.. | ||
README.md | ||
res.png | ||
shestakova_maria_lab_6.py | ||
sleep.csv |
Задание:
Использовать нейронную сеть MLPClassifier для данных из файла для задачи: предсказать, является качество сна на основе некоторых других признаков.
Технологии:
Библиотека Scikit-learn, библиотека pandas
Что делает лабораторная:
Лабораторная работа предсказывает качество сна, используя следующие признаки: уровень стресса, возраст, пол, уровень физической активности и категория индекса массы тела.
Как запустить:
Лабораторная работа запускается в файле shestakova_maria_lab_6.py
через Run: появляется вывод в консоли
Вывод:
Консоль:
Точность - показатель общей точности модели, который указывает на долю правильно классифицированных образцов в тестовой выборке. В данном случае, точность модели составляет примерно 97.33%, что является очень хорошим результатом
Матрица ошибок показывает количество верно и неверно классифицированных образцов для каждого класса. В данном случае, матрица имеет размерность 6x6, где каждая строка представляет истинный класс, а каждый столбец представляет предсказанный класc. Значения в матрице указывают количество образцов, которые были классифицированы в соответствующих ячейках. Из матрицы ошибок можно определить общее количество ошибок, сложив значения, которые находятся вне главной диагонали матрицы. Таким образом, получилось 2 ошибки
Также выводится отчет о классификации, который содержит информацию о точности, полноте, F1-мере и поддержке для каждого класса