antonov_dmitry_lab_1 #9
14
antonov_dmitry_lab_1/README.md
Normal file
14
antonov_dmitry_lab_1/README.md
Normal file
@ -0,0 +1,14 @@
|
||||
# Лаб 1
|
||||
Работа с типовыми наборами данных и различными моделями
|
||||
# Вариант 3
|
||||
Данные: make_classification (n_samples=500, n_features=2,
|
||||
n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
|
||||
# Модели:
|
||||
1. Линейную регрессию
|
||||
1. Полиномиальную регрессию (со степенью 3)
|
||||
1. Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
|
||||
# Screenshots
|
||||
|
||||
<p>
|
||||
<img src="screens/Screenshot_2022-07-20-15-27-01.png" width="200" title="пример 1">
|
||||
</p>
|
59
antonov_dmitry_lab_1/lab1.py
Normal file
59
antonov_dmitry_lab_1/lab1.py
Normal file
@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.datasets import make_moons, make_circles, make_classification
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=0, n_clusters_per_class=1)
|
||||
rng = np.random.RandomState(2)
|
||||
X += 2 * rng.uniform(size=X.shape)
|
||||
linearly_dataset = (X, y)
|
||||
moon_dataset = make_moons(noise=0.3, random_state=0)
|
||||
circles_dataset = make_circles(noise=0.2, factor=0.5, random_state=1)
|
||||
|
||||
datasets = [moon_dataset, circles_dataset, linearly_dataset]
|
||||
for ds_cnt, ds in enumerate(datasets):
|
||||
X, y = ds
|
||||
X = StandardScaler().fit_transform(X)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, random_state=42)
|
||||
|
||||
alphas = np.logspace(-5, 3, 5)
|
||||
|
||||
current_subplot = plt.subplot(3, 5 + 1, i)
|
||||
|
||||
current_subplot.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
|
||||
current_subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
|
||||
|
||||
cm = plt.cm.RdBu
|
||||
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
|
||||
|
||||
h = .02 # шаг регулярной сетки
|
||||
x0_min, x0_max = X[:, 0].min() - .5, X[:, 0].max() + .5
|
||||
x1_min, x1_max = X[:, 1].min() - .5, X[:, 1].max() + .5
|
||||
xx0, xx1 = np.meshgrid(np.arange(x0_min, x0_max, h), np.arange(x1_min, x1_max, h))
|
||||
|
||||
Z = clf.decision_function(np.c_[xx0.ravel(), xx1.ravel()]) # 1
|
||||
Z = clf.predict_proba(np.c_[xx0.ravel(), xx1.ravel()])[:, 1] # 2
|
||||
Z = clf.predict(np.c_[xx0.ravel(), xx1.ravel()]) # 3
|
||||
|
||||
hasattr(clf, "decision_function")
|
||||
|
||||
Z = Z.reshape(xx0.shape)
|
||||
current_subplot.contourf(xx0, xx1, Z, cmap=cm, alpha=.8)
|
||||
current_subplot.set_xlim(xx0.min(), xx0.max())
|
||||
current_subplot.set_ylim(xx0.min(), xx1.max())
|
||||
current_subplot.set_xticks(())
|
||||
current_subplot.set_yticks(())
|
||||
current_subplot.set_title(name)
|
||||
current_subplot.text(xx0.max() - .3, xx1.min() + .3, ('%.2f' % score).lstrip('0'),
|
||||
size=15, horizontalalignment='right')
|
||||
|
||||
current_subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
|
||||
|
||||
figure.subplots_adjust(left=.02, right=.98)
|
||||
|
||||
current_subplot.set_title("Input data")
|
||||
current_subplot.text(xx0.max() - .3, xx1.min() + .3, ('%.2f' % score).lstrip('0'), size=15,
|
||||
horizontalalignment='right')
|
Loading…
Reference in New Issue
Block a user