Промежуточное.

This commit is contained in:
ElEgEv 2023-11-03 21:58:33 +04:00
parent 5fd49b30af
commit 2ab8066933
4 changed files with 237 additions and 3 deletions

View File

@ -1,6 +1,6 @@
import pandas as pd import pandas as pd
def createDataFrame(): def createDataFrame():
df = pd.read_csv('../res/Stores.csv') df = pd.read_csv('res/Stores.csv')
return df return df

View File

@ -0,0 +1,198 @@
import os
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import sns
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
INCH = 25.4
def create_plot_jpg(df: pd.DataFrame, nameFile):
# для сохранения диаграммы в конкретной папке
script_dir = os.path.dirname(__file__)
results_dir = os.path.join(script_dir, '../static/')
if not os.path.isdir(results_dir):
os.makedirs(results_dir)
# набор атрибутов - независимых переменных - площадь
_X = df["Store_Area"].array
# набор меток - зависимых переменных, значение которых требуется предсказать - выручка
_Y = df["Store_Sales"].array
# делим датафрейм на набор тренировочных данных и данных для тестов, test_size содержит определние соотношения этих наборов
X_train, X_test, y_train, y_test = train_test_split(_X, _Y, test_size=0.01, random_state=0)
regressor = LinearRegression()
X_train = X_train.reshape(-1, 1)
X_test = X_test.reshape(-1, 1)
regressor.fit(X_train, y_train)
# массив numpy, который содержит все предсказанные значения для входных значений в серии X_test
y_pred = regressor.predict(X_test)
df.plot(x='Store_Sales', y='Store_Area', style='o')
plt.title('Store sales / Store area')
plt.xlabel('Store sales')
plt.ylabel('Store area')
plt.savefig(results_dir + nameFile + '.jpg')
plt.close()
listMessages = ['Mean Absolute Error: ' + str(metrics.mean_absolute_error(y_test, y_pred)),
'Mean Squared Error: ' + str(metrics.mean_squared_error(y_test, y_pred)),
'Root Mean Squared Error: ' + str(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))]
return listMessages
# def graph_regression_plot_sns(
# X, Y,
# regression_model,
# Xmin=None, Xmax=None,
# Ymin=None, Ymax=None,
# display_residuals=False,
# title_figure=None, title_figure_fontsize=None,
# title_axes=None, title_axes_fontsize=None,
# x_label=None,
# y_label=None,
# label_fontsize=None, tick_fontsize=12,
# label_legend_regr_model='', label_legend_fontsize=12,
# s=50, linewidth_regr_model=2,
# graph_size=None,
# file_name=None):
# X = np.array(X)
# Y = np.array(Y)
# Ycalc = Y - regression_model(X)
#
# if not (Xmin) and not (Xmax):
# Xmin = min(X) * 0.99
# Xmax = max(X) * 1.01
# if not (Ymin) and not (Ymax):
# Ymin = min(Y) * 0.99
# Ymax = max(Y) * 1.01
#
# # график с остатками
# # ------------------
# if display_residuals:
# if not (graph_size):
# graph_size = (297 / INCH, 420 / INCH / 1.5)
# if not (title_figure_fontsize):
# title_figure_fontsize = 18
# if not (title_axes_fontsize):
# title_axes_fontsize = 16
# if not (label_fontsize):
