Промежуточное.
This commit is contained in:
parent
5fd49b30af
commit
2ab8066933
@ -1,6 +1,6 @@
|
||||
import pandas as pd
|
||||
|
||||
def createDataFrame():
|
||||
df = pd.read_csv('../res/Stores.csv')
|
||||
df = pd.read_csv('res/Stores.csv')
|
||||
|
||||
return df
|
198
LabWork01/LabWork5/create_plot.py
Normal file
198
LabWork01/LabWork5/create_plot.py
Normal file
@ -0,0 +1,198 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import sns
|
||||
from sklearn import metrics
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
INCH = 25.4
|
||||
|
||||
def create_plot_jpg(df: pd.DataFrame, nameFile):
|
||||
# для сохранения диаграммы в конкретной папке
|
||||
script_dir = os.path.dirname(__file__)
|
||||
results_dir = os.path.join(script_dir, '../static/')
|
||||
|
||||
if not os.path.isdir(results_dir):
|
||||
os.makedirs(results_dir)
|
||||
|
||||
# набор атрибутов - независимых переменных - площадь
|
||||
_X = df["Store_Area"].array
|
||||
|
||||
# набор меток - зависимых переменных, значение которых требуется предсказать - выручка
|
||||
_Y = df["Store_Sales"].array
|
||||
|
||||
# делим датафрейм на набор тренировочных данных и данных для тестов, test_size содержит определние соотношения этих наборов
|
||||
X_train, X_test, y_train, y_test = train_test_split(_X, _Y, test_size=0.01, random_state=0)
|
||||
|
||||
regressor = LinearRegression()
|
||||
|
||||
X_train = X_train.reshape(-1, 1)
|
||||
X_test = X_test.reshape(-1, 1)
|
||||
|
||||
regressor.fit(X_train, y_train)
|
||||
|
||||
# массив numpy, который содержит все предсказанные значения для входных значений в серии X_test
|
||||
y_pred = regressor.predict(X_test)
|
||||
|
||||
df.plot(x='Store_Sales', y='Store_Area', style='o')
|
||||
|
||||
plt.title('Store sales / Store area')
|
||||
plt.xlabel('Store sales')
|
||||
plt.ylabel('Store area')
|
||||
|
||||
plt.savefig(results_dir + nameFile + '.jpg')
|
||||
plt.close()
|
||||
|
||||
listMessages = ['Mean Absolute Error: ' + str(metrics.mean_absolute_error(y_test, y_pred)),
|
||||
'Mean Squared Error: ' + str(metrics.mean_squared_error(y_test, y_pred)),
|
||||
'Root Mean Squared Error: ' + str(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))]
|
||||
|
||||
return listMessages
|
||||
|
||||
# def graph_regression_plot_sns(
|
||||
# X, Y,
|
||||
# regression_model,
|
||||
# Xmin=None, Xmax=None,
|
||||
# Ymin=None, Ymax=None,
|
||||
# display_residuals=False,
|
||||
# title_figure=None, title_figure_fontsize=None,
|
||||
# title_axes=None, title_axes_fontsize=None,
|
||||
# x_label=None,
|
||||
# y_label=None,
|
||||
# label_fontsize=None, tick_fontsize=12,
|
||||
# label_legend_regr_model='', label_legend_fontsize=12,
|
||||
# s=50, linewidth_regr_model=2,
|
||||
# graph_size=None,
|
||||
# file_name=None):
|
||||
# X = np.array(X)
|
||||
# Y = np.array(Y)
|
||||
# Ycalc = Y - regression_model(X)
|
||||
#
|
||||
# if not (Xmin) and not (Xmax):
|
||||
# Xmin = min(X) * 0.99
|
||||
# Xmax = max(X) * 1.01
|
||||
# if not (Ymin) and not (Ymax):
|
||||
# Ymin = min(Y) * 0.99
|
||||
# Ymax = max(Y) * 1.01
|
||||
#
|
||||
# # график с остатками
|
||||
# # ------------------
|
||||
# if display_residuals:
|
||||
# if not (graph_size):
|
||||
# graph_size = (297 / INCH, 420 / INCH / 1.5)
|
||||
# if not (title_figure_fontsize):
|
||||
# title_figure_fontsize = 18
|
||||
# if not (title_axes_fontsize):
|
||||
# title_axes_fontsize = 16
|
||||
# if not (label_fontsize):
|
||||
# label_fontsize = 13
|
||||
# if not (label_legend_fontsize):
|
||||
# label_legend_fontsize = 12
|
||||
# fig = plt.figure(figsize=graph_size)
|
||||
# fig.suptitle(title_figure, fontsize=title_figure_fontsize)
|
