import pandas as pd def covertorDataFrame(): df = pd.read_csv("../../res/Stores.csv") countMainRows = 25 newDf = df.head(countMainRows) newDf['TextStoreArea'] = df['Store_Area'].apply( lambda x: 'Small_Area' if x <= 1100 else ('Average_Area' if 1100 < x <= 1700 else 'Big_Area')) newDf['TextStoreSales'] = df['Store_Sales'].apply( lambda x: 'Small_Sales' if x <= 50000 else ('Average_Sales' if 50000 < x <= 80000 else 'Big_Sales')) newDf['TextDailyCustomerCount'] = df['Daily_Customer_Count'].apply( lambda x: 'Small_Customer' if x <= 400 else ('Average_Customer' if 400 < x <= 900 else 'Big_Customer')) # using dictionary to convert specific columns convert_dict = {'Store_ID': str, 'Store_Area': str, 'Items_Available': str, 'Daily_Customer_Count': str, 'Store_Sales': str } newDf = newDf.astype(convert_dict) print(newDf[['TextStoreSales', 'TextStoreSales', 'TextStoreArea']]) return newDf[['TextDailyCustomerCount', 'TextStoreArea', 'TextStoreSales']] # [['Store_Area', 'Store_Sales', 'Daily_Customer_Count', 'TextStoreArea']] # [['Store_ID', 'Store_Area', 'TextStoreArea', 'Items_Available', 'Daily_Customer_Count', 'Store_Sales']]