IIS_2023_1/faskhutdinov_idris_lab_1/Readme.md

41 lines
2.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №1. Работа с типовыми наборами данных и различными моделями
## 6 вариант
### Задание:
Используя код из пункта «Регуляризация и сеть прямого
распространения» из источника (стр. 228), сгенерируйте определенный тип данных и
сравните на нем 3 модели (по варианту). Постройте графики, отобразите
качество моделей, объясните полученные результаты.
Данные: make_classification (n_samples=500, n_features=2,
n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
Модели:
* Линейную регрессию
* Полиномиальную регрессию (со степенью 4)
* Гребневую полиномиальную регрессию (со степенью 4, alpha = 1.0)
### Как запустить лабораторную
1. Запустить файл main.py
### Используемые технологии
1. Библиотека matplotlib
2. Библиотека scikit-learn
3. Python
4. IDE PyCharm
### Описание лабораторной работы
Программа генерирует набор данных с помощью функции make_classification в функции main.
После чего делит данные на тестовую и обучающую выборки. В итоге запускает функции linear_regression, polin_regression_4, gr_polin_regression_4,
передавая им набор данных как аргументы. В вышеперечисленных функциях происходит обучение моделей на тестовой выборке, после чего предсказываются
данные на оставшейся выборке. В заключении строятся графики, которые отображают модели, в консоль выводится оценка их работы
### Результат
Программа выводит в консоль следующие данные:
Линейная регрессия: 0.8857142857142857
Полиномиальная регрессия: 0.9714285714285714
Гребневая полиномиальная регрессия: 0.7732479926366043
Выходит, что наиболее качественная для решения задачи-полиномиальная регрессия, а хуже всего справилась гребневая полиномиальная.
Скриншоты работы программы представлены в папке с лабораторной работой.