ZezYsfnhD3+YZ599Nr17985jjz2WjTbaKElyxx13ZNttt82rr76aqqqqJdp2dXV1WrdunZkzZ6ZVq1Zfyv4BQBHXIgAAAPj6+Vo8kV5k0qRJmTZtWvr3719ua926dTbddNNMmDAhSTJhwoS0adOmHKInSf/+/dOgQYM88sgjX3nNAAAAAAAsPxrVdQGfZdq0aUmSTp061Wrv1KlTedm0adPSsWPHWssbNWqUdu3alfssyrx58zJv3rzy++rq6mVVNtSpKVOmZMaMGZ9r3ffffz+TJ09etgUtpR49eqRZs2afa90VVlgh3bp1W8YVAQAAAPBN9rUP0r9Mo0aNygknnFDXZcAyNWXKlKy2+hqZ+/57dV1KnWja7Ft5/rlnhekAAAAALDNf+yC9c+fOSZLp06enS5cu5fbp06dnvfXWK/d58803a6330Ucf5e233y6vvyhHHXVUDj/88PL76urqdO3adRlWD1+9GTNmZO7776X99r9I4/ZLfz6XPvogH82c/iVUtuQate6UikZNlnq9D/83Nf+75YzMmDFDkA4AAADAMvO1D9J79uyZzp0759577y0H59XV1XnkkUdywAEHJEk233zzvPvuu3n88cez4YYbJknuu+++1NTUZNNNN13s2JWVlamsrPzS9wHqQuP2XVPZ+dufb+WVei/bYgAAAACgHvtaBOmzZ8/Oiy++WH4/adKkTJw4Me3atUu3bt0yYsSInHTSSenVq1d69uyZY445JlVVVRk0aFCSZI011sgPfvCD7Lfffrnooovy4Ycf5uCDD84Pf/jDVFVV1dFeAQAAAACwPPhaBOn/+te/8t3vfrf8fsF0K4MHD87YsWNz5JFHZs6cORk+fHjefffdbLnllrnjjjvStGnT8jpXX311Dj744GyzzTZp0KBBdt1115xzzjlf+b4AAAAAALB8+VoE6f369UupVFrs8oqKiowcOTIjR45cbJ927drlT3/605dRHgAAAAAA32AN6roAAAAAAAD4OhOkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAECBehOkz58/P8ccc0x69uyZZs2aZZVVVsmJJ56YUqlU7lMqlXLsscemS5cuadasWfr3758XXnihDqsGAAAAAKC+qzdB+imnnJILL7ww5513Xp599tmccsopOfXUU3PuueeW+5x66qk555xzctFFF+WRRx5J8+bNM2DAgMydO7cOKwcAAAAAoD5rVNcFLKmHHnooO+20U7bbbrskSY8ePfLnP/85jz76aJKPn0YfPXp0jj766Oy0005JkiuuuCKdOnXKTTfdlB/+8Id1VjsAAAAAAPVXvXkivU+fPrn33nvzf//3f0mSp556Kv/85z8zcODAJMmkSZMybdq09O/fv7xO69ats+mmm2bChAmLHHPevHmprq6u9QIAAAAAgE+qN0+k//rXv051dXVWX331NGzYMPPnz8/vfve77L333kmSadOmJUk6depUa71OnTqVl33aqFGjcsIJJ3y5hQMAAAAAUK/VmyfSr7322lx99dX505/+lCeeeCKXX355Tj/99Fx++eWfe8yjjjoqM2fOLL+mTp26DCsGAAAAAGB5UG+eSP/lL3+ZX//61+W5ztdee+288sorGTVqVAYPHpzOnTsnSaZPn54uXbqU15s+fXrWW2+9RY5ZWVmZysrKL712AAAAAADqr3rzRPp7772XBg1ql9uwYcPU1NQkSXr27JnOnTvn3nvvLS+vrq7OI488ks033/wrrRUAAAAAgOVHvXkifYcddsjvfve7dOvWLWuuuWaefPLJnHnmmRk6dGiSpKKiIiNGjMhJJ52UXr16pWfPnjnmmGNSVVWVQYMG1W3xAAAAAADUW/UmSD/33HNzzDHH5MADD8ybb76Zqqqq7L///jn22GPLfY488sjMmTMnw4cPz7vvvpstt9wyd9xxR5o2bVqHlQMAAAAAUJ/VmyC9ZcuWGT16dEaPHr3YPhUVFRk5cmRGjhz51RUGAAAAAMByrd7MkQ4AAAAAAHVBkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABepVkP7aa69ln332Sfv27dOsWbOsvfba+de//lVeXiqVcuyxx6ZLly5p1qxZ+vfvnxdeeKEOKwYAAAAAoL6rN0H6O++8ky222CKNGzfO7bffnmeeeSZnnHFG2rZtW+5z6qmn5pxzzslFF12URx55JM2bN8+AAQMyd+7cOqwcAAAAAID6rFFdF7CkTjnllHTt2jVjxowpt/Xs2bP871KplNGjR+foo4/OTjvtlCS54oor0qlTp9x000354Q9/+JXXDAAAAABA/Vdvnki/+eabs9FGG2X33XdPx44ds/766+fSSy8tL580aVKmTZuW/v37l9tat26dTTfdNBMmTFjkmPPmzUt1dXWtFwAAAAAAfFK9CdJffvnlXHjhhenVq1fuvPPOHHDAATn00ENz+eWXJ0mmTZuWJOnUqVOt9Tp16lRe9mmjRo1K69aty6+uXbt+uTsBAAAAAEC9U2+C9JqammywwQY5+eSTs/7662f48OHZb7/9ctFFF33uMY866qjMnDmz/Jo6deoyrBgAAAAAgOVBvQnSu3Tpkt69e9dqW2ONNTJlypQkSefOnZMk06dPr9Vn+vTp5WWfVllZmVatWtV6AQAAAADAJ9WbIH2LLbbI888/X6vt//7v/9K9e/ckH3/xaOfOnXPvvfeWl1dXV+eRRx7J5ptv/pXWCgAAAADA8qNRXRewpA477LD06dMnJ598cvbYY488+uijueSSS3LJJZckSSoqKjJixIicdNJJ6dWrV3r27JljjjkmVVVVGTRoUN0WDwAAAABAvVVvgvSNN944N954Y4466qiMHDkyPXv2zOjRo7P33nuX+xx55JGZM2dOhg8fnnfffTdbbrll7rjjjjRt2rQOKwcAAAAAoD6rN0F6kmy//fbZfvvtF7u8oqIiI0eOzMiRI7/CqgAAAAAAWJ7VmznSAQAAAACgLgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKBAvQzSf//736eioiIjRowot82dOzcHHXRQ2rdvnxYtWmTXXXfN9OnT665IAAAAAACWC/UuSH/sscdy8cUXZ5111qnVfthhh+Xvf/97rrvuutx///15/fXXs8suu9RRlQAAAAAALC/qVZA+e/bs7L333rn00kvTtm3bcvvMmTPzhz/8IWeeeWa23nrrbLjhhhkzZkweeuihPPzww3VYMQAAAAAA9V29CtIPOuigbLfddunfv3+t9scffzwffvhhrfbVV1893bp1y4QJExY73rx581JdXV3rBQAAAAAAn9SorgtYUn/5y1/yxBNP5LHHHlto2bRp09KkSZO0adOmVnunTp0ybdq0xY45atSonHDCCcu6VAAAAAAAliP14on0qVOn5uc//3muvvrqNG3adJmNe9RRR2XmzJnl19SpU5fZ2AAAAAAALB/qRZD++OOP580338wGG2yQRo0apVGjRrn//vtzzjnnpFGjRunUqVM++OCDvPvuu7XWmz59ejp37rzYcSsrK9OqVataLwAAAAAA+KR6MbXLNttsk//85z+12oYMGZLVV189v/rVr9K1a9c0btw49957b3bdddckyfPPP58pU6Zk8803r4uSAQAAAABYTtSLIL1ly5ZZa621arU1b9487du3L7cPGzYshx9+eNq1a5dWrVrlkEMOyeabb57NNtusLkoGAAAAAGA5US+C9CVx1llnpUGDBtl1110zb968DBgwIBdccEFdlwUAAAAAQD1Xb4P08ePH13rftGnTnH/++Tn//PPrpiAAAAAAAJZL9eLLRgEAAAAAoK4I0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACgQL0J0keNGpWNN944LVu2TMeOHTNo0KA8//zztfrMnTs3Bx10UNq3b58WLVpk1113zfTp0+uoYgAAAAAAlgf1Jki///77c9BBB+Xhhx/O3XffnQ8//DDf//73M2fOnHKfww47LH//+99z3XXX5f7778/rr7+eXXbZpQ6rBgAAAACgvmtU1wUsqTvuuKPW+7Fjx6Zjx455/PHHs9VWW2XmzJn5wx/+kD/96U/ZeuutkyRjxozJGmuskYcffjibbbZZXZQNAAAAAEA9V2+eSP+0mTNnJknatWuXJHn88cfz4Ycfpn///uU+q6++erp165YJEyYscox58+alurq61gsAAAAAAD6pXgbpNTU1GTFiRLbYYoustdZaSZJp06alSZMmadOmTa2+nTp1yrRp0xY5zqhRo9K6devyq2vXrl926QAAAAAA1DP1Mkg/6KCD8t///jd/+ctfvtA4Rx11VGbOnFl+TZ06dRlVCAAAAADA8qLezJG+wMEHH5xbbrklDzzwQFZaaaVye+fOnfPBBx/k3XffrfVU+vTp09O5c+dFjlVZWZnKysovu2QAAAAAAOqxevNEeqlUysEHH5wbb7wx9913X3r27Flr+YYbbpjGjRvn3nvvLbc9//zzmTJlSjbffPOvulwAAAAAAJYT9eaJ9IMOOih/+tOf8re//S0tW7Ysz3veunXrNGvWLK1bt86wYcNy+OGHp127dmnVqlUOOeSQbL755tlss83quHoAAAAAAOqrehOkX3jhhUmSfv361WofM2ZM9t133yTJWWedlQYNGmTXXXfNvHnzMmDAgFxwwQVfcaUAAAAAACxP6k2QXiqVPrNP06ZNc/755+f888//CioCAAAAAOCboN7MkQ4AAAAAAHVBkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUGC5C9LPP//89OjRI02bNs2mm26aRx99tK5LAgAAAACgHluugvRrrrkmhx9+eI477rg88cQTWXfddTNgwIC8+eabdV0aAAAAAAD11HIVpJ955pnZb7/9MmTIkPTu3TsXXXRRvvWtb+WPf/xjXZcGAAAAAEA9tdwE6R988EEef/zx9O/fv9zWoEGD9O/fPxMmTKjDygAAAAAAqM8a1XUBy8qMGTMyf/78dOrUqVZ7p06d8txzzy1ynXnz5mXevHnl99XV1V9qjfBV6dyiImu892Qavf36Uq9bmv9h5s96+0uoask1bNkuFQ0bL/V6H703PWlR8SVUBAAAAMA32XITpH8eo0aNygknnFDXZcAytcIKK+SgzZrn6N431nUpX72q5KR3mmeFFVao60oAAAAAWI4sN0H6CiuskIYNG2b69Om12qdPn57OnTsvcp2jjjoqhx9+ePl9dXV1unbt+qXWCV+2bt26Zd9zx+fZ11/4XOvPmzcvr7++9E+yL0tVVVWprKz8XOvu+8NeWalbt2VcEQAAAADfZMtNkN6kSZNsuOGGuffeezNo0KAkSU1NTe69994cfPDBi1ynsrLyc4d18HW20uobJqtv+LnXX2/ZlQIAAAAA9d5yE6QnyeGHH57Bgwdno402yiabbJLRo0dnzpw5GTJkSF2XBgAAAABAPbVcBel77rln3nrrrRx77LGZNm1a1ltvvdxxxx0LfQEpAAAAAAAsqYpSqVSq6yK+Lqqrq9O6devMnDkzrVq1qutyAPgGci0CAACAr58GdV0AAAAAAAB8nQnSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoECjui7g66RUKiVJqqur67gSAL6pFlyDFlyTAAAAgLonSP+EWbNmJUm6du1ax5UA8E03a9astG7duq7LAAAAAJJUlDzyVlZTU5PXX389LVu2TEVFRV2XA/VSdXV1unbtmqlTp6ZVq1Z1XQ7UO6VSKbNmzUpVVVUaNDADGwAAAHwdCNKBZaq6ujqtW7fOzJkzBekAAAAALBc86gYAAAAAAAUE6QAAAAAAUECQDixTlZWVOe6441JZWVnXpQAAAADAMmGOdAAAAAAAKOCJdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHlokHHnggO+ywQ6qqqlJRUZGbbrqprksCAAAAgGVCkA4sE3PmzMm6666b888/v65LAQAAAIBlqlFdFwAsHwYOHJiBAwfWdRkAAAAAsMx5Ih0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKNKrrAoDlw+zZs/Piiy+W30+aNCkTJ05Mu3bt0q1btzqsDAAAAAC+mIpSqVSq6yKA+m/8+PH57ne/u1D74MGDM3bs2K++IAAAAABYRgTpAAAAAABQwBzpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOnAcqdHjx4ZPXp0XZcBAAAAwHJCkA4slX79+mXEiBF1XUaSZOzYsWnTps1C7Y899liGDx/+1RcEAAAAwHJJkA710AcffFDXJXypvuj+dejQId/61reWUTUAAAAAfNMJ0qEe6NevXw4++OCMGDEiK6ywQgYMGJD//ve/GThwYFq0aJFOnTrlxz/+cWbMmFFrnUMOOSQjRoxI27Zt06lTp1x66aWZM2dOhgwZkpYtW+bb3/52br/99lrbuv/++7PJJpuksrIyXbp0ya9//et89NFHSZJ99903999/f84+++xUVFSkoqIikydPTpLPrGdp9y9JzjzzzKy99tpp3rx5unbtmgMPPDCzZ89OkowfPz5DhgzJzJkzy7Ucf/zxSRae2mXKlCnZaaed0qJFi7Rq1Sp77LFHpk+f/nl+FAAAAAB8AwnSoZ64/PLL06RJkzz44IP5/e9/n6233jrrr79+/vWvf+WOO+7I9OnTs8ceeyy0zgorrJBHH300hxxySA444IDsvvvu6dOnT5544ol8//vfz49//OO89957SZLXXnst2267bTbeeOM89dRTufDCC/OHP/whJ510UpLk7LPPzuabb5799tsvb7zxRt5444107do177777hLVs6T7d9FFFyVJGjRokHPOOSdPP/10Lr/88tx333058sgjkyR9+vTJ6NGj06pVq3ItRxxxxELj1tTUZKeddsrbb7+d+++/P3fffXdefvnl7Lnnnp/r5wAAAADAN09FqVQq1XURQLF+/fqluro6TzzxRJLkpJNOyj/+8Y/ceeed5T6vvvpqunbtmueffz6rrrpq+vXrl/nz5+cf//hHkmT+/Plp3bp1dtlll1xxxRVJkmnTpqVLly6ZMGFCNttss/z2t7/NDTfckGeffTYVFRVJkgsuuCC/+tWvMnPmzDRo0CD9+vXLeuutV+uJ7yWpZ2n2b3Guv/76/OxnPys/6T527NiMGDEi7777bq1+PXr0yIgRIzJixIjcfffdGThwYCZNmpSuXbsmSZ555pmsueaaefTRR7PxxhsXbhMAAAAAPJEO9cSGG25Y/vdTTz2VcePGpUWLFuXX6quvniR56aWXyv3WWWed8r8bNmyY9u3bZ+211y63derUKUny5ptvJkmeffbZbL755uUQPUm22GKLzJ49O6+++upia1vSepZ0/xa45557ss0222TFFVdMy5Yt8+Mf/zj/+9//yk/QL4lnn302Xbt2LYfoSdK7d++0adMmzz777BKPAwAAAMA3V6O6LgBYMs2bNy//e/bs2dlhhx1yyimnLNSvS5cu5X83bty41rKKiopabQsC85qami9U25LWU+ST+5ckkydPzvbbb58DDjggv/vd79KuXbv885//zLBhw/LBBx/4MlEAAAAAvjKCdKiHNthgg9xwww3p0aNHGjVadh/jNdZYIzfccENKpVI5ZH/wwQfTsmXLrLTSSkmSJk2aZP78+V96PY8//nhqampyxhlnpEGDj/945tprr63VZ1G1LGqfpk6dmqlTp9aa2uXdd99N7969l0mtAAAAACzfTO0C9dBBBx2Ut99+O3vttVcee+yxvPTSS7nzzjszZMiQzwyWixx44IGZOnVqDjnkkDz33HP529/+luOOOy6HH354Oczu0aNHHnnkkUyePDkzZsxITU3Nl1LPt7/97Xz44Yc599xz8/LLL+fKK68sfwnpAj169Mjs2bNz7733ZsaMGYuc8qV///5Ze+21s/fee+eJJ57Io48+mp/85Cfp27dvNtpoo89VGwAAAADfLIJ0qIeqqqry4IMPZv78+fn+97+ftddeOyNGjEibNm3KgffnseKKK+a2227Lo48+mnXXXTc/+9nPMmzYsBx99NHlPkcccUQaNmyY3r17p0OHDpkyZcqXUs+6666bM888M6ecckrWWmutXH311Rk1alStPn369MnPfvaz7LnnnunQoUNOPfXUhcapqKjI3/72t7Rt2zZbbbVV+vfvn5VXXjnXXHPN56oLAAAAgG+eilKpVKrrIgAAAAAA4OvKE+kAAAAAAFBAkA58qaZMmZIWLVos9jVlypS6LhEAAAAACpnaBfhSffTRR5k8efJil/fo0SONGjX66goCAAAAgKUkSAcAAAAAgAKmdgEAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKPD/AbYjeXlGhk1oAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1500x1000 with 4 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Устраняем выборсы\n",
|
||
"df: DataFrame = remove_outliers(df, numeric_columns)\n",
|
||
"\n",
|
||
"# Проверка выбросов\n",
|
||
"check_outliers(df, numeric_columns)\n",
|
||
"visualize_outliers(df, numeric_columns)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Разбиение набора данных на выборки:\n",
|
||
"\n",
|
||
"Разделим выборку данных на 3 группы и проанализируем качество распределения данных.\n",
|
||
"\n",
|
||
"Стратифицированное разбиение требует, чтобы в каждом классе, по которому происходит стратификация, было минимум по два элемента, иначе метод не сможет корректно разделить данные на тренировочные, валидационные и тестовые наборы.\n",
|
||
"\n",
|
||
"Чтобы решить эту проблему введём категории для значения зарплаты. Вместо того, чтобы использовать точные значения зарплаты для стратификации, мы создадим категории зарплат, основываясь на квартилях (25%, 50%, 75%) и минимальном и максимальном значении зарплаты. Это позволит создать более крупные классы, что устранит проблему с редкими значениями:\n",
|
||
"\n",
|
||
"Категории для разбиения зарплат:\n",
|
||
"- Низкая зарплата: зарплаты ниже первого квартиля (25%) — это значения меньше 95000.\n",
|
||
"- Средняя зарплата: зарплаты между первым квартилем (25%) и третьим квартилем (75%) — это зарплаты от 95000 до 175000.\n",
|
||
"- Высокая зарплата: зарплаты выше третьего квартиля (75%) и до максимального значения — это зарплаты выше 175000.\n",
|
||
"\n",
|
||
"Весь набор данных состоит из 3755 объектов, из которых 1867 (около 49.7%) имеют средний уровень зарплаты (medium), 956 (около 25.4%) – низкий уровень зарплаты (low), и 932 (около 24.8%) – высокий уровень зарплаты (high).\n",
|
||
"\n",
|
||
"Все выборки показывают одинаковое распределение классов, что свидетельствует о том, что данные были отобраны случайным образом и не содержат явного смещения.\n",
|
||
"\n",
|
||
"Однако, несмотря на сбалансированность при разбиении данных, в целом данные обладают значительным дисбалансом между классами. Это может быть проблемой при обучении модели, так как она может иметь тенденцию игнорировать низкие или высокие зарплаты (low или high), что следует учитывать при дальнейшем анализе и выборе методов обработки данных.\n",
|
||
"\n",
|
||
"Для получения более сбалансированных выборок данных необходимо воспользоваться методами приращения (аугментации) данных, а именно методами oversampling и undersampling."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"salary_in_usd\n",
|
||
"100000.0 99\n",
|
||
"150000.0 98\n",
|
||
"120000.0 91\n",
|
||
"160000.0 84\n",
|
||
"130000.0 82\n",
|
||
" ..\n",
|
||
"39916.0 1\n",
|
||
"26005.0 1\n",
|
||
"22611.0 1\n",
|
||
"5679.0 1\n",
|
||
"40038.0 1\n",
|
||
"Name: count, Length: 1002, dtype: int64 \n",
|
||
"\n",
|
||
"count 3755.000000\n",
|
||
"mean 136959.779760\n",
|
||
"std 61098.121137\n",
|
||
"min 5132.000000\n",
|
||
"25% 95000.000000\n",
|
||
"50% 135000.000000\n",
|
||
"75% 175000.000000\n",
|
||
"max 295000.000000\n",
|
||
"Name: salary_in_usd, dtype: float64 \n",
|
||
"\n",
|
||
"salary_category\n",
|
||
"medium 1867\n",
|
||
"low 956\n",
|
||
"high 932\n",
|
||
"Name: count, dtype: int64 \n",
|
||
"\n",
|
||
"Обучающая выборка: (2253, 12)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"medium 1120\n",
|
||
"low 574\n",
|
||
"high 559\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"medium\": 49.71%\n",
|
||
"Процент объектов класса \"low\": 25.48%\n",
|
||
"Процент объектов класса \"high\": 24.81%\n",
|
||
"\n",
|
||
"Контрольная выборка: (751, 12)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"medium 373\n",
|
||
"low 191\n",
|
||
"high 187\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"medium\": 49.67%\n",
|
||
"Процент объектов класса \"low\": 25.43%\n",
|
||
"Процент объектов класса \"high\": 24.90%\n",
|
||
"\n",
|
||
"Тестовая выборка: (751, 12)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"medium 374\n",
|
||
"low 191\n",
|
||
"high 186\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"medium\": 49.80%\n",
|
||
"Процент объектов класса \"low\": 25.43%\n",
|
||
"Процент объектов класса \"high\": 24.77%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных требуется\n",
|
||
"Для контрольной выборки аугментация данных требуется\n",
|
||
"Для тестовой выборки аугментация данных требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAHmCAYAAAA7jgwGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHBUlEQVR4nOzdd3xTVRsH8F+S7k0HUFbL3rwgAgoiFZGpCIooKFvBFxRRXLgYDgSULbyCgmwQUYYCZSN7r7JKS1ugdO89kvP+0SY0TUfapr256e/7+fChvb25eXJzk+ee85x7rkIIIUBERERERERERERERGTmlFIHQEREREREREREREREZAwWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiKqNCkpKQgNDUVaWprUoZCJJSYmIigoCLm5uVKHQkRERBWQm5uL6Oho3Lt3T+pQiIiIyIQyMzPx8OFDREdHSx2KybGoQVTN+Pr6YvTo0VKHQRZKCIEVK1bgiSeegIODA1xcXNCwYUOsX79e6tBk4cGDB/jtt990v4eGhmLDhg3SBVRATk4O5s6di//85z+wtbVFjRo10LRpUxw8eFDq0IgsBnM0kWX5+++/cfnyZd3v27dvx/Xr16ULqIA7d+7grbfegre3N2xsbFCrVi08+eSTEEJIHRqR5JiPiag0S5cuRWJiou73hQsXms1gzgMHDmDgwIFwc3ODvb096tati/fee0/qsEyuTEWN3377DQqFQvfPzs4OzZo1wzvvvIOoqKjKipHI4s2YMQO+vr4AHn3OqOKWLVum10FsKUaPHg0/Pz8A+seOORg+fDjefvtttGzZEuvWrcP+/ftx4MABvPTSS1KHJgsKhQKTJk2Cv78/QkND8fHHH+PYsWNGPbYyc3RWVhZ69eqFL7/8En5+fti6dSv279+PQ4cO4cknn6zQtonMHXN05WCOJktVMB+/8MILeOyxx9CwYUMMGTIEb731FlJSUqQOEadPn0bnzp1x6NAhfPrpp/D398f+/fuxfft2fseR2WI+rhzMx0Tls2vXLsyYMQP379/Hhg0b8OWXX8Le3l7qsLBs2TL06dMHSUlJWLRoEfbv34/9+/dj1qxZUodmclbledCsWbPQsGFDZGZm4vjx41i+fDl2796NgIAAODg4mDpGIqJyWbZsGTw9PTnKpoqsXbsWW7Zswfr16zF8+HCpw5GlunXr4q233kLfvn0BAN7e3jhy5EiZtlEZOXrOnDk4c+YM/P39dY0DIqKKYI4mSzdr1ix4eHhgxowZCA0NRWhoKBwcHNCuXTtJ48rOzsaYMWPQrFkz7Nu3D66urpLGQ0TSYj4mKp/PPvsMAwcOxKJFi6BUKvHjjz9CqZR2QqQ7d+7ggw8+wPjx47Fs2TKLL/6Wq6jRr18/PP744wCAN998Ex4eHpg/fz527NiBYcOGmTRAIjJfmZmZsLGxkfyLW+7S0tLg6OgodRgVNm/ePAwbNowFjQpauHAh3n33XcTGxqJNmzZlPjZMnaNzc3OxcOFCTJ06lQUNIhlhjjYNS8nRVPW0+XjcuHEICAjAkiVLsGbNGsnbzLt27cLt27dx69YtFjSIqgDzsWkwH5O56dGjB8LCwnDz5k3Ur18f9erVkzokLF68GLVr18bixYstvqABmOieGj179gQAhISEAADi4+Px4Ycfom3btnBycoKLiwv69euHK1euGDw2MzMTM2bMQLNmzWBnZwdvb2+89NJLCA4OBpA3n3jB6TQK/yvYwXLkyBEoFAps2bIFn332GWrXrg1HR0cMHDgQ9+/fN3juM2fOoG/fvnB1dYWDgwN69OiBEydOFPka/fz8inz+GTNmGKy7fv16dOzYEfb29nB3d8drr71W5POX9NoK0mg0WLhwIVq3bg07OzvUqlULEyZMQEJCgt56vr6+eP755w2e55133jHYZlGxz5s3z2CfAnnTjkyfPh1NmjSBra0t6tevj48//hhZWVlF7quC/Pz8DLb37bffQqlUYuPGjeXaHz/88AO6du0KDw8P2Nvbo2PHjvjjjz+KfP7169ejc+fOcHBwQI0aNfD0009j3759euvs2bMHPXr0gLOzM1xcXNCpUyeD2LZu3ap7Tz09PfHGG28gPDxcb53Ro0frxVyjRg34+fkZPXVMSc6fP48+ffrA09MT9vb2aNiwIcaOHVvu/VKQsZ9X7edr8+bN+OKLL1C3bl04ODjg8uXLUCgUWLBggcG2T548CYVCgU2bNhn9WjUaDRYtWoS2bdvCzs4OXl5e6Nu3L86fP69bZ/Xq1ejZsydq1qwJW1tbtGrVCsuXL9fbjq+vL65fv46jR48W+X2RmJiIKVOmoH79+rC1tUWTJk0wZ84caDQave3ExcVhxIgRcHFxgZubG0aNGoUrV65AoVAYXKZ76NAhdO/eHY6OjnBzc8OLL76Imzdv6q0zY8YMKBQK3LhxA8OHD0eNGjXw1FNPYfXq1VAoFLh06ZLBPvnuu++gUqkMjrmyKPwd5unpiQEDBiAgIMCox5f2GUhLS0NAQADq16+PAQMGwMXFBY6Ojgafgbt37xp9vBT1/aH9nii4769evYrRo0ejUaNGsLOzQ+3atTF27FjExcXpPVZ7mXpoaKhumb+/P7p27QoHBwe4urri+eefN9gn2vcsNjZWt+z8+fNFHgNt2rQpsuN/z549umPD2dkZAwYMMJhTe/To0brLohs3bowuXbogPj4e9vb2BnEX5ZdffgEAdOrUSe87qFatWgAe5ej69eujUaNGxX7mtZ/1I0eOIDMzE5MnT0ZCQgLmzp0LW1tbqFQqODs74/nnn4e/v3+JOVqlUuHZZ5/F6dOn9XL0888/D4VCAXt7e/j4+MDNzQ0uLi4YOXKkLrdpc7RSqYSVlZVejh4/fjzs7Ox0V7EUl6ObNm1qsJ+Zox9hjmaOZo6Wf44uy+fY2M+Kk5OTwfP88ccfutxQVMwlfTcoFAq888472LBhA5o3bw47Ozt07NgR//77r8HzXLp0Cf369YOLiwucnJx0OcSY/ab9V/C99/PzQ5s2bUrahXoxFvb8888bTFmSlpaGqVOn6o7P5s2b44cffjC4F0WnTp0wY8YM2NraomPHjnjllVcA5E3V6efnV+rnu+BrUiqVcHZ2hqurq16becOGDVAoFLrRmMX9s7Oz08X1+++/QwiB6dOno0aNGrrtN2nSBHfu3DHYBx999BGcnJx026pbty727t1r8F60adMGHTt2LLHNXPAco2A+VqlUcHd3x61bt3Tb1OY3Hx8f5uMCmI+Lx3zMfCxVPq6snBgeHo6xY8eiVq1asLW1RevWrbFq1Sq9dbTHXFHHsZOTk94VOEW1hzUaDdq1a2fwXmnPB+7evYs+ffrA0dERderUwaxZswzynbF5sXA7sW7duhg/frzefSkAIDo6GuPGjUOtWrVgZ2eH//znP1izZo3eOkW9FsDw+7Qs+wfI66945ZVX4O7uDgcHBzzxxBP4559/9NYpmMvc3Nzw5JNPol69ehgwYECReaMw7eO1/2xtbdGsWTPMnj1bb58V1Q9RWOH7/5w+fRodO3bExIkTdcdNmzZtsHLlSoPHluV9M+aY1cZb0OHDh2Fra4u3335bb7kxx7YxynWlRmHaAoSHhweAvINg+/bteOWVV9CwYUNERUXh559/Ro8ePXDjxg3UqVMHAKBWq/H888/j4MGDeO211/Dee+8hJSUF+/fvR0BAABo3bqx7jmHDhqF///56zztt2rQi4/n222+hUCjwySefIDo6GgsXLkSvXr1w+fJl3fxmhw4dQr9+/dCxY0dMnz4dSqVS96V/7NgxdO7c2WC79erVw+zZswEAqamp+O9//1vkc3/55ZcYOnQo3nzzTcTExGDJkiV4+umncenSJbi5uRk8Zvz48ejevTsA4M8//8Rff/2l9/cJEybgt99+w5gxYzB58mSEhIRg6dKluHTpEk6cOAFra+si90NZJCYm6l5bQRqNBgMHDsTx48cxfvx4tGzZEteuXcOCBQsQGBiI7du3l+l5Vq9ejS+++AI//vhjsaO5S9sfixYtwsCBA/H6668jOzsbmzdvxiuvvIK///4bAwYM0K03c+ZMzJgxA127dsWsWbNgY2ODM2fO4NChQ+jduzeAvC/CsWPHonXr1pg2bRrc3Nxw6dIl7N27Vxefdt936tQJs2fPRlRUFBYtWoQTJ04YvKeenp66E5UHDx5g0aJF6N+/P+7fv1/ke2+M6Oho9O7dG15eXvj000/h5uaG0NBQ/Pnnn+XaL4UZ+3nV+vrrr2FjY4MPP/wQWVlZaNGiBbp164YNGzbg/fff11t3w4YNcHZ2xosvvmj06x03bhx+++039OvXD2+++SZyc3Nx7NgxnD59Wjf6fPny5WjdujUGDhwIKysr7Nq1CxMnToRGo8GkSZMAPBrt7uTkhM8//xwAdJ276enp6NGjB8LDwzFhwgQ0aNAAJ0+exLRp0xAREYGFCxcCyDv+X3jhBZw9exb//e9/0aJFC+zYsQOjRo0yiPvAgQPo168fGjVqhBkzZiAjIwNLlixBt27dcPHiRYMG8SuvvIKmTZviu+++gxACQ4YMwaRJk7BhwwZ06NDBYD/6+fmhbt26Ru/HorRo0QKff/45hBAIDg7G/Pnz0b9/f9y7d6/ExxnzGdAWEObMmYPatWvjo48+gp2dHVauXIlevXph//79ePrpp9GoUSOTHi8AsH//fty9exdjxoxB7dq1cf36daxYsQLXr1/H6dOnDRKr1rFjx9C/f3/4+Phg+vTpyMnJwbJly9CtWzecO3cOzZo1K1McxVm3bh1GjRqFPn36YM6cOUhPT8fy5cvx1FNP4dKlSyXO7/rVV18hMzOzTM83c+ZMNGrUSPcddOrUKQCPcnRubi7i4+MxefLkIj/zWgVztPZxHh4eqFGjBjp16oRDhw5hyJAhAB7l6AcPHmDGjBmws7ODEAIeHh4ICQmBn58f5s+fDyAvT2pPXJ2dnfHgwQN4enpi8ODBWLlyJcLCwvDVV1+hf//+6NixI9zc3NCkSRMkJiaiZ8+eGDFiBFavXo0tW7bonbC6u7sjPj4e7dq1Q8uWLbFlyxbExMTo7Wfm6JIxR5cdczRztNQ5urDiPsdl+awY4/PPP8ebb74JAIiNjcX777+v9/1Q2NGjR7FlyxZMnjwZtra2WLZsGfr27YuzZ8/qig7Xr19H9+7d4eLigo8//hjW1tb4+eef4efnh6NHj6JLly4G29Xut4JxVCYhBAYOHIjDhw9j3LhxaN++Pfz9/fHRRx8hPDy8yA5LrcKdYqV9vgFg8ODBGDRoEObMmaNb1qlTJ7z00kvYv3+/bsCCVlFt5gkTJkCtVut+T05OBgBs3rwZrq6uePnllxEYGIhr166hQ4cOiI6O1k1XOWrUKKxduxaurq4YPHgwYmJicPz4cfTv3x/Hjx9H165dddtNSEhATEwMnJycMHjwYJw5cwaBgYFF7ov169dj1apVGDx4MKKiopCRkQGFQoF+/frh0qVLcHFx0eW3V199FatXr0br1q1x8+ZNtG/fHj4+PszHzMd6mI+Zj6XMx5WRE6OiovDEE0/oOpS9vLywZ88ejBs3DsnJyZgyZUqFXqfWunXrcO3atSL/plar0bdvXzzxxBOYO3cu9u7di+nTpyM3N1d3f4ay5sXBgwfjpZdeQm5uLk6dOoUVK1YgIyMD69atAwBkZGTAz88PQUFBeOedd9CwYUNs3boVo0ePRmJiYqXe7DoqKgpdu3ZFeno6Jk+eDA8PD6xZswYDBw7EH3/8gcGDBxf72H///Re7d+8u0/N99tlnaNmyJTIyMnSD82vWrIlx48aV+zXExcXh/PnzsLKywqRJk9C4cWNs374d48ePR1xcHD799FMAZX/fjDlmC7ty5QoGDRqE/v3746efftItN+mxLcpg9erVAoA4cOCAiImJEffv3xebN28WHh4ewt7eXjx48EAIIURmZqZQq9V6jw0JCRG2trZi1qxZumWrVq0SAMT8+fMNnkuj0egeB0DMmzfPYJ3WrVuLHj166H4/fPiwACDq1q0rkpOTdct///13AUAsWrRIt+2mTZuKPn366J5HCCHS09NFw4YNxXPPPWfwXF27dhVt2rTR/R4TEyMAiOnTp+uWhYaGCpVKJb799lu9x167dk1YWVkZLL9z544AINasWaNbNn36dFHwbTl27JgAIDZs2KD32L179xos9/HxEQMGDDCIfdKkSaLwW1049o8//ljUrFlTdOzYUW+frlu3TiiVSnHs2DG9x//vf/8TAMSJEycMnq+gHj166Lb3zz//CCsrKzF16tQi1zVmfwiR9z4VlJ2dLdq0aSN69uypty2lUikGDx5scCxq3/PExETh7OwsunTpIjIyMopcJzs7W9SsWVO0adNGb52///5bABBfffWVbtmoUaOEj4+P3nZWrFghAIizZ88W+ZqN8ddffwkA4ty5cyWuZ8x+ESLvOBk1apTud2M/r9rPV6NGjQye6+effxYAxM2bN/We39PTU++5SnPo0CEBQEyePNngb4U/q4X16dNHNGrUSG9Z4e8Ira+//lo4OjqKwMBAveWffvqpUKlU4t69e0IIIbZt2yYAiIULF+rWUavVomfPngKAWL16tW55+/btRc2aNUVcXJxu2ZUrV4RSqRQjR47ULdMe08OGDTOIa9iwYaJOnTp678fFixcNnqs8Cn4WtT777DMBQERHRxf7OGM/A9rvahsbG739GhMTIzw8PETHjh11y4w9Xp555hnx9NNP68WjfZ6C+6Oo42HTpk0CgPj33391y7Q5LCQkRAghRMeOHYWrq6uIjIzUrRMYGCisra3Fyy+/rFumfc9iYmJ0y86dO1fk+1L4mEtJSRFubm7irbfe0lsvMjJSuLq66i0v/B0SEBAglEql6Nevn17cxenWrZtBjn7rrbcEAGFra6vL0Q0aNBD9+/fXe2zBz7z2s/7xxx8LAGLixIkCgPD09BSxsbFCiLzPY2BgoLCystLL0YMGDRI2NjYiODhYty8ePnwonJ2dRbt27XQ5etmyZQKA6Nixo9i4caMuR8+dO1cAEHXq1NHlaO13Vnp6uvD09BQAxJIlS/Ti79Kli1Aqlbr9qc3RU6dO1e1n5mhDzNHM0czR8s7RhR9b3Oe4rJ8VR0dHg+fZunWrACAOHz5s8LeicnNBAAQAcf78ed2ysLAwYWdnJwYPHqxbVjCHaGlzSOHzASHy8t4zzzxTYhw9evQQrVu3LjKuwjFOmjTJYPmAAQP0vju2b98uAIhvvvlGb70hQ4YIhUIhgoKCdOcbAMRHH32kazPb29sLAKJt27aiR48epX6+tbmgYJu5a9euolWrVrr1tZ/Ln376qdg2s5ubm7C1tdX93qdPHwFAODg46LWZhwwZIgDocmlUVJQAIDw8PERubq5uvfnz5wsAevu1R48eAoDw9fXVtZmzsrJEmzZtBADxxRdfCCEefVcplUoxc+ZM4efnJ2rWrCmCgoL08nHB/FYw/2jz29ixY5mPmY/1MB/nYT5ebbB+WVQkH2uZKieOGzdOeHt769pfWq+99ppwdXXVvb/aY27r1q0Gz+Xo6Kh3bBVuD2dmZooGDRro2psFYx41apQAIN59913dMo1GIwYMGCBsbGx0bWNj8mLB117wO1UIYZDXFi5cKACI9evX65ZlZ2eLJ598Ujg5Oeny1po1awQAcffuXb3tFX4Py7J/pkyZIgDofZenpKSIhg0bCl9fX90xp91mwXOiLl266PZj4ddYWFGPz8zMFEqlUkycOFG3rKh+iMIKf1f5+PgIAOK3337TLcvNzRXPPvussLW11R1PZX3fjDlmC+ai0NBQ4e3tLZ566imD3GHssW2Mck0/1atXL3h5eaF+/fp47bXX4OTkhL/++ktXEbW1tdXNF6hWqxEXFwcnJyc0b94cFy9e1G1n27Zt8PT0xLvvvmvwHMWNrDXGyJEj4ezsrPt9yJAh8Pb21lXNLl++jDt37mD48OGIi4tDbGwsYmNjkZaWhmeffRb//vuvweV0mZmZepftFuXPP/+ERqPB0KFDdduMjY1F7dq10bRpUxw+fFhv/ezsbAB5+6s4W7duhaurK5577jm9bXbs2BFOTk4G28zJydFbLzY2ttRRvuHh4ViyZAm+/PJLg8vNt27dipYtW6JFixZ629ROOVb4+Ytz9uxZDB06FC+//DLmzZtX5DrG7A8AuqttgLwRQUlJSejevbvesbV9+3ZoNBp89dVXBnNXao+t/fv3IyUlBZ9++qnBe6td5/z584iOjsbEiRP11hkwYABatGhhcBmaRqPR7aPLly9j7dq18Pb2RsuWLUt8TSXRjlb5+++/kZOTU+x6xuyXohj7edUaNWqU3nMBwNChQ2FnZ4cNGzbolvn7+yM2NhZvvPFGqa9Ra9u2bVAoFJg+fbrB3wp+JxR8/qSkJMTGxqJHjx64e/cukpKSSn2erVu3onv37qhRo4becd2rVy+o1WrdZXR79+6FtbU13nrrLd1jlUqlbmSLVkREBC5fvozRo0fD3d1dt7xdu3Z47rnniqzYF778Dsj77nr48KHe52rDhg2wt7fHyy+/XOrrKo32+yEmJganTp3CX3/9hXbt2sHT07PYx5T1M/Diiy+iadOmut+1N527cOECoqKiABh/vNSsWRMPHjwo9XUVPB4yMzMRGxuLJ554AgCKPIYTEhIQGBiICxcu4PXXX9eNRgKApk2bYuDAgdi7d6/eqMby2r9/PxITEzFs2DC9Y02lUqFLly4lfodOmzYNjz32mG66CmMVzNErV66ESqXC5s2bdTlaoVAgNzcXsbGxiI6ORlRUVJGf+X///Reenp546aWXAABjxozRXe2hUORN7dSrVy8Aed99arUa+/btw6BBg9CoUSPddry9vTF8+HDdCKCRI0fq3rPx48fjtdde0+Xo//73v1CpVHj48KEuR6vVamRmZuKPP/5AXFwcVCoVJk6cqPeaY2JioNFodPtZe+WQUqnU7Wfm6OIxRzNHG4M52vxydEElfY7L+lkBYPBdlZKSUqHX9+STT6Jjx4663xs0aIAXX3wR/v7+UKvVpeaQ48eP664w0MrOzi71OwnI++xoX4f2u6wo2nOIgv8Kf653794NlUqFyZMn6y2fOnUqhBDYs2eP3vJ58+bp2syZmZmYOHGi7jg05vOdnp6OTZs2wd3dHXXr1sWVK1fw7LPP6rav/eylpaUByBvhaqzXX39dr82snZpCO7XUr7/+CiBvCpKEhATdPnn11VdhbW2Nmzdv6rWZrays4ObmpjvGbGxsdCO1IyIi9J5bCIHTp0/j1KlT2LhxI1xdXfXyccH8pj1/zMrKMpj2Wov52BDzcdGYj5mPS1PRfGyM0nKiEALbtm3DCy+8ACGE3v7v06cPkpKSDI67lJQUg++10vz000+Ii4sr8ljSKjg1o3ZkfXZ2Ng4cOACg7HkxPT0dsbGxiIyMxLZt2wzy2u7du1G7dm29e09ZW1tj8uTJSE1NxdGjRwHk9RUAMKq/ADBu/+zevRudO3fGU089pVvm5OSE8ePHIzQ0VG9Wg4L+/PNPnDt3Dt9//71RsWhpP5f37t3D3LlzodFodHmjoPj4eF2ftTFq1aqFESNG6H5XqVSYMmUKsrKyyv2+lXbMFhQXF4c+ffrA2dkZO3fu1MsL5Tm2S1Ku6ad++uknNGvWDFZWVqhVqxaaN2+ulwS18/stW7YMISEhei9Q2yEC5E1b1bx5c1hZmWQWLJ2CHWpA3gevSZMmurnWtHOFFnU5nFZSUhJq1Kih+z02NtZgu4XduXMHQohi1yt8yat2+o2i5q0tuM2kpCTdB7aw6Ohovd/37dsHLy+vEuMsbPr06ahTpw4mTJhgMM/cnTt3cPPmzWK3Wfj5ixIeHo4BAwYgLS0NcXFxxRasjNkfQN6JyjfffIPLly/rzVFacLvBwcFQKpVo1apVsdvRTptW0jy7YWFhAIDmzZsb/K1FixY4fvy43rL79+/r7Stvb29s27at1NdUkh49euDll1/GzJkzsWDBAvj5+WHQoEEYPny43smsMfulKMZ+XrUaNmxosMzNzQ0vvPACNm7ciK+//hpA3olF3bp1i/xSLk5wcDDq1Kmjd5JTlBMnTmD69Ok4deoU0tPT9f6WlJRU6k0P79y5g6tXr5Z6XIeFhcHb21t3Cb5WkyZN9H4v6Thp2bIl/P39DW5sVtR+fO655+Dt7Y0NGzbg2WefhUajwaZNm/Diiy/qNTrL6+TJk3qvuWnTpti+fXuJx4ixnwHtNlq0aGGwnraBEhoailq1ahl9vHTt2hVbtmzBwoUL8dprr8HKyspgXmQgL8nPnDkTmzdvNvhOKuqE/bHHHtP9XNx7tm3bNsTGxuoVPMpDm2+K+xy4uLgUufz48ePYtWsXDh48WOapRwry9PTE9u3b0a1bN90yIUSxuaLgZ/7hw4d6Obqo91b7WUhLS0NMTAzS09OL3acif27OgjmyadOmejnayclJN51ZwRy9ZcsWbNmyBUBeQ7Jwjo6PjwdguJ+1HQIuLi7M0cVgjmaONhZztPnlaK3SPsdl/aykpaWV+buqNEV99zZr1gzp6emIiYkBgBJziEajwf3799G6dWvd8sTERPj4+JT63Ldu3dK9Hu29I6ZPn24wrc+vv/6q68gvqOBzhIWFoU6dOgbvufZcJywsTC/GESNGYOzYsbppkBYuXIjnnnsOgHGf74Id26+++ir69u2LOXPmGMT48ccfA8ibtnLu3Ll44YUXsGDBghLPYwpPt+zm5gYbGxtdTtUORvjxxx/x448/FrmNgvm4Tp06iI+P13uvtdNJF54vvWCHiXaAhJa1tTVycnIM8tv48eN1Pxfu2GE+NsR8zHzMfFw+FcnHxiotJyqVSiQmJmLFihVYsWJFkdso/L1S+P4xpUlKSsJ3332HDz74oNhcoVQq9QYaaOMEoOtfNSYvFjRv3jy93FY4r4WFhaFp06YGhdbC2+vQoQPs7Owwc+ZMLF++XJeLcnJyipxu0Jj9ExYWVuRUlwWfu/B3oVqtxmeffYbXX38d7dq1K/U5Cho0aJDuZ6VSiS+++KLIwlzBz0zNmjXx1ltvYebMmVCpVAbrKhQKNGvWrNj9V973rbRjtnbt2rrlzz//PG7fvo2aNWsa3J8jJiamzMd2ScpVTejcubNunr6ifPfdd/jyyy8xduxYfP3113B3d4dSqcSUKVMMroCQgjaGefPmoX379kWuUzChZmdnIyIiQncCWtJ2FQoF9uzZU+TBVThJR0ZGAoDem1/UNmvWrKlXzS+ocILp0qULvvnmG71lS5cuxY4dO4p8/M2bN/Hbb79h/fr1RX7wNRoN2rZtq5sLvbD69esXG7tWUFAQHnvsMSxYsAAjRozAmjVriiwoGbM/jh07hoEDB+Lpp5/GsmXL4O3tDWtra6xevdrgRmVSqFWrFtavXw8gL0msWrUKffv2xfHjx9G2bdtybVN7U6PTp09j165d8Pf3x9ixY/Hjjz/i9OnTcHJyqtB+KevntfCIE62RI0di69atOHnyJNq2bYudO3di4sSJBl+mFRUcHIxnn30WLVq0wPz581G/fn3Y2Nhg9+7dWLBggVHfMRqNBs8995yuAViYqe6lUJKi9qNKpcLw4cOxcuVKLFu2DCdOnMDDhw/LNHKnJO3atdM1SmNiYrB48WL4+fnh4sWLJX7ujFHccVEcY46X8ePHw9/fH++//36Jc2QPHToUJ0+exEcffYT27dvDyckJGo0Gffv2LfJ4WL9+PdLT0/Uax5VF+/zr1q0rch8XV9T/5JNP0KdPH/Ts2dPg5nqlWbp0KZo3b677DtLOe639DtIWevr27YvHHnsM2dnZ+P3333H//n2DBg9Q9vfWVLQ5+vXXX0d0dDQ6deqEDh06YMWKFbhw4YKuEyQ7O1s3gli7n5OSkjBkyBCMGDECI0eOhJWVFTZv3swcXQTmaOZoU2KOLr+K5GhjP8fGsrOzw65du/SWHTt2TDd/trmIjIxEnz59Sl3P19dXdxVCXFwcFi9ejBEjRqBRo0a6KzuBvKtNC98s/IsvvtB9/5VHo0aNUKtWLWzfvt3gu9yYz/eIESNw5MgRuLi44J133sHXX3+N559/HgcOHNDrYJs8eTIWL16McePGwdfXF7NmzUJiYmKRI5+NuboFgK4j4tNPP9UbRQvkjZ5WqVR6uVMIgcjIyFLbzFpTp07Frl27kJGRgf/973+wsbEB8OjGrdr8pj32tAMrgbwrDM6ePavbFvOxPuZj5mPm4/KrzDazsbTvzxtvvFFsPi/cgf7VV18Z3MPjhRdeKPY55syZA6VSiY8++kh3lXtV0LbPNBoN7t69W2xeK02tWrWwZMkSTJo0yeBY7NGjh8H6Zd0/xvr1118RGhoKf3//Mj/2hx9+wH/+8x/k5OTg3Llz+Oabb2BlZWVw5cy2bdvg4uKC9PR0/PXXX/j222919x8rTKq2e0G3bt3Cnj17MHToUEydOhWrV6/W/a08x3ZJTHuJRL4//vgDzzzzjMFIl8TERL1Ltho3bowzZ84UW0krL+3IWC0hBIKCgnQ7RjtixMXFxWBkSFGuXLmCnJycEgs52u0KIdCwYUOjvuBv3LgBhUJRZKW64DYPHDiAbt26GXVwenp6Grymkm5MNm3aNLRv3x6vvvpqsc+vvRysvJVp7bQitWrVwo4dOzB16lT079/f4OTSmP2xbds22NnZwd/fX++EvOCHRBu3RqPBjRs3ii1caY+DgIAAg1EEWtqRWbdv3zYYPXH79m2D0WF2dnZ6+3/gwIFwd3fH0qVL8fPPPxf7uozxxBNP4IknnsC3336LjRs34vXXX8fmzZvx5ptvGr1fimLs57U0ffv2hZeXFzZs2IAuXbogPT1d75I3YzRu3Bj+/v6Ij48vduTJrl27kJWVhZ07d6JBgwa65UVd1l3cMdu4cWOkpqaW+vn38fHB4cOHkZ6erjfyJCgoyGA9IO+YKOzWrVvw9PTUG3FSkpEjR+LHH3/Erl27sGfPHnh5eRnVYDdGjRo19F6zn58f6tSpg9WrV2PatGlFPsbYz4CnpyecnJyK3QcA9G78ZszxYmdnh3/++QeBgYG4f/8+hBCIiorSO2FNSEjAwYMHMXPmTHz11Ve65YXzQEHdunWDo6Mjxo8fX2y8jo6OJrnEWPs9U7NmTaPyDZD3nX3q1KkyXXZZUJcuXXT5qqjvoPT0dHh4eOhdUjp48GB069ZN78qWOnXq4Pbt26hXrx6Aoo9v7eg9R0dHeHl5wcHBodh9qlAoIITAnTt3dDnyzp07uhvBtWvXDqmpqboRiNocbW9vj7Zt2+Lw4cOwt7fHlStXMHHiRFy9ehV2dna4cuWKbrScdj9rLydu1KiRbr+fO3eOOboIzNHM0cZijja/HK1V2ue4rJ8VlUplsP8Lj7Qvq6LycmBgIBwcHHRxlpRDlEqlXsfwgwcPkJKSYtR0NY6Ojnqvp3v37qhbty727dunV9SoV6+eweteuHChXlHDx8cHBw4cQEpKit7oRu25TlFXjhT3XW7M57tRo0aIj4/HmTNnMG7cOLi6umL48OE4ffo0nnzySd1jtN/NLVq0wIcffoh79+5hzZo1yM3NNYjH29sbQN5UR9ob2wJ5ncvZ2dm6EbvaK07S0tL09kt2drZuCpqCbfiHDx9CrVbrtZm15wlF3fx5/PjxGDFiBB5//HGcOnVKN3Id0M9vp0+fhkKhwMiRI3VFlMIj/5mP9TEfMx8zH5dfRfKxsYzJic7OzlCr1Ua3Idu2bWuwblEDuYC87+tFixZh9uzZcHZ2LraooS08FGw7BQYGAnjUti9rXizYPgNgkNd8fHxw9epVaDQavWJfUdt788038dJLLyEgIEA3Nd/UqVOLfC3G7B8fH58S+zMKv5b09HTMnDkTEydONOrK0cI6duwIPz8/AEC/fv0QHh6OOXPm4Msvv9R77U8//bTue2bgwIE4ceIE9u7dW2RRo2HDhrh48WKx+6+875sxx6zWzp070b17d8yePRvvvPMO3njjDd3gCC8vrzIf2yUxbTk4n0qlMrjEZOvWrQgPD9db9vLLLyM2NhZLly412Ebhx5fF2rVr9eZ9/eOPPxAREYF+/foByDtwGjdujB9++AGpqakGj9deAl0wdpVKheeff77E533ppZegUqkwc+ZMg/iFEHpfFLm5udi2bRs6d+5c4mWWQ4cOhVqt1jvJK7iNijQwTp06hR07duD7778vNpENHToU4eHhutFNBWVkZBg1p1uzZs10J8dLliyBRqPBe++9p7eOsftDpVJBoVDoXe4ZGhpqcBI6aNAgKJVKzJo1y2AUgva96d27N5ydnTF79myDOVS16zz++OOoWbMm/ve//+ldnrpnzx7cvHkTAwYMKPG1Z2dnIzc3V++xZZWQkGBwPGlPOrXbNXa/FMXYz2tprKysMGzYMPz+++/47bff0LZt2zJffvfyyy9DCIGZM2ca/E0bozbxFIw5KSmpyJNRR0fHIj8jQ4cOxalTp4qspicmJuoagH369EFOTo7e8a/RaPDTTz/pPcbb2xvt27fHmjVr9J4vICAA+/btQ//+/