IIS_2023_1/romanova_adelina_lab_6/README.md

47 lines
3.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №6. Вариант 21
## Тема:
Нейронная сеть
## Модель:
MLPClassifier
## Как запустить программу:
Установить *python, numpy, matplotlib, sklearn*
```
python lab.py
```
## Какие технологии использовались:
Язык программирования Python, библиотеки numpy, matplotlib, sklearn
Среда разработки VSCode
# Что делает лабораторная работа:
В ходе исследования нейронных сетей, в особенности многослойных перцептронов (MLP), был проведен тщательный анализ влияния архитектуры сети на её производительность в задаче классификации стадий сердечных заболеваний. Эксперименты с различными конфигурациями слоев и их размерами позволили более глубоко понять, какие параметры сети оказывают наибольшее влияние на точность прогнозов.
В качестве MLP в коде использовался класс ```sklearn.neural_network.MLPClassifier``` и целевой задачей являлось предсказание наличие болезни сердца (0 - отсутствует, а 1,2,3,4 - стадии)
Процесс подготовки данных и обучение MLP представлен на изображении ниже и ```качество оценки составило 0.83```, данное число представляет точность оценки и вычисляется как отношение правильных ответов к общему количеству ответов. Важно отметить, что данный MLP состоял только из ```одного скрытого слоя с размером = 100```.
![](1.png "")
При MLP, содержащим два скрытых состояния с размерами ```300``` и ```100``` соответственно получилось добиться ```точности в примерно 0.92```.
![](2.png "")
При MLP, содержащим четыре скрытых состояния с размерами ```150, 100, 50 и 50 ```соответственно получилось добиться ```точности в 0.95```.
![](3.png "")
При MLP, который содержит 5 слоев с размерами ```100, 400, 600, 400, 100```, то есть самая большая с точки зрения архитектуры модель имеет наилучший показать точности.
![](4.png "")
## Вывод
На основе проведенных экспериментов можно сделать вывод, что при усложнении архитектуры нейронной сети мы получаем улучшение в ее качестве.
![](res.png "")