IIS_2023_1/kurmyza_pavel_lab_4/README.md

46 lines
2.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №4
## ПИбд-41, Курмыза Павел
Датасет по варианту: https://www.kaggle.com/datasets/jessemostipak/hotel-booking-demand.
Данный набор данных содержит информацию о бронировании городской и курортной гостиниц и включает в себя такие
сведения, как время бронирования, продолжительность пребывания, количество взрослых, детей и/или младенцев, количество
свободных парковочных мест и т.д.
## Как запустить ЛР
- Запустить файл main.py
## Используемые технологии
- Язык программирования Python
- Библиотеки: sklearn, numpy, pandas
## Что делает программа
Программа решает задачу регрессии на выбранном датасете: предсказание возможности бронирования номера в отеле
определенного типа (курортный отель или гостиничный). Решение достигается в несколько этапов:
- Предобработка данных
- Стандартизация данных и приведение их к виду, удобном для работы с моделями ML
- Использование модели логистической регрессии
- Оценка точности модели для решения данной задачи
## Тестирование
Для решения задачи регрессии была выбрана модель LogisticRegression.
LogisticRegression - это статистическая модель, которая в своей базовой форме использует логистическую функцию для
моделирования двоичной зависимой переменной. В анализе регрессии, логистическая регрессия оценивает параметры
логистической модели (вид бинарной регрессии).
Оценка точности модели:
![Отчет](report.jpg)
## Вывод
По итогу тестирования было выявлено, что данная модель может быть использована для решения задачи предсказания
возможности бронирования номера в отеле определенного типа. Однако, оценка точности модели и матрица неточностей
указывают на то, что в 20-30% случаев модель будет ошибаться.