shestakova_maria_lab_6 is ready
This commit is contained in:
parent
a8c58683dd
commit
4f72edc7ef
28
shestakova_maria_lab_6/README.md
Normal file
28
shestakova_maria_lab_6/README.md
Normal file
@ -0,0 +1,28 @@
|
||||
### Задание:
|
||||
|
||||
Использовать нейронную сеть MLPClassifier для данных из файла для задачи: предсказать, является качество сна на основе некоторых других признаков.
|
||||
|
||||
### Технологии:
|
||||
|
||||
Библиотека Scikit-learn, библиотека pandas
|
||||
|
||||
### Что делает лабораторная:
|
||||
|
||||
Лабораторная работа предсказывает качество сна, используя следующие признаки: уровень стресса, возраст, пол, уровень физической активности и категория индекса массы тела.
|
||||
|
||||
### Как запустить:
|
||||
|
||||
Лабораторная работа запускается в файле `shestakova_maria_lab_6.py` через Run: появляется вывод в консоли
|
||||
|
||||
### Вывод:
|
||||
|
||||
Консоль:
|
||||
|
||||
![результат в консоли](res.png)
|
||||
|
||||
Точность - показатель общей точности модели, который указывает на долю правильно классифицированных образцов в тестовой выборке. В данном случае, точность модели составляет примерно 97.33%, что является очень хорошим результатом
|
||||
|
||||
Матрица ошибок показывает количество верно и неверно классифицированных образцов для каждого класса. В данном случае, матрица имеет размерность 6x6, где каждая строка представляет истинный класс, а каждый столбец представляет предсказанный класc. Значения в матрице указывают количество образцов, которые были классифицированы в соответствующих ячейках.
|
||||
Из матрицы ошибок можно определить общее количество ошибок, сложив значения, которые находятся вне главной диагонали матрицы. Таким образом, получилось 2 ошибки
|
||||
|
||||
Также выводится отчет о классификации, который содержит информацию о точности, полноте, F1-мере и поддержке для каждого класса
|
BIN
shestakova_maria_lab_6/res.png
Normal file
BIN
shestakova_maria_lab_6/res.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 80 KiB |
50
shestakova_maria_lab_6/shestakova_maria_lab_7.py
Normal file
50
shestakova_maria_lab_6/shestakova_maria_lab_7.py
Normal file
@ -0,0 +1,50 @@
|
||||
import pandas as pd
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Загрузка данных из файла
|
||||
data = pd.read_csv('sleep.csv')
|
||||
|
||||
# Удаление ненужных столбцов
|
||||
data = data.drop(['Person ID', 'Occupation', 'Blood Pressure', 'Heart Rate', 'Daily Steps', 'Sleep Disorder'], axis=1)
|
||||
|
||||
# Преобразование категориальных признаков 'Gender' и 'BMI Category' в числовые значения
|
||||
label_encoder = LabelEncoder()
|
||||
data['Gender'] = label_encoder.fit_transform(data['Gender'])
|
||||
data['BMI Category'] = label_encoder.fit_transform(data['BMI Category'])
|
||||
|
||||
# Выделение признаков и целевой переменной
|
||||
X = data.drop('Quality of Sleep', axis=1)
|
||||
y = data['Quality of Sleep']
|
||||
|
||||
# Разделение данных на обучающую и тестовую выборки
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# Масштабирование признаков
|
||||
scaler = StandardScaler()
|
||||
X_train_scaled = scaler.fit_transform(X_train)
|
||||
X_test_scaled = scaler.transform(X_test)
|
||||
|
||||
# Создание и обучение модели
|
||||
model = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=1000, random_state=42)
|
||||
model.fit(X_train_scaled, y_train)
|
||||
|
||||
# Оценка точности модели на тестовой выборке
|
||||
accuracy = model.score(X_test_scaled, y_test)
|
||||
print(f'Accuracy: {accuracy}')
|
||||
|
||||
# Вывод матрицы ошибок
|
||||
y_pred = model.predict(X_test_scaled)
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
print("Confusion Matrix:")
|
||||
print(cm)
|
||||
|
||||
# Вывод отчета о классификации
|
||||
y_pred = model.predict(X_test_scaled)
|
||||
classification_rep = classification_report(y_test, y_pred)
|
||||
print("Classification Report:")
|
||||
print(classification_rep)
|
375
shestakova_maria_lab_6/sleep.csv
Normal file
375
shestakova_maria_lab_6/sleep.csv
Normal file
@ -0,0 +1,375 @@
|
||||
Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder
|
||||
1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None
|
||||
2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
|
||||
3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
|
||||
4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
|
||||
5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
|
||||
6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia
|
||||
7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia
|
||||
8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
|
||||
12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
|
||||
14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
|
||||
15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
|
||||
16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
|
||||
17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea
|
||||
18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea
|
||||
19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia
|
||||
20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||
21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||
27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||
29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||
30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||
31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea
|
||||
32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia
|
||||
33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None
|
||||
34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||
39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||
40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||
41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||
49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea
|
||||
51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
|
||||
52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
|
||||
53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||
55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||
61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||
64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||
65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||
66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||
67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None
|
||||
68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia
|
||||
69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
|
||||
70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
|
||||
71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||
75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||
81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
|
||||
82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
|
||||
83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
|
||||
84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
|
||||
85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
|
||||
86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
|
||||
88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
|
||||
89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||
90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||
91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||
92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||
93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
|
||||
94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
|
||||
95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia
|
||||
96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea
|
||||
105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea
|
||||
106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia
|
||||
107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None
|
||||
108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
|
||||
109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
|
||||
110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
|
||||
111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
|
||||
113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
|
||||
115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||
126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None
|
||||
127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||
137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
|
||||
139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
|
||||
141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
|
||||
143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||
145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea
|
||||
146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
|
||||
147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia
|
||||
148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia
|
||||
149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None
|
||||
150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
|
||||
151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
|
||||
152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||
162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
|
||||
163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
|
||||
164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
|
||||
165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
|
||||
166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia
|
||||
167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None
|
||||
168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
|
||||
169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
|
||||
170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
|
||||
176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
|
||||
177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
|
||||
178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
|
||||
186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
|
||||
187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
|
||||
203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
|
||||
204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None
|
||||
205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None
|
||||
206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||
212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||
219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea
|
||||
220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea
|
||||
221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia
|
||||
249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None
|
||||
250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None
|
||||
251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
|
||||
252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
|
||||
253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||
262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
|
||||
263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
|
||||
264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None
|
||||
265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
|
||||
266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
|
||||
268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None
|
||||
269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
|
||||
278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
|
||||
279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia
|
||||
280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||
281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None
|
||||
282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None
|
||||
304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||
307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||
313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia
|
||||
317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||
326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||
328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||
330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||
339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||
340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
|
||||
341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
|
||||
342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
|
||||
343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
|
||||
344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
|
||||
345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None
|
||||
360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
|
||||
361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||
374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
|
Loading…
Reference in New Issue
Block a user