IIS_2023_1/arzamaskina_milana_lab_7/README.md

46 lines
2.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №7
## Рекуррентная нейронная сеть и задача генерации текста
#### ПИбд-41 Арзамаскина Милана
#### Вариант №2
### Какие технологии использовались:
Используемые библиотеки:
* numpy
* keras
* tensorflow
### Как запустить:
* установить python, numpy, keras, tensorflow
* запустить проект (стартовая точка - main.py)
### Что делает программа:
На основе выбранных художественных текстов происходит обучение рекуррентной нейронной сети для решения задачи генерации.
Необходимо подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату.
* Читает текст из файлов (english.txt, russian.txt)
* Получает входные, выходные данные (X, y), размер словаря и токенайзер. Используем Tokenizer с настройкой char_level=True
* Создаёт объект Sequential (последовательная рекуррентная нейронная сеть) и добавление двух слоёв LSTM. Dropout — это метод регуляризации для нейронных сетей и моделей глубокого обучения, решение проблемы переобучения. Слой Dense с функцией активации softmax используется для предсказания следующего слова
* Компилирует модель
* Обучает модель
* Генерирует текст
#### Сгенерированные тексты:
Генерация на русском языке:
![Result](img1.png)
Генерация на английском языке:
![Result](img2.png)
### Вывод:
Программа способна сгенерировать осмысленный текст в каждом из случаев.