IIS_2023_1/kutygin_andrey_lab_5/README.md

37 lines
3.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

**Задание**
***
Использовать регрессию по варианту для данных из таблицы 1 по варианту(таблица 10),самостоятельно сформулировав задачу. Оценить, насколько хорошо она подходит для решения сформулированной вами задачи
Вариант 16 - полиномиальная регрессия
**Как запустить лабораторную**
***
Запустить файл main.py
**Используемые технологии**
***
Библиотеки pandas, matplotlib, scikit-learn, их компоненты
**Описание лабораторной (программы)**
***
Программа загружает данные о наблюдениях НЛО из CSV файла. Затем она разделяет данные на признаки (latitude и longitude) и целевую переменную (length_of_encounter_seconds). Далее происходит преобразование столбца date_time в числовой формат с помощью pd.to_datetime. После этого данные разделяются на обучающую и тестовую выборки с использованием train_test_split.
Далее программа создает полиномиальные признаки второй степени с помощью PolynomialFeatures. Затем модель полиномиальной регрессии обучается на обучающих данных с помощью LinearRegression. После обучения модель оценивается на обучающей и тестовой выборках, вычисляя значения предсказаний и используя метрики MSE (среднеквадратичная ошибка) и R^2 (коэффициент детерминации).
В конце программы выводятся значения MSE и R^2 для обучающей и тестовой выборок.
**Результат**
***
Train MSE: 10388560458125.451
Test MSE: 340591245157.4829
Train R^2: 0.024274600175043015
Test R^2: 0.13630563714232358
На основе представленных значений можно сделать следующие выводы:
1. Значение MSE (среднеквадратичная ошибка) для обучающей выборки составляет 10,388,560,458,125.451, а для тестовой выборки - 340,591,245,157.4829. Значения MSE высокие, что может указывать на низкую точность модели.
2. Значение R^2 (коэффициент детерминации) для обучающей выборки равно 0.024274600175043015, а для тестовой выборки - 0.13630563714232358. Значения R^2 близки к нулю, что означает, что модель не очень хорошо объясняет вариацию целевой переменной.
Таким образом, полученные результаты говорят о том, что модель полиномиальной регрессии, построенная на основе данных о наблюдениях НЛО, не является очень точной и не обладает высокой предсказательной способностью. Из чего можно сделать вывод, что мои предположения насчет предсказывания времени наблюдения, на основе данных долготы и широты, не оправданы.