IIS_2023_1/tepechin_kirill_lab_5/README.md

4.9 KiB
Raw Blame History

Лабораторная работа №5, ПИбд-42 Тепечин Кирилл

Датасет:

Ссылка:

Smoking and Drinking Dataset with body signal

Подробности датасета

Столбец Пояснение
sex Пол(мужской, женский)
age Возраст(округлён)
height Рост(округлён) [см]
weight [кг]
sight_left зрение (левый)
sight_left зрение (правый)
hear_left слух (левое): 1 (нормальное), 2 (ненормальное)
hear_right слух (правое): 1 (нормальное), 2 (ненормальное)
SBP Систолическое артериальное давление [мм рт. ст.]
DBP Диастолическое артериальное давление [мм рт. ст.]
BLDS глюкоза в крови натощак [мг/дл]
tot_chole общий холестерин [мг/дл]
HDL_chole Холестерин ЛПВП [мг/дл]
LDL_chole Холестерин ЛПНП [мг/дл]
triglyceride триглицерид [мг/дл]
hemoglobin гемоглобин [г/дл]
urine_protein белок в моче, 1(-), 2(+/-), 3(+1), 4(+2), 5(+3), 6(+4)
serum_creatinine креатинин сыворотки (крови) [мг/дл]
SGOT_AST глутамат-оксалоацетат-трансаминаза / аспартат-трансаминаза [МЕ/л]
SGOT_ALT аланиновая трансаминаза [МЕ/л]
gamma_GTP γ-глутамилтранспептидаза [МЕ/л]
SMK_stat_type_cd Степень курения: 1 (никогда), 2 (бросил), 3 (курю)
DRK_YN Пьющий или нет

Как запустить лабораторную работу:

Для запуска лабораторной работы необходимо запустить файл lab5.py

Используемые технологии:

  • Python 3.12
  • pandas
  • scikit-learn

Что делает лабораторная работа:

Эта лабораторная работа применяет полиномиальную регрессию к данным из файла для предсказания степени курения и оценивает ее эффективность используя среднеквадратичную ошибку и коэффициент детерминации (R-squared)

Предварительная обработка данных:

Изначально датасет имеет несколько категориальных признаков : sex , DRK_YN

Преобразуем их в фиктивные переменные используя

data = pd.get_dummies(data, columns=['sex', 'DRK_YN'], drop_first=True)

Результат:

Результат

Вывод:

Чем ближе значение MSE к нулю, тем лучше модель предсказывает целевую переменную. В данном случае, MSE не является очень высоким, но и не низким.

Значение коэф. детерминации 0.4052 говорит о том, что модель объясняет примерно 40.52% изменчивости в данных по степени курения.

В целом, результаты указывают на то, что выбранная модель полиномиальной регрессии демонстрирует некоторую способность предсказывать степень курения на основе данных из датасета.