IIS_2023_1/abanin_danill_lab_6/README.md
BossMouseFire 0e5a5ad282 lab6
2023-10-29 00:29:45 +04:00

34 lines
1.8 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Лабораторная работа №6
### MLPClassifier
## Cтудент группы ПИбд-41 Абанин Даниил
### Как запустить лабораторную работу:
* установить python, numpy, matplotlib, sklearn
* запустить проект (lab6)
### Какие технологии использовались:
* Язык программирования `Python`, библиотеки numpy, matplotlib, sklearn
* Среда разработки `PyCharm`
### Что делает лабораторная работа:
* По данным "Eligibility Prediction for Loan" решает задачу классификации, в которой необходимо выявить риски выдачи кредита. В качестве исходных данных используются признаки:
Credit_History - соответствие кредитной истории стандартам банка, ApplicantIncome - доход заявителя, LoanAmount - сумма кредитаб, Self_Employed - самозанятость (Да/Нет), Education - наличие образования, Married - заявитель женат/замужем (Да/Нет).
### Примеры работы:
#### Результаты:
* Было проведено несколько прогонов на разном количестве итераций (200, 400, 600, 800, 1000)
![Result](score_1.png)
![Result](score_2.png)
Средняя точность находится в диапазоне 50-60%, что является недостаточным значением. Увеличение итераций не дало значительного улучшения результата,
максиальный прирост составляет 10%
![Result](result_mean.jpg)