IIS_2023_1/antonov_dmitry_lab_2/README.md
2023-09-30 20:26:46 +04:00

104 lines
5.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лаб 2
Ранжирование признаков
Используя код из (пункт «Решение задачи ранжирования признаков», стр. 205),
выполните ранжирование признаков с помощью указанных по варианту моделей.
Отобразите получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку.
Проведите анализ получившихся результатов.
Какие четыре признака оказались самыми важными по среднему значению?
(Названия\индексы признаков и будут ответом на задание).
# Вариант 3
Данные: make_classification (n_samples=500, n_features=2,
n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
# Запуск
Выполнением скрипта файла (вывод в консоль + рисует графики).
# Модели:
1. Линейная регрессия
1. Полиномиальная регрессия (со степенью 3)
1. Гребневая полиномиальная регрессия (со степенью 3, alpha = 1.0)
# Графики
<div>
Качество каждой модели может быть оценено на основе среднеквадратичной ошибки (MSE).
Более низкая MSE указывает на лучшее соответствие данным.
Однако выбор модели зависит от набора данных и лежащей в основе взаимосвязи между объектами и целевой переменной.
Линейная регрессия: Линейная регрессия предполагает линейную зависимость между признаками и целевой переменной.
Это хорошо работает, когда взаимосвязь линейна, а шум в наборе данных минимален.
Лучше всего сработала на наборе лун. Хуже всего на кругах.
На линейном наборе показала себя на равне с остальными.
Полиномиальная и гребневая показали примерно одинаково на всех наборах.
Полиномиальная регрессия (степень=3):
Полиномиальная регрессия обеспечивает более гибкую подгонку за счет полинома более высокого порядка(кубическая кривая).
Она может выявить более сложные взаимосвязи между объектами и целевой переменной.
Она может сработать лучше, чем линейная регрессия, если истинная взаимосвязь нелинейна.
Гребневая регрессия (степень= 3, альфа=1,0):
В случае полиномиальной регрессии с регуляризацией (альфа=1,0) модель добавляет коэффициент регуляризации
для управления сложностью обучения. Регуляризация помогает предотвратить переобучение, когда набор
данных содержит шум или когда он ограничен.
</div>
<p>
<div>Набор лун (moon_dataset)</div>
<img src="screens/myplot1.png" width="650" title="датасет 1">
</p>
<p>
<div>Графики регрессии</div>
<img src="screens/myplot2.png" width="450" title="линейная модель">
<img src="screens/myplot3.png" width="450" title="полиномиальная модель">
<img src="screens/myplot4.png" width="450" title="гребневая модель">
<div>
Линейная MSE: 0.0936
Полиномиальная (degree=3) MSE: 0.0674
Гребневая (degree=3, alpha=1.0) MSE: 0.0682
</div>
</p>
<p>
<div>Набор кругов (circles_dataset)</div>
<img src="screens/myplot5.png" width="650" title="датасет 2">
</p>
<p>
<div>Графики регрессии</div>
<img src="screens/myplot6.png" width="450" title="линейная модель">
<img src="screens/myplot7.png" width="450" title="полиномиальная модель">
<img src="screens/myplot8.png" width="450" title="гребневая модель">
<div>
Линейная MSE: 0.2684
Полиномиальная (degree=3) MSE: 0.1341
Гребневая (degree=3, alpha=1.0) MSE: 0.1312
</div>
</p>
<p>
<div>Набор линейный (linearly_dataset)</div>
<img src="screens/myplot9.png" width="650" title="датасет 3">
</p>
<p>
<div>Графики регрессии</div>
<img src="screens/myplot10.png" width="450" title="линейная модель">
<img src="screens/myplot11.png" width="450" title="полиномиальная модель">
<img src="screens/myplot12.png" width="450" title="гребневая модель">
<div>
Линейная MSE: 0.1101
Полиномиальная (degree=3) MSE: 0.1045
Гребневая (degree=3, alpha=1.0) MSE: 0.1078
</div>
</p>
<div>
Итоговая модель подбирается учитывая зависимость в данных,
как правило полиномиальная регрессия справляется лучше, а коэф регуляризации в гребневой регрессии помогает избежать
переобучения.
</div>