IIS_2023_1/zavrazhnova_svetlana_lab_1/README.md
2023-09-23 00:04:23 +04:00

31 lines
2.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### Задание:
Данные: make_classification (n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
Модели:
- Персептрон,
- Многослойный персептрон с 10-ю нейронами в скрытом слое (alpha = 0.01)
- Многослойный персептрон со 100-а нейронами в скрытом слое (alpha = 0.01)
### как запустить лабораторную работу:
Лабораторная работа запускается в файле `zavrazhnova_svetlana_lab_1.py` через Run, должно запуститься диалоговое окно и вычисления в консоли
### Технологии:
Библиотека Scikit-learn содержит множество наборов данных
### Что делает лабораторная:
Выполнение кода выводит точность каждой модели (в консоль) и отображает графики с границами решений для каждой модели.
В данном коде генерируются данные с использованием функции make_classification() из библиотеки scikit-learn. Генерируется набор данных с 500 примерами и 2 признаками. Классы точек представлены переменной y, которая содержит метки классов для каждой точки. В данном случае, сгенерировано два класса, обозначенных как 0 и 1.
Визуализация данных и границ решения моделей выполняется с помощью функции scatter() и функции contourf() из библиотеки matplotlib. Функция scatter() отображает точки данных на графике, окрашивая их в соответствии с классами, заданными переменной y.
Таким образом, графики помогают визуализировать данные, их классификацию и границы решения моделей, позволяя лучше понять, как модели принимают решение о классификации объектов.
### Пример выходных значений:
Консоль:
![результат в консоль](imgConsoleRes.png)
Графики:
![img.png](imgGraphicsRes.png)