MAI/LabWork01/LabWork6/ConvertorDataFrame.py
2023-11-22 22:49:45 +04:00

36 lines
1.3 KiB
Python

import pandas as pd
def covertorDataFrame():
df = pd.read_csv("../../res/Stores.csv")
countMainRows = 25
newDf = df.head(countMainRows)
newDf['TextStoreArea'] = df['Store_Area'].apply(
lambda x: 'Small_Area' if x <= 1100 else ('Average_Area' if 1100 < x <= 1700 else 'Big_Area'))
newDf['TextStoreSales'] = df['Store_Sales'].apply(
lambda x: 'Small_Sales' if x <= 50000 else ('Average_Sales' if 50000 < x <= 80000 else 'Big_Sales'))
newDf['TextDailyCustomerCount'] = df['Daily_Customer_Count'].apply(
lambda x: 'Small_Customer' if x <= 400 else ('Average_Customer' if 400 < x <= 900 else 'Big_Customer'))
# using dictionary to convert specific columns
convert_dict = {'Store_ID': str,
'Store_Area': str,
'Items_Available': str,
'Daily_Customer_Count': str,
'Store_Sales': str
}
newDf = newDf.astype(convert_dict)
print(newDf[['TextStoreSales', 'TextStoreSales', 'TextStoreArea']])
return newDf[['TextDailyCustomerCount', 'TextStoreArea', 'TextStoreSales']]
# [['Store_Area', 'Store_Sales', 'Daily_Customer_Count', 'TextStoreArea']]
# [['Store_ID', 'Store_Area', 'TextStoreArea', 'Items_Available', 'Daily_Customer_Count', 'Store_Sales']]