Ut41fratWuHdu3a4ZdffsG2bdt00y5VBu28yyUdn8Z+BpRKJfr27YsdO3bozXMcHx+PNWvW4PHHH9e7rLUsx0uzZs3w7LPPolevXnrTKAFFHw9AXidESby8vPDYY49h48aNet/5wcHB2LlzJ/r161fsSWBZ9OnTBy4uLvjuu++KnN+3cL7RXr46fPjwYhuXZVHUd5C2uFDQwYMHDR779NNPIzY2Flu2bMHjjz+ONWvW6Kb/EkIgODhYNyenUqmESqVC7969sWPHDt1lrQAQFRWFjRs36kberV27VnfsrVixAps3b9bl6OXLl0OtVqN27dp6Ofqxxx6Do6MjlEol5s6di9DQUN2IYW2OdnJyKnE/M0cXjTmaOdpYzNHml6O1SvscV/SzYgqFi/X379/Hjh070Lt3b6hUqlJzyFNPPaU3ZePmzZsBFD+9Y0m03zvlyfP9+/eHWq02aL8uWLAACoVC197UKum7vDxt5sLHRXFtZm1nRlH5Qzu1xsaNG/XazNorWPv27QsAuvnxf/31V731fv31V919CApSq9VQKpW6NnN2djbWrFkD4FEhRUupVGLmzJlo164dPvzwQ8yZMwcBAQG6fKzNb//73/8M8k9GRobBvVGYj/UxH+dhPmY+NoWy5GNjGZMTX375ZWzbtg0BAQEGjy/chiyrmTNnolatWkXes6SwgvlOCIGlS5fC2tpa10ld1rxYWOH9279/f0RGRuqmHgbyvvuWLFkCJycng6sw3N3d8fTTT6NXr17o1auX3hTFZdW/f3+cPXsWp06d0i1LS0vDihUr4OvrazBV36JFi5CWlobPP/+83M9ZUEZGBnJzc4sckKAlhIAQothzmKL2n3b6PFtbW10hoTznMyUdswVpzw8mTpyIrl27YsKECbr32dTHdqV86p9//nnMmjULY8aMQdeuXXHt2jVs2LDBYC62kSNHYu3atfjggw9w9uxZdO/eHWlpaThw4AAmTpyIF198sVzP7+7ujqeeegpjxoxBVFQUFi5ciCZNmuhOzJRKJX755Rf069cPrVu3xpgxY1C3bl2Eh4fj8OHDcHFxwa5du5CWloaffvoJixcvRrNmzXDkyBHdc2g7Wq5evYpTp07hySefROPGjfHNN99g2rRpCA0NxaBBg+Ds7IyQkBD89ddfGD9+PD788EMcOHAAX375Ja5evWpwaXdhPXr0wIQJEzB79mxcvnwZvXv3hrW1Ne7cuYOtW7di0aJFGDJkSLn20759+/Dcc8+VWB0bMWIEfv/9d7z99ts4fPgwunXrBrVajVu3buH333+Hv79/qVewFFS7dm3MmzcPb775Jt544w3079+/TPtjwIABmD9/Pvr27Yvhw4cjOjoaP/30E5o0aYKrV6/q1mvSpAk+//xzfP311+jevTteeukl2Nra4ty5c6hTpw5mz54NFxcXLFiwAG+++SY6deqE4cOHo0aNGrhy5QrS09OxZs0aWFtbY86cORgzZgx69OiBYcOGISoqCosWLYKvr6/BlDhpaWl6l9KuW7cOmZmZGDx4sNH7qLA1a9Zg2bJlGDx4MBo3boyUlBSsXLkSLi4uusRv7H4pirGfV2OMHDkSixcvxuHDh4uc77c0zzzzDEaMGIHFixfjzp07uumDjh07hmeeeQbvvPMOevfuDRsbG7zwwguYMGECUlNTsXLlStSsWdPgJoQdO3bE8uXL8c0336BJkyaoWbMmevbsiY8++gg7d+7E888/j9GjR6Njx45IS0vDtWvX8McffyA0NBSenp4YNGgQOnfujKlTpyIoKAgtWrTAzp07dXMNF2zYzJs3D/369cOTTz6JcePGISMjA0uWLIGrqytmzJhR5v344YcfAoDJLqMF8joGtMdnbGwsfv75Z1hZWZVYsC3LZ2DWrFnYu3cvnnrqKUycOBG2trZYuXIlkpKSipyLuaLHC5A3mv/pp5/G3LlzkZOToxt5WfgGkkWZO3cu+vbtiyeeeAITJkxAbm4uli5dCjs7O3z77bcG6x86dEjXoaIdqXDt2jXdDTWBvNygVCpx9OhR9OjRAy4uLli+fDlGjBiBxx57DK+99hq8vLxw7949/PPPP+jWrZveicSDBw90l4aX1+7du3Hr1q1iv4Ps7e0RHx+P3r17o2XLlrh+/ToOHz4MpVKpdxLYu3dvnD17Fh988AGeeeYZxMTEoHnz5qhRowYef/xxHDp0CLa2tnpFhG+++Qb79+/HU089hZycHGRkZKBr167IysrChAkTMGnSJLi7u2P27NkAgHv37uGNN96Al5cXbt68iZUrV+Kpp57CrFmz0L9/f7Ru3RpJSUkIDAzEjBkzdDn6k08+wezZs5GRkYHly5ejWbNm8PPzw//+9z80atRId9+UzZs3Y+PGjejduzeWLl3KHF0K5uiyY45mjjaV8uToohT1OS7rZ6UytGnTBn369MHkyZNha2uLZcuWAYBep1zBHDJx4kRYWVnh559/RlZWFubOnQsgbz9Nnz4dv/zyC1577bUi7/dUWGpqqi5Xx8fHY/HixbC2ti5XMeeFF17AM888g88//xyhoaH4z3/+g3379mHHjh2YMmUKGjdujGPHjunWL+m73JjP99WrV9GoUSO0bNkSH3zwAaytreHm5objx49j9uzZuo4D7c1Lb9y4gZkzZ2Lt2rV48cUXi+z00M5Rn5aWhvr166NXr166ufMdHBywYMECAHlTe4waNQpr1qxBzZo18cwzzyAzMxNHjhyBs7Mz9u3bh/feew9paWm6+38pFAqMHTsW3t7eOH36tG5E7/Xr1/U6icaNG4eVK1ciNDQUAwYMgJubG3r37q27IesHH3yAZcuWYeLEiVAoFJgwYQIWLVqky2+F5xxnPtbHfMx8zHxcfqbKxyUxJid+//33OHz4MLp06YK33noLrVq1Qnx8PC5evIgDBw7o9m957Nu3Dxs2bNBN+1ccOzs77N27F6NGjUKXLl2wZ88e/PPPP/jss890o/ONyYsFXb16FevXr9cNklu8eDHq1aun+44cP348fv75Z4wePRoXLlyAr68v/vjjD5w4cQILFy40yX1TivPpp59i06ZN6NevHyZPngx3d3esWbMGISEh2LZtm8E0cfv27cO3335b5H11jLF//348ePBAN/3Uhg0bMHDgQIP3RdsPoZ1+KigoCFOmTClym+PGjcPy5csxevRonD9/Hg0bNsT27dtx8OBBfP/997pYy/q+GXPMFqZQKPDLL7+gffv2mD59uu5czqTHtiiD1atXCwDi3LlzJa6XmZkppk6dKry9vYW9vb3o1q2bOHXqlOjRo4fo0aOH3rrp6eni888/Fw0bNhTW1taidu3aYsiQISI4OFgIIURISIgAIObNm2fwPK1bt9bb3uHDhwUAsWnTJjFt2jRRs2ZNYW9vLwYMGCDCwsIMHn/p0iXx0ksvCQ8PD2Frayt8fHzE0KFDxcGDB/Weu7R/o0aN0tvutm3bxFNPPSUcHR2Fo6OjaNGihZg0aZK4ffu2EEKId999Vzz99NNi7969BjFNnz5dFPW2rFixQnTs2FHY29sLZ2dn0bZtW/Hxxx+Lhw8f6tbx8fERAwYMMHjspEmTDLYJQCgUCnHhwgW95UW9R9nZ2WLOnDmidevWwtbWVtSoUUN07NhRzJw5UyQlJRk8X2nbE0KInj17igYNGoiUlJQy749ff/1VNG3aVNja2ooWLVqI1atXF7vfVq1aJTp06KCLu0ePHmL//v166+zcuVN07dpV2NvbCxcXF9G5c2exadMmvXW2bNmi2467u7t4/fXXxYMHD/TWGTVqlN5x4eTkJB577DGxbt26EvdRaS5evCiGDRsmGjRoIGxtbUXNmjXF888/L86fP1+u/eLj46N3zBr7edV+vrZu3VpivK1btxZKpdJg/xgrNzdXzJs3T7Ro0ULY2NgILy8v0a9fP71jdefOnaJdu3bCzs5O+Pr6ijlz5ohVq1YJACIkJES3XmRkpBgwYIBwdnYWAPReT0pKipg2bZpo0qSJsLGxEZ6enqJr167ihx9+ENnZ2br1YmJixPDhw4Wzs7NwdXUVo0ePFidOnBAAxObNm/ViP3DggOjWrZvuWHrhhRfEjRs39NbRvicxMTHF7oOIiAihUqlEs2bNyrUPi9KjRw+949PNzU1069ZN7N6926jHG/MZECLveO3Tp49wdHQUDg4Ows/PTxw7dqzY7Zb1eNF+L69evVq37MGDB2Lw4MHCzc1NuLq6ildeeUU8fPhQABDTp0/XrafNYQWPkQMHDoiuXbsKOzs74ezsLPr37y+uXr2q95za96ws/3x8fPS2cfjwYdGnTx/h6uoq7OzsROPGjcXo0aP1Psfa75D33ntP77FFxV2Ubt26GfUd1KBBA731rKysROfOnUWHDh1Ejx49dJ/1w4cP6+VoKysrYW1tLZRKpXBychIDBgwQe/fuNcjR2mNAqVQKpVIpnnnmGXHy5Em9HD1gwAABQNja2ooGDRoIV1dX4eTkJF5//XURFxcnhHiUo7XbKZijMzMzRaNGjYx6Lxo3bqy3n5mjS96eEMzRZcEczRxtChXJ0cZ8jrWM/aw4OjoabG/r1q263FBYUbm5IABi0qRJYv369brPQYcOHYrcljaHODk5CQcHB10O0Tpx4oRo0qSJmDFjhsjKyio1juL27Z49e4qMsbABAwYY5PSUlBTx/vvvizp16ghra2vRtGlTMW/ePKHRaIQQj/J2ad/lpX2+C+cz7blVwTbzhg0b9NbR5svJkyeLhIQEIYQQbm5uwtbWVvf82u+LV155Rbi6uuribNSokS4XFvTpp58KJycn3XM4OzuLwYMHl6vNXPAco2A+trOzEwBE9+7ddTFMmjRJNGzYUPj4+Bjkt08//ZT5uADmY+Zj5mPTqGibWQjT5sSoqCgxadIkUb9+fd13/7PPPitWrFihW6ekY87R0VHvONbmp/bt2+tyVnExa88HgoODRe/evYWDg4OoVauWmD59ulCr1XrPU1peLPjaC+bH2rVri5deekncvHnT4HWPGTNGeHp6ChsbG9G2bdti92dhZflMFt4/QggRHBwshgwZItzc3ISdnZ3o3Lmz+Pvvv/XW0W7T29tbpKWlGbzGgn0QRdE+vmB7vHDuFsKwH8Le3l60atVKLFiwQLdO4e8qIYSIjo4WY8eO1e2/Nm3aiJUrVxrEUZb3zZhjtrgcM3PmTGFlZSUuXryoW2bMsW2MMhU1zJ2xCcRY2g92SR1J06dPNziAiKqz9u3bi549e0odRqX666+/BABx/PjxStl+TEyMsLKyErNmzaqU7ZsTSzxeDh8+bNABQvo52thBEiVhjiYqO0v8zi2MOdr8FFcwIGlUVpu5adOmxa7DfEykj/m44uSaj+WSE4sb5EDVjzkfs5VyTw0iqp7Onz+Py5cvY+TIkVKHYjLauf+01Go1lixZAhcXF90UN6b222+/Qa1Wl/mmcXJjiccLEZG5ssTvXOZoIiKSG+Zj02A+JqLKuZOOhXBycsLrr79e4k242rVrhzp16lRhVETmJyAgABcuXMCPP/4Ib29vvPrqq3p/V6vVpd7wx8nJqcTPmlTeffddZGRk4Mknn0RWVhb+/PNPnDx5Et999x3s7e1N+lyHDh3CjRs38O2332LQoEHw9fU16fbNRWnHi9y5u7sb3MCMTI85msg4zNGmUV1yNFFZOTk5oWbNmgZzjRfEfEzEfGwqzMdEpMWiRgk8PT11NwgqzksvvVRF0RCZrz/++AOzZs1C8+bNsWnTJtjZ2en9/f79+7qbEhZn+vTpZb45WFXo2bMnfvzxR/z999/IzMxEkyZNsGTJErzzzjsmf65Zs2bh5MmT6NatG5YsWWLy7ZuL0o4XuWvXrh3WrFkjdRgWjzmayDjM0aZRXXI0UVl5enqiZcuWiI2NLXYd5mMi5mNTYT4mIi2FEEJIHQQRWbbMzEwcP368xHUaNWqERo0aVVFEREREBDBHExERmQPmYyKismFRg4iIiIiIiIiIiIiIZIE3CiciIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZIFFDSIiIiIiIiIiIiIikgUWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZIFFDSIiIiIiIiIiIiIikgUWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZIFFDSIiIiIiIiIiIiIikgUWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZMFK6gCIqPrQaATSsnORnq1GVo4GaiGgEQJCCCitUgFlBhQKBZQKJZQKJexUdnCwdoCDlQMUCoXU4RMREVU7xuZulUIFpUIJW5UtHK0dYW9lz9xNREQkAba7iag6YFGDiMolK1eN6OQsRKdkISYlE1HJWYhOyUR0chbi0rKRmpmLtOxcpGXlIjVLjfTsXGTkqCFE0dvr/sQJXE7aVeTfFFDA3soeDtYOcLR2hIOVAxysHeBs7QwPew942nvCy94LXg5euv897D1grbSuxD1AREQkLyXl7tjULKRm5SItS52fv9VIy8pFZm7FcrejtaOuo6S03O1p7wkrJZsnREREWtm5GkQlZ5bY7k7NykV6tpHt7i4ncDm5fO1ubc4umMPZ7iYiqbDVQETFik/LRkhsKu7GpCEk9tG/yORMJKbnVFkcAgLpuelIz01HbEasUY9RQIEadjVQ27E2fJx94OPqAx8XH/i6+MLHxQfONs6VHDUREVHVKyp3h8alIyIpQ7LcjQzjHlNS7vZ18YWTjVPlBk1ERCSBxPRsBOfn7bsxqWaRu9nuJiJzx6IGESE5MwcB4UkICE/CrcgU3I1JQ2hcWpWeQJmagEB8ZjziM+NxI+6Gwd/d7dzzOklcfdGsRjO09miN5u7NYW9lL0G0REREZZOSmYOA8GQEhCfhZmRytcrdDV0bommNpszdREQkKwVz963IFNyNzStgVIfc7evqi+Y1mqOVRyvmbiIyCRY1iKqZpIwcXA9PwrX8fwHhSQiLTy/28lRLpT3xuhh9UbdMpVChoWtDtPJohZbuLdHKoxVauLeAg7WDhJESEVF1x9ydp7Tcrf3XvEZz5m4iIpJUwYGD1/ILGaFxaczdeJS7tW1utruJqDwUQlS3r1Si6iUqOROnguNw+m4czobEI8RMT6RKmpdbSkqFEk3cmuDxWo/j8dqP4/Faj6OGXQ2pwyIiIgumzd1nQuJw5i5zd1kpFUo0dmuMx2s9jk61OzF3ExFRpZNNu7uEe2pIqWC7u1PtTuhYqyNzNxGViEUNIgsTmZSJ03fjdP9C49KlDsko5toxUpgCCjR2a4xOtTuxo4SIiEyCubtyFc7dnWp1gpudm9RhERGRjBUsYsgqd5tpUaMwtruJqDQsahDJXI5ag7Mh8dh/IwpHA2MQEpsmdUjlIpeOkcIUUKBJjSZ4uu7T8Kvvh3Ze7aBUKKUOi4iIzJg2dx+4GYUjt5m7q5oCCjSt0RTd63Zn7iYiIqMUbHf/GxiDu3LN3TIpahSmzd096vVAj/o90NazLXM3UTXHogaRDCWmZ+PI7Rjsv5l3QpWSmSt1SBUm146Rwtzt3HWdJF3rdOW8oEREBIC525xpc/cz9Z/Bk3WeZO4mIiIAQFJ6Dg7fjsaBm3kDCC0id8u0qFGYu507nq73NPzq+TF3E1VTLGoQycSDhHTsuRaJ/TejcCEsAWqNZX10LaVjpCAbpQ06eXfCM/WeQS+fXvCw95A6JCIiqkLM3fJjo7RBZ+/O8Kvnh2d9noWnvafUIRERURW6H5+OvQGROJCfu3MtLXdbSFGjIBulDTrV7gS/+n54zuc5truJqgkWNYjMWEJaNv65FoHtl8Jx4V6CWd5ozFQssWOkICuFFbrU6YIBDQfg2QbPciQJEZGFSkzPxt9XI7DjcjjOhzF3y5lKocIT3k9gQCPmbiIiS6bN3dWi3W2BRY2C2O4mqj6spA6AiPRl5qix/0YUdlwOx9HAGOSoLfiMqhrJFbk4EX4CJ8JPwN7KHn71/fB8o+fRtU5XWCn5VUxEJGfM3ZZJLdQ48fAETjxk7iYisjSZOWocuBmF7ZeYuy2JQbu7nh8GNBqArnW7wlppLXV4RGRCvFKDyEycvhuH38/fx77rUUjNkv9cnWVl6aM9i1PDtgZ6+/bGy01fRkuPllKHQ0REZcDcXT1zt7udO3r79MbgpoPRyqOV1OEQEVEZnL4bh63nH8D/emT1zN0WfqVGcdxs3dDHtw/b3UQWhEUNIgmlZOZg24UH2HDmHu5Ep0odjqSqa8dIQe0822Fo86Ho27AvbFW2UodDRERFYO5+hLkbaOvZFkObD0W/hv2Yu4mIzFRyZg7+ZO4GUH2LGgWx3U1kGVjUIJJAQHgSNpwJw47LD5GerZY6HLPAjpFHXG1d8WLjFzG0+VD4uPhIHQ4REYG5uyjM3Y9oc/erzV9FA5cGUodDREQArj9MwvrTzN0FsajxCNvdRPLGogZRFcnKVePvKxFYfyYMl+4lSh2O2WHHiCEFFOji3QWvNX8NzzR4BkqFUuqQiIiqFebukjF3G1JAgSe8n8CrLV6FXz0/qJQqqUMiIqpWsnLV+OdqBNadZu4uCosahtjuJpIn3uGOqJKlZuVi/ekwrDoeguiULKnDIRkREDgdcRqnI06jgXMDjG4zGi82fhE2KhupQyMismjM3VReAgKnIk7hVMQp1Heuj9GtR2NQk0HM3URElSwlMwfrT9/DqhMhiGHupjIo2O72cfHBqNaj2O4mkgFeqUFUSWJTs7DqeAjWnw5Dcmb1uwFZWXG0p3G87L3wRqs38GrzV+Fo7Sh1OEREFoW5u2yYu43jae+JN1rm5W4nGyepwyEisija3L3udBhSmLtLxSs1jKNtdw9tNpS5m8hMsahBZGL349Px87/B2Hr+AbJyNVKHIxvsGCkbZxtnvNr8VbzR8g142HtIHQ4Rkawxd5cPc3fZOFs749UWzN1ERKZwPz4dK/69i60X7iMzh7nbWCxqlI2ztTOGNh+KN1q9AU97T6nDIaICWNQgMpG7MalYfPAOdl2NgFrDj1VZsWOkfGxVthjcZDDGtxsPLwcvqcMhIpIV5u6KYe4uHzuVHQY1GYQ3276JWo61pA6HiEhWgmNSsfRQEHZdeYhc5u4yY1GjfGxVthjUZBAmtJvAdjeRmWBRg6iCIpMysfBAIP648IAnVRXAjpGKsbeyx7AWwzC2zVi42rpKHQ4RkVlj7jYN5u6KsVPZYViLYRjXdhxzNxFRKbS5e+uFBxyIUAEsalQM291E5oNFDaJySkzPxk+Hg7D2VBinqjABdoyYhrONM8a2GYvXW74Oeyt7qcMhIjIrienZWHYkGGtOhjJ3mwBzt2k42zhjTOsxeKPVG8zdRESFMHebFosapqHN3a+3fB0O1g5Sh0NULbGoQVRG6dm5+PVYCFYcu8sbkZkQO0ZMy9PeE+PbjceQZkNgrbSWOhwiIkkxd1cO5m7T8rT3xIR2E/Bys5eZu4mo2kvPzsWq4yH4+V/mblNiUcO0POw8ML7deLzS7BVYq5i7iaoSixpERlJrBDaeCcOig0GITc2SOhyLw46RylHPqR7e6/ge+vr2lToUIqIqp9YIbDx7D4sO3GHurgTM3ZWjvnN9TO4wGX0bMncTUfWjzd2LD95BTApzt6mxqFE56jrVxZSOU9juJqpCLGoQGeFsSDy+2hGAW5EpUodisdgxUrk61+6MaZ2noUmNJlKHQkRUJc6FxuOrHddxMyJZ6lAsFnN35Xq81uP4rMtnaFqjqdShEBFVCebuyseiRuXqXLszPu38KXM3URVgUYOoBNHJmfhu901sv/xQ6lAsHjtGKp+VwgqvtXgNE9tPhLONs9ThEBFVCubuqsPcXfmYu4moOohOycTs3bfw16VwqUOxeCxqVD7mbqKqwaIGURFy1BqsPhGCxQeDkJrF+TurAjtGqo6HnQfee+w9DGoyCAqFQupwiIhMgrm76jF3Vx0POw9M6TgFLzZ+kbmbiCxGrlqD1SdCsejgHebuKsKiRtVxt3PHlMemsN1NVElY1CAq5ERQLKbvvI6g6FSpQ6lW2DFS9dp5tcNnXT5Da4/WUodCRFQhzN3SYO6ueu292uOzLp+hpUdLqUMhIqqQk/m5+w5zd5ViUaPqtfNsh8+eYLubyNSUUgdAZC6SMnIw9fcreP2XM+wUoWrhasxVvP7P65h/fj6y1LwJHxHJD3M3VTeXYy7jtX9ew7xz85CZmyl1OEREZZaUnoMPfr+M4b+cYUGDqoWrsfnt7gtsdxOZEosaRAAO3IjCc/OPYtvFB1KHQlSl1EKN1ddXY8jOIbgcfVnqcIiIjMbcTdWVRmiw9sZavLLrFeZuIpKVAzei8NyCo/jzIu+dQdWLWqixOoDtbiJTYlGDqrXE9GxM2XwJb649j+gUVsyp+gpNDsWovaMw5+wcZORmSB0OEVGxmLuJ8mhz99xzc3nVBhGZNeZuojxsdxOZDosaVG3tDYhEr/n/Yvvlh1KHQmQWNEKD9TfXY8jOITgfeV7qcIiIDDB3E+nTCA3W3ViHIbuG4GLURanDISIysO96JJ5bwNxNpKVtd7+882WcizwndThEssWiBlU7CWnZeGfjRby9/gJiUzlKhKiweyn3MNZ/LL478x1HfhKRWUhMZ+4mKklYchjG+I/B92e/Z+4mIrOQmJ6NyZsuYfy6C4jh1RlEBu6n3Mc4/3H49vS3ZnmvDT8/P0yZMqXYvysUCmzfvt3o7R05cgQKhQKJiYkVjo0IYFGDqpkzd+PQb9Ex/H01QupQiMyagMCmW5sw7J9hCEoIkjocPTy5IqpezobEM3cTGUEjNNhwcwNe+/s13Em4I3U4epi7iaqXM3fj0HfhMey8wqsziEoiILD59ma89vdrCE4MljqcMomIiEC/fv2kDoOqMRY1qFrQaAQWHgjE8F/OIDKZo9eIjBWUGIRh/wzD1sCtUodiNJ5cEVkGbe4etvI0IpKYu4mMFZwUjOH/DMfvt3+XOhSjMXcTWQa2u4nKJygxCK/9/Zqs2t21a9eGra2t1GFQNcaiBlm8yKRMDP/lNBYeuAO1RkgdDpHsZKozMevULEw9MhUp2SlSh1MqnlwRyR9zN1HFZKoz8fXpr/Hh0Q+Zu4moSkQlM3cTVYQ5trs1Gg0+/vhjuLu7o3bt2pgxY4bub4Wvsjx58iTat28POzs7PP7449i+fTsUCgUuX76st80LFy7g8ccfh4ODA7p27Yrbt29XzYshi8OiBlm0Q7ei0H/xMZy+Gy91KESyty9sH17Z9QquxFyROhSeXBFZsIM3mbuJTMU/1B+v7HoF12KuSR0KczeRBTt8Kxr9FzF3E5mCObW716xZA0dHR5w5cwZz587FrFmzsH//foP1kpOT8cILL6Bt27a4ePEivv76a3zyySdFbvPzzz/Hjz/+iPPnz8PKygpjx46t7JdBFopFDbJIOWoNvv77BsatOY/4tGypwyGyGOGp4Ri9ZzR+vfYrhJBuBBZProgsT45ag1m7mLuJTC08NRwj947EqoBVzN1EZFI5ag2+/ecGxq45hzjmbiKTKdjullK7du0wffp0NG3aFCNHjsTjjz+OgwcPGqy3ceNGKBQKrFy5Eq1atUK/fv3w0UcfFbnNb7/9Fj169ECrVq3w6aef4uTJk8jM5HR1VHZWUgdAZGqxqVn47/oLOBeaIHUoRBYpV+Ri4cWFuB53Hd90+wYO1g5VHoP25AoAmjZtiqVLl+LgwYN47rnn9NYreHJlZ2eHVq1aITw8HG+99ZbBNrUnVwDw6aefYsCAAcjMzISdnV3lvyCiao65m6hy5WpyseDCAlyJvoLZ3WczdxNRhcWk5OXu82HM3USVwVza3QV5e3sjOjraYL3bt2+jXbt2evm3c+fOpW7T29sbABAdHY0GDRqYImSqRnilBlmUaw+SMHDJcXaKEFWB/WH78caeN/Ag5UGVP3dVnlwRUeVi7iaqOofuH8Lru1/H/ZT7Vf7czN1EluPagyS8uPQ4CxpEVWB/2H6M2DNCkna3tbW13u8KhQIajcZk21QoFABQ4W1S9cSiBlmMHZfD8crPJ/EwiZetEVWVOwl3MOyfYTgdcbpKn5cnV0SWgbmbqOoFJQYxdxNRuTF3E1W9wIRASXK3sZo3b45r164hKytLt+zcuXMSRkTVAYsaJHsajcDs3Tfx3ubLyMxhI4aoqiVmJeLt/W9j3Y11UodigCdXROaJuZtIWklZSXh7/9tYf2O91KEYYO4mMk8ajcDsPczdRFIx53b38OHDodFoMH78eNy8eRP+/v744YcfADwadEBkaixqkKwlZeRg7Jpz+Pnfu1KHQlStqYUac8/NxRfHv0C22nxuEsiTKyLzw9xNZB7UQo055+bgyxNfIkedI3U4OszdROYnOTMH49acw89HmbuJpKRtd39+/HNkqbNKf0AVcXFxwa5du3D58mW0b98en3/+Ob766isA4H2uqNLwRuEkW/fi0jF69VncjU2TOhQiyrcjeAdCk0OxtOdSuNm5SR2O7uTqv//9L9q3b4+2bdviq6++wvDhw3lyRSSB+/HpGLX6LO7GMHcTmYvtQdsRkhSCxT0Xw93OXepwmLuJzMy9uHSM/o25m8ic7AzeiXvJ97D02aVwtXWtlOc4cuSIwbLt27frfhZC6P2ta9euuHLliu73DRs2wNraWncDcD8/P4PHtG/f3mAZkbEUgkcPyVBAeBJGrz6H2FTzqUxTxXR/4gQuJ+2SOgwyEV8XX/z83M+o41RH6lAMbNiwAWPGjEFSUhLs7e2lDoeo2ggIT8KY384hJoW521Iwd1sWHxcf/K/X/1DPuZ7UoRhg7iaSBtvdlqd7lxO4nMzcbSkaujbE/3r9zyza3WvXrkWjRo1Qt25dXLlyBe+88w78/Pywfr35TXVJloHTT5HsHL8Ti9dWnOaJFZEZC00OxRu738Dt+NtSh4K1a9fi+PHjCAkJwfbt2/HJJ59g6NCh7BQhqkLa3M2CBpH5CksOw4g9I3Ar/pbUoTB3E5kBtruJzF9IUojZtLsjIyPxxhtvoGXLlnj//ffxyiuvYMWKFVKHRRaMRQ2SlR2XwzHmt7NIzcqVOhQiKkVMRgxG7x2NsxFnJY2DJ1dE0mLuJpKP2IxYjNk7BmcizkgaB3M3kbSYu4nkQ9vuljp3f/zxxwgNDUVmZiZCQkKwYMECODg4SBoTWTZOP0WysfLfu/huz03wiLVMnMLCclkrrfHdU9+hb8O+UodCRFWMuduyMXdbLuZuourrl2N38e1u5m5LxemnLJe10hpfd/saAxoNkDoUoirBKzXI7Akh8M3fN3hiRSRTOZocfPzvx1h7fa3UoRBRFWHuJpI3be7ecHOD1KEQURURQuC73TfxzT/M3URylKPJwbRj07Dm+hqpQyGqEixqkFnTaAQ+3HoVvxwPkToUIqoAAYF55+dh6aWlUodCRJWMuZvIMggIfH/2eyy5tETqUIiokqnzc/eKf+9KHQoRVYCAwA/nf2C7m6oFFjXIbOWqNZiy5TK2XXwgdShEZCI/X/0Z8y/MlzoMIqokzN1ElmfF1RWYf565m8hS5ao1eJ+5m8iisN1N1QGLGmSWctQavLvpEnZeeSh1KERkYqsDVmPO2TlSh0FEJsbcTWS5Vl9n7iayRDlqDSZvZu4mskSrA1bj+7PfSx0GUaVhUYPMTo5ag4kbLmJPQKTUoRBRJVl/cz2+Pf2t1GEQkYkwdxNZvvU31+Ob099IHQYRmUiOWoNJGy5i9zXmbiJLteHmBra7yWKxqEFmRXtitf9GlNShEFEl23x7M747853UYRBRBTF3E1UfW25vYe4msgC5ag3e2XgR+5i7iSze5tubWdggi8SiBpmNXLUG7268xBMrompk061NmH1mttRhEFE5sVOEqPrZdGsTp6IikrHc/Oki/a8zdxNVFxxQSJaIRQ0yCxqNwHtbLmPvdV76SlTdbLy1kTcxI5IhjUZgypbL7BQhqobW31yPH879IHUYRFRG2nY3p4skqn423dqEBRcWSB0GkcmwqEFm4csdAfjnaoTUYRCRRFYHrMZvAb9JHQYRlcFXOwPwN3M3UbW15sYa/HLtF6nDIKIy+ILtbqJqbVXAKra7yWKwqEGSm78/EBvO3JM6DCKS2I8XfsT2oO1Sh0FERpi/PxDrTzN3E1V3iy4uwl93/pI6DCIywvz9gdjIdjdRtcd2N1kKFjVIUmtPhWLxwTtSh0FEZmLGyRk4cv+I1GEQUQmYu4mooJmnZuLwvcNSh0FEJWDuJqKCZpycgUP3DkkdBlGFsKhBktl15SFm7LwudRhEZEbUQo0Pj36IC1EXpA6FiIqwk7mbiApRCzU+/vdj5m4iM/X3VeZuItKnzd3nIs9JHQpRubGoQZI4dicGU3+/Ao2QOhIiMjdZ6iy8e/Bd3I6/LXUoRFTAv4ExmPr7ZeZuIjKQqc7Eu4feRWBCoNShEFEBx+/E4oMtbHcTkaEsdRYmH5qMW/G3pA6FqFxY1KAqd+V+It5edwHZao3UoRCRmUrJScHbB95GeGq41KEQEYCrDxLx3/UXkKNmrwgRFS0lOwVv72fuJjIXVx8kYsK682x3E1GxUnNSMWH/BOZukiUWNahKRSRl4M2155GWrZY6FCIyc7EZsXjn4DtIy0mTOhSiai0iKQNvrmHuJqLSxWTEYOKBiUjNTpU6FKJq7WFiBsb+xtxNRKWLz4zHu4feZbubZIdFDaoyGdlqvLX2PGJSsqQOhYhkIigxCJ/++yk0giPMiKSgzd3RzN1EZKS7SXfx8b8fM3cTSUSbu2NTmbuJyDh3Eu7gk38/Ye4mWWFRg6qEEAJTt15GQHiy1KEQkcwceXAECy8ulDoMompHCIEPt15h7iaiMjsWfgwLLyyUOgyiakebu68/ZO4morI5+uAoczfJCosaVCUWHbyD3dcipQ6DiGRqdcBq7AzeKXUYRNXKooN38M+1CKnDICKZWn2duZuoqi0+GMTcTUTltvr6auwI2iF1GERGYVGDKt3uaxFYdPCO1GEQkczNPDkTl6MvSx0GUbXwz1XmbiKquJknZ+JKzBWpwyCqFvZci8DCg4FSh0FEMjfz1Excir4kdRhEpWJRgypVQHgSpv5+BUJIHQkRyV22JhtTDk9BRCpHnxFVpoDwJHy4lbmbiCpOm7sj03jFNlFluv4wCR+w3U1EJpCjycGUw1PwMPWh1KEQlYhFDao0calZGL/2PDJy1FKHQkQWIi4zDu8dfg/Z6mypQyGySPFp2XiLuZuITCg2IxaTD01GZm6m1KEQWaS8dvcF5m4iMpn4zHhMOTyF7W4yayxqUKUQQuD936/gYRIbL0RkWjfjb2LO2TlSh0FkcYQQeH/LZUQwdxORid2Mv4nvz34vdRhEFkcIgSlbLiM8MUPqUIjIwtyMv4m55+ZKHQZRsVjUoEqx7Egw/g2MkToMIrJQvwf+jr0he6UOg8iiLDsSjKPM3URUSbbd2Ybdd3dLHQaRRVl2JBjH7sRKHQYRWagtt7dgT8geqcMgKhKLGmRyZ0PiMX8/b1BGRJVrxqkZCEsOkzoMIotwLpS5m4gq36zTs5i7iUyE7W4iqgozT81EaFKo1GEQGWBRg0wqPi0bkzddglrDO5QRUeVKy0nDh0c/RJY6S+pQiGQtPi0b725k7iaiyqfN3Zyjm6hi2O4moqrCdjeZKxY1yGS0c3FHJnMubiKqGrfib/H+GkQVIITAB78zdxNR1bkVf4tzdBNVgBACU5m7iagK3U64jdlnZksdBpEeFjXIZJYf5VzcRFT1tgZu5RzdROW0/Ggwjtxm7iaiqrXl9hb4h/pLHQaRLK349y4OM3cTURXbdmcbdgXvkjoMIh0WNcgkLt5LwPx9nM+TiKQx6/QshKeGSx0GkaxcYu4mIgnNODkD91PuSx0GkaxcvJeAef63pQ6DiKqpb898i4epD6UOgwgAixpkApk5anz4+xXkcj5PIpJIWk4avjrxFYTg9xCRMTJz1Ji6lbmbiKSTmpOKL45/wdxNZKTMHDWmst1NRBJKy0nDlye+ZO4ms8CiBlXY3L23cTc2TeowiKiaOxt5FhtvbZQ6DCJZmOd/G3djmLuJSFoXoy9i/c31UodBJAtz9t5CCNvdRCQxtrvJXLCoQRVy5m4cVp8MkToMIiIAwKKLixCWHCZ1GERm7WxIPFafYO4mIvOw+OJi5m6iUpy5G4ffToZKHQYREQBg4YWFCE0KlToMquZY1KByS8/OxUd/XAWvOiMic5GRm4Evjn8BjdBIHQqRWUrPzsWHW6+AM1cQkbnIVGcydxOVID07Fx9vY7ubiMxHpjoTX5z4AmqNWupQqBpjUYPK7bvdN3EvPl3qMIiI9FyOuYzfrv8mdRhEZom5m4jM0eWYy1h7fa3UYRCZpe/33EJYHHM3EZmXKzFXsPr6aqnDoGqMRQ0qlxNBsdhw5p7UYRARFemnSz8hKCFI6jCIzMrxO8zdRGS+ll5eirtJd6UOg8isnAyOxbrTnJ6NiMzTssvLcCfhjtRhUDXFogaVWVpWLj7mtFNEZMayNdn48sSXnMqCKF9aVi4+4dQVRGTGstRZ+OI4p7Ig0mK7m4jMXY4mB1+d+IrtbpIEixpUZgsPBCI8MUPqMIiIShQQF4Ctt7dKHQaRWVh08A5zNxGZvWux17D59mapwyAyCwv2B+JBAnM3EZm3gLgA/BH4h9RhUDXEogaVye3IFKw+ESp1GERERll0aRHiMuKkDoNIUoFRKVh1PETqMIiIjPLTpZ8QmxErdRhEkrodmYLfToZKHQYRkVEWXlzIdjdVORY1qEy+3BGAXA2vfyUieUjJTsH8C/OlDoNIUl9sZ+4mIvlIyUnB/PPM3VS9sd1NRHLCdjdJgUUNMtqfFx/gbEi81GEQEZXJzuCdOB95XuowiCSx7QJzNxHJz667u3Ah6oLUYRBJgu1uIpKjncE7cS7ynNRhUDXCogYZJTkzB9/tviV1GERE5fLtmW+Rq8mVOgyiKpWUkYPZe25KHQYRUbl8c/ob5m6qdtjuJiI5+/b0t8jR5EgdBlUTLGqQUX7wv43Y1CypwyAiKpegxCCsu7FO6jCIqlRe7s6WOgwionIJSgzChpsbpA6DqErN3xfIdjcRyVZwUjDWXl8rdRhUTbCoQaUKCE/C+tNhUodBRFQhy68sR2RapNRhEFWJgPAkbDjD3E1E8rb8ynJEp0dLHQZRlbj+MAnr2O4mIpn7+erPiEqLkjoMqgZY1KBSzfr7BniPMiKSu4zcDCy9tFTqMIiqxNfM3URkAdJy0rDwwkKpwyCqEjN33oCayZuIZC4jNwNLL7PdTZWPRQ0q0cGbUbxJGRFZjF13dyEwIVDqMIgq1aFbUTjD3E1EFuKfkH9wO/621GEQVaoDN6JwNpS5m4gsw87gnbiTcEfqMMjCsahBxdJoBObs5U3KiMhyaISGIz7Jomk0AnP2sPOPiCyHRmiw4OICqcMgqjQajcBcf7a7ichyaIQG8y/MlzoMsnAsalCx/rj4AIFRqVKHQURkUsfCj+Fc5DmpwyCqFH9cfIDbUSlSh0FEZFInwk/gbMRZqcMgqhRsdxORJToefpy5myoVixpUpMwcNRbs5xQtRGSZ5p+fDyE4ZzFZFuZuIrJkCy7wag2yPJk5aixk7iYiCzX/AtvdVHlY1KAirT4RioikTKnDICKqFAFxAfAP9Zc6DCKTYu4mIkvG3E2WaM3JUDxk7iYiC3U97jr2hOyROgyyUCxqkIHE9GwsPxIkdRhERJVq8aXFyNHkSB0GkUkwdxNRdbDk0hLkanKlDoPIJJLSc7DsSLDUYRARVarFlxYjR812N5meldQBkPlZfiQYyZlsLBCZQszfMUi+kIysiCworBVwaOKA2kNrw9bb1mBdIQTC5och9VoqGrzbAC4dXYrdrjpTjaitUUi+mAx1qho2Xjbw6OUB957uunUiNkUg8XgiFLYK1B5SG25d3XR/SzqbhMQTifB538ekr1dO7qfcx5+Bf+LVFq9KHQpRhS0/ytxNZEqVlb9zk3IR+XskUq+nQp2uhmMzR3i/4Q3b2o+2y/xdvLDkMPx5508MbT5U6lCIKmzZ0SAkZbCjj8gU2O42X+Gp4fgr6C/mbjI5XqlBehLSsrHudJjUYRBZjLRbaXDv6Y5GXzaC70e+EGqB0B9CocnSGKwbty8OUBi33chNkUi9lop64+uh6XdN4dHbAw/XP0TypWQAQPKlZCSdSoLvh76oPbQ2wleHIzclr8NTna5G1LYoeI/0NtnrlKtVAas44pNkLzE9G+tPMXcTmVJl5G8hBMIWhyE7JhsNJjdAk5lNYO1pjdB5j7bL/F26lddW8kpLkr34tGysY+4mMhm2u80b291UGVjUID2rToQgPVstdRhEFsP3Q1/U6F4DdnXtYN/AHvXerIecuBxkhGborZcRloHYvbGoO7auUdtND0qHWzc3OLV0go2XDdz93GFX3w4Zd/O2mxWRBccWjrBvaA+3J9ygtFciOyYbABD5eyTce7rDxsPGtC9Whh6mPcTfd/+WOgyiCll1IhRpzN1EJlUZ+Ts7KhsZwRmoM6oOHBo5wNbbFnVG1oEmW4PE04kAmL+NEZkWiV3Bu6QOg6hCVrPdTWRSbHebt/DUcLa7yeRY1CCdlMwcrDkZKnUYRBZNnZHXeFE5qnTLNFkaPPj5AeqMqANrN2ujtuPQxAEpl1OQk5ADIQRSb6YiOyobTm2cACDvRCs0A+o0NTJCMyCyBWxr2SItMA2ZYZnweM7D9C9Opn699is0wnAED5EcMHcTVQ1T5G+RIwAACutHw0MVSgUU1gqkB6YDYP421qqAVVBr2CFM8sTcTVT52O42P79c+4XtbjIp3lODdNadDuN83ESVSGgEIjdGwqGpA+zq2emWR2yKgEMTB7g8VvxcnoV5v+GNh789xO33bwMqQKFQoM6YOnBs7ggAcG7rjPQn0xE8MxgKGwXqvVUPClsFHq59iHpv1kP8oXjEHYiDlZMV6oypA7u6dqU8o+UKTQ6Ff6g/+jXsJ3UoRGW27nQY5+MmqmSmyt+23raw9rBG1NYo1B1dFwpbBeL845Abn4vcpLxzcOZv44Qlh2Ff2D7mbpIltruJKhfb3eYpLDkMe0P2on+j/lKHQhaCRQ0CAGTmqLHqeIjUYRBZtIh1Ech8kIlGnzfSLUu+lIy0m2loPLNxmbYVfyAe6cHpaPBeA9h42iDtdhoi1kXA2s0aTq3zRo3UGlwLtQbX0j0mens0nFo5QaFSIGZnDJp80wQpV1LwYMUDNJnZxDQvUqZWXluJvr59oVAYObkqkRnIyFbj12PM3USVzVT5W2GlQIN3GyD813DcnHQTUAJOrZzg1M4JEI/WY/42zi/XfmFRg2SH7W6iysd2t/laeW0l+jXsx3Y3mQSLGgQA2HT2HmJTs6UOg8hiPVz3EMlXktFoWiNYuz+61DXtRhqyo7Nxc+JNvfXvLb0Hh2YOaDStUeFNQZOtQdQfUWjwbgM4t3cGkHfZa+a9TMTuidWdXBWU9TALiacS0XhmYyQeS4RDcwdYuVjBtbMrwn8NhzpDDZW9yuBx1cWdhDs4fP8wejboKXUoREbbdPYe4tKYu4kqkynzNwDY+9qjyddNoE5XQ+QKWLlYIXhWMOx97Ytcn/m7eIEJgTh6/yh61O8hdShERtvMdjdRpWK727wFJQbh4L2D6OXTS+pQyAKwqEHIztVgxb93pQ6DyCIJIRCxPgLJF5LR8NOGsPHSv0mY5wBP1OhRQ29Z0BdB8B7urTtxMtimWkCoheFdkZR5z1dUDOFrwlH7tdpQ2akgNPmPByBy89fn1JZYeXUlixokG8zdRJWrMvJ3QSqHvA6NrMgsZIRkoOZLNYuMgfm7ZCuurWBRg2QjR83cTVRZ2O6Wj5XXVrKoQSbBG4UTdlwOR0RSptRhEFmkiHURSDyZiPpv14fSTomcxBzkJOZAk513NmPtZg27enZ6/wDA2t1a70Qs8NNAJF9IBgCo7FVwaO6AyC2ReTcqi8lGwrEEJJ5IhEtHw/lBE44mwMrZCi4d8v7m0NQBaTfTkB6Ujth9sbCtY6t3A7XqKiAuAOcjz0sdBpFRdlwOR2QyczdRZamM/A0ASWeT8nJ3dDaSLyYjdF4oXB5zgXMbww4V5u/SXY25inOR56QOg8go2y+F4yHb3USVgu1u+bgRdwMXoi5IHQZZAF6pQVhzKlTqEIgsVvyheABAyPf6c+fWHVcXNbrXKOohRcqOzIY6Xa37vf5/6yPqjyg8+PkB1GlqWHtYo9bLteD+jLve43KTchGzKwaNvnh0Oa1DIwd49vVE2IIwWLlYoe5bdcvz0izSxlsb8Xjtx6UOg6hUzN1Elauy8nduUi4iNkdAnaSGlZsV3Lq6wetFL4PHMX8bb/2N9ehUu5PUYRCV6reToVKHQGSx2O6Wl403N6JjrY5Sh0EypxBFXTNF1caFsAS8vPyk1GEQofsTJ3A5aZfUYVA1Z6Wwwp6X96C2Y22pQyEqFnM3mQvmbjIHKoUKe17aA28nb6lDISrWhbB4vLz8lNRhEKF7lxO4nMzcTdJiu5tMgdNPVXNrOdKTiEgnV+Ti99u/Sx0GUYmYu4mIHlELNX4PZO4m87bmZJjUIRARmQ22u8kUWNSoxqJTMrH7WoTUYRARmZVtd7YhW50tdRhERWLuJiIy9OedP5m7yWzFpGRhb0Ck1GEQEZkVtrupoljUqMY2nbmPHDVnHyMiKig+Mx57Q/dKHQZRkZi7iYgMxWfGwz/UX+owiIq0+ew9ZKs1UodBRGRW4jPjsSdkj9RhkIyxqFFN5ao12HiWl8ASERVl482NUodAZCBHrcGGM8zdRERF2Xxrs9QhEBnIa3ffkzoMIiKztOHmBqlDIBljUaOa2ns9ElHJWVKHQURklq7HXceVmCtSh0GkZ29AJKJTmLuJiIpyNfYqrsddlzoMIj37b0QhIilT6jCIiMzSzfibbHdTubGoUU1tPMPRIkREJfnrzl9Sh0CkZ/M55m4iopJsubVF6hCI9Kw7zSssiYhKsj1ou9QhkEyxqFENhSdm4NTdOKnDICIya/6h/shSc1Q8mYeHiRk4FczcTURUEv9Qf2TkZkgdBhEA4EFCOtvdRESl8A9hu5vKh0WNamj7pXAI3mOUiKhEqTmpOHTvkNRhEAEA/roUDg1zNxFRidJz05m7yWzsuPyQ7W4iolKk5KTg8L3DUodBMsSiRjX016VwqUMgIpKFncE7pQ6BCABzNxGRsXbd3SV1CEQAgD8vPpA6BCIiWdgRvEPqEEiGWNSoZq7cT0RQdKrUYRARycKph6cQmxErdRhUzTF3ExEZ7/TD08zdJLmrDxIRHJMmdRhERLJw6uEpxKTHSB0GyQyLGtUMR4sQERlPLdT45+4/UodB1RxzNxGR8dRCjd13d0sdBlVzf17kFZZERMZiu5vKg0WNaiRHrcGuqxFSh0FEJCucgoqklKPWYOeVh1KHQUQkK3/f/VvqEKgay1VrsIu5m4ioTDgFFZUVixrVyJHbMYhPy5Y6DCIiWQlMCMSt+FtSh0HV1KFb0UhIz5E6DCIiWbkZfxN3Eu5IHQZVU0cDYxDHdjcRUZkEJQbhZtxNqcMgGWFRoxrZcZmXwBIRlYd/qL/UIVA1xZGeRETlw6s1SCp/XWK7m4ioPPaH7Zc6BJIRFjWqiexcDY7c5k13iIjK4+C9g1KHQNUQczcRUfkxd5MUsnLVOHwrWuowiIhk6dC9Q1KHQDLCokY1cSI4FqlZuVKHQUQkSyFJIQhJCpE6DKpmmLuJiMovLDkMwYnBUodB1czJoDikZaulDoOISJaCk4IRmhQqdRgkEyxqVBP7rkdJHQIRkaxxxCdVNeZuIqKKOXz/sNQhUDWz7wZzNxFRRRy4d0DqEEgmWNSoBoQQOHCTJ1dERBVx+B47RqjqMHcTEVUcczdVJSEEDjJ3ExFVCKegImOxqFENXLyXiJiULKnDICKStWux1xCdzjmSqWowdxMRVdy12GuISee9iahqXL6fiGjmbiKiCgmIDUBUGgvEVDoWNaqBfTcipQ6BiEj2BARHfFKVYe4mIqo4AcEpqKjKcOopIqKKExCc+pmMwqJGNbCfc3ITEZnEofu8FJaqBnM3EZFpsKhBVWU/ixpERCbBKajIGCxqWLi7Mam4G5smdRhERBbhbORZpOekSx0GWbiQ2DTmbiIiEzkbcRZpOfxOpcoVEpuGoOhUqcMgIrIIF6MvIiM3Q+owyMyxqGHhjgfFSh0CEZHFyNXk4mL0RanDIAvH3E1EZDrZmmycizwndRhk4Y7e5n3XiIhMJUeTgwtRF6QOg8wcixoW7gQ7RoiITOpMxBmpQyALd5K5m4jIpJi7qbKdDI6TOgQiIovC3E2lYVHDgmk0AqfvxksdBhGRReHJFVUmjUbg1F12jBARmRKv1KDKpNEInAlhu5uIyJROR5yWOgQycyxqWLDrD5ORlJEjdRhERBblVvwtJGYmSh0GWagbEclITGfuJiIypcCEQOZuqjQ3ItjuJiIytdvxt5GQmSB1GGTGWNSwYCeDOX0FEZGpCQicjTwrdRhkoThtJBGR6TF3U2Viu5uIyPQEBGdJoBKxqGHBOK8nEVHl4MkVVRbmbiKiysGiBlUW5m4iosrBKaioJCxqWKgctQbnQjmvJxFRZeDJFVUG5m4iosrDAQlUGXLVGpzj/TSIiCoF291UEhY1LNTl+4lIz1ZLHQYRkUW6l3IPkWmRUodBFoa5m4io8oQmhyImPUbqMMjCXHmQhDTmbiKiShGeGs52NxWLRQ0LdSGMN9MhIqpMV2OuSh0CWZiLzN1ERJXqfNR5qUMgC3OWV2kQEVWqgNgAqUMgM8WihoW6cj9R6hCIiCwaT67I1K48SJQ6BCIii8bcTabGdjcRUeW6GsvBhFQ0FjUs1NUHSVKHQERk0a7FXpM6BLIwV+4zdxMRVSYWNcjUrnJAAhFRpboWw3Y3FY1FDQsUm5qF8MQMqcMgIrJoN+JuQCM0UodBFoK5m4io8t2Kv8XcTSYTm5qFh0mZUodBRGTR2O6m4rCoYYF4CSwRUeVLz01HcGKw1GGQhWDuJiKqfOm56bibeFfqMMhC8CoNIqLKl56bjqDEIKnDIDPEooYFusKpp4iIqgSnsSBTYVGDiKhqBMQxd5NpcNpIIqKqwXY3FYVFDQvEESNERFWD99UgU+GABCKiqsGOETIVtruJiKrG1RjeLJwMsahhgXiTcCKiqsGOETIVdowQEVWNG3E3pA6BLMS1cLa7iYiqwvW461KHQGaIRQ0L8zAxA/Fp2VKHQURULQQnBkOtUUsdBsncw8QMJKTnSB0GEVG1cDv+NnI0/M6linmYmIHYVLa7iYiqQkhSCG8WTgZY1LAwd6JTpQ6BiKjayNZkIzw1XOowSOaCmLuJiKpMtiYb95PvSx0GydztqBSpQyAiqjay1Fl4kPJA6jDIzLCoYWHYMUJEVLXuJt2VOgSSOeZuIqKqFZIUInUIJHPBzN1ERFWK7W4qjEUNCxMcw5MrIqKqxJMrqqgg5m4ioioVksyiBlVMcEya1CEQEVUrwYnBUodAZoZFDQvDESNERFXrbiKLGlQxzN1ERFWLV2pQRXEwIRFR1eJgQiqMRQ0Lw5MrIqKqxY4RqijmbiKiqhWaFCp1CCRzd3mlBhFRleJgQiqMRQ0LkpSeg9jUbKnDICKqVjhihCoiMT2buZuIqIpx+imqiKSMHMSmZkkdBhFRtcJ2NxXGooYFCYpJkToEIqJqJzUnFdHp0VKHQTLFqzSIiKpeSnYKYjNipQ6DZIq5m4io6qXnpiMiNULqMMiMsKhhQXizMiIiaXAaCyqv4GjmbiIiKXD6SCov3guLiEga91PuSx0CmREWNSzI/fh0qUMgIqqWItI4YoTK50ECczcRkRTuJd+TOgSSqbA45m4iIilEpkdKHQKZERY1LEhEUqbUIRARVUuRaTy5ovKJTGbuJiKSAqeOpPJiu5uISBpsd1NBLGpYkCh2jBARSSIqPUrqEEim2DFCRCQN5m4qL7a7iYikwaIGFcSihgVhxwgRkTTYMULlFcncTUQkCV6pQeXFqyyJiKTBogYVxKKGBWHHCBGRNHhyReXF3E1EJA0WNai8opi7iYgkwXtqUEEsaliI1KxcpGblSh0GEVG1xCs1qDxSs3KRwtxNRCQJFjWoPNKYu4mIJMPBhFQQixoWIjIpQ+oQiIiqraSsJGTk8nuYyoa5m4hIOglZCchWZ0sdBskM76dBRCSdlOwUpOekSx0GmQkWNSxEZFKW1CEQEVVrUWm8WoPKhvfCIiKSFq/WoLLi/TSIiKTFKahIi0UNC8ERI0RE0orLjJM6BJKZmBQOSCAikhKLGlRWbHcTEUkrKStJ6hDITLCoYSGSMnKkDoGIqFpLyU6ROgSSGeZuIiJpJWQmSB0CyUxcKqcsIyKSEtvdpMWihoVIyeTNyoiIpMSTKyor5m4iImml5DB3U9kwdxMRSSs5O1nqEMhMsKhhIVIyOdqTiEhKLGpQWTF3ExFJKy0nTeoQSGZSs1jUICKSUnIWixqUh0UNC8ERI0RE0mJRg8oqOYO5m4hISqnZqVKHQDKTynY3EZGk2O4mLRY1LERKFkd7EhFJKTWHHSNUNszdRETS4pUaVFbM3URE0mJRg7RY1LAQvFKDiEhaPLmShp+fH6ZMmaL73dfXFwsXLpQsnrLglRpERNLigAQqK7a7iYikxfthkRaLGgXIumOEJ1dERJLiDcvMw7lz5zB+/HipwzAK76lBRCQtTj8lDTm3u3lPDSIiafGeGqRlJXUA5uzcuXNwdHSUOgyjWGrHSNLprUg8ugbOHQfCvVdeJ1VOQgQSDv+KrAc3INQ5sG/YEe7PTYDKsUax23mwfCzUydEGy506DIBH7/8CAOIPrkRawEEorO3g1mMUnFo/o1sv7dZxpAUcRM0h0038ConIUrBjxDx4eXlJHYLRLHW0J3M3EckFr9QwD/Jqd1tm7iYikgtOHUlavFKjBF5eXnBwcJA6DKOkZ6mlDsHksiICkXJ5L6y9fHXLNNmZiP79S0ChQK1h36H2G/MgNLmI3jYLQmiK3Zb3qAWoN2md7l/NV78BADi26AYASA86g7SbR1Fz6Neo4TcG8XuXQJ2elPecWWlI/Hct3PM7UIiIipKlzpI6BLPi5+eHd999F1OmTEGNGjVQq1YtrFy5EmlpaRgzZgycnZ3RpEkT7NmzR/eYgIAA9OvXD05OTqhVqxZGjBiB2NhY3d/T0tIwcuRIODk5wdvbGz/++KPB8xYc7RkaGgqFQoHLly/r/p6YmAiFQoEjR44AAI4cOQKFQgF/f3906NAB9vb26NmzJ6Kjo7Fnzx60bNkSLi4uGD58ONLT0026jzJymLuZu4lISuwYMQ9yanenWeiVGkmntyJszvOIP7BCtywnIQLRf36D+4uH496CVxCz/Xuo0xJK3I7QqJH47zo8+N843PvxJYT//CYST2yCEOLRc535E/eXvI77S15H8tk/9R6f9fA2In57D0JjeedIRGQa2ZpsqUMgMyGLogY7RkqXqym+U0CONNkZiN31Azz6vgulnZNueVb4DeQmRcOz//uw8fKFjZcvPAe8j+yIIGSGXS12eyoHV6icauj+ZQSdhZWbN2zrtwUA5MTdh139trD1bgrHVj2gsHFAblIUACDh8Go4d+gPK5ealfuiiUjWcoVlNnIrYs2aNfD09MTZs2fx7rvv4r///S9eeeUVdO3aFRcvXkTv3r0xYsQIpKenIzExET179kSHDh1w/vx57N27F1FRURg6dKhuex999BGOHj2KHTt2YN++fThy5AguXrxoklhnzJiBpUuX4uTJk7h//z6GDh2KhQsXYuPGjfjnn3+wb98+LFmyxCTPpZWjFqWvJCPM3UQkNzkay7zavbzY7i5ddq5ltbsB0w5ISD6zDSmX98D9ubdR583lcOsxGsln/0TKhV0AgOzoECQd3wDPgR/D84WPkHhsPbJjQgHkFUTi/H+Ce59JUChVlfmSiUjGmLtJSxZFDYAdI6XJ1VhWx0j8/uWwb9wJ9r7t9ZYLdd6Xl0JlrVumUNkACgWyHlw3attCnYO0G0fg1O45KBQKAICNV0NkRwZBnZmKrMggiNwsWNWog8wH15EdFQznji+Y5oURkcXK1bCoUdh//vMffPHFF2jatCmmTZsGOzs7eHp64q233kLTpk3x1VdfIS4uDlevXsXSpUvRoUMHfPfdd2jRogU6dOiAVatW4fDhwwgMDERqaip+/fVX/PDDD3j22WfRtm1brFmzBrm5ptnv33zzDbp164YOHTpg3LhxOHr0KJYvX44OHTqge/fuGDJkCA4fPmyS59KytAEJzN1EJDfM3YbY7i6ZpbW7TT0gISv8JuybdIFD406wcq0FxxZPwd63A7IjAgEAOXEPYO3lC3uf/8Detz2svXyRE/cAQF5BxK5+a9h6N6vcF01EspajZlGD8sjmnhrajhEAmDZtGr7//ntdxwgAfPXVV1i+fDmuXr2KAwcO6DpGtFatWoX69esjMDAQderUwa+//or169fj2WefBZB38lavXj2TxKrtGAGAcePGYdq0aQgODkajRo0AQNcx8sknn5jk+QBAbUGjPdNuHEV2ZDC8Ry0w+JttnRZQWNsh4chquPUYCQgg8ehvgNBAnVrypbBa6YGnoclMhWObZ3XL7Bt1hGNrP0SueR8KKxt4DngfSmtbxPsvg8eA95FyaTdSLv4Nlb0L3Pu8AxsvH1O9XCKyEOwYMdSuXTvdzyqVCh4eHmjbtq1uWa1atQAA0dHRuHLlCg4fPgwnJyeD7QQHByMjIwPZ2dno0qWLbrm7uzuaN29u8lhr1aoFBwcHXd7WLjt79qxJnksrl7mbuZuIJKUWnOKmMLa7S6axsKJGwQEJSSc365aXNiCh8AAGLdu6LZFyeS9y4sNh7V4X2dF3kfngBmr0HAcAsPHyRW5COHKTowEB5MaHw8bTBzkJEUi9dgDeoxZW2msloqqjUqjy/ilVUCmU+b8rYaVQQalQ5v+ct1wJRf7PSqighArI/zlvuRLI/1kBFRSoa8crsSmPbIoa7BgpmaWMGMlNjkH8wZWo9erXUFjZGPxd5eAKr0GfIn7fsrxLWBUKOLbqAZtajYH8kZulSb26D/aNOsLK2UNvudtTr8Ptqdd1vyce3wg73/ZQKFVIOrUFdcb+hIygs4j7Zz68Ry+q2AslkiEFFHknHfknHMr8f3nLFHonKEooHq2j/RkKqBQKKKHM/z/vpESZf3KS93c8Wg7tzwX/z0tcSpG/rgBUEHnrCujWUQlRxP8i738hCizXFPhdA5Umfz2NJv9vmvzHaKDSaPLXyV+uEVAKtW49OyVHjBRmbW2t97tCodBbph1xr9FokJqaihdeeAFz5swx2I63tzeCgoLK/PxKZd4FqQXncc7JKfp9KhxXUbFrTHxlhaVcqcHcTURypea8/QbY7i6ZpbS7gcoZkODyxBBostLxcOXbgFIJaDRwe3oEnFo/AwCw9qwPt6dHImrLlwAAtx6jYO1ZH1GbP0cNvzHICLmIpBMbAaUV3HuNh139NpXy2olMSdtOzuvA13biKx917Cvy/m5VoK2s14mf3x7O+z+vMz+vEx+6drIVkL8cUOW3e1XIbxvnL7OCgEoASiF0P6vy28Cq/Hatla5tK2AlNHl/12igym/XqjQCKk3ez1b5/ys1algJdd5yjTpvfU0uVOpcWAk1lBo1VJpcWKlz8x9bybnVqwXwXOU+BcmDbIoa7BgpmUZYxslVdmQQNOmJiPjtvUcLhQZZ968j5eLfaPDhX7Bv+BjqTvgF6vQkKJQqKO2ccH/pG3Bwq13q9nOTopEZdgVegz8rcb2cuPtIu3EY3qMXI/XqftjVawOVgyscWnRH3J5F0GSlQ2krj5vZVWf6ne6POuJVUOr/btDxrnrU6a7XGf+oE/5Rx3vBjnj9DnldBzuK7oTXnowohSjh/wKd8Hod8xr9DnpRTCe80MAq/0REmX8yoxTq/L+pH3XMa7QnI2r9v6vVur8rYBnfM5XHuvRVqFiPPfYYtm3bBl9fX1hZGZ6eNG7cGNbW1jhz5gwaNGgAAEhISEBgYCB69OhR5Da9vLwAABEREejQoQMA6M3RLTULSd3M3WS28grrSkABKKGEIj9/KxRKKPL/rlAooIB2ef7P+f8X+TcooFAgf7287eT9BbrzA+i2kXdeUPDvup/z/1co9NcxfAx0z6EE9J8vf11A6Lb3aJ1H8wwrhXabosD2835WCMPHKITQ25YSAPIHA+QtE1CI/L8Jkbc/8v/+6LEi/2dF/t+0z5f3s1Lkb1ORt54yf3sKoSmwnbzzHO3PivzHKfKXPXoOTf5yTX6seQMW8p5Dk/98eevpHis0UEDAGhyQUBjb3SWzlHZ3ZQ1ISL95DGk3jsDzhQ9h7eWD7Ki7SDi4EionDzi1zbtax7lDfzh36K97TOq1g1DY2MO2bguEr3wb3iPnQ50Sh9idc1F3wq9QWPEc29xo29lWBUfjI78TX5k/Gj+/LW0wGj9/+aNO/LwR+Np2tJXeYLb8Tnwo8jrmkd+RLx4NZDPsvC/8TwMr5H3vW2m0nfuaRx35+Z372javlXZwmyY3r1Nft15eJ75KkwsrTf7f839Xsp1ctSzke5gqTjZFjbKojh0jlsLO5z/wHrtUb1nc7kWw9qgHly4v690wTOXgCgDICLsCTVoSHJp0QWlSr+2HysEV9o07FbuOEAJx/j+hRs83obSxB4QGQjutjPb/Em6ORuXzaroGU3M9HnXOG3TC5/8T4lHne/4oAGX+iUbh5URViidXFTJp0iSsXLkSw4YNw8cffwx3d3cEBQVh8+bN+OWXX+Dk5IRx48bho48+goeHB2rWrInPP/9c1/lRFHt7ezzxxBP4/vvv0bBhQ0RHR+um1CDTYe6uvl5N1+D9XI/8DmttZ3F+R3PBzmldB7WmwHp5Hc8osJ5SaB49Vvu3/J8VhR5bcD2F0Oj9zM4FMprCTuoIZI3tbvmqrAEJCUdWw/WJIXBslff+2nj5Ijc5Gkmnt+qKGgWp05OQdGIjag2fg6yHgbB2rwNr97qwdq8Loc5FTkI4bArcwJwqbmi6wNRcd71R99pOfStNbv4o/IKd+Or80fj5I/M52I2kxnN6ymeRRQ12jMiX0tbB4KRFYW0LpZ2zbnnq1f2w9qgPpYMrsh7eQsKBFXDu9CKsPR7NzRq1+TPYN30SLgVuEiqEBqnXDsCxzbN6HSyFpV7xh8reRdfRYlu3JRKPb0RW+C1k3L0Aa48GejdRI9NomhGH5vcvSR0GUQXw5L4i6tSpgxMnTuCTTz5B7969kZWVBR8fH/Tt21eXn+fNm6cbFers7IypU6ciKSmpxO2uWrUK48aNQ8eOHdG8eXPMnTsXvXv3roqXVCpLOWKYu6uvZhmxaMbcTVRtVcd2t5GzJpq9yhqQIHKyAIX++6tQKIvthEw49AucOw2ClYsnsiMDIdQFBqZp1ICFTNVpTppkxqPl/ctSh0FUAZbSiqKKssiiRnXsGKlOcuLDkfDvGmgyUmHlWhOuTw6Fc6dB+uskRMI2I1lvWWboZaiTY+DUrvjJ99RpCUg69TtqvzFPt8y2TnO4dB6M6D9mQungCs8B75v09VAeFXhlBZElOXLkiMGy0NBQg2UFp5do2rQp/vzzz2K36eTkhHXr1mHdunW6ZR999FGJz9GyZUucPHmy2Of08/PT+x0ARo8ejdGjR+stmzFjBmbMmFFsbOVhIf0iRmHutkxWzN0kd5bSQy0Rtrvlq7IGJNg36Yykk1ugcvGCjWcDZEcFI/nc9iLzeEbIJeTEh8MjP0fb1G6G3PgHyAg+j9yUWECpgpV73crZAdWYEiwUkcwpih/oRNWLQhRuyZMstZnuj9SsXKnDICq3w01+R8MH26UOg6j8arcF3j4udRQkI22n+yOFuZtk7GiTzfB5sFPqMIjKr2YrYOIpqaMgGWn11V6kZ1tmQTdy46ewqdkI7r3GAwASjvyG1IADugEJzu37wbnTIN19VQDgwfKxcGr7LNyeeh0AoMlKR+Kx9Ui/cwqa9CSonNzh0LIH3Lq9BoXq0b0xNDlZiPhtMrwGfgKbWo9u7p5yxR+Jx9ZBobKGe++JcChh6kkqnwNNt6HJ/W1Sh0FUft7/ASb8K3UUZAYs8kqN6sjOWsWiBsmaFXj8ksxZ2UsdAcmMnY2KRQ2SNRVzN8mdFe+pQWVjb62y2KJG7eHf6/1ew280aviNLvEx9f67Su93pa0D3HuN1xVGiqO0tkXdt342WO78nz5w/k8f4wKmclHyfgQkd2x3U77iJ7MkWbG34VtJ8qYU7BghmbPmyRWVjb01L50mebNi7ia5s3GUOgKSGXsb5m6SN04/RbJnzQEJlIc94RbCwZoX3ZC88Z4aJHvWDlJHQDLDogbJnYpFDZI7FjWojBxY1CCZY1GDZI9XalA+FjUshB1PrkjmVIJFDZI5XqlBZcTcTXLHqyxJ9jgggcrI3oaDCUneWNQg2eOVGpSPRQ0LYW/Nt5LkTcmiBskdO0aojJi7Se54pQbJng1zN5WNA6+yJJlju5tkj1dqUD62pi2EA0eMkMxxtCfJHkeMUBlx+imSO6UmR+oQiCrGmtNPUdlw+imSOyWnfSa5Y7ub8rGoYSHYMUJyx6IGyR6nn6Iy4s1GSe6Yu0n2eKUGlZGDLQcTkrwpBaefIpnjlRqUj0UNC8GOEZI7XgZLsmfjJHUEJDO8ypLkjkUNkj3eKJzKiNNPkdwpeE8Nkjs7V6kjIDPBooaFcHe0kToEogphxwjJnoOH1BGQzHgwd5PMcfopkj0bZ6kjIJlxsuOABJI3XqlBsufIdjflYVHDQrBjhOROqWFRg2TOqabUEZDMeDgxd5O8MXeT7Dl6Sh0ByYynk63UIRBVCAcTkuw5ekkdAZkJFjUsBE+uSO4UPLkiuePJFZURczfJnYJXapDcOdWSOgKSGS9n5m6SN04/RbLHdjflY1HDQnjy5IpkjqM9SfYceaUGlQ2LGiR3HJBAsseiBpURixokd5x+imSPRQ3Kx6KGhfDkFBYkc+wYIdlz4skVlQ2nnyK545UaJHucOpLKiO1ukjuFUEsdAlHFcOpIyseihoXw4mhPkjkFr9QgOVPZAnauUkdBMsPcTXKnULOoQTJmZQfYu0kdBckMr9QguWNRg2RNaQ3Y15A6CjITLGpYCHdHGygUUkdBVH4sapCs8RJYKgfmbpI7XqlBssZpI6kcPBxtoWTuJhnj9FMka7xKgwpgUcNCWKmUqOHAS2FJvljUIFnj1FNUDlYqJdzsraUOg6j8mLtJzpx5Pw0qO5VSAXdHtrtJvhTglRokYyxqUAEsaliQmrwUluSM99QgOXOqLXUEJFO1XOykDoGo/NTZUkdAVH68STiVkyenjyQZU/BKDZIz1wZSR0BmhEUNC1Lf3UHqEIjKjVNYkKy5N5Q6ApIpHw/mbpInlULDjhGSN2dvqSMgmapXw17qEIjKjffUIFlju5sKYFHDgviyY4TkTMOTK5Ix90ZSR0Ay5evhKHUIROVipxJSh0BUMR6NpY6AZMqHuZtkTMF2N8lZDV+pIyAzwqKGBeHJFcmamldqkIxxxAiVUwMOSCCZclCyU4Rkzp1FDSofX0+2u0m+eJUlyRrb3VQAixoWhFNYkFwpFIKXwZK81eDJFZWPjzs7Rkie7FXsFCGZ45UaVE4NOZiQ5IztbpIztrupABY1LAinsCC5slOyY4RkTGkFuPlIHQXJFAckkFzZKTn9FMkYczdVAHM3yRkHE5JsKVSAG28UTo+wqGFB6rjZw1qlkDoMojJjxwjJmmt9QGUldRQkU8zdJFf2KnaKkIy5NWDupnKr62YPGyt2pZA8cfopki3XeoDKWuooyIwwE1sQlVKBejU4aoTkh1dqkKxxXk+qAOZukivmbpI13k+DKkCpVKB+DXupwyAqH5ErdQRE5cN2NxXCooaF4aWwJEe27BghOXNvJHUEJHPM3SRHdrxROMkZ76dBFdSQNwsnmVJo2PYmmWK7mwphUcPCNK3pJHUIRGVmx5uNkpx5Npc6ApK55rWcpQ6BqMx4o3CSNV6pQRXEogbJFu+pQXJVq7XUEZCZYVHDwrSu4yp1CERlxis1SNa820kdAclcqzouUodAVGa2vFKD5KxmS6kjIJlr6c3cTfLEG4WTbNVmu5v0sahhYdgxQnLEogbJlkIJ1GojdRQkc63YMUIyZKtg7ia5UnBAAlVYm7ocTEgypWFRg2RIoeSVGmSARQ0L09jLCXbWfFtJXljUINlybwTYcto/qphGzN0kQ7xROMlWDV/Ajh3SVDFsd5Ns8UoNkqMaDQEbTvtH+piFLYxKqeDc3CQ7NhztSXLFS2DJBJi7SY5sOP0UyZX3f6SOgCyASqlA89q80pJkiFdqkBzVbit1BGSGWNSwQK14Xw2SGV6pQbLFkysyEU4fSXJjq2CnCMkUixpkIq2Zu0mOeKUGyRHb3VQEFjUsEDtGSG5Y1CDZ4pzcZCK8rwbJjR2v1CC5qtNe6gjIQrThYEKSIYVg25tkiDMkUBFY1LBAHDFCcmPDogbJVW2O9iTT4IAEkhtrsKhBMuXdXuoIyEKw3U1yw3Y3yRav1KAisKhhgVrWdoGVUiF1GERGs+U9NUiOnL0BJy+poyAL0crbFdYq5m6SD04/RbLkWh9wcJc6CrIQzWs7s91NsmKtFFKHQFR2TrUBF2+poyAzxKKGBbK3UXHUCMmKDTtGSI7qd5Y6ArIgebmb01iQfPBG4SRLvJ8GmZCdtQotOX0kyYiNgkUNkiGfJ6WOgMwUixoWqnNDjkAi+bBmxwjJkU83qSMgC8PcTXJizQEJJEc+XaWOgCwMczfJCa/UIFliu5uKwaKGherky5Mrkg9OP0WyxI4RMjHmbpITG95Tg+SIHSNkYixqkJxYs91NctSAV2pQ0VjUsFCdG7pDwek9SSY42pNkx84NqNla6ijIwnTyrcHcTbLBqSNJduxcgdrtpI6CLExnX7a7ST5sWNQgubFzBWq2kjoKMlMsalgoNwcbNK3p9P/27jvOyvLO+/j3Pn16rzAFptLBYRg6A9JEERULoogKgj2WJJs1+2SfJLubxH2SmGgSNa4tGjWaWGJPohAxatREsxoLdhABQarMwJTz/HEQGQWmcM657vJ5v168SFhgvtmXzve+zu++rst0DKBHeLiC45SPlXxUKOKL7oaTBNVuOgLQO+Xj6G7EXU5aSLWFGaZjAD0S5FsgnKaMdTcOjn8yXIytsHAKtsHCcTi+AgnCEVRwCnZZwnHobiRI00C6G84Q9LHuhsNw5DMOgaGGi/HBCJwixNuecBo+GEGC8EICnCLInRpwmsqJphPApehuOEXQ4qJwOAxDDRwCQw0XaxqQZzoC0CMB3hiBk4TSpZIRplPApfhgBE7B8VNwlHAm3Y2EobvhFJyQAEcJpEilo0yngI0x1HCx4qwIZ3PDEXjbE45SPlbyB0yngEuVZKWoroizuWF/AbobTlI+VvL5TaeASxVmRFTNuhsOEPKxUwMOMmCS5A+aTgEbY6jhctPqC01HALrFGyNwlJqZphPA5ZrrC0xHALoVtNipAQcZMMV0Arjc1Dq6G/bHCQlwFNbd6AZDDZebylADDsBODThK7SzTCeByU+vobthfIMpQAw5Sd5TpBHA51t1wgoDYqQEHYd2NbjDUcLnRFTnKjHBMCuwtYDHUgEMU1Es5laZTwOXobjgBx0/BMfJqpLwq0yngcmMqc5VBd8Pmghw/BacoGCRll5tOAZtjqOFyAb9Pk2rZCgt744MROAZviyAJAn6fJtXQ3bA3Pzs14BTs0kASBPw+TWbdDZsLiOOn4BC1HD2F7jHU8ACOsYDdcfwUHKN2tukE8AiOsYDdBcRQAw7BUANJciTdDZvjonA4BvdpoAcYanhAc12BLMt0CuDg2KkBR4hkS2VNplPAI+hu2B07NeAIKbl0N5Kmua5QProbNua32KkBB4hkSWVjTaeAAzDU8ID89LCG9882HQM4KO7UgCNUT5d8ftMp4BH56WEN75dlOgZwUH52asAJambS3Uia3LSQRpZlm44BHFTQYqcGHKBqmuTnjiJ0j6GGR8waUmQ6AnBQgShDDTgAR08hyWYPLTEdATgofydDDThAHd2N5DpyEOtu2FeAoQacoG6O6QRwCIYaHjF3eKnpCMBB8bYnbC8Q4ZJwJN3cEQw1YF90N2zPH4rtsgSS6JjhdDfsixMSYHuBFIYa6DGGGh5RlpvKVljYVkCc7Qmbq5kpRTJNp4DH9M9J1ajybNMxgAPyd7aZjgAcWs1MKZxhOgU8piIvTSNYd8OmOH4Ktlc3Wwqnm04Bh2Co4SFzR7BbA/bE256wvWEnmU4Aj2KnJezKx0XhsDu6G4Ycy7obNhXgonDY3dATTSeAgzDU8JC5w0vks0ynAL7ML7bBwsYiWRw9BWOOobthUww1YGvhLKnuKNMp4FGsu2FXDDVga+EsqWaG6RRwEIYaHlKYGdGYAbmmYwBf4ueicNjZoLlSIGw6BTyK7oZd+bgoHHY2mO6GOYWZEY0dmGc6BvAlHPsMW2PdjV5iqOExx47oZzoC8CV+3vaEnXF8BQzj+EjYkS/KnRqwsWEnm04Aj+MIKthRgDs1YGfD5ptOAIdhqOExRw0tVtDPXljYC8dPwbbSi6XKyaZTwOPmDC1RgHMsYDMWOzVgVxmlUuUk0yngcUcNK1HIz8ctsBeOn4JtpRVKA6aYTgGHoWU9JictpCm1haZjAF34OH4KdjX0BMlHVcKsnLSQptbT3bAXXyc7NWBTw+bT3TAuKyWoKXUFpmMAXfgZasCuhhwn+fymU8BheNrzoIVNZaYjAF1w/BRsa/gpphMAkqSFY8pNRwC6YKcGbIvuhk2cPJp1N+wlII6fgk2NWmQ6ARyIoYYHNdcWql92iukYwD4+hhqwo5KRUulI0ykASdKU2gK6G7ZisVMDdlQ8LPYDsIFp9YUqyYqYjgHsE+DYZ9hR6SipZLjpFHAghhoe5PNZvDUCW+H4KdhSw5mmEwD7+HyWTmmku2EjDDVgR6PPNp0A2MdPd8Nm/FwUDjs6YrHpBHAohhoedUpjmfxcOgqbYKcGbCeULg07yXQKoAu6G3bCTg3YDt0NGzp1TLkCdDdsgovCYTvBNGnYiaZTwKEYanhUcVZE07h0FDbBUAO2M+xEKZxuOgXQRVFmRFPr6G7YRAfdDZsZdpIUzjCdAuiiKJN1N+yDi8JhO8PpbvQdQw0P49JR2AVDDdhO4zmmEwAHtLCJYyxgE+zUgN00LjGdADig08ZWmI4ASJL8XBQOu2lcajoBHIyhhodx6SjswupkqAEbKR8vFQ81nQI4oObaQrobxgV9UVlR3vaEjZSP54Jw2NbkmnyV5dLdMI+LwmErZWPpbhyWgOkAMMfns3Ta2HJd+egbpqPA49x+Ufj3ntqt373eptc3dSolYGl8mV8/mB5WXb5/3+9pvvlTrXy/6/8fljcEde0xB18AnXlfi255ueubsrOq/Hr09DRJ0u72qJb+vlX3v96m4nSffn50RNMHfv5t/7+f3q0PtnXq6jkssroYw9sisC+fz9KicRX6/iOvm44CD4v46O2+9Pb+zn2wRde92KYfzwrrkrFhSfT2YWlaZjoBcFCWZWnhmAr94FG6G2b55e4XEuhvh2GXBg4TQw2PO62pQj974i19usfdi1PYm9t3aqx8v10XNIbUWOpXe6d0xRO7NfO2Xfrn+elKC31+ceA5RwT1nanhff89Ndj9pYKzq/26ad7nD0dh/+d/5voX2/Tiug49syRNj7zVroW/bdGGr6bLsiy9u6VTv/xbm15Ylhan/5UukVEiDTrWdArgkBY2leuaJ97Szt3u/t4J+0r1u/tDkUT2tiTd+1qbnl3bodKMrr+f3u6jjFKpfq7pFMAhnTqmTFc/sVq7WHfDIL/l7uOn6G8HyewvDTnOdAo4HMdPeVxWSlALuFsDhlkuv1Pj0dPTdObIkIYU+jWi2K+b50X0wbaoXvyo66ImNWipON2370dmuPuHq7C/65/JSfn8z7y2qUPH1gU0pNCvCxpD+nhXVJt2xR5kz3uoRT+YHu7R1/CUsedL/qDpFMAhZUaCOnUMd2vAnBSfu4caieztD7d36qJHWnX7CSkKfmElRm/30Zilkp939WBv2akhndJId8Msn8t3atDfDjKOdTcOH0MN6OyJAxTw8Q0W5rh9p8YXbdsd+zk3peu/d7f/b5vyr9yhoT/fqX/9Y6t2tXX/Js2K99pV+N87VHfNTp33YIs27/r8QXVEkV+rPuhQS1tUj73drpJ0S/mplm7/R5siAUvHD+IhootItjT6LNMpgB45e+IABf10N8yIuHynxhfFq7c7o1EturdFXxsf+8Dli+jtPghncXwFHGPppIGsu2GU1+7UoL9tKpItHbHYdAq4AK+0QP2yU3TM8BLd99I601HgUVZnW/e/ySU6o1Fd8mirJpT5NXS/B6KFw4KqyPKpNMPSPzZ06l/+2Ko3Nnfqd6ekHvTvml0d0AmDAhqQ7dPbWzp1xZ9266jbd+mZJWny+yydPSqof2zo0OCf71R+qqXfnJSiLa3St1a0asXiNP3bE62685U2VeX6dOOxKeqX6fE5d+NSKZxhOgXQIyVZKTpmeKnu/fuHpqPAg1L9nZJH3keIZ2//YNUeBXzSxU2hA/7f6e0+aFwiRbJMpwB6pF92iuaOoLthjtvv1Ngf/W1jjUulcLrpFHABhhqQJC2fUsVQA+Z0eueNkQseatUrGzu06uyuZ2oua/j8AWlYkV8lGZaOvHWX3v6kU1W5B37oWTA02OXPDC/yq+qnO7XivQ4dOTCgoN/Sz47uehnZWfe36OIxIf19fYfue71dL5+briuf3q2LH23Vb08++IOc6wVSpLHnmU4B9MqyyQP5YARGhF1+Ufj+4tXbL67r0E+e26O/LU+TZR34TW16u5cCKbFjIwEHWT6F7oY5frn7To390d82FYhITeeaTgGX8Ph4EJ8ZVJKpSTX5pmPAo7yyU+PCh1v04Op2Pbk4Tf27eTujqV/sbZK3Pun52zQDc3zKT7UO+meefLddr27s0IVjQlrxXofm1ASUFrJ08pCgVrznnQ+oDmjU6VIa3wPhLHQ3TIlY3uiMePb2Ux+0a+OnUZX/eKcC39muwHe26/1tUV3++G5VXrXjgH+G3u7GEYuk9ALTKYBeqS/OVHMd/9zCDJ9Hjp+iv21s5Gl0N+KGnRrYZ/nkKj21epPpGPAil9+pEY1GddEjrbr39XatWJyqATndz5NfWh972CnJ6Pm5u2u3d2rzrugB/0xre1QXPBy72Mzvs9TRKUX3vqjT1il1dHrnrZ0v8QWk8ReZTgH0Cd0NE9x+p0YienvR8KCmD+y69Jp12y4tGh7UWSO/fNY2vd0NX1Aaf7HpFECfLJ9cpRVvfGw6BjzIb9HfX0R/J5HlZ92NuGKnBvaZWJOvUeXZpmPAi1w+1Ljg4Vbd9o82/fqEFGWELa3f2an1OzvVsvdCsrc/6dR3V+7Wi+s69N7WTj3wRpvOuK9FkytiR0p9pv6anbr3tdiulp17ovra4616dm273tvaqT+90655d+5Sda5Ps6q+PK/+7srdmlMT0KiS2N83odyv373epn9s6NA1f92jCeUennEPOUHKqTCdAuiTiTX5Gl2RYzoGPCbsc/eHIono7bxUn4YW+rv8CPqk4nRLdflfvnSU3u7GsJOk7DLTKYA+GVeVp5Fl2aZjwIP8UXfvEqC/bW7wPCl3gOkUcBEP/9uEA/nqzDqddsNzpmPAYyyXDzV+8ULsgaj5ll1dfv2meRGdOTKkkF/647vtuuq5Pfp0T1RlWT7NHxTUv00Od/n9b2zu1LbdsQcyvyX9Y2OHbnm5TVtboyrNsDSzKqDvTg0rHOj6lskrGzv0m3+266Xln58neuLggFa8F9Ckmz5VXZ5Pv57v1XM9LWnipaZDAIfl8pl1OvWXz5qOAQ+JuPxOjUT0dm/Q292wfHQ3HO+yGbU648a/mo4Bj/G5/KJw+tvGLJ805eumU8BlrGg06uG9TziQU69/Vs+8s9l0DHhExNeh10OLTMeAVw07SZp/g+kUwGFb+Mtn9Ze36W4kx+LSD/XtT75mOga8avBx0sm3mE4BHLYF1z+jZ9/5xHQMeMjDNb/X4DV3mI4BLxq+QDrhOtMp4DIcP4Uv+eqsOtMR4CFhP3NVGOILSlO/aToFEBeXz6S7kTxhl+/UgI35AtKR3zKdAoiLr7HuRpK5facGbMoXlKb+q+kUcCGGGviShoocTasvNB0DHhFx+bncsLGGxZzpCddoqMjR1LoC0zHgEWGLoQYMOeIMKa/KdAogLhoqcll3I6kYasCIhjOlnErTKeBCDDVwQJfPrJVldf/7gMPl9stGYVPBNGkyZ3rCXS6fWUd3IylCFt0NA4Jp0pRvmE4BxNVX6W4kEUMNJF0wVZrMkaVIDIYaOKAhpVmaM7TEdAx4QMTH8VMwYOy5UkaR6RRAXA3tl6XZQ4pNx4AHcPwUjBh7Ht0N1xlcmqmjh7HuRnL4RX8jyZpYdyNxGGrgoC6dUSu/j9dGkFh8MIKkS8mRJnzFdAogIS6fWasA3Y0EC3H8FJItNY/uhmtdPrOO7kZS+KLs1EASRbLobiQUQw0cVHVhuk5rKjcdAy4XZqcGkm3ipbEHLMCFqgsz6G4kXMhqNx0BXjPpcimSaToFkBAD8tN0cmOZ6RjwAI6fQlJN+IqUkm06BVyMoQYO6bIZtcpODZqOAReL+HmwQhJllUtjlptOASTUZTPqlEN3I4FCHF+BZMoqlxqXmk4BJNRXZ9YpK4XuRmJZDDWQLNkV0tgLTKeAyzHUwCFlp4Z02Yxa0zHgYhxhgaSa9Z9SMGI6BZBQWalBuhsJFeLoSCTTjP8rBcKmUwAJlZsW0qXTa0zHgMv5o/Q3kmT291h3I+EYaqBbpzVVqL44w3QMuFTYx9siSJKqadLgY02nAJJiId2NBAqyUwPJMmCKNHS+6RRAUiwaV0l3I6Es7tRAMlRPl+qPNp0CHsBQA93y+yx9a+5g0zHgUgw1kBT+kHTUf5tOASQN3Y1ECoo7NZAE/pB09A9NpwCSxu+z9O9zh5iOARfjTg0knD8kzf6B6RTwCIYa6JHxVfk6amix6RhwoZDFgxWSYNwFUn616RRAUo2vytfsIXQ34i/I0ZFIhnEXSPkcxwNvGVeVp6OHlZiOAZfysdMSiTb2PNbdSBqGGuixK+YMUjjAPzKIrzDnciPRMvtLk79mOgVgxDePprsRfxw/hYTL7C9N/rrpFIARVxw9SClBv+kYcCFfJ/2NBMoopbuRVKxy0WNluam6cCoTV8QXOzWQcLP+QwqlmU4BGFGWm6qLj+RNZ8QXx08h4WZ/Twqlmk4BGNEvO0XnN1eZjgEXsjh+Cok087tSON10CngIQw30yrnNVVxehrgKsVMDiTRgijTkeNMpAKOWTx6oQSWZpmPARQIcP4VEqp4uDT7WdArAqOVTqlRbxIeDiC9flP5GglROkoadaDoFPIahBnol6PfpyhOHy++zTEeBS7BTAwkTTJWO+bHpFIBxAb9PV86nuxE/gSg7NZAggYh01JWmUwDGhQI+XXniCLobccVODSREME069mrTKeBBDDXQa8P7Z2vJxAGmY8AlgjxYIVGO/JaUx9Z9QJKG9c/SUrobccLxU0iYqd+ku4G9Rpax7kZ8WVHW3kiAI78l5fK9CsnHUAN9ctmMWlXmcc4tDl/Ix4MVEqB8vNR0rukUgK1cSncjTvxcFI5EKBsrjbvQdArAVi6bUasB+dwNh/jwsdMS8VY+XmpabjoFPIqhBvokEvTreycMl8VuWBymIOdyI96CqdK8a8Q3KKAruhvxEmCnBuItmCod93PJx/IU2F8k6NcP5tPdiA92aiCuAimsu2EUT43os3FVeVrQWG46BhwuxFAD8caxU8BBxbq7zHQMOJyfNz0Rb3Q3cFBjBuTq9KYK0zHgAgw1EFdH/h+6G0Yx1MBhuWJOvfplp5iOAQcLcKcG4oljp4BuXTFnkPrn0N3oOy4KR1xVTKS7gW584yjW3Th8VpQXChEnZU1S03mmU8DjGGrgsGREgrpqwUj5fWw3Q99w/BTiJpgqHfcztr8C3ciIBPUTuhuHgZ0aiJtgGt0N9EBaOKAfnjxCVDcOBzs1EBeBiDTvZxwZCeP4JxCHrbEyVxdOrTYdAw4V5LJRxMuM70i5A02nAByhoSJXF02ju9E3fu7UQLzM/I6UU2k6BeAIYwfm6QLW3TgMFi8lIB5m/ZeUX2M6BcBQA/Fx8ZE1Gl2RYzoGHIidGoiL+mOkMeeYTgE4ykXTatRYSXej93ydfCiCOKg9Shq9xHQKwFEumV6rBtbd6CN2auCwDZ4nNdLdsAeGGogLv8/SVQtGKjMSMB0FDhO0eLDCYcouj21/BdArfp+lH58yUhl0N3rJH20zHQFOl1UmHfdzjp0Cesnvs/QT1t3oI+7UwGHJLpeOvdp0CmAfhhqIm/45qfrP44eZjgGHCXCEBQ6HLyideJOUkm06CeBI/XNS9V90N3rJx4ciOByfdXdqrukkgCP1z0nV9+cPNx0DTkR/o698gVh3R7JMJwH2YaiBuJo7olQnNfQ3HQMOEhA7NXAYjvw/Uv/RplMAjjZ3RKnmH0F3o+d8nMmNw3Hkt6SyRtMpAEebM6xECxrLTMeAw1idDDXQR9NYd8N+GGog7r49b4iqCtJMx4BDBLgoHH1VM1Maf7HpFIArfGfeENUWpZuOAYfwdXL8FPqodrY0/iLTKQBX+Pe5Q1RdSHej5zh+Cn1SdaQ04SumUwBfwlADcZcaCuj6M0YrI8w5n+geQw30SUapdNy1nMUNxElaOKDrFo3mfg30CBeFo08y+0vH/YLuBuIkJeTXtacfoXTW3egpLgpHb6UXScdfR3fDlhhqICGqCtL141NG8n0P3QpYfDCCXvIFpRP/R0rLM50EcJUB+Wn68cl0N7pncVE4essXkE7iHg0g3qoLM/TDk0fQ3egZdmqgN/wh6eRbpfQC00mAA2KogYSZPrhIF0+rMR0DNufnwQq9NedKqWK86RSAK9Hd6AmOn0KvzfovqWyM6RSAK80aUqyL6G70AMdPoVfm/D+pfKzpFMBBMdRAQl0yvUbTBxWajgEb4/gp9ErjUmn02aZTAK5Gd6M7FsdPoTcazpKalptOAbjapdNrNH1QkekYsDsuCkdPNZ4jNSw2nQI4JIYaSCjLsvTjU0ZqIBeH4yD8DDXQU5WTpNk/MJ0CcD3LsvSjU0ZqYD7djQOz2KmBnqqcJM35b9MpANezLEtXLRjJxeE4NIYa6InKSdLs75tOAXSLoQYSLiMS1PWLGrjADAcUiPK2J3ogpzJ2nqef7yNAMmRGgrpuUYPSQn7TUWBDVgdDDfRAzoC93R00nQTwhPRwQNcvalBGhOdlHATHT6E72RWsu+EYDDWQFNWFGfrJgpHy+7jBDF351Gk6AuwulCGdeheXiwJJVlOUoasXjqK78WUcP4XuhDOlU++ku4EkG1iQrp8uGCWqGwfETg0cSihdOvUOuhuOwVADSXPkoCJ9Z94Q0zFgM37xwQgOwfJJ82+QCutNJwE8aVp9kb47b6jpGLCbjj2mE8DOLL904o10N2DI1PpC/ftc1t3oyrKishQ1HQO2ZUnHXysV8b0DzsFQA0l1WlOFzm+uMh0DNuLn+CkcyvRvS3WzTacAPG1hUzndjS64UwOHNOM7Us0M0ykAT1s8vlLLpww0HQM2ErY4IQGHMPt70qC5plMAvcJQA0n3tVl1On5UP9MxYBN+zvXEwYy7UJpwsekUABTr7uNGlpqOARsI+/hQBIfQdJ40/kLTKQBI+sbsetbd2CfoY5cGDmLCJdLY80ynAHqNoQaSzrIsXXnicI2vyjMdBTbATg0c0PAF0sz/MJ0CwF6x7h6hcQPpbq9L8fMyAg5i+CmxNz0B2MJn6+6J1fmmo8AGQgw1cCAjFkozvm06BdAnDDVgRNDv07WLGlRfnGE6CgzzMdTAF9XMlOb9TLK44RCwk1DAp+vOaFBtUbrpKDAoxc+HIjiAmpnSvJ/T3YDNBP0+/eL0IzSoJNN0FBgWtOhvfEHNTOnYq02nAPqMoQaMyYwEddNZjSrJipiOAoN8HD+F/fUfI510i+QPmE4C4AAyI0HdfNYYutvDUjh+Cl9U1kR3AzaWEQnqlrMa1S87xXQUGBTkTg3sr99ouhuOx1ADRpVkpei2pU3KTw+ZjgJD2KmBfQrqpYV3SaFU00kAHEJpdopuX9qk/PSw6SgwIOLjZQTsp3Aw3Q04QGFmRLecPUZ5aay7vYrjp7BPXo102t10NxyPoQaMqypI16+WNCk7NWg6Cgyw2KkBScrsL53+Oyk113QSAD0wsCBdty0dQ3d7UMTPm57YK7s81t0pOaaTAOiB6sLYujsrhe72Ii4KhyQpq0xaxLob7sBQA7YwqCRTt5w1Rhlhtr55DTs1oIwSafEDUlY/00kA9EJ9Md3tRRw/BUlSepG06D4ps8R0EgC9MLg0U79aQnd7EXdqQBmlsXV3drnpJEBcMNSAbYwoy9bNZzcqLeQ3HQVJ5OtkqOFp6cXS4gelvCrTSQD0Ad3tPWGOn0J6kXTmQ3Q34FDD+9PdXsRODY9LL5bOfFDKHWg6CRA3DDVgKw0Vubr57DE8YHkIx095WHpR7MEqv9p0EgCH4bPuTqW7PSHCTg1v+2ygkV9jOgmAw9BQkatbWHd7SsBi3e1Z6UXS4t/zMgJch6EGbKexMlc3ntnIhyMewU4Nj8ooie3Q4EMRwBXobu9gqOFh6cUMNAAXGV3JYMNLQnz6500ZJbHuLqg1nQSIO76twZaaBubp1rPHKCPCWZ9uZ0XbTEdAsmX258EKcKGxA/P0qyVjlEl3u1rYx8sInpTZTzrrYQYagMuMrozttuSODfcLiJcSPCejlJcR4GoMNWBboytzdeeyscpPD5mOggSyOtkG6ylZ5dJZnMMNuFVDRa7uXDZO+elh01GQIGGLD0U8J7s8NtCguwFXaqzM1R3LxiovjXW3m3GnhsdklbHuhusx1ICtDSnN0t3njle/7BTTUZAgVic7NTwjvy72oUhOpekkABJocGmm7j53HN3tUmGOn/KW3CrprEfobsDlhvbLortdLsBLCd5ROFha8jiXgsP1GGrA9gbkp+me88apqiDNdBQkAndqeENZk3T2o1J2mekkAJKA7nYvjp/ykH4NsQ9FsvqbTgIgCQYWpOue88apujDddBQkQJChhjeUj4u9jJBZajoJkHAMNeAIJVkpuvvc8RrWL8t0FMSZFeXDEderPUo6434pNdd0EgBJRHe7U4gPRbyhZpa0+EEpLd90EgBJVJKVoruXj9OIsmzTURBnQYvjp1yvbo606F4pJTtuf2Vzc7MuueSSuP19QDwx1IBj5KaFdMeysWoawAejrtLBUMPVjjhDWnC7FIzfVnYerADnyE0L6dfnNNHdLhK26G3XO+IM6dQ7pFBq3P5Kuhtwjpy0kH69tEkTqxlqukmAOzXcbdQi6ZTb4rruBuyOoQYcJT0c0K1LxmjeSLbSuQbHT7nX5K9Lx14t+fymkwAwKCMS1K+WNOmEUf1MR0EccFG4yzX/K90NQGnhgG48s1HHDC8xHQVxEhD97VqTLpfmXUN3w3MYasBxwgG/frJglC6dXivLMp0Gh4uLwl3I8klH/0ia9k3TSQDYRCjg049OGanLZ9DdThe0OkxHQCJYfmnuT6Xmb5hOAsAmQgGfrj51lC4+ssZ0FMQBF4W7kOWXjrpSOvJbSflyW7Zs0RlnnKGcnBylpqbqqKOO0urVqyVJ0WhUBQUFuueee/b9/pEjR6qk5PPB6KpVqxQOh7Vr166k5IX7MdSAY31leo1+umCUwgH+MXaqkI8HK9cJZ0oL7pAalyTly/FgBTjLRUfW6JpTj1AkSHc7VYjjp9wnlB47bqphcVK+HN0NOIdlWbpsRq1+eirrbqcLcvyUu0SypNN+IzUtT9qXPPPMM/XCCy/ogQce0DPPPKNoNKo5c+aora1NlmVp8uTJWrFihaRY17/22mtqaWnR66+/LklauXKlGhsblZoav+Mt4W20Ehxt7ohS3blsrAoywqajoA/CDDXcJa9aWvonqW520r4kD1aA8xw9vER3Lhun/HS624m4KNxlcqti3V07K2lfku4GnOfYEaW6a/k4FbLudqwg/e0eeTXS0iek6ulJ+5KrV6/WAw88oBtuuEGTJk3SiBEjdPvtt+vDDz/UfffdJyl2f9Zn/f3nP/9Zo0aN6vJrK1as0JQpU5KWGe7HUAOON6o8R/ddMEH1xRmmo6CXUvy8LeIa1dNjH4oU1CbtS/JgBTjXyLJs3X8h3e1EQbFTwzWqZ0jnPCEV1iftS9LdgHN91t1DSjNNR0Ef+MXa2xWqZ0jn/EnKr07ql33ttdcUCATU1NS079fy8vJUV1en1157TZI0ZcoU/fOf/9THH3+slStXqrm5eV9/t7W16S9/+Yuam5uTmhvuxlADrtAvO0W/PW+8ZgwuMh0FvRDmXG53mPAVaeHdUkp2Ur8sD1aAs/XLTtE9543XrCF0t5Nwp4ZLTLhEWvgbuhtAr5Rkpeiec8dr9pBi01HQS9yp4QLjL4p1dyTLdJIDGjZsmHJzc7Vy5cou/b1y5Uo9//zzamtr0/jx403HhIsw1IBrpIUDun5Rg/5ldr38Pm4hdYIIOzWcLZAizf8facZ3JJ8964QHK8De0sMBXbdotK6YU68A3e0IQTHUcLRgqnTijdKMb9PdAPokJeTXL04/Ql+dWcu620ECYqjhWIGIdPx10sz/MNbdgwYNUnt7u5577rl9v7Z582a98cYbGjx4sKTYHTyTJk3S/fffr1dffVUTJ07U8OHDtXv3bl133XUaPXq00tLSjOSHO9nzSRboI8uydF5zlX69tInzPh0gwp0azpVVJp39qDTsRGMReLAC3GPZ5CrdsWysijLpbrtjqOFg2eXSkselofONRaC7AXewLEsXTqvRbUtYdzsFOzUcKrtCOuthacQCozFqamo0b948nXPOOVq1apVefvllnX766erXr5/mzZu37/c1Nzfrjjvu0MiRI5Weni6fz6fJkyfr9ttv5+hIxB1DDbhS08A8PXTxJI2vyjMdBYfAZaMONWiudO5TUulIozF4sALcpbEyVw9eRHfbXVBtpiOgL+rmSMtWSsXDjMaguwF3GVfFutspAhanJDjO4ONi6+5+DaaTSJJuuukmNTQ06JhjjtG4ceMUjUb18MMPKxgM7vs9U6ZMUUdHR5djIpubm7/0a0A8MNSAaxVkhPWrJU26cGq1LHbF2lLEz1DDUQIR6egfSqfcJqXkmE4jiQcrwG0+6+4LplbR3TYVYKeGswQi0pz/J516h5SaazqNJLobcJuCjLBuW9Kki4+sEadR2ZefFwqdIxCRjv6RdPItxu/PWLFiha666ipJUk5Ojm699VZt3bpVu3bt0qOPPqqampouv3/kyJGKRqP6/ve/v+/XLrnkEkWjUc2aNSuZ0eEBVjQaZVwL13vyjY267K6XtGUXbxfaybS8Lbrx0wtMx0BPFNTHzuAuGmI6CQCPeOL1Dfrq3f/QJ5/uMR0F+3mw5iENXXO76RjoCbobQJI9tfpjXXrXS9q0k+62m+8OeFWLPvpP0zHQnfxa6cSbpOKhppMAtsdODXjC1LpCPXbJZDXXFZiOgv2Efbzt6QhHnCGd8yQfigBIqmn1RXr0kkmaVl9oOgr2E1C76QjoiYYzpWUr6G4ASTWppkAPXTxJk2ryTUfBF7BTwwFGLIx1NwMNoEcYasAzCjMjuvmsMfrP44cqNeQ3HQeSQlwUbm/hzNgbnsdeLYVSTacB4EGFGRHdeGajvnfCMKXR3bbAUMPmItnSybdKc38iBVNMpwHgQUWZEf1qSZO+exzrbjvhonAbi2RJx18nHf8LKZRmOg3gGAw14DmnNVXoka9M0ugKe9wJ4GVcFG5j1dOl85+Rhs43nQQAdOqYcj1Md9tCIMpQw7YGNkvnrpIGz+v2twJAoi0aG1t3N1bS3XYQEGtvW6qZKZ3/rDRigekkgOMw1IAnVeSl6TfLx+lfZtcr5OdfA1MYathQJEua93Pp9N9KWf1NpwGAfT7r7q/PrqO7DfKzU8N+wlmxXZVn3C9ll5lOAwD7VOSl6a5l43TFnHqFAnS3SX5xna6tRLKk434hnXa3lFlqOg3gSLQKPMvns3Rec5Xuv3CCBpVkmo7jSdypYTN1c6QL/iqNOs10EgA4IJ/P0vnN1brvggkaTHcb4Y/S3bZSN0e64LnY/VcAYEM+n6Vlk6v00EUTNaxfluk4nsWdGjZSO1s6/zlp5ELTSQBHY6gBzxtUkqnfXzhBV8yp58zPJGOnhk2k5Erz/0c69Q4po9h0GgDo1uDSTP3+oon6t6MH0d1J5o+2mY4ASUrN+7y7M0tMpwGAbtUUZeje88fr67PrlBKku5PNL15KMC6SLR13rbTwLrobiAOGGoCkgN+nZZOr9IfLpmj6oCLTcTwjyEXh5g0+LrY7Y9iJppMAQK/4fZaWThpIdycZd2rYwND5dDcARwr4fTq/uVqPXzpZ0wcVmo7jKQGOnzJr8HGxnZUjTzWdBHANhhrAfvplp+iGxaN13aIGlWZFTMdxvRCXlZmTXyud/jvp5Fuk9ALTaQCgz/bv7hK6O+F8DDXMya2SFt4tnXijlJZvOg0A9FlZbqpuWNyo6xc1qF92iuk4nsDxU4bk18XuvDr5Fk5FAOIsYDoAYEezhhRrUk2+fvyHN3XT0++pvZO3GhIhZLEFNulCGVLzv0hN50r+oOk0ABA3s4YUa2J1vn74+Ju65Zn31EF3JwRDDQNCGdLkr0pjz5cCIdNpACBuZg4p1qSaAv3kT6v1P6veUVsH3Z0oPl4oTC7W3UDCsVMDOIjUUEDfPHqwfn/RRI2vyjMdx5WCXBSeRJY04lTpohel8RfxYAXAldLCAX1r7mA9eNFETazmTfZE8DPUSKL9unviJQw0ALhSSsivbxxVr4cunqSmAbmm47hWgDs1kmf4KdJFL7DuBhKMoQbQjUElmfr1OWN105mNqi1KNx3HVbgoPElKRkhLHpeOv1bK4Nx5AO43qCRTty1t0k1n0d3x5utkqJEUpUdIS/9IdwPwjNqiDN21fJx+ecZoVRfS3fHm506NxCsaJp31qHTC9Rw1BSQBx08BPTS1vlCTawt01/Nr9OM/vqmPd+w2HcnxgrwtkliZ/WNbXkeeLvmYYQPwnql1hZpcE+vuH/3hTW3aSXcfLivaZjqCu2WUStO+KY08TbIs02kAIOlmDC7StPpC1t1xxvFTCZRdLjVfEduhwbobSBqGGkAv+H2WFjaVa97IUl3353f0yz+/o5Y2PpjvqyB3aiRGar406XKpcYkUCJtOAwBG7d/d1658Wzc89S7dfRjYqZEgqfnSxEulxqVSkAvvAXjbZ9193KhSXb933f3pHrr7cHBReAKkFUiTvyY1nMURkYABVjQaZQ8a0EcbtrfqJ39arXteWKs9HTwk9NZPq1/QsWt/ZDqGe4SzYud2jj1PCrNlGwAOZP22Vl3z5Gr95nm6uy9WF/2bgtveMR3DPSJZ0ji6GwAO5eMdu3XVH9/UXc+vUXsnH2H1xe9qHtcRa242HcMdwpnS+IvpbsAwhhpAHKzb2qJfrHhbd72wRnva+YCkp35R/VcdtfYq0zGcL5gqjVkWu0Q0Jcd0GgBwhI+2xbr7zufp7t54q+DrCuxYazqG8wXTpLHnxl5GoLsBoEfWfLJLv1j5Ni8V9sH9NY9oxJpfmY7hbIFIbEflpMulVC61B0xjqAHE0YbtrXs/IPlArW08ZHXnhppnNH3N1aZjOFcwTWpYLE24hEtEAaCPPuvuO/76gXYz3OjW23mXyf/petMxnCuYKjWcKU28TEovMJ0GABxp/bZWXbuSdXdvPFjzkIauud10DGcKZUijz5TGXiBllphOA2AvhhpAAmzc0arrV76j25/7gHO7D+HmmlVqXvNz0zGcJ61AGrM8dmcGb4gAQFxs3N6qa1e+o1//9X0+IDmEd3Iukq9ls+kYzpOaH9tVOeYcuhsA4uTjHbt1w1Pv6LZn3+fOjW48XPN7DV5zh+kYzpJWIDWdG9udkZJtOg2AL2CoASTQ5p27dcsz7+vXz72vTTv3mI5jO7fVrNTENdeZjuEcuQOlcRdKI0/jElEASJBNO3frtmff123PfqBNO3ebjmM772adK2v3dtMxnGNfdy+Ugimm0wCAK23dtUc3rnpXv3r2fW3Z1WY6ji09VnO/6tbcZTqGM+RUxo6HHHk6627AxhhqAEmwu71Dv3/5I938l3f1yod8EPCZu2qeVNOaX5qOYX+lo2JHTA06VvL5TKcBAE/Y096p37+8TjfR3V28m7FUVtsu0zHsr39j7BLR+mPobgBIkta2Dj3w0jrd/Jf39M+P6O79/aHmXtWsudt0DHsrHi5N+Io05HjJ5zedBkA3GGoASfb8e5/opqff1WOvblBHp7f/9fttzR/UsOYm0zHsyR+SBs2VRi+RKieYTgMAnvbXdz/Rjave1R9eo7vfTT1DVme76Rj25AtKg46JHRFZMc50GgDwtOff+0Q3P/2eHnt1vdo93t2S9Kfqe1S19nemY9iPPyQNnic1niOVN5lOA6AXAqYDAF7TWJmrxspcfbi1Rbc+857ueWGtNn/qzaOp/OLc0y/JKo9d/n3EYi4QBQCbGDMgV2MG5Grtll361TPv67d/+9CzR1Mx0DiA7PJYbx9xhpReaDoNAECfr7s/2tai2559X3f+dY1n192S5BP3hXWRXR7r7SMW092AQ7FTAzCsraNTT7y+Ufe8uFZPvr7RU2+RPFjzkIauud10DPN8Qal+TuyhauA0jqkAAJtr7+jUk298rLtfWKMn39iotg5vdHeKv0OvBReZjmEP/pBUd5Q06gypiu4GALvb3d6hP722Ub99ca1Wvvmxp9bdkrSy+k5VrH3AdAyzfIFYdzecybobcAGGGoCNbNq5W/f9/UPd8+Javb5+h+k4Cfdozf2q9/JlZSUjpGEnSSNOldLyTacBAPTB5p27da9Hujs32Ka/+RebjmFW0dBYb49YQHcDgENt2rlb97+0Tr99ca1n7t54qvp2la19yHQMM/o1xNbdQ+ezKwNwEYYagE298uE23fPiWj34j3XatNOd22Q9eVlZfl3sYWrofCm/2nQaAEAc/e/abbrnxTV65JX12rjDfcdT9Yvs1tM6y3SM5Muvk4aeIA05QSqoNZ0GABBHr320Xb99ca3ue2mdq4+WfLrqVvX78FHTMZInvy42yBg2X8odaDoNgARgqAHYXGdnVM+/94keeWW9Hn91vdZtazUdKW6eqL5bA9feazpG4uVUxj4IGTpfKh5qOg0AIME6O6N68YMteuR/1+uxV9frw60tpiPFRVVqi/7UucR0jOTIGfD5IIPuBgDX6+iM6rl3N+vxVzfosVfX6yMXrbsl6dmqm1X84eOmYyRWZv9Ydw87SSoZbjoNgARjqAE4zMtrtuqRV2Ifkry76VPTcQ6Lq8/1LBoq1cyQ6o+R+o82nQYAYNDLa7bq4Vc+0qOvrNf7m3eZjtNnQzN26sG2ZaZjJE7BIKl2pjTkeKl0lOk0AACDXl6zVY+9Glt3v/2xs9fdkvTcwBtVtO6PpmPEX/EwqXZ27Ee/BsmyTCcCkCQMNQAHe2P9Dv3xtQ16avXH+tv7W7Wno9N0pF5ZVX27+rvlXM9QujRgSmyQUTNTyupnOhEAwIb+uW67Vry5UatWb9IL72/RnnbndPforB26Z/dy0zHiZ193T5eqZ0jZZaYTAQBs6K2NO/XYq+v15Osb9dKarY68ZPz5gTeoYN0TpmMcvmCqNLA5tuaunSVllppOBMAQhhqAS+za067n3v1Eq1Zv0qrVm/TGBvtfVvpM1S0q+fAx0zH6Lr9Wqp4ee6CqmCAFQqYTAQAcpGVPh559d7NWrd6kp1Z/rDc37DQd6ZAm5m7TbbvOMx3j8BTU7+3uGVL5eLobANArn+5u13PvbtbTb23W02/F1t1O+FTtxQHXKe+jlaZj9IEV6+4Bk2Lr7spJUjBiOhQAGwiYDgAgPlJDAU2tK9TUukJJ0sbtrVr11iY9/dZm/e2DLbY8qsoX7TAdoed8Aal4uFQ+TqoYF/s5Ld90KgCAg6WE/F26e8P2Vj21epOefWez/v7BFr2z6VNbfVASsRzU29Le7h4W6+yyptjPGUWmUwEAHCwtHNC0+iJNq4/1yaadu/X0W5v0l7c265l3NuuDT+x5zKTllLW35Y/dh1ExQaoYH+vu1FzTqQDYEDs1AI/Y8ukevbR2q/7+wVb9/YMtennNVm1vbTea6YWB1yt/3QqjGQ4qlCH1GxV7i7NinNS/UQqlmU4FAPCQbbva9Pc1W/S3vd390pqt2mGwu48p2KRrdlxs7Ot3K5QhlTVKZWOl8rGxO63obgBAEm3euVsvr92ql9Zs00trtuofa7dq664207H0UuU1yl7/F9MxviySHXsBoWxMbIhR1iSFM0ynAuAA7NQAPCInLdTlbdBoNKq3P/5Uf/9gi15dt11vbdypNzfs0MYdu5OWyddpdqiyT3a5VDRMKh4au+C7eJiUU8klYwAAo7JSg2quK1Tzft391sad+vuarXpj/Q69uSH2Y8P25HR3xGeT3pa1t7uHSkVDPu/vnAGSz2c6HADAw/LSw112ckjSe5s+1UtrtuqlNVv1+vrY2nvTzj1JzWVFbXCHV1ZZbK1dPDz2c8nwWJ8DQB8w1AA8yrIsVRemq7owXSft9+vbdrVp9cYdenNDbMjx1sademvjTm3Y0Rr3IzB8SuIW2EAk9sCUUxn7kVez90OQIVIkK3k5AADoI8uyVFOUoZqirm8wbmtp2zfgeHN9rMPf3fSpNu5oVTzvMg37kvyBiD+8t7srYt1dOCg2vCgcLEUyk5sFAIA+qsxPU2V+mo4b1W/fr23dtUdvbdyp1XvX26s37tTbG3dq3baWhBw9mbTjpwKRWGfnDoy9bJA7IHYXZfEwjpECEFcMNQB0kZUa1OjKXI2u7PrAsae9U+u3terDrS1a99mPbS36cGur1m1t0Ybtrdq5u71XD2Bx26nhD8fut0jNi/2cVvj5ByCf/cgoYecFAMCVslKCaqzMVeMXurutI9bda7e07OvvD/f7z5s/3aMdrW09HnyEfXH8QMQfjvV2ap6Ulidl9pOyKz7v7+wKKaOY7gYAuFJ2auiA6+6WPR36aFuLPtrWGvuxtUUfbd/7895f29bS++OsfIrDiwn+sJReuHfNXRBbd2cUfT68yB3IuhtA0nCnBoC46eyMantrm7buatO2ltiPrXt/3t7Spl172tXWEdWe9k7t6ejU11IeVE7L+1K0U+rsiP3sD8be7ghEpEA49nNwv/8eTJVScrsOMThzEwCAPunsjGpHa7u2tuzR1l2x3t66a8++7t7d3qk97Z3a3d6poeH1OrHld1K0Y29v7x1yBCKSP7S3q0OxDz0C4c97PJT++fDis0EG3Q0AQJ/sae/U9tZYT29vbdf2ljbtaG3f79fa1NrWqfaOTrV1RtXe0akr0h5Qdssaxd5C3PsxoD8cW2sHU2Lr7EAk9nPws59T9xtgFLBLEoCtMNQAAAAAAAAAAACOwE16AAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBH+Pzug7E020dVmAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Вывод распределения количества наблюдений по меткам (классам)\n",
|
||
"print(df.salary_in_usd.value_counts(), '\\n')\n",
|
||
"\n",
|
||
"# Статистическое описание целевого признака\n",
|
||
"print(df['salary_in_usd'].describe().transpose(), '\\n')\n",
|
||
"\n",
|
||
"# Определим границы для каждой категории зарплаты\n",
|
||
"bins: list[int] = [0, 95000, 175000, 450000]\n",
|
||
"labels: list[str] = ['low', 'medium', 'high']\n",
|
||
"\n",
|
||
"# Создаем новую колонку с категориями зарплат\n",
|
||
"df['salary_category'] = pd.cut(df['salary_in_usd'], bins=bins, labels=labels)\n",
|
||
"\n",
|
||
"# Вывод распределения количества наблюдений по меткам (классам)\n",
|
||
"print(df['salary_category'].value_counts(), '\\n')\n",
|
||
"\n",
|
||
"df_train, df_val, df_test = split_stratified_into_train_val_test(\n",
|
||
" df,\n",
|
||
" stratify_colname=\"salary_category\", \n",
|
||
" frac_train=0.60, \n",
|
||
" frac_val=0.20, \n",
|
||
" frac_test=0.20\n",
|
||
")\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"check_balance(df_train, 'Обучающая выборка', 'salary_category')\n",
|
||
"check_balance(df_val, 'Контрольная выборка', 'salary_category')\n",
|
||
"check_balance(df_test, 'Тестовая выборка', 'salary_category')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train, df_val, df_test, 'salary_category')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Приращение данных:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"После применения метода oversampling:\n",
|
||
"Обучающая выборка: (3360, 241)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"low 1121\n",
|
||
"medium 1120\n",
|
||
"high 1119\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"low\": 33.36%\n",
|
||
"Процент объектов класса \"medium\": 33.33%\n",
|
||
"Процент объектов класса \"high\": 33.30%\n",
|
||
"\n",
|
||
"Контрольная выборка: (1119, 157)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"low 373\n",
|
||
"medium 373\n",
|
||
"high 373\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"low\": 33.33%\n",
|
||
"Процент объектов класса \"medium\": 33.33%\n",
|
||
"Процент объектов класса \"high\": 33.33%\n",
|
||
"\n",
|
||
"Тестовая выборка: (1121, 162)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"medium 374\n",
|
||
"high 374\n",
|
||
"low 373\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"medium\": 33.36%\n",
|
||
"Процент объектов класса \"high\": 33.36%\n",
|
||
"Процент объектов класса \"low\": 33.27%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных не требуется\n",
|
||
"Для контрольной выборки аугментация данных не требуется\n",
|
||
