IIS_2023_1/gusev_vladislav_lab_3/README.md
2023-10-18 13:47:11 +04:00

27 lines
2.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### Вариант 9
### Задание на лабораторную работу:
Решите с помощью библиотечной реализации дерева решений задачу: Запрограммировать дерево решений как минимум на 99% ваших данных для задачи: Зависимость глубины алмаза (depth) от длины (x), ширины (y) и высоты алмаза (z) . Проверить работу модели на оставшемся проценте, сделать вывод.
### Как запустить лабораторную работу:
Выполняем файл gusev_vladislav_lab_3.py, решение будет в консоли.
### Технологии
Sklearn - библиотека с большим количеством алгоритмов машинного обучения. Нам понадобится библиотека для дерева решения регрессии sklearn.tree.DecisionTreeRegressor.
### По коду
1) Для начала загружаем данные из csv файла
2) Разделеям данные на признаки (X) и целевую переменную (y)
3) Разделяем данные на обучающее и тестовые
4) Обучаем дерево регрессией (model)
5) Выводим важность признаков, предсказание значений на тестовой выборке и оценку производительности модели
Пример:
![img.png](img.png)
### Вывод
- score: ~0.88. Это мера того, насколько хорошо модель соответствует данным. По значению 88% можно сказать, что модель хорошо соответствует данным.
- feature_importances: ~0.26, ~0.34, ~0,39. Это говорит о важности признаков для нашей модели. Можно сказать, что высота (z) имеет наибольшую важность.
- Mean Squared Error: 0.22. Это ошибка модели. Это говорит о том, что модель в среднем ошибается в 22% случаев.
По итогу можно сказать, что модель отработала хорошо, из-за score ~0.88.