||||
# ax1 = plt.subplot(2, 1, 1)
|
||||
# ax2 = plt.subplot(2, 1, 2)
|
||||
#
|
||||
# # фактические данные
|
||||
# ax1.set_title(title_axes, fontsize=title_axes_fontsize)
|
||||
# sns.scatterplot(
|
||||
# x=X, y=Y,
|
||||
# label='data',
|
||||
# s=s,
|
||||
# color='red',
|
||||
# ax=ax1)
|
||||
# ax1.set_xlim(Xmin, Xmax)
|
||||
# ax1.set_ylim(Ymin, Ymax)
|
||||
# ax1.axvline(x=0, color='k', linewidth=1)
|
||||
# ax1.axhline(y=0, color='k', linewidth=1)
|
||||
# # ax1.set_xlabel(x_label, fontsize = label_fontsize)
|
||||
# ax1.set_ylabel(y_label, fontsize=label_fontsize)
|
||||
# ax1.tick_params(labelsize=tick_fontsize)
|
||||
#
|
||||
# # график регрессионной модели
|
||||
# nx = 100
|
||||
# hx = (Xmax - Xmin) / (nx - 1)
|
||||
# x1 = np.linspace(Xmin, Xmax, nx)
|
||||
# y1 = regression_model(x1)
|
||||
# sns.lineplot(
|
||||
# x=x1, y=y1,
|
||||
# color='blue',
|
||||
# linewidth=linewidth_regr_model,
|
||||
# legend=True,
|
||||
# label=label_legend_regr_model,
|
||||
# ax=ax1)
|
||||
# ax1.legend(prop={'size': label_legend_fontsize})
|
||||
#
|
||||
# # график остатков
|
||||
# ax2.set_title('Residuals', fontsize=title_axes_fontsize)
|
||||
# ax2.set_xlim(Xmin, Xmax)
|
||||
# # ax2.set_ylim(Ymin, Ymax)
|
||||
# sns.scatterplot(
|
||||
# x=X, y=Ycalc,
|
||||
# # label='фактические данные',
|
||||
# s=s,
|
||||
# color='orange',
|
||||
# ax=ax2)
|
||||
#
|
||||
# ax2.axvline(x=0, color='k', linewidth=1)
|
||||
# ax2.axhline(y=0, color='k', linewidth=1)
|
||||
# ax2.set_xlabel(x_label, fontsize=label_fontsize)
|
||||
# ax2.set_ylabel(r'$ΔY = Y - Y_{calc}$', fontsize=label_fontsize)
|
||||
# ax2.tick_params(labelsize=tick_fontsize)
|
||||
#
|
||||
# # график без остатков
|
||||
# # -------------------
|
||||
# else:
|
||||
# if not (graph_size):
|
||||
# graph_size = (297 / INCH, 210 / INCH)
|
||||
# if not (title_figure_fontsize):
|
||||
# title_figure_fontsize = 18
|
||||
# if not (title_axes_fontsize):
|
||||
# title_axes_fontsize = 16
|
||||
# if not (label_fontsize):
|
||||
# label_fontsize = 14
|
||||
# if not (label_legend_fontsize):
|
||||
# label_legend_fontsize = 12
|
||||
# fig, axes = plt.subplots(figsize=graph_size)
|
||||
# fig.suptitle(title_figure, fontsize=title_figure_fontsize)
|
||||
# axes.set_title(title_axes, fontsize=title_axes_fontsize)
|
||||
#
|
||||
# # фактические данные
|
||||
# sns.scatterplot(
|
||||
# x=X, y=Y,
|
||||
# label='фактические данные',
|
||||
# s=s,
|
||||
# color='red',
|
||||
# ax=axes)
|
||||
#
|
||||
# # график регрессионной модели
|
||||
# nx = 100
|
||||
# hx = (Xmax - Xmin) / (nx - 1)
|
||||
# x1 = np.linspace(Xmin, Xmax, nx)
|
||||
# y1 = regression_model(x1)
|
||||
# sns.lineplot(
|
||||
# x=x1, y=y1,
|
||||
# color='blue',
|
||||
# linewidth=linewidth_regr_model,
|
||||
# legend=True,
|
||||
# label=label_legend_regr_model,
|
||||
# ax=axes)
|
||||
#
|
||||
# axes.set_xlim(Xmin, Xmax)
|
||||
# axes.set_ylim(Ymin, Ymax)
|
||||
# axes.axvline(x=0, color='k', linewidth=1)
|
||||
# axes.axhline(y=0, color='k', linewidth=1)
|
||||
# axes.set_xlabel(x_label, fontsize=label_fontsize)
|
||||
# axes.set_ylabel(y_label, fontsize=label_fontsize)
|
||||
# axes.tick_params(labelsize=tick_fontsize)
|
||||
# axes.legend(prop={'size': label_legend_fontsize})
|
||||
#
|
||||
# plt.show()
|
||||
# if file_name:
|
||||
# fig.savefig(file_name, orientation="portrait", dpi=300)
|
||||
#
|
||||
# return
|
@ -13,6 +13,7 @@ from LabWork01.LabWork3.CreateGraphics import createGraphics
|
||||
from LabWork01.LabWork3.CustomGraphics import createCusGraphics
|
||||
from LabWork01.LabWork3.DeletePng import deleteAllPng
|
||||
