IIS_2023_1/gusev_vladislav_lab_5/README.md
2023-10-26 17:31:14 +04:00

24 lines
2.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### Вариант 9
### Задание на лабораторную работу:
Использовать регрессию по варианту для данных из курсовой работы. Самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо он подходит для решения сформулированной задачи.
### Как запустить лабораторную работу:
Выполняем файл gusev_vladislav_lab_5.py, будет выведен график на экран.
### Технологии
NumPy - библиотека для работы с многомерными массивами. Mathplotlib - библиотека для визуализации данных двумерной и трехмерной графикой. Sklearn - библиотека с большим количеством алгоритмов машинного обучения.
### Задача
Мною было принято решение посмотреть, как зависит
### По коду
1) Для начала загружаем данные из csv файла
2) Разделяем данные на обучающее и тестовые
3) Рескейлим данные из столбца price, который был в диапозоне от 370 до 2700 к диапозону от 0 до 1
4) Обучаем модель, находим R^2 (среднеквадратическая ошибка) и коэффициент детерминации
5) Выводим графики
![img.png](img.png)
### Вывод
- Среднеквадарическая ошибка получилась довольно низкой, что говорит нам о точности тестовых и предсказанных значений, однако коэффициент детерминации получился крайне низким, даже отрицательным. Это значит, что модель не понимает зависимости данных.
- Итог: гребневая модель регресси не применима к нашей задаче