MAI/LabWork01/LabWork5/create_plot.py
2023-11-03 21:58:33 +04:00

198 lines
7.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import sns
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
INCH = 25.4
def create_plot_jpg(df: pd.DataFrame, nameFile):
# для сохранения диаграммы в конкретной папке
script_dir = os.path.dirname(__file__)
results_dir = os.path.join(script_dir, '../static/')
if not os.path.isdir(results_dir):
os.makedirs(results_dir)
# набор атрибутов - независимых переменных - площадь
_X = df["Store_Area"].array
# набор меток - зависимых переменных, значение которых требуется предсказать - выручка
_Y = df["Store_Sales"].array
# делим датафрейм на набор тренировочных данных и данных для тестов, test_size содержит определние соотношения этих наборов
X_train, X_test, y_train, y_test = train_test_split(_X, _Y, test_size=0.01, random_state=0)
regressor = LinearRegression()
X_train = X_train.reshape(-1, 1)
X_test = X_test.reshape(-1, 1)
regressor.fit(X_train, y_train)
# массив numpy, который содержит все предсказанные значения для входных значений в серии X_test
y_pred = regressor.predict(X_test)
df.plot(x='Store_Sales', y='Store_Area', style='o')
plt.title('Store sales / Store area')
plt.xlabel('Store sales')
plt.ylabel('Store area')
plt.savefig(results_dir + nameFile + '.jpg')
plt.close()
listMessages = ['Mean Absolute Error: ' + str(metrics.mean_absolute_error(y_test, y_pred)),
'Mean Squared Error: ' + str(metrics.mean_squared_error(y_test, y_pred)),
'Root Mean Squared Error: ' + str(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))]
return listMessages
# def graph_regression_plot_sns(
# X, Y,
# regression_model,
# Xmin=None, Xmax=None,
# Ymin=None, Ymax=None,
# display_residuals=False,
# title_figure=None, title_figure_fontsize=None,
# title_axes=None, title_axes_fontsize=None,
# x_label=None,
# y_label=None,
# label_fontsize=None, tick_fontsize=12,
# label_legend_regr_model='', label_legend_fontsize=12,
# s=50, linewidth_regr_model=2,
# graph_size=None,
# file_name=None):
# X = np.array(X)
# Y = np.array(Y)
# Ycalc = Y - regression_model(X)
#
# if not (Xmin) and not (Xmax):
# Xmin = min(X) * 0.99
# Xmax = max(X) * 1.01
# if not (Ymin) and not (Ymax):
# Ymin = min(Y) * 0.99
# Ymax = max(Y) * 1.01
#
# # график с остатками
# # ------------------
# if display_residuals:
# if not (graph_size):
# graph_size = (297 / INCH, 420 / INCH / 1.5)
# if not (title_figure_fontsize):
# title_figure_fontsize = 18
# if not (title_axes_fontsize):
# title_axes_fontsize = 16
# if not (label_fontsize):
# label_fontsize = 13
# if not (label_legend_fontsize):
# label_legend_fontsize = 12
# fig = plt.figure(figsize=graph_size)
# fig.suptitle(title_figure, fontsize=title_figure_fontsize)
# ax1 = plt.subplot(2, 1, 1)
# ax2 = plt.subplot(2, 1, 2)
#
# # фактические данные
# ax1.set_title(title_axes, fontsize=title_axes_fontsize)
# sns.scatterplot(
# x=X, y=Y,
# label='data',
# s=s,
# color='red',
# ax=ax1)
# ax1.set_xlim(Xmin, Xmax)
# ax1.set_ylim(Ymin, Ymax)
# ax1.axvline(x=0, color='k', linewidth=1)
# ax1.axhline(y=0, color='k', linewidth=1)
# # ax1.set_xlabel(x_label, fontsize = label_fontsize)
# ax1.set_ylabel(y_label, fontsize=label_fontsize)
# ax1.tick_params(labelsize=tick_fontsize)
#
# # график регрессионной модели
# nx = 100
# hx = (Xmax - Xmin) / (nx - 1)
# x1 = np.linspace(Xmin, Xmax, nx)
# y1 = regression_model(x1)
# sns.lineplot(
# x=x1, y=y1,
# color='blue',
# linewidth=linewidth_regr_model,
# legend=True,
# label=label_legend_regr_model,
# ax=ax1)
# ax1.legend(prop={'size': label_legend_fontsize})
#
# # график остатков
# ax2.set_title('Residuals', fontsize=title_axes_fontsize)
# ax2.set_xlim(Xmin, Xmax)
# # ax2.set_ylim(Ymin, Ymax)
# sns.scatterplot(
# x=X, y=Ycalc,
# # label='фактические данные',
# s=s,
# color='orange',
# ax=ax2)
#
# ax2.axvline(x=0, color='k', linewidth=1)
# ax2.axhline(y=0, color='k', linewidth=1)
# ax2.set_xlabel(x_label, fontsize=label_fontsize)
# ax2.set_ylabel(r'$ΔY = Y - Y_{calc}$', fontsize=label_fontsize)
# ax2.tick_params(labelsize=tick_fontsize)
#
# # график без остатков
# # -------------------
# else:
# if not (graph_size):
# graph_size = (297 / INCH, 210 / INCH)
# if not (title_figure_fontsize):
# title_figure_fontsize = 18
# if not (title_axes_fontsize):
# title_axes_fontsize = 16
# if not (label_fontsize):
# label_fontsize = 14
# if not (label_legend_fontsize):
# label_legend_fontsize = 12
# fig, axes = plt.subplots(figsize=graph_size)
# fig.suptitle(title_figure, fontsize=title_figure_fontsize)
# axes.set_title(title_axes, fontsize=title_axes_fontsize)
#
# # фактические данные
# sns.scatterplot(
# x=X, y=Y,
# label='фактические данные',
# s=s,
# color='red',
# ax=axes)
#
# # график регрессионной модели
# nx = 100
# hx = (Xmax - Xmin) / (nx - 1)
# x1 = np.linspace(Xmin, Xmax, nx)
# y1 = regression_model(x1)
# sns.lineplot(
# x=x1, y=y1,
# color='blue',
# linewidth=linewidth_regr_model,
# legend=True,
# label=label_legend_regr_model,
# ax=axes)
#
# axes.set_xlim(Xmin, Xmax)
# axes.set_ylim(Ymin, Ymax)
# axes.axvline(x=0, color='k', linewidth=1)
# axes.axhline(y=0, color='k', linewidth=1)
# axes.set_xlabel(x_label, fontsize=label_fontsize)
# axes.set_ylabel(y_label, fontsize=label_fontsize)
# axes.tick_params(labelsize=tick_fontsize)
# axes.legend(prop={'size': label_legend_fontsize})
#
# plt.show()
# if file_name:
# fig.savefig(file_name, orientation="portrait", dpi=300)
#
# return