"Для тестовой выборки аугментация данных не требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAH/CAYAAAAPNxGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpn0lEQVR4nOzdd3gUVdsG8Hs3vQIBQmgSekcQpTcV6WAFAaVJ8VUU9cOOSBELglIFAWlSFVB6770GCCGBFEhI7z3ZbDvfH3l332x2E5KQZLbcv+vKpWyZeXZ2Zp8585xzRiaEECAiIiIiIiIiIiIiIrIicqkDICIiIiIiIiIiIiIiKm8sgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiqjCZmZkIDw9Hdna21KFQOUtLS0NoaCjUarXUoRAREVE5U6vVSEhIwKNHj6QOhYiIiCqBQqFATEwMEhISpA6l3LEAQmRjfH19MX78eKnDICslhMDq1avRpUsXuLq6wtPTEw0bNsTmzZulDs0iREVFYcOGDfp/h4eHY8uWLdIFVIBKpcLPP/+Mp59+Gk5OTqhWrRqaNm2KEydOSB0akVVj3iayLvv378etW7f0/969ezfu3r0rXUAFhISEYPLkyahduzYcHR1Rq1YtdO3aFUIIqUMjMlvM00T0OMuXL0daWpr+34sXLzabTqLHjx/HsGHDULVqVbi4uKBu3br46KOPpA6r3JWqALJhwwbIZDL9n7OzM5o1a4YPPvgA8fHxFRUjkdWbPXs2fH19AfzvOKMnt2LFCoOLydZi/Pjx6NOnDwDDfcccjB49Gv/5z3/QsmVLbNq0CceOHcPx48fx2muvSR2aRZDJZJg6dSqOHDmC8PBwfP755zh37lyZl1deeTsvLw99+/bFzJkz0adPH+zYsQPHjh3DyZMn0bVr1zLHR2SpmLcrBvM22YI7d+7go48+QkhICGbOnIlXX30Vbdq0kbx9ffnyZXTq1AknT57El19+iSNHjuDYsWPYvXs3f+PI4jBPVwzmaaKy2bdvH2bPno3IyEhs2bIFM2fOhIuLi9RhYcWKFejfvz/S09OxZMkSHDt2DMeOHcPcuXOlDq3c2ZflTXPnzkXDhg2hUChw/vx5rFy5EgcPHkRAQABcXV3LO0YiojJZsWIFatSowR45leTPP//EX3/9hc2bN2P06NFSh2OR6tati8mTJ2PAgAEAgNq1a+P06dNPvNwnzdvz58/HlStXcOTIEX3jgIiovDFvky2YNGkS1q1bh2bNmukfk7p9rVQqMWHCBDRr1gxHjx5FlSpVKnydRGR5mKeJyubrr7/GsGHDsGTJEsjlcvzyyy+Qy6WdlCkkJAT/93//hylTpmDFihVWXyguUwFk4MCBePbZZwHkn8BVr14dv/76K/bs2YNRo0aVa4BEZL4UCgUcHR0l/+G2dNnZ2XBzc5M6jCe2YMECjBo1isWPJ7R48WJ8+OGHSEpKQps2bcpl33iSvK1Wq7F48WJMnz6dxQ8iC8e8XT6sJW+TNGrWrImAgAAEBATgyJEjmDFjhuTt63379uH+/fu4d+8eix9EEmKeLh/M02RuevfujYiICAQFBaF+/fqoV6+e1CFh6dKl8PHxwdKlS62++AGU0z1AXnjhBQDAw4cPAQApKSn49NNP0bZtW7i7u8PT0xMDBw7E7du3jd6rUCgwe/ZsNGvWDM7OzqhduzZee+01hIWFAcif/7zg9B2F/wpejDl9+jRkMhn++usvfP311/Dx8YGbmxuGDRuGyMhIo3VfuXIFAwYMQJUqVeDq6orevXvjwoULJj9jnz59TK5/9uzZRq/dvHkzOnbsCBcXF3h5eWHkyJEm11/cZytIq9Vi8eLFaN26NZydnVGrVi28++67SE1NNXidr68vhgwZYrSeDz74wGiZpmJfsGCB0TYF8qc+mTVrFpo0aQInJyfUr18fn3/+OfLy8kxuq4L69OljtLzvv/8ecrkcW7duLdP2WLhwIbp164bq1avDxcUFHTt2xM6dO02uf/PmzejUqRNcXV1RrVo19OrVC0ePHjV4zaFDh9C7d294eHjA09MTzz33nFFsO3bs0H+nNWrUwNtvv43o6GiD14wfP94g5mrVqqFPnz5PNH2NzvXr19G/f3/UqFEDLi4uaNiwId55550yb5eCSnq86o6v7du345tvvkHdunXh6uqKW7duQSaTYdGiRUbLvnjxImQyGbZt21biz6rVarFkyRK0bdsWzs7OqFmzJgYMGIDr16/rX7N+/Xq88MIL8Pb2hpOTE1q1aoWVK1caLMfX1xd3797FmTNnTP5epKWl4eOPP0b9+vXh5OSEJk2aYP78+dBqtQbLSU5OxpgxY+Dp6YmqVati3LhxuH37NmQymdHw35MnT6Jnz55wc3ND1apV8fLLLyMoKMjgNbNnz4ZMJkNgYCBGjx6NatWqoUePHli/fj1kMhlu3rxptE1++OEH2NnZGe1zpVH4N6xGjRoYPHgwAgICSvT+xx0D2dnZCAgIQP369TF48GB4enrCzc3N6Bh48OBBifcXU78fut+Jgtve398f48ePR6NGjeDs7AwfHx+88847SE5ONnivbvh7eHi4/rEjR46gW7ducHV1RZUqVTBkyBCjbaL7zpKSkvSPXb9+3eQ+0KZNG5NFgkOHDun3DQ8PDwwePNhovu/x48frh1s3btwYnTt3RkpKClxcXIziNsXUb9BPP/1k9DpfX1+cPXsWgOm8rVtf586dcfv2bdy/fx+pqanw8PBA79694eLiAicnJ7i7u8PJyckobx84cOCxeVv3XSxZsgQymUy/LBcXF6O8XXBeZV3ednR0hEwmw9NPP22QtwtuZzs7O+Zt5m3mbeZtm8zbpTmOS3qsuLu7G61n586dkMlk+pGKhWMu7rdBJpPhgw8+wJYtW9C8eXM4OzujY8eO+vxU0M2bNzFw4EB4enrC3d0dL774Ii5fvlyi7ab7K/jd9+nTB23atCluExrEWNiQIUOMpkfJzs7G9OnT9ftn8+bNsXDhQqN7Z+h+y52cnNCxY0fUqVMHAPDcc88ZfGdFta8Lfy5vb29MmTLFYF7xo0ePQiaToU6dOiVuX7/xxhsQQqB58+ZwcXGBo6MjnnrqKYwcOdJk+7pdu3Zo1qwZnJycUKdOHUydOhVpaWkG7Ws7Ozu4ublh7dq16Natm/638Pfffy/2u5o9ezZiYmLg6+uLZ599FllZWQZ52sXFBR4eHnB0dDTKb8zTzNMlxTzNPC1Vnq6oXBkdHY133nkHtWrVgpOTE1q3bo1169YZvEa3z5naj93d3Q1G9phqO2u1WrRr187ou9KdJzx48AD9+/eHm5sb6tSpg7lz5xrlwdLkS92fnZ0d6tata5TvACAhIQETJ05ErVq14OzsjKeffhobN240eI2pzwIY/56WZvsA+dc2hg8fDi8vL7i6uqJLly44cOCAwWt0yzx9+jSqVq2Krl27ol69ehg8eHCRbVNT79f9OTk5oVmzZvjxxx8NtpmpaxaFFb5f0eXLl9GxY0e8//77+v2mTZs2WLNmjdF7S/O9lWSf1cVb0KlTp+Dk5IT//Oc/Bo+XZN8uiTKNAClMdzJVvXp1APk7we7duzF8+HA0bNgQ8fHxWLVqFXr37o3AwED9iZ5Go8GQIUNw4sQJjBw5Eh999BEyMzNx7NgxBAQEoHHjxvp1jBo1CoMGDTJY71dffWUynu+//x4ymQxffPEFEhISsHjxYvTt2xe3bt3Sz7F28uRJDBw4EB07dsSsWbMgl8v1P/rnzp1Dp06djJZbr149/PjjjwCArKwsvPfeeybXPXPmTIwYMQKTJk1CYmIili1bhl69euHmzZuoWrWq0XumTJmCnj17AgD++ecf/PvvvwbPv/vuu9iwYQMmTJiAadOm4eHDh1i+fDlu3ryJCxcuwMHBweR2KI20tDT9ZytIq9Vi2LBhOH/+PKZMmYKWLVvizp07WLRoEYKDg7F79+5SrWf9+vX45ptv8MsvvxTZS/xx22PJkiUYNmwY3nrrLSiVSmzfvh3Dhw/H/v37MXjwYP3r5syZg9mzZ6Nbt26YO3cuHB0dceXKFZw8eRL9+vUDkP9D+M4776B169b46quvULVqVdy8eROHDx/Wx6fb9s899xx+/PFHxMfHY8mSJbhw4YLRd1qjRg39iUpUVBSWLFmCQYMGITIy0uR3XxIJCQno168fatasiS+//BJVq1ZFeHg4/vnnnzJtl8JKerzqfPfdd3B0dMSnn36KvLw8tGjRAt27d8eWLVvwySefGLx2y5Yt8PDwwMsvv1zizztx4kRs2LABAwcOxKRJk6BWq3Hu3DlcvnxZ3zNu5cqVaN26NYYNGwZ7e3vs27cP77//PrRaLaZOnQrgf73o3d3dMWPGDABArVq1AAA5OTno3bs3oqOj8e677+Kpp57CxYsX8dVXXyE2NhaLFy8GkL//Dx06FFevXsV7772HFi1aYM+ePRg3bpxR3MePH8fAgQPRqFEjzJ49G7m5uVi2bBm6d+8OPz8/o4by8OHD0bRpU/zwww8QQuCNN97A1KlTsWXLFnTo0MFoO/bp0wd169Yt8XY0pUWLFpgxYwaEEAgLC8Ovv/6KQYMG4dGjR8W+ryTHgK7YMH/+fPj4+OCzzz6Ds7Mz1qxZg759++LYsWPo1asXGjVqVK77CwAcO3YMDx48wIQJE+Dj44O7d+9i9erVuHv3Li5fvmyUWHXOnTuHQYMGoUGDBpg1axZUKhVWrFiB7t2749q1awZTUzyJTZs2Ydy4cejfvz/mz5+PnJwcrFy5Ej169MDNmzeLnWP222+/hUKhKPG6Cv8G6X7XMzMzDV6Xk5MDwHTeViqV+PXXX/HgwQP07t1bf3Lx1VdfoUmTJqhXrx5CQ0Mhk8kgl8vx1ltv4ebNmwgICIBCocDw4cMBAG3btkWrVq1w8uRJpKamYsaMGVi7dq1BHEuWLAEAVKlSBXl5eUhJSUG9evVw7Ngxfd7W0eVtb29vqNVqjB8/Hn5+fvq8ff/+fYPtvGjRIkRERMDJyQnz5s2Di4sL8zbzNvM287aeNeftwoo6jktzrJTEjBkzMGnSJABAUlISPvnkE4Pfh8LOnDmDv/76C9OmTYOTkxNWrFiBAQMG4OrVq/oCxd27d9GzZ094enri888/h4ODA1atWoU+ffrgzJkz6Ny5s9FyddutYBwVSQiBYcOG4dSpU5g4cSLat2+PI0eO4LPPPkN0dLTJi5g6unxcWFHtawBo3749GjdujJMnTyI9PR1r1qxBbm4uNm3aBI1Go28jN2rUCDNmzCiyfe3q6opVq1YBANasWaO/OOHu7o45c+bg+vXrWL9+PQDD9vWuXbtw4cIFuLq64scff8TDhw+xcuVKnDhxAg8fPtS3r1esWIGIiAhMmjQJw4cPx6hRo/D333/jvffeg6OjI4D89vXYsWPxww8/4JNPPsGiRYugUCgwcOBAODg44ODBg1iyZAlmzpyJ4cOHIzc3V38OoruobCq/MU8bYp42xDzNPC1lnq6IXBkfH48uXbroLz7XrFkThw4dwsSJE5GRkYGPP/74iT6nzqZNm3Dnzh2Tz2k0GgwYMABdunTBzz//jMOHD2PWrFlQq9X6+0mUNl+++uqreO2116BWq3Hp0iWsXr1an+8AIDc3F3369EFoaCg++OADNGzYEDt27MD48eORlpZWoTfyjo+PR7du3ZCTk4Np06ahevXq2LhxI4YNG4adO3fi1VdfLfK9Z8+excGDB0u1vq+//hotW7ZEbm6uvlOCt7c3Jk6cWObPkJycjOvXr8Pe3h5Tp05F48aNsXv3bkyZMgXJycn48ssvAZT+eyvJPlvY7du38corr2DQoEH47bff9I+X674tSmH9+vUCgDh+/LhITEwUkZGRYvv27aJ69erCxcVFREVFCSGEUCgUQqPRGLz34cOHwsnJScydO1f/2Lp16wQA8euvvxqtS6vV6t8HQCxYsMDoNa1btxa9e/fW//vUqVMCgKhbt67IyMjQP/73338LAGLJkiX6ZTdt2lT0799fvx4hhMjJyRENGzYUL730ktG6unXrJtq0aaP/d2JiogAgZs2apX8sPDxc2NnZie+//97gvXfu3BH29vZGj4eEhAgAYuPGjfrHZs2aJQp+LefOnRMAxJYtWwzee/jwYaPHGzRoIAYPHmwU+9SpU0Xhr7pw7J9//rnw9vYWHTt2NNimmzZtEnK5XJw7d87g/b///rsAIC5cuGC0voJ69+6tX96BAweEvb29mD59usnXlmR7CJH/PRWkVCpFmzZtxAsvvGCwLLlcLl599VWjfVH3naelpQkPDw/RuXNnkZuba/I1SqVSeHt7izZt2hi8Zv/+/QKA+Pbbb/WPjRs3TjRo0MBgOatXrxYAxNWrV01+5pL4999/BQBx7dq1Yl9Xku0iRP5+Mm7cOP2/S3q86o6vRo0aGa1r1apVAoAICgoyWH+NGjUM1vU4J0+eFADEtGnTjJ4rfKwW1r9/f9GoUSODxwr/Ruh89913ws3NTQQHBxs8/uWXXwo7Ozvx6NEjIYQQu3btEgDE4sWL9a/RaDTihRdeEADE+vXr9Y+3b99eeHt7i+TkZP1jt2/fFnK5XIwdO1b/mG6fHjVqlFFco0aNEnXq1DH4Pvz8/IzWVRYFj0Wdr7/+WgAQCQkJRb6vpMeA7rfa0dHRYLsmJiaK6tWri44dO+ofK+n+8vzzz4tevXoZxKNbT8HtYWp/2LZtmwAgzp49q39Ml8MePnwohBCiY8eOokqVKiIuLk7/muDgYOHg4CBef/11/WO67ywxMVH/2LVr10x+L4X3uczMTFG1alUxefJkg9fFxcWJKlWqGDxe+DckICBAyOVyMXDgQIO4i2LqN2j8+PECgFi+fLk+b9eoUUM4ODgUmbd1x/q2bduEk5OTmDBhggAgatSoIZYuXarP24W3lVarFa+88opwcHAwyNsxMTHCw8ND9OrVS799dN9Fs2bNDPL2zz//LACIzz//XJ+3GzRoIMaOHSuaNm0qWrVqJQCIZcuWCSH+l7dfeOEFo+3crVs30aJFC/12Zt5m3mbe/h/mbevN24XfW9RxXNpjxc3NzWg9O3bsEADEqVOnjJ4zla8LAiAAiOvXr+sfi4iIEM7OzuLVV1/VP/bKK68IR0dHERYWpn+sYF4prHv37uL5558vNo7evXuL1q1bm4yrcIxTp041enzw4MEGvx27d+8WAMS8efMMXvfGG28ImUwmQkNDDZZZ8Ldcl+ObNm0qunXr9tj2dcH36477+vXri1atWgkh/te+BiB27NhhEE/h9nXVqlX1z40bN07/WMH9Tvd49erVRUZGhkhISBCOjo6iXbt2Bu3rZcuWCQCiTZs2+vX07t1bABBeXl769nVeXp7+2Ovatato06aN/rdKtx0bNGggvL29RWhoqEGeLpjfCubpgvmNedoQ87RpzNP5mKfXG72+NJ4kT+uUV66cOHGiqF27tkhKSjJ4/8iRI0WVKlX0369unyucH4QQws3NzWDfKtx2VigU4qmnntLnrYIx63LFhx9+qH9Mq9WKwYMHC0dHR307+knypRD57TtdvhNCiMWLFwsAYvPmzfrHlEql6Nq1q3B3d9dfF964caMAIB48eGCwvMLfYWm2z8cffywAGPyWZ2ZmioYNGwpfX1+jtnXBc6XOnTvrt2Phz1iYqfcrFAohl8vF+++/r3/M1DWLwgr/VjVo0EAAEBs2bNA/plarxYsvviicnJz0+1Npv7eS7LMFc1F4eLioXbu26NGjh1HuKOm+XRJlmgKrb9++qFmzJurXr4+RI0fC3d0d//77r7566uTkpJ+zUKPRIDk5Ge7u7mjevDn8/Pz0y9m1axdq1KiBDz/80GgdRfXYLYmxY8fCw8ND/+833ngDtWvX1lfYbt26hZCQEIwePRrJyclISkpCUlISsrOz8eKLL+Ls2bNGw/QUCgWcnZ2LXe8///wDrVaLESNG6JeZlJQEHx8fNG3aFKdOnTJ4vVKpBJC/vYqyY8cOVKlSBS+99JLBMjt27Ah3d3ejZapUKoPXJSUlPbb3cHR0NJYtW4aZM2caDW/fsWMHWrZsiRYtWhgsUzcsu/D6i3L16lWMGDECr7/+OhYsWGDyNSXZHgD0o3gAIDU1Fenp6ejZs6fBvrV7925otVp8++23RvNn6vatY8eOITMzE19++aXRd6t7zfXr15GQkID333/f4DWDBw9GixYtjIa3abVa/Ta6desW/vzzT9SuXRstW7Ys9jMVR9ezZf/+/VCpVEW+riTbxZSSHq8648aNM1gXAIwYMQLOzs7YsmWL/rEjR44gKSkJb7/99mM/o86uXbsgk8kwa9Yso+cK/iYUXH96ejqSkpLQu3dvPHjwAOnp6Y9dz44dO9CzZ09Uq1bNYL/u27cvNBqNvgfc4cOH4eDggMmTJ+vfK5fL9b1gdGJjY3Hr1i2MHz8eXl5e+sfbtWuHl156yWR1v/CwPiD/tysmJsbguNqyZQtcXFzw+uuvP/ZzPY7u9yExMRGXLl3Cv//+i3bt2qFGjRpFvqe0x8DLL7+Mpk2b6v+tu0nejRs3EB8fD6Dk+4u3tzeioqIe+7kK7g8KhQJJSUno0qULAJjch1NTUxEcHIwbN27grbfe0vdcAoCmTZti2LBhOHz4MDQazWPX/TjHjh1DWloaRo0aZbCv2dnZoXPnzsX+hn711Vd45pln9CMqSqLwb5Bueihdb4n69evr179hwwY4OztDrVYb/Q4A+du1efPmCAkJAQBMmDABR44c0eftwttKq9Xi6NGj+h6AOrVr18bo0aNx/vx5o9yqm1ZCl7ffe+892NvbIy0tzSBvp6SkICQkBEFBQZg6dSpGjhxpkLfPnTtntJ2zsrLg7Oxc7HZm3i4a8zbzdkkwb5tf3i6ouOO4tMcKAKPfqsKjC0ura9eu6Nixo/7fTz31FF5++WUcOXIEGo0GGo0GR48exSuvvIJGjRrpX1cwr2RkZBgsU6lUPvY3Ccg/dnSfQ/dbZoruvKLgX+Hj+uDBg7Czs8O0adMMHp8+fTqEEDh06JDJZUdHR+P48eMA8m9EevHixRK1r7OyshAcHIzs7Gz4+PggJiYGL774IoD8Y1J3D4/MzEwkJSXppwspSfu68L71xhtvAMj/bjw8PHD8+HEolUr8+OOPBnlaN3uCs7Ozvn2tUqlgZ2eHYcOG6dvXjo6OePfdd5GQkICUlBSDfU93jhAVFYWDBw+icePGBnl68+bNaNq0KWrWrAkHBwc0atQIR48eNchvzNOGmKdNY57OxzwtfZ4uicflSiEEdu3ahaFDh0IIYbD9+/fvj/T0dKP9TpcfCv49zm+//Ybk5GST+5JOwWkjdT32lUqlPteVNl/m5OQgKSkJcXFx2LVrF27fvq3Pd7rl+fj4GNwry8HBAdOmTUNWVhbOnDkDIP+6AoASXVsASrZ9Dh48iE6dOqFHjx76x9zd3TFlyhSEh4cjMDDQ5LL/+ecfXLt2zeRU1cXRHZePHj3Czz//DK1Wq88bBaWkpOjbySVRq1YtjBkzRv9vOzs7fPzxx8jLyyvz9/a4fbag5ORk9O/fHx4eHti7d69BXijLvl2cMk2B9dtvv6FZs2awt7dHrVq10Lx5c4MkqJtjcMWKFXj48KHBB9QN4wXyh/Y2b94c9vblMhOXXsGLb0D+gdekSRP9fG+6izmmhtnppKeno1q1avp/JyUlGS23sJCQEAghinxd4aG0upNRU3PqFlxmenq6/oAtLCEhweDfR48eRc2aNYuNs7BZs2ahTp06ePfdd43mutNdcCpqmYXXb0p0dDQGDx6M7OxsJCcnF3nyXZLtAeSfqMybNw+3bt0ymCe14HLDwsIgl8vRqlWrIpejG1pe3BzAERERAIDmzZsbPdeiRQucP3/e4LHIyEiDbVW7dm3s2rXrsZ+pOL1798brr7+OOXPmYNGiRejTpw9eeeUVjB492uBktiTbxZSSHq86DRs2NHqsatWqGDp0KLZu3YrvvvsOQP6JRd26dU3+KBclLCwMderUMTjJMeXChQuYNWsWLl26ZDR1QHp6+mNv3hgSEgJ/f//H7tcRERGoXbs2XF1dDZ5v0qSJwb+L209atmyJI0eOGN2IzdR2fOmll1C7dm1s2bIFL774IrRaLbZt24aXX37ZoKhbVhcvXjT4zE2bNsXu3buL3UdKegzoltGiRQuj1+kaKOHh4ahVq1aJ95du3brhr7/+wuLFizFy5EjY29sbzc0M5Cf5OXPmYPv27Ua/SaZO2J955hn9/xf1ne3atQtJSUkGxZGy0OWboo4DT09Pk4+fP38e+/btw4kTJ0o11Unh3yDdsVAwb7/11luIiYnBm2++CSD/JKdt27bo3LkzTpw4gQcPHgAAXnnlFQDQDxlv0aIF9u3bZ5C3C24rIQRycnIMLlLptGzZElqt1qiRqbv5my5vuru7o3bt2oiIiDDI27qh1kII/PbbbwbDYgsq7XZm3jaNeZt5u6SYt80vb+s87jgu7bGSnZ1d6t+qxzH129usWTPk5OQgMTERQP7Fj6K+J61Wi8jISLRu3Vr/eFpaGho0aPDYdd+7d0//eeRyOZo0aYJZs2YZTSG0du1ao+kbARisIyIiAnXq1DH6znXnP7ptXdisWbNQtWpVJCYmokmTJnB1dcWSJUuKbV8DwC+//IJffvlF/5yXlxfmz58PIP+YrF+/PtLT0w3uZ+Du7o6hQ4cWOR2XblpL3dRUBd8HQJ+/dZ+lRYsWBnla99/r168b7Se6eeJ17WvdFKPJyckGN4H9/vvvAeRfMNb9TpjK0wXPNYODg/XLS0hIYJ4uhHnaNOZpY8zTZfMkebqkHpcr5XI50tLSsHr1aqxevdrkMgr/rhS+383jpKen44cffsD//d//Fdk+lsvlRu1A3e+zLkeUNl8uWLDAoMA7YMAAfb7Tvb5p06ZGRdnCy+vQoQOcnZ0xZ84crFy5Un+tV6VSmZzysCTbJyIiwuQ0nAXXXfi3UKPR4Ouvv8Zbb72Fdu3aPXYdBena5kD+tv7mm29MFvEKHjPe3t6YPHky5syZAzs7O6PXymQyNGvWrMjtV9bv7XH7rI+Pj/7xIUOG4P79+/D29ja6n0hiYmKp9+3ilKny0KlTJ/1cgab88MMPmDlzJt555x1899138PLyglwux8cff2zU+1MKuhgWLFiA9u3bm3xNwYSqVCoRGxuLl1566bHLlclkOHTokMmdq3CSjouLAwCDL9/UMr29vQ0q/wUVTjCdO3fGvHnzDB5bvnw59uzZY/L9QUFB2LBhAzZv3mzywNdqtWjbti1+/fVXk++vX79+kbHrhIaG4plnnsGiRYswZswYbNy40WTxqSTb49y5cxg2bBh69eqFFStWoHbt2nBwcMD69euNbqwmhVq1amHz5s0A8pPEunXrMGDAAJw/fx5t27Yt0zJ1N2G6fPky9u3bhyNHjuCdd97BL7/8gsuXL8Pd3f2Jtktpj9fCvVN0xo4dix07duDixYto27Yt9u7di/fff9/ox/RJhYWF4cUXX0SLFi3w66+/on79+nB0dMTBgwexaNGiEv3GaLVavPTSS/j8889NPl9e934ojqntaGdnh9GjR2PNmjVYsWIFLly4gJiYmFL18ilOu3bt9A3mxMRELF26FH369IGfn1+xx11JFLVfFKUk+8uUKVNw5MgRfPLJJ8XO3z1ixAhcvHgRn332Gdq3bw93d3dotVoMGDDA5P6wefNm5OTkYMqUKaWKuSx069+0aZPJbVxUB4AvvvgC/fv3xwsvvGB0M8DiFP4Nmjt3Lvz9/eHl5YW+ffsCyL+oXzBXxMTE4NNPP8WqVaswYsQIjBo1Ct999x0WLlyov3mg1HQnVUOGDMH+/fuxcOFCPP300/rnt2/fjrVr1+q3s0qlwrBhw9C3b19Mnz69yO3MvG0a8zbzdnli3i67J8nbJT2OS8rZ2Rn79u0zeOzcuXP6eb3NRVxcHPr37//Y1/n6+upv8pmcnIylS5dizJgxaNSokX4UKZA/srXwjdC/+eYb/e9fWel+yydPnozff/8dnp6e8PDwMLq5tY7uuAeAHj166O8/sHTpUiQnJ2PIkCH6npo63377LXr27AmVSoUbN25g7ty5SEtLw4oVK4yWr9u/y5rzdcdxvXr19PcNmT59OuLi4vT5sHBOTU1NNZjD/8aNGwDyL3BPmTIFt27dMsjTkyZNgoODg0Evb2dnZ/0F+fr16+Pu3bsAmKd1mKdNY542xDxddhXZvi4p3ffz9ttvF5nnC19s1+WHgoYOHVrkOubPnw+5XI7PPvtMf+/PyjBmzBiMHTsWWq0WDx48wHfffafPd6XJV7Vq1cKyZcswdepUo32xd+/eRq8v7fYpqbVr1yI8PBxHjhwp9Xt17V+VSoVr165h3rx5sLe3NxqRs2vXLnh6eiInJwf//vsvvv/+e/191Aor7TWcinDv3j0cOnQII0aMwPTp0/XnEEDZ9u3ilO/Qi//auXMnnn/+eaPeMmlpaQZDwRo3bowrV64UWXUrK12PWx0hBEJDQ/UbRnfzN09PT/0FoeLcvn0bKpWq2KKPbrlCCDRs2LBEP/CBgYGQyWQmq9oFl3n8+HF07969RDtnjRo1jD5TcTdS++qrr9C+fXt9T2BT69cNMyvrCbFueHStWrWwZ88eTJ8+HYMGDTI6uSzJ9ti1axecnZ1x5MgRg94ZBQ8SXdxarRaBgYFFFrl0+0FAQIBRjwMdXe+u+/fvG/W0uH//vlEPM2dnZ4PtP2zYMHh5eWH58uX6mwyWVZcuXdClSxd8//332Lp1K9566y1s374dkyZNKvF2MaWkx+vjDBgwADVr1sSWLVvQuXNn5OTkGAylK4nGjRvjyJEjSElJKbKXyr59+5CXl4e9e/fiqaee0j9uarh4Ufts48aNkZWV9djjv0GDBjh16hRycnIMeqmEhoYavQ7I3ycKu3fvHmrUqGHQO6U4Y8eOxS+//IJ9+/bh0KFDqFmzZoka8iVRrVo1g8/cp08f1KlTB+vXr9ffMLOwkh4DNWrUgLu7e5HbAIBBI7ck+4uzszMOHDiA4OBgREZGQgiB+Ph4gxPW1NRUnDhxAnPmzMG3336rf7xwHiioe/fucHNzw5QpU4qM183NrVyGLut+Z7y9vUuUb4D83+xLly6VajinTuHfoLS0NEyaNAl///03Ro4cqX+8cK747rvvkJiYiMGDB+Opp57Cd999h44dO2LRokUG+0DhvF14W7m6uupHkBR07949yOVyo1yvG4as+76ysrIQGxuLgQMHYt++fWjXrh3u3buHxo0bIywsDIMHD0ZiYiJWrVoFf39//RDZ1NRUrF27Vr+dr127BrVajZdffln/OU0NXWbeNo15m3m7pJi3zS9v6zzuOC7tsWJnZ2e0/XW9y8vKVK4ODg6Gq6urPk5XV9civye5XG5wsTgqKgqZmZklmhrHzc3N4PP07NkTdevWxdGjRw0KIPXq1TP63IsXLzYogDRo0ADHjx9HZmamQe9I3fmPqREput/yTp064ffff39svLrj/tSpU3jxxRf1NyZdvny5/oboly9fRuPGjfU96Nu2bauPfeDAgXj06BE2btwItVpttPyGDRtCq9Ua9HIHoJ9CQ5e/dZ/l3r17Bu1r3bFds2ZN/TqrVauGwMBAdO3a1eB4Cg4OBpDfE7Zg+/qLL77A/PnzMWzYMKxduxbz5s0zyNPt2rXD7du38dlnnxX5W7Fjxw7m6QKYp4vHPJ2PebrsniRPl1RJcqWHhwc0Gk2J25sF84OOqc5gQH5nuSVLluDHH3+Eh4dHkQUQXZGiYJtK93uvuw5Q2nzZqFEjgzirVKmC0aNH4/Lly+jatSsaNGgAf39/aLVag8KgqeVNmjQJr732GgICAvTTA06fPt3kZynJ9mnQoEGx1z4Kf5acnBzMmTMH77//folGqhbWsWNHfSeJgQMHIjo6GvPnz8fMmTMNPnuvXr30vzPDhg3DhQsXcPjwYZMFkIYNG8LPz6/I7VfW760k+6zO3r170bNnT/z444/44IMP8Pbbb+unOatZs2ap9+3ilG/p+L/s7OyMhq7s2LED0dHRBo+9/vrrSEpKwvLly42WUfj9pfHnn38azEm7c+dO/QUVIH/Hady4MRYuXIisrCyj9+uGXBeM3c7OTj9XeVFee+012NnZYc6cOUbxCyEMfijUajV27dqFTp06FTt8c8SIEdBoNPphjwWp1eonanhcunQJe/bswU8//VRkIhsxYgSio6P1PaQKys3NLdG8cs2aNdMPk1u2bBm0Wi0++ugjg9eUdHvY2dlBJpMZDCMNDw83Ogl95ZVXIJfLMXfuXKMeC7rvpl+/fvDw8MCPP/5oNI+r7jXPPvssvL298fvvvxs0CA4dOoSgoCB976uiKJVKqNVqo8ZEaaSmphrtT7qTTt1yS7pdTCnp8fo49vb2GDVqFP7++29s2LABbdu2LfWwvtdffx1CCMyZM8foOV2MusRTMOb09HSTJ6Nubm4mj5ERI0bg0qVLJivvaWlp+oZh//79oVKpDPZ/rVZrNP1O7dq10b59e2zcuNFgfQEBATh69CgGDRpUzKc21K5dO7Rr1w5//PEHdu3apZ/6qSLk5uYCQLH7Z0mPAblcjgEDBmDPnj14+PCh/nUpKSnYuHEjnn32WYPhsqXZX5o1a4YXX3wRffv2Rffu3Q2eM7U/APkXJ4pTs2ZNPPPMM9i6davBb35YWBj27t2LgQMHFnkSWBr9+/eHp6cnfvjhB5NzDBfON7phsaNHjy6ycVkaun25uPnNAehPeAp+5tOnTyM6OhoODg549tlnsXHjRgwYMECftwtvK7lcjn79+uHYsWMGy46Pj8fWrVvRo0cPox5r+/fvB/C/vL1y5Uqo1WpUqVLFIG93794djRs3xq+//oqlS5ciPDzcoNdxx44dDbZz4bxdeDvrMG+bxrzNvF1SzNvml7d1HnccP+mxUh4KF/sjIyOxZ88e9OvXD3Z2drCzs0O/fv2wZ88e/TQMgGFeKTjF4fbt2wEUPR1icXS/O2XJ/YMGDYJGozFq0y5atAgymUyfy3RK8lteWHHHvS72vLw8vP7660XO16/RaCCXy02uU7fPF76wtWvXLgDAo0ePkJmZib59+8LR0REzZswwyNM3b94EkH+hrGD7Wq1WY9WqVfo8rFQqsWrVKri4uBi1r7t27Qogf7TCp59+ivnz56NNmzb6PD18+HCD/FYwT+fm5iI9PZ15ugDm6aIxT+djni5/pcnTJVWSXPn6669j165dCAgIMHp/Ue2gkpozZw5q1apl8h4rhRXMg0IILF++HA4ODvoL2qXNl4UV3r6DBg1CXFwc/vrrL/1r1Go1li1bBnd3d6PRHV5eXujVqxf69u2Lvn37Gtz2oLQGDRqEq1ev4tKlS/rHsrOzsXr1avj6+hpNF7hkyRJkZ2djxowZZV5nQbm5uVCr1SY7NegIISCEKPLcxtT2003h5+TkpC86lOU8p7h9tiDdSJv3338f3bp1w7vvvqv/nst7366Qo37IkCGYO3cuJkyYgG7duuHOnTvYsmWL0XxwY8eOxZ9//on/+7//w9WrV9GzZ09kZ2fj+PHjeP/99/Hyyy+Xaf1eXl7o0aMHJkyYgPj4eCxevBhNmjTR32hJLpfjjz/+wMCBA9G6dWtMmDABdevWRXR0NE6dOgVPT0/s27cP2dnZ+O2337B06VI0a9YMp0+f1q9Dd2Ln7++PS5cuoWvXrmjcuDHmzZuHr776CuHh4XjllVfg4eGBhw8f4t9//8WUKVPw6aef4vjx45g5cyb8/f2NhpIX1rt3b7z77rv48ccfcevWLfTr1w8ODg4ICQnBjh07sGTJEv3N6Urr6NGjeOmll4qtpI0ZMwZ///03/vOf/+DUqVPo3r07NBoN7t27h7///htHjhx57MiYgnx8fLBgwQJMmjQJb7/9NgYNGlSq7TF48GD8+uuvGDBgAEaPHo2EhAT89ttvaNKkCfz9/fWva9KkCWbMmIHvvvsOPXv2xGuvvQYnJydcu3YNderUwY8//ghPT08sWrQIkyZNwnPPPYfRo0ejWrVquH37NnJycrBx40Y4ODhg/vz5mDBhAnr37o1Ro0YhPj4eS5Ysga+vr9G0PNnZ2QZDdDdt2gSFQoFXX321xNuosI0bN2LFihV49dVX0bhxY2RmZmLNmjXw9PTUJ/6SbhdTSnq8lsTYsWOxdOlSnDp1ymBuxpJ6/vnnMWbMGCxduhQhISH6KYzOnTuH559/Hh988AH69esHR0dHDB06FO+++y6ysrKwZs0aeHt7IzY21mB5HTt2xMqVKzFv3jw0adIE3t7eeOGFF/DZZ59h7969GDJkCMaPH4+OHTsiOzsbd+7cwc6dOxEeHo4aNWrglVdeQadOnTB9+nSEhoaiRYsW2Lt3L1JSUgAY9oBZsGABBg4ciK5du2LixInIzc3FsmXLUKVKFcyePbvU2/HTTz8FgHIbngvkXzDQ7Z9JSUlYtWoV7O3tiy3uluYYmDt3Lg4fPowePXrg/fffh5OTE9asWYP09HSDuaoLfs4n2V+A/JF8vXr1ws8//wyVSqXvvVmwCFOUn3/+GQMGDECXLl3w7rvvQq1WY/ny5XB2dtbPQ13QyZMn9RdadL0a7ty5g8OHD+tfk5WVBblcjjNnzqB3797w9PTEypUrMWbMGDzzzDMYOXIkatasiUePHuHAgQPo3r27wYlEVFSUfsh5WRT+DdJNr/D8888bvC4xMVEfd2xsrP4Cwt69e/W9aRctWqT/Hfj555/Rr18/LFu2DI0bN8b//d//4euvv4ZcLkfDhg3Rv39/vP/++5g3b56+4XPixAlotVqsWrUKeXl5+PnnnzFx4kSDOHRFIV3vzpSUFNSrVw/Lli3T523diZUubw8fPhxdunTB/PnzkZqaisDAQP12fvvtt1G/fn0kJyfD29sbU6dOxa1bt9CsWTP9HKnM28zbBTFvM29bW942xdRxXNpjpSK0adMG/fv3x7Rp0+Dk5KSfmqnghbp58+bh2LFj+nMLe3t7g7wC5G+nWbNm4Y8//sDIkSNN3o+ssKysLH0eTElJwdKlS+Hg4FCmws/QoUPx/PPPY8aMGQgPD8fTTz+No0ePYs+ePfj444/1veJ1Cv6Wl3SaS91xDwB79uzBxYsXcfHiRVSrVg1hYWGoV68enn32WfTs2RNLly7FrVu3MGvWLJw+fRo5OTk4e/YswsPD8eqrr5q8ENK6dWtMnDgRa9euRWBgIFasWAE/Pz/9BdA6dero29fPPfccLly4AFdXV2i1WkybNg0rVqxA8+bNERERoW9fx8bGwt3dHV9++SWWLVuG6dOnY+vWrbh16xbs7e317eugoCAA0N+s1t/fH9OmTcOuXbswd+5cfPfdd/j6668RHh6OFi1a4N1338WiRYuQnJyMrl27ok6dOtiyZQt8fX1x9+5d5mnm6cdinmaeLi/llaeLU5Jc+dNPP+HUqVPo3LkzJk+ejFatWiElJQV+fn44fvy4fvuWxdGjR7Flyxaje0QV5uzsjMOHD2PcuHHo3LkzDh06hAMHDuDrr7/W9/ovbb709/fH5s2bIYRAWFgYli5dqs93QP6U2atWrcL48eNx48YN+Pr6YufOnbhw4QIWL15cLvd5KcqXX36Jbdu2YeDAgZg2bRq8vLywceNGPHz4ELt27TLq+Hf06FF8//33Ju8DVBLHjh1DVFSUfgqsLVu2YNiwYUbfi+6ahW4KrNDQUHz88ccmlzlx4kSsXLkS48ePx/Xr19GwYUPs3r0bJ06cwE8//aSPtbTfW0n22cJ07f327dtj1qxZ+nO8ct23RSmsX79eABDXrl0r9nUKhUJMnz5d1K5dW7i4uIju3buLS5cuid69e4vevXsbvDYnJ0fMmDFDNGzYUDg4OAgfHx/xxhtviLCwMCGEEA8fPhQAxIIFC4zW07p1a4PlnTp1SgAQ27ZtE1999ZXw9vYWLi4uYvDgwSIiIsLo/Tdv3hSvvfaaqF69unBychINGjQQI0aMECdOnDBY9+P+xo0bZ7DcXbt2iR49egg3Nzfh5uYmWrRoIaZOnSru378vhBDiww8/FL169RKHDx82imnWrFnC1NeyevVq0bFjR+Hi4iI8PDxE27Ztxeeffy5iYmL0r2nQoIEYPHiw0XunTp1qtEwAQiaTiRs3bhg8buo7UiqVYv78+aJ169bCyclJVKtWTXTs2FHMmTNHpKenG63vccsTQogXXnhBPPXUUyIzM7PU22Pt2rWiadOmwsnJSbRo0UKsX7++yO22bt060aFDB33cvXv3FseOHTN4zd69e0W3bt2Ei4uL8PT0FJ06dRLbtm0zeM1ff/2lX46Xl5d46623RFRUlMFrxo0bZ7BfuLu7i2eeeUZs2rSp2G30OH5+fmLUqFHiqaeeEk5OTsLb21sMGTJEXL9+vUzbpUGDBgb7bEmPV93xtWPHjmLjbd26tZDL5Ubbp6TUarVYsGCBaNGihXB0dBQ1a9YUAwcONNhX9+7dK9q1ayecnZ2Fr6+vmD9/vli3bp0AIB4+fKh/XVxcnBg8eLDw8PAQAAw+T2Zmpvjqq69EkyZNhKOjo6hRo4bo1q2bWLhwoVAqlfrXJSYmitGjRwsPDw9RpUoVMX78eHHhwgUBQGzfvt0g9uPHj4vu3bvr96WhQ4eKwMBAg9fovpPExMQit0FsbKyws7MTzZo1K9M2NKV3794G+2fVqlVF9+7dxcGDB0v0/pIcA0Lk76/9+/cXbm5uwtXVVfTp00ecO3euyOWWdn/R/S6vX79e/1hUVJR49dVXRdWqVUWVKlXE8OHDRUxMjAAgZs2apX+dLocV3EeOHz8uunXrJpydnYWHh4cYNGiQ8Pf3N1in7jsrzV+DBg0MlnHq1CnRv39/UaVKFeHs7CwaN24sxo8fb3Ac635DPvroI4P3morbFFO/QQ0aNDDK27rHdH81atQQffv2FaNHjxa1a9cWTk5OAoD47bffDH4HTpw4Ibp37y6cnZ2Fo6OjcHFxEfb29kZ5e//+/QKAcHR0FK6uruL5558XFy9eFEL8L2/rPtPixYsFAOHm5iYcHByEs7OzUd4u+JtVMG/LZDLh6Ogohg8frs/b27ZtY94WzNtCMG8Lwbxty3m7JMexTkmPFTc3N6Pl7dixQwAQp06dMnrOVL4uCICYOnWq2Lx5s/446NChg8ll6c4t3N3djfKKEEJcuHBBNGnSRMyePVvk5eU9No6itu2hQ4dMxljY4MGDjfJ8Zmam+OSTT0SdOnWEg4ODaNq0qViwYIHQarVGyyz4W67Lh88884zJ70xHd9wXzmcODg6iRo0aIigoSP/aw4cPG73O1dVVjBs3TqSmpuq3SdWqVQ3WoVKphLe3t3B2dhYODg6ifv36YuTIkSbb161btxaNGzcWDg4OolatWuK9994TqampRnnawcFBvPTSS6JVq1bC2dlZ1K1bt8R5+vTp00Imk4klS5YY5GlHR0fh6Ogo5HK58PT0FB07dhSdO3cW3bt3Z55mni4R5mnm6fLwpO1rIco3V8bHx4upU6eK+vXr66+tvvjii2L16tX61xS3z7m5uRnsx7r81L59e4NcZipm3XlCWFiY6Nevn3B1dRW1atUSs2bNEhqNxmA9pcmXuj+ZTCZ8fHzEa6+9ZpDvdJ97woQJokaNGsLR0VG0bdu2yO1ZWGmOycLbRwghwsLCxBtvvCGqVq0qnJ2dRadOncT+/fsNXqNbZu3atUV2drbRZyx4vcIU3ft1f/b29qJBgwZi2rRpIjU1Vf+6wtcsXFxcRKtWrcSiRYv0ryn8WyWEEAkJCeKdd97Rb782bdqINWvWGMVRmu+tJPtsUTlmzpw5wt7eXvj5+ekfK8m+XRKlKoCYu5ImkJLSHdjFXXSaNWuW0Q5EZMvat28vXnjhBanDqFD//vuvACDOnz9fIctPTEwU9vb2Yu7cuRWyfHNijfvLqVOnjC6MkCHdCfXvv//OvE0kMWv8HS6Medv8FFVcIPPyJO3r3r17i9atWxs8xjxNVHrM00/OUvO0peTKojpKkO0x5322Qu4BQkS26fr167h16xbGjh0rdSjlRjf/oI5Go8GyZcvg6emJZ555pkLWuWHDBmg0mlLf5M7SWOP+QkRkSazxd5h5m4iIrAXzdPlgniaiirnzj5Vwd3fHW2+9VexNw9q1a4c6depUYlRE5icgIAA3btzAL7/8gtq1a+PNN980eF6j0Tz2BkXu7u7FHmtS+fDDD5Gbm4uuXbsiLy8P//zzDy5evIgffvgBLi4u5bqukydPIjAwEN9//z1eeeUV+Pr6luvyzcXj9hdL5+XlZXTDNaoczNtEJcO8XT5sJW8TlRfmaaKSYZ4uH8zTRKTDAkgxatSoob+hUVFee+21SoqGyHzt3LkTc+fORfPmzbFt2zY4OzsbPB8ZGYmGDRsWu4xZs2aV+mZmleGFF17AL7/8gv3790OhUKBJkyZYtmwZPvjgg3Jf19y5c3Hx4kV0794dy5YtK/flm4vH7S+Wrl27dti4caPUYdgk5m2ikmHeLh+2kreJygvzNFHJME+XD+ZpItKRCSGE1EEQkXVTKBQ4f/58sa9p1KgRGjVqVEkRERERUVGYt4mIiMwX8zQRUemwAEJERERERERERERERFaHN0EnIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR17KUOgIhsi0YroNZqIUT+/2uEgFYrAJkSMrkGdjI7yGVyyGVy2MnsYCfP/zcRERGZDyEE1FoBjVZAK3T/BYRWQGafC5lMps/pdjI7yGQyOMgdpA6biIiICimqjS5keZDLtWyjE5HFYwGEiMpEpdEiOjUXCZl5SM9VIT1XhYz//rfw/6fnqpChyP+vQqU1ubyeXS7gVvo+k8+52LvA09ETnk6e+f/975+Ho4fBY1WcqsDT0RPert7wcfPhSRkREVEJpGQrEZ2ai9QcpT5fF5nPc9VIz1UhU6GCVhgvq0YVBfLqzDa5HnuZvVHu9nD0MM7x//3/as7VUNe9Ltwc3Cp2AxAREVkBpVqLqNQcJBZoo+e3xdVG+bxgns9Tm26j9+h6DLfTTph8ztXe9bHt84L/7+PmA29Xb7bRiUgSLIAQUZGSsvIQmZKDRyk5+v/m/38u4jIU0Ji68lEBctW5yFXnIj4nvsTvsZfbo45bHdR1r4t6HvXy/9zroa5HXdT3qA9PR88KjJiIiMh85Kk1iErN/V8+T/5vPk/NRVRKDjLz1JUSh1qokZqXitS81FK9r6pTVdRzr2eUz+u510Ntt9qwk9tVUMRERETmJSFTUaCNnlugjZ6D+AyFyc4JFSFHnYMcdQ7isuNK/B5HuSPquBdoo/83t9d1z2+juzu6V2DERGTLWAAhIkQkZ+NOdDoCojMQlpiFyP+eQGUrNVKHVmZqrRqPMh/hUeYjINb4eQ9HD/0JV+OqjdHSqyVaVW8FHzefyg+WiIioHGTlqXE3Oh0BMRkIis3QFzriMxUQlXRBpCKk5aUhLS8NAckBRs/Zy+zh4+aDuh510cCjAZp7NUfr6q3RrFozONhxyi0iIrI8Qgg8TMpvo9+NycCDxCx9wSNXZbltdKVWifCMcIRnhJt8vopTFX0xpHHVxmhdvTVaVW+FGi41KjdQIrI6MiEsuTlERKUhhEBEcs5/ix3p+v9mKCqn52dxipsCqzJ5OXuhVfVW+r/W1VuzKEJERGYnK0+NgAL5/E50OsKTsiut52dRipsCqzLZy+3RtGpTg5zerFozONo5Sh0aERGRnhACD5Ky8/N5VH4+D4zJqLTRmcUpbgqsyuTt4q3P5S2r53dc9Hb1ljosIrIgLIAQWbGo1Bz4PUrTn0wFxKQj0wyKHaaYSwHEFC9nr/wTLa/8k6723u3ZC4WIiCqNQqXBrcg0/YWRgOh0PEzONstRHeZSADHFXm6PJlWb5F9E8WqFNjXaoIVXC06hRURElSY8KTs/p0f/r9iRZQbFDlPMpQBiSg2XGv/r5ODVCh28O6Cqc1WpwyIiM8UCCJEVSc9V4VJYEs6FJOF8aBIiknOkDqnEzLkAUpgMMjSp1gRda3dFl9pd8KzPs3Cxd5E6LCIishJCCNyNycC5kCRcCE3CtfCUIm9Qam7MuQBiioejBzr5dMrP6XW6oIFnA6lDIiIiK5KSrcSF0CSc/28bPTotV+qQSsycCyCFyWVyNK/WHF3r5LfRn6n1DJzsnKQOi4jMBAsgRBZMqdbC71Eqzock4VxoEgKi0yvtxuTlzZIKIIU5yB3wdM2n9Sdbrau3Zm9SIiIqlajUHH0+vxSWjJRspdQhlYmlFUAKq+NWR5/PO9fujGrO1aQOiYiILIhCpcH18FScC03EhdAk3I3JMMsRmyVhSQWQwpzsnNDBuwO61O6CrnW6oqVXS8hkMqnDIiKJsABCZGHuxWXoe49cfZiCHAu+UXlBllwAKaxgb9KudbriKc+npA6JiIjMjG7U5vn/9goNt6BRm8Wx9AJIQTLI0MKrBbrU6YIutbugY62O7E1KREQGdKM2dfnckkZtPo4lF0AKq+ZUDZ1qd9IXROq615U6JCKqRCyAEFmAgOh07POPwQH/WESlWs6Q2dKwpgJIYU2qNkF/3/4Y4DsAvlV8pQ6HiIgkkp6rwtG7cdjvH4sLoUlQW+iozeJYUwGkMFd7V/Su3xsDfAegR90evKE6EZEN83uUiv23Y3HwTiziMhRSh1MhrKkAUlhLr5bo79sf/X37o55HPanDIaIKxgIIkZm6F5eB/bdjceBOLB4mZUsdToWz5gJIQc2rNceAhgPQ37c/6nvUlzocIiKqYFl5ahwLjMMB/1icDU6CUmMdvUKLYs0FkII8HDzw/FPPo79vf3St0xUOcgepQyIiogp2Jyod+/1jsN8/1qLu5VFW1lwAKahN9Tb6NrqPm4/U4RBRBWABhMiMhCZk6U+oQhOypA6nUtlKAaSg1tVb63ud1HGvI3U4RERUTnKUapwISsB+/xicvp9oNVNhlIStFEAK8nT0xItPvYgBvgPQqXYn2MvtpQ6JiIjKSVBsBvb/dzYGa5musqRspQCiI4MM7Wq2wwDfAejn2w/ert5Sh0RE5YQFECKJRSRnY9/t/KLHvbhMqcORjC0WQHRkkKFtzbbo36A/BjQcwBMtIiILlKfW4NS9BOzzj8XJoATkqqzjHl2lZYsFkIKqOVVD3wZ9McB3AJ71eRZymVzqkIiIqJRCEzKx73Ys9vvHICzR+mdjKIqtFUAKkkGGDt4dMKDhAPRr0A/VXapLHRIRPQEWQIgkoNZocSwwHpsuR+BiWLLU4ZgFWy6AFGQns0Pver3xZos30bV2V8hkMqlDIiKiYjxKzsHmKxHYcT0SqTkqqcORnK0XQAqq514Pw5sPx2tNXkNV56pSh0NERMVQqrU4FBCLTZcicD0iVepwzIItF0AKcpA7oO9TffFmizfRsVZHqcMhojJgAYSoEiVkKLD16iNsvxpptTdKKysWQIz5evpieLPheKXpK/B09JQ6HCIi+i+tVuDkvQRsuhyBsyGJ4Nn0/7AAYsxR7oj+vv3xZos38XTNp6UOh4iICohOy8WWyxH4+3okkrKUUodjVlgAMdakahO82fxNDG08FG4OblKHQ0QlxAIIUSW4GJaEzZcjcPRuPNRaHnKmsABSNGc7ZwxoOAAjW4xE6+qtpQ6HiMhmJWflYfu1SGy98sgmbn5aFiyAFK+lV0uMaD4CgxsNhou9i9ThEBHZJCEEzgQnYvPlCJy8lwA20U1jAaRobg5uGNJoCN5s/iaaVmsqdThE9BgsgBBVkEyFCrtuRGHzlUc2d0PzsmABpGTaVG+DN1u8iYENB8LJzknqcIiIbMK18BRsvhyBQ3fioNTYzg3Ny4IFkJLxcPTAsMbD8GbzN9GwSkOpwyEisglpOUr8fT0SW648QoSN3dC8LFgAKZlnvJ/Bm83fxEsNXoKDnYPU4RCRCSyAEJWzsMQs/HHuIfbcikaO0jZvgFoWLICUThWnKnil8SsY02oMarnVkjocIiKro1Rr8Y9fFDZcDMe9uEypw7EYLICUXmefzni71dvoU7+P1KEQEVmloNgM/HHuIfb7xyBPzY4MJcUCSOlUd66O15u9jrdavgUvZy+pwyGiAlgAISonIfGZWHoyFAf8YziEtgxYACkbR7kjXm36Kia1nQQfNx+pwyEisnh5ag3+uhaJ30+HISad9+sqLRZAyq6FVwu82+5dvPjUi5DJZFKHQ0Rk8QKi07H0RAiOBcXzfl1lwAJI2bjYu2BEsxEY32Y8arjUkDocIgILIERP7F5cBpadCMWhgFgWPp4ACyBPxkHugGGNh2Fyu8mo615X6nCIiCyOQqXB1iuPsOpsGOIz8qQOx2KxAPLkmlZriintpqBfg36Qy+RSh0NEZHH8o9Kw9EQIjgclSB2KRWMB5Mk42znjjWZvYEKbCfB29ZY6HCKbxgIIURkFxmRg6YkQHAmMY2+ScsACSPmwl9ljSOMhmNJ2Cup71pc6HCIis5er1GDLlQisOvsAiZksfDwpFkDKT+MqjTG53WQMbDiQhRAiohK4+SgVS06E4PT9RKlDsQosgJQPztpAJD0WQIhKKSA6HUtOhOA4h9GWKxZAype9zB6DGg3C5LaT4VvFV+pwiIjMTo5SjT8vReCPcw+QlKWUOhyrwQJI+fP19MXkdpMxuOFg2MntpA6HiMjs3IhIweLjITgXkiR1KFaFBZDy5SB3wMtNXsbktpNRx72O1OEQ2RQWQIhK6HZkGpacCMHJexxGWxFYAKkYdjI79Pftj3fbvYtGVRtJHQ4RkeSy8tTYeDEca88/REo2Cx/ljQWQivOUx1OY1HYShjYeCnu5vdThEBFJ7urDFCw5EYwLoclSh2KVWACpGPZyewxtNBST207mrA1ElYQFEKLHCE/Kxo+HgnDkbrzUoVg1FkAqllwmxytNXsGHHT7kjdiIyCapNVpsufIIS06EsPBRgVgAqXgNPBvgk46f4MWnXpQ6FCIiSdyPy8T3B4NwNphTXVUkFkAqlr3cHiOajcB7T7+Hqs5VpQ6HyKqxAEJUhPQcFZacCMGmy+FQaXiYVDQWQCqHq70r3mnzDsa1Hgdne2epwyEiqhQn78Xj+wNBCEvMljoUq8cCSOXp5NMJnz77KVpWbyl1KERElSIpKw+/HA3G39cjodGyjV7RWACpHB6OHni33bsY3WI0HOwcpA6HyCqxAEJUiFqjxabLEVhyIgRpOSqpw7EZLIBULh83H0zrMA1DGg2BTCaTOhwiogpxLy4D3x8I4pzglYgFkMoll8kxtNFQTHtmGrxdvaUOh4ioQuSpNVh7/iFWngpDZp5a6nBsBgsglau+R3180vETvNTgJalDIbI6LIAQFXAuJBGz995lD1EJsAAijXY12+Hrzl+jdfXWUodCRFRu0nKUWHj0PrZdZQ/RysYCiDRc7F0wpd0UjGs1jr1HiciqHLkbh3kHAhGZkit1KDaHBRBpPOfzHL7q9BWaVmsqdShEVoMFECIAUak5+G5/IO/zISEWQKQjl8nxapNX8dEzH6GaczWpwyEiKjOtVmDbtUdYeOQ+UjmKUxIsgEirgWcDfPHcF+hZr6fUoRARPZEHiVmYsy8QZ3ifD8mwACIde5k93mzxJqa2nwoPRw+pwyGyeCyAkE1TqDT4/UwYfj8TBoVKK3U4No0FEOl5Onrigw4fYESzEbCT20kdDhFRqdyISMWsvQEIiM6QOhSbxgKIeehTrw8+7/Q56nvUlzoUIqJSyc5TY+nJEKw/Hw6lhm10KbEAIj0vZy98/MzHeKXJK5y6mugJsABCNutiWBK+3HUHj1JypA6FwAKIOWnp1RLfdf8Ozb2aSx0KEdFjZeWp8f2BQGy/Fgme1UqPBRDz4Sh3xH+e/g/eafMOOzYQkUU4eS8eX/8TgLgMhdShEFgAMSfta7bHd92/g28VX6lDIbJIcqkDIKpsOUo1Zu4OwFt/XGHxg8iEoJQgjDwwEr/f/h1qLW8ySETm61xIIvovOottV1n8ICpMqVVi6c2lePvg2whLC5M6HCKiIqXnqjD979t4Z8N1Fj+ITLiVeAvD9w3HxrsboRUcGUVUWiyAkE25/CAZAxafw6bLEbxQQlQMtVaN3279htEHRiM4NVjqcIiIDGTlqfHVP3cwZu1VRKfxpqhExQlIDsCIfSPwx50/oNFqpA6HiMjAqXsJ6L/oLHb5RUkdCpFZU2gUWHh9IcYfHo+IjAipwyGyKCyAkE3IVWowa08ARq25zFEfRKUQlBKEkfs5GoSIzMf5kKT/jvp4JHUoRBZDqVViid8SjDk0Bg/SHkgdDhERMhQqfLbjNiZsuMZRH0SlcDPhJt7Y+wb+vPsnR4MQlRALIGT1rjxIxoAlZ7HxEkd9EJWFSqviaBAiklx2nhpf/3sHb6+9wlEfRGV0J+kOhu8bjnUB6zgahIgkc/p+/qiPHTc46oOoLBQaBRZcX8DRIEQlxAIIWa1cpQaz997FyDWXEZHMUR9ET0o3GmTV7VUcDUJElepiaBL6Lz6LrVc46oPoSSm1Siy6sQhjD43Fg3SOBiGiypOpUOGLnf4Yv/4aYtM56oPoSXE0CFHJsABCVulaeAoGLjmLDRfDOeqDqByptCosv7Ucbx18CyGpIVKHQ0RWLjtPjW9238Fba68gKpWjPojKk3+SP0bsG4ENARt40YSIKtzZ4ET0X3QWf12PlDoUIquiGw0y4fAEjgYhKgILIGRVtFqBX48F481VlxDOUR9EFSYwORAj94/EjuAdUodCRFYqKDYDQ5adx+bLj9iZgaiC5Gny8MuNXzDp6CQk5SZJHQ4RWSG1Rovv9gdi7LqriOGoD6IK45fghxH7RuDQw0NSh0JkdlgAIauRkq3EuPVXsfRECLS8UEJU4ZRaJeZemosZ52cgV82e2URUfnbeiMKrKy7gYVK21KEQ2YRrcdcwYt8I3Ii/IXUoRGRF4tIVGLn6Mtaefyh1KEQ2IUedg8/Pfo7vL38PlUYldThEZoMFELIKNyJSMXjpOZwLYc81osq2N2wvRh8YjfD0cKlDISILp1Bp8OUuf3y64zYUKk7JQ1SZEnMTMenIJKwPWC91KERkBS6EJmHIsnO4HpEqdShENmf7/e0Yd3gcYrNipQ6FyCywAEIWb935hxi5+hJvokYkodC0UIw8MBJHwo9IHQoRWahHyTl4feVFbL/GucGJpKIWavx641d8dPIjZCozpQ6HiCyQEALLToRgzNorSMpSSh0Okc26k3QHw/cPx7moc1KHQiQ5FkDIYmXlqTF1qx/m7g+ESsM5r4iklq3KxqdnPsVPV3+CSsvhtkRUckfvxmHIsnO4G5MhdShEBOBk5Em8uf9N3Eu5J3UoRGRB0nKUeGfDNfxyLJjTUhOZgfS8dEw9MRVL/ZZCKzi6mmwXCyBkkYLjMzFs+Xkc8OdwPiJzsyVoCyYcnoC47DipQyEiM6fRCvx4MAjvbr6BDIVa6nCIqIDIzEi8ffBt/BPyj9ShEJEF8I9Kw+Cl53HqfqLUoRBRAQICa+6swZRjU5Ccmyx1OESSYAGELM7um9F45bcLeJDIG6MSmavbibcxYt8IXIy+KHUoRGSmEjIVGLXmMladfQDBXqJEZilPk4dZF2dh5oWZUKg53SwRmbbpcgTe+P0SotNypQ6FiIpwJfYKRuwbAb94P6lDIap0LICQxVBrtJi5OwAf/3ULOUqN1OEQ0WOk5qXivRPvYY3/GqlDISIzcyMiBYOXnsfVhylSh0JEJbA7dDfePvg2YrJipA6FiMxInlqD//vrFmbuDoBSzel1iMxdQm4CJh6ZiG33tkkdClGlYgGELEJ2nhoTN17HpssRUodCRKWgFVosvbkUsy/OhlrL6W2ICDh0Jxaj11xBYmae1KEQUSncT72Ptw++jcDkQKlDISIzkJajxNt/XME/N6OlDoWISkEt1Pjhyg9YcG0BBIdhk41gAYTMXkKGAiNWXcKZYM4lSmSpdoXswgcnP0C2ilPXEdmyP849wNStfshjL1Eii5SYm4gJhyfgXNQ5qUMhIglFpuTg9ZUXcS08VepQiKiM/gz8E9PPTEeehp2SyPqxAEJmLSQ+E6+uuIi7MRlSh0JET+hC9AWMPzweiTksZhLZGq1WYM6+u5h3IAhadjQjsmg56hxMOzkNO4N3Sh0KEUngTlQ6Xl1xEWG8JyeRxTsWcQyTj05GmiJN6lCIKhQLIGS2Lj9IxusrL/JGakRW5F7KPbx18C2EpoZKHQoRVRKFSoP3t/hh/