IIS_2023_1/gusev_vladislav_lab_1/README.md
2023-10-07 12:36:45 +04:00

29 lines
2.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### Вариант 9
### Задание на лабораторную работу:
По данным, построить графики 3 моделей:
- Персептрон
- Многослойный персептрон с 10-ю нейронами в скрытом слое (alpha = 0.01)
- Многослойный персептрон с 100-а нейронами в скрытом слое (alpha = 0.01)
Данные: make_classification (n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
### Как запустить лабораторную работу:
Выполняем файл gusev_vladislav_lab_1.py, на экране будет нарисовано 3 графика
### Технологии
NumPy - библиотека для работы с многомерными массивами. Mathplotlib - библиотека для визуализации данных двумерной и трехмерной графикой. Sklearn - библиотека с большим количеством алгоритмов машинного обучения.
### По коду
Используем функцию make_classification, чтобы сгенерировать 500 примеров с 2 признаками. Дополнительные параметры определяют характеристики данных, такие как количество информативных признаков и случайное распределение классов.
С помощью train_test_split разделяем данные на обучающую и тестовую выборки в соотношении 70% к 30%.
Далее создаются 3 модели: персептрон, многослойный персептрон с 10 нейронами в скрытом слое и многослойный персептрон с 100 нейронами в скрытом слое.Модели обучаются на обучающих данных с использованием метода fit.
Обученные модели используются для предсказания классов на тестовых данных с помощью метода predict.
Затем с помощью accuracy_score оцениваем точности предсказаний моделей на тестовом наборе данных.
Далее создаем графики для каждой модели, где каждая точка данных отображается на графике с цветом, соответствующим предсказанному классу. В заголовках написана точность для каждой модели. Отображаем графики с помощью plt.show().
Полученные графики: ![Figure_1.png](Figure_1.png)