IIS_2023_1/shestakova_maria_lab_3/README.md
2023-11-29 20:32:10 +03:00

33 lines
2.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### Задание:
Часть 1. По данным о пассажирах Титаника решите задачу классификации (с помощью дерева решений), в которой по различным характеристикам пассажиров требуется найти у выживших пассажиров два наиболее важных признака из трех рассматриваемых: Pclass, Parch, Fare
Часть 2. Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных: зависимость качества сна (Quality of Sleep) от возраста (Age) и пола (Gender). Проверьте работу модели на оставшемся проценте, сделайте вывод
### Технологии:
Библиотека Scikit-learn, библиотека numpy, библиотека pandas
### Что делает лабораторная:
Часть 1. Из выборки отбирается 3 необходимых по заданию признака, определяется целевая переменная по заданию, обучается дерево, выводятся важности признаков по каждому классу
Часть 2. Из выборки отбирается 2 необходимых по заданию признака, определяется целевая переменная по заданию, данные разделяются на обущающую и тестовую выборку, дерево обучается классификацией и регрессией, выводятся важности признаков, предсказания значений на тестовой выборке и оценка качества
### Как запустить:
Первая часть лабораторной работы запускается в файле `shestakova_maria_lab_3.1.py` через Run: появляется вывод в консоли
Вторая часть лабораторной работы запускается в файле `shestakova_maria_lab_3.2.py` через Run: появляется вывод в консоли
### Вывод:
Часть 1.
![img1.png](3.1.png)
Часть 2.
![img2.png](3.2.png)
По выводу можно заметить, что модель дерева классификации подходит больше для решения данной задачи