7.1 KiB
Вариант 2
Задание: Использовать нейронную сеть(четные варианты –MLPRegressor, нечетные –MLPClassifier)для данных из таблицы 1 по варианту, самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо она подходит для решения сформулированной вами задачи.
Данные: Данный набор данных использовался во второй главе недавней книги Аурелиена Жерона "Практическое машинное обучение с помощью Scikit-Learn и TensorFlow". Он служит отличным введением в реализацию алгоритмов машинного обучения, потому что требует минимальной предварительной обработки данных, содержит легко понимаемый список переменных и находится в оптимальном размере, который не слишком мал и не слишком большой.
Данные содержат информацию о домах в определенном районе Калифорнии и некоторую сводную статистику на основе данных переписи 1990 года. Следует отметить, что данные не прошли предварительную очистку, и для них требуются некоторые этапы предварительной обработки. Столбцы включают в себя следующие переменные, их названия весьма наглядно описывают их суть:
долгота longitude
широта latitude
средний возраст жилья median_house_value
общее количество комнат total_rooms
общее количество спален total_bedrooms
население population
домохозяйства households
медианный доход median_income
Запуск: Запустите файл lab6.py
Описание программы:
-
Загрузка данных:
- Программа начинается с загрузки данных из файла 'housing.csv' с использованием библиотеки pandas.
- Пропущенные значения в данных удаляются с помощью
dropna()
.
-
Выбор признаков и целевой переменной:
- Из загруженных данных выбираются признаки (features) и целевая переменная (target).
- В данном случае, признаки включают 'total_rooms', 'total_bedrooms', 'population', 'households', и 'median_income', а целевая переменная - 'median_house_value'.
-
Разделение данных:
- Данные разделяются на тренировочный и тестовый наборы с использованием
train_test_split
. - В данной программе 90% данных используются для тренировки и 10% для тестирования.
- Данные разделяются на тренировочный и тестовый наборы с использованием
-
Масштабирование признаков:
- Признаки и целевая переменная масштабируются с использованием
StandardScaler
, чтобы улучшить производительность нейронной сети.
- Признаки и целевая переменная масштабируются с использованием
-
Создание и обучение MLPRegressor:
- Создается модель MLPRegressor с заданными параметрами, такими как размеры скрытых слоев (hidden_layer_sizes), количество итераций (max_iter), и начальное состояние (random_state).
- Модель обучается на тренировочных данных с использованием
fit
.
-
Предсказания и оценка производительности:
- Модель делает предсказания на тестовых данных с использованием
predict
. - Оцениваются различные метрики производительности, такие как среднеквадратичная ошибка (MSE), среднеабсолютное отклонение (MAE) и коэффициент детерминации (R^2).
- Модель делает предсказания на тестовых данных с использованием
-
Вывод результатов:
- Результаты оценки модели выводятся на экран, включая среднеквадратичную ошибку, среднеабсолютное отклонение и коэффициент детерминации.
Результаты:
Выводы:
-
Среднеквадратичная ошибка (MSE): 69877.11%
- Эта метрика измеряет среднеквадратичное отклонение предсказанных значений от фактических. Чем меньше значение MSE, тем лучше. В данном случае, значение 69877.11% ОГРОМНО, что может свидетельствовать о значительном разбросе между фактическими и предсказанными значениями.
-
Среднеабсолютное отклонение (MAE): 49654.91%
- MAE измеряет среднее абсолютное отклонение предсказанных значений от фактических. Аналогично, чем меньше значение MAE, тем лучше. Здесь значение 49654.91% также довольно больше.
-
Коэффициент детерминации (R^2): 64.58%
- R^2 измеряет, насколько хорошо модель соответствует вариации в данных. Значение 64.58% говорит о том, что модель объясняет 64.58% дисперсии в целевой переменной. Это можно считать средним результатом.
Интерпретация результатов:
- В данном случае, модель MLPRegressor, обученная на выбранных признаках, не показала высокую точность предсказания целевой переменной (median_house_value).
- Значения метрик (MSE, MAE, R^2) указывают на некоторую степень ошибки модели.
Общий вывод:
- В данной программе представленный MLPRegressor не дал оптимальных результатов. Дальнейшие исследования и настройка параметров могут потребоваться для улучшения точности предсказаний модели.