IIS_2023_1/romanova_adelina_lab_7/README.md

53 lines
3.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №7. Вариант 21
## Тема
Рекуррентная нейронная сеть и задача генерации текста
## Задание
- Выбрать художественный текст и обучить на нем рекуррентную нейронную сеть для решения задачи генерации.
- Подобрать архитектуру и параметры так, чтобы приблизиться к максимально осмысленному результату.
## Используемые ресурсы
 1.  Художественный текст на английском языке ```wonderland.txt```
 2.  Python-скрипты: ```generate.py```, ```model.py```, ```train.py```.
## Описание работы
### Подготовка данных:
В файле ```train.py``` реализована функция ```get_data```, которая загружает художественный текст, приводит его к нижнему регистру, и создает сопоставление символов числовым значениям.
Текст разбивается на последовательности фиксированной длины ```seq_length```, и каждая последовательность связывается с символом, следующим за ней.
Данные приводятся к тензорам PyTorch и нормализуются для обучения модели.
### Архитектура модели:
В файле ```model.py``` определен класс ```CharModel```, наследуемый от ```nn.Module``` и представляющий собой рекуррентную нейронную сеть.
Архитектура модели включает в себя один слой LSTM с размером скрытого состояния 256, слой dropout для регуляризации и линейный слой для вывода результатов.
### Обучение модели:
В файле ```train.py``` реализован скрипт для обучения модели. Выбрана оптимизация Adam, функция потерь - ```CrossEntropyLoss```.
Обучение происходит на GPU, если он доступен. Обучение проводится в течение нескольких эпох, с валидацией на каждой эпохе. Сохраняется лучшая модель.
Процесс обучения модели:
![](train_process.png "")
### Генерация текста:
В файле ```generate.py``` модель загружается из сохраненного состояния. Генерируется случайный промпт из исходного текста, и модель используется для предсказания следующего символа в цикле.
## Вывод:
![](generated_text.png "")
В сгенерированном тексте можно найти осмысленные участки, поэтому можно сделать вывод, что модель действительно хорошо обучилась.