YVwqUMhonKiFmrMuTQHS/2WSh0KEVWik/fi8ebqS0jKYo9xImtxM+Emxhwag8jMSKlDIaowLICQWdp7OwZj115FhoL3DCCyNrHZsRh7aCyuxl6VOhQiqmAp2UqMXnMZh+/GSR0KEVWANXfW4KtzX0GlVUkdChFVsK1XHmHynzeQo9RIHQoRlbPwjHC8ffBt3Em8I3UoRBWCBRAyO7+fCcNH229CqeH84ETWKlOVif8c/w/2he2TOhQiqiDhSdl4bcUF+D1KkzoUIqpA+x/sx3vH3kOmMlPqUIiogiw4cg9f/3sHGs5jSWS1UhQpmHh0Ik4+Oil1KETljgUQMhsarcDM3QH46dA9CJ5XEVk9lVaFr89/jdX+q6UOhYjKmd+jVLy+8iLCk3OkDoWIKsGVuCsYe2gs4rI52ovImqg0Wnzy1y38dipM6lCIqBLkqnPxyelPsDVoq9ShEJUrFkDILChUGry76QY2XY6QOhQiqmTLbi7D3EtzIVj5JLIKJ4LiMXrNZSRnK6UOhYgqUWhaKN468BZCUkOkDoWIykFWnhrj1l3FvzejpQ6FiCqRVmjx49UfsejGIqlDISo3LICQ5BQqDaZsuoHjQfFSh0JEEtkRvAOzLs5iEYTIwh0LjMd/Nt+AQsVpLIlsUUJuAiYdncQiCJGFy8pTY/y6q7gYlix1KEQkkXUB67Dw2kKpwyAqFyyAkKR0xY+zwYlSh0JEEvs39F8WQYgs2LHAeLy/5QZUGh7DRLYsRZHCIgiRBdMVP65HpEodChFJbGPgRhZByCqwAEKSYfGDiArTFUG0gr3HiSwJix9EVBCLIESWicUPIipsY+BGLLi2QOowiJ4ICyAkCRY/iKgoLIIQWRYWP4jIFBZBiCwLix9EVJQ/A//Ez9d+ljoMojJjAYQqHYsfRPQ4u0N3swhCZAFY/CCi4rAIQmQZsln8IKLH2BS4iUUQslgsgFClYvGDiEqKRRAi88biBxGVBIsgROYtO0+NcSx+EFEJbArchPlX50sdBlGpsQBClYbFDyIqLRZBiMwTix9EVBosghCZJxY/iKi0NgdtZhGELA4LIFQpWPwgorJiEYTIvLD4QURlwSIIkXlh8YOIyopFELI0LIBQhVNrtHh/ix+LH0RUZrtDd+OHKz9IHQaRzTsXksjiBxGVma4IEpkRKXUoRDZNodJgwoZrLH4QUZltDtqMZTeXSR0GUYmwAEIVbuaeAJy8lyB1GERk4f66/xfW3lkrdRhENiswJgPvbfZj8YOInkiKIgXvnXgPqQpeeCWSghAC0/++jasPU6QOhYgs3Gr/1dgZvFPqMIgeiwUQqlDLT4Zg21X28CKi8rHEbwkOPjgodRhENic2PRfvbLiGrDy11KEQkRWIyIjAhyc/hEKtkDoUIpvzw8EgHLgTK3UYRGQlvr/8Pc5GnZU6DKJisQBCFWb3zWgsPBosdRhEZEUEBL658A2uxV2TOhQim5GhUGH8umuIy+CFSiIqP7cTb+PLc1/yHl9ElWjjxXCsOfdQ6jCIyIqohRqfnvkUd5PvSh0KUZFYAKEKcTEsCZ/v9Jc6DCKyQiqtCh+d+ghhaWFSh0Jk9VQaLf6z6Qbux2dKHQoRWaETj07g52s/Sx0GkU04FhiPOft4gZKIyl+uOhdTj09FdFa01KEQmcQCCJW74PhMvLvpBpQa9uYiooqRqczEe8ffQ2JOotShEFm1L3b642JYstRhEJEV2xK0BX/e/VPqMIis2q3INEzbdhNa3saLiCpIsiIZ7x1/D+l56VKHQmSEBRAqV/EZCoxfdxWZCs4RTkQVKzY7FlNPTEWOKkfqUIis0sIj9/HPTfbiIqKKt/D6QhwNPyp1GERW6VFyDiZuuIZclUbqUIjIyj1Mf4hpJ6chT5MndShEBlgAoXKTnafGhPXXEJPOOcKJqHIEpQTh/07/H9RaFl2JytO2q4+w/FSo1GEQkY0QEPj6/Ne4mXBT6lCIrEpqthLj119FcrZS6lCIyEb4Jfjh63NfQwgOOSPzwQIIlQu1Rov3t/ghMDZD6lCIyMZciLmAuZfmSh0GkdU4dT8BM3cHSB0GEdmYPE0epp2chvD0cKlDIbIKCpUGk/+8jgdJ2VKHQkQ25mjEUSy8vlDqMIj0WAChcjFzz12cCeZc/EQkjX9D/8Ufd/6QOgwii3cvLgMfbPGDmpOEE5EE0vLSOH84UTmZvuM2rkekSh0GEdmoPwP/xI7gHVKHQQSABRAqB39fi8S2q4+kDoOIbNzym8txJfaK1GEQWaxMhQrvbfZDtpJzhBORdKKyovDVua84dQbRE1hz9gEO+MdKHQYR2bifrvyEu8l3pQ6DiAUQejKBMRmYuYfTZBCR9DRCg8/Pfo6EnASpQyGySJ/v9MdDTpNBRGbgXPQ5rLmzRuowiCzStfAUzD98T+owiIig1Cox/fR0juwkybEAQmWWoVDh/S03kKfWSh0KEREAIEWRgs/OfMabohOV0h/nHuBQQJzUYRAR6f126zdcjr0sdRhEFiUpKw8fbOVUlkRkPqKzojmykyTHAgiV2Wc7biM8OUfqMIiIDPgl+GHRjUVSh0FkMa6Hp+CnQ+wpSkTmRSu0+OLsF4jPjpc6FCKLoNUKTNt2E/EZeVKHQkRk4Fz0Oaz2Xy11GGTDWAChMllz9gGO3GVjhIjM05+Bf+JYxDGpwyAye0lZeZjKnqJEZKZSFCn47CxHdhKVxK/HgnExLFnqMIiITFpxewUuxVySOgyyUSyAUKld55yiRGQBvr3wLSIyIqQOg8hssacoEVmCmwk38euNX6UOg8isnbqXgN9Oh0odBhFRkbRCiy/PfYm4bE67S5WPBRAqFfYUJSJLkaXKwienP0GuOlfqUIjMEnuKEpGl2BS4iSM7iYoQlZqDT/6+BU6vT0TmLkWRgk/PfAqVViV1KGRjWAChEmNPUSKyNCGpIZh3eZ7UYRCZnZP34tlTlIgsCkd2EhlTqrWYusUPaTm8mEhEluF24m38cv0XqcMgG8MCCJUYe4oSkSXaG7YXO4J3SB0GkdmITMnBJ3/dZk9RIrIoupGdCrVC6lCIzMZ3+wNxOypd6jCIiEplS9AWHH54WOowyIawAFJJ+vTpg48//ljqMMrsQmgSe4oSkcWaf3U+HqQ/qLT1Pe43XyaTYffu3SVe3unTpyGTyZCWlvbEsdGTs+ScrtEKfLT9JtJz2VOUiCxPSGoIfr72c6WukzndshX+/nx9fbF48WLJ4ilPh+7EYtNljooiIss099LcSr0fiCW34ejJsQBCj5WVp8bnO/3ZU5SILFaeJg8zz8+ERquROhQAQGxsLAYOHCh1GGSD/jj3AH6P0qQOg4iozHYE78ClmEtSh6HHnG5Zrl27hilTpkgdxhNLyVbim90BUodBRFRmmapMzL40W+owyEawAEKP9cPBIESn8SbCRGTZ/JP8sTFwo9RhAAB8fHzg5OQkdRhkY0ITsvDrsWCpwyAiemKzLs5Ctipb6jAAMKdbmpo1a8LV1VXqMJ7YzD0BSM5WSh0GEdETuRB9AbuCd0kdBtkAFkAkkJqairFjx6JatWpwdXXFwIEDERISAgAQQqBmzZrYuXOn/vXt27dH7dq19f8+f/48nJyckJOTU+Gxng9JwtYrjyp8PUREleG3m7/hQVrlTIWl1Wrx+eefw8vLCz4+Ppg9e7b+ucLTZVy8eBHt27eHs7Mznn32WezevRsymQy3bt0yWOaNGzfw7LPPwtXVFd26dcP9+/cr5bNQ0Swlp2u0Ap/uuI08tbZC10NEVBlis2Ox8PrCSlsfc3r569OnDz788EN8/PHHqFatGmrVqoU1a9YgOzsbEyZMgIeHB5o0aYJDhw7p3xMQEICBAwfC3d0dtWrVwpgxY5CUlKR/Pjs7G2PHjoW7uztq166NX34xvsluwSmwwsPDjb6btLQ0yGQynD59GsD/piw7cuQIOnToABcXF7zwwgtISEjAoUOH0LJlS3h6emL06NGV0j4HgIN3YnHAP7ZS1kVEVNEWXl+I2KzK/U2zlDYclR8WQCQwfvx4XL9+HXv37sWlS5cghMCgQYOgUqkgk8nQq1cv/QlXamoqgoKCkJubi3v37gEAzpw5g+eee67Ce65k5anxxS7/Cl0HEVFlUmqVmHF+RqVMhbVx40a4ubnhypUr+PnnnzF37lwcO3bM6HUZGRkYOnQo2rZtCz8/P3z33Xf44osvTC5zxowZ+OWXX3D9+nXY29vjnXfeqeiPQY9hKTl9zbkHuBWZVqHrICKqTDuDd+JizMVKWRdzesXYuHEjatSogatXr+LDDz/Ee++9h+HDh6Nbt27w8/NDv379MGbMGOTk5CAtLQ0vvPACOnTogOvXr+Pw4cOIj4/HiBEj9Mv77LPPcObMGezZswdHjx7F6dOn4efnVy6xzp49G8uXL8fFixcRGRmJESNGYPHixdi6dSsOHDiAo0ePYtmyZeWyruIkZ+VhJqe+IiIrkqXKwrcXv63UdVpKG47KDwsglSwkJAR79+7FH3/8gZ49e+Lpp5/Gli1bEB0dre851KdPH/2BdvbsWXTo0MHgsdOnT6N3794VHuv3Bzj1FRFZn4DkAKy/u77C19OuXTvMmjULTZs2xdixY/Hss8/ixIkTRq/bunUrZDIZ1qxZg1atWmHgwIH47LPPTC7z+++/R+/evdGqVSt8+eWXuHjxIhQKRUV/FCqCpeT00IRMTn1FRFZp9sXZyFJmVfh6mNMrxtNPP41vvvkGTZs2xVdffQVnZ2fUqFEDkydPRtOmTfHtt98iOTkZ/v7+WL58OTp06IAffvgBLVq0QIcOHbBu3TqcOnUKwcHByMrKwtq1a7Fw4UK8+OKLaNu2LTZu3Ai1Wl0usc6bNw/du3dHhw4dMHHiRJw5cwYrV65Ehw4d0LNnT7zxxhs4depUuayrON/uucupr4jI6lyOvYy/7/9dKeuylDYclS8WQCpZUFAQ7O3t0blzZ/1j1atXR/PmzREUFAQA6N27NwIDA5GYmIgzZ86gT58++gNNpVLh4sWL6NOnT4XGeS4kEduucuorIrJOK26tQGhqaIWuo127dgb/rl27NhISEoxed//+fbRr1w7Ozs76xzp16vTYZeqG4JpaJlUOS8jpGq3A9B3+UHLqKyKyQpU1FRZzesUouA3s7OxQvXp1tG3bVv9YrVq1AORvl9u3b+PUqVNwd3fX/7Vo0QIAEBYWhrCwMCiVSoOc7OXlhebNm5d7rLVq1YKrqysaNWpk8FhFf38H/GNx4A6nviIi6/TL9V8QnRVd4euxhDYclT8WQMxQ27Zt4eXlhTNnzhgcaGfOnMG1a9egUqnQrVu3Clt/pkKFL3fdqbDlExFJTaVV4ZsL30CtLZ9egaY4ODgY/Fsmk0GrfbKL0AWXKZPJAOCJl0kVS+qcvupsGG5z6isismK7QnbhQvSFCl0Hc3rFMLVdi9ouWVlZGDp0KG7dumXwFxISgl69epVp/XJ5/uUQIYT+MZVK9dhYC8epe6wiv7/krDx8u4dTXxGR9cpR52DWhVkGv8lSkboNR+WPBZBK1rJlS6jValy5ckX/WHJyMu7fv49WrVoByD956tmzJ/bs2YO7d++iR48eaNeuHfLy8rBq1So8++yzcHNzq7AYfzjIqa+IyPrdTb6LdQHrpA4DzZs3x507d5CXl6d/7Nq1axJGRCVl7jk9OD4Ti4+HVMiyiYjMyexLlTMV1uMwp1ecZ555Bnfv3oWvry+aNGli8Ofm5obGjRvDwcHBICenpqYiOLjoKSBr1qwJAIiN/d+oisI3qzcXM/cEcOorIrJ6V+KuYPv97RW6DnNvw1HFYAGkkjVt2hQvv/wyJk+ejPPnz+P27dt4++23UbduXbz88sv61/Xp0wfbtm1D+/bt4e7uDrlcjl69emHLli0VOs9c/tRXkRW2fCIic/L77d8RnCrtvRFGjx4NrVaLKVOmICgoCEeOHMHChfnTeeh6PpJ5MuecrtEKfLbjNqe+IiKbEJcdhwXXF0gdBnN6BZo6dSpSUlIwatQoXLt2DWFhYThy5AgmTJgAjUYDd3d3TJw4EZ999hlOnjyJgIAAjB8/Xj/KwxQXFxd06dIFP/30E4KCgnDmzBl88803lfipSma/fwwO3omTOgwiokqx6MYiRGZW3HVJc27DUcVhAUQC69evR8eOHTFkyBB07doVQggcPHjQYBht7969odFoDOaU69Onj9Fj5SlHqebUV0RkU1RaFb698C20QrqLxJ6enti3bx9u3bqF9u3bY8aMGfj2228BwGAOcTJP5prT15x7gNtR6RWybCIic/RPyD+4GHNR0hiY0ytOnTp1cOHCBWg0GvTr1w9t27bFxx9/jKpVq+qLHAsWLEDPnj0xdOhQ9O3bFz169EDHjh2LXe66deugVqvRsWNHfPzxx5g3b15lfJwSS81WYtaeu1KHQURUaXLVuZh7aW6FrsNc23BUcWTCHCZXI7Pw06F7+P1MmNRhkI3q2eUCbqXvkzoMslGzus7CG83ekDoMvS1btmDChAlIT0+Hi4uL1OGQhYlLV+CFX04jR6mROhSyQTWqKJBXZ7bUYZCN8vX0xT8v/wMHucPjX1xJmNPpSXz1zx1su/pI6jDIRvXoegy3005IHQbZqF/7/IqXGrwkdRhkJTgChAAADxKzsO78Q6nDICKSxFK/pUjPk663/J9//onz58/j4cOH2L17N7744guMGDGCF0qoTL4/GMTiBxHZpPCMcGwO3CxpDMzpVF7uRKXjr2ssfhCRbVpwbQEUaoXUYZCVYAGEAABz9wdCqeE84URkm1LzUrHs5jLJ1h8XF4e3334bLVu2xCeffILhw4dj9erVksVDluvyg2Tsux0jdRhERJJZ5b8KiTmJkq2fOZ3KgxACs/YGQMv5OojIRsVmx2LNnTVSh0FWglNgEY4HxmPSn9elDoNsHKfAIqnZyeywfch2tPBqIXUoRGWi0QoMXnoO9+IypQ6FbBinwCJzMLjRYPzU8yepwyAqs103ojB9x22pwyAbxymwSGqOckfsfnk36nvWlzoUsnAcAWLj8tQafHcgUOowiIgkpxEa/HjlR6nDICqzTZfCWfwgIgJw4MEB+MX7SR0GUZlkKlT46fA9qcMgIpKcUqvEz9d+ljoMsgIsgNi4defDEZGcI3UYRERmwS/BD0fCj0gdBlGppeeosOh4iNRhEBGZjfnX5oOTHZAl+u1UGBIz86QOg4jILJyOOo3LsZelDoMsHAsgNiw5Kw8rToVKHQYRkVlZdGMRlBql1GEQlcqSEyFIz1VJHQYRkdkITA7E/gf7pQ6DqFQiU3Kw7sJDqcMgIjIrC64tgFbwvsVUdiyA2LBfjwUjM08tdRhERGYlOisam4M2Sx0GUYk9TMrGpsvhUodBRGR2lvgtgUKtkDoMohKbf/gelGpe5CMiKig4NRj/hPwjdRhkwVgAsVEh8ZnYfi1S6jCIiMzSGv81SFGkSB0GUYn8eDAIKg2neSEiKiw+Jx4b7m6QOgyiEvF7lIr9/rFSh0FEZJaW31yObFW21GGQhWIBxEZ9fzAIGi0vlhARmZKlysJvN3+TOgyix7r8IBlHA+OlDoOIyGytC1iHxJxEqcMgeqx5+wOlDoGIyGwlK5Lxx50/pA6DLBQLIDboUlgyTt9nI4CIqDj/hPyDqMwoqcMgKtb8w/ekDoGIyKzlqnOxyn+V1GEQFetwQBz8HqVJHQYRkVnbErSFMzVQmbAAYoOWnAiWOgQiIrOnFmr2MCGzdjY4ETd5sYSI6LH+DfkX8dkcLUfma+mJEKlDICIye7nqXE5tSWXCAoiNufowBZcfsFpKRFQSe8L2ICYrRuowiEzixRIiopJRapVYF7BO6jCITDoWGI/A2AypwyAisgjb721HqiJV6jDIwrAAYmN4sYSIqOTUWo4CIfN0MTQJ1yN44k9EVFK7QnbxXiBklpadZBudiKikctW52Hh3o9RhkIVhAcSG3IhIxfnQJKnDICKyKLtDdyMuO07qMIgMLGaHBiKiUsnT5HEUCJmdU/cS4B+VLnUYREQWZfv97UjP428nlRwLIDaEoz+IiEpPpVVxFAiZlcsPknH1IaezJCIqrZ3BO5GUyw5hZD6WcvQHEVGpZauyOQqESoUFEBtxOzINZ4I55JuIqCx481QyJ+zQQERUNgqNghdMyGycC0nEzUdpUodBRGSRtt3bxlEgVGIsgNgIzitKRFR2vHkqmYvr4Sm4GJYsdRhERBbrr/t/IUXBUXQkPXZoICIquyxVFjYFbpI6DLIQLIDYgLsx6TgelCB1GEREFo03TyVzsIQXS4iInghvnkrm4GJYEq6Fp0odBhGRRdsatBUZygypwyALwAKIDWDPEiKiJ8ebp5LU/B6l4lwI564nInpS2+9tR5oiTeowyIaxjU5E9OQyVZnYErhF6jDIArAAYuXuxWXgaCDnrSciKg+8eSpJiRdLiIjKR446B38G/il1GGSjrj5MweUHnIaNiKg8bArahCxlltRhkJljAcTK/X46DEJIHQURkXVQaBT46/5fUodBNuh+XCZO3+cUbERE5WX7ve3IVedKHQbZoJWnQ6UOgYjIamQqM7EnbI/UYZCZYwHEiiVn5eHgnTipwyAisiq7gndBpVVJHQbZmD8vhUsdAhGRVclUZeLAgwNSh0E25lFyDs4Es0MDEVF52n5vu9QhkJljAcSKbb8WCaVGK3UYRERWJTE3EScenZA6DLIhWXlq7L4ZLXUYRERW5+/7f0sdAtmYLVcioOUMDURE5So8IxyXYy9LHQaZMRZArJRWK7D1yiOpwyAiskp/3eM0WFR5/vGLQrZSI3UYRERWJyglCLcSbkkdBtmIPLUGO25ESR0GEZFV4igQKg4LIFbq1P0ERKdxTlsioopwPf46QlM5fzNVjs2XI6QOgYjIavHeXlRZDvjHIiVbKXUYRERW6XTkacRl8zYAZBoLIFaKF0uIiCrW9vvsYUIV7/KDZATHZ0kdBhGR1ToafhSpilSpwyAbwDY6EVHF0QgNdgTvkDoMMlMsgFihyBTeWI2IqKLtf7AfOaocqcMgK8eLJUREFUupVeKfkH+kDoOs3N2YdPg9SpM6DCIiq7YreBdUWpXUYZAZYgHECm3mjdWIiCpctiob+8L2SR0GWbHEzDwcucth3EREFW1H8A5ohVbqMMiKsUMDEVHFS1Yk43jEcanDIDPEAoiVyVNrsOM6b6xGRFQZOA0WVaTtVx9BpWGPBiKiihadFY3z0eelDoOsVKZChT23YqQOg4jIJvBm6GQKCyBW5uAd3liNiKiyhKaF4nrcdanDICuk0Qpsu/pI6jCIiGwGb4ZOFWXXjSjkKDVSh0FEZBP8EvwQnBosdRhkZlgAsTKbLnFoLRFRZeIFE6oIx4PiEZOukDoMIiKbcT76PKKzoqUOg6zQ5ivs0EBEVJk4CoQKYwHEigTFZvDGakRElez4o+NIU6RJHQZZma28WEJEVKm0QotdwbukDoOszOUHyQhNyJI6DCIim3Lw4UHkafKkDoPMCAsgVmT3LfZYIiKqbGqtGscf8UZrVH5SspW4EJokdRhERDbn4MODUodAVmYP2+hERJUuW5WNc1HnpA6DzAgLIFbk4J1YqUMgIrJJh8MPSx0CWZFDAbFQa3nzcyKiyhadFY2ApACpwyArodZocTggTuowiIhs0qGHh6QOgcwICyBW4lZkGiJTcqUOg4jIJl2Pu47k3GSpwyArsf82OzQQEUnl8EN2aqDycSEsGak5KqnDICKySeeizyFHlSN1GGQmWACxEgf8Y6QOgYjIZmmEBkcjjkodBlmBxMw8XA1PkToMIiKbdTTiKITgKDx6cmyjExFJJ1edi9ORp6UOg8yEvdQB0JMTQuCAv+30Fs28eRCZNw9CnR4PAHCo8RSqdhsFl8bPAgCSDy+HIuIWNFkpkDk4w6luS1TrMx4O1euXaPnJR5Yj69ZhVHthMjyfexkAINQqJB9eipyQy7Bzqwavfu/Dxbe9/j3pV3ZBk5EIr5f+U74flqgYySeTkXIyBaqk/J5lTnWd4P2yNzzaeQAAojdEI+tuFtRpasid5XBt4gqf4T5wquNU5DLj/41H+pV0qFJUkNnL4OLrglqv14JrY1cAgFalRfS6aGTezIR9FXvUGVsH7q3d9e9PPJgIVbIKdcbUqcBPbp4OPzyMUS1GSR0GWbhDAbHQ2ND0VxWR09POb0F20DloMhMhk9vD0acJqvYaC6c6zQEwp5N5Yk43H7HZsbideBvtvdtLHQpZMJVGiyN346UOo9KwjU6Uj/ncvBwOP4xBjQZJHQaZARZArIDfo1TEpCukDqPS2HlUR7Xe42BfLf/HOyvgBBL+mYfa45fAsWYDOPo0gVvrPrD3rAlNbibSL2xF/F/fou5//oBMblfssnOCLyIv5j7s3L0MHs+8fRjKuFD4vL0QuQ9uIGnfAtT7YDNkMhlUaXHIun0EtcctrqiPTGSSQzUH+Az3gWMtRwBA2vk0PFryCI3nNoZzXWe4+LqgateqcPBygCZbg4TdCQhfGI5mC5tBJpeZXKaTjxPqjKkDx5qO0Kq0SD6SnP+e+c1g72mP1NOpUEQo0GhmI2T5ZyHy90i0WNoCMpkMykQlUs+kovHsxpW5GczGzYSbiM+ORy23WlKHQhbM1qa/qoic7uBVF14v/Qf2VX0gVHnIvL4H8X/NRN1318DOtQpzOpkl5nTzciT8CAsg9ETOhSQiPdd2pr9iG50oH/O5ebkQfQGZykx4OHpIHQpJjFNgWYH9NjT6AwBcm3SGS+Pn4OBVFw5edVGt11jIHZ2RF3MfAODRfgCc67eBfZVacPJpgqo9x0CTmQh1ekKxy1VnJiHl2CrUGPIpIDesDaqSI+HSpDMcazaAxzODoc1JhzY3AwCQcnQFqvUZD7mTa8V8YKIieHbwhMfTHnDycYKTjxNqvVELcmc5ckLz57n06uMFt+ZucKzpqO8lokpRQZmkLHKZVbtWhXtrdzh6O8K5rjN8RvlAm6uFIiq/yJoXmweP9h5wrusMrxe9oMnUQJOpAQDEbIyBzwgf2LkU34ixVgKC02DRE4lLV+BahG1Nf1UROd2tVR+4+LaHQ1UfONZsgGovTIJQ5kCZ8BAAczqZJ+Z083I0/Ci0Qit1GGTB2EZnG51sE/O5eVFqlTj56KTUYZAZYAHEwgkhcPCObZ1cFSS0GmQHnoFWpYBT3RZGz2uVCmTdOQ77KrVg71mj6OUILZL2/wrPzq/BsWYDo+cdvRsiLyoQWlUeFA/9YOfuBbmLJ7LunoLM3hGuzbqV6+ciKi2hFUi7nAZtnhauTYxP9LV5WqSeS4VDTQc4eDmUaJlatRapp1Mhd5HDub4zAMC5vjNyQnKgVWqRdScL9lXtYedhh7SLaZA5yODZ0bNcP5elORzOG6dS2R24Ewtbnna+vHK6wTI1KmTeOgyZkxscvRsCYE4n88ecLr2E3AT4xftJHQZZqDy1BscCbWf6q8LYRifKx3xuHg6FH5I6BDIDnALLwl0LT0V8Rp7UYVQ6ZWI44jZ9CqFWQuboAu9XZ8CxxlP65zP9DiD19HoIlQL2XvXg/eY8yOyKTigZl3dCJreDR8dhJp93b/sSlAnhiFn7PuxcPFHj5S+gVWQh/fwW1Br1I1LPbkJO0FnYV/VB9UEfwd6jZBdmiJ6UIlKBB/MeQKvSQu4kx1MfPgXnus7655NPJCP+73ho87Rw9HGE72e+kNsXX/vOuJWBqJVR0Cq1sK9iD9/PfGHvkZ8uqvWsBkWkAiFfh8Dewx71368PTbYG8f/Go+GXDRG/K39+UkdvR9SdWBcO1Up2Imct/BP9EZMVgzrutje/Kj25/TZ6s9TyzukAkBN6FUl7f4ZQ5cHOvRpqvfkd7FyrAGBOJ/PFnG5eDocfxrM+z0odBlmgs8FJyFSopQ6j0rGNTpSP+dy8XIm5gjRFGqo6V5U6FJKQTAhb7mto+b7dE4A/L0VIHUalExoV1BmJ0OblIOf+eWTdPopao3/Sn2Bp87KhyU6DJjsVGVf/gSYzGT5vL4DM3tFoWXlxoUjYORu1xy2BvUd1AEDUynfg+ezL+husmZJ0YDEcazWEfRUfpJ3dCJ8xvyLjyi6okiJQ89WvK+aDW7GeXS7gVvo+qcOwOFq1FqpkFbS5WqRfS0fq2VQ0/LKh/gRLk6OBOkMNdboaSYeSoEpVodGMRpA7Fn2Cpc3TQpWmgiZTg5QzKcgOykbjbxvD3tN0zTzqjyg4P+UMx5qOiN8Zj8bfNkbiwUTkReXhqQ+fMvkea/ZJx0/wTpt3pA6DLEx0Wi56zD9pkyNAyjOn62iVCmiyU6DNyUDm7SNQPPJH7TG/wM6tqsnXM6eXnxpVFMirM1vqMCwSc7p5qe5cHSeGn4DdY+5PQFTYR9tvYs8t2+vUwDa69enR9Rhup52QOgyLw3xufr7t+i2GNxsudRgkIU6BZcG0WoGDd+KkDkMSMjsHOFSrAyefJqjWezwcvRsi8/pe/fNyJzc4eNWFc/02qPnKV1ClRCEn+JLJZeVF3oU2Ox3RKycg4udhiPh5GDQZCUg9tRZRK01fxFRE+EOVHAGPZ4ZA8cgfLo2ehdzRGa4tekDx6E6FfGYiU+T2cjjVcoKLrwt8hvvAub4zko8l65+3c7WDk48T3Jq7of4H9ZEXm4cMv4zil+mUv0zXJq6oN7EeZHYypJ5NNfnarKAs5EXnoXrf6si+lw2Pdh6QO8lRpVMVZN/LLtfPaikOP+Q0WFR6B/xjbLL4AZRvTte/x9E5f5l1W6DGoI8gk8uR5W/6Hj3M6WQumNPNS7IiGdfjr0sdBlkYhUqD4zY6/RXb6ET5mM/Nz5HwI1KHQBLjFFgW7MajVCRl2d70V6YIISA0qiKezP8r6nm3Ns/D2fdpg8cS/v4Wbq1fgHvbvsaLUyuRcmwlagz9FDK5HSC00N8jUauB4A0TSUoCEKoirqL+9+Einy9qkVoBrcp4v9YqtYjdFIt679aDTC4DtPnHIgAItYDQ2ubV3KCUICTmJKKma02pQyELYstzhRf2JDm9mIWafA9zOpk15nTJnYo8hc61O0sdBlmQ8yFJyFZqpA7DLLCNTvRfzOeS84v3Q44qB64OxvdiIdvAESAW7FxIktQhSCL1zAYoIgOgTo+HMjEcqWc2IO/RHbi16gNVWhzSL/2NvLhQqDMSoIgKQuKeHyGzd4RLo//N4Ru95j/ICb4IALBz8YRjTV+DP8jtYedWDQ7V6xmtP+3idrg0ehaOtRoDAJzqtkJO8EUoEx4i028/nOu2rJTtQBS3Iw7Z97OhTFRCEanI//e9bFTtWhXKBCUS9yciNzwXymQlckJyEPlbJOQOcng87aFfRvCXwci4kd/bRJunRdzOOOSE5kCZpERueC6i1kZBnapGlU5VjNafuDcR7u3c4dLABQDg2tQVGTcyoIhUIOVEClyb2u7JxeXYy1KHQBYkK0+Nm4/SpA5DEuWd07VKBVLPbERe9D2o0xOQFxeKpIOLoc5MhmvzHkbrZ04nc8Gcbp4uxRQ/2oyosPOhbKOzjU62jPncPKm0Ko7qtHEcAWLBzockSh2CJDTZ6Uja/ys02SmQO7nBsaYvvEfMhUvDDlBnJkMRdRcZ1/dCq8iCnVtVONVvDZ+3FxjM+61OiYI2L6fU61YmhiPn3jnUHr9M/5hri+5QRN5B3JYv4FC9LmoM/aw8PibRY6kz1IhaHQV1uhpyFzmc6zvDd7ov3Nu4Q5WqQnZwNpKOJkGbrYVdFTu4NXNDo28aGcwTqoxTQpPz315qMkAZq8Sj84+gydLAzt0OLg1d0PDrhgY3bQMARZQC6dfS0WRuE/1jns96IvteNh788ABOPk6o9x/jxomtuBRzCUMbD5U6DLIQVx4kQ22jvbHKO6fL5HKoUqKQuPsENLkZ+RdQfJrC5635cKzZwGDdzOlkTpjTzdOD9AeIz45HLbdaUodCFuIc2+hso5NNYz43X5diLqFXvV5Sh0ES4U3QLVSmQoUOc4/Z7AUTsj68CTpZk5ouNXFyxEmpwyALMXvvXWy4GC51GETlgjdBJ2szr/s8vNyk6JsuE+nEpSvQ5UfeMJqsB2+CTtakcZXG2P3KbqnDIIlwCiwLdflBCosfRERmKjE3ESGpIVKHQRbigo1Ol0FEZAk4rSWVlK1Of0VEZAnC0sMQn837LtoqFkAsFC+WEBGZN84bTiURl65ASEKW1GEQEVERWAChkmIbnYjIvF2KZRvdVrEAYqFsdW5RIiJLwZMrKgn2FiUiMm9JuUkITg2WOgyyAMzpRETmjZ0UbRcLIBYoLl2BsMRsqcMgIqJi3Ii/AZVGJXUYZObYW5SIyPxdjuEoECre/bhMJGbmSR0GEREV43LsZfBW2LaJBRALxJ4lRETmL1edi1uJt6QOg8wcczoRkfnjqE56HOZzIiLzl6JIwf3U+1KHQRJgAcQCsbcoEZFl4BBbKg57ixIRWQaO6qTHYRudiMgysI1um1gAsUDsXUJEZBl441QqDu/nRURkGTiqk4qj0mhx5UGy1GEQEVEJsABim1gAsTDsLUpEZDnuJt9FhjJD6jDITLG3KBGR5WCnBirKzUdpyFZqpA6DiIhKwC/Bj6M6bRALIBbmaniK1CEQEVEJaYUWAUkBUodBZsrvUZrUIRARUQndTrgtdQhkpq6xjU5EZDHyNHkISQuROgyqZCyAWJiAqHSpQyAiolIITA6UOgQyQ4+Sc5Cey55HRESWIjCF+ZxMu8M2OhGRRbmbfFfqEKiSsQBiYQJieHJFRGRJWAAhU+5EM58TEVmSTGUmIjMipQ6DzBDb6EREloVtdNvDAogFyVNrEByfKXUYRERUCjy5IlNYACEisjx3U9hjlAyl5SgRlZordRhERFQKd5OYz20NCyAW5H5cJlQaIXUYRERUCtFZ0UjP48VuMhTAAggRkcVhpwYqjB0aiIgsT2haKG+EbmNYALEgAdEZUodARERlwDlGqTBOl0FEZHlYAKHC2EYnIrI8Kq0KwanBUodBlYgFEAvC3iVERJaJF0yooMiUHKTlsMcREZGlCUoOkjoEMjMc0UlEZJnYSdG2sABiQe6ytygRkUViAYQKYocGIiLLlKHMQGQmb4RO/8MRnUREloltdNvCAoiFUGm0uBfHG6ATEVkinlxRQSyAEBFZLuZ00knPVSEiOUfqMIiIqAw4AsS2sABiIe7HZUKp1kodBhERlQFvhE4FcboMIiLLxQII6dxlPicislihaaFQapRSh0GVhAUQC8Hpr4iILBt7mJAOR4AQEVkuFkBIh9NfERFZLrVWjfsp96UOgyoJCyAWghdLiIgsGy+YEMAboBMRWTrmc9K5E50hdQhERPQEglKCpA6BKgkLIBYiOC5L6hCIiOgJRGRESB0CmYHQROZzIiJLlqHMQFJuktRhkBkI5j06iYgsWmRmpNQhUCVhAcRCPErhzdWIiCxZVGaU1CGQGYhkPicisnjM6QQAkanM6UREloz53HawAGIB8tQaxGcqpA6DiIieQFQWT64IeJTMiyVERJaOOZ2SsvKQo9RIHQYRET0BjgCxHSyAWICo1FwIIXUURET0JBJyEqDS8N4Pto4jOomILB97jBLzORGR5WOHBtvBAogF4HQZRESWTyu0iM6KljoMkhgvmBARWT4WQIhtdCIiy5etykaKIkXqMKgSsABiASJTc6UOgYiIygF7mFAUczoRkcVjhwZiPicisg7s1GAbWACxAOxdQkRkHTjHqG1LyVYiK08tdRhERPSE2KGBeE8vIiLrwAKIbWABxAKwAEJEZB14cmXbOP0VEZF14H29KDKVOZ2IyBqwk6JtYAHEAvCCCRGRdWABxLYxnxMRWQfe14uY04mIrANHddoGFkAsAEeAEBFZB55c2TbmcyIi68GcbrvUGi1i0xVSh0FEROWAI0BsAwsgZi49R4UMBecLJyKyBuwtattYACEish7RmczptiomTQGNVkgdBhERlQPO0mAbWAAxc5xblIjIemSrspGiSJE6DJIIp8sgIrIeHAFiu9hGJyKyHryvl21gAcTMxaTlSh0CERGVo+TcZKlDIInEZ3C6DCIia5GQkyB1CCQRttGJiKyHgEC6Ml3qMKiCsQBi5tJyWYUkIrImGcoMqUMgiaTnckpLIiJrwXxuu9LZRicisirpeSyAWDsWQMxcBk+uiIisSkYeL5jYKuZ0IiLrwQKI7WI+JyKyLiyAWD8WQMwcT66IiKwLL5jYplylBkqNVuowiIionLBDg+3iCBAiIuvCNrr1YwHEzGUoOF0GEZE1Ye8S28SLJURE1oUXS2wX2+hERNaFbXTrxwKImeMFEyIi68ILJrYpQ8F8TkRkTTKVmVKHQBJhG52IyLqwjW79WAAxc5wCi4jIuvDkyjbxYgkRkXVRaVXIVedKHQZJgG10IiLrwhEg1o8FEDPHCyZERNaFBRDblJ7DfE5EZG14HxDbxDY6EZF1YRvd+rEAYuY4ZQYRkXXhxRLbxIslRETWhxdMbBPb6ERE1oUjQKwfCyBmjhdMiIisS7qSJ1e2iBdLiIisD+8DYpvYRicisi7s0GD9WAAxczy5IiKyLhwBYpuYz4mIrA8vmNiePLUGCpVW6jCIiKgcsY1u/VgAMWNKtZYnV0REVoYXS2wTCyBERNaHOd32ZOSqpQ6BiIjKGfO59WMBxIxlcroMIiKrk6vOlToEkkB2Hi+YEBFZmyxlltQhUCVjG52IyPooNAqpQ6AKxgKIGVNrhdQhEBFROdMKjuyzRczpRETWhznd9jCfExFZH62W+dzasQBixjQ8uSIisjoaoZE6BJKAljmdiMjqMKfbHrbRiYisj1pwtL61YwHEjGkFT66IiKyNRsuLJbZIw5RORGR1OALE9rCNTkRkfZjPrR8LIGaMI7CIiKyPgIBg49nmcAQIEZH14QgQ28M2OhGR9WEnRevHAogZY+8SIiLrxAsmtodTZhARWR/2GLU9bKMTEVkfToFl/VgAMWM8uSJbUdNRha4yJRzkDlKHQlQpOALE9jCnk614rVocGrnXkzoMokrBDg22h/mcbEVd5zw8JxOwk9lJHQoR0ROzlzoAKppMJpM6BKIKJZMJfO8bgDcz1sPuZhwG12iEhU+1xOnUIKlDI6pQchn7H9gaOXM6WblOVTOw1GsXfGKOQZ1gj+2tX8SKvEhkqrKkDo2owvDCoO1hG52snZ1Mi18a3cKwlPWQ+yVjcK3m+LnOU7iUdl/q0IgqDNvn1o8FEDNmx5MrsmJv+MRjjsNGuMXe0j/WIOkBliU9wMWGnbHA3R6hWZHSBUhUgXiCZXvs5MzpZJ1qOqrwe4NTeCZmG2QxeQAAe60ab985gsFu1fFb8y7YmRbInvJklZjPbQ/b6GTNxteJwpeyDXCODtQ/1iT+PlbH38fpJj2w0FmNiOwYCSMkqhhyTpBk9VgAMWNyHn9khVq652Clz140iNoHGUwPIe/28Ap2yuzwd+u++E0VjXRlRiVHSVRxZJCx96ANkrMAQlZGJhP4vmEA3kxfB7vIeJOvqZadjG/8DmBErRaYX7serqYHV3KURBWLI0BsD9voZI2eqZKJ32r8g9rRR4p8TZ/Q8+gud8DWNn2xShHBEZ5kVdg+t35M32aMvUXJmrjZa7Ch6XkclH8E36i9RRY/dOyEBqMCjuBAZDRGV2sHexnrtWQd2FvUNtkxpZMVebN2HALqLcDomB9hl226+FFQs/h7WHvrOBbZN0Bd11qVECFR5WBOtz1so5M1qeagxl9NT2KX5uNiix86DloVxvkfwoHoeIyo1pZFYLIazOfWj9+wGePJFVmLT58Kxa3qM9EncgVkyuxSvbdKTiq+8tuPnVn26F61RQVFSFR52LvENnEECFmDth7ZONtkK35KnQ63xFulfn/fkHPYe88fH3m2hqu9a/kHSFTJePHP9tgzn5OVmN0wCNeqfoXOkX9Aps4t1XurZSdjpt8B/J3thM5Vm1VQhESVhwUQ68cu1WaM84uSpXuxegoWemxDtbgLT7ysxgnB+D0hGGcbd8MCFy3COfcoWSgHuYPUIZAEeMGELJmHvRorG15A97jNkEWVriNDYY6aPEy6fQgve/pgcZNnsC/1LsRjRoUSmSteMLE9crbRycK9XCsB85w2wyP2+hMvq1n8PfwRfw8nm/bAL44qPMqJLYcIiSof2+jWjwUQM+biyB5FZJnqOedhdf2jaBm9A7Jsdbkuu1fYRXSVO2Br6xexKu8R5x4li+Ph4CF1CCQBNyeecpFlmuF7HxNy1sE+MrJcl1szIw7f+x3EyHrt8FP16vDPCCvX5RNVBndHd6lDoErGNjpZqqZuufi99gE0it4NmdCW67JfCDmPnnaO2NL6Baz+//buOzyqMu/D+PdMSTLplZBCSCChhVAFKYIK2HvD3su+uquga+917a69rmLvBYWAICo2LEjoRRQpAUKHQHqZef8YwQIqZSbPzJn7c125ZEFmblbNmXN+5zxPHefoCD8JUZyj2x23rISw2CiXopz8I0L4cDt8eqj9NH3uuVxdyl+T5Q3s8GPb+3gbdebsDzV2xRqdwNqjCDN8uIpMiTHcVYTwcmjGOs1q+5DOX3WLXJsDO/z4rZLls/TyzMn6T0yhWsWkBe19gGDgpobIk+yJMp0A7BKPs1nPFH6tia5L1X75uwEffmzlbm7QWbP85+jHp5TwhBzCSmJUoukEBBnfkUJcoocLJggP5+SUa3bWHTpqxf1y1K5vkfdMrV6nG8tK9UZNjPomsfYowkNiNB+uIlESx3OEifaxtfqo6F09VjVSiau/bZH3tOTTEfM/0ZhFC3V+UomindEt8r7AnuKYHnk8UU5uUkTYuDhvsWZm3KwDlj8iq35zi7xnavU63VRWqjdrPJyjI2xwk6L9ceQOcUkelsxAaOuVtEVft39BN66/SjHr5xlp6Lhqvp6dMUkPutoqN7a1kQZgZ/HhKjIxAEGo8zib9XThN5rkvlRF5W8H7Q7RvxLbUK1LZpTq/Q31OiClS4u/P7CruGM0MnGTIkLd4NRNmlbwlP695jpFbTKzxORvz9HbcI6OEMfx3P64uh7iuGCCUJXibtJT+Z+pT8UrslbUmc6RJA398QsNckbrxa5D9UzNz6ppqjGdBGyHD1eRieM5QtnFeYt1ccNziloeGvtw5GxYpgc2LNPU/D66OzFGP2xZajoJ2CGO6ZEpyePSuqp60xnAdlpHN+jpvEkqWfGGrJpG0zmS/Ofog51Reql4qJ6pW6KqxmrTScB2uEnR/ngCJMQlx7LGKELPLQXz9H3S1epb/qysptAYfmwV1Vyv82aOU+mqjTo6pUSWLNNJwO/w4SoyJcUyAEHo2Tdto/E7RP9KnyVT9ebsr3RDbEelRCWZzgG2wxJYkYlzdIQap+XVfe1makrc5epW/rIsb2gMP7ZyNzfonFnjNXblOh3H/iAIQZyj2x/fdUIcd4wilByVuUaz8x7QmRW3y1m10nTOX0rfslq3lZXqtfoE9UwqNJ0DbMOHq8jEJugIJVkxDRpTVKrna0cqreIz0zl/yeHzavjcjzR22TKdllwil4MH2BEa3A63PC6P6QwYwDk6QsmpWSs1O+duHb/ybjlq1pnO+UtpVWt1c1mp3qiN1V5JRaZzgG04R7c/ziBCHB+uEAqK4mr1VHapCpaPNrIm+J4oXjlHL66UxnfcTw84t2hV7VrTSYhwLJcRmTieIxT47xCdoaM2PC9HeWhfJPmjxNpKXTW9VMMz2uue3E76ctMC00mIcFwsiVwc0xEKuiVW6fFW7yt3eanplF3WqWKeRlXM06QOg3S/u17La1aZTkKE4xzd/hiAhDg2WINJHmezHin4VkPXviCrfIvpnD1yyA+Ttb/bo1HFQzSq6kfVNofW0l2IHHy4ikxcLIFpZ2Uv19XW84pZMc90yh4pWLtIT6xdpM/b99e9HmlJ9QrTSYhQHM8jF8d0mJTgatKTBV9pwKqXZC0P7z0vhy38QoOd0XqpeIieqV2savbwhCHc1GB/LIEV4pL5cAVDRuT9rJkZN2nY8kdl1Yf38GOrmMZaXTijVB+sq9ZhKV3ZHwRGcMEkMnminIpy8rELLW+vpC36uv3zunnDlYpZH97Dj98avOhrvTvve10e30UJ7njTOYhA7P8RuRiAwJTr8n/Q9JRrNbD8KVmN9hgWRDXX69xZ4zW2YoOOZX8QGMIAxP74zhLi+HCFlrZ1Q9RL11yvqE0/m84JitabVuiusnF6sSlFXRMLTOcgwvDhKnIlenjwFi0nLapRbxVN0lvNI5S1YqLpnKBwext15uwPNXbFGh3PRRO0MI7nkYtzdLS0QzLWaWbbh3X+qlvk2rLcdE5QpFet0S1lpXq9Nla92R8ELYxjuv1xlhDi+HCFlpIV06AxHcaFxYaogdKjfIZenfm57ogpUquYNNM5iBBJ0UmmE2AIy1qiJViWT7cVzNF3iVerT/lzsprsv+RjavU63cSmqmhhPNEZuThHR0vJ99RpYtF7erzqUiWt/sZ0TovoXDFPz8/4WPe785UTm2k6BxEiOTrZdAKCjAFIiEtPiDadAJtzWl7d3366voq9XCXLXpblbTSd1KIs+XTk/I81ZtFCnZ9Uomgn/80huFrHtTadAEMyE2JMJ8Dmjstcrdm59+v0iv/IWVVhOqfFdaqYp1EzPtZ9UfnK9rQynQOba8W/YxGLc3QEW7TDqycKv9Mn0ZepQ/lbsnzNppNa3IELP9cHC2ZpRGKxYl2xpnNgYy7LpUyGbbbHACTEtUnxmE6AjZ2evUJzcu7ScSvulaNmnekco2IbqnXJjFK9v6FeB6QUm86BTSW4E3gCJILlpXLyhuDoHF+jyYWv677KyxS/tsx0jnEH/fC5Plg4R/9K7CqPi8/SCI7chFzTCTCEc3QE04VtlmpW5q06ZPmDctRtMp1jVFRzvc6bOV6lqzbqaJa6RJBkxmXK6XCazkCQ8d0jxKXFRys+mjXDEVg9Eqv0ZfuXdduGK+RZN8d0TkjJ2bBMD5SN1yhvhjoltDWdA5vJScgxnQCD8tIYgCCw4lzNeqHoC41zjFD+8g9kyWc6KWREN9XpHzPHacyaLTospassWaaTYDMMQCJXbkqsHHxLQYD1T6nUd+3+p6vWXqPojQtN54SU9C2rdVtZqV6ri1OvpELTObCZ3HiO55GAAUgYyOUOEwRIkrtJrxZN1nu+kcpdMc50Tkjba+k0vTH7K90c20Gp0Smmc2ATfLiKbBzPEUhXt12oGanXa9/yJ2Q1VJvOCVmZlSt1V9k4vdiUoq6JBaZzYCM58dzUEKmiXA61TmRZSwRGRlSj3i2aqFcbRqjVyk9M54S0Livn6oUZn+hedwH7gyBguEkxMjAACQMsmYFAuCF/gaYlX6sB5U/LaqwxnRMWHD6vjps7SaVLFuvs5BK5HWx4iD3DxZLIxvEcgXBwxnrNyH9E/7f6Zrk3LzWdEzZ6lM/QqzM/1+0xRcqISTWdgzDnsBwc0yNcG47p2EOW5dOd7Wbrm4Qr1av8eVnNDaaTwsbBCz/T+z/M1iWJXdkfBHuM43lkYAASBtqyZAb2wKEZ6zSr7UM6d9Wtcm1ZbjonLMXXbdZl00s1utKr/VO6mM5BGOPuksjGAAR7It9TpwlFo/VE1Uglr/radE5YsuTTUfM/1tiff9K5ySWKckSZTkKYyvBkKMrJvz+RjHN07IkTWq/SnNx7dfLKO+WsXm06JyxFN9Xp/JnjNHb1Jh3JUpfYAwxAIgMDkDDABRPsjnaxdZpY9J4eq7pUiau/NZ1jC3nrFuvhsg/1tFqrML6N6RyEIZbAimxp8dGKi2KDPeyaaIdXTxR+p0+iL1PH8jdl+ZpNJ4W92PoqjZxeqtGbGjWEGxuwG9j/A5yjY3d0jq/RZ4Wv655N/1bc2hmmc2whY/Mq3VE2Tq81JKon+4NgNzAAiQzsrh0GeLwWuyLa4dVD7abqoLXPyyqvNJ1jS/0Xf6e3LafeKh6qxxortKmB/5+xc3gCBG1SY7Vg1RbTGQgTF7ZZokubRilq+Y+mU2ypzfqlemj9Un1b0Ed3x0frx6plppMQJrihAZyjY1fEuZr1eMEUDV79oqzl7NsVDMUrZuvFFdKHHffTA84tqqhdazoJYYKbGiIDA5AwwN0l2FlcKGk5Tl+zTpozUYd4kvVk5330+qZ5avI1mc5CCLNkccEEDECwU/ZJrdR/k95URsWnplMiwt6Lp+otbmzALuCGBnCOjp11ZdsfdX7tc3KXs29XSzj4h8na3xWj54uH6NmaRaptqjWdhBAW44xRuifddAZaAEtghYHclFg5WM4Qf2FgSqWmtvufrlp7raI2MvxoSUm1m3RV2Vi9U+XQwOROpnMQwlgvHBIXTPDXWkc36P2i8XqpfgTDjxa29caGscvKdUpyiVwW94nhz3FDAzie4+8ckL5B0/Mf00Wrb5J7M8OPlhTdVKd/zBynsWs268iUEvYHwZ/Kjs82nYAWwgAkDES5HGqdGGM6AyGoVXSj3iuaoJcbRihj5SemcyJauzU/6cnpE/WYI1f5cdwViO1xtygkLphgx5yWV/e1m6EpcZere/lLspobTCdFrKTaTbpmeqnernJpQHJH0zkIUW0S2Asu0qXFRys+mkEptpcbU6/xRR/o6ZqRSln1lemciNaqskJ3lJXq1YZE9UhsbzoHIYj9PyIHR+wwkZcWq5WVdaYzECIsy6c7C+bohMpn5SxfYzoHvzF40RT1d7j1evFQPVG/TFsaq0wnIURwtygkBiDY3unZK3St4wV5Vs4xnYLfaL9moZ5as1CTCwfqvphmLa1eaToJIYT1wiH5l7WcX7HZdAZChNvh0/3tpunw9c/LUb7BdA5+o+uK2XpphTSu0376r2OLVrE/CH7BDQ2RgydAwkRBerzpBISIE7NWaW7OPTpp5Z1yVjP8CEVub6NOn/2hSles1okpJXJaTtNJCAFFKUWmExACCltxPIdfr6QqfdX+Rd224Qp51jH8CFX7/fSV3ptfpn8nFCveHWc6ByEgISqB9cIhSWqXzvcE+J2bU67ZrW/TkcsfkKOW4UeoOnTBZI35cZ4uSuwqj5NVViB1TOVp30jBACRMFGcnmk6AYcUJ1fq88DXdtfHfil0303QOdkJK9XpdX1aqN6ujtXdSB9M5MKxzWmfTCQgBbVJjleRxm86AQSnuJr1e9IneaR6hnBUfms7BTnA3N+isWeM1duU6HZtSIofFKVQk65LWxXQCQkQXztEj3l5JW/RNu1G6Yf1VitmwwHQOdkJMY60unDlOY9ZW6fCUruwPEuE6p3KOHin49B4mSnKSTCfAkDhXs14s+kJjrZHKWz5Glnymk7CLOqxeoP/NmKQHXW3VJra16RwYwocrbNU1hwsmkermgvmamnyN+pX/T1ZTrekc7KK0qrW6paxUr9XFqVdSoekcGMIABFtxjh650qIa9VbRJL3VPEKtV35kOge7IbNype4sG6eXG5PVjf1BIpLb4VZhCp/nIgV7gISJTlkJcjstNTZz8TuSXNn2R51f+5zc5UtNpyAAhv74hQY7o/RS8VA9XbtY1U01ppPQQnLic5QUzUky/LrmJOmrn9abzkALOjpzjW6LflkJFd+bTkEAdFk5Vy+snKvxHffTA07WEo80DECwVbdcPttFolsL5urULc/JWV5hOgUB0G35TL283FJpp/30oKNSq2vXmU5CCylKKZLbwZP5kYInQMJEtMupDpkJpjPQQg5M36AZ+Y/qotU3yb2Z4YeduJsbdM6s8RpbsUHHsIxGxOBiCX6LO0YjR4e4Wn1a+Kb+u/kyJaxh+GE3h/zwy1riSawlHkmKU4tNJyBEJMdGKTfFYzoDLeTozDWak3e/zqi4Q84qhh92Ysmnwxd8qjE/LdBFSSUc0yMEKzREFq68hRHuMLG/PE+dPix6X09Vj1DyqimmcxBE6VVrdCvLaEQMBiD4LQYg9hfn9Oq5oq80wTlCBctHy/J5TSchSGIaa3XhjHH6YF2NDknpajoHQZYQlaA2iW1MZyCEcI5uf9tuZqi8VPFrppnOQRB5Gmp04YxSfbCuWoeyP4jtcY4eWRiAhJGuXDCxLbfDp0faf6/JMZerU/kbsnzNppPQQrqsnKsXZnyie6MKlO1pZToHQdIllQ9X+FXbtDg2Qrexy/N+0oz0GzSk/DFZDVWmc9BCWm9arnvKxunFpjR1Scg3nYMg4XiOP+Ic3b7inF49WzRFE1wj/TczsBdnxGi9aYXuLhunl5qSVZLYznQOgoQnQCILe4CEkW45yaYTEATn5pTrCt8oxaxYYDoFBh38w2fa3xWjUcVD9FzNItWyOa6tdE7jwxV+r2tOIvuA2MwB6Rt0T/xrSln1lekUGNSzfLpeW+7Q+52H6CHvWq2v32g6CQHE3aL4I87R7enSvJ91Uf1zcpf/bDoFBnUvn6lXyi2N7by/HtQmraljfxC7cFkudUjtYDoDLYgnQMJIx9YJinLyj8wu+iZv1jftRumG9VcpZgPDD0jRTXX6v5njNGbNFh3OI7e2kRWXpZSYFNMZCDHcMWofuTH1Gl/0gZ6uGcnwA5Ikh8+rY+ZN0tjFP+vs5BI22LQRBiD4o645iaYTEED7pW7UtIInNWLN9XJXMvyAf3+QI+Z/orGLFuj/kkoU44w2nYQAKEguUDT/LCMKV9PDSJTLoQ6t401nYA+lRTXq7aKP9EbTSLVe+ZHpHISgzMqVurNsnF5qTFY3HrkNezxaix1hH5Dw53b49GjhVH0ec5k6l78uy9tkOgkhJr5+iy6bXqrRlV7tl8yFcztgAII/So6NUptUNkIPd1kxDRpTVKpRdSOVVvG56RyEIE9Djf45o1Rj1tWy55cNcI4eeRiAhJkSHrENW5bl020Fc/Rd4tXaq3yUrKY600kIcd2Xz9TLMz/Tf2IK1Som3XQOdhMXS7AjDEDC2wW5yzSn9a06fPl/5ahjiSP8tbx1i/XI9A/1lLJUGM8G2uEqwZ2gNgn888P2WAYrfDktrx5oP11feS5XSfkrsryNppMQ4rbu+fVSU5q6JhaYzsFu4hw98jAACTNcMAlPx2au0ezc+3V6xX/krKownYMwsvWR2zGLftAFSSU8phmG+HCFHWmbFqfEGLZiCzf9Uyr1Xbtnde26qxW94QfTOQgzAxZ/q7fmfqur4zsrMSrBdA52Uee0zrIslifF9ljWMjydkb1Sc7Lv0rEr7pWjlr0dsGt6lE/XqzM/1x0xhWoVk2Y6B7uoOK3YdAJaGAOQMNOjTbLpBOyCDnG1+rToTd1feani15aZzkEYi22o1sUzSvXB+nodlMLBOlw4Lad6tOphOgMhqldb9oYJF62iG/Ve0QS92jBCrVZ+bDoHYczlbdKpsyeotLxCJ6aUyGk5TSdhJ3XP6G46ASGKc/Tw0iOxSl+1f0m3brhcnvVzTOcgjFny6cj5n2jMooXcrBhGYl2xKk7nmkqkYQASZjpnJSgtLsp0Bv5GnNOr54qmaIJzhArKR8uSz3QSbCJ74zLdVzZezzdnqHNCvukc/I3i9GIlcJcv/sQ+hSxtF+osy6e7283S1/FXqGf5C7KaG0wnwSaSazbo+rJSvVUdpb2TO5jOwU7on93fdAJCVK+2yYpxc2kl1CW5m/Ra0WS95x2hnBXjTefARrberDhmfZ0O5mbFkNc7s7fcDrfpDLQwjtJhxrIsDeCCSUi7LG+RZqTfqCHlj8pqqDKdA5vqvWyaXp/9pW7xFCktmrvIQ1W/rH6mExDCBnI8D2mnZFVobs7dOnHlXXJWrzGdA5sqWv2D/jd9kh505alNbGvTOfgTHpdHPTJ6mM5AiIp2OdW3gCVwQtkNBfM1Lfka9S9/WlZTrekc2FTWxnLdWzZeLzalqZj9QUIW5+iRiQFIGBrEBZOQtF/qRpUVPKFL1twgd+XPpnMQARw+r46d97HGLv5ZZyeXcBdDCOLDFf5Kp9YJSo/nUflQ0y2xSl8WvqL/bPy3YtfNMp2DCDH0xy81esFMjUwoVpwr1nQO/qBXZi+5nXzOwp/jHD00HZ6xTrPaPqhzK26Ta8sK0zmIED3Lp+u1mZ/r9pgiZcSkms7BH+ydtbfpBBjAACQM7VPEh6tQkhNTr7FFpRpVN0KpFV+YzkEEiq/fosuml+r9Tc0aksKG26GCu0XxdyzL0sBC7hgNFUnuJr1aNFnv+0Yqd3mp6RxEoKjmep07a7zGrtqoo1K6yhIbboeK/lksf4W/xjl6aGkXW6ePit7VI1Ujlbj6O9M5iECWfDpq/sca+/NPOp/9QUJGWkyaOqSw9GgkYgAShrKTPWqXEWc6I+I5La8eaD9dX3iuUNfyV2R5m0wnIcK1Wb9ED5V9qP8pU0XxeaZzIh53i2JnsA9IaNi6NMaA8qdlNdaYzkGES9+yWreXjdNrDYnqntjedA7EE534ezzVGRqiHV49VfitPnZfqqLyt2X5vKaTEOFi66t0yYxSvb+hXgeyP4hxfbP6yrK4wSQSuUwHYPcMKkzXz2urTWdErDOzV+hq63l5Vsw1nQJsZ+/FU/WW5dTbxUP1WGOFNjZUmk6KSNwtip3BHaNmHdFqre6IeVmJFVNNpwDbKV4xWy+vkEo77a//Oiq1unad6aSIxN2i2BmWZWmfwjSNnrHSdErE+mebJRrRNEpRy380nQJsJ2fDMt2/YZmm5fXW3clxmr9liemkiMQNDZGLJ0DC1D5FGaYTIlKvpCpNaf+ibtlwhTzrGX4gdDl9zTpxzkSNXbZMpyV3k8vBvLul8eEKOyMryaP2PNXZ4oriajWp6B09vOVSJa5h+IHQdtiCTzXmpwX6R1KJYlhCo8XtnbU3d4tip3CObsbAlEpNbfeMrlh7raI2MvxAaOu9bJpen/2lbvV0UHo0+4O0NG5SjFwMQMJU//Zpcjn4IN5SktxNer3oU73TPELZKz40nQPstMTaSl01faze3Wxpn+ROpnMiRmpMKneLYqexDFbL8Tib9b+irzXRdakKy99haQyEDU9Djf41o1Tvr6/XQSyh0aK4oQE7axBPdbaoVtGNGl30oV5uGKGMlZ+azgF2msPn1THzJql08U86L7lEUY4o00kRIS8hT1nxWaYzYAgDkDAVH+1Sz7xk0xkR4cZf1gXvV/6MrKZa0znAbilYu0hPTJ+oxx05KojLMZ1je3u35m5R7DzuGG0Zl+b9rJkZN2lY+SOy6jebzgF2S/bGZbqvbLyeb85Q54S2pnMiQv9s7hbFzslMjFGHzHjTGbZnWT7d3W6Wvom7XD3KX5TV3GA6CdgtsfVVGjG9VO9vbNABKV1M59je3ll7m06AQayJEsb2KczQ1CUbTWfYFuuCw44GLfpa/R0uvV48VE80LNfmhi2mk2yJiyXYFf3apcrlsNTk9ZlOsaX9Ujfq/qQ3lFbxuekUIGB6L5um18sderfLED3SvEYb6jeZTrKlgqQCtY5rbToDYWSfwgwtXF1lOsO2Tsqq0I3OFxS7cpbpFCBgcjcs0wMblmlq2710b5JH87csNZ1kSzzRGdl4AiSMsXFqcLSPZV1w2JvL26TTZk9QaXmFTkwpkdNymk6yHQYg2BUJMW71aJNsOsN2cmLqNbZorEbVjWD4AVty+Lw6fu4kjV2yVGckl7DfVxBwsQS7imWwgqMkoVpfFL6