IIS_2023_1/malkova_anastasia_lab_6/README.md
2023-11-17 01:19:07 +04:00

71 lines
2.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №6
> Нейронная сеть
### Как запустить лабораторную работу
1. Установить python, numpy, sklearn
1. Запустить команду `python main.py` в корне проекта
### Использованные технологии
* Язык программирования `python`
* Библиотеки `numpy, sklearn`
* Среда разработки `PyCharm`
### Что делает программа?
Цель программы: на основе данных об автомобилях на вторичном рынке обучить модель нейронной сети MLPRegressor
на предсказание цены.
Модель: MLPRegressor
Выбранные признаки:
- year
- mileage
- state
#### Сеть из 1 слоя в 20 нейронов
Обучение на 2 вариантах random state
Оценки качества по MAPE:
min: 91.89810260464559
median: 91.91394036274613
max: 91.92977812084669
std: 0.015837758100552435
Выводы: качество хорошее, но всё ещё есть доля ошибки. При этом разброс оценок качества 0.01 процента показывает,
что random state не сильно влияет на итоговое качество модели.
Обучение на 20 вариантах random state
min: 91.47984008974515
median: 91.97261118318303
max: 92.36410228588716
std: 0.22711198255843948
Выводы: качество неудовлетворительное. Похоже на переобучение. Разброс всё ещё небольшой 0.2 показывает,
что random state не сильно влияет на итоговое качество модели.
#### Сеть из 2 слоев по 20 нейронов
Обучение на 2 вариантах random state
min: 91.12873208155982
median: 91.44458715556677
max: 91.76044222957371
std: 0.31585507400694723
Обучение на 20 вариантах random state
min: 90.17104509583521
median: 91.85328507593465
max: 92.43304446695873
std: 0.5086054377534013
Выводы: Оптимальный результат 92.43%. Качество хорошее, но процент ошибки всё ещё большой.
Поэтому для решения поставленной задачи MLPRegressor с предложенными параметрами не подходит.