from LabWork01.LabWork4.SiteSearch import SiteSearch
|
||||
from LabWork01.LabWork5.create_plot import create_plot_jpg
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@ -45,7 +46,7 @@ search_engine.add("https://www.kaggle.com/datasets/fedesoriano/stroke-prediction
|
||||
|
||||
@app.route("/")
|
||||
def home():
|
||||
return render_template('main_page.html', context=[], main_img=[], image_names=[], tableAnalys=[], titles=[''], listTypes=listTypes, countNull=countNull, firstRow=1, secondRow=4, firstColumn=1, secondColumn=4)
|
||||
return render_template('main_page.html', context=[], main_img=[], messages=[], image_names=[], tableAnalys=[], titles=[''], listTypes=listTypes, countNull=countNull, firstRow=1, secondRow=4, firstColumn=1, secondColumn=4)
|
||||
|
||||
@app.route("/showDiapason", methods=['GET','POST'])
|
||||
def numtext():
|
||||
@ -83,7 +84,7 @@ def numtext():
|
||||
totalList.append(listStoreSales)
|
||||
|
||||
if int(data['firstRow']) and int(data['secondRow']) and int(data['firstColumn']) and int(data['secondColumn']):
|
||||
return render_template('main_page.html', context=totalList, main_img=[], image_names=[], listTypes=listTypes, countNull=countNull,
|
||||
return render_template('main_page.html', context=totalList, main_img=[], messages=[], image_names=[], listTypes=listTypes, countNull=countNull,
|
||||
firstColumn=int(data['firstColumn']), secondColumn=int(data['secondColumn']),
|
||||
firstRow=int(data['firstRow']), secondRow=int(data['secondRow']))
|
||||
|
||||
@ -157,6 +158,7 @@ def analysis():
|
||||
tableAnalysThree=[],
|
||||
tableAnalysFour=[],
|
||||
main_img=newCustomJpg,
|
||||
messages=[],
|
||||
titles=[''],
|
||||
listTypes=listTypes, countNull=countNull, firstRow=1,
|
||||
secondRow=4, firstColumn=1, secondColumn=4)
|
||||
@ -184,6 +186,32 @@ def get_page_showFindURL():
|
||||
|
||||
return render_template('showLinks.html', links=links)
|
||||
|
||||
# 5-я лабораторная
|
||||
@app.route('/createPlotImage', methods=['GET', 'POST'])
|
||||
def get_plot_image():
|
||||
|
||||
# 99%
|
||||
# main_df = listShops.loc[listShops['Store_ID'] <= listShops.shape[0]*0.9]
|
||||
|
||||
# 1%
|
||||
# support_df = listShops.loc[listShops['Store_ID'] > listShops.shape[0]*0.9]
|
||||
|
||||
messages = create_plot_jpg(listShops, "myPlot")
|
||||
|
||||
myPlotJpg = ['myPlot.jpg']
|
||||
|
||||
return render_template('main_page.html', context=[], image_names_start=[],
|
||||
image_names_addition=[],
|
||||
tableAnalysOne=[],
|
||||
tableAnalysTwo=[],
|
||||
tableAnalysThree=[],
|
||||
tableAnalysFour=[],
|
||||
main_img=myPlotJpg,
|
||||
messages=messages,
|
||||
titles=[''],
|
||||
listTypes=listTypes, countNull=countNull, firstRow=1,
|
||||
secondRow=4, firstColumn=1, secondColumn=4)
|
||||
|
||||
if __name__=="__main__":
|
||||
app.run(debug=True)
|
||||
|
||||
|
@ -23,6 +23,9 @@
|
||||
<form action='http://127.0.0.1:5000/analysis' method=get>
|
||||
<input type=submit value='Анализ данных'>
|
||||
</form>
|
||||
<form action='/createPlotImage' method=get>
|
||||
<input type=submit value='Создание регрессии'>
|
||||
</form>
|
||||
<form action="/findURL" method="get">
|
||||
<div class="mb-3">
|
||||
<button type="submit" class="btn btn-primary mb-3">Запуск фильтра</button>
|
||||
@ -79,6 +82,11 @@
|
||||
</h3>
|
||||
{% for image_name in main_img %}
|
||||
<img src="{{ url_for('static', filename=image_name) }}" alt="{{ image_name }}">
|
||||
{% for message in messages %}
|
||||
<div>
|
||||
<p>{{message}}</p>
|
||||
</div>
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</div>
|
||||
<div>
|
||||
|
Loading…
Reference in New Issue
Block a user