qOzderth1DD9gT32Wfq/XZ3+lWzxFSotOMZ1jKy7LxRMgEY4BSBjr0SZZqXGsFRgoHmezni78RpPcrAuOyJBcs0HXl5Xqreoo9UvuaDrHNorTirlbFLtsWJdM0wm24Xb49FD7afrCc7m6lr8qy9tkOgkIqoS6Sl0xvVTvbbY0OLmz6Rxb2b/N/qYTEGb6tUuTx83NRYGS4GrSS0Wf6wONVJvlY2WJp2Vhbw6fV8fO+1ili3/WOewPEjB7Z+2tpOgk0xkwiAFIGHM6LB1UzEW2QPhXmyWamXGLDlz+MOuCI+IUrf5Bz0z/SA+58pQXy6Zge+rg/INNJyAMHVbCf3uBcG5OuWa3vl1Hrbhfjtr1pnOAFpW/dpEemz5BT7DfV0CkxqSqb+u+pjMQZjxRTg3p1Mp0hi1c3Xahpqder0HlT8pqrDadA7SouPotunR6qUZvatSwlGLTOWHvoPyDTCfAMAYgYe6I7lww2RP7pFbq+4KndfnaaxW16SfTOYBRQ378UqMXTNdlCcWKd8eZzglbfLjC7miTGqvuLIO12/omb9Y37UbphvVXKWbDfNM5gFH7LPpa786bqivjuyjBzYbMu2tY3jA5HdzJj13HOfqeOThjvWbkP6L/W32zXJuXmc4BjGqzfqn+WzZez/ky1SmhremcsORyuDQkb4jpDBjGACTM9StIU0ZCtOmMsNM6ukHvdxivl+pHKL1isukcIGS4mxt09qzxGrNyvY5LKZHD4jCxK7qld1NWPCe92D1HdOPfnV2VEdWotztM0htNI9V65Uemc4CQ4fI26fTZH6p0xWoNZ7+v3XJwAU90Yvfs17GV4qPZk2dX5Xnq9GHR+3qiaqSSV31tOgcIKX2WTNUbs7/STbEdlMr+ILukX1Y/lr8CA5Bw53BYOrQry2DtLMvy6Z72MzUl7gp1X/aSrOYG00lASEqvWqOby0r1em2seicVmc4JGzz9gT1xWLcsWZbpivBgWT79p2C2vkm4Snste05WU53pJCAkpVSv1w1lpXqjJkZ9kzqYzgkbGZ4M9c7sbToDYSrG7dSwziyDtbPcDp8eLZyqydH/VqfyN2T5mk0nASHJ4fPq+LmTVLpksc5OLpHb4TadFBY4R4fEAMQWDu+ebTohLJySVaG5OXdr+Iq75ahZazoHCAudK+bp+Rkf676oAmV7OJH7K5YsHZh/oOkMhLGsJI9653FH1985ofUqzcm9V6dU3Cln9SrTOUBY6Lhqvp6dMUkPuNsqJzbTdE7IO6DtATwFiz1yeDfO0XfGBbnLNKf1rTp8+X/lqNtoOgcIC/F1m3XZ9FK9v6lZQ1K6mM4JaW6Hm+WvIEniuUwb2KttirKSYlRRyd2PO1KSUK3HM0erzfJS0ylA2Droh8+0nytGLxQP0f9qFqm2qdZ0Usjp0aqHWsfxRB72zOHdsvT9Ui4A7EhxQrWeyPxAbZaPlSWf6RwgLB2w8AsNdsXoxeIh+l/Nz6ppqjGdFJJY/gp7anCHDCXGuLS5rsl0SkjaO3mzHk59W5krJ5lOAcJWm/VL9ND6Jfq2oI/uiY/Wwir2zPmj/tn9lRiVaDoDIYDbWmzAsiwdVsK64X+U4GrSy0Wf6QONZPgBBEB0U50umDlOY9ds1pEpJbLEWj2/xaO1CIRDS7Lk4D+t30lwNemlos81ViOVt3wMww9gD0U31en8meM0Zk2ljkjpyvH8DzJjM9Ujo4fpDIS5KJdDBxVzY8wfpUU16p2ij/R64wiGH0CA7L14qt6aM0U3xnZUanSy6ZyQwjk6tmIAYhMsg/V717RdqOmp12uf8qdkNVabzgFspVVlhe4oK9UrjUnqltjedE5IcFgOHdD2ANMZsIFWiTHqk59qOiNkXJvvP54PKn+S4zkQYK0qK/SfsnF6uTFZ3RLbmc4JGQfmHyiLDZkQAJyj/8qyfLq93Vx9l3CVepePktVcbzoJsBWHz6sT5n6ksUuW6kz2B5HkX/5q/zb7m85AiGAAYhM92iQrLzXWdIZxB2es14z8R/SP1TfLtZnH/4BgKlk+Sy/PnKw7owvVKibddI5RPVv1VKtY9khBYHDBRDokY51mtn1YF6zieA4EW7flM/XyzM/0n5hCtYpJM51j3MH5LH+FwBjYPk2pcVGmM4w7LnO1Zufer9NW3sHeXUCQJdRV6vLppRpd6dV+yZ1N5xg1IHuAEqISTGcgRDAAsZHDukXuMlh5njpNKHpfT1SNVPKqr03nABHDkk+HL/hEYxct0P8llSjGGW06yQgerUUgHdK1tZwRug5Wu9g6TSx6T49XXaqk1d+YzgEihiWfjpj/icYsWqjzk0oUHaHH85z4HHXL6GY6Azbhcjp0cNfIXQarU3yNPi18U/dVXqb4tWWmc4CIkrdusR6ZPkHPqLWK4vNM5xjBOTp+iwGIjRzRLfLuGI12ePV44XeaHP1vdSx/Q5av2XQSEJE8DTX654xSfbC+TgenFJvOaVFuh5sPVwio9PhoDWgfWXdhe5zNeqrwG33svlQdyt/ieA4YEttQrUtmlGr0hnodEGHHc4mLJQi8SDxHj3N6NaroS413jFTB8tHs3QUY1G/xd3przte6Ia6TUqKSTOe0mHh3vIbmDTWdgRDCAMRGumQnqiQncr6hXZC7TLMyb9Ohyx+Uo26j6RwAkrI2luvesvF6oTldXRLyTee0iGFthyk1hj0bEFin9I2cO7X+1WaJZmbcooOWPyyrvtJ0DgBJuRuW6YGy8XrOl6kOEXLnqCVLx3c43nQGbKZfu1Tlp0XOUtX/brtIM9Jv0P7lj8tqqDKdA0CS09es4XMmqnTpMp2R3E0uh8t0UtAd0f4Ixboj53sv/h4DEJs5vV9b0wlBt3fyZn3b7jldu+5qRW/8wXQOgB3otaxMr83+Urd6Oig92t7DgRM7nmg6ATZ0QJdMtU6MMZ0RVINTN+n7gqd0+dprFbXpJ9M5AHagz5KpenPO17ohtqPt7xwdkDNAbRLamM6AzViWpVP3tv85+pC0jSoreEIXr75B7srFpnMA7EBCXaWumD5Woyul/VLsvT8I5+j4IwYgNnNkj2wledymM4IiI6pR7xR9pNcbRyhz5STTOQD+hsPn1THzJmns4kU6N7lEUQ77bQJZmFyo3pm9TWfAhlxOh07qa88LcVkxDRrTYZxeqBuh9IrPTOcA+BtOX7OGz/1IY5ct02nJJba9c/SkjieZToBNnbBXrmLc9rz0khNTr9KisXq2doRSK74wnQNgJ7Rd97MeKZugp5Slwnj7nW/0zuyt9sntTWcgxNjzKBzBYtxOndA713RGQFmWT/8pmK1vEq5S7/JRsprrTScB2AVx9Vs0cnqpRm9q1NCULqZzAoo7SxBMp/TNk8tGm6E7La8eaD9dX3kuV8myl2V5G00nAdgFibWVump6qd7Z4tDA5E6mcwIqOy5bg3MHm86ATSXHRtluLxCn5dWDhWX6wnO5istfleVtMp0EYBcNWPyt3p7zja6z2f4gnKNjRxiA2NBp/drKssn1kuNbr9bs3Pt0SsWdclavMp0DYA+0Wb9UD5Z9qGdtsp54rCtWR7Q/wnQGbKxVYowOLM40nREQZ2av0JzsO3XsinvlqF1nOgfAHmi35ic9OX2iHnPkKj/OHhd1T+h4ghwWp8YInjP655tOCJgzs1dobvZ/dPTy++SoXW86B8AecPqaddKcib885Rn++4OkxqRqWN4w0xkIQXzKs6H89DgNKsownbFHOsXXaHLhG7p302WKXzvddA6AAOprk/XED293uOLccaYzYHOnhfneXr2StmhK+xd1y4Yr5Fk/13QOgAAavGiK3p03TZcnFCvBHW86Z7e5HW4dW3Ss6QzYXElukrq3STadsUd6JVVtO6bHrJ9nOgdAAPmf8hyrdzdbGpwcvvuDHFN4jNxOe24LgD3DAMSmwnUz9DinV6OKvtJ4x0jlL39flnymkwAEwW/XEz89TO80Gd5xuOkERIAB7dNV2Cr8LiymuJv0ZtHHeqd5hLJXfGg6B0CQuL2NOnPWeI1dsUbHpZSE5VMUB7Q9QKkxqaYzEAHC9Rw9xd2kN4o+5ZgORICCtYv02PQJesrKVvv48Fpe32E5dELHE0xnIESF3ydU7JShnVopJ9ljOmOXXJ73k2ak36D9yx+T1VBlOgdAC0isrdSVYXinSc9WPdUxtaPpDESI0/YOryXjbi2Yq++Trlbf8mdlNdWZzgHQAlKr1+nmslK9URur3klFpnN2yUmd2PwcLePwbllKiQ2vO5NvKpivqcnXaO/yZ2Q11ZrOAdBCBvz8jd6e+52ujeus5DBZtWFg9kDlxOeYzkCIYgBiUw6HpVPC5ILJkLQNKst/XP9ac6PclYtN5wAwYOudJk9a2WoXBnea8PQHWtJxvXMVG+U0nfG3jstcrTlt7tMZFXfIWbXSdA4AAzpVzNPzMz7Wve4CZXtamc75Wx1SOqhnq56mMxAhYtxODd+rjemMnXJEq7WanfeAzq64Ta4tK0znADDA5W3SyXMmaOyycp2aXCKXFdqrNrD5Of4KAxAbO6lPG0W5QvcfcU5MvUqLxujZ2pFKXfWl6RwAIWDgz9/onbnf6eq4zkqMSjCds0OpMak6sO2BpjMQQRJi3DqqR+huNLx13677Ki9T/Noy0zkAQsDBCz/TBwvn6J+JXeVxxpjO+VNcLEFLO61fWzks0xV/rn1srSYVvaOHt1yqhDXfm84BEAKSajfp6umleqfKoX2SO5nO2aHsuGwNyh1kOgMhLHSvjmOPpcVH69CurU1nbMdpefVQ+zJ94blcxeWvyfI2mU4CEEJc3iadOmeCSssrdFJKNzmt0Lrz/diiYxXljDKdgQhzer980wnbiXM16/miL9m3C8AORTfV6f9mjtMH66p1aEpX0znbiXfH6/B2h5vOQIRpkxqrfTtkmM7YjsfZrGcKv9Ek96UqLH9Hls9rOglAiGm35ic9MX2innDkhNyqDSd1Oiks9yFDy7F8Ph9nqzY2e3mljng0dJ6uOCt7ua62nlfM+nmmUwCEiZ8yO+qe7Dx9vekH0ynyuDwaf+x4pXnSTKcgAp3+7Lf64sd1pjMkSVe2/VHn142Su3KJ6RQAYWJGmx66OzVJczaHxpK353Y9VyN7jzSdgQj01U/rdOr/vjWdsc3FeYt1ccNzitq0yHQKgDDR5HDpjeKheqJhhSobNhttSY5O1oTjJijWHWu0A6GNAUgEOOf5qfpkwRqjDb2Stuix9HeVtWKC0Q4A4Wty4T66L6ZJS6vN7S1wWufTdFXfq4y9PyLbtKUbdNwTXxttODB9g+6Jf1XJq6YY7QAQnnyy9H7nIXrIt17r6jcY6/C4PJpw3ASlxKQYa0BkO+6JKZq2dKPRhsGpm/RA0htKr/jMaAeA8FUZm6LHOw3Um5vmqclnZnWXf/X4l/7R/R9G3hvhgwFIBJhZvklHPfaVkfdOcTfpyfzP1bfiFVlNtUYaANhHozNKrxQP0dN1y7SlsapF3zvaGa3xx45XRmzoLVuAyHHKM99oyqL1Lf6++Z46PZk7QR2Xvy3L19zi7w/AXqqjE/R058F6ecsPavA2tPj7n1V8lv69179b/H2BrT5fuFZnPPedkfduHd2gp/I+VrcVr8vyNhppAGAvP7cq0j05Bfpq04IWfd8Ed4ImHD9BCSG6fyhCBwukRYDubZKNrDN6c8F8fZ90tfYu/x/DDwAB4W5u0FmzPtSYlWt1XEpJi67zeUzhMQw/YNwlQ4ta9P2iHV49UfidPom+TJ3K32D4ASAg4uq36NIZpRq9qUlDUrq06HvHOGN0VvFZLfqewB8N7pChnnnJLfqeTsure9vN0JS4K9S9/CWGHwACpt2aH/Xk9Il6zJGjgricFnvfUzqfwvADO4UnQCJE2bKNOvbxllmu4qjMNbo9+mUlrPm+Rd4PQORakNVFd2dm6fvKH4P6Pm6HW+OOHafWca2D+j7Azjjxqa/17eLgLx1zYZulGtk0StEbFwb9vQBEtm8K+urueLd+qioP+nud3uV0XdnnyqC/D/B3Pv1hjc4eNbVF3uvUrJW6zvmCYtfNbpH3AxC5mhwuvV48VE80LNfmhi1Be584d5wmHDdBSdFJQXsP2AdPgESIXnkpGlSUHtT3KIqr1ceFb+vBzZcx/ADQIjpVzNOoGR/rAXe+cmIzg/Y+RxUexfADIWNEkJ8CGZhSqant/qer1l7D8ANAi+i3+Du9PecbXRvXSclRwbuQEe2M1jldzwna6wO7Yv+OrdQ9N7gX7rolVunLwld0x8bLGX4AaBEub5NOmz1BpeUVOimlm5yWMyjvc2LHExl+YKcxAIkgI4cF54KJx9msZwq/1kTXpWq//F1ZPm9Q3gcA/swBCz/XBwtm6ZLEYsW6YgP62i7LpfNKzgvoawJ7YkBhuvrkB37j3tbRDXq/aLxebhihjJWfBPz1AeCvOH3NOnnORI1dVq5TkkvkslwBf4/jio5Tuie4N4UBu2JEkM7RE1xNeqXoM73vu1S5y0uD8h4A8FeSazbourKxers6SgOSOwb0tT0uj84sPjOgrwl7YwASQXq3TdXAwrSAvuaIvJ81M+MmHbD8EVn1mwP62gCwK6Ka63X+zPEau3qTjkwpkSUrIK97ePvDlRPfcuuYAjsjkHuBbLcmeHPLb0gMAFsl1W7SNdNL9XaVS/0DeMEkyhHF0x8IOUM6ZaokJ7B3MF+b/4Omp16ngeVPyWqsDuhrA8CuKlz9g56a/pEec+QqPy47IK95fIfjlRqTGpDXQmRgD5AI893iDRr+1Nd7/Dr7pm3UA4lvKq3iswBUAUDgzckp0d3p6ZqxedFuv4bTcmrM0WPUJrFNAMuAwDj28a9UtmzTHr0Ga4IDCHWfFg7UfdFNWlZTsUevc2LHE3V9v+sDVAUEzkfzVuv8F/d8CelDMtbprthXlbT6mwBUAUDgNTrceq14qJ6sX6YtjVW79RrRzmiNP3a8MmIzAlwHO+MJkAjTtyBV/dvt/lMgraMb9EHROD1fO5LhB4CQ1nXFbL0081PdHd1erT279+HokIJDGH4gZF28B0+B9Eis0peFL7MmOICQt/9PX2n0gum6LKGL4t1xu/Uaboeb5SwRsg7okqni7MTd/v35njpNKHpPj1ddyvADQEhzext1xuwPVbpitU5MLtmt/UGOKTyG4Qd2GQOQCLQ764w6La/uazdDU+IuV7fyl2V5G4NQBgCBd+iCT/XBT/N1YVKJYpzRO/37nJZTF3S7IIhlwJ7Znc1Tk9xNeq3oU73nG6nc5eOCVAYAgeVubtDZsz7UmJXrdUxKiRzWrp3GHlV4lFrHtQ5SHbDndmdpy2iHV08UfqdPoi9Tx/K3ZPmag1AGAIGXUr1e108v1VvVUeq3C8tdxjhjdG7JuUEsg10xAIlA/dqlaZ/Cnd/879SslZqTc5eOX3mPHDXrglgGAMHhaajRRTNKNWZdrQ5J6bpTv+fYomNVkFQQ5DJgz1x1cKed/ntvyp+vacnXqH/5M7Iaa4JYBQDBkV61RreWlerVunj1TCrcqd/jcXl0YfcLg1wG7JkDu2Sq2y7c1PCP3GWalXmbDln+oBx1m4IXBgBBVLT6Bz0z/SM94sxT253YH+T0LqdzQwN2C3uARKj5FZt12MNfyPsX//S7JVbp8YzRyl3BHaIA7GV6m566OzVRczcv3uGvx7njVHpMqdI8u79kINBSznthqibNX/Onv35U5hrdHv2yEtbs+friABBKxnfaTw84tmhV7do//Xsu7H6hLupxUQtWAbtn6pINOuHJv96vs39KpR5KeVutVn7cQlUA0DIaHW692nWYnqpbusP9QdJi0lR6bKnidnM5TEQ2ngCJUJ2zEnVinx2va5/gatKrRZP1vm8kww8AttSzfLpem/m5bvN0UEZM6na/fl7JeQw/EDauObSzXA5ru5/vEFerTwrf0oObL2P4AcCWDlkw2b/MZWLXHS5z2crTSmcVn9XyYcBu6JOfqkNLdnxnc0ZUo97tMFGvNoxk+AHAltzeRp05a7zGrlij4Snb7w9yUY+LGH5gt/EESARbu6Ve+983WVX1Tdt+7rr8BTq7+jm5tiw3WAYALacmOl7PdNlXL27+QQ3eBmXHZeuDYz5Q9C7sFwKYdtP7c/TC10slSXFOrx5u942GrHlBVv0Ww2UA0DJWJefq/nYl+nDj3G0/d+uAW3VM0TEGq4BdU76hRkMf+EwNTV5JkmX5dEfBHJ1Y+Zyc1asN1wFAy1mY2Un3ZOfq200LVZhcqLePeFtOx65vmg5IDEAi3mOf/qR7J/ygQzLW6a7YV5W0+hvTSQBgxPLUPD2QX6xhXc/Qoe0ONZ0D7JKN1Q3a995PdX6rBfq/+lFyV+54eTcAsLuyvF66Kzlecnv0+uGv7/KG6YBpd46br6c+/1kntF6lm90vKm7tDNNJAGDMJ0X7KGHfa9Qndx/TKQhjDEAiXF1js3566wYV//ikLF+z6RwAMKvN3tI5EyRr++WEgFC3ceqbSik933QGABjntRxaf+4EZeT2NZ0C7LItdY1a9da/VbjoRVnicg2ACFd0oHTqW6YrEOa4HSbCxbid6tqzP8MPALAc0qH3MvxA2ErpdayU0cl0BgAY5+hyNMMPhK2EGLeKivsw/AAAZ5R08F2mK2ADDEAgdT5Caj/UdAUAmNXrTCmru+kKYPc5XdIh95iuAACz3HHSQXeYrgD2TM/TpJy9TFcAgFn9LpLS2puugA0wAIHfIff4J6sAEIk8KdLQG01XAHuu3b5Sl6NNVwCAOYMvlxKzTVcAe8aypMPu8z+hDACRKCFLGnyF6QrYBEdT+KUXSv0uNF0BAGbsf50Um2q6AgiMg+6Q3LGmKwCg5aW2l/r/y3QFEBjZPaVeZ5iuAAAzDrhVio43XQGbYACCXw2+UkrgbikAESarh7TXOaYrgMBJyvXfAQ0AkeaQeyQXT7XDRobe5H9SGQAiSbv9pW7DTVfARhiA4FfR8dLhD5iuAICW44ySjn5CcjhNlwCBNWAEe9oAiCzdT5GKhpmuAAIrNpUNgAFElqgE6ciHTVfAZhiA4Pc6HiJ1P9l0BQC0jH2vlDK7mK4AAs/p8g/32N8LQCRIyJIOvtN0BRAc3U+SOh5qugIAWsYBt0jJeaYrYDMMQLC9g+9iKSwA9pfVQxp4qekKIHgyi/3LWwKA3R3xsORJNl0BBM/hD7IUFgD7K9iX5akRFAxAsD1PMo+bAbA3Z5R09OP+u+QBO9vnUv+wDwDsqsepUocDTVcAwZWQKR1yr+kKAAieqHjpyEckyzJdAhtiAIIdKzpA6nma6QoACI7BV/rvjgfsjqWwANhZQjZLXyFydDtB6nS46QoACI5hN0spbU1XwKYYgODPHfQfKTHXdAUABFZWd/9d8UCkyOwi7XuV6QoACLwjH5FikkxXAC3n8Ael2DTTFQAQWPmDpD7nma6AjTEAwZ+LSWIpLAD24oz65W54lr5ChNnnUim7p+kKAAicnqdJRcNMVwAtKz5DOpSlsADYiDuOpa8QdAxA8NcKh0q9zjRdAQCBMfgKlr5CZHI4fxn+RZsuAYA9l5jjf1odiERdj5O6HG26AgACY9hNUmqB6QrYnOXz+XymIxDi6rdIjw+QKpeZLkEIeWJqg574vkFLNnklScWtnLpxcJQOKXJLkv4xplaTFjdp5Raf4qMsDWjj1N3DotUp3fmnr3nz5Dq9PqdJ5Zu9inJKvbOcumNItPbO9d+tX9/k03lj6vT+gka1jnfo8cNiNKzdr3fy3/tVvZZVevXIoZ4g/skRtlp3k87/lKc/ENm+uF/6+FbTFQghHM8Rlk59h6c/ENmq10uP7y1VrzVdghASjGP6b/3f2Fo9Na1R/z0oWiP7+W+q4ZiOPdJ2oHRWKU9/IOh4AgR/LzpBOuoRSXxDwq9yEy3dNSxa0y6I0/cXxGlIvlNHvV6ruWuaJUm9s50adZRH8/8Zrwmnxcrnkw58qUbN3j+fuXZIc+rRQ2M0+8J4fXl2nPKTHTrw5RqtrfZ/gHt6WqOmrWzW1+fG6YLebp3yTq22znAXb/TqmbJG3TE0Jvh/eIQfZzRLXwGSNHCklNPbdAVCCMdzhJ2epzP8AOLSpMPuN12BEBOMY/pW781v1DfLm5Wd8PvrQhzTsduik6SjHmP4gRbBAAQ7p91+Uv9/mq5ACDmio1uHFrlVlOZUhzSn7hgao/go6Zvl/g9XF/SO0uC2LuUnO9Qry6nbh0SrfLNPSzb9+YerU0rcGtbOpXYpDhW3cuqBg2K0uV6atdp/wWT+umYd2dGl4lZO/bNPlNbW+LSuxv96F5bW6u5h0UqM5uCJHTjkbql1V9MVgHkOp3Tcs2wajG04niOsZHTyH9MBSF2OknqcZroCISQYx3RJWrHZq4vH1+mVYz1y/+EqIsd07LajH2PpK7QYBiDYecNukfL6m65ACGr2+vT6nEZVN0r922z/+Gx1g0+jpjeqINlSm6Sd+/DT0OzT09MalBQtdW/t/1bVPdOpL5c1q7bRpwmLmpQVbyk91tIrsxoV47J0TGd3QP9csInuJ0t7nW26AggdqQXS0U+KJzvxRxzPEdKi4qXhL0lRcaZLgNBx2H1S6xLTFQhBgTqme30+nf5era4YEKXiVtu/Dsd07JZ+/5Q6H2G6AhGEtUCw85wu6YTnpScHSdVrTNcgBMxe3az+z1arrkmKj5LeO9GjLhm/fih6fGqDrvyoTtWNUsc0hz46PU5Rzr++YDJ2YaNOertWNY1SVoKlj06PU3qs/4LJOT3dmrW6WV0er1J6rKU3T/BoY5104+Q6TT4zTtd/UqfX5zSqfapDzx3pUU4iM96I16qLdNgDpiuA0NPpUGngJdJXD5kuQQjgeI6wcOTDUkYH0xVAaHF7pOEvSk/tJ9VXmq5BCAj0Mf3uLxvkckiX7B21w1/nmI5dlttXOuAW0xWIMGyCjl23+AvpxaMkX7PpEhjW0OzTskqfKut8enteo/43vVGfnRW77QNWZZ1Pa6q9qqjy6b4pDVqxxauvzolTjOvPP2BVN/hUUeXTuhqvnpnWqE+WNOnb8+LUKm7HH5TOfr9WPTIdKkhx6NqP6/XteXG656t6zVnr1TvDY4Py50aYiIqXLpgspReZLgFCk7dZeuFIaemXpktgGMdzhLy+/5AOvcd0BRC6FpRKr58qics7kS6Qx/RpK5t12Ks1KvtHnLIT/Mfv/Ae3aGS/qG2boO8Ix3T8qdg06R9fSEk5pksQYRi9YtcVDJKGXG+6AiEgymmpMNWh3tlO3TksRt0zHXrom4Ztv54UY6kozanBbV16e7hHC9Z59d78pr98zbgo/2v2y3Xp2aM8cjksPVvWuMO/99PFTZq7pln/6hulyUuadWiRS3FRloYXuzV5CQO6iHfkwww/gL/icErHPyfFZ5ougWEczxHScvtIB91hugIIbZ0O8z/ZiYgXyGP6F8uatKbap7z/Vsl162a5bt2spZU+/XtivfIf3LLD38MxHX/KckjHPs3wA0awBBZ2zz6XSsunSj+MM12CEOL1SfV/8pnG5/N/1Tfv2l1JXp9vh7+nrsmnf47zb8TmdFhq9vpfX5Iavf41TxHB+l4gdT3OdAUQ+hIy/UOQF47kyU5sw/EcISM2zb8Er5M15IG/NfQmaUWZtOQL0yUIIXtyTD+9m1vD2v3+suFBL9fo9G5und1j++/LHNPxlwZdLhUOM12BCMUTINg9liUd/YSUkm+6BIZcM6lOny9t0pJNXs1e3axrJtVp8pJmnVri1s8bvbrzi3pNW9msZZVeTSlv0glv1crjtnRo0a8foDo9WqX35vvvBq1u8Onaj+v0zfImLd3k1bSVzTrn/Vqt2OzTCV22/3B122f1OrTIpZ5Z/kd5B+Y59e6CRs1a3axHv2vQwDzmuxErZy/pQO4UBXZa/j7S0BtMV8AQjucIWdvuFM01XQKEh21PdrY2XQJDAn1MT4t1qGsr5+++3A6pdbyljunbb4jOMR1/qmBfab9rTFcggvHdB7vPkywNf0l69gCpqc50DVrYmmqfznivVhVVPiVFW+qW6dCE02J1QHuXVm7x6otlzXrw2wZtrPUpM97S4LZOTTkn9ndrf/+w3qvKev9dIE6HtGCdVy/MrNW6Gp/SPJb65Dj1xdlxKm71+w9Xc9Y06815TZrxj7htP3d8F5cmL3Fp0KhqdUxz6NXjWFs0InlS/XeKuna8SR+APzFwpFT+HU92RiCO5whZg6/kTlFgV8W38n8WfuFwyfvXSxXCfgJ9TN8VHNPxpxKypOOelRzcgw9z2AQde67sJemDf5muABDxLOnUt6UiLpYAu6V2k/T0vtLGJaZLAES69kP9x3QulgC7Z8oj0kT27QRgmMMlnTlWatvfdAkiHJ8osed6nS71PN10BYBIt/91DD+APbH1yU43d+cBMCgpTzr2GYYfwJ4YcLHU+UjTFQAi3SF3M/xASOBTJQLjsAek/EGmKwBEqp6nSfteYboCCH9Z3fzrh1vbr+sMAEEXkyyd9rYUl2a6BAh/xzwpZfc0XQEgUg24ROpznukKQBIDEASKK0o66RWpVRfTJQAiTfsh0uEPma4A7KPjIf67tQCgJTl/OZ/I6Gi6BLCHqDjplLeklHzTJQAiTfEx0gG3mq4AtmEAgsCJSZJOfUtKyDZdAiBSZJZIw1+UnC7TJYC99D1fGjjCdAWAiGFJRz8h5e9jOgSwl/gM6dR3JE+q6RIAkaJNP+mYpyTLMl0CbMMABIGVlCud+qYUlWC6BIDdJeb4v99E8/0GCIpht0hdjzddASASDLtZKuH7DRAU6YXSya9LrhjTJQDsLq1QOvk1yRVtugT4HQYgCLzWJdKJL0oOt+kSAHYVneh/4iyRJ86AoLEs6ejHpbYDTZcAsLM+50n7jDRdAdhb3t7Ssc9IFpeAAARJbLr/HD2WJ84Qejj6ITjaD5GOfNh0BQA7cril4S9ImcWmSwD7c0X71+RPZ01+AEHQ4RDpkHtMVwCRocuR0kF3mq4AYEcuj/9Js9R2pkuAHWIAguDpcYq0/3WmKwDYzREP+YesAFqGJ0U67W0pPtN0CQA7ye4lHf+c5HCaLgEiR7//k/r/y3QFADuxHNKxT0tt+pguAf4UAxAE175XSr3ONF0BwC72vVrqearpCiDyJOdJp7wpRcWbLgFgByn5v3xPiTVdAkSeA2+Xio8xXQHALg683f+EGRDCGIAg+A57QCo60HQFgHDX83Rp/2tMVwCRK7uHdMLzksNlugRAOPOkSqe+I8VnmC4BIpNlScc8JeUNMF0CINwNuETq/0/TFcDfYgCC4HO6pBNekPIHmS4BEK66nyIdwb5CgHFFB/yyZA1DEAC7wZMqnfG+lF5ougSIbK5o6ZTX/UvRAcDu6P8v6cDbTFcAO4UBCFpGVKz/MXeGIAB2VfeTpaMekxwcsoCQ0OUohiAAdt3W4UdWN9MlACQpJkk6Y7SU09t0CYBw0+8i6aA7TFcAO42rSWg5W4cgBYNNlwAIF91Plo56nOEHEGoYggDYFQw/gNAUkySd/p6Us5fpEgDhYu8LpYPvNF0B7BKuKKFlMQQBsLO6ncTwAwhlDEEA7AyGH0BoYwgCYGf1/Yd0yF2mK4BdxlUltDy355chyL6mSwCEqm4nSkc/wfADCHUMQQD8FYYfQHiISfQPQXL7mC4BEKr6nC8deo/pCmC3cGUJZrg90ilvSO32M10CINSUDJeOfpLhBxAuGIIA2BGGH0B4iUmUTntXyu1rugRAqOlznnTYfaYrgN3G1SWY4/ZIJ78utdvfdAmAUFEyXDrmKYYfQLhhCALgtxh+AOEpJlE6/V2pzd6mSwCEir3OkQ5l+IHwxhUmmMUQBMBWJSdIx/DkBxC2GIIAkBh+AOEuOkE67R2pTT/TJQBM632WdNgDkmWZLgH2CFeZYJ47xj8EKRxmugSAKb3O+OXJD6fpEgB7ostR0gnPS64Y0yUATIjPZPgB2MHWIUjeANMlAEwZOFI6/EGGH7AFy+fz+UxHAJKk5kZpzAhpxiumSwC0pP2vl/a9wnQFgEBa9o302klS7UbTJQBaSnoH6dS3pZS2pksABEpjnfTeBdK8902XAGgplkM65B6p7/mmS4CAYQCC0DP5LmnynaYrAASbwy0d+YjU42TTJQCCYd2P0svHSZuWmi4BEGx5A6STX5U8KaZLAASazydNvF76+lHTJQCCzeWRjn9W6nSY6RIgoBiAIDTNeFX64BLJ22i6BEAwRCdKw1+U2rP/D2BrVWulV4dLK8tMlwAIluJj/Xt4uaJNlwAIpm+fkj68WvJ5TZcACIbYNOnkN6Q2fUyXAAHHAASh6+fJ0hunS/WbTZcACKSELOnUt6TWJaZLALSEhhrp7XOkheNNlwAItAGXSAfcyvrgQKRYUCq9c57UWGO6BEAgpeRLp70rpbU3XQIEBQMQhLbVc6VXTpA2rzBdAiAQWnXxDz+Sck2XAGhJ3mZp3BXS98+aLgEQCJZTOuRu1gcHItHyadJrJ0rVa02XAAiE7F7SKW9K8RmmS4CgYQCC0Ld5pfTKcGn1bNMlAPZE/iDppFekmCTTJQBM+fK/0qRbJPHxEwhb7ljpuGelToeaLgFgyobF0ivHS+t/Ml0CYE90OFg6fpQUFWu6BAgqBiAID/VbpDfPlBZ9bLoEwO4oOUE66nHJFWW6BIBps9+WRl8kNdebLgGwq+Iy/OuD5/Y2XQLAtJoN0uunSMu+Nl0CYHf0Pks67AHJ4TRdAgQdAxCEj+YmqfRSqexF0yUAdpblkPa9yv/F+uAAtlrylfTmGVLNOtMlAHZWRmfp5Nek1ALTJQBCRVO99N7/SXPfNV0CYGc53P79u/pfZLoEaDEMQBB+pj0vjb9KaqozXQLgr3hSpeOekQqHmS4BEIo2r5TeOksq/9Z0CYC/UzJcOuJBKSrOdAmAUDTlUWnSTZK3yXQJgL+SkCWd8LyU1890CdCiGIAgPFXM9N85unGJ6RIAO5LdSxr+opTcxnQJgFDW3Ch9dKP0zeOmSwDsiDNaOvhOqc+5pksAhLpl30hvnS1tWWm6BMCOFAyWjnuOzc4RkRiAIHzVVfrXEF8w1nQJgN/a61zp4LvY7wPAzps7Wnr/X1LDFtMlALZKzpNOeEHK6WW6BEC4qF4nvXOe9POnpksAbGNJ+4yUhtzAfh+IWAxAEP6+elj6+BYetwVMc8dKRzwkdRtuugRAOFr3k//pzjVzTZcAKDpIOuZJKTbVdAmAcOP1Sp/dLX1+j+Tzmq4BIltMknT0k1KnQ02XAEYxAIE9LP1aevtsaUuF6RIgMqUVSSe+JLXqbLoEQDhrqJFKL5Nmvma6BIhMllPa/1pp0L8lyzJdAyCc/fSx9O75Us160yVAZMoskU58UUptZ7oEMI4BCOyjaq30zrnS4s9MlwCRpcvR0lGPStEJpksA2MW056VxV0rN9aZLgMgRlyEd96zUbl/TJQDsonKF9NZZ0vLvTJcAkaXHqdJh90tuj+kSICQwAIG9eL3S5P9In98niX+1gaByRknDbpH6X2S6BIAdrZwhvXWmtHGJ6RLA/vL6S8ePkhKzTJcAsJvmRumjG6VvHjddAtifO9a/H2fvM02XACGFAQjsadGn0gcXS5XlpksAe2rdzb82eGax6RIAdla3WZp4nVT2oukSwJ6cUdJ+V0sDR7IxKoDgWjBOGjtSqlptugSwp7z+0tGPs+QVsAMMQGBf9Vukidf7l9EAEBgOtzT4cmnQ5ZLTZboGQKT4aZL0wQhp83LTJYB9ZPWQjn5CyuxiugRApKjZII2/Spr9pukSwD5cMdKQG6R+F0kOh+kaICQxAIH98TQIEBiZXf0XSrK6mS4BEInqNksTrpGmv2y6BAhvzihp3yulgZdyMwMAMxaUSmMv5WkQYE/l7OVfmSG9yHQJENIYgCAy1G+RJt4gTRtlugQIPw6XtM+l0r5XSU636RoAke7Hj6QPLpG2rDRdAoSfrO6/PPXBEpYADKvd6H8aZNYbpkuA8OOMlva/RhpwCUtYAjuBAQgiy8+TpfcvliqXmS4BwkOrLv51RLN7mi4BgF/VVUofXivN4GkQYKc43P6nPva5jKc+AISWBeN+eRpklekSIDxk9fA/9dGqs+kSIGwwAEHkqa+SPrpB+n6UJP71B3bIckoDR0j7XSO5okzXAMCOLZwojRnB0yDAX2ndzf/UR+uupksAYMdqN0rjr5ZmvW66BAhd3MwA7DYGIIhcP0/27w2yiadBgN9p1UU66lEpp7fpEgD4e7WbpAnXSjNeMV0ChBZnlDTo39Kgy7lQAiA8/DBeGjOSp0GAP8ruJR35sNS6xHQJEJYYgCCyNVRLX9wvTXlUaq43XQOYFZ3kX0e0z/lcKAEQfpZ8JY2/Ulo9x3QJYF7hMOngu6X0QtMlALBr6iqlT++Upj4jeZtM1wBmxaZJQ2+Sep0hWZbpGiBsMQABJGnDz9KH10gLPzRdAhhgST1OkYbdIsVnmI4BgN3nbZamPit9erv/AgoQaZLbSgffKXU6zHQJAOyZNfP9NzYs/tx0CdDyLIe01znSkOslT4rpGiDsMQABfmvhROnDq6UNi0yXAC0jq7t06H1Sm76mSwAgcKrXSR/fIk1/WfJ5TdcAwefySPtc6t+/yx1jugYAAmfuaGni9VJluekSoGW02Vs69F7/uTqAgGAAAvxRU4P07ZPS5/dJ9dw9CptKyJKG3CB1P1lyOEzXAEBwrJwhTbhOWvql6RIgSCyp5ARp2E1SUq7pGAAIjsZaacoj0pcPSo3VpmuA4EjO86/K0PVY0yWA7TAAAf5M9Xrps7uk759j7VHYh8sjDbzEf4doVJzpGgBoGfPHSB/d6F/yErCLvP7SQXdIOb1NlwBAy9iySvrkdmnGKzzhCfuISpAGXSb1u4inOIEgYQAC/J11P0oTb5AWjjddAuw+y+G/Q3ToTVJSjukaAGh5zY3Sd09Ln90j1W0yXQPsvuS20gG3SsVHmy4BADNWzfEvi/Xzp6ZLgN3ncEk9TvXv8xHfynQNYGsMQICdtXSKNPkuafFnpkuAnWc5pOJjpMFXSq06ma4BAPNqN/mXuvzmCQYhCC/JedI+l/kvlriiTNcAgHk/fey/saH8G9MlwM5zuPxLUQ/6t5RaYLoGiAgMQIBdVf6d9Nnd0k+TTJcAf85ySl2PkwZfIWV0MF0DAKGnbrP03VPS149LtRtM1wB/LqXAf5Gk+8mS02W6BgBCz8+f+Qch7PmFUOZwSz1OlgZdLqW0NV0DRBQGIMDuWjFN+uxelsZCaLGc/qWuBl8hpReargGA0FdfJU19RpryqFSzznQN8KvU9tLgy6WS4Qw+AGBnLJ3iH4SwNBZCicMt9TzVfzNDcp7pGiAiMQAB9lTFTOnze6X5YyXxnxMMcbikbif6P1SltTddAwDhp6FamvqsNOURqXqN6RpEsvSO/sFH1+Mkh9N0DQCEn/Kp0uf3SD9ONF2CSOaM8i9bOejfUnIb0zVARGMAAgTK6nn+Qci80ZLPa7oGkcLhkrqf5H+MlvVDAWDPNdZK34+SvnpIqlplugaRpFUX/+CjyzGSw2G6BgDC38rp/lUbfhgnblZEi3FGST1PlwZdJiXlmq4BIAYgQOCtXSh9+V9p7rtSU53pGthVTLLU8zSp7wWsHwoAwdBYJ814WfruGWntAtM1sLO8AVK//5M6HylZlukaALCfVXOkLx+Q5n0geRtN18Cu4jKkXmdIe50rJeWYrgHwGwxAgGCp2SBNf1n6/jlp42LTNbCLrO5Sn/OlkuMlt8d0DQBEhsWfS1P/Jy0olbxNpmtgB1EJUrfhUp/zpMwupmsAIDJsWS1Nf1Ga9oJUWW66BnbRZm//OXqXoyRXlOkaADvAAAQINp9PWvSxNPU5aeGHkq/ZdBHCjTNaKj5G6nu+lLuX6RoAiFxbVvkvmkx7Xtqy0nQNwlGrLtJe5/iXr4xOMF0DAJHJ2ywtnCB9/6z008dieSzsMnes/6bEPudLWd1M1wD4GwxAgJZUudx/0aTsRalqtekahLrkPP9Fkp5nSHFppmsAAFs1N/nXE5/6P//TIVw4wV9xuKUuR/qf9mg7wHQNAOC3NiyWpo3yr95Qs950DUJdanupz7n+zc09yaZrAOwkBiCACc2N0vwx/uWxlnxhugYhxZIKh/mf9ig8gE1QASDUrftRmvqsNPNVqa7SdA1CSWKutNdZUq8zpfhWpmsAAH+lqV6aO9r/VEj5t6ZrEEosp9ThIP+NDO2HsF8XEIYYgACmrV0ozX5TmvuetP4n0zUwJae3VHysf6krNkwDgPDTUCMtHC/NeVf6aZLUVGe6CCbEJEudD/cf09vtJzmcposAALtq1Zxfz9E3LTNdAyMsKa+f1PU4qcvRUnyG6SAAe4ABCBBKKmb5P2TNfY+N0yNBZonU9Vj/V0q+6RoAQKDUb5EWjJPmvist+kRqbjBdhGCKTpQ6Huo/nrfbnw1QAcBOlk/zH8/nvc/G6ZEgu5d/6MGNiYCtMAABQtXK6b8MQ0ZLm5aarkGgpHf8ZehxnJReZLoGABBstZukBaX+iyc/T5a8TaaLEAjuOKnjIf4LJEUHSK5o00UAgGDy+aTl3/vP0eeNljavMF2EQMns6j+edz1OSi0wXQMgCBiAAOGAu07CW0qBf+hRfKzUuqvpGgCAKTUbpPkf+JfJWvKl5Gs2XYRd4fJIHQ70H887HCS5PaaLAAAm+Hz+fULmvuc/R99SYboIuyq9w69Dj4yOpmsABBkDECCc+Hz+J0N+/lRa9KlU/p3UXG+6Cn8UlSAVDPIvg9F+f570AABsr3q9tHiy/6mQRZOlStYYD0mtuviP5+32k/IHSlFxposAAKHE55OWT/UvefnzZ/4fextNV+GPYpKldvv+co4+REppa7oIQAtiAAKEs8ZaaekU/8WTnydLq2ZL4j/pFudw+Tcx3zrwyNlLcrpMVwEAwsn6Rb/e4LDkC6mu0nRRZErI+nXg0W4/KSHTdBEAIJzUV/3+HH3NPHGOboDDLbXp6z8/bzdEyu4pORymqwAYwgAEsJPq9dLiz379sMXeIcGTVvjrwCN/kBSTaLoIAGAX3mb/E5+LPvUfz5d/x0bqwRKV4H+yY+vQo1Un00UAADupWuN/MmTrOfrm5aaL7Cu9g//pjnb7S/n7SNHxposAhAgGIICdbVgsLftaWjlDqpghrZojNVabrgo/MclSdg//XSNZPaTcvaSkXMNRAICI0VDtX2t86/F85QxuctgdltN/cSS7h/94nt1TyuklOd2mywAAkWL9Iv8+YBUzpIqZ0uq5UlOd6arwE5v+6zl6dk8pu5eUmGW6CkCIYgACRBKvV1q30P9Ba+sHropZUsMW02WhIybpl4siPX4deKQWGI4CAOAPajb8ejzfOhjZuMRsUyixnP5NTbce07N6SK1LpKhYw2EAAPxGc5O0dsEvx/RfvlbN5sbF3/Kk/v7mheyeUnIb01UAwggDECDS+Xz+u1AqZvi/Vs/z31W6qdzeG6xHxUsp+f6vtPZSVvdfhh3tJMsyHAcAwG6o3ei/cLJyhv+O0o2L/UOR6rWmy4LHckgJ2f7NTFMLpNbd/RdJMrsy7AAAhCevV1r/468DkdVzpI1Lpcrl9t5gPTpJSs33n6OntpeyuvmHHSn5hsMAhDsGIAB2zOuVtlT4hyEbl/ovoPz2x1sqFNKbuVkO/0amKQW/Djq2fqUWSHHpZvsAAGgpDdX+Y/fWY/jWr63H9aZas31/JzrRP+D47bE8eetf8yRXlNE8AABahLdZ2rzy98fw3/51yyqF/Dl6Ys725+Yp+f7z9thUs30AbIsBCIDd01Tvf0qkslyq2yTVbpLqKn/5+uXHO/q53dnE1eHy78PhSf7lryl//eO4Vv5HYl3RAfmjAgBgWz6fVLXaf0yv3fCb4/emP/nrL8f0hqrdeDPLP8zwJP3muJ70h2P8b/4amyYlt+WCCAAAO6Oxzn9+vmmZ/6nQbefiO/ra9OuP9/Qc3ZPi//rtOfkffy4uXUpqw00LAIxgAAKgZTXW+R/b9TZLPq//wovPK/ma/XeEWE7J8cvX1h8zyAAAILQ0N/kvmPiaf3NM9/p/bFm/HNMdvx7PLYf/eO5wmi4HAAC/1Vj3yzHd+5tz9F+O7b87R3f9+len23Q1AOw0BiAAAAAAAAAAAMB2HKYDAAAAAAAAAAAAAo0BCAAAAAAAAAAAsB0GIAAAAAAAAAAAwHYYgAAAAAAAAAAAANthAAIAAAAAAAAAAGyHAQgAAAAAAAAAALAdBiAAAAAAAAAAAMB2GIAAAAAAAAAAAADbYQACAAAAAAAAAABshwEIAAAAAAAAAACwHQYgACLSfvvtp5EjR2773/n5+XrwwQeN9QAAgF3H8RwAgOD647H2jyzL0ujRo3f69SZPnizLsrRp06Y9bgOAneEyHQAAoWDq1KmKi4sznQEAAPYAx3MAAFpWRUWFUlJSTGcAwJ9iAAIAkjIyMkwnAACAPcTxHACAltW6dWvTCQDwl1gCC0BI2W+//XTxxRdr5MiRSklJUWZmpp555hlVV1fr7LPPVkJCggoLCzV+/Phtv2fOnDk65JBDFB8fr8zMTJ1++ulat27dtl+vrq7WGWecofj4eGVlZen+++/f7n1/u2TGkiVLZFmWZsyYse3XN23aJMuyNHnyZEm/PrY7YcIE9ezZUx6PR0OGDNGaNWs0fvx4de7cWYmJiTrllFNUU1MTlP+vAAAIVRzPAQCwD6/XqyuvvFKpqalq3bq1br755m2/9sclsKZMmaIePXooJiZGe+21l0aPHr3d8ViSpk2bpr322kuxsbEaMGCAfvjhh5b5wwCIOAxAAIScF154Qenp6fruu+908cUX68ILL9QJJ5ygAQMGqKysTAceeKBOP/101dTUaNOmTRoyZIh69uyp77//Xh9++KFWr16t4cOHb3u9K664Qp999pnef/99TZw4UZMnT1ZZWVlAWm+++WY9+uijmjJlisrLyzV8+HA9+OCDevXVV1VaWqqJEyfqkUceCch7AQAQTjieAwBgDy+88ILi4uL07bff6p577tGtt96qjz76aLu/b/PmzTriiCNUUlKisrIy3Xbbbbrqqqt2+JrXXXed7r//fn3//fdyuVw655xzgv3HABChWAILQMjp3r27rr/+eknSNddco7vuukvp6ek6//zzJUk33nijnnjiCc2aNUuTJk1Sz5499Z///Gfb73/uuefUpk0bLVy4UNnZ2Xr22Wf18ssva+jQoZL8H95yc3MD0nr77bdr4MCBkqRzzz1X11xzjRYtWqR27dpJko4//nh9+umnf/qhDwAAu+J4DgCAPXTr1k033XSTJKmoqEiPPvqoPv74Yx1wwAG/+/teffVVWZalZ555RjExMerSpYtWrFix7dj/W3fccYf23XdfSdLVV1+tww47THV1dYqJiQn+HwhARGEAAiDkdOvWbduPnU6n0tLSVFJSsu3nMjMzJUlr1qzRzJkz9emnnyo+Pn6711m0aJFqa2vV0NCgvffee9vPp6amqmPHjgFvzczMVGxs7LaLJVt/7rvvvgvIewEAEE44ngMAYA+/PU5KUlZWltasWbPd3/fDDz+oW7duvxti9O3b929fMysrS5L/M0FeXl4gkgFgGwYgAEKO2+3+3f+2LOt3P2dZliT/OqRVVVU64ogjdPfdd2/3OllZWfrpp592+f0dDv/qgD6fb9vPNTY2/m3rHzu3/pzX693lBgAAwh3HcwAA7CEYx8U/+0wAAIHGHiAAwlqvXr00d+5c5efnq7Cw8HdfcXFxat++vdxut7799tttv2fjxo1auHDhn75mRkaGJKmiomLbz/1xwzYAABA4HM8BAAh/HTt21OzZs1VfX7/t56ZOnWqwCAAYgAAIc//85z+1YcMGnXzyyZo6daoWLVqkCRMm6Oyzz1Zzc7Pi4+N17rnn6oorrtAnn3yiOXPm6Kyzztp2V+iOeDwe9evXT3fddZfmz5+vzz77bNsa5gAAIPA4ngMAEP5OOeUUeb1eXXDBBZo/f74mTJig++67T9KvT3kAQEtjAAIgrGVnZ+urr75Sc3OzDjzwQJWUlGjkyJFKTk7edlHk3nvv1aBBg3TEEUdo2LBh2meffdS7d++/fN3nnntOTU1N6t27t0aOHKnbb7+9Jf44AABEJI7nAACEv8TERI0ZM0YzZsxQjx49dN111+nGG2+UJDY3B2CM5fvtorgAAAAAAAAAEACvvPKKzj77bFVWVsrj8ZjOARCB2AQdAAAAAAAAwB578cUX1a5dO+Xk5GjmzJm66qqrNHz4cIYfAIxhAAIAAAAAAABgj61atUo33nijVq1apaysLJ1wwgm64447TGcBiGAsgQUAAAAAAAAAAGyHTdABAAAAAAAAAIDtMAABAAAAAAAAAAC2wwAEAAAAAAAAAADYDgMQAAAAAAAAAABgOwxAAAAAAAAAAACA7TAAAQAAAAAAAAAAtsMABAAAAAAAAAAA2A4DEAAAAAAAAAAAYDsMQAAAAAAAAAAAgO0wAAEAAAAAAAAAALbDAAQAAAAAAAAAANgOAxAAAAAAAAAAAGA7DEAAAAAAAAAAAIDtMAABAAAAAAAAAAC2wwAEAAAAAAAAAADYDgMQAAAAAAAAAABgOwxAAAAAAAAAAACA7TAAAQAAAAAAAAAAtsMABAAAAAAAAAAA2A4DEAAAAAAAAAAAYDsMQAAAAAAAAAAAgO0wAAEAAAAAAAAAALbDAAQAAAAAAAAAANgOAxAAAAAAAAAAAGA7DEAAAAAAAAAAAIDtMAABAAAAAAAAAAC2wwAEAAAAAAAAAADYDgMQAAAAAAAAAABgOwxAAAAAAAAAAACA7TAAAQAAAAAAAAAAtvP/OWPHnmO2kzQAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Приращение данных (oversampling)\n",
|
||
"df_train_oversampled: DataFrame = oversample(df_train, 'salary_category')\n",
|
||
"df_val_oversampled: DataFrame = oversample(df_val, 'salary_category')\n",
|
||
"df_test_oversampled: DataFrame = oversample(df_test, 'salary_category')\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"print('После применения метода oversampling:')\n",
|
||
"check_balance(df_train_oversampled, 'Обучающая выборка', 'salary_category')\n",
|
||
"check_balance(df_val_oversampled, 'Контрольная выборка', 'salary_category')\n",
|
||
"check_balance(df_test_oversampled, 'Тестовая выборка', 'salary_category')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_oversampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_oversampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_oversampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train_oversampled, df_val_oversampled, df_test_oversampled, 'salary_category')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"После применения метода undersampling:\n",
|
||
"Обучающая выборка: (1677, 241)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"low 559\n",
|
||
"medium 559\n",
|
||
"high 559\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"low\": 33.33%\n",
|
||
"Процент объектов класса \"medium\": 33.33%\n",
|
||
"Процент объектов класса \"high\": 33.33%\n",
|
||
"\n",
|
||
"Контрольная выборка: (561, 157)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"low 187\n",
|
||
"medium 187\n",
|
||
"high 187\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"low\": 33.33%\n",
|
||
"Процент объектов класса \"medium\": 33.33%\n",
|
||
"Процент объектов класса \"high\": 33.33%\n",
|
||
"\n",
|
||
"Тестовая выборка: (558, 162)\n",
|
||
"Распределение выборки данных по классам \"salary_category\":\n",
|
||
" salary_category\n",
|
||
"low 186\n",
|
||
"medium 186\n",
|
||
"high 186\n",
|
||
"Name: count, dtype: int64\n",
|
||
"Процент объектов класса \"low\": 33.33%\n",
|
||
"Процент объектов класса \"medium\": 33.33%\n",
|
||
"Процент объектов класса \"high\": 33.33%\n",
|
||
"\n",
|
||
"Для обучающей выборки аугментация данных не требуется\n",
|
||
"Для контрольной выборки аугментация данных не требуется\n",
|
||