# label_fontsize = 13
# if not (label_legend_fontsize):
# label_legend_fontsize = 12
# fig = plt.figure(figsize=graph_size)
# fig.suptitle(title_figure, fontsize=title_figure_fontsize)
# ax1 = plt.subplot(2, 1, 1)
# ax2 = plt.subplot(2, 1, 2)
#
# # фактические данные
# ax1.set_title(title_axes, fontsize=title_axes_fontsize)
# sns.scatterplot(
# x=X, y=Y,
# label='data',
# s=s,
# color='red',
# ax=ax1)
# ax1.set_xlim(Xmin, Xmax)
# ax1.set_ylim(Ymin, Ymax)
# ax1.axvline(x=0, color='k', linewidth=1)
# ax1.axhline(y=0, color='k', linewidth=1)
# # ax1.set_xlabel(x_label, fontsize = label_fontsize)
# ax1.set_ylabel(y_label, fontsize=label_fontsize)
# ax1.tick_params(labelsize=tick_fontsize)
#
# # график регрессионной модели
# nx = 100
# hx = (Xmax - Xmin) / (nx - 1)
# x1 = np.linspace(Xmin, Xmax, nx)
# y1 = regression_model(x1)
# sns.lineplot(
# x=x1, y=y1,
# color='blue',
# linewidth=linewidth_regr_model,
# legend=True,
# label=label_legend_regr_model,
# ax=ax1)
# ax1.legend(prop={'size': label_legend_fontsize})
#
# # график остатков
# ax2.set_title('Residuals', fontsize=title_axes_fontsize)
# ax2.set_xlim(Xmin, Xmax)
# # ax2.set_ylim(Ymin, Ymax)
# sns.scatterplot(
# x=X, y=Ycalc,
# # label='фактические данные',
# s=s,
# color='orange',
# ax=ax2)
#
# ax2.axvline(x=0, color='k', linewidth=1)
# ax2.axhline(y=0, color='k', linewidth=1)
# ax2.set_xlabel(x_label, fontsize=label_fontsize)
# ax2.set_ylabel(r'$ΔY = Y - Y_{calc}$', fontsize=label_fontsize)
# ax2.tick_params(labelsize=tick_fontsize)
#
# # график без остатков
# # -------------------
# else:
# if not (graph_size):
# graph_size = (297 / INCH, 210 / INCH)
# if not (title_figure_fontsize):
# title_figure_fontsize = 18
# if not (title_axes_fontsize):
# title_axes_fontsize = 16
# if not (label_fontsize):
# label_fontsize = 14
# if not (label_legend_fontsize):
# label_legend_fontsize = 12
# fig, axes = plt.subplots(figsize=graph_size)
# fig.suptitle(title_figure, fontsize=title_figure_fontsize)
# axes.set_title(title_axes, fontsize=title_axes_fontsize)
#
# # фактические данные
# sns.scatterplot(
# x=X, y=Y,
# label='фактические данные',
# s=s,
# color='red',
# ax=axes)
#
# # график регрессионной модели
# nx = 100
# hx = (Xmax - Xmin) / (nx - 1)
# x1 = np.linspace(Xmin, Xmax, nx)
# y1 = regression_model(x1)
# sns.lineplot(
# x=x1, y=y1,
# color='blue',
# linewidth=linewidth_regr_model,
# legend=True,
# label=label_legend_regr_model,
# ax=axes)
#
# axes.set_xlim(Xmin, Xmax)
# axes.set_ylim(Ymin, Ymax)
# axes.axvline(x=0, color='k', linewidth=1)
# axes.axhline(y=0, color='k', linewidth=1)
# axes.set_xlabel(x_label, fontsize=label_fontsize)
# axes.set_ylabel(y_label, fontsize=label_fontsize)
# axes.tick_params(labelsize=tick_fontsize)
# axes.legend(prop={'size': label_legend_fontsize})
#
# plt.show()
# if file_name:
# fig.savefig(file_name, orientation="portrait", dpi=300)
#
# return

