IIS_2023_1/istyukov_timofey_lab1/README.md
2023-12-10 16:01:29 +04:00

61 lines
2.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Лабораторная работа №1. Работа с типовыми наборами данных и различными моделями
## 12 вариант
___
### Задание:
Используя код из пункта «Регуляризация и сеть прямого распространения», сгенерируйте определенный тип данных и сравните на нем 3 модели (по варианту). Постройте графики, отобразите качество моделей, объясните полученные результаты.
### Данные по варианту:
- make_classification (n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
### Модели по варианту:
- Линейная регрессия
- Персептрон
- Гребневая полиномиальная регрессия (со степенью 4, alpha = 1.0)
___
### Запуск
- Запустить файл lab1.py
### Используемые технологии
- Язык программирования **Python**
- Среда разработки **PyCharm**
- Библиотеки:
* numpy
* sklearn
* matplotlib
### Описание программы
Программа генерирует набор данных с помощью функции make_classification()
с заданными по варианту параметрами. После этого происходит вывод в консоль
качества данных моделей по варианту и построение графикиков для этих моделей.
Оценка точности происходит при помощи встроенного в модели метода метода
**.score()**, который вычисляет правильность модели для набора данных.
___
### Пример работы
![Graphics](1_linear_regression.png)
```text
===> Линейная регрессия <===
Оценка точности: 0.4513003751817972
```
___
![Graphics](2_perceptron.png)
```text
===> Персептрон <===
Оценка точности: 0.7591836734693878
```
___
![Graphics](3_poly_ridge.png)
```text
===> Гребневая полиномиальная регрессия <===
Оценка точности: 0.5312017992195672
```
### Вывод
Согласно выводу в консоль оценок точности, лучший результат показала модель **персептрона**