"Для тестовой выборки аугментация данных не требуется\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAH/CAYAAAAfV19VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACma0lEQVR4nOzdd3xT9f7H8XfSvQsUKCB7T1FcgAhOpgO3uHDhveBVr3szXNctoLhFFFyIsgUBUZkKsvfeqwNK6W5zfn/wS2w6oPvknLyej8d9/H6GNPk0TfI67fecE4dhGIYAAAAAAAAAAAB8nNPsAQAAAAAAAAAAAEqCRQ0AAAAAAAAAAGAJLGoAAAAAAAAAAABLYFEDAAAAAAAAAABYAosaAAAAAAAAAADAEljUAAAAAAAAAAAAlsCiBgAAAAAAAAAAsAQWNQAAAAAAAAAAgCWwqAEAqDSpqanatWuX0tLSzB4FFezYsWPatm2bcnNzzR4FAACUQ25uro4cOaI9e/aYPQoAAKhAmZmZOnDggI4cOWL2KBWORQ3AzzRq1EgDBw40ewzYlGEY+vjjj3XBBRcoPDxc0dHRaty4scaPH2/2aJawb98+ffHFF57/3rVrlyZMmGDeQPnk5OTo9ddf15lnnqmQkBBVq1ZNzZs317x588weDbANGg3Yy/Tp07Vq1SrPf0+ePFnr1683b6B8tm7dqvvuu0916tRRcHCwateurc6dO8swDLNHA0xHjwGcznvvvadjx455/vvdd9/1mZ05586dq6uuukqxsbEKCwtTvXr19NBDD5k9VoUr1aLGF198IYfD4flfaGioWrRooQceeECHDx+urBkB2xs2bJgaNWok6Z/XGcpvzJgxXn8gtouBAweqR48ekryfO75gwIAB+te//qXWrVvrq6++0pw5czR37lxde+21Zo9mCQ6HQ0OGDNHs2bO1a9cuPfHEE1qwYEGJvrYyG52VlaXLLrtMzz//vHr06KGJEydqzpw5+vXXX9W5c+dy3Tbg62h05aDRsKv8Pb7yyit19tlnq3Hjxrr++ut13333KTU11ewRtXTpUp133nn69ddf9dRTT2n27NmaM2eOJk+ezHscfBY9rhz0GCibadOmadiwYdq7d68mTJig559/XmFhYWaPpTFjxqhnz55KSUnRyJEjNWfOHM2ZM0cjRowwe7QKF1iWLxoxYoQaN26szMxMLVy4UB988IFmzpypdevWKTw8vKJnBIAyGTNmjOLi4tjLpop8+eWX+u677zR+/HgNGDDA7HEsqV69errvvvvUq1cvSVKdOnX022+/leo2KqPRr732mv7880/Nnj3b88sBAJQHjYbdjRgxQjVq1NCwYcO0a9cu7dq1S+Hh4erQoYOpc2VnZ+uuu+5SixYt9MsvvygmJsbUeQCYix4DZfPMM8/oqquu0siRI+V0OvXWW2/J6TT3hEhbt27VI488okGDBmnMmDG2X/wt06JG7969dc4550iS7r33XtWoUUNvv/22pkyZoltuuaVCBwTguzIzMxUcHGz6G7fVpaWlKSIiwuwxyu2NN97QLbfcwoJGOb377rv6z3/+o8TERLVr167Uz42KbnRubq7effddPfrooyxoABZCoyuGXRqNqufu8T333KN169Zp9OjRGjdunOm/M0+bNk2bN2/Wpk2bWNAAqgA9rhj0GL6me/fu2r17tzZu3Kj69evrjDPOMHskjRo1SvHx8Ro1apTtFzSkCvpMjUsuuUSStHPnTklScnKyHnvsMbVv316RkZGKjo5W7969tXr16kJfm5mZqWHDhqlFixYKDQ1VnTp1dO2112r79u2STp5PPP/pNAr+L/8fWH777Tc5HA599913euaZZxQfH6+IiAhdddVV2rt3b6H7/vPPP9WrVy/FxMQoPDxc3bt316JFi4r8Hnv06FHk/Q8bNqzQdcePH69OnTopLCxM1atX180331zk/Z/qe8vP5XLp3XffVdu2bRUaGqratWvr/vvv19GjR72u16hRI/Xr16/Q/TzwwAOFbrOo2d94441Cj6l08rQjQ4cOVbNmzRQSEqL69evriSeeUFZWVpGPVX49evQodHsvv/yynE6nvv766zI9Hm+++aa6dOmiGjVqKCwsTJ06ddIPP/xQ5P2PHz9e5513nsLDw1WtWjVddNFF+uWXX7yu8/PPP6t79+6KiopSdHS0zj333EKzTZw40fMzjYuL02233ab9+/d7XWfgwIFeM1erVk09evQo8aljTmX58uXq2bOn4uLiFBYWpsaNG+vuu+8u8+OSX0lfr+7X17fffqvnnntO9erVU3h4uFatWiWHw6F33nmn0G0vXrxYDodD33zzTYm/V5fLpZEjR6p9+/YKDQ1VzZo11atXLy1fvtxznbFjx+qSSy5RrVq1FBISojZt2uiDDz7wup1GjRpp/fr1+v3334t8vzh27Jgefvhh1a9fXyEhIWrWrJlee+01uVwur9tJSkrS7bffrujoaMXGxurOO+/U6tWr5XA4Ch2m++uvv6pbt26KiIhQbGysrr76am3cuNHrOsOGDZPD4dCGDRs0YMAAVatWTRdeeKHGjh0rh8OhlStXFnpMXnnlFQUEBBR6zpVGwfewuLg49e3bV+vWrSvR15/uNZCWlqZ169apfv366tu3r6KjoxUREVHoNbBjx44SP1+Kev9wv0/kf+zXrFmjgQMHqkmTJgoNDVV8fLzuvvtuJSUleX2t+zD1Xbt2eS6bPXu2unTpovDwcMXExKhfv36FHhP3zywxMdFz2fLly4t8DrRr167IP/z//PPPnudGVFSU+vbtW+ic2gMHDvQcFt20aVOdf/75Sk5OVlhYWKG5i/Lpp59Kks4991yv96DatWtL+qfR9evXV5MmTYp9zbtf67/99psyMzP14IMP6ujRo3r99dcVEhKigIAARUVFqV+/fpo9e/YpGx0QEKBLL71US5cu9Wp0v3795HA4FBYWpoYNGyo2NlbR0dG64447PG1zN9rpdCowMNCr0YMGDVJoaKjnKJbiGt28efNCjzON/geNptE02vqNLs3ruKSvlcjIyEL388MPP3jaUNTMp3pvcDgceuCBBzRhwgS1bNlSoaGh6tSpk/74449C97Ny5Ur17t1b0dHRioyM9DSkJI+b+3/5f/Y9evRQu3btTvUQes1YUL9+/QqdsiQtLU2PPvqo5/nZsmVLvfnmm4U+i+Lcc8/VsGHDFBISok6dOumGG26QdPJUnT169Djt6zv/9+R0OhUVFaWYmBiv35knTJggh8Ph2RuzuP+FhoZ65vr+++9lGIaGDh2qatWqeW6/WbNm2rp1a6HH4PHHH1dkZKTnturVq6dZs2YV+lm0a9dOnTp1OuXvzPm3MfL3OCAgQNWrV9emTZs8t+nuW8OGDelxPvS4ePSYHpvV48pq4v79+3X33Xerdu3aCgkJUdu2bfX55597Xcf9nCvqeRwZGel1BE5Rvw+7XC516NCh0M/KvT2wY8cO9ezZUxEREapbt65GjBhRqHcl7WLB3xPr1aunQYMGeX0uhSQdOXJE99xzj2rXrq3Q0FCdeeaZGjdunNd1ivpepMLvp6V5fKSTf6+44YYbVL16dYWHh+uCCy7QjBkzvK6Tv2WxsbHq3LmzzjjjDPXt27fIbhTk/nr3/0JCQtSiRQu9+uqrXo9ZUX+HKKjg5/8sXbpUnTp10uDBgz3Pm3bt2umTTz4p9LWl+bmV5Dnrnje/+fPnKyQkRP/617+8Li/Jc7skynSkRkHuBYgaNWpIOvkkmDx5sm644QY1btxYhw8f1kcffaTu3btrw4YNqlu3riQpLy9P/fr107x583TzzTfroYceUmpqqubMmaN169apadOmnvu45ZZb1KdPH6/7ffrpp4uc5+WXX5bD4dCTTz6pI0eO6N1339Vll12mVatWec5v9uuvv6p3797q1KmThg4dKqfT6XnTX7Bggc4777xCt3vGGWfo1VdflSSdOHFC//73v4u87+eff1433nij7r33XiUkJGj06NG66KKLtHLlSsXGxhb6mkGDBqlbt26SpB9//FE//fST17/ff//9+uKLL3TXXXfpwQcf1M6dO/Xee+9p5cqVWrRokYKCgop8HErj2LFjnu8tP5fLpauuukoLFy7UoEGD1Lp1a61du1bvvPOOtmzZosmTJ5fqfsaOHavnnntOb731VrF7c5/u8Rg5cqSuuuoq3XrrrcrOzta3336rG264QdOnT1ffvn091xs+fLiGDRumLl26aMSIEQoODtaff/6pX3/9VVdccYWkk2+Ed999t9q2baunn35asbGxWrlypWbNmuWZz/3Yn3vuuXr11Vd1+PBhjRw5UosWLSr0M42Li/NsqOzbt08jR45Unz59tHfv3iJ/9iVx5MgRXXHFFapZs6aeeuopxcbGateuXfrxxx/L9LgUVNLXq9uLL76o4OBgPfbYY8rKylKrVq3UtWtXTZgwQf/973+9rjthwgRFRUXp6quvLvH3e8899+iLL75Q7969de+99yo3N1cLFizQ0qVLPXuff/DBB2rbtq2uuuoqBQYGatq0aRo8eLBcLpeGDBki6Z+93SMjI/Xss89KkuePu+np6erevbv279+v+++/Xw0aNNDixYv19NNP6+DBg3r33XclnXz+X3nllfrrr7/073//W61atdKUKVN05513Fpp77ty56t27t5o0aaJhw4YpIyNDo0ePVteuXbVixYpCvxDfcMMNat68uV555RUZhqHrr79eQ4YM0YQJE3TWWWcVehx79OihevXqlfhxLEqrVq307LPPyjAMbd++XW+//bb69OmjPXv2nPLrSvIacC8gvPbaa4qPj9fjjz+u0NBQffLJJ7rssss0Z84cXXTRRWrSpEmFPl8kac6cOdqxY4fuuusuxcfHa/369fr444+1fv16LV26tFBY3RYsWKA+ffqoYcOGGjp0qHJycjRmzBh17dpVy5YtU4sWLUo1R3G++uor3XnnnerZs6dee+01paen64MPPtCFF16olStXnvL8ri+88IIyMzNLdX/Dhw9XkyZNPO9BS5YskfRPo3Nzc5WcnKwHH3ywyNe8W/5Gu7+uRo0aqlatms4991z9+uuvuv766yX90+h9+/Zp2LBhCg0NlWEYqlGjhnbu3KkePXro7bfflnSyk+4N16ioKO3bt09xcXHq37+/PvnkE+3evVsvvPCC+vTpo06dOik2NlbNmjXTsWPHdMkll+j222/X2LFj9d1333ltsFavXl3Jycnq0KGDWrdure+++04JCQlejzONPjUaXXo0mkab3eiCinsdl+a1UhLPPvus7r33XklSYmKi/vvf/3q9PxT0+++/67vvvtODDz6okJAQjRkzRr169dJff/3lWXRYv369unXrpujoaD3xxBMKCgrSRx99pB49euj333/X+eefX+h23Y9b/jkqk2EYuuqqqzR//nzdc8896tixo2bPnq3HH39c+/fvL/IPlm4F/yh2ute3JPXv31/XXHONXnvtNc9l5557rq699lrNmTPHs8OCW1G/M99///3Ky8vz/Pfx48clSd9++61iYmJ03XXXacuWLVq7dq3OOussHTlyxHO6yjvvvFNffvmlYmJi1L9/fyUkJGjhwoXq06ePFi5cqC5dunhu9+jRo0pISFBkZKT69++vP//8U1u2bCnysRg/frw+//xz9e/fX4cPH1ZGRoYcDod69+6tlStXKjo62tO3m266SWPHjlXbtm21ceNGdezYUQ0bNqTH9NgLPabHZva4Mpp4+PBhXXDBBZ4/KNesWVM///yz7rnnHh0/flwPP/xwub5Pt6+++kpr164t8t/y8vLUq1cvXXDBBXr99dc1a9YsDR06VLm5uZ7PZyhtF/v3769rr71Wubm5WrJkiT7++GNlZGToq6++kiRlZGSoR48e2rZtmx544AE1btxYEydO1MCBA3Xs2LFK/bDrw4cPq0uXLkpPT9eDDz6oGjVqaNy4cbrqqqv0ww8/qH///sV+7R9//KGZM2eW6v6eeeYZtW7dWhkZGZ6d82vVqqV77rmnzN9DUlKSli9frsDAQA0ZMkRNmzbV5MmTNWjQICUlJempp56SVPqfW0meswWtXr1a11xzjfr06aP333/fc3mFPreNUhg7dqwhyZg7d66RkJBg7N271/j222+NGjVqGGFhYca+ffsMwzCMzMxMIy8vz+trd+7caYSEhBgjRozwXPb5558bkoy333670H25XC7P10ky3njjjULXadu2rdG9e3fPf8+fP9+QZNSrV884fvy45/Lvv//ekGSMHDnSc9vNmzc3evbs6bkfwzCM9PR0o3Hjxsbll19e6L66dOlitGvXzvPfCQkJhiRj6NChnst27dplBAQEGC+//LLX165du9YIDAwsdPnWrVsNSca4ceM8lw0dOtTI/2NZsGCBIcmYMGGC19fOmjWr0OUNGzY0+vbtW2j2IUOGGAV/1AVnf+KJJ4xatWoZnTp18npMv/rqK8PpdBoLFizw+voPP/zQkGQsWrSo0P3l1717d8/tzZgxwwgMDDQeffTRIq9bksfDME7+nPLLzs422rVrZ1xyySVet+V0Oo3+/fsXei66f+bHjh0zoqKijPPPP9/IyMgo8jrZ2dlGrVq1jHbt2nldZ/r06YYk44UXXvBcdueddxoNGzb0up2PP/7YkGT89ddfRX7PJfHTTz8Zkoxly5ad8noleVwM4+Tz5M477/T8d0lfr+7XV5MmTQrd10cffWRIMjZu3Oh1/3FxcV73dTq//vqrIcl48MEHC/1bwddqQT179jSaNGnidVnB9wi3F1980YiIiDC2bNnidflTTz1lBAQEGHv27DEMwzAmTZpkSDLeffddz3Xy8vKMSy65xJBkjB071nN5x44djVq1ahlJSUmey1avXm04nU7jjjvu8Fzmfk7fcssthea65ZZbjLp163r9PFasWFHovsoi/2vR7ZlnnjEkGUeOHCn260r6GnC/VwcHB3s9rgkJCUaNGjWMTp06eS4r6fPl4osvNi666CKvedz3k//xKOr58M033xiSjD/++MNzmbthO3fuNAzDMDp16mTExMQYhw4d8lxny5YtRlBQkHHdddd5LnP/zBISEjyXLVu2rMifS8HnXGpqqhEbG2vcd999Xtc7dOiQERMT43V5wfeQdevWGU6n0+jdu7fX3MXp2rVroUbfd999hiQjJCTE0+gGDRoYffr08fra/K9592v9iSeeMCQZgwcPNiQZcXFxRmJiomEYJ1+PW7ZsMQIDA70afc011xjBwcHG9u3bPY/FgQMHjKioKKNDhw6eRo8ZM8aQZHTq1Mn4+uuvPY1+/fXXDUlG3bp1PY12v2elp6cbcXFxhiRj9OjRXvOff/75htPp9Dye7kY/+uijnseZRhdGo2k0jbZ2owt+bXGv49K+ViIiIgrdz8SJEw1Jxvz58wv9W1Ftzk+SIclYvny557Ldu3cboaGhRv/+/T2X5W+Im7shBbcHDONk9y6++OJTztG9e3ejbdu2Rc5VcMYhQ4YUurxv375e7x2TJ082JBkvvfSS1/Wuv/56w+FwGNu2bfNsb0gyHn/8cc/vzGFhYYYko3379kb37t1P+/p2tyD/78xdunQx2rRp47m++3X5/vvvF/s7c2xsrBESEuL57549exqSjPDwcK/fma+//npDkqelhw8fNiQZNWrUMHJzcz3Xe/vttw1JXo9r9+7dDUlGo0aNPL8zZ2VlGe3atTMkGc8995xhGP+8VzmdTmP48OFGjx49jFq1ahnbtm3z6nH+vuXvj7tvd999Nz2mx17o8Un0eGyh65dGeXrsVlFNvOeee4w6dep4fv9yu/nmm42YmBjPz9f9nJs4cWKh+4qIiPB6bhX8fTgzM9No0KCB5/fN/DPfeeedhiTjP//5j+cyl8tl9O3b1wgODvb8blySLub/3vO/pxqGUahr7777riHJGD9+vOey7Oxso3PnzkZkZKSnW+PGjTMkGTt27PC6vYI/w9I8Pg8//LAhyeu9PDU11WjcuLHRqFEjz3POfZv5t4nOP/98z+NY8HssqKivz8zMNJxOpzF48GDPZUX9HaKggu9VDRs2NCQZX3zxheey3Nxc49JLLzVCQkI8z6fS/txK8pzN36Jdu3YZderUMS688MJC7Sjpc7skynT6qcsuu0w1a9ZU/fr1dfPNNysyMlI//fSTZ0U0JCTEc77AvLw8JSUlKTIyUi1bttSKFSs8tzNp0iTFxcXpP//5T6H7KG7P2pK44447FBUV5fnv66+/XnXq1PGsmq1atUpbt27VgAEDlJSUpMTERCUmJiotLU2XXnqp/vjjj0KH02VmZnodtluUH3/8US6XSzfeeKPnNhMTExUfH6/mzZtr/vz5XtfPzs6WdPLxKs7EiRMVExOjyy+/3Os2O3XqpMjIyEK3mZOT43W9xMTE0+7lu3//fo0ePVrPP/98ocPNJ06cqNatW6tVq1Zet+k+5VjB+y/OX3/9pRtvvFHXXXed3njjjSKvU5LHQ5LnaBvp5B5BKSkp6tatm9dza/LkyXK5XHrhhRcKnbvS/dyaM2eOUlNT9dRTTxX62bqvs3z5ch05ckSDBw/2uk7fvn3VqlWrQoehuVwuz2O0atUqffnll6pTp45at259yu/pVNx7q0yfPl05OTnFXq8kj0tRSvp6dbvzzju97kuSbrzxRoWGhmrChAmey2bPnq3ExETddtttp/0e3SZNmiSHw6GhQ4cW+rf87wn57z8lJUWJiYnq3r27duzYoZSUlNPez8SJE9WtWzdVq1bN63l92WWXKS8vz3MY3axZsxQUFKT77rvP87VOp9OzZ4vbwYMHtWrVKg0cOFDVq1f3XN6hQwddfvnlRa7YFzz8Tjr53nXgwAGv19WECRMUFham66677rTf1+m43x8SEhK0ZMkS/fTTT+rQoYPi4uKK/ZrSvgauvvpqNW/e3PPf7g+d+/vvv3X48GFJJX++1KpVS/v27Tvt95X/+ZCZmanExERdcMEFklTkc/jo0aPasmWL/v77b916662evZEkqXnz5rrqqqs0a9Ysr70ay2rOnDk6duyYbrnlFq/nWkBAgM4///xTvoc+/fTTOvvssz2nqyip/I3+5JNPFBAQoG+//dbTaIfDodzcXCUmJurIkSM6fPhwka/5P/74Q3Fxcbr22mslSXfddZfnaA+H4+SpnS677DJJJ9/78vLy9Msvv+iaa65RkyZNPLdTp04dDRgwwLMH0B133OH5mQ0aNEg333yzp9H//ve/FRAQoAMHDnganZeXp8zMTP3www9KSkpSQECABg8e7PU9JyQkyOVyeR5n95FDTqfT8zjT6OLRaBpdEjTa9xqd36lex6V9rUgq9F6Vmpparu+vc+fO6tSpk+e/GzRooKuvvlqzZ89WXl7eaRuycOFCzxEGbtnZ2ad9T5JOvnbc34f7vawo7m2I/P8r+LqeOXOmAgIC9OCDD3pd/uijj8owDP38889el7/xxhue35kzMzM1ePBgz/OwJK/v9PR0ffPNN6pevbrq1aun1atX69JLL/Xcvvu1l5aWJunkHq4ldeutt3r9zuw+NYX71FKfffaZpJOnIDl69KjnMbnpppsUFBSkjRs3ev3OHBgYqNjYWM9zLDg42LOn9sGDB73u2zAMLV26VEuWLNHXX3+tmJgYrx7n75t7+zErK6vQaa/d6HFh9Lho9Jgen055e1wSp2uiYRiaNGmSrrzyShmG4fX49+zZUykpKYWed6mpqYXe107n/fffV1JSUpHPJbf8p2Z071mfnZ2tuXPnSip9F9PT05WYmKhDhw5p0qRJhbo2c+ZMxcfHe332VFBQkB588EGdOHFCv//+u6STfyuQVKK/F0gle3xmzpyp8847TxdeeKHnssjISA0aNEi7du3yOqtBfj/++KOWLVum//3vfyWaxc39utyzZ49ef/11uVwuTzfyS05O9vzNuiRq166t22+/3fPfAQEBevjhh5WVlVXmn9vpnrP5JSUlqWfPnoqKitLUqVO9ulCW5/aplOn0U++//75atGihwMBA1a5dWy1btvSKoPv8fmPGjNHOnTu9vkH3H0Skk6etatmypQIDK+QsWB75/6AmnXzhNWvWzHOuNfe5Qos6HM4tJSVF1apV8/x3YmJiodstaOvWrTIMo9jrFTzk1X36jaLOW5v/NlNSUjwv2IKOHDni9d+//PKLataseco5Cxo6dKjq1q2r+++/v9B55rZu3aqNGzcWe5sF778o+/fvV9++fZWWlqakpKRiF6xK8nhIJzdUXnrpJa1atcrrHKX5b3f79u1yOp1q06ZNsbfjPm3aqc6zu3v3bklSy5YtC/1bq1attHDhQq/L9u7d6/VY1alTR5MmTTrt93Qq3bt313XXXafhw4frnXfeUY8ePXTNNddowIABXhuzJXlcilLS16tb48aNC10WGxurK6+8Ul9//bVefPFFSSc3LOrVq1fkm3Jxtm/frrp163pt5BRl0aJFGjp0qJYsWaL09HSvf0tJSTnthx5u3bpVa9asOe3zevfu3apTp47nEHy3Zs2aef33qZ4nrVu31uzZswt9sFlRj+Pll1+uOnXqaMKECbr00kvlcrn0zTff6Oqrr/b6pbOsFi9e7PU9N2/eXJMnTz7lc6SkrwH3bbRq1arQ9dy/oOzatUu1a9cu8fOlS5cu+u677/Tuu+/q5ptvVmBgYKHzIksnIz98+HB9++23hd6TitpgP/vssz3/f3E/s0mTJikxMdFrwaMs3L0p7nUQHR1d5OULFy7UtGnTNG/evFKfeiS/uLg4TZ48WV27dvVcZhhGsa3I/5o/cOCAV6OL+tm6XwtpaWlKSEhQenp6sY+p8f/n5szfyObNm3s1OjIy0nM6s/yN/u677/Tdd99JOvmLZMFGJycnSyr8OLv/IBAdHU2ji0GjaXRJ0Wjfa7Tb6V7HpX2tpKWllfq96nSKeu9t0aKF0tPTlZCQIEmnbIjL5dLevXvVtm1bz+XHjh1Tw4YNT3vfmzZt8nw/7s+OGDp0aKHT+nz22WeeP+Tnl/8+du/erbp16xb6mbu3dXbv3u014+233667777bcxqkd999V5dffrmkkr2+8/9h+6abblKvXr302muvFZrxiSeekHTytJWvv/66rrzySr3zzjun3I4peLrl2NhYBQcHe5rq3hnhrbfe0ltvvVXkbeTvcd26dZWcnOz1s3afTrrg+dLz/8HEvYOEW1BQkHJycgr1bdCgQZ7/v+AfduhxYfSYHtPjsilPj0vqdE10Op06duyYPv74Y3388cdF3kbB95WCnx9zOikpKXrllVf0yCOPFNsKp9PptaOBe05Jnr+vlqSL+b3xxhtebSvYtd27d6t58+aFFloL3t5ZZ52l0NBQDR8+XB988IGnRTk5OUWebrAkj8/u3buLPNVl/vsu+F6Yl5enZ555Rrfeeqs6dOhw2vvI75prrvH8/06nU88991yRC3P5XzO1atXSfffdp+HDhysgIKDQdR0Oh1q0aFHs41fWn9vpnrPx8fGey/v166fNmzerVq1ahT6fIyEhodTP7VMp02rCeeed5zlPX1FeeeUVPf/887r77rv14osvqnr16nI6nXr44YcLHQFhBvcMb7zxhjp27FjkdfIHNTs7WwcPHvRsgJ7qdh0Oh37++ecin1wFI33o0CFJ8vrhF3WbtWrV8lrNz69gYM4//3y99NJLXpe99957mjJlSpFfv3HjRn3xxRcaP358kS98l8ul9u3be86FXlD9+vWLnd1t27ZtOvvss/XOO+/o9ttv17hx44pcUCrJ47FgwQJdddVVuuiiizRmzBjVqVNHQUFBGjt2bKEPKjND7dq1NX78eEknI/H555+rV69eWrhwodq3b1+m23R/qNHSpUs1bdo0zZ49W3fffbfeeustLV26VJGRkeV6XEr7ei24x4nbHXfcoYkTJ2rx4sVq3769pk6dqsGDBxd6My2v7du369JLL1WrVq309ttvq379+goODtbMmTP1zjvvlOg9xuVy6fLLL/f8AlhQRX2WwqkU9TgGBARowIAB+uSTTzRmzBgtWrRIBw4cKNWeO6fSoUMHzy+lCQkJGjVqlHr06KEVK1ac8nVXEsU9L4pTkufLoEGDNHv2bP33v/895Tmyb7zxRi1evFiPP/64OnbsqMjISLlcLvXq1avI58P48eOVnp7u9ctxZXHf/1dffVXkY1zcov6TTz6pnj176pJLLin04Xqn895776lly5ae9yD3ea/d70HuhZ5evXrp7LPPVnZ2tr7//nvt3bu30C88Uul/thXF3ehbb71VR44c0bnnnquzzjpLH3/8sf7++2/PH0Gys7M9exC7H+eUlBRdf/31uv3223XHHXcoMDBQ3377LY0uAo2m0RWJRpddeRpd0tdxSYWGhmratGlely1YsMBz/mxfcejQIfXs2fO012vUqJHnKISkpCSNGjVKt99+u5o0aeI5slM6ebRpwQ8Lf+655zzvf2XRpEkT1a5dW5MnTy70Xl6S1/ftt9+u3377TdHR0XrggQf04osvql+/fpo7d67XH9gefPBBjRo1Svfcc48aNWqkESNG6NixY0Xu+VySo1skef4Q8dRTT3ntRSud3Hs6ICDAq52GYejQoUOn/Z3Z7dFHH9W0adOUkZGhDz/8UMHBwZL++eBWd9/czz33jpXSySMM/vrrL89t0WNv9Jge0+Oyq8zfmUvK/fO57bbbiu15wT+gv/DCC4U+w+PKK68s9j5ee+01OZ1OPf74456j3KuC+/czl8ulHTt2FNu106ldu7ZGjx6tIUOGFHoudu/evdD1S/v4lNRnn32mXbt2afbs2aX+2jfffFNnnnmmcnJytGzZMr300ksKDAwsdOTMpEmTFB0drfT0dP300096+eWXPZ8/VpBZv7vnt2nTJv3888+68cYb9eijj2rs2LGefyvLc/tUKvYQif/3ww8/6OKLLy60p8uxY8e8Dtlq2rSp/vzzz2JX0srKvWesm2EY2rZtm+eBce8xEh0dXWjPkKKsXr1aOTk5p1zIcd+uYRhq3Lhxid7gN2zYIIfDUeRKdf7bnDt3rrp27VqiJ2dcXFyh7+lUH0z29NNPq2PHjrrpppuKvX/34WBlXZl2n1akdu3amjJlih599FH16dOn0MZlSR6PSZMmKTQ0VLNnz/baIM//InHP7XK5tGHDhmIXrtzPg3Xr1hXai8DNvWfW5s2bC+09sXnz5kJ7h4WGhno9/ldddZWqV6+u9957Tx999FGx31dJXHDBBbrgggv08ssv6+uvv9att96qb7/9Vvfee2+JH5eilPT1ejq9evVSzZo1NWHCBJ1//vlKT0/3OuStJJo2barZs2crOTm52D1Ppk2bpqysLE2dOlUNGjTwXF7UYd3FPWebNm2qEydOnPb137BhQ82fP1/p6elee55s27at0PWkk8+JgjZt2qS4uDivPU5O5Y477tBbb72ladOm6eeff1bNmjVL9At7SVSrVs3re+7Ro4fq1q2rsWPH6umnny7ya0r6GoiLi1NkZGSxj4Ekrw9+K8nzJTQ0VDNmzNCWLVu0d+9eGYahw4cPe22wHj16VPPmzdPw4cP1wgsveC4v2IH8unbtqoiICA0aNKjYeSMiIirkEGP3+0ytWrVK1Bvp5Hv2kiVLSnXYZX7nn3++p1dFvQelp6erRo0aXoeU9u/fX127dvU6sqVu3bravHmzzjjjDElFP7/de+9FRESoZs2aCg8PL/YxdTgcMgxDW7du9TRy69atng+C69Chg06cOOHZA9Hd6LCwMLVv317z589XWFiYVq9ercGDB2vNmjUKDQ3V6tWrPXvLuR9n9+HETZo08Tzuy5Yto9FFoNE0uqRotO812u10r+PSvlYCAgIKPf4F97QvraK6vGXLFoWHh3vmPFVDnE6n1x+G9+3bp9TU1BKdriYiIsLr++nWrZvq1aunX375xWtR44wzzij0fb/77rteixoNGzbU3LlzlZqa6rV3o3tbp6gjR4p7Ly/J67tJkyZKTk7Wn3/+qXvuuUcxMTEaMGCAli5dqs6dO3u+xv3e3KpVKz322GPas2ePxo0bp9zc3ELz1KlTR9LJUx25P9hWOvnH5ezsbM8eu+4jTtLS0rwel+zsbM8paPL/Dn/gwAHl5eV5/c7s3k4o6sOfBw0apNtvv13nnHOOlixZ4tlzXfLu29KlS+VwOHTHHXd4FlEK7vlPj73RY3pMj8uuPD0uqZI0MSoqSnl5eSX+HbJ9+/aFrlvUjlzSyffrkSNH6tVXX1VUVFSxixruhYf8vztt2bJF0j+/25e2i/l/P5NUqGsNGzbUmjVr5HK5vBb7irq9e++9V9dee63WrVvnOTXfo48+WuT3UpLHp2HDhqf8e0bB7yU9PV3Dhw/X4MGDS3TkaEGdOnVSjx49JEm9e/fW/v379dprr+n555/3+t4vuugiz/vMVVddpUWLFmnWrFlFLmo0btxYK1asKPbxK+vPrSTPWbepU6eqW7duevXVV/XAAw/otttu8+wcUbNmzVI/t0+lYpeD/19AQEChQ0wmTpyo/fv3e1123XXXKTExUe+9916h2yj49aXx5Zdfep339YcfftDBgwfVu3dvSSefOE2bNtWbb76pEydOFPp69yHQ+WcPCAhQv379Tnm/1157rQICAjR8+PBC8xuG4fVGkZubq0mTJum888475WGWN954o/Ly8rw28vLfRnl+wViyZImmTJmi//3vf8WG7MYbb9T+/fs9ezfll5GRUaJzurVo0cKzcTx69Gi5XC499NBDXtcp6eMREBAgh8Phdbjnrl27Cm2EXnPNNXI6nRoxYkShvRDcP5srrrhCUVFRevXVVwudQ9V9nXPOOUe1atXShx9+6HV46s8//6yNGzeqb9++p/zes7OzlZub6/W1pXX06NFCzyf3Rqf7dkv6uBSlpK/X0wkMDNQtt9yi77//Xl988YXat29f6sPvrrvuOhmGoeHDhxf6N/eM7vDknzklJaXIjdGIiIgiXyM33nijlixZUuRq+rFjxzy/APbs2VM5OTlez3+Xy6X333/f62vq1Kmjjh07aty4cV73t27dOv3yyy/q06fPKb5rbx06dFCHDh306aefatKkSZ7TLlUG93mXT/X8LOlrwOl0qlevXpoyZYrXeY6Tk5M1btw4nXPOOV6HtZbm+dKiRQtdeumluuyyy7xOoyQV/XyQTv4R4lRq1qyps88+W19//bXXe/727ds1depU9e7du9iNwNLo2bOnoqOj9corrxR5ft+CvXEfvjpgwIBif7ksjaLeg9yLC/nNmzev0NdedNFFSkxM1HfffadzzjlH48aN85z+yzAMbd++3XNOTqfTqYCAAF1xxRWaMmWK57BWSTp8+LC+/vprz553X375pee59/HHH+vbb7/1NPqDDz5QXl6e4uPjvRp99tlnKyIiQk6nU6+//rp27drl2WPY3ejIyMhTPs40umg0mkaXFI32vUa7ne51XN7XSkUouFi/d+9eTZkyRVdccYUCAgJO25ALL7zQ65SN3377raTiT+94Ku73nbJ0vk+fPsrLyyv0++s777wjh8Ph+X3T7VTv5WX5nbng86K435ndf8woqh/uU2t8/fXXXr8zu49g7dWrlyR5zo//2WefeV3vs88+83wOQX55eXlyOp2e35mzs7M1btw4Sf8spLg5nU4NHz5cHTp00GOPPabXXntN69at8/TY3bcPP/ywUH8yMjIKfTYKPfZGj0+ix/S4IpSmxyVVkiZed911mjRpktatW1fo6wv+Dllaw4cPV+3atYv8zJKC8vfOMAy99957CgoK8vyRurRdLKjg49unTx8dOnTIc+ph6eR73+jRoxUZGVnoKIzq1avroosu0mWXXabLLrvM6xTFpdWnTx/99ddfWrJkieeytLQ0ffzxx2rUqFGhU/WNHDlSaWlpevbZZ8t8n/llZGQoNze3yB0S3AzDkGEYxW7DFPX4uU+fFxIS4llIKMv2zKmes/m5tw8GDx6sLl266P777/f8nCv6uV0pr/p+/fppxIgRuuuuu9SlSxetXbtWEyZMKHQutjvuuENffvmlHnnkEf3111/q1q2b0tLSNHfuXA0ePFhXX311me6/evXquvDCC3XXXXfp8OHDevfdd9WsWTPPhpnT6dSnn36q3r17q23btrrrrrtUr1497d+/X/Pnz1d0dLSmTZumtLQ0vf/++xo1apRatGih3377zXMf7j+0rFmzRkuWLFHnzp3VtGlTvfTSS3r66ae1a9cuXXPNNYqKitLOnTv1008/adCgQXrsscc0d+5cPf/881qzZk2hQ7sL6t69u+6//369+uqrWrVqla644goFBQVp69atmjhxokaOHKnrr7++TI/TL7/8ossvv/yUq2O33367vv/+e/3rX//S/Pnz1bVrV+Xl5WnTpk36/vvvNXv27NMewZJffHy83njjDd1777267bbb1KdPn1I9Hn379tXbb7+tXr16acCAATpy5Ijef/99NWvWTGvWrPFcr1mzZnr22Wf14osvqlu3brr22msVEhKiZcuWqW7dunr11VcVHR2td955R/fee6/OPfdcDRgwQNWqVdPq1auVnp6ucePGKSgoSK+99pruuusude/eXbfccosOHz6skSNHqlGjRoVOiZOWluZ1KO1XX32lzMxM9e/fv8SPUUHjxo3TmDFj1L9/fzVt2lSpqan65JNPFB0d7Ql/SR+XopT09VoSd9xxh0aNGqX58+cXeb7f07n44ot1++23a9SoUdq6davn9EELFizQxRdfrAceeEBXXHGFgoODdeWVV+r+++/XiRMn9Mknn6hWrVqFPoSwU6dO+uCDD/TSSy+pWbNmqlWrli655BI9/vjjmjp1qvr166eBAweqU6dOSktL09q1a/XDDz9o165diouL0zXXXKPzzjtPjz76qLZt26ZWrVpp6tSpnnMN5//F5o033lDv3r3VuXNn3XPPPcrIyNDo0aMVExOjYcOGlfpxfOyxxySpwg6jlU7+YcD9/ExMTNRHH32kwMDAUy7YluY1MGLECM2aNUsXXnihBg8erJCQEH3yySdKSUkp8lzM5X2+SCf35r/ooov0+uuvKycnx7PnZcEPkCzK66+/rl69eumCCy7Q/fffr9zcXL333nsKDQ3Vyy+/XOj6v/76q+cPKu49FdauXev5QE3pZBucTqd+//13de/eXdHR0frggw90++236+yzz9bNN9+smjVras+ePZoxY4a6du3qtSGxb98+z6HhZTVz5kxt2rSp2PegsLAwJScn64orrlDr1q21fv16zZ8/X06n02sj8IorrtBff/2lRx55RBdffLESEhLUsmVLVatWTeecc45+/fVXhYSEeC0ivPTSS5ozZ44uvPBC5eTkKCMjQ126dFFWVpbuv/9+DRkyRNWrV9err74qSdqzZ49uu+021axZUxs3btQnn3yiCy+8UCNGjFCfPn3Utm1bpaSkaMuWLRo2bJin0U8++aReffVVZWRk6IMPPlCLFi3Uo0cPffjhh2rSpInnc1O+/fZbff3117riiiv03nvv0ejToNGlR6NpdEUpS6OLUtTruLSvlcrQrl079ezZUw8++KBCQkI0ZswYSfL6o1z+hgwePFiBgYH66KOPlJWVpddff13Sycdp6NCh+vTTT3XzzTcX+XlPBZ04ccLT6uTkZI0aNUpBQUFlWsy58sordfHFF+vZZ5/Vrl27dOaZZ+qXX37RlClT9PDDD6tp06ZasGCB5/qnei8vyet7zZo1atKkiVq3bq1HHnlEQUFBio2N1cKFC/Xqq696/nDg/vDSDRs2aPjw4fryyy919dVXF/lHD/c56tPS0lS/fn1ddtllnnPnh4eH65133pF08tQed955p8aNG6datWrp4osvVmZmpn777TdFRUXpl19+0UMPPaS0tDTP5385HA7dfffdqlOnjpYuXerZo3f9+vVefyS655579Mknn2jXrl3q27evYmNjdcUVV3g+kPWRRx7RmDFjNHjwYDkcDt1///0aOXKkp28FzzlOj73RY3pMj8uuonp8KiVp4v/+9z/Nnz9f559/vu677z61adNGycnJWrFihebOnet5fMvil19+0YQJEzyn/StOaGioZs2apTvvvFPnn3++fv75Z82YMUPPPPOMZ+/8knQxvzVr1mj8+PGeneRGjRqlM844w/MeOWjQIH300UcaOHCg/v77bzVq1Eg//PCDFi1apHfffbdCPjelOE899ZS++eYb9e7dWw8++KCqV6+ucePGaefOnZo0aVKh08T98ssvevnll4v8XJ2SmDNnjvbt2+c5/dSECRN01VVXFfq5uP8O4T791LZt2/Twww8XeZv33HOPPvjgAw0cOFDLly9X48aNNXnyZM2bN0//+9//PLOW9udWkudsQQ6HQ59++qk6duyooUOHerblKvS5bZTC2LFjDUnGsmXLTnm9zMxM49FHHzXq1KljhIWFGV27djWWLFlidO/e3ejevbvXddPT041nn33WaNy4sREUFGTEx8cb119/vbF9+3bDMAxj586dhiTjjTfeKHQ/bdu29bq9+fPnG5KMb775xnj66aeNWrVqGWFhYUbfvn2N3bt3F/r6lStXGtdee61Ro0YNIyQkxGjYsKFx4403GvPmzfO679P978477/S63UmTJhkXXnihERERYURERBitWrUyhgwZYmzevNkwDMP4z3/+Y1x00UXGrFmzCs00dOhQo6gfy8cff2x06tTJCAsLM6Kiooz27dsbTzzxhHHgwAHPdRo2bGj07du30NcOGTKk0G1KMhwOh/H33397XV7Uzyg7O9t47bXXjLZt2xohISFGtWrVjE6dOhnDhw83UlJSCt3f6W7PMAzjkksuMRo0aGCkpqaW+vH47LPPjObNmxshISFGq1atjLFjxxb7uH3++efGWWed5Zm7e/fuxpw5c7yuM3XqVKNLly5GWFiYER0dbZx33nnGN99843Wd7777znM71atXN2699VZj3759Xte58847vZ4XkZGRxtlnn2189dVXp3yMTmfFihXGLbfcYjRo0MAICQkxatWqZfTr189Yvnx5mR6Xhg0bej1nS/p6db++Jk6ceMp527ZtazidzkKPT0nl5uYab7zxhtGqVSsjODjYqFmzptG7d2+v5+rUqVONDh06GKGhoUajRo2M1157zfj8888NScbOnTs91zt06JDRt29fIyoqypDk9f2kpqYaTz/9tNGsWTMjODjYiIuLM7p06WK8+eabRnZ2tud6CQkJxoABA4yoqCgjJibGGDhwoLFo0SJDkvHtt996zT537lyja9eunufSlVdeaWzYsMHrOu6fSUJCQrGPwcGDB42AgACjRYsWZXoMi9K9e3ev52dsbKzRtWtXY+bMmSX6+pK8Bgzj5PO1Z8+eRkREhBEeHm706NHDWLBgQbG3W9rni/t9eezYsZ7L9u3bZ/Tv39+IjY01YmJijBtuuME4cOCAIckYOnSo53ruhuV/jsydO9fo0qWLERoaakRFRRl9+vQx1qxZ43Wf7p9Zaf7XsGFDr9uYP3++0bNnTyMmJsYIDQ01mjZtagwcONDrdex+D3nooYe8vraouYvStWvXEr0HNWjQwOt6gYGBxnnnnWecddZZRvfu3T2v9fnz53s1OjAw0AgKCjKcTqcRGRlp9O3b15g1a1ahRrufA06n03A6ncbFF19sLF682KvRffv2NSQZISEhRoMGDYyYmBgjMjLSuPXWW42kpCTDMP5ptPt28jc6MzPTaNKkSYl+Fk2bNvV6nGn0qW/PMGh0adBoGl0RytPokryO3Ur6WomIiCh0exMnTvS0oaCi2pyfJGPIkCHG+PHjPa+Ds846q8jbcjckMjLSCA8P9zTEbdGiRUazZs2MYcOGGVlZWaedo7jH9ueffy5yxoL69u1bqOmpqanGf//7X6Nu3bpGUFCQ0bx5c+ONN94wXC6XYRj/dPt07+Wne30X7Jl72yr/78wTJkzwuo67lw8++KBx9OhRwzAMIzY21ggJCfHcv/v94oYbbjBiYmI8czZp0sTTwvyeeuopIzIy0nMfUVFRRv/+/cv0O3P+bYz8PQ4NDTUkGd26dfPMMGTIEKNx48ZGw4YNC/Xtqaeeosf50GN6TI8rRnl/ZzaMim3i4cOHjSFDhhj169f3vPdfeumlxscff+y5zqmecxEREV7PY3efOnbs6GlWcTO7twe2b99uXHHFFUZ4eLhRu3ZtY+jQoUZeXp7X/Zyui/m/9/x9jI+PN6699lpj48aNhb7vu+66y4iLizOCg4ON9u3bF/t4FlSa12TBx8cwDGP79u3G9ddfb8TGxhqhoaHGeeedZ0yfPt3rOu7brFOnjpGWllboe8z/N4iiuL8+/+/jBdttGIX/DhEWFma0adPGeOeddzzXKfheZRiGceTIEePuu+/2PH7t2rUzPvnkk0JzlObnVpLnbHGNGT58uBEYGGisWLHCc1lJntslUapFDV9X0oCUlPuFfao/JA0dOrTQEwjwZx07djQuueQSs8eoVD/99JMhyVi4cGGl3H5CQoIRGBhojBgxolJu35fY8fkyf/78Qn8AgXejS7qTxKnQaKD07PieWxCN9j3FLRjAHJX1O3Pz5s2LvQ49BrzR4/Kzao+t0sTidnKA//Hl52ylfKYGAP+0fPlyrVq1SnfccYfZo1QY97n/3PLy8jR69GhFR0d7TnFT0b744gvl5eWV+kPjrMaOzxcA8FV2fM+l0QAAq6HHFYMeA6icT9KxicjISN16662n/BCuDh06qG7dulU4FeB71q1bp7///ltvvfWW6tSpo5tuusnr3/Py8k77gT+RkZGnfK2Z5T//+Y8yMjLUuXNnZWVl6ccff9TixYv1yiuvKCwsrELv69dff9WGDRv08ssv65prrlGjRo0q9PZ9xemeL1ZXvXr1Qh9ghopHo4GSodEVw18aDZRWZGSkatWqVehc4/nRY4AeVxR6DMCNRY1TiIuL83xAUHGuvfbaKpoG8F0//PCDRowYoZYtW+qbb75RaGio17/v3bvX86GExRk6dGipPxysKlxyySV66623NH36dGVmZqpZs2YaPXq0HnjggQq/rxEjRmjx4sXq2rWrRo8eXeG37ytO93yxug4dOmjcuHFmj2F7NBooGRpdMfyl0UBpxcXFqXXr1kpMTCz2OvQYoMcVhR4DcHMYhmGYPQQAe8vMzNTChQtPeZ0mTZqoSZMmVTQRAACQaDQAAL6AHgNA6bCoAQAAAAAAAAAALIEPCgcAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBICzR4AgH/JcxnKdblkGCf//zzDkMtlSI5sOZx5CnAEyOlwyulwKsARoADnyf8GAADmoN0AAFgL7QZgdyxqACiTnDyXDhzL0OHjWTqekaOUAv/Lf9nxzH/+/8wcV5G31+2CRVqVMq3IfwsLDFN0cLSiQ6IVHRytqOCok/+d77Lo4GjFhMQoOjhaNcNrKj48XgHOgMp8CAAAsBTaDQCAtdBuACgaixoAipV0Ikt7ktO1Jzldez3/N0N7ktN16Him8lxGlcyRkZuhjNwMHU4/XOKvCXQGqk5EHZ0ReYbOiDr5v3qR9XRG1BmqH1Vf0cHRlTgxAADmoN0AAFgL7QaA0mNRA4D2JKVr7f4Urd2fou0JJ7T3/zem0rLzzB6tzHJdudqbuld7U/dKBwv/e1RwlGfDq0lME7Wp0UZtarRRfER81Q8LAEAp0W7aDQCwFtpNuwFUHBY1AD9iGIZ2//+G1LoDKVq3P0Xr9h9XSkaO2aNVudTsVG1M3qiNyRu9Lq8eWt2zodWmRhu1rdGWDS4AgGlo9z9oNwDACmj3P2g3gMriMAyjao5jA1Dl9h1N14o9x7Ruf4rW7kvR+gMpOp6Za/ZYRTrVuT3NVj20ulrXaK021U9ubJ1Z60zFhcWZPRYAwIZod8Wg3QCAqkK7KwbtBlAaLGoANpKSkaMl2xO1cFuiFm5N1K6kdLNHKjFf3rgqSvNqzXVBnQvUuU5nnRN/jsICw8weCQBgQbS76tBuAEBFoN1Vh3YDKA6LGoCFZee69Pfuo1q0LVELtiVq3f6UKvsQsYpmtY2r/IKcQTqz5pnqXLezLqhzgdrWaKsAZ4DZYwEAfBDt9g20GwBQUrTbN9BuAPmxqAFYzKZDx7Vwa6IWbE3Usl3JSrfwh4rlZ+WNq4KigqN0Xvx56lynszrX7awG0Q3MHgkAYCLa7ftoNwAgP9rt+2g34N9Y1AAsYN3+FE1bc0Az1hzUvqMZZo9TKey0cVVQ05im6tm4p3o16qXGMY3NHgcAUAVot7XRbgDwP7Tb2mg34F9Y1AB81KZDxzV99UHNWHtQOxPTzB6n0tl54yq/ltVaqlfjXurZqKfqR9U3exwAQAWi3fZEuwHAvmi3PdFuwP5Y1AB8yLYjJzR9zQFNX3NQ246cMHucKuUvG1f5ta3RVr0andzQqhNZx+xxAABlQLtpNwDAWmg37QZgfSxqACbbnZSm6WsOatrqA9p0KNXscUzjjxtXbg451KFmB/Vs1FM9G/VUrfBaZo8EADgF2n0S7abdAGAVtPsk2k27AbtgUQMwQZ7L0JwNh/TV0t1avD1JvAr9e+MqvwBHgLqf0V03tbpJnet0lsPhMHskAIBod1Fo90m0GwB8E+0ujHafRLsB62NRA6hCR45n6uu/9ujbv/bq0PFMs8fxKWxcFdYoupFuaHGDrml+jaKDo80eBwD8Eu0uHu0ujHYDgPlod/Fod2G0G7AmFjWAKrB4e6LGL92tX9YfVq6Ll1xR2LgqXlhgmHo16qWbW92sNjXamD0OAPgF2n16tLt4tBsAqh7tPj3aXTzaDVgLixpAJUnNzNGkv/dp/J97/O7Dx8qCjauSaR/XXje1vEm9GvdSSECI2eMAgK3Q7tKh3SVDuwGg8tDu0qHdJUO7Ad/HogZQwXYknNCnC3dq8sr9Ss/OM3scy2DjqnRiQ2LVv1l/3dr6VtWOqG32OABgabS7bGh36dBuAKg4tLtsaHfp0G7Ad7GoAVSQbUdSNWreNk1fc0Ac6Vp6bFyVTbAzWP2b99e97e9VfES82eMAgKXQ7vKh3WVDuwGg7Gh3+dDusqHdgO9hUQMop82HUjVq3lb9vO4gG1XlwMZV+QQ5g3R1s6t1X/v7VDeyrtnjAIBPo90Vg3aXD+0GgJKj3RWDdpcP7QZ8B4saQBltOHBco+Zt1ewNh8SrqPzYuKoYgc5AXdnkSt3X4T7Vj6pv9jgA4FNod8Wi3RWDdgNA8Wh3xaLdFYN2A+ZjUQMopbX7UjRy3lbN23SYjaoKxMZVxQp0BKpPkz4a1GGQGkY3NHscADAV7a4ctLti0W4A+Aftrhy0u2LRbsA8LGoAJbRq7zGNmrdVv246YvYotsTGVeUIcASoV+NeGtRhkJrENDF7HACoUrS7ctHuykG7Afgz2l25aHfloN1A1WNRAziNXYlpemXmRv2y4bDZo9gaG1eVy+lw6ppm1+g/Z/1HcWFxZo8DAJWKdlcN2l25aDcAf0K7qwbtrly0G6g6LGoAxUhJz9HIeVv11dJdysnjZVLZ2LiqGuGB4bq73d26s+2dCg0MNXscAKhQtLtq0e6qQbsB2Bntrlq0u2rQbqDysagBFJCT59JXS3Zr1K9bdSw9x+xx/AYbV1UrPiJeD571oPo16SeHw2H2OABQLrTbHLS7atFuAHZCu81Bu6sW7QYqD4saQD5/bEnQ8GnrtT0hzexR/A4bV+boENdBz5z/jNrGtTV7FAAoE9ptHtptDtoNwOpot3lotzloN1DxWNQAJO1NTteL0zdw/k4TsXFlHqfDqf7N+uuhsx9StdBqZo8DACVCu81Hu81DuwFYEe02H+02D+0GKhaLGvBrmTl5+vD37frw9+3KzHGZPY5fY+PKfNHB0RrScYhuanmTApwBZo8DAEWi3b6DdpuPdgOwAtrtO2i3+Wg3UDFY1IDfWrw9UU9NWqs9yelmjwKxceVLWlVvpZe6vqSW1VuaPQoAeKHdvoV2+w7aDcBX0W7fQrt9B+0Gysdp9gBAVUvPztULU9bp1k//ZMMKKMKm5E26ecbN+mDVB8p15Zo9DgDQbuA0aDcAX0O7gVOj3UD5sKgBv7J0R5J6vbtAXy7ZLY5RAoqX68rVmNVjNGDGAG1O3mz2OAD8GO0GSoZ2A/AVtBsoGdoNlB2LGvAL6dm5GjplnW75ZCl7iQClsDF5o26ecbM+XP0he48AqFK0Gygb2g3ALLQbKBvaDZQeixqwvT//fy+RcewlApRJritX7696XwNmDNCWo1vMHgeAH6DdQPnQbgBVjXYD5UO7gdJhUQO2lZGdp2FT1+tm9hIBKsTG5I26efrN+mj1R+w9AqBS0G6gYtFuAJWNdgMVi3YDJcOiBmzpr53J6j3yD32xeBd7iQAVKMeVo/dWvadbZ96qbUe3mT0OABuh3UDloN0AKgvtBioH7QZOj0UN2IrLZeidOVt088dLtCuJvUSAyrIhaYNumn6Tvt/8vdmjALA42g1UDdoNoKLQbqBq0G6geCxqwDaS07J159i/NHLeVrnYSwSodNmubL249EU9s+AZZeRmmD0OAAui3UDVot0Ayot2A1WLdgNFY1EDtrBiz1H1HbVAC7Ymmj0K4Hem7ZimATMGaFfKLrNHAWAhtBswD+0GUBa0GzAP7Qa8sagBy/t84U7d9NESHUzJNHsUwG9tO7ZNN8+4WbN3zTZ7FAAWQLsB89FuAKVBuwHz0W7gHyxqwLJOZOVqyNcrNGL6BuXkcdwrYLa0nDQ99vtj+t9f/1OOK8fscQD4INoN+BbaDeB0aDfgW2g3cBKLGrCkzYdSddV7CzVjzUGzRwFQwISNE3TXrLt0KO2Q2aMA8CG0G/BdtBtAUWg34LtoN/wdixqwnJ9W7tM17y/SjoQ0s0cBUIzVCat147QbtfjAYrNHAeADaDfg+2g3gPxoN+D7aDf8GYsasIzcPJeen7xO//1utTJy8sweB8BpHM06qn/P/bc+XvOx2aMAMAntBqyFdgOg3YC10G74KxY1YAlpWbm698vl+mrpbrNHAVAKLsOl0StH64VFLyjXlWv2OACqEO0GrIl2A/6LdgPWRLvhj1jUgM87cjxTN360RL9tTjB7FABl9NO2nzRk3hCl5XD4OuAPaDdgfbQb8C+0G7A+2g1/wqIGfNrWw6nqP2ax1h84bvYoAMpp8YHFGjhroI6kHzF7FACViHYD9kG7Af9AuwH7oN3wFyxqwGct3ZGk6z5YrP3HMsweBUAF2ZS8SbfOvFXbjm4zexQAlYB2A/ZDuwF7o92A/dBu+AMWNeCTpqzarzs++0vHMzkXIGA3h9IO6Y5Zd+ivg3+ZPQqACkS7Afui3YA90W7Avmg37I5FDficMb9t08PfrVJ2nsvsUQBUktTsVP1r7r80fcd0s0cBUAFoN2B/tBuwF9oN2B/thp2xqAGfkecy9NzktXp91mYZhtnTAKhsOa4cPbPgGX2y5hOzRwFQRrQb8C+0G7A+2g34F9oNu2JRAz4hMydP93+1XOOX7jF7FABVyJChUStH6cUlL8plsJcYYCW0G/BPtBuwLtoN+CfaDTtiUQOmy8zJ06Cv/tbcjUfMHgWASb7f8r2GLh7KBhZgEbQbAO0GrIV2A6DdsBMWNWAq94bVH1sSzB4FgMkmb5vMBhZgAbQbgBvtBqyBdgNwo92wCxY1YBo2rAAUxAYW4NtoN4CCaDfg22g3gIJoN+yARQ2Ygg0rAMVhAwvwTbQbQHFoN+CbaDeA4tBuWB2LGqhybFgBOB02sADfQrsBnA7tBnwL7QZwOrQbVsaiBqoUG1YASooNLMA30G4AJUW7Ad9AuwGUFO2GVbGogSrDhhWA0mIDCzAX7QZQWrQbMBftBlBatBtWxKIGqgQbVgDKig0swBy0G0BZ0W7AHLQbQFnRblgNixqodHkuQ0MmrGDDCkCZTd42WS8vfdnsMQC/QbsBlBftBqoW7QZQXrQbVsKiBirdc5PXad6mI2aPAcDivt/yvT5d+6nZYwB+gXYDqAi0G6g6tBtARaDdsAoWNVCp3p+/Td/8tcfsMQDYxKgVozRzx0yzxwBsjXYDqEi0G6h8tBtARaLdsAIWNVBpJq/crzd/2Wz2GABsxJCh5xY9p2WHlpk9CmBLtBtARaPdQOWi3QAqGu2GFbCogUqxeHuinvhhjQzD7EkA2E2OK0cPzX9I249tN3sUwFZoN4DKQruBykG7AVQW2g1fx6IGKtyWw6m6/6u/lZ3nMnsUADaVmp2qf8/9txLS+SBEoCLQbgCVjXYDFYt2A6hstBu+jEUNVKjDxzM18PO/lJqZa/YoAGzuYNpBDZk3ROk56WaPAlga7QZQVWg3UDFoN4CqQrvhq1jUQIU5kZWru8Yu04GUTLNHAeAnNiZv1CO/P6JcF7/QAWVBuwFUNdoNlA/tBlDVaDd8EYsaqBC5eS79e/zf2nDwuNmjAPAzi/Yv0otLXzR7DMByaDcAs9BuoGxoNwCz0G74GhY1UCGen7JeC7Ymmj0GAD/149Yf9enaT80eA7AU2g3ATLQbKD3aDcBMtBu+hEUNlNv3y/fqm7/2mD0GAD83euVoLT241OwxAEug3QB8Ae0GSo52A/AFtBu+gkUNlMuGA8f1wpR1Zo8BAHIZLj35x5M6kn7E7FEAn0a7AfgK2g2UDO0G4CtoN3wFixoos9TMHA2e8Lcyc1xmjwIAkqTkzGQ99vtjfIAZUAzaDcDX0G7g1Gg3AF9Du+ELWNRAmT02cbV2JaWbPQYAeFl5ZKXe+fsds8cAfBLtBuCLaDdQPNoNwBfRbpiNRQ2UySd/7NDs9YfNHgMAivTlhi81d/dcs8cAfArtBuDLaDdQGO0G4MtoN8zEogZKbdmuZL02a5PZYwDAKT2/6HntPr7b7DEAn0C7AVgB7Qb+QbsBWAHthllY1ECpJJ7I0gNfr1CuyzB7FAA4pRM5J/TIb48oMzfT7FEAU9FuAFZBu4GTaDcAq6DdMAuLGiixPJehB79ZqcPHs8weBQBKZMvRLXpp6UtmjwGYhnYDsBraDX9HuwFYDe2GGVjUQIm9PWezFm9PMnsMACiVKdunaNKWSWaPAZiCdgOwItoNf0a7AVgR7UZVY1GjivTo0UMPP/yw2WOU2eJtiRrz23azxwCAMnn1r1e1I2VHld3f6d7zHQ6HJk+eXOLb++233+RwOHTs2LFyz4aSo90AYB7ajbKg3QBgHtqNqsSiBk4rLStXT0xaI4PTeQKwqKy8LD2/8HnlufLMHkWSdPDgQfXu3dvsMWBjtBuA1dFu+BvaDcDqaDeqEosaOK1XZm7UvqMZZo8BAOWyJnGNxm0YZ/YYkqT4+HiFhISYPQZsjHYDsAPaDX9CuwHYAe1GVWFRwwRHjx7VHXfcoWrVqik8PFy9e/fW1q1bJUmGYahmzZr64YcfPNfv2LGj6tSp4/nvhQsXKiQkROnp6ZU+68Ktifr6rz2Vfj8AUBXeX/m+dhyrmsNhXS6XnnjiCVWvXl3x8fEaNmyY598KHga7ePFidezYUaGhoTrnnHM0efJkORwOrVq1yus2//77b51zzjkKDw9Xly5dtHnz5ir5XkC7AcAstBtlRbsBwBy0G1WBRQ0TDBw4UMuXL9fUqVO1ZMkSGYahPn36KCcnRw6HQxdddJF+++03SSc3xDZu3KiMjAxt2rRJkvT777/r3HPPVXh4eKXOeSIrV09y+CsAG8l2ZevZhc9WyeGw48aNU0REhP7880+9/vrrGjFihObMmVPoesePH9eVV16p9u3ba8WKFXrxxRf15JNPFnmbzz77rN566y0tX75cgYGBuvvuuyv728D/o90AYA7ajbKi3QBgDtqNqsCiRhXbunWrpk6dqk8//VTdunXTmWeeqQkTJmj//v2e1cMePXp4Nq7++OMPnXXWWV6X/fbbb+revXulz/ryjI3af4zDXwHYy7qkdRq7fmyl30+HDh00dOhQNW/eXHfccYfOOecczZs3r9D1vv76azkcDn3yySdq06aNevfurccff7zI23z55ZfVvXt3tWnTRk899ZQWL16szMzMyv5W/B7tBgBz0W6UFu0GAHPRblQ2FjWq2MaNGxUYGKjzzz/fc1mNGjXUsmVLbdy4UZLUvXt3bdiwQQkJCfr999/Vo0cPz8ZVTk6OFi9erB49elTqnAu2JugbDn8FYFMfrPpA245uq9T76NChg9d/16lTR0eOHCl0vc2bN6tDhw4KDQ31XHbeeeed9jbdp0co6jZRsWg3AJiPdqM0aDcAmI92ozKxqOGD2rdvr+rVq+v333/32rj6/ffftWzZMuXk5KhLly6Vdv+pmTl6atLaSrt9ADBbtitbzy16Trmu3Eq7j6CgIK//djgccrlcFXabDodDksp9m6gYtBsAKhftRkWj3QBQuWg3KhOLGlWsdevWys3N1Z9//um5LCkpSZs3b1abNm0knXzBdOvWTVOmTNH69et14YUXqkOHDsrKytJHH32kc845RxEREZU2I4e/AvAH65PWa+y6yj8c9nRatmyptWvXKisry3PZsmXLTJwIBdFuAPANtBslRbsBwDfQblQWFjWqWPPmzXX11Vfrvvvu08KFC7V69Wrddtttqlevnq6++mrP9Xr06KFvvvlGHTt2VGRkpJxOpy666CJNmDChUs/r+fuWBH27bG+l3T4A+JIPVn+grUe3mjrDgAED5HK5NGjQIG3cuFGzZ8/Wm2++KemfvUJgLtoNAL6DdqMkaDcA+A7ajcrAooYJxo4dq06dOqlfv37q3LmzDMPQzJkzvQ5v6t69u/Ly8rzO4dmjR49Cl1Wk9OxcPT1pTaXcNgD4ohxXjp5f9LxchnmHkkZHR2vatGlatWqVOnbsqGeffVYvvPCCJHmd7xPmot0A4BtoN0qKdgOAb6DdqAwOwzAMs4eAb3ht1iZ98Nt2s8eAn+p2wSKtSplm9hjwUy90fkE3tLjB7DE8JkyYoLvuukspKSkKCwszexz4MNoNM9FumIl2w6poN8xEu2Em2o2KFGj2APANOxPT9NmCnWaPAQCmGL1itK5oeIViQmJMuf8vv/xSTZo0Ub169bR69Wo9+eSTuvHGG9mwwinRbgD+jHbDimg3AH9Gu1GROP0UJEnDp61Xdp55h4EBgJmOZh3V6JWjTbv/Q4cO6bbbblPr1q313//+VzfccIM+/vhj0+aBNdBuAP6MdsOKaDcAf0a7UZE4/RQ0d8Nh3fvlcrPHgJ/jMFiYLcARoO/6faeW1VuaPQpwWrQbvoB2w2y0G1ZCu+ELaDfMRrtRUThSw89l5ebpxRkbzB4DAEyXZ+TplT9fMXsM4LRoNwCcRLthFbQbAE6i3agoLGr4uc8X7tLupHSzxwAAn7DiyArN2jXL7DGAU6LdAPAP2g0roN0A8A/ajYrAooYfSzqRpTHzt5k9BgD4lHf/flfZedlmjwEUiXYDQGG0G76MdgNAYbQb5cWihh97e84WpWblmj0GAPiU/Sf2a/zG8WaPARSJdgNAYbQbvox2A0BhtBvlxaKGn9p6OFXfLttr9hgA4JM+XfOpkjOTzR4D8EK7AaB4tBu+iHYDQPFoN8qDRQ0/9dKMjcpzGWaPAQA+KTUnVWNWjTF7DMAL7QaA4tFu+CLaDQDFo90oDxY1/NDSHUn6fUuC2WMAgE+btGWS9h5nzzr4BtoNAKdHu+FLaDcAnB7tRlmxqOGHRs7davYIAODzco1cfbL2E7PHACTRbgAoCdoNX0K7AeD0aDfKikUNP7NsV7KW7EgyewwAsIRpO6Zp/4n9Zo8BP0e7AaDkaDd8Ae0GgJKj3SgLFjX8zKh57C0CACWV68rVp2s/NXsM+DnaDQAlR7vhC2g3AJQc7UZZsKjhR1bsOaoFWxPNHgMALGXKtik6lHbI7DHgp2g3AJQe7YaZaDcAlB7tRmmxqOFH2FsEAEovx5XDXiMwDe0GgNKj3TAT7QaA0qPdKC0WNfzE6r3H9NvmBLPHAABL+mnrTzqcdtjsMeBnaDcAlB3thhloNwCUHe1GabCo4SfYWwQAyi7bla3P131u9hjwM7QbAMqOdsMMtBsAyo52ozRY1PAD6/anaN6mI2aPAQCWNmnrJCVmcH5kVA3aDQDlR7tRlWg3AJQf7UZJsajhB9hbBADKLysvi71GUGVoNwCUH+1GVaLdAFB+tBslxaKGzW08eFxzNnI+OgCoCBM3T2SvEVQ62g0AFYd2oyrQbgCoOLQbJcGihs19/McOGYbZUwCAPWTmZeqbTd+YPQZsjnYDQMWh3agKtBsAKg7tRkmwqGFjSSeyNGPtQbPHAABb+XHrj8px5Zg9BmyKdgNAxaPdqEy0GwAqHu3G6bCoYWPfLd+r7FyX2WMAgK0kZiRq3u55Zo8Bm6LdAFDxaDcqE+0GgIpHu3E6LGrYlMtl6Os/95g9BgDY0rebvzV7BNgQ7QaAykO7URloNwBUHtqNU2FRw6bmbz6ifUczzB4DAGzp78N/a9vRbWaPAZuh3QBQeWg3KgPtBoDKQ7txKixq2NRXS3ebPQIA2Bp7jaCi0W4AqFy0GxWNdgNA5aLdKA6LGja0Nzldf2xJMHsMALC16TumKz0n3ewxYBO0GwAqH+1GRaLdAFD5aDeKw6KGDY3/c7dchtlTAIC9peWkadr2aWaPAZug3QBQ+Wg3KhLtBoDKR7tRHBY1bCYrN08Tl+8zewwA8AvfbfnO7BFgA7QbAKoO7UZFoN0AUHVoN4rCoobNzFhzUMlp2WaPAQB+YevRrVpxeIXZY8DiaDcAVB3ajYpAuwGg6tBuFIVFDZvhg8oAoGrxwWUoL9oNAFWLdqO8aDcAVC3ajYJY1LCRjQePa+WeY2aPAQB+Ze7uuTqaedTsMWBRtBsAqh7tRnnQbgCoerQbBbGoYSNTVx8wewQA8Ds5rhzN3TPX7DFgUbQbAKoe7UZ50G4AqHq0GwWxqGEj09ewcQUAZpi9c7bZI8CiaDcAmIN2o6xoNwCYg3YjPxY1bGL13mPam5xh9hgA4JeWH16uxIxEs8eAxdBuADAP7UZZ0G4AMA/tRn4satgEe4sAgHnyjDzN2T3H7DFgMbQbAMxDu1EWtBsAzEO7kV+g2QOg/AzD0Iw1B80eo8qkrpyp1JUzlZtyWJIUFNdAsV1uUVjTcyRJSbPeU+buVco7kSxHUKhC6rVWtR4DFVSjfrG3eWzhBKVtXKC81AQ5nIEKjm+m2IvuUEjdlpIkIzdHSbNGKX3rUgVEVFP1KwYrrFFHz9en/DlJeccTVP3yf1XeNw4UkPRrkpJ/TVZOYo4kKaReiGpdXUtRHaIkSfu/2K8T608o91iunKFOhTcLV/wN8QqpG1LsbR7+6bBS/kxRTnKOHIEOhTUKU+3raiu8abgkyZXj0v7P9yt1ZaoCYwJV9466imwb6fn6hJkJyknKUd3b61bid+6bZu2cpVta3WL2GLAI2k274Z9ot2+h3SgN2k274Z9ot2+h3XBzGIZhmD0Eyufv3cm67oMlZo9RZdK3/SmHw6nAaiffvE+sm6fjf/6oOgNHKrhmQ6WumqWgGmcoMLqm8jJSlbLoa2Uf3ql6//pUDmdAkbeZtuE3OcNjFRgbLyMnS6nLpyht00LVu/8TBYTH6Pjf03Ri5UzFXf2UMnb8reN/TdIZD4yXw+FQzrFDOvL9C6pz57tyhoRX5UNhK90uWKRVKdPMHsNSjq88LofToeDawZKkYwuPKfHnRDUd0VSh9UKV/FuyQuqEKKh6kPLS8nRk8hFl7slUizdbyOF0FHmbx5YcU2B0oIJrBsuV41LS7CSlLEtRi9daKDA6UElzkpQ8P1n1h9TXiTUnlDAzQa1GtZLD4VB2QrZ2vblLTYc1VUBY0a81O3PIobk3zFWt8FpmjwILoN202w5od+nRbt9Cu1EatJt22wHtLj3a7VtoN9w4/ZQNTPejvUUkKbzZ+Qpreq6CqtdTUPV6qnbRHXIGhyrrwGZJUlTHXgqt306BMbUVEt9Msd1uV15qgnJTjhR7mxFteiisUUcFxcYruGZDVbvkXhnZ6co+slOSlJO0V2HNzldwzYaKOruvXOkpcmUclyQl/zJG1XoMZMMKVS76rGhFnRmlkPgQhcSHqPb1teUMdSp9W7okqXqP6opoGaHgmsGePT9yknOUnZhd7G3Gdo5VZNtIBdcKVmi9UMXfEi9XhkuZ+zIlSVkHsxTVMUqh9UJV/dLqykvNU15qniTpwLgDir8x3i83rCTJkKFfdv1i9hiwCNpNu+GfaLdvod0oDdpNu+GfaLdvod1wY1HD4lwuQzPX+tfGVX6GK09pG36XKydTIfVaFfp3V3amTqydq8CY2gqMjivZbeblKHXVLDlCIhRcq7EkKbhWY2Xt2yBXTpYyd65QQGR1OcOidWL9fDkCgxXeokuFfl9AaRkuQ8eWHpMry6XwZoU39F1ZLh1dcFRBNYMUVD2oRLfpynXp6G9H5QxzKrR+qCQptH6o0remy5Xt0om1JxQYG6iAqAAdW3xMjiCHojtFV+j3ZTWzds0yewRYAO2m3YBEu30F7UZJ0G7aDUi021fQbkh8poblLduVrMPHs8weo8plJ+zSoa8ek5GbLUdwmGr1f1bBcQ08/566YoaO/jZWRk6mAqufoVo3vSRHwKmDkr7tLyVOfV1GTpYCIqup9k0vKiA8RpIU2f5yZR/ZpQOfDVZAWLTirn5SrswTSlk4QbVveVVH//hK6Rv/UGBsvGr0eUiBUSXbkAPKK3Nvpna8tEOuHJecIU41+E8DhdYL9fx70rwkHf7+sFxZLgXHB6vR443kDDz1evbxVce174N9cmW7FBgTqEaPN1Jg1MlcVOtWTZl7M7X1ma0KjApU/cH1lZeWp8M/HVbjpxrr8KST5wYNrhWsevfUU1C1km3I2cWahDU6eOKg6kTWMXsU+DDaTbvh32i3b6HdKAnaTbvh32i3b6HdkPhMDct7fvI6fbV0t9ljVDkjL0e5xxPkykpX+uaFOrH6F9Ue8D/PBpYrK015aceUl3ZUx//6UXmpSYq/7Q05AoOLvU1Xdqby0pLlSj+u1NWzlblnjerc/pYCImKLvH7ijHcVXLuxAmPideyPcYq//W0d/3OSchJ3q2b/Zyrj27Y1zu1ZNq5cl3KScuTKcCllWYqO/nFUjZ9q7NnAykvPU+7xXOWm5Crx50TlHM1Rk2ebyBlc/AaWK8ulnGM5ykvNU/LvyUrbmKamLzRVYHTR6+D7Pt2n0AahCq4ZrMM/HFbTF5oqYWaCsvZlqcF/GhT5NXb2aKdHNbDdQLPHgA+j3bTbLmh32dBu30O7cTq0m3bbBe0uG9rte2g3OP2UheW5DP28zj8PgXUEBCmoWl2FxDdTte4DFVyrsVKXT/X8uzMkQkHV6ym0fjvVvOZp5STvU/qWU3+omzM49ORt1muluD4PyeF06sSaos/Tl7l7jXKSdivq7H7K3LNGYU3OkTM4VOGtLlTmnrUV+r0Cp+IMdCqkdojCGoUp/oZ4hdYPVdKcJM+/B4QHKCQ+RBEtI1T/gfrKOpil4yuOn/o2Q07eZnizcJ1xzxlyBDh09I+jRV73xMYTytqfpRqX1VDapjRFdYiSM8SpmPNilLYprUK/V6vgUFicCu2m3QDt9j20G6dCu2k3QLt9D+0GixoWtnLPUSWeKP6Dh/yJYRgy8nKK+ceT/yv234u/0SK/xsjNVvKcD1Sj5wNyOAMkwyXDdfIDm+TKk2G4Snc/QEUyJCOnmAPw/v/iYv+9uJt0GXLlFH5eu7JdOvjVQdUdWFcOp0NySUbeyds2cg0ZLv88EHB90nodTjts9hjwUbT7H7Qb+H+023S0G6dCu/9Bu4H/R7tNR7vBooaFLdiaaPYIpjj6+xfK3LtOuSmHlZ2wS0d//0JZe9Yqok0P5Rw7pJQl3yvr0DblHj+izH0blTDlVTkCgxXW5BzPbez/5F9K37JY0snDX4/+Pk5Z+zcpN+WIsg5tU+LMd5WbmqTwlhcWuv9ji79VWJNzFFy7qSQppF4bpW9ZrOwjO5W6YrpC67WumgcCfu/QxENK25ym7IRsZe7NPPnfm9IU2zlW2UeylTA9QRm7MpSdlK30rena+/5eOYOcijozynMbW57aouN/n9yDxJXl0qEfDil9W7qyE7OVsStD+z7bp9yjuYo5L6bQ/SdMTVBkh0iFNQyTJIU3D9fxv48rc2+mkuclK7x54Q9O8xdLDy41ewT4KNpNu+HfaLfvot0oDu2m3fBvtNt30W7/xgeFW9iibf65cZWXlqLE6W8rLy1ZzpAIBddspFo3jlBY47OUm5qkzH3rdXz5VLkyTyggIlYh9dsq/rY3vM7RmZu8T66sdEmSw+lUTvI+JUyep7yM4woIi1ZwfHPF3/qagms29Lrv7IRdSt+0QHUGjvZcFt6qqzL3rtWhCU8qqEY9xV35eJU8DkDu8Vzt+3ifclNy5QxzKrR+qBo92kiR7SKVczRHaVvSlPhLolxpLgXEBCiiRYSaPNfE6xyd2YeylZf+/3s8OaTsg9nas3CP8k7kKSAyQGGNw9T4mcZeH4ImSZn7MpWyLEXNRjTzXBZ9TrTSNqVpxys7FBIfojP+dUaVPA6+aOnBpbq62dVmjwEfRLtpN/wb7fZdtBvFod20G/6Ndvsu2u3f+KBwizqRlauOw39Rrp8eZgb74QPLYCdxYXGaf+N8s8eAj6HdsBvaDTuh3SgK7Ybd0G7YCe32b5x+yqKWbk9iwwoAfFRiRqK2Ht1q9hjwMbQbAHwX7UZRaDcA+C7a7d9Y1LCohX56CCwAWMWSA0vMHgE+hnYDgG+j3SiIdgOAb6Pd/otFDYtasDXB7BEAAKew5CAbV/BGuwHAt9FuFES7AcC30W7/xaKGBR1KydT2hDSzxwAAnMLfh/9WTl6O2WPAR9BuAPB9tBv50W4A8H2023+xqGFB7C0CAL4vIzdDqxJWmT0GfATtBgDfR7uRH+0GAN9Hu/0XixoWtIjzegKAJSw9uNTsEeAjaDcAWAPthhvtBgBroN3+iUUNC1q4LcnsEQAAJbD0ABtXOIl2A4A10G640W4AsAba7Z9Y1LCYTYeOK/FEltljAABKYH3Seh3PPm72GDAZ7QYA66DdkGg3AFgJ7fZPLGpYzN+7j5o9AgCghPKMPK1LWGf2GDAZ7QYA66DdkGg3AFgJ7fZPLGpYzLr9KWaPAAAohQ3JG8weASaj3QBgLbQbtBsArIV2+x8WNSxmLRtXAGApG5LYuPJ3tBsArIV2g3YDgLXQbv/DooaFZOe6tOXQCbPHAACUAhtX/o12A4D10G7/RrsBwHpot/9hUcNCNh9KVXaey+wxAAClsP/EfqVksbefv6LdAGA9tNu/0W4AsB7a7X9Y1LAQDoEFAGtan7Te7BFgEtoNANZEu/0X7QYAa6Ld/oVFDQth4woArIlDYf0X7QYAa6Ld/ot2A4A10W7/wqKGhaxj4woALImNK/9FuwHAmmi3/6LdAGBNtNu/sKhhETl5Lm0+lGr2GACAMmDjyj/RbgCwLtrtn2g3AFgX7fYvLGpYBB9WBgDWxYeW+SfaDQDWRbv9E+0GAOui3f6FRQ2L4BBYALC2jckbzR4BVYx2A4C10W7/Q7sBwNpot/9gUcMi+LAyALA2DoX1P7QbAKyNdvsf2g0A1ka7/QeLGhax7cgJs0cAAJTDjmM7zB4BVYx2A4C10W7/Q7sBwNpot/9gUcMi9ianmz0CAKAc9p3YZ/YIqGK0GwCsjXb7H9oNANZGu/0HixoWkJ3r0qHjmWaPAQAoh32pbFz5E9oNANZHu/0L7QYA66Pd/oNFDQvYdzRdLsPsKQAA5ZGQkaDsvGyzx0AVod0AYH2027/QbgCwPtrtP1jUsIA9HAILAJbnMlzaf2K/2WOgitBuALA+2u1faDcAWB/t9h8saljA3qMZZo8AAKgAbFz5D9oNAPZAu/0H7QYAe6Dd/oFFDQvgw8oAwB44v6f/oN0AYA+023/QbgCwB9rtH1jUsIA9SWxcAYAdsHHlP2g3ANgD7fYftBsA7IF2+wcWNSyAc3sCgD3sO8HGlb+g3QBgD7Tbf9BuALAH2u0fWNSwAA6DBQB7YI8R/0G7AcAeaLf/oN0AYA+02z+wqOHjjqVnKzUr1+wxAAAVgA8s8w+0GwDsg3b7B9oNAPZBu/0Dixo+jkNgAcA+TuSc0LHMY2aPgUpGuwHAPmi3f6DdAGAftNs/sKjh4w4fzzJ7BABABTqSccTsEVDJaDcA2Avttj/aDQD2Qrvtj0UNH5eSkWP2CACACnQ867jZI6CS0W4AsBfabX+0GwDshXbbH4saPo6NKwCwl+PZbFzZHe0GAHuh3fZHuwHAXmi3/bGo4ePYuAIAe2Hjyv5oNwDYC+22P9oNAPZCu+2PRQ0fd5yNKwCwFQ6DtT/aDQD2Qrvtj3YDgL3QbvtjUcPHsccIANgLe4zYH+0GAHuh3fZHuwHAXmi3/bGo4ePYuAIAe2Hjyv5oNwDYC+22P9oNAPZCu+2PRQ0fx2GwAGAvqdmpZo+ASka7AcBeaLf90W4AsBfabX8savg49hgBAHthjxH7o90AYC+02/5oNwDYC+22PxY1fBwbVwBgL3xgmf3RbgCwF9ptf7QbAOyFdtsfixo+jo0rALAX9hixP9oNAPZCu+2PdgOAvdBu+2NRw4dl5uQpK9dl9hgAgArExpW90W4AsB/abW+0GwDsh3bbH4saPiwtK9fsEQAAFSwtJ83sEVCJaDcA2A/ttjfaDQD2Q7vtj0UNH5bnMsweAQBQwfJceWaPgEpEuwHAfmi3vdFuALAf2m1/LGr4sDyDjSsAsBuXwekN7Ix2A4D90G57o90AYD+02/5Y1PBh7DECAPaTZ7DHiJ3RbgCwH9ptb7QbAOyHdtsfixo+zMWiIgDYjiFDBnsE2hbtBgD7od32RrsBwH5ot/2xqOHDXLz4AMCWOBTWvmg3ANgT7bYv2g0A9kS77Y1FDR/GxhX8Rc3gHF3gyFagM9DsUYAqwcaVfdFu+AvaDX9Du+2LdsNf0G74G9ptbyxq+DCnw2H2CEClcjgMvdJkrZZGPaEhKz/RT8cduii2tdljAZXO6SC/dkW7YXe0G/6KdtsX7Ybd0W74K9ptbyzP+jA2rmBnN9U5pBcCv1TEgVWeyxolbNf7Cdu1qMkFej3CqR0n9pk3IFCJ2LiyL9oNO6Pd8Ge0275oN+yMdsOf0W57Y1HDhzl57cGG2kel6f3aU1R/3ww5VPSh3l13LNUkZ6C+bXupxmTtVWrOiSqeEqg8Djnk4Jdn26LdsCPaDX9Hu+2NdsOOaDf8He22P/LtwwKcvPhgH1GBuRrf/HdN1cNqsG96sRtWboGuXN22drZm7D+sm6q1V4AjoIomBSoXz2V7o92wE9oNnMRz2d5oN+yEdgMn8Vy2PxY1fFgAK4qwiWcbbdLK6s/qwr0fyZGTVqqvrZaWpOdWzND3aSE6L6ZFJU0IVB0OgbU32g27oN3AP2i3vdFu2AXtBv5Bu+2P00/5MPYYgdX1qZmo/4VPUPShP8t9Wy0Ob9JnhzdpbvNuejM4U/vTD1fAhEDVC3Cyx4id0W5YHe0GCqPd9ka7YXW0GyiMdtsfixo+LCKEHw+sqWl4hj6s97Oa7ftRjlRXhd72ZVsX6KKAEI1rd4k+Td+p9Nz0Cr19oLJFBEWYPQIqEe2GVdFuoHi0295oN6yKdgPFo932x7E4Piw0KEAhgfyIYB1hAXn6uNlSzQ36r5rv/UEOo2I3rNyC87J03+qfNf3wMV1VrZ0cYu8qWEd0cLTZI6AS0W5YDe0GTo922xvthtXQbuD0aLf9UW4fFx0WZPYIQIk82GCHVtccpiv2jZIj63iV3GfN44f08oqZmpATow7RTavkPoHyigqOMnsEVDLaDaug3UDJ0G77o92wCtoNlAzttj+Os/RxMWFBSkjNMnsMoFjdaxzV29Hfq8bB302bof2+NRq/z6HprS/WuzqqI5lJps0CnA57jNgf7Yavo91A6dBu+6Pd8HW0Gygd2m1/LGr4uBj2GIGPqhOarY/rz1G7/d/LkZZj9jhyyNCVG3/VpcER+rRND315Youy8vjFBL4nOoSNK7uj3fBVtBsoG9ptf7Qbvop2A2VDu+2P00/5ODau4GsCHC6903SFFoU9pvZ7J8jhMn/DKr/w7DQ9uGqGpiRn6fJqbcweByiEPUbsj3bD19BuoHxot/3Rbvga2g2UD+22P47U8HFsXMGXDKy7T085vlDo/g1mj3Ja9ZL36O3kPVrW6Fy9Fh2qzam7zR4JkMTGlT+g3fAltBsoP9ptf7QbvoR2A+VHu+2PRQ0fx8YVfME5MakaHTdJdfb/YvYopXburmX63uHUD20u1Xu5h3Q0O8XskeDn2LiyP9oNX0C7gYpDu+2PdsMX0G6g4tBu++P0Uz4umo0rmKhGcI4mNp+riXkPWXLDys1puHTj+jmavmePbottr0An67kwD+f2tD/aDTPRbqDi0W77o90wE+0GKh7ttj8WNXwce4zADA6HoRcbr9Nf0U/p3L2fy5GbafZIFSI6I0VPrpyhSalOdY1tZfY48FPsMWJ/tBtmoN1A5aHd9ke7YQbaDVQe2m1/LJv6uOhQfkSoWtfHH9awoC8VeXCl2aNUmiZHtunDI9v0R9MueiPM0K60/WaPBD8SFRxl9gioZLQbVY12A5WLdtsf7UZVo91A5aLd9ke5fRx7jKCqtI5M1wfxU9Vw3zQ5ZJg9TpW4aPtidXYG6eu2l+qjrD1KzTlh9kjwA+wxYn+0G1WFdtNuVA3abX+0G1WFdtNuVA3abX+cfsrH1Y4ONXsE2FxEYJ7GNV+gmc6H1GjfVL/ZsHILcuXozrWzNH3/EV1Xrb2cDt4WUblqhdcyewRUMtqNyka7aTeqFu22P9qNyka7aTeqFu22P95FfFyD6uFmjwAbe6rhFq2q/py67/1Ajuw0s8cxVfW0RA1bMUPfZYTrnJjmZo8Dm4oMilS10Gpmj4FKRrtRmWj3P2g3qgLt9g+0G5WJdv+DdqMq0G7/wOmnfFy1iGBFhQQqNSvX7FFgI71qJul/EV8r9tASs0fxOa0ObtDYgxs0u+VFejsgXQcyjpg9EmykXmQ9s0dAFaDdqAy0u3i0G5WJdvsH2o3KQLuLR7tRmWi3f+BIDQs4g71GUEEahWVqdvPJ+uDEw2xYnUbPzX9o6pZ1eiC6ncICw8weBzbBxpX/oN2oKLS75Gg3KgPt9h+0GxWFdpcc7UZloN3+gUUNC2hQnTd2lE+I06UPmv2pX0MeUcu938th5Jk9kiWE5Gbq/tUzNe1IqvpWayeHHGaPBIs7I+oMs0dAFaHdKC/aXTa0GxWNdvsP2o3yot1lQ7tR0Wi3f2BRwwI4vyfK49/1d2lt7eHqvW+knJnHzB7HkmqnHND/VszUl7nV1C66sdnjwMLYuPIftBvlQbvLj3ajotBu/0G7UR60u/xoNyoK7fYPfKaGBbBxhbK4sHqK3on5XjUPzjd7FNvouHeVvt7r0JTWl2iUkpSQmWz2SLCYMyLZuPIXtBtlQbsrHu1GedFu/0G7URa0u+LRbpQX7fYPHKlhAZzbE6URH5KtKc1/1ldZD7FhVQkcMnTNxnmavmOb7oltr2BnsNkjwULYY8R/0G6UBu2uXLQb5UG7/QftRmnQ7spFu1EetNs/sKhhAewxgpIIcLj0ZpNVWhzxmM7c+5Ucedlmj2Rr4Vkn9PDKGZp8LEeXVGtj9jiwAIccfGCZH6HdKAnaXbVoN0qLdvsX2o2SoN1Vi3ajtGi3/+D0UxZwRrUwOR2SyzB7EviqO+oe0NOOLxR2YJ3Zo/id+km7NTJpt5Y2Pk+vRQZp24m9Zo8EH1UzvKaCA9jDyF/QbpwO7TYP7UZJ0W7/QrtxOrTbPLQbJUW7/QeLGhYQEhig2tGhOpiSafYo8DFnx5zQ6LgfVW//LLNH8XsX7PxLPzgCNLHtpXo/56COZaeYPRJ8DOf19C+0G8Wh3b6DduN0aLd/od0oDu32HbQbp0O7/Qenn7KI+hwKi3yqBeXq2+a/alLeQ2xY+ZAAI083r/tF0/fs1YDY9gp0sG6Mf3BeT/9Du5Ef7fZNtBunQrv9D+1GfrTbN9FunArt9h8salhEs1qRZo8AHzGs8UYti31aF+z9VI7cDLPHQRFiMo7p6ZUz9MOJQHWJbWn2OPARjWMamz0Cqhjthhvt9n20G0Wh3f6HdsONdvs+2o2i0G7/wXKmRbSrG2P2CDDZNbWP6MWQ8Yo6uNzsUVBCTY9s0UdHtui3ZhfqzdBc7U47YPZIMFGbGnywnb+h3aDd1kO7kR/t9j+0G7Tbemg38qPd/oNFDYtoX4+NK3/VIiJDH9WZpkb7psghPrXOinpsW6iuAcEa3/YSfZy5Wydy0sweCSZoW6Ot2SOgitFu/0W7rY92Q6Ld/oh2+y/abX20GxLt9iecfsoiWsZHKTiAH5c/iQhw6fPmizQ74CE13jeZDSuLC8rL1l1rZmnagST1r9ZeTgevZ39SL7KeYkL4Jdnf0G7/Q7vthXb7N9rtn2i3/6Hd9kK7/Rvt9i+8ui0iONCpFvGc39NfPNZgm1bFPa9L9r4vR/YJs8dBBYo7cUQjVszQN5kROjummdnjoIpwCKx/ot3+hXbbF+32T7TbP9Fu/0K77Yt2+yfa7V9Y1LAQDoW1v8vjkrWy0ft64MgLCkrZafY4qERtDqzXuFW/6vXgJooPq2n2OKhkbFz5L9ptf7Tbf9Bu/0K7/Rfttj/a7T9ot3+h3f6Fz9SwkHb1YiTtNXsMVIIGYZn66Ixf1Gr/D3KcyDV7HFSh3pt/08VBYRrb9hKNPbFVGXmZZo+EStCmOhtX/op22xft9l+02z/Qbv9Fu+2Ldvsv2u0faLd/4UgNC2GPEfsJchp6r9ky/RbyqFrv/VYOFxtW/ig0J0P/XjVDUxPT1btaO7PHQSVgjxH/Rbvth3ZDot3+gHb7L9ptP7QbEu32B7Tbv7CoYSEt46MUFOAwewxUkEFn7NG6+BHqt+8dOTOPmj0OfED8sX16fcVMjcuLU+uoRmaPgwpSN6KuYkNjzR4DJqHd9kK7URDttifa7d9ot73QbhREu+2JdvsfTj9lISGBAWpRO0rrDxw3exSUQ+dqKRpZ7QfVOjDP7FHgo87es0Lf7nVqSutLNNKVoKQsNr6tjL1F/BvttgfajdOh3fZCu/0b7bYH2o3Tod32Qrv9D0dqWAyHwlpXrZAc/dR8tr7OfogNK5yW03Cp/4a5mr5zh+6Kba8gZ5DZI6GM2LgC7bYu2o3SoN32QbtBu62LdqM0aLd90G7/w6KGxbRj48pyHA5DrzVZoyWRj+usvePkyMs2eyRYSGRWqh5ZOUOTU1zqEUukrYiNK9Bu66HdKA/abX20G7Tbemg3yoN2Wx/t9j+cfspiOjWsZvYIKIUBdQ7quYBxCj+wxuxRYHENEndqdOJOLW58vl6PDND2E/vMHgkl4HQ41S6OD6Hzd7TbWmg3KgrttibaDYl2Ww3tRkWh3dZEu/0TixoW0yo+SnGRwUo8wV4HvqxD9AmNqTVFZ+ybYfYosJkuO//UD85Afdf2Uo3J3qfj2almj4RTaFujrWJC2NPP39Fua6DdqCy021poNyTabRW0G5WFdlsL7fZPnH7KYhwOh7o0jTN7DBQjJihXXzf/TVOMh9mwQqUJdOXq1rWzNWPvQd1Urb0CHAFmj4RiXFDnArNHgA+g3b6NdqMq0G7roN2QaLevo92oCrTbOmi3f2JRw4IubM7GlS96vvFG/R37tLrs/ViOnHSzx4EfiE1P1nMrZmhiWrDOj21h9jgoQue6nc0eAT6Cdvsm2o2qRrt9H+2GG+32TbQbVY12+z7a7Z84/ZQFXdiMjStfcmWtBL0cOl7RB5eZPQr8VPPDm/Xp4c2a1/xCvRWcrb3ph8weCZLCAsPUsWZHs8eAj6DdvoV2w2y02zfRbuRHu30L7YbZaLdvot3+iyM1LKhubJia1Iwwewy/1zwiQ3ObT9Ko1P8q+ggbVjDfpVsXavKm1Xooqq3CA8PNHsfvnV37bAUFBJk9BnwE7fYNtBu+hnb7FtqN/Gi3b6Dd8DW027fQbv/FooZFsdeIecIC8vRp8yX6JfC/arZ3khyGy+yRAI/gvCzdu+ZnTT98TFdVayeHHGaP5Lc61+EQWHij3eah3fBltNt30G4URLvNQ7vhy2i376Dd/otFDYti48oc/22wQ6trDtVle0fLkXXc7HGAYtU8fkgvr5ipr7OjdWZ0U7PH8Ut8WBkKot3moN2wCtptPtqNgmi3OWg3rIJ2m492+y8+U8OiOjetoQCnQ3kuw+xR/EKP6kf1Vsx3qnHwD7NHAUql3f61Gr9fmt7qYr3jSNGRzESzR/ILNUJrqEU1PkQO3mh31aLdsCrabQ7ajaLQ7qpFu2FVtNsctNu/caSGRUWFBunMM2LMHsP26oVmaUbz6Rqb+RAbVrC0fpvma9r2zbo/pr1CA0LMHsf2zq9zvhwODkGGN9pdNWg37IJ2Vy3ajaLQ7qpBu2EXtLtq0W7/xqKGhV3YvKbZI9hWkNPQyKZ/a0HYY2q792s5XLlmjwSUW3h2mh5YNUNTkrJ0RbW2Zo9ja53rcl5PFI12Vx7aDTui3VWHdqM4tLvy0G7YEe2uOrTbv7GoYWHdmnN+z8pwT729Whv/kq7e/5acGUlmjwNUuLpH9+itFT9rrKumWkU1NHscW+K8nigO7a4ctBt2R7srH+1GcWh35aDdsDvaXflot3/jMzUs7OwG1VQjIlhJadlmj2IL58Ue16gakxS/f47ZowBV4pzdf+s7h1M/trlUo/MOKznrmNkj2ULr6q0VHxFv9hjwUbS7YtFu+BvaXTloN06Fdlcs2g1/Q7srB+0GR2pYWIDToV7teAGXV83gHE1qPkff5TzEhhX8jtNw6fr1czR9127dEdtegU7WusurV+NeZo8AH0a7Kwbthj+j3RWPduNUaHfFoN3wZ7S74tFusKhhcf061DV7BMtyOAy90nitlkY9qU57x8qRl2X2SIBpojJT9PjKGfrpuEPdYluZPY6l9WzU0+wR4ONod9nRbuAftLvi0G6cDu0uO9oN/IN2VxzaDZYGLe78xtVVKypER1LZMCiNG+IPaVjQl4o4uMrsUQCf0ihhu8YkbNeCpp31Rpi0M22/2SNZSoe4DqoXWc/sMeDjaHfZ0G6gaLS7fGg3SoJ2lw3tBopGu8uHdkPiSA3Lczod6s2hsCXWNipNfzT7Rq8fe1QRCavMHgfwWd22L9GPG5bpicg2igqKNHscy7ii0RVmjwALoN2lQ7uBkqHdZUO7URK0u3RoN1AytLtsaDckFjVsod+ZHAp7OlGBufqq+R+arofVYN80OWSYPRLg8wJdubp97SzN2H9YN1RrrwBHgNkj+TSHHBwCixKj3adHu4HSo92lQ7tRGrT79Gg3UHq0u3RoN9xY1LCBcxpWU52YULPH8FnPNNqsldWfVbe9H8qRk2b2OIDlVEtL0gsrZui79FCdG9Pc7HF8VsdaHRUfwR58KBnafWq0Gygf2l0ytBulQbtPjXYD5UO7S4Z2w41FDRtwOBzq076O2WP4nN41E7W64SgNOjRcgcf3mj0OYHktD23U56vm6e2ghqoXXtvscXwOe4ugNGh30Wg3ULFo96nRbpQG7S4a7QYqFu0+NdoNNxY1bKJfBzau3JqEZ+qX5j9pzIn/KubwUrPHAWzn8i0LNGXzWv0nup3CAsPMHscnOB1OXdGQ83qidGj3P2g3ULlod2G0G2VBu/9Bu4HKRbsLo93Ij0UNmzirQTWdUc2/3+TCAvL0UbOlmhf0X7XYO1EOI8/skQDbCsnN1KDVMzX9yHFdWa2dHHKYPZKpOtXupJrhNc0eAxZDu2k3UJVotzfajbKg3bQbqEq02xvtRn4sathIXz/ea+SB+ru0uuZw9dw3So6sFLPHAfxGrZSDemXFTI3PiVWH6CZmj2OaXo16mT0CLIp2026gqtHuk2g3yop2026gqtHuk2g38nMYhmGYPQQqxvoDKeo7aqHZY1Spi6of09sx3ynu4O9mjwL4PUMOTWt9sUbqqI5kJpk9TpUJdAZq3g3zVD20utmjwIJoNwAz0W7ajdKj3QDMRLtpN07iSA0baVs3RmeeEWP2GFWiTmi2prWYqXGZD7FhBfgIhwxdtfFXTduxVffGtFewM9jskarEpQ0uZcMKZUa7AZiJdgOlR7sBmIl2AyexqGEzt13Q0OwRKlWAw6W3m67UorDH1H7PeDlcOWaPBKCA8KwTemjVDE05mq3LqrUxe5xKd1PLm8weARZHuwGYjXYDpUO7AZiNdsPfcfopm8nMydMFr87TsXT7bXTcWXe/nnJ8obCk9WaPAqAU/mp0rl6LCtGWE3vMHqXCNYttpp+u/snsMWBxtBuAr6HdwKnRbgC+hnbD33Ckhs2EBgXohk5nmD1GhTo7JlWLm36p4cmPs2EFWNB5u5bp+3VL9HxEK1ULtteh+je2vNHsEWADtBuAr6HdwKnRbgC+hnbD33Ckhg3tTkpTjzd/k9V/stWCcvVRo9917sEJcuRmmj0OgApwPCxGH7S6UN+mbFSukWv2OOUSHhiuX2/8VRFBEWaPAhug3QB8Fe0Gika7Afgq2g1/wJEaNtSwRoS6Na9p9hjlMqLxei2PeUrn7f2MDSvARqIzUvTkyhmadCJAXWNbmT1OufRr0o8NK1QY2g3AV9FuoGi0G4Cvot3wBxypYVNzNhzWfV8uN3uMUruu9mEND/5KkQkrzB4FQBX4o2kXvRHm0q60A2aPUmqTrpqkFtVamD0GbIR2A7AC2g38g3YDsALaDTsKNHsAVI5LW9VSvdgw7T+WYfYoJdIqMl0fxk9Tw31T5RDrbIC/uGj7YnV2Bunrdpfqo8w9Ss05YfZIJXJ2rbPZsEKFo90ArIB2A/+g3QCsgHbDjjj9lE05nQ4NOL+B2WOcVkRgnr5ovlA/Ox9Wo31T2LAC/FCQK0d3rpmlaQcSdF219nI6fD9NN7W8yewRYEO0G4BV0G7gJNoNwCpoN+yG00/ZWEJqlrr+71dl57nMHqVITzTcqvsyPlfQ8d1mjwLAh2yq00b/q11Hf6dsNXuUIlUPra65189VUECQ2aPAhmg3ACui3fBntBuAFdFuWJ3vL8uhzGpGhahXu3izxyjkirhkrWr0ngYfHsqGFYBCWh3coC9WzdMbQY1VJ8z3Pnzx2ubXsmGFSkO7AVgR7YY/o90ArIh2w+o4UsPm1u1PUb/RC80eQ5LUKCxTH54xWy33/SCHkWf2OAAsIDMoTGPbXKyxaduUkZdp9jgKDQjVz9f9rLiwOLNHgY3RbgBWRrvhj2g3ACuj3bAijtSwuXb1YnRZ61qmzhDidOmDZn/p15BH1Grvd2xYASix0JwM/Xv1TE1NTFOfau3MHkfXtbiODStUOtoNwMpoN/wR7QZgZbQbVsSRGn5gzb5juuq9Rabc97/r79LDuV8o5OgWU+4fgL2sqn+W/lc9WuuP76zy+w52Buvn635WrXBzf2GFf6DdAOyCdsNf0G4AdkG7YQUcqeEHOpwRqx4tq/b8eF2rpWhZk0/1ZMIzbFgBqDAd967UN6v/0Iiw5ooLqV6l992/eX82rFBlaDcAu6Dd8Be0G4Bd0G5YAUdq+IkVe47q2jGLK/1+4kOy9VGDeepw4Ds58rIr/f4A+K+0kCh93PoijU/drGxX5b7fBDmDNPPamYqP8L0PgYR90W4AdkO7YXe0G4Dd0G74Ko7U8BNnN6imbs0r73x0AQ6X3miySosjHteZe79iwwpApYvIStV/V83Q5GO5uji2TaXe19XNrmbDClWOdgOwG9oNu6PdAOyGdsNXcaSGH1m+K1nXf7ikwm/31joH9GzAOIUnrq3w2waAklrS+Dy9HhmkbSf2VujtBjoDNaP/DNWNrFuhtwuUBO0GYGe0G3ZEuwHYGe2Grwg0ewBUnXMaVVeXpjW0eHtShdxex+gTer/mT6q3/+cKuT0AKI/OO//SD44Afd/2Mr2fs18p2ccr5HavanoVG1YwDe0GYGe0G3ZEuwHYGe2Gr+BIDT+zdEeSbv54abluIyYoVx82WqALDo6XIzejgiYDgIqTEl5N77fsookpG5Vr5Jb5dgIdgZraf6rqR9WvwOmA0qHdAPwB7Yad0G4A/oB2w0x8poafuaBJDZ3XuHqZv35oo436O/Zpdd77CRtWAHxWTPpRPbNyhiamBemC2JZlvp0+TfqwYQXT0W4A/oB2w05oNwB/QLthJo7U8EOLtyVqwKd/luprrq59RC+FjFfUkeWVNBUAVJ75zS/Um8E52pN+sMRfE+AI0JRrpqhhdMNKnAwoGdoNwN/Qblgd7Qbgb2g3qhJHavihLs3i1K15XImu2yIiQ782m6h3jz/ChhUAy7p460JN3rRS/41qq4jA8BJ9Tf/m/dmwgs+g3QD8De2G1dFuAP6GdqMqcaSGn9p8KFV9Ri1QnqvoH39EgEujmizVJUfGyZGVWsXTAUDlSYyspZEtztWUo+tkqJj3wKAIzeg/QzXCalTxdEDxaDcAf0W7YVW0G4C/ot2obByp4adaxkfpxnPOKPLfHm2wTavintele99jwwqA7cSdOKIXV8zQN1lROiumWZHXubf9vWxYwefQbgD+inbDqmg3AH9Fu1HZOFLDjyWkZuniN3/TiaxcSdKlNZL1RtS3qn5oocmTAUDVmdmqh95xpupQRoIkqW5EXU3tP1UhASEmTwYURrsBgHbDWmg3ANBuVDyO1PBjNaNC9O8eTXVGaJZmNp+mTzMeZsMKgN/ps+k3Td22Uf+Oaa/QgBA9dPZDbFjBZ9FuAKDdsBbaDQC0GxWPIzX8XGZOngI/u0SBh1aZPQoAmO5I6z6qddM3Zo8BnBLtBoB/0G5YAe0GgH/QblQEjtTwc6FBAQrs/pjZYwCA+RxO1er2pNlTAKdFuwHg/9FuWATtBoD/R7tRQVjUgNT6SqnpJWZPAQDmOvtOqW5Hs6cASoZ2AwDthrXQbgCg3agwLGrgpN6vS84gs6cAAHOEVZMufcHsKYDSod0A/BnthhXRbgD+jHajArGogZPimksX/NvsKQDAHJc8J4VXN3sKoHRoNwB/RrthRbQbgD+j3ahALGrgH92flKLqmj0FAFStOmdKne42ewqgbGg3AH9Eu2FltBuAP6LdqGAsauAfIZHSlSPNngIAqo4zSLr6fclJDmFRtBuAv6HdsDraDeD/2rv3KDnrOs/jn+rudC7dJOESmoBIhCAKEggZvHKJGOPIDKDOEgQMK+LIcViO2ZmB1VnHdY46oqwrDoyO43pBHddhvKHDIIgkqKACQdQgyhCIIAQil4QkpJO+1P7RIeGSmFtVP89T9Xqdk9OdalL9bU6R94/zfaqq3Wg3TeDRxDO9cG5y5JlFTwEwOo67INnn8KKngF2j3UA70W5agXYD7US7aYJavV6vFz0EJdO/KvnHlyerHyx6EoDm2WdG8ucLk86uoieBXafdQDvQblqJdgPtQLtpEs/U4LnGTUpOvrToKQCap7M7eeM/OVjROrQbaHXaTavRbqDVaTdNZKnBlh08J5n5lqKnAGiO4y5M+g4regpoLO0GWpl204q0G2hl2k0Tefkptq5/VfLJVyRPPFD0JACNM/XI5O3fd7UIrUm7gVak3bQy7QZakXbTZJ6pwdaNm5Sc/A9FTwHQOJ3dyRs+5WBF69JuoNVoN61Ou4FWo92MAksN/rDpc5Kjzip6CoDGOP5/JH2HFj0FNJd2A61Eu2kH2g20Eu1mFHj5Kbat/4mNT4f9XdGTUCKfumVDPnXrhixbOZwkOWzvzrzvuO68/uAxSZJzv7Mu1907mAdX19PbXcsr9+/MR+aMzYv26tzqfb5/UX++umQw9z8xnO7OZNbUznzohLF52fNGtvvrB+t5+3f6c+WvB7JPb0c++SfjMufAzZv/i29cn/tWDefSE8c38SensvadOfL0146tPwahZWg3W6DdVI520060my3QbipHuxklnqnBto2bmJxyaZJa0ZNQIs+bWMtFc8Zm8Tt6cus7enLCtM6c8tV1uWPFUJJk1r6d+fwp43Pneb255i0TUq8nc7/0ZIaGt75HfeGenbnsxHH55Tt786OzezJtckfmfvnJ/H7tyAHunxcPZPGDQ/nxOT15x6wxOePr6/LUXvbex4fzmdsG8qHXjGv+D0/1dI4defqrgxXtQrvZAu2mUrSbdqPdbIF2UynazSjyTA223/fel9z4iaKnoMT2+MgTufi143LOUd3P+dovHh7KEf+0Nnef35uD9ti+feoT6+uZdNHqXDd/Ql5zYFf+4qp1mTi2lovmjMu6gXom/P3qrPjr3kzp6cgff3ltzp3VnTe+eEyjfyxawZ/8n+Toc4qeAkafdrMN2k1paTftSrvZBu2mtLSbUeSZGmy/1/yv5IBjip6CEhoaruerSwaydiB5xf7P3civ3VDP5382kBdMrmX/Sdt35dGGoXr+efGGTBqbHLHPyF9VR/R15kf3DWXdQD3XLB3M1N5a9ppQy7/8YiDjumoOVmzZjNMcrGhf2s1WaDelpt20M+1mK7SbUtNuRplnarBjVj+cfPrYZM3DRU9CCfzy4aG84rNr0z+Y9HYnX/mz8Tnx4M0HnE/esiEXfq8/aweSQ/bsyFVnTNjm1SL/ftdA3vy1dXlyIJm6Wy3fOm1Cjt5v5MA2MFTPgu/25z/uHsxeE2r5+OvG5dApnTn6M2uy6L/25NOLN+SrSwZy0B4d+dzJ47PfRHvbtjflxcmfX590Tyh6EiiOdvM02k3paTdoN8+g3ZSedlMASw123LIfJZefnNSHip6Egm0Yque+VfWs6q/na78ayP/92UBueOuEHDpl5DC0qr+eFWuHs3xNPf/7pg15YPVwbnxbT8Z1bf2qkbUb6lm+pp5HnhzOZxYP5Pplg/np23uyd8+WD0pnX7kuR/Z15AW7d+Rvvr8+P317Tz564/os+f1wvj5PUNtad2/yjkXJXgcXPQkUT7vZSLspNe2GzbSbjbSbUtNuCmKdyo6bdkzymr8tegpKoLuzlul7dGTWvp358JxxOaKvI5/4yYZNX580rpaD9+zMcQd05WvzxufXjwznm3cO/sH77Okeuc+XP68rnz1lfLo6avnsbQNb/GcX3juYO1YM5b+9tDuLlg3lxIO70tNdy7zDxmTRMof/tnfypQ5W8BTtZiPtptS0GzbTbjbSbkpNuymIpQY751ULkkNOLHoKSma4nqzfypmmXh/5tX5ox54cNlyvb/HP9A/Wc95/9OfTfzo+nR21DA0nAxu/98DwyOuN0sZeem7ykjcVPQWUi3azBdpNaWg3PJd2swXaTWloNwWy1GDn1GrJGz6V7D6t6EkoyHuu688PfjuYZSuH88uHh/Ke6/qzaNlQzjx8TO55fDgf/uH6LH5wKPetGs5N9w/m1H9bl/Fjajnx4K5N9/Giy9bkm3eOXA2ydkM9f/P9/vzkd4P57crhLH5wKG+7cl0eeKKeUw997huRfeCG9Tnx4K7MnDrylNtXPb8z3/j1QH7x8FAuu3lDXvX8ruf8GdrE845OXvehoqeA8tHutqfdlJZ2w5Zpd9vTbkpLuymYv33YeeMnJ/O+mHx2bjLYX/Q0jLIVa+s565vrsnxNPZPG1jKjryPXvGVCXntQVx5cPZwf3jeUS366IY+vq6evt5bjDujMTW+b8IzX6PzNo8NZtX7kyo7OjuTXjwzn8p+vyyNP1rPn+FqO3q8zPzy7J4ft3fmM771kxVCu+NVgbj+3Z9Nt/+XQrixa1pVjP782h+zZka/8mdf1bEsT9kxO/ULS+dwDORDtbnPaTSlpN/xh2t3WtJtS0m5KwBuFs+sWfyH5zruKngJod7WO5MyvJdNfU/QkUH7aDZSBdsP2026gDLSbkvDyU+y6WW9NjnxL0VMA7W72exysYHtpN1AG2g3bT7uBMtBuSsJSg8Y46ZLkBccXPQXQro44Izn+wqKngGrRbqBI2g07TruBImk3JWKpQWN0jklO+3Ky92FFTwK0mwNnJyf/Q9FTQPVoN1AU7Yado91AUbSbkrHUoHHGTUzO/Ldkt32LngRoF30vSeZ9yRuUwc7SbmC0aTfsGu0GRpt2U0KWGjTWpP1GDlhjJxY9CdDqJm78+2acv29gl2g3MFq0GxpDu4HRot2UlKUGjbfPS5J5lycdNrhAk4zdeIXaRFeoQUNoN9Bs2g2Npd1As2k3JWapQXMcdILX2gOao2NMMu+LSZ/XEoaG0m6gWbQbmkO7gWbRbkrOUoPmOfKMZPZ7ip4CaDUnX5oc9Oqip4DWpN1AM2g3NI92A82g3ZScpQbNNfvdycy3FD0F0Cpe/T+TI08vegpobdoNNJJ2Q/NpN9BI2k0FWGrQfH/6iWT6nKKnAKruqLOS4y8segpoD9oNNIJ2w+jRbqARtJuKsNSg+Tq7ktO+nLzg+KInAapqxmkj/6MGjA7tBnaVdsPo0m5gV2k3FWKpwegYMz45418dsIAdN+O05A3/lHRIFowq7QZ2lnZDMbQb2FnaTcV4pDJ6HLCAHeVgBcXSbmBHaTcUS7uBHaXdVJBHK6PLAQvYXg5WUA7aDWwv7YZy0G5ge2k3FeURy+hzwAK2xcEKykW7gW3RbigX7Qa2RbupMI9aiuGABWyNgxWUk3YDW6PdUE7aDWyNdlNxHrkUxwELeDYHKyg37QaeTbuh3LQbeDbtpgV49FIsByzgKQ5WUA3aDTxFu6EatBt4inbTIjyCKd5TB6zpc4qeBCjKzLc4WEGVaDeg3VAt2g1oNy3Eo5hyGDM+Of1fk5nzi54EGG2z35Oc8o8OVlA12g3tS7uhmrQb2pd202Jq9Xq9XvQQ8Aw3fDRZ+KGipwCarWNMctInkplnFj0JsKu0G9qDdkPr0G5oD9pNi7LUoJxu/3/Jt89PhgeKngRohu7dktO+mBx0QtGTAI2i3dDatBtaj3ZDa9NuWpilBuV1z6LkX+cn658oehKgkXbbNznzimSfw4ueBGg07YbWpN3QurQbWpN20+IsNSi3h+9I/uXU5IkHip4EaIS9D03O/Foyab+iJwGaRbuhtWg3tD7thtai3bQBSw3Kb9UDyVfmJQ8vKXoSYFe84LjktC8n4yYVPQnQbNoNrUG7oX1oN7QG7aZNWGpQDf1PJFfMH3lqLFA9M96cnHJZ0jmm6EmA0aLdUG3aDe1Hu6HatJs2YqlBdQwNJFf9ZXLbF4ueBNhuteT4C5NX/03RgwBF0G6oIO2GtqbdUEHaTfux1KB6bvtS8h8XJIPrip4E+EPG75688Z+TF84tehKgaNoN1aDdwFO0G6pBu2lTlhpU00O/TK44K3nsnqInAbZk36OSeZcnk59f9CRAWWg3lJt2A8+m3VBu2k0bs9SguvpXJd/6i+TX/170JMDT/dE5yR9flHR1Fz0JUDbaDeWk3cDWaDeUk3bT5iw1qL4b/yH5/t8lw4NFTwLtbUxPctIlyYx5RU8ClJ12QzloN7C9tBvKQbshiaUGreK3NyX/dnay5qGiJ4H2tNcLk3lfSvZ+UdGTAFWh3VAs7QZ2lHZDsbQbNrHUoHWsWZF87W3Jsh8WPQm0l8PelJx8aTK2t+hJgKrRbiiGdgM7S7uhGNoNz2CpQWsZHkqu/2Dyo48n8dCGpursTuZ+KHnZO4qeBKgy7YbRo91AI2g3jB7thi2y1KA13fuD5MrzkpX3FT0JtKa+w5M3fDKZOqPoSYBWod3QXNoNNJp2Q3NpN2yVpQata/2a5HvvS279XFw9Ag3S0ZUc+1fJcRcknWOKngZoNdoNjafdQDNpNzSedsM2WWrQ+u5ZlFx5frLK1SOwS/pesvEqkSOKngRoddoNjaHdwGjRbmgM7YbtYqlBe1i/Orn2b5PFny96Eqiejq7kmL9Mjr/QVSLA6NFu2HnaDRRBu2HnaTfsEEsN2svShcm3z09W3V/0JFANex82cpXIvkcWPQnQrrQbdox2A0XTbtgx2g07zFKD9rN+dXLte5PFXyh6Eiivjq7kmP+eHHdh0tVd9DRAu9Nu2DbtBspEu2HbtBt2mqUG7evu7yffeZerR+DZ9j5041UiM4ueBOCZtBu2TLuBstJu2DLthl1iqUF72/Bk8sOPJTddmgytL3oaKNbYicnsdycvPTfp7Cp6GoAt027YTLuBKtBu2Ey7oSEsNSBJHrsnufrdyX9eU/QkUIBacsTpyWv/Lundu+hhALaPdtPWtBuoIO2mrWk3NJKlBjzdXdck3333yGEL2sHUI5MTL072f2nRkwDsHO2m3Wg3UHXaTbvRbmg4Sw14tsENyc2fTn5wcdK/quhpoDl2m5qc8N7kiDOSjo6ipwHYNdpNO9BuoJVoN+1Au6FpLDVga9Y+miz6cLL488nwYNHTQGOMmZC88vzkVe9KunuKngagsbSbVqTdQCvTblqRdkPTWWrAtvz+ruTa93rdTyqulsw4LXnN+5JJ+xU9DEBzaTctQbuBNqLdtATthtFiqQHb676fJDd8JFl6fdGTwPardSSHnpIcd2HSd2jR0wCMLu2mirQbaGfaTRVpN4w6Sw3YUfffMnLIuvt7RU8CW1frSA57U3LcBcneLyp6GoBiaTdVoN0Am2k3VaDdUBhLDdhZD9yW3PDR5K6ri54ENqt1Joefmhz318leBxc9DUC5aDdlpN0AW6fdlJF2Q+EsNWBXLf/5yCHr11cl8Z8TBenoSma8OTnur5I9Dix6GoBy027KQLsBtp92UwbaDaVhqQGN8tCS5AcfTX717ThkMWo6xiRHnp4c+1fJ7tOKngagWrSbImg3wM7Tboqg3VA6lhrQaCvuTG66LFny9WRwXdHT0KrGTkqOPCN5xXnJ5P2Lngag2rSb0aDdAI2j3YwG7YbSstSAZln3ePKzf0lu/Vzy2NKip6FV7DMjOfrtI6/f2T2h6GkAWot20wzaDdA82k0zaDeUnqUGNFu9niy9Prnls8ld303qQ0VPRNV0jk0Oe+PIoWr/o4ueBqD1aTe7SrsBRpd2s6u0GyrFUgNG06rfJYu/kNz2xWTNw0VPQ9lNPiD5o7clM+cnPXsWPQ1Ae9JudoR2AxRPu9kR2g2VZKkBRRgaSO789shVJL+9sehpKJNaRzL9tSNXh0yfk3R0FD0RAIl2s3XaDVBO2s3WaDdUnqUGFO33d428udkd30geuavoaSjKvjNHnup62Ju8ARlA2Wk3iXYDVIl2k2g3tBBLDSiTh5Ykd3xz5KD12D1FT0Oz9R2evOSNI4eqPQ4sehoAdoZ2txftBqg+7W4v2g0tyVIDyurB20cOWXd8M1l5X9HT0ChTXjRyVchL3pTsdXDR0wDQSNrdmrQboHVpd2vSbmh5lhpQBb+7NVnyjeRX30qeeKDoadhRexw0cpg67E1J36FFTwPAaNDuatNugPaj3dWm3dBWLDWgSur1ZPnPk3sWJvcsSu77STLYX/RUPFv3bsm0VyUHvjo5cHay94uKngiAomh3NWg3AE/R7mrQbmhrlhpQZQP9yX03jRy0li5MHvplEv9Jj7qOrmS/WZsPU887OunsKnoqAMpIu8tBuwHYXtpdDtoNPI2lBrSStY8m9y4aOWjdc0OyymuCNs1eLxw5SB346mTaMcm4iUVPBEAVaffo0W4AGkG7R492A1thqQGt7NGlye9uGXnzs+W3J8t/kQysLXqq6hk3OZl6RLLvkcnUI5P9X5ZM2q/goQBoSdrdGNoNwGjR7sbQbmAHWGpAOxkeTh79z82HrQdvH3nq7IbVBQ9WIuMmbz5EPfVxjxcUOhIAbUy7t027ASgT7d427QZ2kaUGtLvh4eSxpZsPXI/clTy+LFl5X2u/GdqYnmT3A5LdpyVTDtl8mNp9WrFzAcC2aLd2A1At2q3dQENZagBbVq8nqx8aOWg9/dfK3458XP1QSv3maLWOZOJ+I4el3Q9IJk/b+PnGX71TCh0PABpOuwGgWrQbYKdYagA7Z6B/5KC1+qGkf1XSvzJZt3LLH/tXbf58eHDHv1dn98jTU8dPHvk4btLmz7f0cbepyeTnJ51jdvGHBIAWot0AUC3aDbBFlhrA6BpYlwwPJfXhpD408jTc+sbf1zqTjs6kVtv8eUdX0jW26KkBoH1pNwBUi3YDLc5SAwAAAAAAqISOogcAAAAAAADYHpYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCVYagAAAAAAAJVgqQEAAAAAAFSCpQYAAAAAAFAJlhoAAAAAAEAlWGoAbWn27NlZsGDBpt9PmzYtl1xySWHzAAB/mHYDQLVoN9AsXUUPAFAGt9xyS3p6eooeAwDYTtoNANWi3UCjWGoAJJkyZUrRIwAAO0C7AaBatBtoFC8/BZTK7Nmzc/7552fBggXZfffd09fXl8985jNZu3Ztzj777Oy2226ZPn16rr766k1/ZsmSJXn961+f3t7e9PX1Zf78+XnkkUc2fX3t2rU566yz0tvbm6lTp+ZjH/vYc77v058Gu2zZstRqtdx+++2bvr5y5crUarUsWrQoSbJo0aLUarVcc801mTlzZsaPH58TTjghK1asyNVXX50Xv/jFmThxYs4444w8+eSTTfl3BQBloN0AUC3aDVSdpQZQOpdffnn22muv3HzzzTn//PPzzne+M6eeempe+cpX5rbbbsvcuXMzf/78PPnkk1m5cmVOOOGEzJw5M7feemu++93v5uGHH868efM23d8FF1yQG264IVdeeWWuvfbaLFq0KLfddltDZn3/+9+fyy67LDfddFPuv//+zJs3L5dcckm+8pWv5Kqrrsq1116bSy+9tCHfCwDKSrsBoFq0G6i0OkCJHH/88fVjjjlm0+8HBwfrPT099fnz52+6bfny5fUk9R//+Mf1D3zgA/W5c+c+4z7uv//+epL6b37zm/rq1avr3d3d9SuuuGLT1x999NH6+PHj6+9617s23XbAAQfUP/7xj9fr9Xr93nvvrSep/+xnP9v09ccff7yepL5w4cJ6vV6vL1y4sJ6kft111236Zz784Q/Xk9SXLl266bZzzz23/rrXvW5X/pUAQKlpNwBUi3YDVec9NYDSmTFjxqbPOzs7s+eee+bwww/fdFtfX1+SZMWKFfn5z3+ehQsXpre39zn3s3Tp0qxbty4bNmzIy172sk2377HHHjnkkEMaPmtfX18mTJiQAw888Bm33XzzzQ35XgBQVtoNANWi3UCVWWoApTNmzJhn/L5Wqz3jtlqtliQZHh7OmjVrctJJJ+UjH/nIc+5n6tSpufvuu3f4+3d0jLwyX71e33TbwMDANmd99pxP3TY8PLzDMwBAlWg3AFSLdgNV5j01gEo76qijcscdd2TatGmZPn36M3719PTkoIMOypgxY/LTn/500595/PHHc9ddd231PqdMmZIkWb58+abbnv7mZQDAztNuAKgW7QbKxlIDqLTzzjsvjz32WE4//fTccsstWbp0aa655pqcffbZGRoaSm9vb84555xccMEFuf7667NkyZK89a1v3XRVyJaMHz8+L3/5y3PRRRflzjvvzA033JD3vve9o/hTAUDr0m4AqBbtBsrGUgOotH333Tc33nhjhoaGMnfu3Bx++OFZsGBBJk+evOkAdfHFF+fYY4/NSSedlDlz5uSYY47JrFmz/uD9fu5zn8vg4GBmzZqVBQsW5IMf/OBo/DgA0PK0GwCqRbuBsqnVn/7idQAAAAAAACXlmRoAAAAAAEAlWGoAAAAAAACVYKkBAAAAAABUgqUGAAAAAABQCZYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCVYagAAAAAAAJVgqQEAAAAAAFSCpQYAAAAAAFAJlhoAAAAAAEAlWGoAAAAAAACVYKkBAAAAAABUgqUGAAAAAABQCZYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCVYagAAAAAAAJVgqQEAAAAAAFSCpQYAAAAAAFAJlhoAAAAAAEAlWGoAAAAAAACVYKkBAAAAAABUgqUGAAAAAABQCZYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCX8f55qSSPSIXsJAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1500x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Приращение данных (undersampling)\n",
|
||
"df_train_undersampled: DataFrame = undersample(df_train, 'salary_category')\n",
|
||
"df_val_undersampled: DataFrame = undersample(df_val, 'salary_category')\n",
|
||
"df_test_undersampled: DataFrame = undersample(df_test, 'salary_category')\n",
|
||
"\n",
|
||
"# Проверка сбалансированности\n",
|
||
"print('После применения метода undersampling:')\n",
|
||
"check_balance(df_train_undersampled, 'Обучающая выборка', 'salary_category')\n",
|
||
"check_balance(df_val_undersampled, 'Контрольная выборка', 'salary_category')\n",
|
||
"check_balance(df_test_undersampled, 'Тестовая выборка', 'salary_category')\n",
|
||
"\n",
|
||
"# Проверка необходимости аугментации\n",
|
||
"print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_undersampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
"print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_undersampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
"print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_undersampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n",
|
||
" \n",
|
||
"# Визуализация сбалансированности классов\n",
|
||
"visualize_balance(df_train_undersampled, df_val_undersampled, df_test_undersampled, 'salary_category')"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "aimenv",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.5"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|