View File

@ -13,6 +13,7 @@ from LabWork01.LabWork3.CreateGraphics import createGraphics
from LabWork01.LabWork3.CustomGraphics import createCusGraphics from LabWork01.LabWork3.CustomGraphics import createCusGraphics
from LabWork01.LabWork3.DeletePng import deleteAllPng from LabWork01.LabWork3.DeletePng import deleteAllPng
from LabWork01.LabWork4.SiteSearch import SiteSearch from LabWork01.LabWork4.SiteSearch import SiteSearch
from LabWork01.LabWork5.create_plot import create_plot_jpg
app = Flask(__name__) app = Flask(__name__)
@ -45,7 +46,7 @@ search_engine.add("https://www.kaggle.com/datasets/fedesoriano/stroke-prediction
@app.route("/") @app.route("/")
def home(): def home():
return render_template('main_page.html', context=[], main_img=[], image_names=[], tableAnalys=[], titles=[''], listTypes=listTypes, countNull=countNull, firstRow=1, secondRow=4, firstColumn=1, secondColumn=4) return render_template('main_page.html', context=[], main_img=[], messages=[], image_names=[], tableAnalys=[], titles=[''], listTypes=listTypes, countNull=countNull, firstRow=1, secondRow=4, firstColumn=1, secondColumn=4)
@app.route("/showDiapason", methods=['GET','POST']) @app.route("/showDiapason", methods=['GET','POST'])
def numtext(): def numtext():
@ -83,7 +84,7 @@ def numtext():
totalList.append(listStoreSales) totalList.append(listStoreSales)
if int(data['firstRow']) and int(data['secondRow']) and int(data['firstColumn']) and int(data['secondColumn']): if int(data['firstRow']) and int(data['secondRow']) and int(data['firstColumn']) and int(data['secondColumn']):
return render_template('main_page.html', context=totalList, main_img=[], image_names=[], listTypes=listTypes, countNull=countNull, return render_template('main_page.html', context=totalList, main_img=[], messages=[], image_names=[], listTypes=listTypes, countNull=countNull,
firstColumn=int(data['firstColumn']), secondColumn=int(data['secondColumn']), firstColumn=int(data['firstColumn']), secondColumn=int(data['secondColumn']),
firstRow=int(data['firstRow']), secondRow=int(data['secondRow'])) firstRow=int(data['firstRow']), secondRow=int(data['secondRow']))
@ -157,6 +158,7 @@ def analysis():
tableAnalysThree=[], tableAnalysThree=[],
tableAnalysFour=[], tableAnalysFour=[],
main_img=newCustomJpg, main_img=newCustomJpg,
messages=[],
titles=[''], titles=[''],
listTypes=listTypes, countNull=countNull, firstRow=1, listTypes=listTypes, countNull=countNull, firstRow=1,
secondRow=4, firstColumn=1, secondColumn=4) secondRow=4, firstColumn=1, secondColumn=4)
@ -184,6 +186,32 @@ def get_page_showFindURL():
return render_template('showLinks.html', links=links) return render_template('showLinks.html', links=links)
# 5-я лабораторная
@app.route('/createPlotImage', methods=['GET', 'POST'])
def get_plot_image():
# 99%
# main_df = listShops.loc[listShops['Store_ID'] <= listShops.shape[0]*0.9]
# 1%
# support_df = listShops.loc[listShops['Store_ID'] > listShops.shape[0]*0.9]
messages = create_plot_jpg(listShops, "myPlot")
myPlotJpg = ['myPlot.jpg']
return render_template('main_page.html', context=[], image_names_start=[],
image_names_addition=[],
tableAnalysOne=[],
tableAnalysTwo=[],
tableAnalysThree=[],
tableAnalysFour=[],
main_img=myPlotJpg,
messages=messages,
titles=[''],
listTypes=listTypes, countNull=countNull, firstRow=1,
secondRow=4, firstColumn=1, secondColumn=4)
if __name__=="__main__": if __name__=="__main__":
app.run(debug=True) app.run(debug=True)

View File

@ -23,6 +23,9 @@
<form action='http://127.0.0.1:5000/analysis' method=get> <form action='http://127.0.0.1:5000/analysis' method=get>
<input type=submit value='Анализ данных'> <input type=submit value='Анализ данных'>
</form> </form>
<form action='/createPlotImage' method=get>
<input type=submit value='Создание регрессии'>
</form>
<form action="/findURL" method="get"> <form action="/findURL" method="get">
<div class="mb-3"> <div class="mb-3">
<button type="submit" class="btn btn-primary mb-3">Запуск фильтра</button> <button type="submit" class="btn btn-primary mb-3">Запуск фильтра</button>
@ -79,6 +82,11 @@
</h3> </h3>
{% for image_name in main_img %} {% for image_name in main_img %}
<img src="{{ url_for('static', filename=image_name) }}" alt="{{ image_name }}"> <img src="{{ url_for('static', filename=image_name) }}" alt="{{ image_name }}">
{% for message in messages %}
<div>
<p>{{message}}</p>
</div>
{% endfor %}
{% endfor %} {% endfor %}
</div> </div>
<div> <div>